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Notation

:= is defined as
∈ belongs to (a set)
/∈ does not belong to (a set)
∩ intersection of sets
∪ union of sets
∅ empty set
N set of natural numbers
Z set of integers
Q set of rational numbers
R set of real numbers
R+ set of nonnegative real numbers
C set of complex numbers
Rn n-dimensional Euclidian space

space of column vectors with n real components
Cn n-dimensional complex linear space

space of column vectors with n complex components
M manifold
H Hilbert space
i

√
−1

<z real part of the complex number z
=z imaginary part of the complex number z
|z| modulus of complex number z

(|x+ iy| = (x2 + y2)1/2, x, y ∈ R
T ⊂ S subset T of set S
S ∩ T the intersection of the sets S and T
S ∪ T the union of the sets S and T
f(S) image of set S under mapping f
f ◦ g composition of two mappings (f ◦ g)(x) = f(g(x))
x column vector in Cn

xT transpose of x (row vector)
0 zero (column) vector
‖ . ‖ norm
x · y ≡ x∗y scalar product (inner product) in Cn

x× y vector product in R3

Sn symmetric group
An alternating group
Dn n-th dihedral group



x

A,B,C m× n matrices
det(A) determinant of a square matrix A
tr(A) trace of a square matrix A
rank(A) rank of matrix A
AT transpose of matrix A
A conjugate of matrix A
A∗ conjugate transpose of matrix A
A† conjugate transpose of matrix A

(notation used in physics)
A−1 inverse of square matrix A (if it exists)
In n× n unit matrix
I unit operator
0n n× n zero matrix
AB matrix product of m× n matrix A

and n× p matrix B
V vector field

of m× n matrices A and B
[A,B] := AB −BA commutator for square matrices A and B
[A,B]+ := AB +BA anticommutator for square matrices A and B
⊗ tensor product
∧ exterior product, Grassmann product, wedge product
δjk Kronecker delta with δjk = 1 for j = k

and δjk = 0 for j 6= k
λ eigenvalue
ε real parameter
t time variable
Ĥ Hamilton operator



Chapter 1

Curves, Surfaces and
Manifolds

Problem 1. Consider the compact differentiable manifold

S2 := { (x1, x2, x3) : x2
1 + x2

2 + x2
3 = 1 }.

An element η ∈ S2 can be written as

η = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))

where φ ∈ [0, 2π) and θ ∈ [0, π]. The stereographic projection is a map

Π : S2 \ { (0, 0,−1) } → R2

given by

x1(θ, φ) =
2 sin(θ) cos(φ)

1 + cos(θ)
, x2(θ, φ) =

2 sin(θ) sin(φ)
1 + cos(θ)

.

(i) Let θ = 0 and φ arbitrary. Find x1, x2. Give a geometric interpretation.
(ii) Find the inverse of the map, i.e., find

Π−1 : R2 → S2 \ { (0, 0,−1) }.

Problem 2. The parameter representation for the torus is given by

x1(u1, u2) = (R+ r cos(u1)) cos(u2)
x2(u1, u2) = (R+ r cos(u1)) sin(u2)
x3(u1, u2) = r sin(u1)

1
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where u1 ∈ [0, 2π] and u2 ∈ [0, 2π] and R > r. Let

t1(u1, u2) :=

 ∂x1/∂u1

∂x2/∂u1

∂x3/∂u1

 , t2(u1, u2) :=

 ∂x1/∂u2

∂x2/∂u2

∂x3/∂u2

 .

The surface element of the torus is given by

do =
√
gdu1du2

where
g = g11g22 − g12g21

and
gjk(u1, u2) := tj(u1, u2) · tk(u1, u2)

with · denoting the scalar product. Calculate the surface area of the torus.

Problem 3. Let x, y ∈ R. Consider the map

ξ(x, y) =
x

1 + x2 + y2
, η(x, y) =

y

1 + x2 + y2
, ζ(x, y) =

x2 + y2

1 + x2 + y2
.

Calculate

ξ2 + η2 +
(
ζ − 1

2

)2

.

Discuss. Find ξ(0, 0), η(0, 0), ζ(0, 0) and ξ(1, 1), η(1, 1), ζ(1, 1).

Problem 4. Consider the two-dimensional unit sphere

S2 := {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1 }.

Show that S2 is an orientable two-dimensional differentiable manifold. Use
the following orientation-preserving atlas

U1 = {x ∈ S2 : x3 > 0 }, U2 = {x ∈ S2 : x3 < 0 },

U3 = {x ∈ S2 : x2 > 0 }, U4 = {x ∈ S2 : x2 < 0 },

U5 = {x ∈ S2 : x1 > 0 }, U6 = {x ∈ S2 : x1 < 0 }.

Problem 5. Cn is an n-dimensional complex manifold. The complex
projective space Pn(C) which is defined to be the set of lines through the
origin in Cn+1, that is

Pn(C) = (Cn+1 \ {0 })/ ∼
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for the equivalence relation

(u0, u1, . . . , un) ∼ (v0, v1, . . . , vn)⇔ ∃λ ∈ C∗ : λuj = vj ∀ 0 ≤ j ≤ n

where C∗ := C \ { 0 }. Show that P1(C) is a one-dimensional complex
manifold.

Problem 6. Let

Sn := { (x1, x2, . . . , xn+1) : x2
1 + x2

2 + · · ·+ x2
n+1 = 1 }.

(i) Show that S3 can be considered as a subset of C2 (C2 ∼= R4)

S3 = { (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1 }.

(ii) The Hopf map π : S3 → S2 is defined by

π(z1, z2) := (z1z2 + z2z1,−iz1z2 + iz2z1, |z1|2 − |z2|2).

Find the parametrization of S3, i.e. find z1(θ, φ), z2(θ, φ) and thus show
that indeed π maps S3 onto S2.
(iii) Show that π(z1, z2) = π(z′1, z

′
2) if and only if z′j = eiαzj (j = 1, 2) and

α ∈ R.

Problem 7. The n-dimensional complex projective space CPn is the set
of all complex lines on Cn+1 passing through the origin. Let f be the map
that takes nonzero vectors in C2 to vectors in R3 by

f(z1, z2) =
(
z1z2 + z1z2

z1z1 + z2z2
,
z1z2 − z1z2

i(z1z1 + z2z2)
,
z1z1 − z2z2

z1z1 + z2z2

)
The map f defines a bijection between CP1 and the unit sphere in R3.
Consider the normalized vectors in C2(

1
0

)
,

(
0
1

)
,

1√
2

(
1
1

)
,

1√
2

(
1
−1

)
,

1√
2

(
i
−i

)
.

Apply f to these vectors in C2.

Problem 8. The stereographic projection is the map φ : S2 \ N → C
defined by

φ(x, y, z) =
x

1− z
+ i

y

1− z
.

Show that the inverse of the stereographic projection takes a complex num-
ber u+ iv (u, v ∈ R)(

2u
1 + u2 + v2

,
2v

1 + u2 + v2
,

1− u2 − v2

1 + u2 + v2

)
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to the unit sphere.

Problem 9. Show that the projective space Pn(C) is a compact manifold.

Problem 10. Consider the solid torus M = S1 × D2, where D2 is the
unit disk in R2. On it we define coordinates (ϕ, x, y) such that ϕ ∈ S1 and
(x, y) ∈ D2, that is, x2 + y2 ≤ 1. Using these coordinates we define the
map

f : M →M, f(ϕ, x, y) =
(

2ϕ,
1
10
x+

1
2

cos(ϕ),
1
10
y +

1
2

sin(ϕ)
)
.

(i) Show that this map is well-defined, that is, f(M) ⊂M .
(ii) Show that f is injective.

Problem 11. Show that a parameter representation of the hyperboloid

x2
1 − x2

2 − x2
3 = 1

is given by

x1(t) = cosh(t), x2(t) = sinh(t) cos(θ), x3(t) = sinh(t) sin(θ)

where 0 ≤ t <∞ and 0 ≤ θ ≤ 2π.

Problem 12. Consider the upper sheet of the hyperboloid

H2 := {v ∈ R3 : v2 = v2
0 − v2

1 − v2
2 = 1 , v0 > 0 }.

Find a parametrization for v.

Problem 13. Find the stereographic projection of the two-dimensional
sphere

S2 := {v ∈ R3 : v2 = v2
0 + v2

1 + v2
2 = 1 }.

Problem 14. Consider the curve

α(t) =
(

t
cosh(t)

)
, t ∈ R.

Show that the curvature is given by

κ(t) =
1

cosh2(t)
.
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Problem 15. Consider the unit ball

S2 := { (x, y, z) ∈ R3 : x2 + y2 + z2 = 1 }.

Let α(t) = (x(t), y(t), z(t)) be a parametrized differentiable curve on S2.
Show that the vector (x(t), y(t), z(t)) (t fixed) is normal to the sphere at
the point (x(t), y(t), z(t)).

Problem 16. A generic superquadric surface can be defined as a closed
surface in R3

r(η, ω) ≡

x(η, ω)
y(η, ω)
z(η, ω)

 =

 a1 cosε1(η) cosε2(ω)
a2 cosε1(η) sinε2(ω)

a3 sinε1(η)

 , −π/2 ≤ η ≤ π/2, −π ≤ ω < π.

There are five parameters ε1, ε2, a1, a2, a3. Here ε1 and ε2 are the deforma-
tion parameters that control the shape with ε1, ε2 ∈ (0, 2). The parameter
a1, a2, a3 define the size in x, y and z direction. Find the implicit repre-
sentation.

Problem 17. Let

x1(z, z̄) = sech
(
z + z̄

2

)
cosh

(
z − z̄

2

)
x2(z, z̄) = isech

(
z + z̄

2

)
sinh

(
z − z̄

2

)
x3(z, z̄) =− tanh

(
z + z̄

2

)
.

Find x2
1 + x2

2 + x2
3. Note that

sech(z) :=
2

ez + e−z
.

Problem 18. Let d = (d0, d1, . . . , dn) be an (n + 1)-tuple of integers
dj > 1. We define

V (d) := { z = (z0, z1, . . . , zn) ∈ Cn+1 : f(z) := zd00 + zd11 + · · ·+ zdn
n = 0 }.

Let S2n+1 denote the unit sphere in Cn+1, i.e.

z0z̄0 + z1z̄1 + · · ·+ znz̄n = 2.

We define
Σ(d) := V (d) ∩ S2n+1.
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Show that Σ(d) is a smooth manifold of dimension 2n− 1. The manifolds
Σ(d) are called Brieskorn manifolds.

Problem 19. Let w ∈ C. Consider the stereographic projection

r(w) =
(

2<(w)
|w|2 + 1

,
2=(w)
|w|2 + 1

,
|w|2 − 1
|w|2 + 1

)
.

(i) Let w = 1. Find r(w).
(ii) Let w = i. Find r(w).
(iii) Let w = eiφ. Find r(w).
(iv) Let w = 1/2. Find r(w).

Problem 20. (i) Consider the rational curve in the plane

y2 = x2 + x3.

Find the parameter representation x(t), y(t).
(ii) Consider the rational curve in the plane

x2 + y2 = 1.

Find the parameter representation x(t), y(t).

Problem 21. Let a > 0. Consider the transformation Minkowski coor-
dinates (t, z and Rindler coordinates (ζ, η)

t(ζ, η) =
1
a

exp(aζ) sinh(aη), z(ζ, η) =
1
a

exp(aζ) cosh(aη).

Find the inverse transformation.

Problem 22. Show that the helicoid

x(u, v) = (a sinh(v) cos(u), a sinh(v) sin(u), au)

is a minimal surface.

Problem 23. Let A be a symmetric n×n matrix over R. Let 0 6= b ∈ R.
Show that the surface

M = {x ∈ Rn : xTAx = b }

is an (n− 1) dimensional submanifold of the manifold Rn.
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Problem 24. Let C be the topological space given by the boundary of

[0, 1]n := [0, 1]× · · · × [0, 1].

This means C is the surface of the n-dimensional unit cube. Show that C
can be endowed with the structure of a differential manifold.

Problem 25. Find the Gaussian curvature for the torus given by the
parametrization

x(u, v) = ((a+ r cos(u)) cos(v), (a+ r cos(u)) sin(v), r sin(u))

where 0 < u < 2π and 0 < v < 2π.

Problem 26. The Möbius band can be parametrized as

x(u, v) = ((2− v sin(u/2)) sin(u), (2− v sin(u/2)) cos(u), v cos(u/2)) .

Show that the Gaussian curvature is given by

K(u, v) =
1

(v2/4 + (2− v sin(u/2))2)2
.

Problem 27. Given the surface in R3

f(t, θ) =
((

1 + t sin
θ

2

)
cos(θ),

(
1 + t cos

θ

2

)
sin(θ), t sin(

θ

2
)
)

where

t ∈
(
−1

2
,

1
2

)
θ ∈ R.

(i) Build three models of this surface using paper, glue and a scissors. Color
the first model with the South African flag. For the second model keep t
fixed (say t = 0) and cut the second model along the θ parameter. For
the third model keep θ fixed (say θ = 0) and cut the model along the t
parameter. Submit all three models.
(ii) Describe the curves with respect to t for θ fixed. Describe the curve
with respect to θ for t fixed.
(iii) The map given above can also be written in the form

x(t, θ) =
(

1 + t sin
θ

2

)
cos(θ)

y(t, θ) =
(

1 + t cos
θ

2

)
sin(θ)
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z(t, θ) = t sin(
θ

2
).

For fixed t the curve
(x(θ), y(θ), z(θ))

can be considered as a solution of a differential equation. Find this differ-
ential equation. Then t plays the role of a bifurcation parameter.

Problem 28. Let M be a differentiable manifold. Suppose that f : M →
M is a diffeomorphism with Nm(f) <∞, m = 1, 2, . . .. Here Nm(f) is the
number of fixed points of the m-th iterate of f , i.e. f (m). One defines the
zeta function of f as the formal power series

ζf (t) := exp

( ∞∑
m=1

1
m
Nm(f)tm

)
.

(i) Show that ζf (t) is an invariant of the topological conjugacy class of f .
(ii) Find Nm(f) for the map f : R→ R and f(x) = sinh(x).

Problem 29. Consider the curve given by

x1(t) = cos(t)(2 cos(t)− 1)
x2(t) = sin(t)(2 cos(t)− 1)

where t ∈ [0, 2π]. Draw the curve with GNUPLOT. Find the longest dis-
tance between two points on the curve.

Problem 30. (i) Consider the transformation in R3

x0(a, θ1) = cosh(a)
x1(a, θ1) = sinh(a) sin(θ1)
x2(a, θ1) = sinh(a) cos(θ1)

where a ≥ 0 and 0 ≤ θ1 < 2π. Find

x2
0 − x2

1 − x2
2.

(ii) Consider the transformation in R4

x0(a, θ1, θ2) = cosh(a)
x1(a, θ1, θ2) = sinh(a) sin(θ2) sin(θ1)
x2(a, θ1, θ2) = sinh(a) sin(θ2) cos(θ1)
x3(a, θ1, θ2) = sinh(a) cos(θ2)
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where a ≥ 0, 0 ≤ θ1 < 2π and 0 ≤ θ2 ≤ π. Find

x2
0 − x2

1 − x2
2 − x2

3.

Extend the transformation to Rn.

Problem 31. A fixed charge Q is located on the z-axis with coordinates
ra = (0, 0, d/2), where d is interfocal distance of the prolate spheroidal
coordinates

x(η, ξ, φ) =
1
2
d((1− η2)(ξ2 − 1))1/2 cos(φ)

y(η, ξ, φ) =
1
2
d((1− η2)(ξ2 − 1))1/2 sin(φ)

z(η, ξ, φ) =
1
2
dηξ

where −1 ≤ η ≤ +1, 1 ≤ ξ ≤ ∞, 0 ≤ φ ≤ 2π. Express the Coulomb
potential

V =
Q

|r− ra|
in prolate spheroidal coordinates.

Problem 32. Let α, θ, φ, ω ∈ R. Consider the vector in R5

x(α, θ, φ, ω) =


cosh(α) sin(θ) cos(φ)
cosh(α) sin(θ) sin(φ)

cosh(α) cos(θ)
sinh(α) cos(ω)
sinh(α) sin(ω)

 .

Find
x2

1 + x2
2 + x2

3 − x2
4 − x2

5.

This vector plays a role for the Lie group SO(3, 2). The invariant measure
is

cosh2(α) sinh(α) sin(θ)dαdθdφdω.

Problem 33. Show that the surface ∂C of the unit cube

C = {(x1, x2, x3) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1 }

can be made into a differentiable manifold.

Problem 34. The equation of the monkey saddle surface in R3 is given
by

x3 = x1(x2
1 − 3x2

2)



10 Problems and Solutions

with the parameter representation

x1(u1, u2) = u1, x2(u1, u2) = u2, x3(u1, u2) = u3
1 − 3u1u

2
2.

Find the mean and Gaussian curvature.
Let

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Find g restricted to the monkey saddle surface. Find the curvature scalar.

Problem 35. Let a > 0 and consider the surface

x1(u1, u2) = a
1− u2

2

1 + u2
2

cos(u1)

x2(u1, u2) = a
1− u2

2

1 + u2
2

sin(u1)

x3(u1, u2) =
2au2

1 + u2
2

.

Find x2
1 + x2

2 + x2
3.

Problem 36. Show that an open disc

D2 := { (x1, x2) ∈ R2 : x2
1 + x2

2 < 1 }

is homeomorphic to R2.

Problem 37. Let r > 0. The Klein bagel is a specific immersion of the
Klein bottle manifold into three dimensions with the parameter represen-
tation

x1(u1, u2) = (r + cos(u1/2) sin(u2)− sin(u1/2) sin(2u2)) cos(u1)
x2(u1, u2) = (r + cos(u1/2) sin(u2)− sin(u1/2) sin(2u2)) sin(u1)
x3(u1, u2) = sin(u1/2) sin(u2) + cos(u1/2) sin(2u2)

where 0 ≤ u1 < 2π and 0 ≤ u2 < 2π. Find the mean curvature and
Gaussian curvature.

Problem 38. Consider the circle

S1 := {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1 }

and the square

I2 = { (x1, x2) ∈ R : (|x1| = 1, |x2| ≤ 1), (|x1| ≤ 1, |x2| = 1) }.
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Find a homeomorphism.

Problem 39. The transformation between the orthogonal ellipsoidal co-
ordinates (ρ, µ, ν) and the Cartesian coordinates (x1, x2, x3) is

x2
1 =

ρ2µ2ν2

h2k2

x2
2 =

(ρ2 − µ2)(µ2 − h2)(h2 − ν2)
h2(k2 − h2)

x2
3 =

(ρ2 − k2)(k2 − µ2)(k2 − ν2)
k2(k2 − h2)

where k2 = a2
1 − a2

3, h2 = a2
1 − a2

2 and a1 > a2 > a3 denote the three semi-
axes of the ellipsoid. The three surfaces in R3, ρ = constant, (k ≤ ρ ≤ ∞),
µ = constant, (h ≤ µ ≤ k) and ν = constant, (0 ≤ ν ≤ h, represent
ellipsoids and hyperboloids of one and two sheets, respectively. Find the
inverse transformation.

Problem 40. Let x1, x2, x3 ∈ R and

x2
1 + x2

2 + x2
3 = 1.

Let w ∈ C with
w =

x1 + ix2

1 + x3
.

Find x1, x2, x3 as functions of w and w∗.

Problem 41. (i) Let M be a manifold and f : M → M , g : M → M .
Assume that f is invertible. Then we say that the map f is a symmetry of
the map g if

f ◦ g ◦ f−1 = g.

Let M = R and f(x) = sinh(x). Find all g such that f ◦ g ◦ f−1 = g.
(ii) Let f and g be invertible maps. We say that g has a reversing symmetry
f if

f ◦ g ◦ f−1 = g−1.

Let M = R and f(x) = sinh(x). Find all g that satisfy this equation.

Problem 42. Consider the map f : R→ R2 defined by

f(x) = (2 cos(x− π/2), sin(2(x− π/2))).

Show that (f ,R) is an immersed submanifold of the manifold R2, but not
an embedded submanifold.
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Problem 43. Use GNU-plot to plot the curve

x1(t) = cos(3t), x2(t) = sin(5t)

in the (x1, x2)-plane with t ∈ [0, 2π].

Problem 44. A special set of coordinates on Sn called spheroconical (or
elliptic spherical) coordinates are defined as follows: For a given set of real
numbers α1 < α2 < · · · < αn+1 and nonzero x1, . . ., xn+1 the coordinates
λj (j = 1, . . . , n) are the solutions of the equation

n+1∑
j=1

x2
j

λ− αj
.

Find the solutions for n = 2.

Problem 45. Given the surface in R3

f(t, θ) =
((

1 + t sin
θ

2

)
cos(θ),

(
1 + t cos

θ

2

)
sin(θ), t sin

θ

2

)
where t ∈ (−1/2, 1/2) and θ ∈ R.
(i) Build three models of this using paper, glue and a scissor. Color the
first model with the South African flag. For the second model keep t fixed
(say t = 0) and cut the second model along the θ parameter. For the third
model keep θ fixed (say θ = 0) and cut the model along the t parameter.
Submit all three models.
(ii) Describe the curves with respect to t for θ fixed. Describe the curves
with respect to θ for t fixed.
(iii) The map given above can also be written in the form

x(t, θ) =
(

1 + t sin
θ

2

)
cos(θ)

y(t, θ) =
(

1 + t cos
θ

2

)
sin(θ)

z(t, θ) = t sin(
θ

2
).

For fixed t the curve (x(θ), y(θ), z(θ)) can be considered as a solution of an
system of first order differential equations. Find this system, where t plays
the role of a bifurcation parameter.

Problem 46. Let Rn be the n-dimensional Euclidean space and n ≥ 2.
Let r ∈ N or ∞, I be a non-empty interval of real numbers and t in I. A
vector-valued function

γ : I → Rn
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of class Cr (this means that γ is r times continuously differentiable) is called
a parametric curve of class Cr of the curve γ. t is called the parameter of
the curve γ. The parameter t may represent time and the curve γ(t) as
the trajectory of a moving particle in space. If I is a closed interval [a, b],
then γ(a) the starting point and γ(b) is the endpoint of the curve γ. If
γ : (a, b) → Rn is injective, we call the curve simple. If γ is a parametric
curve which can be locally described as a power series, we call the curve
analytic or of class Cω. A Ck-curve

γ : [a, b]→ Rn

is called regular of order m if for any t in interval I

{dγ(t)/dt, d2γ(t)/dt2, ..., dmγ(t)/dtm} m ≤ k

are linearly independent in the vector space Rn. A Frenet frame is a moving
reference frame of n orthonormal vectors ej(t) (j = 1, . . . , n) which are used
to describe a curve locally at each point (t). Using the Frenet frame we
can describe local properties (e.g. curvature, torsion) in terms of a local
reference system than using a global one like the Euclidean coordinates.
Given a Cn+1-curve in Rn which is regular of order n the Frenet frame for
the curve is the set of orthonormal vectors

e1(t), . . . , en(t)

called Frenet vectors. They are constructed from the derivatives of (t) using
the GramSchmidt orthogonalization algorithm with

e1(t) =
dγ(t)/dt
‖dγ(t)/dt‖

, ej(t) =
ej(t)
‖ej(t)‖

, j = 2, . . . , n

where

ej(t) = γ(j)(t)−
j−1∑
i=1

〈γ(j)(t), ei(t)〉 ei(t)

where γ(j) denotes the j derivative with respect to t and 〈 , 〉 denotes the
scalar product in the Euclidean space Rn. The Frenet frame is invariant
under reparametrization and are therefore differential geometric properties
of the curve. Find the Frenet frame for the curve (t ∈ R)

γ(t) =

 cos(t)
t

sin(t)

 .

Problem 47. Show that the Lemniscate of Gerono x4
1 = x2

1 − x2
2 can be

parametrized by

(x1(t), x2(t)) = (sin(t), sin(t) cos(t))
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where 0 ≤ t ≤ π.

Problem 48. Study the curve

x1(t) = cos
(
c0t+

c1
ω

sin(ωt)
)

x2(t) =− sin
(
c0t+

c1
ω

sin(ωt)
)

in the plane with c0, c1, ω > 0, where c0, c1, ω have the dimension of a
frequency and t is the time.

Problem 49. The Hammer projection is an equal-area cartographic pro-
jections that maps the entire surface of a sphere to the interior of an ellipse
of semiaxis

√
8 and

√
2. The Hammer projection is given by the transfor-

mation between (θ, φ) and (x1, x2)

x1(θ, φ) =
√

8 sin(θ) sin(φ/2)√
1 + sin(θ) cos(φ/2)

, x2(θ, φ) =
√

2 cos(θ)√
1 + sin(θ) cos(φ/2)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π.
(i) Show that x2

1/8 + x2
2/2 < 1.

(ii) Find θ(x1, x2) and φ(x1, x2).

Problem 50. Consider the surface in R3

x2
1 + x2

2 − x2
3 = 1.

Show that parametrization of this surface is given by

x1(u1, u2) = cosh(u1) cos(u2), x2(u1, u2) = cosh(u1) sin(u2), x3(u1, u2) = sinh(u1)

where −1 ≤≤ 1 and −π ≤ u2 ≤ π.

Problem 51. (i) Let R > 0. Study the manifold

x2
1

R2e−ε
+

x2
2

R2e−ε
+

x2
3

R2e2ε
= 1

where ε is a deformation parameter.
(ii) Show that the volume V of the spheroid is given by V = (4π/3)R3.

Problem 52. Plot the graph

r(θ) = 1 + 2 cos(2θ).
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Problem 53. Let a > 0. Consider

x1(u, v) = a
1− v2

1 + v2
cos(u), x2(u, v) = a

1− v2

1 + v2
sin(u), x3(u, v) = a

2v
1 + v2

.

(i) Show that
x2

1(u, v) + x2
2(u, v) + x2

3(u, v) = a2.

(ii) Calculate
∂x
∂u
× ∂x
∂v

where × denotes the vector product. Discuss.

Problem 54. Show that the helicoid

x(u, v) = (a sinh(v) cos(u), a sinh(v) sin(u), au)

is a minimal surface.

Problem 55. The Enneper surface is given by

x1(u1, u2) = 3u2−3u2
1u2+u3

2, x2(u1, u2) = 3u1−3u1u
2
2+u3

1, x3(u1, u2) = −6u1u2.

Show that the affine invariants are given by

F (u1, u2) = k(1 + u2
1 + u2

2), A(u1, u2) = 2ku2, B(u1, u2) = 2ku1

where k = 3
√

6.

Problem 56. (i) Show that the map f : (π/4, 7π/4)→ R2

f(θ) =
(

sin(θ) cos(2θ)
cos(θ) cos(2θ)

)
is an injective immersion.
(ii) Show that the image of f is an injectively immersed submanifold.

Problem 57. Let t ∈ (0, 1). Minimal Thomson surfaces are given by

x1(u1, u2) =−(1− t2)−1/2(tu2 + cos(u1) sinh(u2))
x2(u1, u2) = (1− t2)−1/2(u1 + t sin(u1) cosh(u2))
x3(u1, u2) = sin(u1) sinh(u2).

Show that the corresponding affine invariants are

F (u1, u2) = (1− t2)−1/2(cosh(u2) + t cos(u1))
A(u1, u2) = (1− t2)−1/2 sinh(u2)
B(u1, u2) =−t(1− t2)−1/2 sin(u1).
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Problem 58. Let n be a positive integer. Consider the manifold

Cn :=

{
(x, y) ∈ R2 :

(
x− 1

n

)2

+ y2 =
1
n2

}
.

We have a circle in the plane with radius 1/n and centre (1/n, 0). Find a
area of the circle.

Problem 59. Describe the set

S = { (x, y) ∈ R : sin(y) cosh(x) = 1 }.

Then study the complex numbers given by z = x+ iy with x, y ∈ S.

Problem 60. Consider the two manifolds

x2
1 + x2

2 = 1, y2
1 + y2

2 = 1.

Show that
|x1y1 + x2y2| ≤ 1.

Hint. Set

x1(t) = cos(t), x2(t) = sin(t), y1(t) = cos(τ), y2(t) = sin(τ).

Problem 61. Consider the two-dimensional Euclidean space and the
metric tensor field in polar coordinates

g = dr ⊗ dr + r2dθ ⊗ dθ.

Let u ∈ R and R > 0. Consider the transformation

(r, θ) 7→ (eu/R, θ).

Find the metric tensor field.

Problem 62. Consider the analytic function f : R3 → R

f(x1, x2, x3) = 3x2
1 + 4x2 + x3

and the smooth surface in R3

S = { (x1, x2, x3) : f(x1, x2, x3) = −2 }.

(i) Show that p = (1, 1,−9) ∈ R3 satisfies f(x1, x2, x3) = −2,
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(ii) Find the normal vector n at p.
(iii) Let

v =

 v1

v2

v3

 .

Calculate vT (∇f)p. Find the conditions on v1, v2, v3 such that vT (∇f)p =
0 and

Tp = {v : vT (∇f)p = 0 }.

Problem 63. Consider the space cardioid

x(t) =

x1(t)
x2(t)
x3(t)

 =

 (1− cos(t)) cos(t)
(1− cos(t)) sin(t)

sin(t)

 .

Find the curvature and torsion.

Problem 64. Let
L3 = SU(2) \ SL(2,C)

be the homogeneous space of second order unimodular hermitian positive
definite matrices. This is model of the classical Lobachevsky space. Let
gjk ∈ C with j, k = 1, 2. We define

g =
(
g11 g12

g21 g22

)
, g11g22 − g12g21 = 1.

Now any x ∈ L3 can be written as

x = g∗g =
(
g11ḡ11 + g21ḡ21 ḡ11g12 + ḡ21g22

g11ḡ12 + g21ḡ22 g12ḡ12 + g22ḡ22

)
.

Find det(x).

Problem 65. Let α ∈ R. Consider the 2× 2 matrix

F (α) =
(
f11(α) f12(α)
f21(α) f22(α)

)
with fjk : R→ R be analytic functions. Let

X :=
dF (α)
dα

∣∣∣∣
α=0

=
(
df11(α)/dα df12(α)/dα
df21(α)/dα df22(α)/dα

)∣∣∣∣
α=0
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Find the conditions on the functions fjk such that

exp(αX) = F (α).

Apply the Cayley-Hamilton theorem. Set f ′jk(0) = dfjk(α)/dα|α=0 and

tr := f ′11(0) + f ′22(0), det := f ′11(0)f ′22(0)− f ′12(0)f ′21(0).

Problem 66. Consider the differential equation(
dy

dx

)3

+ x
dy

dx
− y = 0

with the solution y(x) = Cx+C3. The singular solution is given by 4x3 +
27y2 = 0 as can be seen as follows. Differentiation of 4x3 + 27y2 = 0 yields
ydy/dx+(2/9)x2 = 0. Inserting this equation into the differential equation
provides

−8x6

92
− 2x3y2 − 9y4 = 0

which is satisfied with y2 = −4x3/27. Draw the curve F (x, y) = 4x3 +27y2.
Find the equation of the tangent at x0 = −1, y0 = 2/(3

√
3).

Problem 67. A four-dimensional torus S3 × S1 can be defined as

(
√
x2

1 + x2
2 + x2

3 + x2
4 − a)2 + w2 = 1

where a > 1 is the constant radius of S3.
(i) Show that the four-dimensional torus can be parametrized as

x1(ψ, ρ, φ1, φ2) = (a+ cos(ψ))ρ cos(φ1)
x2(ψ, ρ, φ1, φ2) = (a+ cos(ψ))ρ sin(φ1)

x3(ψ, ρ, φ1, φ2) = (a+ cos(ψ))
√

1− ρ2 cos(φ2)

x4(ψ, ρ, φ1, φ2) = (a+ cos(ψ))
√

1− ρ2 sin(φ2)
w(ψ, ρ, φ1, φ2) = sin(ψ)

where φ1 ∈ [0, 2π], φ2 ∈ [0, 2π], ψ ∈ [0, 2π], ρ ∈ [0, 1].
(ii) Find the metric tensor field gS3×S1 starting of with

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4 + dw ⊗ dw.



Chapter 2

Vector Fields and Lie
Series

Problem 1. Consider the vector fields

V = x
∂

∂x
+ y

∂

∂y
, W = x

∂

∂y
− y ∂

∂x

defined on R2.
(i) Do the vector fields V,W form a basis of a Lie algebra? If so, what type
of Lie algebra do we have.
(ii) Express the two vector fields in polar coordinates x(r, θ) = r cos(θ),
y(r, θ) = r sin(θ).
(iii) Calculate the commutator of the two vector fields expressed in polar
coordinates. Compare with the result of (i).

Problem 2. Consider the vector fields

V1 =
d

dx
, V2 = x

d

dx
, V3 = x2 d

dx
.

(i) Show that the vector fields form a basis of a Lie algebra under the
commutator.
(ii) Find the adjoint representation of this Lie algebra.
(iii) Find the Killing form.
(iv) Find the Casimir operator.

19
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Problem 3. Consider the vector fields

V1 = cosψ
∂

∂θ
+

sinψ
sin θ

∂

∂φ
− cot θ sinψ

∂

∂ψ

V2 =− sinψ
∂

∂θ
+

cosψ
sin θ

∂

∂φ
− cot θ cosψ

∂

∂ψ

V3 =
∂

∂ψ
.

Calculate the commutators and show that V1, V2, V3 form a basis of a Lie
algebra.

Problem 4. Let X1, X2, . . . , Xr be the basis of a Lie algebra with the
commutator

[Xi, Xj ] =
r∑

k=1

CkijXk

where the Ckij are the structure constants. The structure constants satisfy
(third fundamental theorem)

Ckij =−Ckji
r∑

m=1

(
Cmij C

`
mk + CmjkC

`
mi + CmkiC

`
mj

)
= 0 .

We replace the Xi’s by c-number differential operators (vector fields)

Xi 7→ Vi =
r∑
`=1

r∑
k=1

xkC
k
i`

∂

∂x`
, i = 1, 2, . . . , r.

Let

Vj =
r∑

n=1

r∑
m=1

xmC
m
jn

∂

∂xn
.

Show that

[Vi, Vj ] =
n∑
k=1

CkijVk

where

Vk =
r∑

n=1

r∑
m=1

xmC
m
kn

∂

∂xn
.

Problem 5. Consider the vector fields (differential operators)

E = x
∂

∂y
, F = y

∂

∂x
, H = x

∂

∂x
− y ∂

∂y
.
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Show that these vector fields form a basis of a Lie algebra, i.e. calculate
the commutators. Consider the basis for n ∈ Z

{xjyk : j, k ∈ Z, j + k = n }.

Find E(xjyk), F (xjyk), H(xjyk).

Problem 6. Show that the sets of vector fields{
∂

∂x
, x

∂

∂x
, x2 ∂

∂x

}
{

∂

∂x
, x

∂

∂x
+ u

∂

∂u
, x2 ∂

∂x
+ 2xu

∂

∂u

}
{

∂

∂x
+

∂

∂u
, x

∂

∂x
+ u

∂

∂u
, x2 ∂

∂x
+ u2 ∂

∂u

}
form each a basis of the Lie algebra s`(2,C) under the commutator.

Problem 7. Consider the Lie algebra o(3, 2). Show that the vector fields
form a basis of this Lie algebra

V1 =
∂

∂t
, V2 = t

∂

∂t
+

1
2
x
∂

∂x
, V3 = t2

∂

∂t
+ tx

∂

∂x
+

1
4
x2 ∂

∂u

V4 =
∂

∂x
, V5 = t

∂

∂x
+

1
2
x
∂

∂u
, V6 =

∂

∂u

V7 =
1
2
x
∂

∂x
+ u

∂

∂u
, V8 =

1
2
xt
∂

∂t
+ (tu+

1
4
x2)

∂

∂x
+

1
2
xu

∂

∂u

V9 =
1
4
x2 ∂

∂t
+ ux

∂

∂x
+ u2 ∂

∂u
, V10 =

1
2
x
∂

∂t
+ u

∂

∂x
.

Show that the vector fields V1, . . . , V7 form a Lie subalgebra.

Problem 8. Let X1, X2, . . . , Xr be the basis of a Lie algebra with the
commutator

[Xi, Xj ] =
r∑

k=1

CkijXk

where the Ckij are the structure constants. The structure constants satisfy
(third fundamental theorem)

Ckij =−Ckji
r∑

m=1

(
Cmij C

`
mk + CmjkC

`
mi + CmkiC

`
mj

)
= 0 .
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We replace the Xi’s by c-number differential operators (linear vector fields)

Xi 7→ Vi =
r∑
`=1

r∑
k=1

xkC
k
i`

∂

∂x`
, i = 1, 2, . . . , r.

which preserve the commutators.
Consider the Lie algebra with r = 3 and the generators X1, X2, X3 and
the commutators

[X1, X3] = X1, [X2, X3] = −X2.

All other commutators are 0. The Lie algebra is solvable. Find the corre-
sponding linear vectors fields. Find the smooth functions f such that

Vjf(x) = 0 for all j = 1, 2, 3.

Problem 9. Let V , W be two smooth vector fields

V = f1
∂

∂u1
+ f2

∂

∂u2
+ f3

∂

∂u3

W = g1
∂

∂u1
+ g2

∂

∂u2
+ g3

∂

∂u3

defined on R3. Let du/dt = f(u) and du/dt = g(u) be the corresponding
autonomous system of first order differential equations. The fixed points
of V are defined by the solutions of the equations fj(u∗1, u

∗
2, u
∗
3) = 0 (j =

1, 2, 3) and the fixed points ofW are defined as the solutions of the equations
gj(u∗1, u

∗
2, u
∗
3) = 0 (j = 1, 2, 3). What can be said about the fixed points of

[V,W ]?

Problem 10. Consider the nonlinear differential equations

du

dt
= u2 − u, du

dt
= − sin(u).

with the corresponding vector fields

V = (u2 − u)
d

du
, W = − sin(u)

d

du
.

(i) Show that both differential equations admit the fixed point u∗ = 0.
(ii) Consider the vector field given by the commutator of the two vector
fields V and W , i.e. [V,W ]. Show that the corresponding differential equa-
tion of this vector field also admits the fixed point u∗ = 0.



Vector Fields and Lie Series 23

Problem 11. Let z ∈ C. Consider the vector field

Ln := zn+1 d

dz
, n ∈ Z

Calculate the commutator [Lm, Ln].

Problem 12. Consider the vector fields

∂

∂ujk
, ujm

∂

∂ujk
, u`k

∂

∂ujk
, ujmu`k

∂

∂ujk

where j = 1, 2, . . . , p; k = 1, 2, . . . , n; m = 1, 2, . . . , n; ` = 1, 2, . . . , p. Find
the commutators. Do the vector fields form a basis of a Lie algebra. Discuss.

Problem 13. Consider the vector fields

V1 =
∂

∂r
, V2 =

1
r

∂

∂θ
, V3 =

1
r sin(θ)

∂

∂φ
.

Find the commutators

[V1, V2], [V2, V3], [V3, V1].

Problem 14. Show that the differential operators (vector fields)

∂

∂y
+ x

∂

∂z
, y

∂

∂y
+ z

∂

∂z
, (xy − z) ∂

∂x
+ y2 ∂

∂y
+ yz

∂

∂z

generate a finite-dimensional Lie algebra.

Problem 15. Consider smooth vector fields in R3

V = V1(x)
∂

∂x1
+ V2(x)

∂

∂x2
+ V3(x)

∂

∂x3

W =W1(x)
∂

∂x1
+W2(x)

∂

∂x2
+W3(x)

∂

∂x3
.

Now

curl

V1

V2

V3

 =

 ∂V3
∂x2
− ∂V2

∂x3
∂V1
∂x3
− ∂V3

∂x1
∂V2
∂x1
− ∂V1

∂x2

 , curl

W1

W2

W3

 =

 ∂W3
∂x2
− ∂W2

∂x3
∂W1
∂x3
− ∂W3

∂x1
∂W2
∂x1
− ∂W1

∂x2

 .

We consider now the smooth vector fields

Vc = (
∂V3

∂x2
− ∂V2

∂x3
)
∂

∂x1
+ (

∂V1

∂x3
− ∂V3

∂x1
)
∂

∂x2
+ (

∂V2

∂x1
− ∂V1

∂x2
)
∂

∂x3
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Wc = (
∂W3

∂x2
− ∂W2

∂x3
)
∂

∂x1
+ (

∂W1

∂x3
− ∂W3

∂x1
)
∂

∂x2
+ (

∂W2

∂x1
− ∂W1

∂x2
)
∂

∂x3
.

Note that if
α = V1(x)dx1 + V2(x)dx2 + V3(x)dx3

then

dα =
(
∂V2

∂x1
− ∂V1

∂x2

)
dx1∧dx2+

(
∂V1

∂x3
− ∂V3

∂x1

)
dx3∧dx1+

(
∂V3

∂x2
− ∂V2

∂x3

)
dx2∧dx3 .

(i) Calculate the commutator [Vc,Wc]. Assume that [V,W ] = 0. Can we
conclude [Vc,Wc] = 0 ?
(ii) Assume that [V,W ] = R. Can we conclude that [Vc,Wc] = Rc?

Problem 16. Consider the first order ordinary differential equation

du

dt
= u+ 1

with the corresponding vector field

V = (u+ 1)
d

du
.

Calculate the map
u 7→ exp(tV )u.

Solve the inital value problem of the differential equation and compare.

Problem 17. Consider the vector fields

V1 = (u2 + u1u3)
∂

∂u1
+ (−u1 + u2u3)

∂

∂u2
+ (1 + u2

3)
∂

∂u3

V2 = (1 + u2
1)

∂

∂u1
+ (u1u2 + u3)

∂

∂u2
+ (−u2 + u1u3)

∂

∂u3

V3 = (u1u2 − u3)
∂

∂u1
+ (1 + u2

2)
∂

∂u2
+ (u1 + u2u3)

∂

∂u3
.

Find the commutators [V1, V2], [V2, V3], [V3, V1] and thus show that we have
a basis if the Lie algebra so(3,R).

Problem 18. Let { , } denote the Poisson bracket. Consider the functions

S1 =
1
4

(x2
1 + p2

1 − x2
2 − p2

2), S2 =
1
2

(p1p2 + x1x2, S3 =
1
2

(x1p2 − x2p1).

Calculate {S1, S2}, {S2, S3}, {S3, S1} so thus estabilish that we have a basis
of a Lie algebra. Classify the Lie algebra.
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Problem 19. Consider the vector fields in R2

V1 =
∂

∂x
, V2 = x

∂

∂x
+ y

∂

∂y
, V3 = (x2 − y2)

∂

∂x
+ 2xy

∂

∂y
.

Find the fixed points of the corresponding autonomous systems of first order
differential equations. Study their stability.

Problem 20. Consider in R3 the vector fields

V12 = x2
∂

∂x1
− x1

∂

∂x2
, V23 = x3

∂

∂x2
− x2

∂

∂x3
, V31 = x1

∂

∂x3
− x3

∂

∂x1

with the commutators

[V12, V23] = V31, [V23, V31] = V12, [V31, V12] = V23.

Thus we have a basis of the simple Lie algebra so(3,R).
(i) Find the curl of these vector fields.
(ii) Let

ω = dx1 ∧ dx2 ∧ dx3

be the volume form in R3. Find the differential two-forms

V12cω, V23cω, V31cω.

(iii) Let * be the Hodge star operator. Find the one forms

∗(V12cω), ∗(V23cω), ∗(V31cω).

Problem 21. The Kustaanheimo-Stiefel transformation is defined by the
map from R4 (coordinates u1, u2, u3, u4) to R3 (coordinates x1, x2, x3)

x1(u1, u2, u3, u4) = 2(u1u3 − u2u4)
x2(u1, u2, u3, u4) = 2(u1u4 + u2u3)
x3(u1, u2, u3, u4) = u2

1 + u2
2 − u2

3 − u2
4

together with the constraint

u2du1 − u1du2 − u4du3 + u3du4 = 0.

(i) Show that

r2 = x2
1 + x2

2 + x2
3 = u2

1 + u2
2 + u2

3 + u2
4.

(ii) Show that

∆3 =
1
4r

∆4 −
1

4r2
V 2
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where

∆3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, ∆4 =
∂2

∂u2
1

+
∂2

∂u2
2

+
∂2

∂u2
3

+
∂2

∂u2
4

and V is the vector field

V = u2
∂

∂u1
− u1

∂

∂u2
− u4

∂

∂u3
+ u3

∂

∂u4
.

(iii) Consider the differential one form

α = u2du1 − u1du2 − u4du3 + u3du4.

Find dα. Find LV α, where LV (.) denotes the Lie derivative.
(iv) Let g(x1(u1, u2, u3, u4), x2(u1, u2, u3, u4), x3(u1, u2, u3, u4)) be a smooth
function. Show that LV g = 0.

Problem 22. Give four different representations of the simple Lie algebra
s`(2,R) using vector fields V1, V2, V3 which have to satisfy

[V1, V2] = V1, [V2, V3] = V3, [V1, V3] = 2V2.

Problem 23. (i) Let n ≥ 1. The Heisenberg group Hn can be considered
as C × R endowed with a polynomial group law · : Hn × Hn → Hn. Its
Lie algebra identifies with the tangent space T0Hn at the identity 0 ∈ HN .
Consider the tangent bundle THn, where

Xj(p) :=
∂

∂xj
− yj

2
∂

∂t
, Yj(p) :=

∂

∂yj
− xj

2
∂

∂t
, T (p) :=

∂

∂t

and p ∈ Hn. Find the commutators of the vector fields

[Xj , Yk], [Xj , T ], [Yj , T ].

(ii) Consider the differential one-form

α := dt+
1
2

n∑
j=1

(yjdxj − xjdyj)

which is the contact form of Hn. Find the Lie derivatives

LXj
α, LYj

α, LTα.

Find dα and the Lie derivatives

LXj
dα, LYj

dα, LT dα.
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Problem 24. Consider the smooth vector fields in Rn

V =
n∑

j,k=1

ajkxj
∂

∂xk
, W =

n∑
j,k,`=1

cjk`xjxk
∂

∂x`

where ajk, cjk` ∈ R. Find the conditions on ajk and cjk` such that [V,W ] =
0.

Problem 25. Find two smooth vector fields V and W in Rn such that

[[W,V ], V ] = 0 but [W,V ] 6= 0.

Find two n× n matrices A and B such that

[[B,A], A] = 0 but [B,A] 6= 0.

Problem 26. Let f : R→ R be an analytic function. Calculate

exp
(
iπα

d

dα

)
α, exp

(
iπα

d

dα

)
α2, exp

(
iπα

d

dα

)
f(α).

Problem 27. Do the vector fields

∂

∂x
,

∂

∂t
, t

∂

∂x
+ x

∂

∂t

form a basis of a Lie algebra under the commutator?

Problem 28. Give a vector field V in R3 such that

V × curlV 6= 0.

Give a vector field V in R3 such that

V × curlV = 0.

Problem 29. Let f1 : R2 → R, f2 : R2 → R be analytic function.
Consider the analytic vector fields

V = f1(x1, x2)
∂

∂x1
+

∂

∂x2
, W =

∂

∂x1
+ f2(x1, x2)

∂

∂x2

in R2.
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(i) Find the conditions on f1 and f2 such that [V,W ] = 0.
(ii) Find the conditions on f1 and f2 such that [V,W ] = V +W .

Problem 30. Show that the vector fields

V1 =
∂

∂x
, V2 = x

∂

∂x
+ y

∂

∂y
, V3 = (y2 − x2)

∂

∂x
− 2xy

∂

∂y

form a basis for the Lie algebra s`(2,R). Solve the initial value problem for
the autonomous system

dx

dt
= y2 − x2,

dy

dt
= −2xy.

Problem 31. Consider the vector fields

V1 =
∂

∂x0
, V2 = x0

∂

∂x0
+

2
3

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)

V3 = x3
∂

∂x2
− x2

∂

∂x3
, V4 = x1

∂

∂x3
− x3

∂

∂x1
, V5 = x2

∂

∂x1
− x1

∂

∂x2
.

Find the commutators and thus show we have a basis of a Lie algebra.

Problem 32. Let ξ, η > 0. Consider the transformation to three-
dimensional parabolic coordinates

x1(ξ, η, φ) = ξη cos(φ), x2(ξ, η, φ) = ξη sin(φ), x3(ξ, η, φ) =
1
2

(η2 − ξ2).

Let
g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Show that under this transformation

g = (η2 + ξ2)dη ⊗ dη + (η2 + ξ2)dξ ⊗ dξ + η2ξ2dφ⊗ dφ.

Problem 33. Consider the Darboux-Halphen system

dx1

dt
= x2x3−x1x2−x3x1,

dx2

dt
= x3x1−x1x2−x2x3,

dx3

dt
= x1x2−x3x1−x2x3

with the corresponding vector field

V = (x2x3−x1x2−x3x1)
∂

∂x1
+(x3x1−x1x2−x2x3)

∂

∂x2
+(x1x2−x3x1−x2x3)

∂

∂x3
.
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(i) Is the autonomous system of differential equations invariant under the
transformation (αδ − βγ 6= 0)

(t, xj) 7→
(
αt+ β

γt+ δ
, 2γ

γt+ δ

αδ − γβ
+

(γt+ δ)2

αδ − γβ
xj

)
with j = 1, 2, 3.
(ii) Consider the vector fields

U = 2(x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
), W =

∂

∂x1
+

∂

∂x2
+

∂

∂x3
.

Find the commutators [U, V ], U,W ], [V,W ]. Do we have basis of a Lie
algebra? Discuss.

Problem 34. (i) Consider the vector field V1(x1, x2) = x2
∂
∂x1

with the
corresponding autonmous system of differential equations

dx1

dτ
= x2,

dx2

dτ
= 0.

Find the solution of the initial value problem. Discuss.
(ii) Consider the vector field V3(x1, x2) = x2

1
2

∂
∂x2

with the corresponding
autonmous system of differential equations

dx1

dτ
= 0,

dx2

dτ
= x2

1.

Find the solution of the intial value problem. Discuss.
(iii) Find the vector field V3 = [V1, V2], where [ , ] denotes the commutator.
Write down the corresponding autonmous system of differential equations
and solve the initial value problem. Discuss.
(iv) Find the vector field V4 = V1 + V2 and write down the correspond-
ing autonmous system of differential equations and solve the initial value
problem. Discuss.

Problem 35. (i) Find the Lie algebra generated by

V1 = x2
∂

∂x2
, V2 = −x2

∂

∂x1
.

(ii) Let c be a constant. Find the Lie algebra generated by

V1 = x2
∂

∂x2
+ cx3

∂

∂x3
, V2 = −x2

∂

∂x1
, V3 = −cx3

∂

∂x1
.
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Problem 36. Consider the autonomous system of first order ordinary
differential equations

du1

dt
= −u1u3,

du2

dt
= u2u3,

du3

dt
= u2

1 − u2
2

with the vector field

V = −u1u3
∂

∂u1
+ u2u3

∂

∂u2
+ (u2

1 − u2
2)

∂

∂u3
.

Show that
I1 =

1
2

(u1 + u2 + u3), I2 = u1u2

are first integrals.

Problem 37. Let α ∈ R. Let f : R → R be an analytic function.
Calculate

cosh
(
α
d

dx

)
f(x), sinh

(
α
d

dx

)
f(x).
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Metric Tensor Fields

Problem 1. Let a > b > 0 and define f : R2 → R3 by

f(θ, φ) = ((a+ b cosφ) cos θ, (a+ b cosφ) sin θ, b sinφ).

The function f is a parametrized torus T 2 in R3. Consider the metric tensor
field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

(i) Calculate g|T 2 .
(ii) Calculate the Christoffel symbols Γmab from g|T 2 .
(iii) Calculate the curvature.
(iv) Give the differential equations for the geodesics.

Problem 2. The two-dimensional de Sitter space V with the topology
R × S may be visualized as a one-sheet hyperboloid Hr0 embedded in 3-
dimensional Minkowski space M, i.e.

Hr0 = {(y0, y1, y2) ∈M : (y2)2 + (y1)2 − (y0)2 = r2
0, r0 > 0 }

where r0 is the parameter of the one-sheet hyperboloid Hr0 . The induced
metric, gµν (µ, ν = 0, 1), on Hr0 is the de Sitter metric.
(i) Show that we can parametrize (parameters ρ and θ) the hyperboloid as
follows

y0(ρ, θ) = −r0 cos(ρ/r0)
sin(ρ/r0)

, y1(ρ, θ) =
r0 cos(θ/r0)

sin(ρ/r0)
, y2(ρ, θ) =

r0 sin(θ/r0))
sin(ρ/r0)

where 0 < ρ < πr0 and 0 ≤ θ < 2πr0.

31
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(ii) Using this parametrization find the metric tensor field induced on Hr0 .

Problem 3. Consider the metric tensor field

g = −dZ ⊗ dZ − dT ⊗ dT + dW ⊗ dW.

Consider the parametrization

Z(z, t) = cosh(εz) cos(εt)
T (z, t) = cosh(εz) sin(εt)
W (z, t) = sinh(εz).

(i) Find Z2 + T 2 −W 2.
(ii) Express g using this parametrization.

Problem 4. The anti-de Sitter space is defined as the surface

X2 + Y 2 + Z2 − U2 − V 2 = −1

embedded in a five-dimensional flat space with the metric tensor field

g = dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ − dU ⊗ dU − dV ⊗ dV.

This is a solution of Einstein’s equations with the cosmological constant
Λ = −3. Its intrinsic curvature is constant and negative. Find the metric
tensor field in terms of the intrinsic coordinates (ρ, θ, φ, t) where

X(ρ, θ, φ, t) =
2ρ

1− ρ2
sin θ cosφ

Y (ρ, θ, φ, t) =
2ρ

1− ρ2
sin θ sinφ

Z(ρ, θ, φ, t) =
2ρ

1− ρ2
cos θ

U(ρ, θ, φ, t) =
1 + ρ2

1− ρ2
cos t

V (ρ, θ, φ, t) =
1 + ρ2

1− ρ2
sin t

where 0 ≤ ρ < 1, 0 ≤ φ < 2π, 0 ≤ θ < π, −π ≤ t < π.

Problem 5. Consider the Poincaré upper half-plane

H2
+ := { (x, y) ∈ R2 : y > 0 }
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with metric tensor field

g =
1
y
dx⊗ 1

y
dx+

1
y
dy ⊗ 1

y
dy

which is conformal with the standard inner product. Find the curvature
forms.

Problem 6. Consider the manifold M of the upper space x2 > 0 of R2

endowed with the metric tensor field

g =
dx1 ⊗ dx1 + dx2 ⊗ dx2

x2
2

.

Show that the metric tensor field admits the symmetry (x1, x2)→ (−x1, x2)
and the transformation (z = x1 + ix2)

z → z′ =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

preserve the metric tensor field. Find the Gaussian curvature of g.

Problem 7. Consider the manifold M of the upper space xn > 0 of Rn
endowed with the metric tensor field

g =
dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn

x2
n

.

Find the Gaussian curvature.

Problem 8. The Klein bagel (figure 8 immersion) is a specific immersion
of the Klein bootle manifold into three dimensions. The figure 8 immersion
has the parametrization

x(u, v) = (r + cos(u/2) sin(v)− sin(u/2) sin(2v)) cos(u)
y(u, v) = (r + cos(u/2) sin(v)− sin(u/2) sin(2v)) sin(u)
z(u, v) = sin(u/2) sin(v) + cos(u/2) sin(2v)

where r is a positive constant and 0 ≤ u < 2π, 0 ≤ v < 2π. Find the
Riemann curvature of the Klein bagel.

Problem 9. Consider the compact differentiable manifold S3

S3 := { (x1, x2, x3, x4) : x2
1 + x2

2 + x2
3 + x2

4 = 1 }

and the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4.
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(i) Express g using the following parametrization

x1(α, β, θ) = cos(α) cos(θ)
x2(α, β, θ) = sin(α) cos(θ)
x3(α, β, θ) = cos(β) sin(θ)
x4(α, β, θ) = sin(β) sin(θ)

where 0 ≤ θ ≤ π/2, 0 ≤ α, β ≤ 2π.
(ii) Now S3 is the manifold of the compact Lie group SU(2). Thus we can
define the vector fields (angular momentum operators)

L1 =
1
2

cos(α+ β)(tan θ
∂

∂α
− cot θ

∂

∂β
)− sin(α+ β)

∂

∂θ

L2 =
1
2

sin(α+ β)(tan θ
∂

∂α
− cot θ

∂

∂β
) + cos(α+ β)

∂

∂θ

L3 =−
(
∂

∂α
+

∂

∂β

)
.

Find the commutation relation [Lj , Lk] for j, k = 1, 2, 3.
(iii) Find the dual basis of L1, L2, L3.

Problem 10. Consider the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

The parabolic set of unit-less coordinates (u, v, θ) is defined by a transfor-
mation of Cartesian coordinates (0 ≤ u ≤ ∞, 0 ≤ v ≤ ∞ and 0 ≤ θ ≤ 2π)

x1(u, v, θ) = auv cos θ, x2(u, v, θ) = auv sin θ, x3(u, v, θ) =
1
2
a(u2−v2).

Express g using this parabolic coordinates.

Problem 11. Consider the metric tensor field

g = cdt0 ⊗ cdt0 − dx0 ⊗ dx0 − dy0 ⊗ dy0 − dz0 ⊗ dz0

and the transformation

t0 = t

x0 = r cos(φ+ ωt)
y0 = r sin(φ+ ωt)
z0 = z.



Metric Tensor Fields 35

Express g in the new coordinates t, r, z, φ.

Problem 12. Consider the upper half-plane {(x1, x2) : x2 > 0} endowed
with the metric tensor field

g =
1
x2

2

(dx1 ⊗ dx1 + dx2 ⊗ dx2)

defines a two-dimensional Riemann manifold.
(i) Show that the Gaussian curvature is given by R = −1.
(ii) Find the surface element dS and the Laplace operater ∆.
(iii) Consider the conformal mapping from the upper half-plane {z = x1 +
ix2 : x2 > 0} to the unit disk {w = reiθ : r ≤ 1}

w(z) =
iz + 1
z + i

.

Express g in r and θ.

Problem 13. (i) Consider the metric tensor field

g(u1, u2) = du1 ⊗ du1 + e2u1du2 ⊗ du2, −∞ < u1, u2 < +∞.

Show that Gaussian curvature K(u1, u2) has the value −1.
(ii) Consider the transformation

x1(u1, u2) = u2, x2(u1, u2) = e−u2 .

Express g using the coordinates x1, x2.
(iii) Consider the transformation

x1(ρ, φ) = x10 + ρ cos(φ), x2(ρ, φ) = ρ sin(φ)

where x10 is a constant. Express g in ρ and φ

Problem 14. Let N ≥ 2 and a > 0. An N -dimensional Riemann man-
ifold of constant negative Gaussian curvature K = −1/a2 is described by
the metric tensor field

g = dr ⊗ dr + a2 sinh
( r
a

)
dσN−1 ⊗ dσN−1

where r ∈ [0,∞) measures the distance to the origin and dσN−1 ⊗ dσN−1

denotes the metric tensor field of the unit sphere SN−1.
(i) Show that volume element dV is covariantly defined as

dVN =
(
a sinh

( r
a

))N−1

drdΩN−1
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where dΩN−1 is the surface element of the unit-sphere SN−1.
(ii) Show that the radial part ∆r of the Laplace operator for the metric
tensor field given above is

∆r =
1

(sinh(r/a))N−1

∂

∂r

(
(sinh(r/a))N−1 ∂

∂r

)
.

Problem 15. The Poincaré upper half-plane is defined as

H := { ζ = x+ iy : x ∈ R, y > 0 }

together with the metric tensor field

g =
1
y2

(dx⊗ dx+ dy ⊗ dy).

(i) Show that under the Cayley transfom

ζ =
−iz + i

z + 1
, z = x1 + ix2 =

−ζ + i

ζ + i

the Poincaré upper half-plane is mapped onto the Poincaré disc with metric

gjk =
2

1− r2
diag(1, r2), r2 = x2

1 + x2
2.

(ii) Show that under the transformation

η = X + iY = − ln(−iζ) = 2 tan−1(z)

the Poincaré upper half-plane is mapped onto the hyperbolic strip with
metric

gjk =
1

cos2(Y )
δjk.

Problem 16. Let R > 0 and fixed. The oblate spheroidal coordinates are
given by

x1(η, ξ, φ) =R
√

(1− η2)(ξ2 + 1) cos(φ)

x2(η, ξ, φ) =R
√

(1− η2)(ξ2 + 1) sin(φ)
x3(η, ξ, φ) =Rηξ

where −1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ φ ≤ 2π with the x3 axis as the axis of
revolution. Express the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3
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in oblate spheroidal coordinates.

Problem 17. Consider the manifold R3. Let a, b, c > 0 and a 6= b, a 6= c,
b 6= c. The sphero-conical coordinates s2, s3 are defined to be the roots of
the quadratic equation

x2
1

a+ s
+

x2
2

b+ s
+

x2
3

c+ s
= 0.

The first sphero-conical coordinate s1 is given as the sum of the squares

s1 = x2
1 + x2

2 + x2
3.

The formula that expresses the Cartesian coordinates x1, x2, x3 through
s1, s2, s3 are

x2
1 =

s1(a+ s2)(a+ s3)
(a− b)(a− c)

x2
2 =

s1(b+ s2)(b+ s3)
(b− a)(b− c)

x2
3 =

s1(c+ s2)(c+ s3)
(c− a)(c− b)

.

Given the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Express this metric tensor field using sphero-conical coordinates.

Problem 18. Consider the metric tensor field

g = −dT ⊗ dT + dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ

and the invertible coordinates transformation (b > 0)

T (t, x, y, z) =
1
b

(ebz cosh(bt)− 1)

X(t, x, y, z) = x

Y (t, x, y, z) = y

Z(t, x, y, z) =
1
b
ebz sinh(bt).

Express the metric tensor field in the new coordinates. Given the inverse
transformation.
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Problem 19. Consider the metric tensor field

g = dT ⊗ dT − dX ⊗ dX

where 0 < X <∞ and −∞ < T <∞. Show that under the transformation

T (r, η) = r sinh(η), X(r, η) = r cosh(η)

(0 < r <∞,−∞ < η <∞) the metric tensor field takes the form (Rindler
chart)

g = r2dη ⊗ dη − dr ⊗ dr.

Problem 20. Consider the metric tensor field

g = −e2Φ(z)dt⊗ dt+ dz ⊗ dz.

The proper acceleration of a test particle at rest with respect to this metric
tensor field is given by ∂Φ/∂z. Hence if the gravitational potential has
the form Φ(z) = az (a > 0) then all the test particles at rest have the
same acceleration of magnitude a in the positive z-direction. Show that
the metric tensor takes the form

g = −(aρ)2dt⊗ dt+
1
aρ2

dρ⊗ dρ

under the transformation
ρ(z) =

1
a
eaz.

Problem 21. Show that the Killing vector fields of the metric tensor
field

g = a(t)dx⊗ dx+ b(t)e2x(dy ⊗ dy + dz ⊗ dz) + dt⊗ dt

are given by

V1 =
∂

∂y
, V2 =

∂

∂z

V3 = − ∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, V4 = −z ∂

∂y
+ y

∂

∂z
.

Problem 22. Show that the de Sitter space is an exact solution of the
vacuum Einstein equation with a positive cosmological constant Λ

Rµν −
1
2
Rgµν + Λgµν = 0.
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Problem 23. The cosmological constant Λ is a dimensionful parameter
with unit of 1/(length)2. Show that the metric tensor field

g = −cdτ ⊗ cdτ + e2cτ/adχ⊗ dχ+ a2(dθ ⊗ dθ + sin2(θ)dφ⊗ dφ)

where a > 0 has the dimension of a length. Show that this metric tensor
field satisfies the vacuum Einstein equation with a positive cosmological
constant Λ

Rµν −
1
2
Rgµν + Λgµν = 0

where a = 1/
√

(Λ).

Problem 24. The metric tensor field g of a weak, plane,elliptically po-
larized gravitional wave propagating in the x-direction can be written as

g = cdt⊗ cdt− dx⊗ dx− (1− h22(x, t))dy ⊗ dy − (1 + h22(x, t))dz ⊗ dz
+h23(x, t)dy ⊗ dz + h23(x, t)dz ⊗ dy

where

h22(x, t) = h sin(k(ct− x) + φ), h23(x, t) = h̃ sin(k(ct− x) + φ̃)

with k the wave vector, h, h̃ the amplitudes and φ, φ̃ the initial phase.
They completely determine the state of the polarization of the gravitional
wave. Show that in terms of the retarded and advanced coordinates

u(x, t) =
1
2

(ct− x), v(x, t) =
1
2

(ct+ x)

the coordinates y, z and v can be omitted.

Problem 25. Consider the Poincaré metric tensor field

g =
1
y2

(dx⊗ dx+ dy ⊗ dy)

Find the geodesic equations and solve them.

Problem 26. Consider the metric tensor field

g = cdt⊗ cdt− dx⊗ dx

Express the metric in the coordinates u, v with

ct = a sinh(u) cosh(v), x = a cosh(u) sinh(v)

with a > 0 and dimension meter.
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Problem 27. Consider the metric tensor field

g = −dT ⊗ dT + dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ

and the invertible coordinates transformation (b > 0)

T (t, x, y, z) =
1
b

(ebz cosh(bt)− 1), X(t, x, y, z) = x,

Y (t, x, y, z) = y, Z(t, x, y, z) =
1
b
ebz sinh(bt).

Express the metric tensor field in the new coordinates. Given the inverse
transformation.

Problem 28. Show that the metric tensor field

g = c2(1− 2a/r)dt⊗ dt− dr ⊗ dr − r2dφ⊗ dφ− dz ⊗ dz

is not a solution of Einstein’s equation.

Problem 29. Consider the Euclidean space R3 with there metric tensor
field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Let c1, c2, c3 > 0. The hyperboloid

x2
1

c21
+
x2

2

c22
− x2

3

c23
= 1

can be written in parameter form as

x1(θ, φ) = c1 cos(θ) sec(φ)
x2(θ, φ) = c2 sin(θ) sec(φ)
x3(θ, φ) = c3 tan(φ)

where sec(φ) = 1/ cos(φ). Find the metric tensor field for the hyperbolid.

Problem 30. Consider the K”ahler potential

K =
1
2

ln

(
1 +

n∑
`=1

z`z̄`

)
.

Let

gjk̄ = gk̄j =
∂2K

∂zj∂z̄k
.
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Find the metric tensor field.

Problem 31. Consider the metric tensor field

g = dx0 ⊗ dx0 − dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3

− (x1dx1 + x2dx2 + x3dx3)⊗ (x1dx1 + x2dx2 + x3dx3)
R2 − (x2

1 + x2
2 + x2

3)

where R is a positive constant and x0 = ct. Apply the transfomation

x1(r, α, β, u) =R sin(r/R) sin(α) cos(β)
x2(r, α, β, u) =R sin(r/R) sin(α) sin(β)
x3(r, α, β, u) =R sin(r/R) cos(α)
x0(r, α, β, u) = u+ r.
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Differential Forms and
Applications

We denote by ∧ the exterior product. It is also called the wedge product or
Grassmann product. The exterior product is associative. We denote by d
the exterior derivative. The exterior derivative d is linear.

Problem 1. Let f , g be two smooth functions defined on R2. Find the
differential two-form df ∧ dg.

Problem 2. Consider the analytic functions f1 : R2 → R, f2 : R2 → R

f1(x1, x2) = x1 + x2, f2(x1, x2) = x2
1 + x2

2 − 1.

(i) Find df1 and df2. Then calculate df1 ∧ df2.
(ii) Solve the system of equations

df1 ∧ df2 = 0, x2
1 + x2

2 − 1 = 0.

Problem 3. Consider the complex number z = reiφ. Calculate

dz ∧ dz
z

.

42
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Problem 4. (i) Consider the differential one form

α = x1dx2 − x2dx1

on R2. Show that α is invariant under the transformation(
x′1
x′2

)
=
(

cosα − sinα
sinα cosα

)(
x1

x2

)
.

Show that ω = dx1 ∧ dx2 is invariant under this transformation.
(ii) Let α be the (n− 1) differential form on Rn given by

α =
n∑
j=1

(−1)j−1xjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

where ̂ indicates omission. Show that α is invariant under the orthogonal
group of Rn. Show that ω = dx1 ∧ dx2 ∧ · · · ∧ dxn is invariant under the
orthogonal group.

Problem 5. Let f : R2 → R2 be a smooth planar mapping with constant
Jacobian determinant J = 1, written as

Q = Q(p, q), P = P (p, q).

For coordinates in R2 the (area) differential two-form is given as

ω = dp ∧ dq.

(i) Find f∗ω.
(ii) Show that pdq − f∗(pdq) = dF for some smooth function F : R2 → R.

Problem 6. Consider the differential one-form in R3

α = x1dx2 + x2dx3 + x3dx1.

Find α ∧ dα. Find the solutions of the equation α ∧ dα = 0.

Problem 7. Consider the differential one-form in R3

α = dx3 − x2dx1 − dx2.

Show that α ∧ dα 6= 0.

Problem 8. Let j, k, ` ∈ { 1, 2, . . . , n }. Consider the differential one-
forms

αjk :=
dzj − dzk
zj − zk

.
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Calculate
αjk ∧ αk` + αk` ∧ α`j + α`j ∧ αjk.

Problem 9. Consider all 2 × 2 matrices with UU∗ = I2, detU = 1 i.e.,
U ∈ SU(2). Then U can be written as

U =
(

a b
−b∗ a∗

)
, a, b ∈ C

with the constraint aa∗ + bb∗ = 1. Let(
z′1
z′2

)
=
(

a b
−b∗ a∗

)(
z1

z2

)
.

Show that
(z′1)(z′1)∗ + (z′2)(z′2)∗ = z1z

∗
1 + z2z

∗
2 .

(ii) Consider (
z′1
z′2

)
=
(

a b
−b∗ a∗

)(
z1

z2

)
.

Show that dz′1 ∧ dz′2 = dz1 ∧ dz2.

Problem 10. A transformation (q,p)→ (Q,P) is called symplectic if it
preserves the differential two-form

ω =
n∑
j=1

dqj ∧ dpj .

Consider the Hamilton function

H(q,p) =
|p|2

2µ
− µM

|q|
, p := µ

dq
dt

where µ and M are positive constants and p = (p1, p2)T , q = (q1, q2)T .
The phase space is R2 \ { 0 } × R2. The parameter µ is the reduced mass
m1m2/M . The symplectic two-form is

ω = dq1 ∧ dp1 + dq2 ∧ dp2.

Show that ω is invariant under the transformation

f : ((r, φ), (R,Φ))→ (q1, q2, p1, p2)
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with

q1(r, φ,R,Φ) = r cosφ
q2(r, φ,R,Φ) = r sinφ

p1(r, φ,R,Φ) =R cosφ− Φ
r

sinφ

p2(r, φ,R,Φ) =R sinφ+
Φ
r

cosφ.

Find the Hamilton function in this new symplectic variables.

Problem 11. Consider the differential one-form

α =
i

4

n∑
j=0

(zjdz̄j − z̄jdzj).

Let zj = xj + iyj . Find α. Find dα.

Problem 12. Consider the vector space R3 and the smooth vector field

V = V1(x)
∂

∂x1
+ V2(x)

∂

∂x2
+ V3(x)

∂

∂x3
.

Given the differential two forms

ω1 = x1dx2 ∧ dx3, ω2 = x2dx3 ∧ dx1, ω3 = x3dx1 ∧ dx2.

Find the conditions on V1, V2, V3 such that the following three conditions
are satisfied

LV ω1 ≡ V cdω1 + d(V cω1) = 0
LV ω2 ≡ V cdω2 + d(V cω2) = 0
LV ω3 ≡ V cdω3 + d(V cω3) = 0.

Then solve the initial value problem of the autonomous system of first order
differential equations corresponding to the vector field V .

Problem 13. Let z = x+ iy (x, y ∈ R). Find dz ⊗ dz̄ and dz ∧ dz̄.

Problem 14. Consider the vector space R3. Find a differential one-form
α such that dα 6= 0 but α ∧ dα = 0.

Problem 15. In vector analysis in R3 we have the identity

~∇( ~A× ~B) ≡ ~Bcurl ~A− ~Acurl ~B.
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Express this identity using differential forms, the exterior derivative and
the exterior product.

Problem 16. Consider the differential n+ 1 form

α = df∧ω+dt∧df∧
n∑
j=1

(−1)j+1Vj(x, t)dx1∧· · ·∧d̂xj∧· · ·∧dxn+(divV )fdt∧ω

where the circumflex indicates omission and ω = dx1 ∧ · · · ∧ dxn. Here
f : Rn+1 → R is a smooth function of x, t and V is a smooth vector field.
(i) Show that the sectioned form

α̃= df(x, t) ∧ ω + dt ∧ df(x, t) ∧

 n∑
j=1

(−1)j+1Vj(x, t)dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn


+(divV (x, t))f(x, t)dt ∧ ω

where we distinguish between the independent variables x1, . . . , xn, t and
the dependent variable f leads using the requirement that α̃ = 0 to the
generalized Liouville equation.
(ii) Show that the differential form α is closed, i.e. dα = 0.

Problem 17. Let M = Rn and p ∈ Rn. Let Tp(Rn) be the tangent space
at p. A differential one-form at p is a linear map φ from Tp(Rn) into R.
This map satisfies the following properties

φ(Vp) ∈ R, for allVp ∈ Rn

φ(aVp + bWp) = aφ(Vp) + bφ(Wp) for all a, b ∈ R, Vp,Wp ∈ Tp(Rn).

A differential one-form is a smooth choice of a linear map φ defined above
for each point p in the vector space Rn. Let f : R → R be a real-valued
C∞(Rn) function. One defines the df of the function f as the differential
one-form such that

df(V ) = V (f)

for every smooth vector field V in Rn. Thus at any point p, the differential
df of a smooth function f is an operator that assigns to a tangent vector Vp

the directional derivative of the function f in the direction of this vector,
i.e.

df(V )(p) = Vp(f) = ∇f(p) · V (p).

If we apply the differential of the coordinate functions xj (j = 1, . . . , n) we
obtain

dxj

(
∂

∂xk

)
≡ ∂

∂xj
cdxk =

∂xj
∂xk

= δjk.
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(i) Let f : R2 → R be
f(x1, x2) = x2

1 + x2
2

and
V = x1

∂

∂x1
+ x2

∂

∂x2
.

Find df(V ).
(ii) Let f : R2 → R be

f(x1, x2) = x2
1 + x2

2

and
V = x1

∂

∂x2
− x2

∂

∂x1
.

Find df(V ).

Problem 18. Consider the manifold M = R4 and the differential two-
form

Ω = dq1 ∧ dp1 + dq2 ∧ dp2.

Let

α = (a2 + p2
1)dq1 ∧ dp2 − p1p2(dq1 ∧ dp1 − dq2 ∧ dp2)− (b2 + p2

2)dq2 ∧ dp1

where a and b are constants. Find dα. Can dα be written in the form
dα = β ∧ Ω, where β is a differential one-form?

Problem 19. A necessary and sufficient condition for the Pfaffian system
of equations

ωj = 0, j = 1, . . . , r

to be completely integrable is

dωj ≡ 0 mod (ω1, . . . , ωr), j = 1, . . . , r

Let
ω ≡ P1(x)dx1 + P2(x)dx2 + P3(x)dx3 = 0 (1)

be a total differential equation in R3, where P1, P2, P3 are analytic functions
on R3. Complete integrabilty of ω means that in every sufficiently small
neighbourhood there exists a smooth function f such that

f(x1, x2, x3) = const

is a first integral of (1). A necessary and sufficient condition for (1) to be
completely integrable is

dω ∧ ω = 0.
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Problem 20. Consider the differential one-form in space-time

α = a1(x)dx1 + a2(x)dx2 + a3(x)dx3 + a4(x)dx4

with x = (x1, x2.x3, x4) (x4 = ct).
(i) Find the conditions on the aj ’s such that dα = 0.
(ii) Find the conditions on the aj ’s such that dα 6= 0 and α ∧ dα = 0.
(iii) Find the conditions on the aj ’s such that α∧ dα 6= 0 and dα∧ dα = 0.
(iv) Find the conditions on the aj ’s such that dα ∧ dα 6= 0.
(v) Consider the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4.

Find the condition such that d(∗α) = 0, where ∗ denotes the Hodge star
operator.

Problem 21. Let z = x+ iy, x, y ∈ R. Calculate

−idz ∧ dz̄.

Problem 22. Consider the manifold M = R2 and the metric tensor field
g = dx1 ⊗ dx1 + dx2 ⊗ dx2. Let

ω = ω1(x)dx1 + ω2(x)dx2

be a differential one-form in Mwith ω1, ω2 ∈ C∞(R2). Show that ω can be
written as

ω = dα+ δβ + γ

where α is a C∞(R2) function, β is a two-form given by β = b(x)dx1 ∧ dx2

(b(x) ∈ C∞(R2)) and γ = γ1(x)dx1 +γ2(x)dx2 is a harmonic one-form, i.e.
(dδ + δd)γ = 0. We define

δβ := (−1) ∗ d ∗ β.

Problem 23. Given a Lagrange function L. Show that the Cartan form
for a Lagrange function is given by

α = L(x,v, t)dt+
n∑
j=1

(
∂L

∂vj
(dxj − vjdt)

)
. (1)

Let

H =
n∑
j=1

vj
∂L

∂vj
− L, pj =

∂L

∂vj
. (2)
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Find the Cartan form for the Hamilton function.

Problem 24. Let x1, x2, . . . , xn be the independent variables. Let u1(x),
u2(x), . . . um(x) be the dependent variables. There are m × n derivatives
∂uj(x)/∂xi. We introduce the coordinates

(xi, uj , uji) ≡ (x1, x2, . . . , xn, u1, u2, . . . , ym, u11, u12, . . . , umn).

Consider the n-differential form (called the Cartan form ) can be written
as

Θ =

L− n∑
i=1

m∑
j=1

∂L
∂uj,i

uj,i

Ω +
n∑
i=1

m∑
j=1

∂L

∂uj,i
duj ∧

(
∂

∂xi
cΩ
)

where
Ω := dx1 ∧ dx2 ∧ . . . ∧ dxn.

Let

H :=

 n∑
i=1

m∑
j=1

∂L

∂uj,i
uj,i

− L, pji :=
∂L

∂uj,i
.

Show that we find the Cartan form for the Hamilton

Θ :=−Hdx1 ∧ dx2 . . . dxn−1 ∧ dxn

+
n∑
i=1

m∑
j=1

pjidx
j
u ∧ dx1 ∧ . . . dxi−1 ∧ d̂xi ∧ dxi+1 . . . ∧ dxn

where the hat indicates that this term is omitted.

Problem 25. Consider the differential 2-form

β =
4dz ∧ dz̄

(1 + |z|2)2

and the linear fractional transformations

z =
aw + b

cw + d
, ad− bc = 1.

What is the conditions on a, b, c, d such that β is invariant under the trans-
formation?

Problem 26. Consider the two-dimensional sphere

S2
1 + S2

2 + S2
3 = S2
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where S > 0 is the radius of the sphere. Consider the symplectic structure
on this sphere with the symplectic differential two form

ω := − 1
2S2

3∑
jk`=1

εjk`SjdSk ∧ dS`

(ε123 = 1) and the Hamilton vector fields

VSj
:=

3∑
k`=1

εjk`Sk
∂

∂S`
.

The Poisson bracket is defined by

[Sj , Sk]PB := −VSjSk.

(i) Calculate [Sj , Sk]PB.
(ii) Calculate VSj

cω.
(iii) Calculate VSj

cVSk
cω.

(iv) Calculate the Lie derivative LVSj
ω.

Problem 27. Consider the system of partial differential equations (con-
tinuity and Euler equation of hydrodynamics in one space dimension)

∂u

∂t
+ u

∂u

∂x
+ 2c

∂c

∂x
=
∂H

∂x
,

∂c

∂t
+ u

∂c

∂x
+

1
2
c
∂u

∂x
= 0

where u and c are the velocities of the fluid and of the disturbance with
respect to the fluid, respectively. H the depth is a given function of x. Show
that the partial differential equations can be written in the forms dα = 0
and dω = 0, where α and β are differntial one-forms. Owing to dα = 0 and
dω = 0 one can find locally (Poincaré lemma) zero-forms (functions) (also
called potentials) such that

α = dΦ, β = dΨ.

Problem 28. Let a > 0. Toroidal coordinates are given by

x1(µ, θ, φ) =
a sinhµ cosφ
coshµ− cos θ

, x2(µ, θ, φ) =
a sinhµ sinφ
coshµ− cos θ

, x3(µ, θ, φ) =
a sin θ

coshµ− cos θ

where
0 < µ <∞, −π < θ < π, 0 < φ < 2π.

Express the volume element dx1 ∧ dx2 ∧ dx3 using toroidal coordinates.
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Problem 29. Let α, β be smooth differential one-forms. The linear
operator dα(.) is defined by

dα(β) := dβ + α ∧ β.

Let
α = x1dx2 + x2dx3 + x3dx1, β = x1x2dx3.

Find dα(β). Solve dα(β) = 0.

Problem 30. Consider the differential two-form in R3

α = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

and the vector field

V = x1
∂

∂x2
+ x2

∂

∂x3
+ x3

∂

∂x1
.

Find
V cα, V cdα, LV α, LV dα.

Problem 31. Let n ≥ 2 and ω be the volume form in Rn

ω = dx1 ∧ dx2 ∧ · · · ∧ dxn.

(i) Find the condition on the smooth vector V in Rn such

V cω = 0.

(ii) Let V , W be two smooth vector fields in Rn. Find the conditions on
V , W such that

W c(V cω) = 0.

Problem 32. Consider the manifold Rn. Calculate

∂

∂xj
c(dxk ∧ dx`)

where j, k, ` = 1, . . . , n.

Problem 33. Consider the vector fields

V12 = x2
∂

∂x1
− x1

∂

∂x2
, V23 = x3

∂

∂x2
− x2

∂

∂x3
, V31 = x1

∂

∂x3
− x3

∂

∂x1



52 Problems and Solutions

in R3 and the volume form ω = dx1 ∧ dx2 ∧ dx3.
(i) Find the commutators

[V12, V23], [V23, V31], [V31, V12].

Discuss.
(ii) Find

V12cω, V23cω, V31cω.

(iii) Let ∗ be the Hodge star operator in R3 with metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Find ∗(V12cω), ∗(V23cω), ∗(V31cω).
(iv) Find

d(∗(V12cω)), d(∗(V23cω)), d(∗(V31cω)).

Problem 34. (i) Let V , W be smooth vector fields in Rn (n ≥ 2) and α,
β be differential one-forms. Calculate

L[V,W ](α ∧ β).

(ii) Assume that LV α = 0 and LWβ = 0. Simplify the result from (i).
(iii) Assume that LV α = fα and LWβ = gβ, where f , g are smooth
functions. Simplify the result from (i).
(iv) Let LV α = β and LWβ = α. Simplify the result from (i).

Problem 35. A symplectic structure on a 2n-dimensional manifold M
is a closed non-degenerate differential two-form ω such that dω = 0 and
ωn does not vanish. Every symplectic form is locally diffeomorphic to the
standard differential form

ω0 = dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n

on R2n. Consider the vector field

V = x1
∂

∂x1
+ x2

∂

∂x2
+ · · ·+ x2n

∂

∂x2n

in R2n. Find V cω0 and LV ω0.

Problem 36. Let a > b > 0. Consider the transformation

x1(θ, φ) = (a+ b cosφ) cos θ, x2(θ, φ) = (a+ b cosφ) sin θ.

Find dx1 ∧ dx2 and dx1 ⊗ dx1 + dx2 ⊗ dx2.
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Problem 37. Consider the differential one-form

α = (2xy − x2)dx+ (x+ y2)dy.

(i) Calculate dα.
(ii) Calculate ∮

α

with the closed path C1−C2 starting from (0, 0) moving along via the curve
C1 : y = x2 to (1, 1) and back to (0, 0) via the curve C2 : y =

√
x. Let D

be the (convex) domain enclosed by the two curves C1 and C2.
(iii) Calculate the double integral∫ ∫

D

dα

where D is the domain given in (i), i.e. C1−C2 is the boundary of D. Thus
verify the theorem of Gauss-Green.

Problem 38. Consider the differential one form in the plane

α = x2
2dx1 + x2

1dx2

Calculate the integral ∮
C

α

where C is the closed curve which the boundary of a triangle with ver-
tices (0, 0), (1, 1), (1, 0) and counterclockwise orientation. Apply Green’s
theorem∮

C

f(x1, x2)dx1 + g(x1, x2)dx2 =
∫ ∫

D

(
∂g

∂x1
− ∂f

∂x2

)
dx1dx2.

Problem 39. (i) The lemniscate of Gerono is described by the equation

x4 = x2 − y2.

Show that a parametrization is given by

x(t) = sin(t), y(t) = sin(t) cos(t)

with t ∈ [0, π].
(ii) Consider the differential one-form

α = xdy
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in the plane R2. Let x(t) = sin(t), y(t) = sin(t) cos(t). Find α(t).
(iii) Calculate

−
∫ π

0

x(t)dy(t).

Disucss.

Problem 40. (i) Consider the smooth differential one form

α = f1(x1, x2, x3)dx1 + f2(x1, x2, x3)dx2 + f3(x1, x2, x3)dx3

in R3. Find the differential equations from

α ∧ dα+
2
3
α ∧ α ∧ α = 0.

(i) Consider the smooth differential one form

α = f1(x1, x2, x3, x4)dx1+f2(x1, x2, x3, x4)dx2+f3(x1, x2, x3, x4)dx3+f4(x1, x2, x3, x4)dx4

in R4. Find the differential equations from

α ∧ dα+
2
3
α ∧ α ∧ α = 0.

Problem 41. Consider the differentiable manifold

S3 = { (x1, x2, x3, x4) : x2
1 + x2

2 + x2
3 + x2

4 = 1 }.

(i) Show that the matrix

U(x1, x2, x3, x4) = −i
(
x3 + ix4 x1 − ix2

x1 + ix2 −x3 + ix3

)
is unitary. Show that the matrix is an element of SU(2).
(ii) Consider the parameters (θ, ψ, φ) with 0 ≤ θ < π, 0 ≤ ψ < 4π, 0 ≤ φ <
2π. Show that

x1(θ, ψ, φ) + ix2(θ, ψ, φ) = cos(θ/2)ei(ψ+φ)/2

x3(θ, ψ, φ) + ix4(θ, ψ, φ) = sin(θ/2)ei(ψ−φ)/2

is a parametrization. Thus the matrix given in (i) takes the form

−i
(

sin(θ/2)ei(ψ−φ)/2 cos(θ/2)e−i(ψ+φ)/2

cos(θ/2)ei(ψ+φ)/2 − sin(θ/2)e−i(ψ−φ)/2

)
.
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(iii) Let (ξ1, ξ2, ξ3) = (θ, ψ, φ) with 0 ≤ θ < π, 0 ≤ ψ < 4π, 0 ≤ φ < 2π.
Show that

1
24π2

∫ π

0

dθ

∫ 4π

0

dψ

∫ 2π

0

dφ

3∑
j,k,`=1

εjk`tr(U−1 ∂U

∂ξj
U−1 ∂U

∂ξk
U−1 ∂U

∂ξ`
) = 1

where ε123 = ε321 = ε132 = +1, ε213 = ε321 = ε132 = −1 and 0 otherwise.
(iv) Consider the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4.

Using the parametrization show that

gS3 =
1
4

(dθ ⊗ dθ + dψ ⊗ dψ + dφ⊗ dφ+ cos(θ)dψ ⊗ dφ+ cos(θ)dφ⊗ dψ).

(v) Consider the differential one forms e1, e2, e3 defined by

 e1

e2

e3

 =

−x4 −x3 x2 x1

x3 −x4 −x1 x2

−x2 x1 −x4 x3



dx1

dx2

dx3

dx4

 .

Show that
gS3 = de1 ⊗ de1 + de2 ⊗ de2 + de3 ⊗ de3.

(vi) Show that

dej =
3∑

k,`=1

εjk`ek ∧ e`

i.e. de1 = 2e2 ∧ e3, de2 = 2e3 ∧ e1, de3 = 2e1 ∧ e2.

Problem 42. Let V , W be two smooth vector fields defined on R3. We
write

V = V1(x)
∂

∂x1
+ V2(x)

∂

∂x2
+ V3(x)

∂

∂x3

W =W1(x)
∂

∂x1
+W2(x)

∂

∂x2
+W3(x)

∂

∂x3
.

Let
ω = dx1wegdedx2 ∧ dx3

be the volume form in R3. Then LV ω = (÷(V ))ω, where LV (.) denotes the
Lie derivative and ÷ denotes the diveregence of the vector field. Find the
divergence of the vector field given by the commutator [V,W ]. Apply it
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to the vector fields asscociated with the autonomous systems of first order
differential equations

dx1

dt
= x2 − x1,

dx2

dt
= x1x1x1x1x1,

dx3

dt
= x1x2 − bx3

and
dx1

dt
= x1x1,

dx2

dt
= x1x1x1x1,

dx3

dt
= x1x1x1x1.

The first system is the Lorenz model and the second system is Chen’s model.

Problem 43. Let A be a differential one-form in space-time with the
metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4

with x4 = ct. Let F = dA. Find F∧∗F , where ∗ is the Hodge star operator.

Problem 44. Let f : R2 → R2 be a two-dimensional analytic map.
(i) Find the condition on f such that dx1 ∧ dx2 is invariant, i.e. f should
be area preserving.
(ii) Find the condition on f such that x1dx1 + x2dx2 is invariant.
(iii) Find the condition on f such that x1dx1 − x2dx2 is invariant.
(iv) Find the condition on f such that x1dx2 + x2dx1 is invariant.
(v) Find the condition on f such that x1dx2 − x2dx1 is invariant.

Problem 45. Consider the smooth one-form in R3

α = f1(x)dx1 +f2(x)dx2 +f3(x)dx3, β = g1(x)dx1 +g2(x)dx2 +g3(x)dx3.

Find the differential equation from the condition

d(α ∧ β) = 0

and provide solution of it.

Problem 46. Let c > 0. Consider the elliptical coordinates

x1(α, β) = c cosh(α) cos(β), x2(α, β) = c sinh(α) sin(β).

Find the differential two-form ω = d1 ∧ dx2 in this coordinate system.

Problem 47. Let θ, φ, ψ be the Euler angles and consider the differential
one-forms

σ1 = cosψdθ + sinψ sin θdφ
σ2 =− sinψdθ + cosψ sin θdφ
σ3 = dψ + cos θdφ.
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Find
σ1 ∧ sigma2 + σ2 ∧ σ3 + σ3 ∧ σ1, σ1 ∧ σ2 ∧ σ3.

Problem 48. Let B be a vector field in R3. Calculate

(∇×B)×B.

Formulate the problem with differential forms.

Problem 49. Let if(z) be a C∞ function on a closed disc B ⊂ C. Show
that the differential equation

∂̄z = if(z)

has a C∞ solution w(z) in the interior of B with

w(z) =
1

2π

∫
B

f(ζ)
ζ − z

dζ ∧ dζ̄.

Problem 50. Let

α = dx1 + x1dx2 + x1x2dx3.

Find α ∧ dα.

Problem 51. Let z = reiφ. Find dz ∧ dz̄.

Problem 52. Let z1, z2 ∈ C. Consider the differential one-form

ω =
1

2πi
dz1 − dz2

z1 − z2
.

Find dω and ω ∧ ω.

Problem 53. Let z ∈ C and z = x+ iy with x, y ∈ R. Find

α = z∗dz − zdz∗.

Problem 54. Consider the manifold M = R2 and the differential one
form

α =
1
2

(xdy − ydx).

(i) Find the differential two form dω.
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(ii) Consider the domains in R2

D = { (x, y) : x2 + y2 ≤ 1 }, ∂D = { (x, y) : x2 + y2 = 1 }

i.e. ∂D is the boundaary of D. Show that (Stokes theorem)∫
D

dα =
∫
∂D

α.

Apply polar coordinates, i.e. x(r, φ) = r cos(φ), y(r, φ) = r sin(φ).

Problem 55. LetM = R2 and α = x1dx2−x2dx1. Then dα = 2dx1∧dx2.
Now let M = R2 \ {(0, 0)}. Consider the differential one form

β =
1

x2
1 + x2

2

(x1dx2 − x2dx1)

(i) Find dβ.
(ii) Show that

d(arctan(y/x)) =
1

x2
1 + x2

2

(x1dx2 − x2dx1).

Problem 56. Let M = R2. Consider the differential one-form

α = (2x3
1 + 3x2)dx1 + (3x1 + x2 − 1)dx2.

(i) Find dα.
(ii) Can one find a function f : R2 → R such that df = α.

Problem 57. Consider the differential one-form

α = xdy − ydx

in M = R2.
(i) Find dα.
(ii) Let c ∈ R. Show that y − cx = 0 satisfies α = 0.

Problem 58. (i) Consider the differential one-forms in R4

α1 =−x1dx0 + x0dx1 − x3dx2 + x2dx3

α2 =−x2dx0 + x3dx1 + x0dx2 − x1dx3

α3 =−x3dx0 − x2dx1 + x1dx2 + x0dx3.
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Find dα1, dα2, dα3 and α2 ∧ α3, α3 ∧ α1, α1 ∧ α2 and thus show that
dα1 = 2α2 ∧ α3, dα2 = 2α3 ∧ α1, dα3 = 2α1 ∧ α2.
(ii) Consider the vector fields in R4

V1 =−x1
∂

∂x0
+ x0

∂

∂x1
− x3

∂

∂x2
+ x2

∂

∂x3

V2 =−x2
∂

∂x0
+ x3

∂

∂x1
+ x0

∂

∂x2
− x1

∂

∂x3

V3 =−x3
∂

∂x0
− x2

∂

∂x1
+ x1

∂

∂x2
+ x0

∂

∂x3
.

Find the commutators [V1, V2], [V2, V3], [V3, V1].
(iii) Find the interior product (contraction)

V1cα1, V2cα2, V3cα3.

Problem 59. Consider the manifold M = R2, the differential two form
ω = dx ∧ dy and the smooth vector field

V = V1(x, y)
∂

∂x
+ V2(x, y)

∂

∂y
.

Find the condition on a smooth function f : R2 → R such that

V cω = df.

Problem 60. Consider the analytic function f : R3 → R given by

f(x1, x2, x3) = x2
1 + x2

2 + x2
3

and the analytic function g : R3 → R given by

g(x1, x2, x3) = x1x2x3.

Find df , dg and then df ∧ dg. Solve df ∧ dg = 0.

Problem 61. Let R > 0. The anti-de Sitter metric tensor field g is given

g = −ωt ⊗ ωt + ωr ⊗ ωr + ωθ ⊗ ωθ + ωφ ⊗ ωφ

with the spherical orthonormal coframe (differential one forms)

ωt = eΘ(r)dt, ωr = e−Θ(r)dr, ωθ = rdθ, ωφ = r sin(θ)dφ
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with e2Θ(r) = 1 + (r/R)2 and r, θ, φ are spherical coordinates. Show that
the Riemannian curvature two-form

Ωα,β = − 1
R2

ωβ ∧ ωα, α, β ∈ { t, r, θ, φ }

is that of a constant negative curvature space with radius of curvature R.

Problem 62. Let k ∈ R and k 6= 0. Consider the three differential
one-forms

ω1 = e−kx1dx2, ω2 = dx3, ω3 = dx1.

(i) Find dω1, dω2, dω3.
(ii) Find ω1 ∧ ω1, ω2 ∧ ω2, ω3 ∧ ω3.
(iii) Find ω1 ∧ ω2, ω2ω1, ω2 ∧ ω3, ω3 ∧ ω2, ω3 ∧ ω1, ω1 ∧ ω3.
(iv) Find the expansion coefficients Cjk,` (j, k, ` = 1, 2, 3) such that

dωj =
1
2

3∑
k,`=1

Cjk,`ωk ∧ ω`.

(v) Consider the vector fields

V1 = ekx1
∂

∂x2
, V2 =

∂

∂x3
, V3 =

∂

∂x1
.

Find the commutators [V1, V2], [V2, V3], [V3, V1].

Problem 63. Consider the differential two-form in R4

β = a12(x)dx1 ∧ dx2 + a13(x)dx1 ∧ dx3 + a14(x)dx1 ∧ dx4

+a23(x)dx2 ∧ dx3 + a24(x)dx2 ∧ dx4 + a34(x)dx3 ∧ dx4

where ajk : R4 → R are smooth functions. Find dβ and the conditions from
dβ = 0.

Problem 64. Let f1(x1, x2) = x1 + x2 and f2(x1, x2) = x2
1 + x2

2. Solve
the system of equations

df1 ∧ df2 = 0, x2
1 + x2

2 = 1.

Problem 65. Consider the differential two forms in R3

β1 = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

β2 =
1

1 + x2
1 + x2

2 + x2
3

β1.
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Find dβ1 and dβ2.

Problem 66. Consider the differential one forms in Rn

α1 =
n∑
j=1

xjdxj

α2 = x2dx1 + x3dx2 + · · ·+ xndxn−1 + x1dxn.

(i) Find the two forms dα1 and dα2.
(ii) Find α1 ∧ α2 and then d(α1 ∧ dα2).

Problem 67. Consider the differential two forms dx1∧dx2 in R2 and the
transformation (

x′1
x′2

)
=
(

cosh(α) sinh(α)
sinh(α) cosh(α)

)(
x1

x2

)
.

Find dx′1 ∧ dx′2.

Problem 68. Let β be the differential two form in R3

β = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2.

Find dβ.

Problem 69. Consider the differential two-form dx1 ∧ dx2 in R2 and the
transformation (

x′1
x′2

)
=
(

cosh(α) sinh(α)
sinh(α) cosh(α)

)(
x1

x2

)
.

Find dx′1 ∧ dx′2.

Problem 70. (i) Find smooth maps f : R3 → R3 such that

f∗(dx1∧dx2) = dx2∧dx3, f∗(dx2∧dx3) = dx1∧dx2, f∗(dx3∧dx1) = dx1∧dx2.

(ii) Find smooth vector fields V in R3 such that

LV (dx1∧dx2) = dx2∧dx3, LV (dx2∧dx3) = dx1∧dx2, LV (dx3∧dx1) = dx1∧dx2.

Problem 71. Consider the smooth map f : R3 → R3

f1(x1, x2, x3) = x1x2 − x3, f2(x1, x2, x3) = x1, f3(x1, x2, x3) = x2.
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(i) Show that the map is invertible and find the inverse.
(ii) Find

f∗(dx1 ∧ dx2), f∗(dx2 ∧ dx3), f∗(dx3 ∧ dx1).

Disuss.
(iii) Consider the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Find f∗(g). Discuss.

Problem 72. Consider the differential one-forms in R3

α1 =
dx3 − x1dx2 + x2dx1

1 + x2
1 + x2

2 + x2
3

α2 =
dx1 − x2dx3 + x3dx2

1 + x2
1 + x2

2 + x2
3

α3 =
dx2 + x1dx3 − x3dx1

1 + x2
1 + x2

2 + x2
3

.

Find the dual basis of the vector fields V1, V2, V3.

Problem 73. (i) Find smooth maps f : R3 → R3 such that

f∗(dx1∧dx2) = dx2∧dx3, f∗(dx2∧dx3) = dx1∧dx2, f∗(dx3∧dx1) = dx1∧dx2.

(ii) Find smooth vector fields V in R3 such that

LV (dx1∧dx2) = dx2∧dx3, LV (dx2∧dx3) = dx1∧dx2, LV (dx3∧dx1) = dx1∧dx2.

Problem 74. (i) Consider the smooth differential one-form in R3

α = −ex1x3dx1 + sin(x3)dx2 + (x2 cos(x3)− ex1)dx3.

Find dα. Can one find a smooth function f : R3 → R such that df = α.
(ii) Consider the smooth differential one-form in R3

α = (3x1x3 + 2x2)dx1 + x1dx2 + x2
1dx3.

Find dα. Can one find a smooth function f : R3 → R such that df = α.
Discuss.
(iii) Consider the smooth differential one-form in R3

α = x2dx1 + dx2 + dx3.
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Find dα. Can one find a smooth function f : R3 → R such that df = α.
Discuss. Consider the differential one-form α̃ = x1α.

Problem 75. Let a1, a2, a3 be real constants. Consider the differential
one-form

α = (a2 cos(x2)+a3 sin(x3))dx1+(a1 sin(x1)+a3 cos(x3))dx2+(a1 cos(x1)+a2 sin(x2))dx3.

Find dα and solve the equation dα = 0 and the equation dα = α ∧ α.



Chapter 5

Lie Derivative and
Applications

Problem 1. Let V be a smooth vector field defined on Rn

V =
n∑
i=1

Vi(x)
∂

∂xi
.

Let T be a (1, 1) smooth tensor field defined on Rn

T =
n∑
i=1

n∑
j=1

aij(x)
∂

∂xi
⊗ dxj .

Let LV T be the Lie derivative of T with respect to the vector field V . Show
that if LV T = 0 then

LV tr(a(x)) = 0

where a(x) is the n× n matrix (aij(x)) and tr denotes the trace.

Problem 2. Let V , W be vector fields. Let f , g be C∞ functions and α
be a differential form. Assume that

LV α = fα, LWα = gα.

Show that
L[V,W ]α = (LV f − LW g)α. (1)

64
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Problem 3. Let f and V be smooth function and smooth vector field in
Rn. Find

V cdf.

Problem 4. Let Vj (j = 1, . . . , n) be smooth vector fields and α a smooth
differential one-form. Assume that

LVjα = dφj , j = 1, 2, . . . , n

where φj are smooth functions.
(i) Find

L[Vj ,Vk]α.

(ii) Assume that the vector fields Vj (j = 1, . . . , n) form basis of a Lie
algebra, i.e.

[Vj , Vk] =
n∑
`=1

c`jkV`

where c`jk are the structure constants. Find the conditions on the functions
φj .

Problem 5. Find the first integrals of the autonomous system of ordinary
first order differential equations

dx1

dt
= x1x2 + x1x3

dx2

dt
= x2x3 − x1x2

dx3

dt
=−x1x3 − x2x3.

Problem 6. (i) Consider the smoth vector fields

X = X1(x1, x2)
∂

∂x1
+X2(x1, x2)

∂

∂x2

and the two differential form

ω = dx1 ∧ dx2.

Find the equation
d(Xcω) = 0

where c denotes the contraction (inner product). One also writes

d(ω(X)) = 0.
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Calculate the Lie derivative LXω.
(ii) Consider the smoth vector fields

X =
4∑
j=1

Xj(x)
∂

∂xj

and the differential two form

ω = dx1 ∧ dx2 + dx3 ∧ dx4.

Find the equation
d(Xcω) = 0

where c denotes the contraction (inner product). One also writes d(ω(X)) =
0. Calculate LXω.

Problem 7. Let α be a smooth differential one-form and V be a smooth
vector field. Assume that

LV α = fα

where f is a smooth function. Define the function F as

F := V cα

where c denotes the contraction. Show that

dF = fα− V cdα.

Problem 8. Let V , W be two smooth vector fields defined on R3. We
write

V = V1(x)
∂

∂x1
+ V2(x)

∂

∂x2
+ V3(x)

∂

∂x3

W =W1(x)
∂

∂x1
+W2(x)

∂

∂x2
+W3(x)

∂

∂x3
.

Let
ω = dx1 ∧ dx2 ∧ dx3

be the volume form in R3. Then LV ω = (div(V ))ω, where LV (.) denotes
the Lie derivative and divV denotes the diveregence of the vector field V .
Find the divergence of the vector field given by the commutator [V,W ].
Apply it to the vector fields asscociated with the autonomous systems of
first order differential equations

dx1

dt
= σ(x2 − x1),

dx2

dt
= αx1 − x2 − x1x3,

dx3

dt
= −βx3 + x1x2
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and

dx1

dt
= a(x2 − x1),

dx2

dt
= (c− a)x1 + cx2 − x1x3,

dx3

dt
= −bx3 + x1x2 .

The first system is the Lorenz model and the second system is Chen’s model.

Problem 9. Consider the smooth vector field

V =
n∑
j=1

Vj(u)
∂

∂uj

defined on Rn. Consider the smooth differential one-form

α =
n∑
k=1

fk(u)duk .

Find the Lie derivative LV α. What is the condition such that LV α = 0.

Problem 10. Consider the smooth vector fields V and W defined on Rn.
Let f and g be smooth functions. Assume that

LV f = 0, LW g = 0 .

Find
L[V,W ](f + g), L[V,W ](fg) .

Problem 11. Let V , W be two smooth vector fields defined on Rn. Let
f , g be smooth function defined on Rn. Assume that

V f = 0, Wg = 0

i.e. f , g are first integrals of the dynamical system given by the vector
fields V and W .
(i) Calculate

[V,W ](fg), [V,W ](gf)

where [ , ] denotes the commutator.
(ii) Calculate

[V,W ](f(g))

where f(g) denotes function composition.

Problem 12. Consider the manifold M = R2. Let V be a smooth vector
field in M . Let (x, y) be the local coordinate system. Assume that

LV dx = dy, LV dy = dx
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where LV (.) denotes the Lie derivative. Find

LV (dx ∧ dy).

Problem 13. Let V , W be two smooth vector fields

V =
n∑
j=1

Vj(x)
∂

∂xj
, W =

n∑
j=1

Wj(x)
∂

∂xj

defined on Rn. Assume that

[V,W ] = f(x)W.

Let
Ω = dx1 ∧ · · · ∧ dxn

be the volume form and α := W cΩ. Find the Lie derivative

LV α.

Discuss.

Problem 14. Let M = R2 and let x, y denote the Euclidean coordinates
on R2. Consider the differential one-form

α =
1
2

(xdy − ydx).

Consider the vector field defined on R2 \ {0}

V =
1

x2 + y2

(
x
∂

∂x
− y ∂

∂y

)
.

Find
V cdα

and the Lie derivative LV α.

Problem 15. Consider the two smooth vector fields in R2

V = V1(x)
∂

∂x1
+ V2(x)

∂

∂x2
, W = W1(x)

∂

∂x1
+W2(x)

∂

∂x2
.

Assume that [W,V ] = 0. Find the Lie derivatives

LV (V1W2 − V2W1), LW (V1W2 − V2W1).
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Discuss.

Problem 16. Consider the smooth manifold M = R3 with coordintes
(x, p, z) and the differential one form

α = dz − pdx.

(i) Show that α ∧ dα 6= 0. Consider the vector fields

V =
∂

∂p
, W =

∂

∂x
+ p

∂

∂z
.

Find
V cα, W cα .

(ii) Consider the smooth manifoldM = R5 with coordinates (x1, x2, p1, p2, z)
and the differential one-form

α = dz −
2∑
j=1

pjdzj .

Show that α ∧ dα∧ 6= 0. Consider the vector fields

V1 =
∂

∂p1
, V2 =

∂

∂p2
, W1 =

∂

∂x1
+ p1

∂

∂z
, W2 =

∂

∂x2
+ p2

∂

∂z
.

Find
V1cα, V2cα, W1cα, W2cα.

Problem 17. Let V be a smooth vector field in R3. Find the condition
on V such that

LV (x1dx2 + x2dx3 + x3dx1) = 0.

Problem 18. Let M = R2. Consider

V = x1
∂

∂x2
− x2

∂

∂x1
, ω = dx1 ∧ dx2.

Calculate the Lie derivative LV ω.

Problem 19. Let du1/dt = V1(u), . . . , dun/dt = Vn(u) be an au-
tonomous system of ordinary differential equations, where Vj(u) ∈ C∞(Rn)
for all j = 1, . . . , n. A function φ ∈ C∞(Rn) is called conformal invariant
with respect to the vector field

V = V1(u)
∂

∂u1
+ · · ·+ Vn(u)

∂

∂un
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if
LV φ = ρφ

where ρ ∈ C∞(Rn). Let n = 2 and consider the vector fields

V = u1
∂

∂u2
− u2

∂

∂u1
, W = u1

∂

∂u1
+ u2

∂

∂u2
.

Show that φ(u) = u2
1 +u2

2 is conformal invariant under V and W . Find the
commutator [V,W ].

Problem 20. Consider the mainfold R2 and the smooth vector field

V = V1(x1, x2)
∂

∂x1
+ V2(x1, x2)

∂

∂x2
.

Find V1, V2 such that

LV (dx1 ⊗ dx1 + dx2 ⊗ dx2) = 0

LV

(
∂

∂x1
⊗ dx1 +

∂

∂x2
⊗ dx2

)
= 0

LV

(
∂

∂x1
⊗ ∂

∂x1
+

∂

∂x2
⊗ ∂

∂x2

)
= 0.

Problem 21. Let M be differentiable manifold and φ : M → R be a
smooth function. Let α be a smooth diferential one form defined on M .
Show that if V is a vector field defined on M such that dφ = V cdα, then

LV α = d(V cα+ φ).

Problem 22. Consider the manifold M = Rn and the volume form

Ω = dx1 ∧ · · · ∧ dxn.

Consider the analytic vector field

V =
n∑
j=1

Vj(x)
∂

∂xj
.

(i) Find ω = V cΩ.
(ii) Find LV Ω.
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Problem 23. Consider the autonomous system of first order ordinary
differential equations

duj
dt

= Vj(u), j = 1, 2, . . . , n

where the Vj ’s are polynomials. The corresponding vector field is

V =
n∑
j=1

Vj
∂

∂xj
.

Let f be an analytic function. The Lie derivative of f is

LV f =
n∑
j=1

Vj
∂f

∂xj
.

A Darboux polynomial is a polynomial g such that there is another polyno-
mial p satisfying

LV g = pg.

The couple is called a Darboux element. If m is the greatest of degVj
(j = 1, . . . , n), then degp ≤ m− 1. All the irreducible factors of a Darboux
polynomial are Darboux. The search for Darboux polynomials can be re-
stricted to irreducible g. If the autonomous system of first order differential
equations is homogeneous of degree m, i.e. all Vj are homgeneous of degree
m, then p is homogeneous of degree m− 1 and all homgeneous components
of g are Darboux. The search can be restricted to homgeneous g.
(i) Show that the product of two Darboux polynomials is a Darboux poly-
nomial.
(ii) Consider the Lotka-Volterra model for three species

du1

dt
= u1(c3u2 + u3)

du2

dt
= u2(c1u3 + u1)

du3

dt
= u3(c2u1 + u2)

where c1, c2, c3 are real parameters. Find the determining equation for the
Darboux element.

Problem 24. Consider a smooth vector field in R3

V = V1(x)
∂

∂x1
+ V2(x)

∂

∂x2
+ V3(x)

∂

∂x3
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and the differential two-form

β = dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1.

Find V cα and d(V cα). Thus find LV α. Find solutions of the partial
differential equations given by LV α = 0.

Problem 25. Consider the unit ball

x2 + y2 + z2 = 1.

and the vector field

V = (a0 + a1x+ a2y + a3z + x(e1x+ e2y + e3z))
∂

∂x

+(b0 + b1x+ b2y + b3z + y(e1x+ e2y + e3z))
∂

∂y

+(c0 + c1x+ c2y + c3z + z(e1x+ e2y + e3z))
∂

∂z
.

Find the coefficients from the conditions

LV (x2 + y2 + z2) = 0, x2 + y2 + z2 = 1.

Problem 26. Some quantities in physics owing to the transformation
laws have to be considered as currents instead of differential forms. Let
M be an orientable n-dimensional differentiable manifold of class C∞. We
denote by Φk(M) the set of all differential forms of degree k with compact
support. Let φ ∈ Φk(M) and let α be an exterior differential form of degree
n−k with locally integrable coefficients. Then, as an example of a current,
we have

Tα(φ) ≡ α(φ) :=
∫
M

α ∧ φ.

Define the Lie derivative for this current.

Problem 27. Let H : R2n → R be a smooth Hamilton function with the
corresponding vector field

VH =
n∑
j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
.

Let

W =
n∑
j=1

(
fj(p,q)

∂

∂qj
+ gj(p,q)

∂

∂pj

)
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be another smooth vector field. Assume that

[VH ,W ] = λW (1)

where λ is a smooth function of p and q. Let

ω = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn

be the standard volume differential form. Let

α = W cω.

Show that (1) can be written as

LVH
α = λα.

Problem 28. Consider the vector field V associated with the Lorenz
model

du1

dt
= σ(u2 − u1)

du2

dt
=−u1u3 + ru1 − u2

du3

dt
= u1u2 − bu3.

Let
α = u1du2 + u2du3 + u3du1.

Calculate the Lie derivative
LV α

Discuss.

Problem 29. Consider the metric tensor field

g = −cdt⊗ cdt+ dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdφ⊗ dφ

and the vector field

V =
1√

1− ω2r2 sin2 θ/c2

(
∂

∂t
+ ω

∂

∂φ

)

where c is the speed of light and ω a fixed frequency. Find the Lie derivative
LV g.
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Problem 30. Consider the 2n + 1 dimensional anti-de Sitter space
AdS2n+1. This is a hypersurface in the vector space R2n+2 defined by
the equation R(x) = −1, where

R(x) = −(x0)2 − (x1)2 + (x2)2 + · · ·+ (x2n+1)2.

One introduces the even coordinates p and odd coordinates q. Then we
can write

R(p,q) = −p2
1 − q2

1 + p2
2 + q2

2 + · · ·+ p2
n+1 + q2

n+1.

We consider R2n+2 as a symplectic manifold with the canonical symplectic
differential form

ω =
n+1∑
k=1

dpk ∧ dqk.

Let

α =
1
2

n+1∑
k=1

(pkdqk − qkdpk).

Consider the vector field V in R2n+2 given by

V =
1
2

n+1∑
k=1

(
pk

∂

∂pk
+ qk

∂

∂qk

)
.

Find the Lie derivative LVR and V cω.

Problem 31. Consider the Lotka-Volterra equation

du1

dt
= (a− bu2)u1,

du2

dt
= (cu1 − d)u2

where a, b, c, d are constants and u1 > 0 and u2 > 0. The corresponding
vector field V is

V = (a− bu2)u1
∂

∂u1
+ (cu1 − d)u2

∂

∂u2
.

Let
ω = f(u1, u2)du1 ∧ du2

where f is a smooth nonzero function. Find a smooth function H (Hamilton
function) such that

ωcV = dH.

Note that from this condition since ddH = 0 we obtain

d(ωcV ) = 0.
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Problem 32. Let I, f be analytic functions of u1, u2. Consider the
autonomous system of differential equations(

du1/dt
du2/dt

)
=
(

0 f(u)
−f(u) 0

)(
∂I/∂u1

∂I/∂u2

)
.

Show that I is a first integral of this autonomous system of differential
equations.

Problem 33. Consider the smooth vector field

V = V1(u)
∂

∂u1
+ V2(u)

∂

∂u2

in R2. Let f1(u1), f2(u2) be smooth functions.
(i) Calculate the Lie derivative

LV

(
f1(u1)du1 ⊗

∂

∂u1
+ f2(u2)du2 ⊗

∂

∂u2

)
.

Find the condition arising from setting the Lie derivative equal to 0.
(ii) Calculate the Lie derivative

LV (f1(u1)du1 ⊗ du1 + f2(u2)du2 ⊗ du2) .

Find the conditions arising from setting the Lie derivative equal to 0. Com-
pare the conditions to the conditions from (i).

Problem 34. Let V , W be smooth vector fields defined in Rn. Let
f, g : Rn → R be smooth functions. Consider now the pairs (V, f), (W, g).
One defines a commutator of such pairs as

[(V, f), (W, g)] := ([V,W ], LV g − LW f) .

Let
V = u2

∂

∂u1
− u1

∂

∂u2
, W = u1

∂

∂u1
+ u2

∂

∂u1

and f(u1, u2) = g(u1, u2) = u2
1 + u2

2. Calculate the commutator.

Problem 35. Consider the two differential form in R3

β = x3dx1 ∧ dx2 + x1dx2 ∧ dx3 + x2dx3 ∧ dx1 .

Find dβ. Find the Lie dervivative LV β. Find the condition on the vector
field V such that LV β = 0.
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Problem 36. Let V be the vector field for the Lorenz model

V = σ(−u1 + u2)
∂

∂u1
+ (−u1u3 + ru1 − u2)

∂

∂u2
+ (u1u2 − bu3)

∂

∂u3
.

Find the Lie derivative LV (du1 ∧ du2), LV (du2 ∧ du3), LV (du3 ∧ du1).
Discuss.

Problem 37. (i) Consider the tensor fields in R2

T1 =
2∑

j,k=1

tjk(x)dxj⊗dxk, T2 =
2∑

j,k=1

tjk(x)dxj⊗
∂

∂xk
, T3 =

2∑
j,k=1

tjk(x)
∂

∂xj
⊗ ∂

∂xk
.

Find the condition on the vector field

V =
2∑
`=1

V`(x)
∂

∂x`

such that
LV T1 = 0, LV T2 = 0, LV T3 = 0.

(ii) Simplify for the case tjk(x) = 1 for all j, k = 1, 2.

Problem 38. Let n ≥ 2. Consider the smooth vector field in Rn

V =
n∑
j=1

Vj(x)
∂

∂xj
.

Find the Lie derivative of the tensor fields

∂

∂xj
⊗ ∂

∂xk
, dxj ⊗

∂

∂xk
, dxj ⊗ dxk

with j, k = 1, . . . , n. Set the Lie derivative to 0 and study the partial
differential equations of Vj .

Problem 39. V , W be smooth vector fields in R3. Let

LV (dx1∧dx2∧dx3) = (div(V ))dx1∧dx2∧dx3, LW (dx1∧dx2∧dx3) = (div(W ))dx1∧dx2∧dx3.

Calculate
L[V,W ]dx1 ∧ dx2 ∧ dx3.

Problem 40. Let V be a smooth vector field in R2. Assume that

LV (dx1 ⊗ dx1 + dx2 ⊗ dx2) = 0, LV

(
∂

∂x1
⊗ ∂

∂x1
+

∂

∂x2
⊗ ∂

∂x2

)
= 0.
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Can we conclude that

LV

(
dx1 ⊗

∂

∂x1
+ dx2 ⊗

∂

∂x2

)
= 0 ?

Problem 41. The Heisenberg group H is a non-commutative Lie group
which is diffeomorphic to R3 and the group operation is defined by

(x, y, z) • (x′, y′, z′) := (x+ x′, y + y′, z + z′ − x′y + xy′).

(i) Find the idenity element. Find the inverse element.
(ii) Consider the metric tensor

g = −dx⊗ dx+ dy ⊗ dy + x2dy ⊗ dy + xdy ⊗ dz + xdz ⊗ dy + dz ⊗ dz

and the vector fields

V1 =
∂

∂z
, V2 =

∂

∂y
− x ∂

∂z
, V3 =

∂

∂x
.

Show that the vector fields form a basis of a Lie algebra. Classify the Lie
algebra. Calculate the Lie derivatives

LV1g, LV2g, LV3g.

Discuss.

Problem 42. Consider the 2n+ 1 smooth vector fields

Xj =
∂

∂xj
− yj

2
∂

∂t
, Yj =

∂

∂yj
+
xj
2
∂

∂t
, T =

∂

∂t

(j = 1, . . . , n) and the differential one form

θ = dt+
1
2

n∑
j=1

(yjdxj − xjdyj).

(i) Find the commutators

[Xj , Yj ], [Xj , T ], [Yj , T ].

(ii) Find
exp(αXj)xj , exp(βYj)yj , exp(γT )t .

(iii) Find the Lie derivatives

LXj
θ, LYj

θ, LT θ.
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Problem 43. Let V , W be vector fields and α be a differential form.
Find the Lie derivative

LV (W ⊗ α).

Problem 44. Consider the manifold M = R2. Let V be a smooth vector
field in M . Let (x, y) be the local coordinate system. Assume that

LV dx = dy, LV dy = dx.

Find
LV (dx ∧ dy).

Problem 45. Consider the metric tensor field

g = dt⊗dt−dv⊗dv−kxdt⊗dy−kxdy⊗dt+(k2x2−ekv)dy⊗dy−e−kvdx⊗dx

the differential two-form

F =
1√
2
keikv(dv ∧ dt+ kxdy ∧ dv + idx ∧ dy)

and the vector fields

V1 =
∂

∂t
, V2 =

∂

∂y
, V3 = ky

∂

∂t
+

∂

∂x
, V4 =

∂

∂v
+

1
2
kx

∂

∂x
− 1

2
ky

∂

∂y
.

Show that
LV1g = LV2g = LV3g = LV4g = 0.

and
LV1F = LV2F = LV3F = LV4F = 0.



Chapter 6

Killing Vector Fields and
Lie Algebras

Let g be a metric tensor field and V be a vector field. Then V is called a
Killing vector field if

LV g = 0

i.e. the Lie derivative of g with respect to V vanishes. The Killing vector
fields provide a basis of a Lie algebra.

Problem 1. Consider the two-dimensional Euclidean space with the
metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2.

Find the Killing vector fields, i.e. the analytic vector fields V such that

LV g = 0

where LV denotes the Lie derivative. Show that the set of Killing vector
fields form a Lie algebra under the commutator.

Problem 2. Consider the metric tensor field

g =
1
y2

(dx⊗ dx+ dy ⊗ dy), −∞ < x <∞, 0 < y <∞.

Find the Killing vector fields.
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Problem 3. A standard model of the complex hyperbolic space is the
complex unit ball

Bn := { z ∈ C : |z| < 1 }

with the Bergman metric

g =
n∑

j,k=1

gj,k(z)dzj ⊗ dz̄k

where

gj,k =
∂

∂zj

∂

∂z̄k
ln(1− |z|2) .

Find the Killing vector fields of g.

Problem 4. Consider the metric tensor field

g = dθ ⊗ dθ + sin2 θdφ⊗ dφ.

Show that g admits the Killing vector fields

V1 = sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ

V2 = cosφ
∂

∂θ
− sinφ cot θ

∂

∂φ

V3 =
∂

∂φ
.

Is the Lie algebra given by the vector fields semisimple?

Problem 5. A de Sitter universe may be represented by the hypersurface

x2
1 + x2

2 + x2
3 + x2

4 − x2
0 = R2

where R is a real constant. This hypersurface is embedded in a five dimen-
sional flat space whose metric tensor field is

g = dx0 ⊗ dx0 − dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4.

Find the Killing vector fields V of g, i.e. the solutions of LV g = 0.

Problem 6. For the Poincaré upper half plane

H = { z = x1 + ix2 : y > 0 }
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the metric tensor field is given by

g =
1
x2

2

(dx1 ⊗ dx1 + dx2 ⊗ dx2).

Find the Killing vector fields for g, i.e.

V = V1(x1, x2)
∂

∂x1
+ V2(x1, x2)

∂

∂x2

where LV g = 0.

Problem 7. Consider the metric tensor field

g = dt⊗ dt− eP1(t)dx⊗ dx− eP2(t)dy ⊗ dy − eP3(t)dz ⊗ dz

where Pj (j = 1, 2, 3) are smooth functions of t. Find the Killing vector
fields.



Chapter 7

Lie-Algebra Valued
Differential Forms

Problem 1. Let A be an n × n matrix. Assume that the entries are
analytic functions of x. Assume that A is invertible for all x. Let d be the
exterior derivative. We have the identity

d(det(A)) ≡ det(A)tr(A−1dA).

Let

A =
(

cos(x) sin(x)
− sin(x) cos(x)

)
.

Calculate the left-hand side and right hand side of the identity.

Problem 2. Let

R =
(

cos θ sin θ
− sin θ cos θ

)
.

Obviously, R ∈ SO(2). Calculate R−1, dR, R−1dR and dR(R−1), where
R−1dR is the left-invariant matrix differential one-form and dR(R−1) is the
right-invariant matrix differential one-form.

Problem 3. Let G be a Lie group with Lie algebra L. A differential form
ω on G is called left invariant if

f(x)∗ω = ω (1)
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for all x ∈ G, f(x) denoting the left translation g → xg on G. Let X1, . . . ,
Xn be a basis of L and ω1, . . .ωn the one-forms on G determined by

ωi(X̃j) = δij (2)

where X̃i are the corresponding left invariant vector fields on G and δij is
the Kronecker delta. Show that

dωi = −1
2

n∑
j,k=1

cijkωj ∧ ωk, i = 1, 2, . . . , n (3)

where the structural constants cijk are given by

[Xj , Xk] =
n∑
i=1

cijkXi. (4)

System (3) is known as the Maurer-Cartan equations.

Problem 4. Let G be a Lie group whose Lie algebra is L. L is identified
with the left invariant vector fields on G. Now suppose that X1, . . ., Xn is
a basis of L and that ω1, . . . ωn is a dual basis of left invariant one-forms.
There is a natural Lie algebra valued one-form ω̃ on G which can be written
as

ω̃ :=
n∑
i=1

ωi ⊗Xi (1)

where
(Xi, ωj) = δij . (2)

Show that
dω̃ +

1
2

[ω̃, ω̃] = 0 (3)

where

[ω̃, ω̃] :=
n∑
i=1

n∑
j=1

(ωi ∧ ωj)⊗ [Xi, Xj ]. (4)

Obviously, (3) are the Maurer-Cartan equations.

Problem 5. Consider the Lie algebra

G :=
{(

eα β
0 1

)
: α ∈ R , β ∈ R

}
. (1)

Let

X :=
(
eα β
0 1

)
(2)
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and
Ω := X−1dX. (3)

Show that
dΩ + Ω ∧ Ω = 0. (4)

Problem 6. Let

X =
(
x11 x12

x21 x22

)
(1)

where
x11x22 − x12x21 = 1

so that X is a general element of the Lie group SL(2,R). Then X−1dX,
considered as a matrix of one-forms, takes its value in the Lie algebra
sl(2,R), the Lie algebra of SL(2,R). If

X−1dX =
(
ω1 ω2

ω3 −ω1

)
(2)

then {ωj } are the left-invariant forms of SL(2,R).
(i) Show that there is a (local) SL(2,R)-valued function A on R2 such that

A−1dA =
(

Θ1 Θ2

Θ3 −Θ1

)
= Θ. (3)

Write Θ for this sl(2,R)-valued one-form on R2.
(ii) Show that then dG = GΘ and that each row (r, s) of the matrix G
satisfies

dr = rθ1 + sθ3, ds = rθ2 − sθ1. (4)

Note that Maurer-Cartan equations for the forms {θ1, θ2, θ3}may be written

dΘ + Θ ∧Θ = 0. (5)

(iii) Show that any element of SL(2,R) can be expressed uniquely as the
product of an upper triangular matrix and a rotation matrix (the Iwasawa
decomposition). Define an upper-triangular-matrix-valued function T and
a rotation-matrix-valued function R on R2 by A = TR−1. Thus show that

T−1dT = R−1dR+R−1ΘR.

Problem 7. Let

SL(2,R) :=
{
X =

(
a b
c d

)∣∣∣∣ ad− bc = 1
}

(1)
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be the group of all (2 × 2)-real unimodular matrices. Its right-invariant
Maurer-Cartan form is

ω = dXX−1 =
(
ω11 ω12

ω21 ω22

)
(2)

where
ω11 + ω22 = 0. (3)

Show that ω satisfies the structure equation of SL(2,R), (also called the
Maurer-Cartan equation)

dω = ω ∧ ω

or, written explicitly,

dω11 = ω12 ∧ ω21, dω12 = 2ω11 ∧ ω12, dω21 = 2ω21 ∧ ω11.

Problem 8. Let

SL(2,R) :=
{
X =

(
a b
c d

)∣∣∣∣ ad− bc = 1
}

(1)

be the group of all (2 × 2)-real unimodular matrices. Its right-invariant
Maurer-Cartan form is

ω = dXX−1 =
(
ω11 ω12

ω21 ω22

)
(2)

where
ω11 + ω22 = 0. (3)

Then ω satisfies (see previous problem) the structure equation of SL(2,R),
(also called the Maurer-Cartan equation)

dω = ω ∧ ω

or, written explicitly,

dω11 = ω12 ∧ ω21, dω12 = 2ω11 ∧ ω12, dω21 = 2ω21 ∧ ω11. (4)

(ii) Let U be a neighbourhood in the (x, t)-plane and consider the smooth
mapping

f : U → SL(2,R). (5)

The pull-backs of the Maurer-Cartan forms can be written

ω11 = η(x, t)dx+A(x, t)dt, ω12 = q(x, t)dx+B(x, t)dt, ω21 = r(x, t)dx+C(x, t)dt
(6)
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where the coefficients are functions of x, t. Show that

−∂η
∂t

+
∂A

∂x
− qC + rB = 0 (7a)

−∂q
∂t

+
∂B

∂x
− 2ηB + 2qA = 0 (7b)

−∂r
∂t

+
∂C

∂x
− 2rA+ 2ηC = 0. (7c)

(ii) Consider the special case that r = +1 and η is a real parameter inde-
pendent of x, t. Writing

q = u(x, t), (8)

show that

A(x, t) = ηC(x, t)+
1
2
∂C

∂x
, B(x, t) = u(x, t)C(x, t)−η(x, t)

∂C

∂x
− 1

2
∂2C

∂x2
.

(9)
Show that substitution into the second equation of (7) gives

∂u

∂t
=
∂u

∂x
C + 2u

∂C

∂x
= 2η2 ∂C

∂x
− 1

2
∂3C

∂x3
. (10)

(iii) Let

C = η2 − 1
2
u (11)

Show that (10) becomes

∂u

∂t
=

1
4
∂3u

∂x3
− 3

2
u
∂u

∂x
, (12)

which is the well-known Korteweg-de Vries equation.

Problem 9. We consider the case where M = R2 and L = sl(2,R). In
local coordinates (x, t) a Lie algebra-valued one-differential-form is given
by

α̃ =
3∑
i=1

αi ⊗ Ti (1)

where
αi := ai(x, t)dx+Ai(x, t)dt (2)

and {T1, T2, T3} is a basis of the semi-simple Lie algebra s`(2,R). A con-
venient choice is

T1 =
(

1 0
0 −1

)
, T2 =

(
0 1
0 0

)
, T3 =

(
0 0
1 0

)
. (3)
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(i) Show that the condition that the covariant derivative vanishes

Deαα̃ = 0 (4)

leads to the following systems of partial differential equations of first order

−∂a1

∂t
+
∂A1

∂x
+ a2A3 − a3A2 = 0 (5a)

−∂a2

∂t
+
∂A2

∂x
+ 2(a1A2 − a2A1) = 0 (5b)

∂a3

∂t
+
∂A3

∂x
− 2(a1A3 − a3A1) = 0. (5c)

(ii) Show that the sine Gordon equation

∂2u

∂t2
− ∂2u

∂x2
+ sinu = 0 (6)

can be represented as follows

a2 = −1
4

(cosu+ 1) A1 =
1
4

(cosu− 1) (7a)

a2 =
1
4

(
∂u

∂x
+
∂u

∂t
− sinu

)
, A2 =

1
4

(
∂u

∂x
+
∂u

∂t
+ sinu

)
(7b)

a3 = −1
4

(
∂u

∂x
+
∂u

∂t
+ sinu

)
A4 = −1

4

(
∂u

∂x
+
∂u

∂t
− sinu

)
(7c)

(iii) Prove the following. Let

a1 = f1(u), A1 = f2(u) (8a)

a2 = c1
∂u

∂x
+ c2

∂u

∂t
+ f3(u), A2 = c3

∂u

∂x
+ c4

∂u

∂t
+ f4(u) (8b)

a3 = c5
∂u

∂x
+ c6

∂u

∂t
+ f5(u), A3 = c7

∂u

∂x
+ c8

∂u

∂t
+ f6(u) (8c)

where f1, . . . , f6 are smooth functions and c1, . . . , c8 ∈ R. Then the Lie
algebra-valued differential from α̃ satisfies the condition (4) if

c1 = c2 = c3 = c4, c5 = c6 = c7 = c8 (9a)

f4 = −f3, f6 = −f5 (9b)

f5 = cf3 (c ∈ {+1,−1}) (9c)

−c1
∂2u

∂t2
+ c1

∂2u

∂x2
+ 2f3(−f1 − f2) = 0 (9d)
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and for c = 1

df1

dt
= −4c1f3,

df2

dt
= 4c1f3,

d2f3

dt2
= −16c21f3 (9e)

where c1 = −c5.

For c = −1

df1

dt
= 4c1f3,

df2

dt
= −4c1f3,

d2f3

dt2
= 16c21f3 (9f)

where c1 = c5.

(iv) Show that the solutions to these differential equations lead to the non-
linear wave equations

∂2u

∂t2
− ∂2u

∂x2
= C1 coshu+ C2 sinhu (10)

and
∂2u

∂t2
− ∂2u

∂x2
= C1 sinu+ C2 cosu (11)

(C1, C2 ∈ R) can be written as the covariant exterior derivative of a Lie
algebra-valued one-form, where the underlying Lie algebra is sl(2,R).

Problem 10. Let (M, g) be a Riemann manifold with dim(M) = m. Let
s be an orthonormal local frame on U with dual coframe σ and let ∇ be
the Levi-Civita covariant derivative. Then we have

(1) g|U =
m∑
i=1

σi ⊗ σi

(2)∇s = s.ω, ωij = −ωji , so ω ∈ Ω1(U, so(m))

(3) dσ + ω ∧ σ = 0, dσi +
m∑
k=1

ωik ∧ σk = 0

(4)Rs = s.Ω, Ω = dω + ω ∧ ω ∈ Ω2(U, so(m)), Ωij = dωij +
m∑
k=1

ωik ∧ ωkj

(5) Ω ∧ σ = 0,
m∑
k=1

Ωik ∧ σk = 0, first Bianchi identity

(6) dΩ + ω ∧ Ω− Ω ∧ ω ≡ dΩ + [ω,Ω]∧ = 0, second Bianchi identity
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If (M, g) is a pseudo Riemann manifold,

ηij = g(si, sj) = diag(1, . . . , 1,−1, . . . ,−1)

the standard inner product matrix of the same signature (p, q) (p+q = m),
then we have instead

(1′) g =
m∑
i=1

ηiiσ
i ⊗ σi

(2′) ηjjω
j
i = −ηiiωij thus ω = (ωji ) ∈ Ω1(U, so(p, q))

(3′) ηjjΩ
j
i = −ηiiΩij thus Ω = (Ωji ) ∈ Ω2(U, so(p, q)).

Consider the manifold S2 ⊂ R3. Calculate the quantities given above.
Consider the parametrization (leaving out one longitude)

f : (0, 2π)× (−π, π)→ R3, f(φ, θ) =

 cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 .

Problem 11. Show that the Korteweg-de Vries and nonlinear Schrödinger
equations are reductions of the self-dual Yang-Mills equations. We work on
R4 with coordinates xa = (x, y, u, t) and metric tensor field

g = dx⊗ dx− dy ⊗ dy + du⊗ dt− dt⊗ du

of signature (2,2) and a totally skew orientation tensor εabcd = ε[abcd]. We
consider a Yang-Mills connection Da := ∂a − Aa where the Aa where the
Aa are, for the moment, elements of the Lie algebra of SL(2,C). The Aa
are defined up to gauge transformations

Aa → hAah
−1 − (∂ah)h−1

where h(xa) ∈ SL(2,C). The connection is said to be self-dual when (sum-
mation convention)

1
2
εcdab[Dc, Dd] = [Da, Db]. (3)

Problem 12. With the notation given above the self-dual Yang-Mills
equations are given by

∗Deαα̃ = Dαα (1)

Find the components of the self-dual Yang Mills equation.
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Problem 13. Consider the non-compact Lie group SU(1, 1) and the
compact Lie group U(1). Let z ∈ C and |z| < 1. Consider the coset space
SU(1, 1)/U(1) with the element (α ∈ R)

U(z, α) =
1√

1− |z|2

(
1 −z
−z̄ 1

)(
eiα 0
0 e−iα

)
.

Consequently the coset space SU(1, 1)/U(1) can be viewed as an open unit
disc in the complex plane. Consider the Cartan differential one-forms forms

µ = i
z̄dz − zdz̄
1− |z|2

, ω+ =
idz

1− |z|2
, ω− = − idz

1− |z|2
.

Show that (Cartan-Mauer equations)

dµ = 2iω− ∧ ω+, dω+ = iµ ∧ ω+, dω− = −iµ ∧ ω−.

Show that
ω+ ∧ ω− =

1
(1− |z|2)2

dz ∧ dz̄.
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Lie Symmetries and
Differential Equations

Problem 1. Show that the second order ordinary linear differential equa-
tion

d2u

dt2
= 0

admits the eight Lie symmetries

∂

∂t
,

∂

∂u
, t

∂

∂t
, t

∂

∂u

u
∂

∂u
, u

∂

∂t
, ut

∂

∂t
+ u2 ∂

∂u
, ut

∂

∂u
+ t2

∂

∂t
.

Find the commutators. Classify the Lie algebra.

Problem 2. Show that the third order ordinary linear differential equa-
tion

d3u

dt3
= 0

admits the seven Lie symmetries

∂

∂t
,

∂

∂u
, t

∂

∂t
, t

∂

∂u

t2
∂

∂u
, u

∂

∂u
, ut

∂

∂u
+

1
2
t2
∂

∂t
.
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Find the commutators.

Problem 3. Consider the nonlinear partial differential equation

∂3u

∂x3
+ u

(
∂u

∂t
+ c

∂u

∂x

)
= 0

where c is a constant. Show that the partial differential equation admits
the Lie symmetry vector fields

V1 =
∂

∂t
, V2 =

∂

∂x
,

V3 = 3t
∂

∂t
+ (x+ 2ct)

∂

∂x
, V4 = t

∂

∂t
+ ct

∂

∂x
+ u

∂

∂u
.

Problem 4. Consider the stationary incompressible Prandtl boundary
layer equation

∂3u

∂η3
=
∂u

∂η

∂2u

∂η∂ξ
− ∂u

∂ξ

∂2u

∂η∂ξ
.

Using the classical Lie method we obtain the similarity reduction

u(ξ, η) = ξβy(x), x = ηξβ−1 + f(ξ)

where f is an arbitrary differentiable function of ξ. Find the ordinary
differential equation for y.

Problem 5. Show that the Chazy equation

d3y

dx3
= 2y

d2y

dx2
− 3

(
dy

dx

)2

admits the vector fields

∂

∂x
, x

∂

∂x
− y ∂

∂y
, x2 ∂

∂x
− (2xy + 6)

∂

∂y

as symmetry vector fields. Show that the first two symmetry vector fields
can be used to reduce the Chazy equation to a first order equation.

Problem 6. Show that the Laplace equation(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u = 0
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admits the Lie symmetries

Px =
∂

∂x
, Py =

∂

∂y
, Pz =

∂

∂z

Myx = y
∂

∂x
− x ∂

∂y
, Mxz = x

∂

∂z
− z ∂

∂x
, Mzy = z

∂

∂y
− y ∂

∂z

D = −
(

1
2

+ x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
Kx = −2xD − r2 ∂

∂x
, Ky = −2yD − r2 ∂

∂y
, Kz = −2xD − r2 ∂

∂z

where r2 := x2 + y2 + z2.

Problem 7. Consider the nonlinear one-dimensional diffusion equation

∂u

∂t
− ∂

∂x

(
un
∂u

∂x

)
= 0

where n = 1, 2, . . .. An equivalent set of differential forms is given by

α= du− utdt− uxdx
β = (ut − nun−1u2

x)dx ∧ dt− undux ∧ dt

with the coordinates t, x, u, ut, ux The exterior derivative of α is given

dα = −dut ∧ dt− dux ∧ dx.

Consider the vector field

V = Vt
∂

∂t
+ Vx

∂

∂x
+ Vu

∂

∂u
+ Vut

∂

∂ut
+ Vux

∂

∂ux
.

Then the symmetry vector fields of the partial differential equation are
determined by

LV α= gα

LV β = hβ + wα+ rdα

where LV (.) denotes the Lie derivative, g, h, r are smooth functions de-
pending on t, x, u, ut, ux and w is a differential one-form also depending on
t, x, u, ut, ux. Find the symmetry vector fields from these two conditions.
Note that we have

LV (dα) = d(LV α) = d(gα) = (dg) ∧ α+ gdα.
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Problem 8. The Harry Dym equation is given by

∂u

∂t
− u3 ∂

3u

∂x3
= 0.

Show that it admits the Lie symmetry vector fields

V1 =
∂

∂x
, V2 =

∂

∂t

V3 = x
∂

∂x
+ u

∂

∂u
, V4 = −3t

∂

∂t
+ u

∂

∂u
, V5 = x2 ∂

∂x
+ 2xu

∂

∂u
.

Is the Lie algebra spanned by these generators semi-simple?

Problem 9. Given the partial differential equation

∂2u

∂x∂t
= f(u)

where f : R→ R is a smooth function. Find the condition that

V = a(x, t, u)
∂

∂x
+ b(x, t, u)

∂

∂t
+ c(x, t, u)

∂

∂u

is a symmetry vector field of the partial differential equation. Start with
the corresponding vertical vector field

Vv = (−a(x, t, u)ux − b(x, t, u)ut + c(x, t, u))
∂

∂u

and calculate first the prolongation. Utilize the differential consequencies
which follow from the partial differential equations

uxt − f(u) = 0, uxxt −
df

du
ux = 0, uxtt −

df

du
ut = 0.

Problem 10. Consider the n-dimensional smooth manifold M = Rn with
coordinates (x1, . . . , xn) and an arbitrary smooth first order differential
equaion on M

F (x1, . . . , xn, ∂u/∂x1, . . . , ∂u/∂xn, u) = 0.

Find the symmetry vector fields (sometimes called the infinitesimal sym-
metries) of this first order partial differential equation. Consider the cotan-
genet bundle T ∗(M) over the manifold M with coordinates

(x1, . . . , xn, p1, . . . , pn)
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and construct the product manifold T ∗(M)×R. Then T ∗(M) has a canon-
ical differential one-form

n∑
j=1

pjdxj

which provides the contact differential one-form

α = du−
n∑
j=1

pjdxj

on T ∗(M)×R. The solutions of the partial differential equation are surfaces
in T ∗(M)× R

F (x1, . . . , xn, p1, . . . , pn, u) = 0

which annul the differential one-form α. We construct the closed ideal I
defined by

F (x1, . . . , xn, p1, . . . , pn, u)

α = du−
n∑
j=1

pjdxj

dF =
n∑
j=1

(
∂F

∂xj
dxj +

∂F

∂pj
dpj

)
+
∂F

∂u
du

dα =
n∑
j=1

dxj ∧ dpj .

The surfaces in T ∗(M)× R which annul I will be the solutions of the first
order partial differential equation. Let

V (x1, . . . , xn, p1, . . . , pn, u) =
n∑
j=1

Vxj

∂

∂xj
+

n∑
j=1

Vpj

∂

∂pj
+ Vu

∂

∂u

be a smooth vector field. Let LV denote the Lie derivative. Then the
conditions for V to be a symmetry vector field are

LV F = gF

LV α= λα+ ηdF +

 n∑
j=1

(Ajdxj +Bjdpj)

F.

Here λ, η, Aj , Bj are smooth functions of x1, . . . , xn, p1, . . . , pn and u on
T ∗(Rn) × R, where g, Aj , Bj must be nonsingular in a neighbourhood of
F = 0. Find V .
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Integration

Problem 1. Let α(t) = (x(t), y(t)) be a positive oriented simple closed
curve, i.e. x(b) = x(a), y(b) = y(a). Show that

A = −
∫ b

a

y(t)x′(t)dt =
∫ b

a

x(t)y′(t)dt =
1
2

∫ b

a

(x(t)y′(t)− y(t)x′(t))dt .

Problem 2. Any SU(2) matrix A can be written as (x0, x1, x2, x3 ∈ R)

A =
(
x0 − ix3 −ix1 − x2

x2 − ix1 x0 + ix3

)
, x2

0 + x2
1 + x2

2 + x2
3 = 1 (1)

i.e., detA = 1. Using Euler angles α, β, γ the matrix can also be written as

A =
(

cos(β/2)ei(α+γ)/2 − sin(β/2)ei(α−γ)/2

sin(β/2)e−i(α−γ)/2 cos(β/2)e−i(α+γ)/2

)
. (2)

(i) Show that the invariant measure dg of SU(2) can be written as

dg =
1
π2
δ(x2

0 + x2
1 + x2

2 + x2
3 − 1)dx0dx1dx2dx3

where δ is the Dirac delta function.
(ii) Show that dg is normalized, i.e.∫

dg = 1 .
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(iii) Using (1) and (2) find x1(α, β, γ), x2(α, β, γ), x3(α, β, γ). Find the
Jacobian determinant.
(iv) Using the results from (iii) show that the invariant measure can be
written as

1
16π2

sinβdαdβdγ .

Problem 3. Let M be a smooth, compact, and oriented n-manifold. Let
f : M → Rn+1 \ {0 } be a smooth map. The Kronecker characteristic is
given by the following integral

K(f) := (volSn)−1

∫
M

‖f(x)‖−(n+1) det
(
f(x),

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)
)
dx

where (x = (x1, x2, . . . , xn)) are local coordinates ofM and dx = dx1dx2 · · · dxn.
Express this integral in terms of differential forms.

Problem 4. Let C be the unit circle centered at the orign (0, 0). Calculate

1
2π

∮
C

PdQ−QdP
P 2 +Q2

where P (x, y) = −y, Q(x, y) = x.

Problem 5. Let Sn ⊂ Rn+1 be given by

Sn := { (x1, . . . , xn+1) : x2
1 + · · ·+ x2

n+1 = 1 } .

Show that the invariant normalized n-differential form on Sn is given by

ω =
1
2
π−n/2Γ

(n
2

) dx1 ∧ · · · ∧ dxn
|xn+1|

where Γ denotes the gamma function.

Problem 6. A volume differential form on a manifold M of dimension n
is an n-form ω such that ω(p) 6= 0 at each point p ∈M . Consider M = R3

(or an open set here) with coordiante system (x1, x,x3) with respect to the
usual right-handed orthonormal frame. Then the volume differential form
is defined as

ω = dx1 ∧ dx2 ∧ dx3

and hence any differential three-form can be written as

η = f(x1, x2, x3)dx1 ∧ dx2 ∧ dx3
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for some function f . The integral of η is (if it exists)∫
R3
η =

∫
R3
f(x1, x2, x3)dx1dx2dx3 .

(i) Express ω in terms of spherical coordinates (r, θ, φ) with r ≥ 0, 0 ≤ φ <
2π, 0 ≤ θ ≤ π

x1(r, θ, φ) = r sin θ cosφ, x2(r, θ, φ) = r sin θ sinφ, x3(r, θ, φ) = r cos θ .

(ii) Express ω in terms of prolate spherical coordinates (ξ, η, φ) (a > 0)

x1(ξ, η, φ) = a sinh ξ sin η cosφ
x2(ξ, η, φ) = a sinh ξ sin η sinφ
x3(ξ, η, φ) = a cosh ξ cos η .

Problem 7. Consider the differential 1-form

α =
x2dx1 − x1dx2

x2
1 + x2

2

defined on
U = R2 \ {(0, 0)} .

(i) Calculate dα.
(ii) Calculate ∮

α

using polar coordinates.



Chapter 10

Lie Groups and Lie
Algebras

Problem 1. Let Rij denote the generators of an SO(n) rotation in the
xi−xj plane of the n-dimensional Euclidean space. Give an n-dimensional
matrix representation of these generators and use it to derive the Lie algebra
so(n) of the compact Lie group SO(n).

Problem 2. The Lie group SL(2,C) consists all 2 × 2 matrices over C
with determinant equal to 1. The group is not compact. The maximal
compact subgroup of SL(2,C) is SU(2). Give a 2× 2 matrix A which is an
element of SL(2,C), but not an element of SU(2).

Problem 3. Consider the Lie group G = O(2, 1) and its Lie algebra
o(2, 1) = {K1,K2, L3}, where K1,K2 are Lorentz boosts and L3 and in-
finitesimal rotation. The maximal subalgebras of o(2, 1) are represented by
{K1,K2 +L3} and {L3}, nonmaximal subalgebras by {K1} and {K2 +L3}.
The two-dimensional subalgebra corresponds to the projective group of a
real line. The one-dimensional subalgebras correspond to the groups O(2),
O(1, 1) and the translations T (1), respectively. Find the o(2, 1) infinitesimal
generators.
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Problem 4. The group generator of the compact Lie group SU(2) can
be written as

J1 =
1
2

(
z1

∂

∂z2
+ z2

∂

∂z1

)
, J2 =

i

2

(
z2

∂

∂z1
− z1

∂

∂z2

)
, J3 =

1
2

(
z1

∂

∂z1
− z2

∂

∂z2

)
.

(i) Find
J+ = J1 + iJ2, J− = J1 − iJ2 .

(ii) Let j = 0, 1, 2, . . . and m = −j,−j + 1, . . . , 0, . . . , j. We define

ejm(z1, z2) =
1√

(j +m)!(j −m)!
zj+m1 zj−m2 .

Find
J+e

j
m(z1, z2), J−e

j
m(z1, z2), J3e

j
m(z1, z2)

(iii) Let

J2 = J2
1 + J2

2 + J2
3 ≡

1
2

(J+J− + J−J+) + J2
3 .

Find
J2ejm(z1, z2) .

Problem 5. Show that the operators

L+ = zz, L− = − ∂

∂z

∂

∂z

L3 = −1
2

(
z
∂

∂z
+ z

∂

∂z
+ 1
)
, L0 = −1

2

(
z
∂

∂z
− z ∂

∂z
+ 1
)
.

form a basis for the Lie algebra su(1, 1) under the commutator.

Problem 6. Consider the semi-simple Lie algebra s`(3,R). The dimen-
sion of s`(3,R) is 8. Show that the 8 differential operators

J1
3 = y2 ∂

∂y
+ xy

∂

∂x
− ny, J1

2 = x2 ∂

∂x
+ xy

∂

∂y
− nx,

J2
3 = −y ∂

∂x
, J2

1 = − ∂

∂x
, J3

1 = − ∂

∂y
, J3

2 = −x ∂
∂y
,

Jd = y
∂

∂y
+ 2x

∂

∂x
− n, J̃d = 2y

∂

∂y
+ x

∂

∂x
− n

where x, y ∈ R and n is a real number. Find all the Lie subalgebras.
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Miscellaneous

Problem 1. Show that the Burgers equation

∂u

∂t
= (1 + u)

∂u

∂x
+
∂2u

∂x2

can be derived from the metric tensor field

g =
(
u2

4
+ η2

)
dx⊗ dx+

(
η2u

2
+
u

4

(
u2

2
+
∂u

∂x

))
dx⊗ dt

+
(
η2u

2
+
u

4

(
u2

2
+
∂u

∂x

))
dt⊗ dx+

((
u2

4
+

1
2
∂u

∂x

)2

+
η2

4
u

)
dt⊗ dt

by setting the curvature R of g equal to 1. Here η is a real parameter.

Problem 2. Two systems of nonlinear differential equations that are
integrable by the inverse scattering method are said to be gauge equivalent
if the corresponding flat connections Uj , Vj , j = 1, 2, are defined in the
same fibre bundle and obtained from each other by a λ-independent gauge
transformation, i.e. if

U1 = gU2g
−1 +

∂g

∂x
g−1, V1 = gV2g

−1 +
∂g

∂t
g−1 (1)

where g(x, t) ∈ GL(n,R). We have

∂U1

∂t
− ∂V1

∂x
+ [U1, V1] = 0. (2)
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Show that
∂U2

∂t
− ∂V2

∂x
+ [U2, V2] = 0. (3)

Problem 3. Consider the nonlinear Schrödinger equation in one space
dimension

i
∂ψ

∂t
+
∂2ψ

∂x2
+ 2|ψ|2ψ = 0 (1)

and the Heisenberg ferromagnet equation in one space dimension

∂S
∂t

= S× ∂2S
∂x2

, S2 = 1 (2)

where S = (S1, S2, S3)T . Both equations are integrable by the inverse
scattering method. Both arise as the consistency condition of a system of
linear differential equations

∂Φ
∂t

= U(x, t, λ)Φ,
∂φ

∂x
= V (x, t, λ)Φ (3)

where λ is a complex parameter. The consistency conditions have the form

∂U

∂t
− ∂V

∂x
+ [U, V ] = 0 (4)

(i) Show that φ1 = gφ2.
(ii) Show that (1) and (2) are gauge equivalent.

Problem 4. The study of certain questions in the theory of SU(2) gauge
fields reduced to the construction of exact solutions of the following non-
linear system of partial differential equations

u

(
∂2u

∂y∂ȳ
+

∂2u

∂z∂z̄

)
− ∂u

∂y

∂u

∂ȳ
− ∂u

∂z

∂u

∂z̄
+
∂v

∂y

∂v̄

∂ȳ
+
∂v

∂z

∂v̄

∂z̄
= 0.

u

(
∂2v

∂y∂ȳ
+

∂2v

∂z∂z̄

)
− 2

(
∂v

∂y

∂u

∂ȳ
+
∂v

∂z

∂u

∂z̄

)
= 0

u

(
∂2v̄

∂ȳ∂y
+

∂2v̄

∂z̄∂z

)
− 2

(
∂v̄

∂ȳ

∂u

∂y
+
∂v̄

∂z̄

∂u

∂z

)
= 0, (1)

where u is a real function and v and v̄ are complex unknown functions of
the real variables x1, . . . , x4. The quantities y and z are complex variables
expressed in terms of x1, . . . , x4 by the formulas

√
2y := x1 + ix2,

√
2z := x3 − ix4 (2)
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and the bar over letters indicates the operation of complex conjugations.
(i) Show that a class of exact solutions of the system (1) can be constructed,
namely solutions for the linear system

∂v

∂y
− ∂u

∂z̄
= 0,

∂v

∂z
− ∂u

∂ȳ
= 0 (3)

where we assume that u, v, and v̄ are functions of the variables

r := (2yȳ)1/2 = (x2
1 + x2

2)1/2 (4)

and x3, i.e., for the stationary, axially symmetric case. (ii) Show that a
class of exact solutions of (1) can be given, where

u = u(w), v = v(w), v̄ = v̄(w) (5)

where w is a solution of the Laplace equation in complex notation

∂2u

∂y∂ȳ
+

∂2u

∂z∂z̄
= 0, (6)

and u, v and v̄ satisfy

u
d2u

dw2
−
(
du

dw

)2

+
dv

dw

dv̄

dw
= 0, u

d2v

dw2
− 2

dv

dw

du

dw
= 0. (7)

Hint. Let z = x+ iy, where x, y ∈ R. Then

∂

∂z
:=

1
2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
(8)

Problem 5. The spherically symmetric SU(2) Yang-Mills equations can
be written as

∂ϕ1

∂t
− ∂ϕ2

∂r
= −A0ϕ2 −A1ϕ1 (1a)

∂ϕ2

∂t
+
∂ϕ1

∂r
= −A1ϕ2 +A0ϕ1 (1b)

r2

(
∂A1

∂t
− ∂A0

∂r

)
= 1− (ϕ2

1 + ϕ2
2) (1c)

where r is the spatial radius-vector and t is the time. To find partial
solutions of these equations, two methods can be used. The first method is
the inverse scattering theory technique, where the [L,A]-pair is found, and
the second method is based on Bäcklund transformations.
(ii) Show that system (1) can be reduced to the classical Liouville equation,
and its general solution can be obtained for any gauge condition.



104 Problems and Solutions

Problem 6. We consider the Georgi-Glashow model with gauge group
SU(2) broken down to U(1) by Higgs triplets. The Lagrangian of the model
is

L := −1
4
F aµνF

µνa +
1
2
Dµφ

aDµφa − V (φ) (1)

where
F aµν := ∂µA

a
ν − ∂νAaµ + gεabcA

b
µA

c
ν (2)

Dµφa := ∂µφa + gεabcA
b
µφc (3)

and

V (φ) := −λ
4

(
φ2 − m2

λ

)2

. (4)

(i) Show that the equations of motion are

DνF
µνa = −gεabc(Dµφb)φc, DµD

µφa = (m2 − λφ2)φa. (5)

(ii) Show that the vacuum expectation value of the scalar field and Higgs
boson mass are

〈φ2〉 = F 2 =
m2

λ
(6)

and
MH =

√
2λF,

respectively. Mass of the gauge boson is Mw = gF .
(iii) Using the time-dependent t’ Hooft-Polyakov ansatz

Aa0(r, t) = 0, Aai (r, t) = −εainrn
1−K(r, t)

r2
, φa(r, t) =

1
g
ra
H(r, t)
r2

(7)
where rn = xn and r is the radial variable. Show that the equations of
motion (5) can be written as

r2

(
∂2

∂r2
− ∂2

∂t2

)
K = (K2 +H2 − 1) (8a)

r2

(
∂2

∂r2
− ∂2

∂t2

)
H = H

(
2K2 −m2r2 +

λH2

g2

)
. (8b)

(iv) Show that with

β :=
λ

g2
=

M2
H

2M2
w

and introducing the variables ξ := Mwr and τ := Mwt, system (8) becomes(
∂2

∂ξ2
− ∂2

∂τ2

)
K =

K(K2 +H2 − 1)
ξ2

(10a)
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(
∂2

∂ξ2
− ∂2

∂τ2

)
H =

H(2K2 + β(H2 − ξ2))
ξ2

. (10b)

(v) The total energy of the system E is given by

C(β) =
g2E

4πMw
=

∞∫
0

(
K2
τ +

H2
τ

2
+K2

ξ +
1
2

(
∂H

∂ξ
− H

ξ

)2

+
1

2ξ2
(K2 − 1)2 +

K2H2

ξ2
+

β

4ξ2
(H2 − ξ2)2

)
dξ.

(10)
As time-independent version of the ansatz (3) gives the ’t Hooft-Polyakov
monopole solution with winding number 1. Show that for finiteness of
energy the field variables should satisfy the following conditions

H → 0, K → 1 as ξ → 0 (11)

and
H → ξ, K → 0 as ξ →∞. (12)

The ’t Hooft-Polyakov monopole is more realistic than the Wu-Yang monopole;
it is non-singular and has finite energy.
(vi) Show that in the limit β → 0, known as the Prasad-Somerfeld limit,
we have the static solutions,

K(ξ) =
ξ

sinh ξ
, H(ξ) = ξ coth ξ − 1. (13)

Problem 7. Consider the Lorenz model

dx

dt
=−σx+ σy = V1(x, y, z)

dy

dt
=−xz + rx− y = V2(x, y, z)

dz

dt
= xy − bz = V3(x, y, z)

with the vector field

V = V1(x, y, z)
∂

∂x
+ V2(x, y, z)

∂

∂y
+ V3(x, y, z)

∂

∂z

(i) Find curlV .
(ii) Show that curl(curlV ) = 0.
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(iii) Since curl(curl(V )) = 0 we can find a smooth function φ such that

curlV = grad(φ) .

Find φ.

Problem 8. Consider the linear operators L and M defined by

Lψ(x, t, λ) :=
(
i
∂

∂x
+ U(x, t, λ)

)
ψ(x, t, λ)

Mψ(x, t, λ) :=
(
i
∂

∂t
+ V (x, t, λ)

)
ψ(x, t, λ) .

Find the condition on L and M such that [L,M ] = 0, where [ , ] denotes the
commutator. The potentials U(x, t, λ) and V (x, t, λ) are typicaly chosen as
elements of some semisimple Lie algebra.
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