
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321437389
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321437389
https://plusone.google.com/share?url=http://www.informit.com/title/9780321437389
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321437389
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321437389/Free-Sample-Chapter

Principles of Lean Software Development

Eliminate Waste
The three biggest wastes in software development are:

Extra Features
We need a process that allows us to develop just those 20 percent of the features that give 80
percent of the value.

Churn
If you have requirements churn, you are specifying too early.
If you have test and fix cycles, you are testing too late.

Crossing Boundaries
Organizational boundaries can increase costs by 25 percent or more. They create buffers that
slow down response time and interfere with communication.

Build Quality In
If you routinely find defects in your verification process, your process is defective.

Mistake-Proof Code with Test-Driven Development
Write executable specifications instead of requirements.

Stop Building Legacy Code
Legacy code is code that lacks automated unit and acceptance tests.

The Big Bang Is Obsolete
Use continuous integration and nested synchronization.

Create Knowledge
Planning is useful. Learning is essential.

Use the Scientific Method
Teach teams to establish hypotheses, conduct many rapid experiments, create concise docu-
mentation, and implement the best alternative.

Standards Exist to Be Challenged and Improved
Embody the current best known practices in standards that are always followed while actively
encouraging everyone to challenge and change the standards.

Predictable Performance Is Driven by Feedback
A predictable organization does not guess about the future and call it a plan; it develops the
capacity to rapidly respond to the future as it unfolds.

Defer Commitment
Abolish the idea that it is a good idea to start development with a complete specification.

Break Dependencies
System architecture should support the addition of any feature at any time.

Maintain Options
Think of code as an experiment—make it change-tolerant.

Schedule Irreversible Decisions at the Last Responsible Moment
Learn as much as possible before making irreversible decisions.

Deliver Fast
Lists and queues are buffers between organizations that slow things down.

Rapid Delivery, High Quality, and Low Cost Are Fully Compatible
Companies that compete on the basis of speed have a significant cost advantage,
deliver superior quality, and are more attuned to their customers’ needs.

Queuing Theory Applies to Development, Not Just Servers
Focusing on utilization creates traffic jams that actually reduce utilization.
Drive down cycle time with small batches and fewer things-in-process.

Limit Work to Capacity
Establish a reliable, repeatable velocity with iterative development.
Aggressively limit the size of lists and queues to your capacity to deliver.

Respect People
Engaged, thinking people provide the most sustainable competitive advantage.

Teams Thrive on Pride, Commitment, Trust, and Applause
What makes a team? Members are mutually committed to achieve a common goal.

Provide Effective Leadership
Effective teams have effective leaders who bring out the best in the team.

Respect Partners
Allegiance to the joint venture must never create a conflict of interest.

Optimize the Whole
Brilliant products emerge from a unique combination of opportunity and technology.

Focus on the Entire Value Stream
—from concept to cash.
—from customer request to deployed software.

Deliver a Complete Product
Develop a complete product, not just software.
Complete products are built by complete teams.

Measure UP
Measure process capability with cycle time.
Measure team performance with delivered business value.
Measure customer satisfaction with a net promoter score.

Praise for Implementing Lean Software Development

“This book offers a wealth of advice for any organization that wishes to succeed at the
software development game. It will help you to realize the value of adopting a product
mindset to software development to recognize the inherent wastage and risk in tradi-
tional software development practices. Mary has hit another one out of the park.”

—Scott Ambler, practice leader, Agile modeling

“This remarkable book combines practical advice, ready-to-use techniques, and a deep
understanding of why this is the right way to develop software. I have seen software
teams transformed by the ideas in this book.”

—Mike Cohn, author of Agile Estimating and Planning

“As a lean practitioner myself, I have loved and used their first book for years. When
this second book came out, I was delighted that it was even better. If you are interested
in how lean principles can be useful for software development organizations, this is the
book you are looking for. The Poppendiecks offer a beautiful blend of history, theory,
and practice.”

—Alan Shalloway, coauthor of Design Patterns Explained

“I’ve enjoyed reading the book very much. I feel it might even be better than the first
lean book by Tom and Mary, while that one was already exceptionally good! Mary espe-
cially has a lot of knowledge related to lean techniques in product development and
manufacturing. It’s rare that these techniques are actually translated to software. This is
something no other book does well (except their first book).”

—Bas Vodde

“The new book by Mary and Tom Poppendieck provides a well-written and comprehen-
sive introduction to lean principles and selected practices for software managers and
engineers. It illustrates the application of the values and practices with well-suited suc-
cess stories. I enjoyed reading it.”

—Roman Pichler

“In Implementing Lean Software Development, the Poppendiecks explore more deeply
the themes they introduced in Lean Software Development. They begin with a compel-
ling history of lean thinking, then move to key areas such as value, waste, and people.
Each chapter includes exercises to help you apply key points. If you want a better under-
standing of how lean ideas can work with software, this book is for you.”

—Bill Wake, independent consultant

This page intentionally left blank

Implementing Lean
Software Development

The Addison-Wesley Signature Series provides readers with

practical and authoritative information on the latest trends in modern

technology for computer professionals. The series is based on one simple

premise: Great books come from great authors. Books in the series are

personally chosen by expert advisors, world-class authors in their own

right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely

with authors to define topic coverage, book scope, critical content, and

overall uniqueness. The expert signatures also symbolize a promise to

our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley

Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

Implementing
Lean
Software
Development
From Concept to Cash

Mary and Tom Poppendieck

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

Screen Beans art is used with permission of A Bit Better Corporation. Screen Beans is a registered trademark of A
Bit Better Corporation.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse-
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is avail-
able through Safari Bookshelf. When you buy this book, you get free access to the online edition for
45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code
samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled
• Complete the brief registration form
• Enter the coupon code EDGG-GUQI-A1FM-GZI1-K7E3

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data
Poppendieck, Mary.
Implementing lean software development : from concept to cash / Mary Poppendieck, Tom Poppendieck.

 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-43738-1 (pbk. : alk. paper)
 1. Computer software—Development. 2. Production management. I. Poppendieck, Thomas David. II. Title.

 QA76.76.D47P674 2006
 005.1—dc22

2006019698

Copyright © 2007 Poppendieck LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-43738-1
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
Second printing, December 2006

http://www.awprofessional.com/safarienabled
http://www.awprofessional.com

To our parents:
John and Marge Brust

and
Elmer and Ruth Poppendieck

This page intentionally left blank

ix

Contents

Foreword by Jeff Sutherland . xvii

Foreword by Kent Beck . xx

Preface . xxiii

Chapter 1: History . 1

Interchangeable Parts . 1
Interchangeable People . 2
The Toyodas . 3
The Toyota Production System . 4

Taiichi Ohno . 5
Just-in-Time Flow . 5
Autonomation (Jidoka) . 5

Shigeo Shingo . 6
Nonstock Production . 6
Zero Inspection . 6

Just-in-Time . 7
Lean . 11

Lean Manufacturing / Lean Operations 11
Lean Supply Chain . 12
Lean Product Development . 13
Lean Software Development . 17

Try This . 17

Chapter 2: Principles . 19

Principles and Practices . 19

x CONTENTS

Software Development . 20
Software . 20
Development . 21

The Seven Principles of Lean Software Development 23
Principle 1: Eliminate Waste . 23

Myth: Early Specification Reduces Waste 24
Principle 2: Build Quality In . 25

Myth: The Job of Testing Is to Find Defects 28
Principle 3: Create Knowledge . 29

Myth: Predictions Create Predictability 31
Principle 4: Defer Commitment . 32

Myth: Planning Is Commitment . 33
Principle 5: Deliver Fast . 34

Myth: Haste Makes Waste . 35
Principle 6: Respect People . 36

Myth: There Is One Best Way . 37
Principle 7: Optimize the Whole . 38

Myth: Optimize By Decomposition . 40
Try This . 42

Chapter 3: Value . 43

Lean Solutions . 43
Google . 43
From Concept to Cash . 46

Concept . 46
Feasibility . 46
Pilot . 48
Cash . 49

Delighted Customers . 49
Deep Customer Understanding . 50
Focus on the Job . 51

The Customer-Focused Organization . 52
Leadership . 52

The Chief Engineer . 53
Leadership Team . 55
Shared Leadership . 56
Who’s Responsible? . 56

Complete Teams . 57

CONTENTS xi

Design for Operations . 58
Custom Development . 60

From Projects to Products . 60
IT—Business Collaboration . 62

Accountability . 64
Try This . 65

Chapter 4: Waste . 67

Write Less Code . 67
Zara . 67
Complexity . 69

Justify Every Feature . 70
Minimum Useful Feature Sets . 71
Don’t Automate Complexity . 72

The Seven Wastes . 73
Partially Done Work . 74
Extra Features . 75
Relearning . 76
Handoffs . 77
Task Switching . 78
Delays . 80
Defects . 81

Mapping the Value Stream . 83
Preparation . 83

Choose a Value Stream . 83
Choose When to Start and Stop the Timeline 84
Identify the Value Stream Owner . 84
Keep It Simple . 85

Examples . 85
Example 1 . 86
Example 2 . 86
Example 3 . 88
Example 4 . 89
Diagnosis . 91

Future Value Stream Maps . 92
Try This . 92

xii CONTENTS

Chapter 5: Speed . 95

Deliver Fast . 95
PatientKeeper . 95
Time: The Universal Currency . 98

Queuing Theory . 100
Little’s Law . 100
Variation and Utilization . 101
Reducing Cycle Time . 103

Even Out the Arrival of Work . 103
Minimize the Number of Things in Process 105
Minimize the Size of Things in Process 107
Establish a Regular Cadence . 108
Limit Work to Capacity . 110
Use Pull Scheduling . 112
Summary . 114

Try This . 114

Chapter 6: People . 117

A System of Management . 117
The Boeing 777 . 117
W. Edwards Deming . 120
Why Good Programs Fail . 124

Teams . 126
What Makes a Team? . 126
Expertise . 129
Leadership . 132
Responsibility-Based Planning and Control 133

The Visual Workspace . 136
Self-Directing Work . 137

Kanban . 138
Andon . 139
Dashboard . 140

Incentives . 141
Performance Evaluations . 141

Ranking . 142
Compensation . 143

Guideline No. 1: Make Sure the Promotion System
Is Unassailable . 143

CONTENTS xiii

Guideline No. 2: De-emphasize Annual Raises 144
Guideline No. 3: Reward Based on Span of Influence,
Not Span of Control . 144
Guideline No. 4: Find Better Motivators Than Money 145

Try This . 147

Chapter 7: Knowledge . 149

Creating Knowledge . 149
Rally . 149
What, Exactly, Is Your Problem? . 152
A Scientific Way of Thinking . 154
Keeping Track of What You Know . 155

The A3 report . 157
The Internet Age . 159

Just-in-Time Commitment . 159
Set-Based Design . 160

Example 1: Medical Device Interface Design 162
Example 2: Red-Eye Reduction . 162
Example 3: Pluggable Interfaces . 163
Why Isn’t This Waste? . 164

Refactoring . 164
Legacy Systems . 166

Problem Solving . 168
A Disciplined Approach . 169

1. Define the Problem . 169
2. Analyze the Situation . 169
3. Create a Hypothesis . 171
4. Perform Experiments . 171
5. Verify Results . 172
6. Follow Up/Standardize . 172

Kaizen Events . 173
Large Group Improvement Events 173

Try This . 175

Chapter 8: Quality . 177

Feedback . 177
The Polaris Program . 177
Release Planning . 179

xiv CONTENTS

Architecture . 182
Iterations . 183

Preparation . 185
Planning . 186
Implementation . 186
Assessment . 188
Variation: User Interface . 189

Discipline . 190
The Five S’s . 190
Standards . 193

Code Reviews . 194
Pairing . 195

Mistake-Proofing . 196
Automation . 197

Test-Driven Development . 198
Unit Tests (Also Called Programmer Tests) 200
Story Tests (Also Called Acceptance Tests) 200
Usability and Exploratory Testing . 201
Property Testing . 201

Configuration Management . 201
Continuous Integration . 202
Nested Synchronization . 203

Try This . 204

Chapter 9: Partners . 207

Synergy . 207
Emergency! . 207
Open Source . 209
Global Networks . 210
Outsourcing . 214

Infrastructure . 214
Transactions . 215
Development . 216

Contracts . 217
The T5 Agreement . 217
The PS 2000 Contract . 218
Relational Contracts . 219

Try This . 221

CONTENTS xv

Chapter 10: Journey . 223

Where Do You Want to Go? . 223
A Computer on Wheels . 224
A Long-Term Perspective . 225
Centered on People . 227

What Have We Learned? . 229
Six Sigma . 229

Process Leaders—Natural Work Team Leaders 229
Tools—Results . 229

Theory of Constraints . 230
Critical Chain . 232
Accommodations . 233

Hypothesis . 234
Training . 234
Thinking . 236
Measurement . 237

Cycle Time . 238
Financial Return . 240
Customer Satisfaction . 241

Roadmap . 242
Try This . 243

Optimize the Whole . 243
Respect People . 243
Deliver Fast . 244
Defer Commitment . 244
Create Knowledge . 245
Build Quality In . 245
Eliminate Waste . 246

Bibliography . 247

Index . 257

This page intentionally left blank

xvii

Foreword
Jeff Sutherland

I created the first Scrum in 1993 at Easel Corporation in Burlington, Massachu-
setts,1 in cooperation with our CEO, who bet his company on the team that
made the first Scrum work. In 1995, I began working with Ken Schwaber, who
formalized the process for worldwide deployment.2 In four companies since
Easel, I have used the self-organizing nature of Scrum to move from a Type A
Scrum (winning teams) to a Type B Scrum (winning product portfolios) to a
Type C Scrum (winning companies).

In 2000, I introduced Scrum to PatientKeeper, and this has proven to be an
excellent vehicle for lean development. Over the years we have shortened cycle
times to exactly what customers need: one week for critical items, one month
for minor enhancements, and three months for significant new products. The
three-month releases are accumulations of one-month Sprints, and every Sprint
is a release.

At PatientKeeper the entire company runs as a Scrum and inspects, adapts,
self-organizes, and changes every Monday when we have our MetaScrum meet-
ing.3 The Product Owner runs this meeting, and all company stakeholders are
present, including the CEO. Lean concepts are carefully examined here, and
Sprints are started, stopped, or changed only in this meeting. The whole com-
pany, including affected customers, can be reset in one afternoon with decisions
made during the weekly MetaScrum.

1. Sutherland, J., “Agile Development: Lessons Learned from the First Scrum,” Cutter
Agile Project Management Advisory Service: Executive Update, 2004, 5(20): pp. 1–4.

2. Schwaber, K., “Scrum Development Process,” in OOPSLA Business Object Design
and Implementation Workshop, J. Sutherland, et al., editors. 1997, Springer:
London.

3. Sutherland, J., “Future of Scrum: Parallel Pipelining of Sprints in Complex
Projects,” in AGILE 2005 Conference. 2005. Denver, Colorado: IEEE.

xviii FOREWORD

We have a chief Product Owner with a team that gets the Product Backlog
“ready.” We have a chief ScrumMaster, who runs a 15-minute daily Scrum of
Scrums. What did teams do yesterday, what will they do today, and what are
the impediments to delivery? We manage 45 releases of software per year into
large, mission-critical enterprises using these short meetings and using an auto-
mated system that tracks the state of concurrent Sprint backlogs. Dates are
committed to customers before the start of a Sprint, and thousands of Web
users and hundreds of physicians with PDAs go live at the end of every Sprint.
For PatientKeeper, concept (Product Backlog) to cash (product in production)
occurs in one-month intervals. We have had to eliminate waste everywhere—
before, during, and after the implementation process.

In 1993, lean product development was not well understood in any industry.
Scrum was the first concrete implementation of lean thinking to software devel-
opment that allowed organizations of all types and sizes to start up lean teams
in a couple of days using a standard pattern that was easily understood. What
was hard was explaining why and how to implement the pattern to generate
continuous quality and productivity improvement.

Today, the writing and courses from Mary and Tom Poppendieck provide a
proven set of principles that organizations can use to adapt tools, techniques,
and methods to their own specific unique contexts and capabilities. Now we
can explain how to use Scrum to lean out software development. In addition to
my company, PatientKeeper, I use the procedures and processes outlined in this
book to teach practitioners worldwide how to optimize Scrum.

Lean software development views all agile methods as valid, proven applica-
tions of lean thinking to software. It also goes beyond agile, providing a
broader perspective that enables agile methods to thrive. First, it looks along
the whole value chain, from concept to cash and tries to address all the waste
and delays that happen before and after the coders contribute their part. Sec-
ond, it establishes a management context to extend, nourish, and leverage agile
software practices. Third, it provides a proven set of principles that each orga-
nization can use to adapt tools, techniques, and methods to their own specific
unique contexts and capabilities.

Every chapter in this book illustrates a set of principles that can be imple-
mented to build more productive teams. If you want to be like Toyota, where
productivity is consistently four times that of its competitors and quality is
twelve times better, these practices are essential. If you execute well on the prin-
ciples in this book, resistance by your competition is futile, and winning in your
market is certain. The return on investment in practices outlined in this book
can be very high.

FOREWORD xix

To create the lean “secret sauce” for your company, we have found you must
systematically implement this accumulated lean wisdom. In short, you must
deeply understand the Japanese concepts of Muri, Mura, and Muda. Mary and
Tom unfold them as the seven lean principles and the seven wastes of software
development to help you easily understand how they work and know what to
do.

Muri relates to properly loading a system and Mura relates to never stressing
a person, system, or process. Yet many managers want to load developers at
110 percent. They desperately want to create a greater sense of “urgency” so
developers will “work harder.” They want to micromanage teams, which stifles
self-organization. These ill-conceived notions often introduce wait time, churn,
death marches, burnout, and failed projects.

When I ask technical managers whether they load the CPU on their laptop to
110 percent they laugh and say, “Of course not. My computer would stop run-
ning!” Yet by overloading teams, projects are often late, software is brittle and
hard to maintain, and things gradually get worse, not better. One needs to
understand that Toyota and Scrum use a pull system that avoids stress (Mura)
and eliminates bottlenecks (Muri). The developers take what they need off the
Product Backlog just in time. They choose only Product Backlog that is ready to
take into a Sprint, and they never take more than they can get done in a Sprint.
They go faster by surfacing impediments and working with management to
eliminate waste (Muda). By removing waste, they have less work to do. Produc-
tivity goes up, and they have time to deliver quality software and focus on
exactly what the customers need.

So by understanding loading (Muri) and avoiding stress (Mura) you shorten
cycle time. This leans out the environment causing impediments that create
waste (Muda) to be highly visible. When you eliminate these impediments, your
teams move faster, do more with less, increase quality, and move the product
right into the sweet spot for the customer.

I recommend you keep the Poppendiecks’ books on your desk and use them
regularly to help with systematic and continuous implementation of lean princi-
ples. Practice hard, and you will rapidly double productivity by using lean
development to do less by avoiding waste, and then double it again by working
smarter by eliminating impediments. By going four times faster in the right way,
your quality will improve by a factor of twelve like Toyota.

—Jeff Sutherland, Ph.D.
Chief Technology Officer, PatientKeeper

Certified ScrumMaster Trainer
Inventor of the Scrum Development Process

July 2006

xx

Foreword
Kent Beck

Software development is a chain with many links, and improving overall effec-
tiveness requires looking at the whole chain. This book is for people involved in
software development—not just programmers, but also managers, sponsors,
customers, testers, and designers. The principles presented here eventually
affect everyone connected to the development of software. This book speaks to
those of you who are ready to look at the big picture of development.

For ideas to have impact, they must be grounded in both theory and experi-
ence. By translating well-proven ideas from lean manufacturing, this book pre-
sents theory and practice and applies them to software development. Many of
the fundamental problems with manufacturing are also problems with software
development: dealing with uncertainty and change, continuously improving
processes, and delivering value to customers.

What does this book offer you? First, a wide variety of theories that provide
alternative ways of thinking about how software development can be
improved. Second, a set of stories about the application of these theories to real
projects. Third, provocative questions to help you apply the theories and the
lessons in the stories to your unique situation.

Mary is uniquely qualified to present this material. She experienced lean
manufacturing firsthand, helping rescue a plant from being shut down by trans-
forming its operations. She’s also experienced software development as a pro-
grammer and a manager. I once shared a seminar with Mary, and it was a treat
to see the force and confidence with which she presents her material. I can hear
that same direct voice in her writing here.

If you’ve read the Poppendiecks’ precursor book, Lean Software Develop-
ment, this book offers new guidance towards its implementation. It reiterates
the theory in the previous volume, but always with an eye towards applying the
ideas in real situations. The result is a readable and practical guide to ideas that
have the potential to help you transform your development.

FOREWORD xxi

This is a book for doers, doers who want their actions aligned with where
they can do the most good. If you are such a person, I recommend this book to
you as a source of ideas and energy for positive change.

—Kent Beck
Three Rivers Institute

July 2006

This page intentionally left blank

xxiii

Preface

The Sequel

Lean was an idea borrowed from the 1990s when we wrote the book Lean
Software Development: An Agile Toolkit in 2003. We had observed that break-
through ideas from manufacturing and logistics often take a decade or two
before they are adapted to provide suitable guidance for development efforts.
So we decided it was not too late to use well-proven lean concepts from the
1980s and 1990s to help us explain why agile methods are a very effective
approach to software development.

The strategy worked. The book Lean Software Development presents a set
of thinking tools based on lean thinking that leaders continue to find useful for
understanding agile software development. The book has been purchased by
many a developer who gave it to his or her manager to read, and many manag-
ers have distributed multiple copies of the book to colleagues in support of a
transition to lean/agile software development.

Meanwhile, something unexpected happened to lean. In the last couple of
years lean initiatives have experienced a resurgence in popularity. The word
lean was originally popularized in the early 1990s to characterize the Japanese
approach to automobile manufacturing.1 In recent years, Honda and Toyota
have been doing increasingly well in the North American auto market, while
Detroit automakers are restructuring. For example, Toyota’s profits rose from
more than $8 billion in the fiscal year ending March 31, 2003, to more than
$10 billion in 2004, $11 billion in 2005, and $12 billion in 2006. Many com-

1. James Womack, Daniel Jones, and Daniel Roos, The Machine That Changed the
World, Rawson Associates, 1990.

xxiv PREFACE

panies have taken a second look at lean to try to understand what’s behind such
steady and sustained success.

Lean initiatives seldom start in the software development or product devel-
opment area of a company, but over time, successful lean initiatives make their
way from manufacturing or logistics to development departments. However,
lean practices from manufacturing and other operational areas do not adapt
easily to a development environment, so lean initiatives have a tendency to stall
when they reach software development. While the underlying lean principles
remain valid, it is usually inappropriate to apply operational practices and mea-
surements to a development environment. When lean initiatives stall in soft-
ware development areas, many companies have discovered that the book Lean
Software Development gives them a good foundation for thinking about how
to modify their approach and adapt lean ideas to a development organization.

The benefits of lean and agile software development have become widely
known and appreciated in the last few years, and many organizations are
changing the way they develop software. We have traveled around the world
visiting organizations as they implement these new approaches, and we have
learned a lot from our interaction with people working hard to change the way
they develop software. As our knowledge has grown, so has the demand for
more information on implementing lean software development. We realized
that a new book would allow us to share what we’ve learned with many more
people than we can contact personally. Therefore we have summarized our
experiences in this book, Implementing Lean Software Development: From
Concept to Cash.

This book is not a cookbook for implementing lean software development.
Like our last book, it is a set of thinking tools about how to go about adapting
lean principles to your world. We start this book where the last book left off
and go deeper into the issues and problems that people encounter when trying
to implement lean and agile software development. You might consider this
book a sequel to Lean Software Development. Instead of repeating what is in
that book, we take a different perspective. We assume the reader is convinced
that lean software development is a good idea, and focus on the essential ele-
ments of a successful implementation. We look at key aspects of implementa-
tion and discuss what is important, what isn’t, and why. Our objective is to help
organizations get started down the path toward more effective software devel-
opment.

The first chapter of this book reviews the history of lean, and the second
chapter reviews the seven principles of lean software development presented in
Lean Software Development. These are followed by chapters on value, waste,
speed, people, knowledge, quality, partners, and the journey ahead. Each of

ACKNOWLEDGMENTS xxv

these eight chapters begins with a story that illustrates how one organization
dealt with the issue at hand. This is followed by a discussion of key topics we
have found to be important, along with short stories that illustrate the topic,
and answers to typical questions we often hear. Each chapter ends with a set of
exercises that helps you explore the topics more deeply.

Acknowledgments

We would like to thank everyone who has attended our talks and classes and
invited us into their companies, especially those who have shared experiences
and asked penetrating questions. In this book we share the knowledge that we
have gained from all of you.

Many thanks to Jeff Sutherland and Kent Beck for their kind forewords, and
thanks to our editor, Greg Doench, project editor, Tyrrell Albaugh, and espe-
cially our copy editor, Nancy Hendryx. Particular thanks goes to those who
have contributed ideas and stories to the book: Jill Aden, Brad Appleton, Ralph
Bohnet, Mike Cohn, Bent Jensen, Brian Marick, Clare Crawford-Mason, Ryan
Martens, Gerard Meszaros, Lynn Miller, Kent Schnaith, Ian Shimmings, Joel
Spolsky, Jeff Sutherland, Nancy Van Schooenderwoert, Bill Wake, Werner Wild,
and our friend and operations manager, who prefers to remain anonymous.

We thank everyone who read the first draft and contributed suggestions, par-
ticularly Glen Alleman, Brad Appleton, Daniel Brolund, Bob Corrick, Allan
Kelly, Kent Schnaith, Dave Simpson, Alan Shalloway, and Willem van den
Ende. We thank reviewers Yi Lv, Roman Pichler, Bill Wake, and especially Bas
Vodde for his extensive and insightful comments. A particularly heartfelt
thanks goes to Mike Cohn, who reviewed both drafts of the book, keeping up
with us under a tight deadline while he was very busy. His comments and sug-
gestions have truly helped make this a better book.

—Mary and Tom Poppendieck
July 2006

This page intentionally left blank

1

Chapter 1

History

Interchangeable Parts

Paris, France, July 1785. It was 18 months after the end of the Revolutionary
War in America, and four years before the start of the French Revolution. The
need for weapons was on everyone’s mind when Honoré Blanc invited high-
ranking military men and diplomats to his gunsmith shop in Paris. He had
taken apart 50 firing mechanisms (called “locks”) and placed the pieces in
boxes. The astonished visitors took random parts from the bins, assembled
them into locks, and added them to muskets. They found that the parts fit
together perfectly. For the first time it seemed possible to make guns out of
interchangeable parts.

Thomas Jefferson, a diplomat in Paris at the time, was at the demonstration.
The future United States president saw a way to address a big problem in his
fledgling country. The United States was facing a shortage of weapons to defend
itself and expand its boundaries. If interchangeable parts could be easily pro-
duced, then relatively unskilled workers could assemble a lot of guns at low
cost, a real boon to the start-up country that had neither the money to buy guns
nor the craftsmen to make them.

The challenge of creating a manufacturing process precise enough to make
interchangeable parts for guns was taken up by Eli Whitney, who had recently
patented the cotton gin. In 1798 Whitney was awarded a government contract
to make 10,000 guns in two years. Ten years and several cost overruns later he
finally delivered the guns, and even then the parts were not fully interchange-
able. Nevertheless, Whitney is considered a central figure in developing the
“American system of manufacture,” a manufacturing system in which semi-
skilled workers use machine tools and precise jigs to make standardized parts
that are then assembled into products.

During the 1800s the United States grew dramatically as an industrial power,
with much of the credit given to the new manufacturing system. Meanwhile in
Europe there was strong resistance to replacing craft production. In France,

2 CHAPTER 1 HISTORY

Honoré Blanc’s work was terminated by a government that feared losing its
control over manufacturing if unregulated workers could assemble a musket. In
England, the inventors of machines that automated both spinning and weaving
were attacked by angry crowds who feared losing their jobs. But in America,
labor was scarce and there were few craft traditions, so the new industrial
model of interchangeable parts took root and flourished.

Interchangeable People

Detroit, USA, January 1914. Henry Ford raised wages of workers from $2.40
for a nine-hour day to $5 for an eight-hour day as he began assembly line pro-
duction of the Model T. The press suggested that he was crazy, but it was a
shrewd move. Ford had taken more than 85 percent of the labor out of a car, so
he could well afford to double wages. He had already dropped the price of the
car dramatically. Now he drove up wages and shortened work hours to help
create a middle class with the time and money to buy automobiles.

It used to take more than 12 hours to assemble an automobile; now it took
about 90 minutes. What happened to all of the time? Ford managers applied
the ideas of efficiency expert Frederick Winslow Taylor as they designed the
production line jobs. Taylor believed that most fixed wage workers spent their
time trying to figure out how to work slowly, since being efficient brought no
extra pay and could threaten jobs. His approach was to divide the assembly line
work into very small steps, and time the workers to uncover the “one best way”
to do each step.

Work on the assembly line was boring, repetitive, and tightly controlled. The
workers were shown exactly how to do their job and told how much time they
had to complete it. They could be trained in ten minutes, and they could be
replaced in ten minutes. Like the interchangeable parts of a century earlier,
interchangeable workers were at the center of a new industrial model: mass
production.

High wages were supposed to make up for the lack of variety and autonomy,
and for a while they did. And for a while, things went very well for Ford. Sales
soared, and Ford owned the market. But after a while the Model T grew old
and an increasingly prosperous middle class wanted to trade in their old cars
for more stylish sedans. Ford was slow to respond, because his production sys-
tem was most efficient when making only one kind of car. Meanwhile at Gen-
eral Motors, Alfred P. Sloan had created an organization structured to produce
multiple models aimed at segmented markets. As the demand for variety and
complexity grew, Ford’s production system grew unwieldy.

THE TOYODAS 3

Also as time passed workers began to feel trapped in untenable working con-
ditions. They had become accustomed to a high standard of living and were
unable to find comparable salaries elsewhere. The widespread labor unrest in
the United States in the 1930s is often attributed to a system which held little
respect for workers and regarded them as interchangeable.

The Toyodas

Kariya, Japan, February 1927. Toyoda Automatic Loom Works held a work-
shop for textile engineers to showcase the company’s new loom. First the visi-
tors saw how Toyoda looms were manufactured with high precision tools, and
then they were taken on a tour of the experimental spinning and weaving facil-
ity where 520 of the Toyoda looms were in operation. The looms were a won-
der to behold; they ran at a blazingly fast 240 picks per minute and were
operated by only 20 weavers. Anticipating a law abolishing nighttime labor, the
machines were fully automatic and could run unattended all night. When a
shuttle flying across the loom was just about out of thread, a new shuttle
replaced it in a smooth, reliable exchange. If even one of the hundreds of warp
threads broke or the weft thread ran out, the loom immediately stopped and
signaled a weaver to fix the problem.

If you want to understand the Toyota1 Production System, it is important to
appreciate just how difficult it was to develop and manufacture the “perfect
loom.” Sakichi Toyoda built his first power loom in 1896 and invented an auto-
mated shuttle changing device in 1903. A test was set up to compare 50 Toyoda
shuttle changing looms with a similar number of simple power looms from
Europe. The results were disappointing. These early Toyoda looms were com-
plex, low precision machines that were balky and difficult to maintain.

Sakichi Toyoda recruited technically competent employees and hired an Ameri-
can engineer, Charles A. Francis, to bring the American system of manufacture to
his company. Francis redesigned the manufacturing equipment and built a
machine tool shop to produce it. He developed standard specifications, produced
standardized gauges and jigs, and reorganized the manufacturing line. At the same
time, Sakichi Toyoda designed wider all-iron looms, and by 1909 he had patented
a superior automated shuttle-change mechanism. Over the next decade, as war
distracted Europe and America, looms designed by Sakichi Toyoda sold very well.

1. The “d” in the Toyoda family name was changed to a “t” when the Toyota Motor
Company was established. The Japanese characters are similar, but Toyota takes
two less brush strokes than Toyoda.

4 CHAPTER 1 HISTORY

Although Sakichi Toyoda readily adopted high precision interchangeable
parts, the loom manufacturing business had no room for interchangeable peo-
ple. Automatic looms are complex, high precision machines, very sensitive to
changes in materials and a challenge to keep running smoothly. Thus, highly
skilled weavers were needed to set up and keep 25 or 30 machines running at
once. If running a loom required skill, the design and manufacture of auto-
mated looms was even more demanding. Sakichi Toyoda had a reputation for
hiring some of the most capable engineers being trained at Japanese universi-
ties. He kept his development team intact even as he started new companies,
and he depended on them to carry on research in loom design and manufacture.

In 1921 Sakichi Toyoda’s son Kiichiro joined his father’s company and
focused on advancing loom automation. In 1924 they jointly filed a patent for
an improved automatic shuttle-change mechanism. The research team also
developed methods to detect problems and stop the loom, so that looms could
run unattended at night. Kiichiro Toyoda oversaw the building and start-up of
a factory to produce the new looms, and set up 520 of them in the Toyoda
experimental weaving factory. After he proudly showed off these “perfect
looms,” orders for the automated looms poured in. Kiichiro used the profits to
start up an automotive business. He toured Detroit and spent years learning
how to build engines. Toyota’s first production car hit the market in 1936, but
manufacturing was soon interrupted by war.

The Toyota Production System

Koromo, Japan, October 1949. Passenger car production restrictions were
lifted in post-war Japan. In 1945, Kiichiro Toyoda had challenged his company
to “catch up with America,” but it was clear that Toyota could not catch up by
adopting America’s mass production model. Mass production meant making
thousands of identical parts to gain economies of scale, but materials were
scarce, orders were spotty, and variety was in demand. Economies of scale were
simply not available.

Kiichiro Toyoda’s vision was that all parts for assembly should arrive at the
assembly line “Just-in-Time” for their use. This was not to be accomplished by
warehousing parts; parts should be made just before they are needed. It took
time to make this vision a reality, but in 1962, a decade after Kiichiro Toyoda’s
death, his company adopted the Toyota Production System companywide.

THE TOYOTA PRODUCTION SYSTEM 5

Taiichi Ohno

Taiichi Ohno was a machine shop manager who responded to Kiichiro Toyoda’s
challenge and vision by developing what came to be known as the Toyota Pro-
duction System. He studied Ford’s production system and gained insight from the
way American supermarkets handled inventory. To this he added his knowledge
of spinning and weaving and the insights of the workers he supervised. It took
years of experimentation to gradually develop the Toyota Production System, a
process that Ohno considered never-ending. He spread the ideas across the com-
pany as he was given increasingly broad areas of responsibility.

In his book, Toyota Production System, 2 Ohno calls the Toyota Production
System “a system for the absolute elimination of waste.” He explains that the sys-
tem rests on two pillars: Just-in-Time flow and autonomation (also called Jidoka).

Just-in-Time Flow

It is important to note that Just-in-Time flow went completely against all con-
ventional wisdom of the time. Resistance to Ohno’s efforts was tremendous,
and he succeeded because he was backed by Eiji Toyoda, who held various
senior management positions in the company after his cousin Kiichiro left in
1950. Both Toyodas had brilliantly perceived that the game to be played was
not economies of scale, but conquering complexity. Economies of scale will
reduce costs about 15 percent to 25 percent per unit when volume doubles. But
costs go up by 20 percent to 35 percent every time variety doubles.3 Just-in-
Time flow drives out major contributors to the cost of variety. In fact, it is the
only industrial model we have that effectively manages complexity. 4

Autonomation (Jidoka)

Toyoda automated looms could operate without weavers present because the
looms detected when anything went wrong and shut down automatically.
Autonomation, or its Japanese name Jidoka, means that work is organized so
that the slightest abnormality is immediately detected, work stops, and the
cause of the problem is remedied before work resumes. Another name for this
critical concept, and one that is perhaps easier to remember, is “stop-the-line.”

2. This section is based on Taiichi Ohno’s book, Toyota Production System: Beyond
Large-Scale Production, Productivity Press, written in Japanese in 1978 and trans-
lated into English in 1988. It is an excellent book, very readable and highly recom-
mended even today.

3. George Stalk, “Time—The Next Source of Competitive Advantage,” Harvard Busi-
ness Review, July 1988.

4. See “Lean or Six Sigma,” by Freddy Balle and Michael Balle, available at
www.lean.org/library/leanorsigma.pdf.

http://www.lean.org/library/leanorsigma.pdf

6 CHAPTER 1 HISTORY

Ohno called autonomation “automation with a human touch.” He pointed
out how the related word “autonomic” brings to mind another way to look at
this concept. Our bodies have an autonomic nervous system that governs
reflexes such as breathing, heartbeat, and digestion. If we touch something hot,
our autonomic nerves cause us to withdraw our hand without waiting for the
brain to send a message. Autonomation means the organization has reflexes in
place that will respond instantly and correctly to events without having to go to
the brain for instructions.5

Shigeo Shingo

Shigeo Shingo was a consultant who helped Ohno implement the Toyota Pro-
duction System at Toyota, and later helped companies around the world under-
stand and implement the system. Those of us who implemented Just-in-Time
manufacturing in the early ’80s fondly remember the “Green Book,”6 the first
book on Just-in-Time published in English. It was not a good translation, and
the material is heavy and technical, but it is a stunningly insightful book.

Shingo covers two major themes in the book: nonstock production and zero
inspection. A careful look shows that these are actually the engineering equiva-
lent of Ohno’s pillars of the Toyota Production System.

Nonstock Production

Just-in-Time flow means eliminating the stockpiles of in-process inventory that
used to be made in the name of economies of scale. The focus is on making
everything in small batches, and in order to do this, it is necessary to be able to
changeover a machine from making one part to making a different part very
quickly. In software development, one way to look at set-up time is to consider
the time it takes to deploy software. Some organizations take weeks and
months to deploy new software, and because of this they put as many features
into a release as possible. This gives them a large batch of testing, training, and
integration work to do for each release. On the other hand, I expect the antivi-
rus software on my computer to be updated with a well-tested release within
hours after a new threat is discovered. The change will be small, so integration
and training are generally not a concern.

Zero Inspection

The idea behind autonomation is that a system must be designed to be mistake-
proof. There should not be someone looking for a machine to break or testing

5. Taiichi Ohno, Ibid., p. 46.
6. Shigeo Shingo, Study of ‘Toyota’ Production System, Productivity Press, 1981.

JUST-IN-TIME 7

product to see if it is good. A properly mistake-proofed system will not need
inspection. My video cable is an example of mistake-proofing. I can’t plug a
monitor cable into a computer or video projector upside down because the
cable and plug are keyed. So I don’t need someone to inspect that I plugged the
cable in correctly, because it’s impossible to get it wrong. Mistake-proofing
assumes that any mistake that can be made will eventually be made, so take the
time at the start to make the mistake impossible.

Just-in-Time

The Toyota Production System was largely ignored, even in Japan, until the oil
crisis of 1973, because companies were growing quickly and they could sell
everything they made. But the economic slowdown triggered by the oil crisis
sorted out excellent companies from mediocre ones, and Toyota emerged from
the crisis quickly. The Toyota Production System was studied by other Japanese
companies and many of its features were adopted. Within a decade America
and Europe began to feel serious competition from Japan. For example, I
(Mary) was working in a video cassette plant in the early ’80s when Japanese
competitors entered the market with dramatically low pricing. Investigation
showed that the Japanese companies were using a new approach called Just-in-
Time, so my plant studied and adopted Just-in-Time to remain competitive.

The picture that we used at our plant to depict Just-in-Time manufacturing is
shown in Figure 1.1.

Figure 1.1 Lower inventory to surface problems

8 CHAPTER 1 HISTORY

Inventory is the water level in a stream, and when the water level is high, a
lot of big rocks lurking under the water are hidden. If you lower the water level,
the big rocks begin to surface. At that point, you have to clear the rock out of
the way, or your boat will crash into them. As the big rocks are removed, you
can lower inventory level some more, find more rocks, clear them out of the
stream, and keep on going until there are just pebbles left.

Why not just keep the inventory high and ignore the rocks? Well, the rocks
are things like defects that creep into the product without being detected, pro-
cesses that drift out of control, finished goods that people aren’t going to buy
before the shelf life expires, an inventory tracking system that keeps on losing
track of inventory—things like that. The rocks are hidden waste that is costing
you a lot of money—you just don’t know it unless you lower the inventory
level.

A key lesson from our Just-in-Time initiative was that we had to stop trying
to maximize local efficiencies. We had a lot of expensive machines, so we
thought we should run them each at maximum productivity. But that only
increased our inventory, because a pile of inventory built up at the input to each
machine to keep it running, and at the output from each machine as it merrily
produced product that had nowhere to go. When we implemented Just-in-Time,
the piles of inventory disappeared, and we were surprised to discover that the
overall performance of the plant actually increased when we did not try to run
our machines at maximum utilization (see Figure 1.2).

Figure 1.2 Stop trying to maximize local efficiencies.

JUST-IN-TIME 9

Stop-the-Line and Safety Consciousness
One Just-in-Time practice that was easy to adopt was a stop-the-line culture.
Our video tape plant made tape out of some rather volatile materials, so we had
an aggressive safety program in place. Through our safety program we already
knew that it was important to investigate even the smallest accident, because
small accidents will eventually turn into big accidents if they are ignored.

The book Managing the Unexpected 7 by Weick and Sutcliffe shows that
organizations like our plant create an environment where people pay
attention to safety by maintaining a state of mindfulness. According to the
authors, mindfulness has five characteristics:

1. Preoccupation with Failure
We spent a lot of time thinking about what could go wrong and being
prepared.

2. Reluctance to Simplify
We had a large, complex plant, so safety was a large, complex issue.

3. Sensitivity to Operations
Every manager in the plant was expected to spend time working on the
line.

4. Commitment to Learn from Mistakes
Even the smallest incident was investigated to determine how to prevent it
from ever happening again.

5. Deference to Expertise
Every manager knew that the people doing the work were the ones who
really understood how the plant worked.

It was a small step to turn our safety culture into a stop-the-line culture. We
added to our preoccupation with accidents a preoccupation with defects.
Every step of every operation was mistake-proofed as we focused on
eliminating the need for after-the-fact inspection. Whenever a defect
occurred, the work team stopped producing product and looked for the root
cause of the problem. If defective material made it through a process
undetected, we studied the process to find out how to keep that from
happening again. When I say “we” I refer to our production workers, because
they were the ones who designed the process in the first place.

—Mary Poppendieck

7. Karl E. Weick and Kathleen M. Sutcliffe, Managing the Unexpected: Assuring High
Performance in an Age of Complexity, Jossey-Bass, 2001.

10 CHAPTER 1 HISTORY

Figure 1.3 Coffee cups simulating inventory carts with kanban cards

When we decided to move our plant to Just-in-Time, there were few consult-
ants around to tell us what to do, so we had to figure it out ourselves. We cre-
ated a simulation by covering a huge conference table with a big sheet of brown
paper, then drawing the plant processes on the paper. We made “kanban cards”
by writing various inventory types on strips cut from index cards. We put an
inventory strip into a coffee cup and—viola!—that cup became a cart full of the
indicated inventory. (See Figure 1.3.) Then we printed a week’s packing orders
and simulated a pull system by attempting to fill the orders, using the cups and
the big sheet of paper like a game board. When a cup of inventory was packed,
the inventory strip (kanban card) was moved to the previous process, which
used it as a signal to make more of that material.8

With this manual simulation we showed the concept of a pull system to the
production managers, then the general supervisors, then the shift supervisors.
Finally, the shift supervisors ran through the simulation with every worker in
their area. Each work area was asked to figure out the details of how to make
this new pull system work in their environment. It took some months of
detailed preparation, but finally everything was ready. We held our collective
breath as we changed the whole plant over to a pull system in one weekend.
Computerized scheduling was turned off, its place taken by manual scheduling

8. This scheduling approach is called Kanban, and the token showing what each pro-
cess should make is called a kanban card.

A
sd

lk
jp

 1
23

a

A
sd

lk
jp

 1
23

a

qr
3c

d
12

3a

P
o

d6
3

12
3a

A
sd

lk
jp

 1
23

a

P
o

d6
3

12
3a

q r
3 c

d
1 2

3 a

LEAN 11

via kanban cards. Our Just-in-Time system was an immediate and smashing
success, largely because the details were designed by the workers, who therefore
knew how to iron out the small glitches and continually improve the process.

Lean

In 1990 the book The Machine That Changed the World 9 gave a new name to
what had previously been called Just-in-Time or the Toyota Production System.
From then on, Toyota’s approach to manufacturing would become known as
Lean Production. During the next few years, many companies attempted to
adopt Lean Production, but it proved remarkably difficult. Like all new indus-
trial models, resistance from those invested in the old model was fierce.

Many people found Lean counterintuitive and lacked a deep motivation to
change long established habits. Quite often companies implemented only part
of the system, perhaps trying Just-in-Time without its partner, stop-the-line.
They missed the point that, “The truly lean plant…transfers the maximum
number of tasks and responsibilities to those workers actually adding value to
the car on the line, and it has in place a system for detecting defects that quickly
traces every problem, once discovered, to its ultimate source.”10

Despite the challenges faced when implementing a counterintuitive new para-
digm, many lean initiatives have been immensely successful, creating truly lean
businesses, which have invariably flourished. Lean thinking has moved from man-
ufacturing to other operational areas as diverse as order processing, retail sales,
and aircraft maintenance. Lean principles have also been extended to the supply
chain, to product development, and to software development. See Figure 1.4.

Lean Manufacturing/Lean Operations

Today lean manufacturing sets the standard for discipline, efficiency, and effec-
tiveness. In fact, using lean principles in manufacturing often creates a signifi-
cant competitive advantage that can be surprisingly difficult to copy. For
example, Dell Computer’s make-to-order system routinely delivers a “custom-
built” computer in a few days, a feat which is not easily copied by competitors
unwilling to give up their distribution systems. Lean has moved into nonmanu-
facturing operations as well. Southwest Airlines focuses on transporting custom-

9. James Womack, Daniel Jones, and Daniel Roos, The Machine That Changed the
World, Rawson Associates, 1990.

10. Ibid., p. 99. Italics are from original text.

12 CHAPTER 1 HISTORY

ers directly from point A to point B in relatively small planes, while competitors
can’t easily abandon their large-batch oriented hub-and-spoke systems. A few
industries, such as rapid package delivery, have been structured based on lean
principles, and in those industries, only companies with lean operations can
survive.

Lean Supply Chain

When lean production practices reach the plant walls, they have to be extended
to suppliers, because mass production and lean manufacturing do not work
well together. Toyota realized this early, and helped its suppliers adopt the Toy-
ota Production System. Peter Drucker estimated that Toyota’s supplier network,
which Drucker calls a Keiretsu, gives it a 25 percent to 30 percent cost advan-
tage relative to its peers.11 When Toyota moved to the United States in the late
1980s, it established a similar supplier network. Remarkably, US automotive
suppliers often have lean sections of their plants dedicated to supplying Toyota,
while the rest of the plant has to be run the “traditional” way because other
automotive companies cannot deal with a lean supplier.12 A lean supply chain is

11. Peter Drucker, Management Challenges for the 21st Century, Harper Business,
2001, p. 33.

12. See Jeffrey Dyer, Collaborative Advantage: Winning Through Extended Enterprise
Supplier Networks, Oxford University Press, 2000.

Lean

Manufacturing

Toyota
Production

 System

Supply
Chain

(Virtual Integration)

Keiretsu

Product
Development

Software
Development

Toyota
Product Development

 System

Operations

Figure 1.4 The lean family tree

LEAN 13

also essential to Dell, since it assembles parts designed and manufactured by
other companies. Through “virtual integration,” Dell treats its partners as if
they are inside the company, exchanging information freely so that the entire
supply chain can remain lean.

In lean supply chains, companies have learned how to work across company
boundaries in a seamless manner, and individual companies understand that
their best interests are aligned with the best interests of the entire supply chain.
For organizations involved in developing software across company boundaries,
supply chain management provides a well-tested model of how separate compa-
nies might formulate and administer lean contractual relationships.

Lean Product Development

“The real differential between Toyota and other vehicle manufacturers is not
the Toyota Production System. It’s the Toyota Product Development System,”
says Kosaku Yamada, chief engineer for the Lexus ES 300.13 Product develop-
ment is quite different than operations, and techniques that are successful in
operations are often inappropriate for development work. Yet the landmark
book Product Development Performance14 by Clark and Fujimoto shows that
effective product development has much in common with lean manufacturing.
Table 1.1 summarizes the similarities described by Clark and Fujimoto.

If any company can extract the essence of the Toyota Production System and
properly apply it to product development, Toyota would be the top candidate. So
there was no surprise when it became apparent in the late 1990s that Toyota has
a unique and highly successful approach to product development. Toyota’s
approach is both counterintuitive and insightful. There is little attempt to use the
manufacturing-specific practices of the Toyota Production System in product
development, but the underlying principles clearly come from the same heritage.

The product coming out of a development process can be brilliant or mun-
dane. It might have an elegant design and hit the market exactly right, or it
might fall short of both customer and revenue expectations. Toyota products
tend to routinely fall in the first category. Observers attribute this to the leader-
ship of a chief engineer, responsible for the business success of the product, who
has both a keen grasp of what the market will value and the technical capability

13. Gary S. Vasilash, “Engaging the ES 300,” Automotive Design and Production, Sep-
tember, 2001.

14. Kim B. Clark and Takahiro Fujimoto, Product Development Performance: Strategy,
Organization, and Management in the World Auto Industry, Harvard Business
School Press, 1991.

14 CHAPTER 1 HISTORY

Table 1.1 Similarities between Lean Manufacturing and Effective Product
Development15

to oversee the systems design. In the book The Toyota Way,16 Jeffrey Liker
recounts the stories of the development of the Lexus and the Prius, emphasizing
how these breakthrough designs were brought to market in record time under
the leadership of two brilliant chief engineers.

Product development is a knowledge creation process. Toyota’s Product
Development System creates knowledge through broad exploration of design
spaces, hands-on experimentation with multiple prototypes, and regular inte-

Lean Manufacturing Lean Development

Frequent set-up changes Frequent product changes (software
releases)

Short manufacturing throughput
time

Short development time

Reduced work-in-process inventory
between manufacturing steps

Reduced information inventory
between development steps

Frequent transfer of small batches of
parts between manufacturing steps

Frequent transfer of preliminary infor-
mation between development steps

Reduced inventory requires slack
resources and more information flow
between steps

Reduced development time requires
slack resources and information flow
between stages

Adaptability to changes in volume,
product mix, and product design

Adaptability to changes in product
design, schedule, and cost targets

Broad task assignments for produc-
tion workers gives higher productivity

Broad task assignments for engineers
(developers) gives higher productivity

Focus on quick problem solving and
continuous process improvement

Focus on frequent incremental innova-
tion and continuous product and pro-
cess improvement

Simultaneous improvement in qual-
ity, delivery time, and manufacturing
productivity

Simultaneous improvement in quality,
development time, and development
productivity

15. Adapted from Kim B. Clark and Takahiro Fujimoto, Product Development Perfor-
mance, p. 172.

16. Jeffrey Liker, The Toyota Way: 14 Management Principles from the World’s Great-
est Manufacturer, McGraw Hill, 2004.

LEAN 15

gration meetings at which the emerging design is evaluated and decisions are
made based on as much detailed information as possible. The tacit knowledge
gained during both development and production is condensed into concise and
useful one-page summaries that effectively make the knowledge explicit. Gener-
ating and preserving knowledge for future use is the hallmark of the Toyota
Product Development System.

The National Center for Manufacturing Sciences (NCMS) conducted a multi-
year study of the Toyota Product Development System, and the findings are
summarized by Michael Kennedy in the book Product Development for the
Lean Enterprise.17 In this book Kennedy identifies four cornerstone elements of
the Toyota Product Development System (see Figure 1.5).

Figure 1.5 Cornerstone elements of the Toyota Product Development System18

17. Michael Kennedy, Product Development for the Lean Enterprise: Why Toyota’s
System Is Four Times More Productive and How You Can Implement It, Oaklea
Press, 2003.

18. This figure is from Michael Kennedy, Ibid., p. 120. Used with permission.

Knowledge-Based Engineering
(The Lean Development System)

Operational
Value Stream
to Customer

Expert
Engineering
Workforce

Responsibility-
Based Planning &

Control

System Designer
Entrepreneurial

Leadership

Set-Based
Concurrent
Engineering

An operational value stream emerges from the
interaction of four cornerstone elements.

16 CHAPTER 1 HISTORY

19. For more on set-based engineering, see Chapter 7.

The Toyota Product Development System

The Toyota Product Development System has four cornerstone elements:

1. System Design by an Entrepreneurial Leader
The chief engineer at Toyota owns responsibility for the business success of
the product. He is a very experienced engineer, fully capable of creating the
system-level design of the vehicle. But he is also responsible for developing
a deep understanding of the target market and creating a vehicle that will
delight the customers. The chief engineer creates a vision of the new prod-
uct which he transmits to the development team and refreshes frequently by
talking to the engineers making day-to-day decisions. He defends the vision
when necessary and arbitrates tradeoffs if disagreements arise. He sets the
schedule and modifies the process so everything is pulled together on time.

2. Expert Engineering Workforce
From the days of Sakichi Toyoda, the Toyoda and Toyota companies have
always had top notch technical people designing their technically sophisticated
products. It takes years for an engineer to really become an expert in a partic-
ular area, and at Toyota, engineers are not moved around or motivated to
move into management before they truly master their field. Managers are
teachers who have become masters in the area they supervise; they train new
engineers and move them from apprentice to journeyman to master engineer.

3. Responsibility-Based Planning and Control
The chief engineer sets the vehicle development schedule, which consists
of key synchronization points about two or three months apart. Engineers
know what is expected at the next synchronization point, and they deliver
the expected results without being tracked. If engineers need information to
do their job, they are expected to “pull” it from its source. Recently, Toyota
chief engineers have pioneered the practice of an “Oobeya” or large room
where team members may work, and the whole team meets regularly. The
Oobeya contains big visible charts to show issues and status.

4. Set-Based Concurrent Engineering
Set-based engineering means exploring multiple design spaces and con-
verging on an optimal solution by gradually narrowing options. What does
this mean in practice? It means being very careful not to make decisions
until they absolutely must be made and working hard to maintain options so
that decisions can be made as late as possible with the most amount of
information possible. The paradox of set-based design is that this approach
to creating knowledge builds redundancy into the development approach,
which might appear to be a waste. However, when looking at the whole sys-
tem, set-based design allows the development team to arrive at a more opti-
mal solution much faster than an approach that closes off options quickly for
the sake of being “decisive.”19

TRY THIS 17

Lean Software Development

Software development is a form of product development. In fact, much of the
software you use was probably purchased as a product. Software that is not
developed as a standalone product may be embedded in hardware, or it may be
the essence of a game or a search capability. Some software, including much
custom software, is developed as part of a business process. Customers don’t
buy the software we develop. They buy games or word processors or search
capability or a hardware device or a business process. In this sense, most useful
software is embedded in something larger than its code base.

It is the product, the activity, or the process in which software is embedded
that is the real product under development. The software development is just a
subset of the overall product development process. So in a very real sense, we
can call software development a subset of product development. And thus, if
we want to understand lean software development, we would do well to dis-
cover what constitutes excellent product development.

The Toyota Production System and the Toyota Product Development System
stem from the same underlying principles. The first step in implementing lean
software development is to understand these underlying principles, which will
be discussed in the next chapter.

Try This19

1. Go to the Toyota Web site, and view the videos on Jidoka (www.toy-
ota.co.jp/en/vision/production_system/video.html20). The videos on Just-in-
Time and the Toyota Production System are also worth viewing.

2. Do you have a tendency to work in batches? If you had to mail 100 letters,
how would you go about folding the letters, stuffing the envelopes, adding
address labels and stamps? Would you process one envelope at a time, or
would you perform each step in a batch? Why? Try timing both ways and
see which is faster. If you have children, ask them how they would
approach the problem.

19.

20. This was a newly published Web site as of April, 2006. The page can also be
reached by going to www.toyota.co.jp/en/ and following this sequence: Top Page >
Company > Vision & Philosophy > Toyota Production System > Video Introducing
the Toyota Production System.

http://www.toyota.co.jp/en/vision/production_system/video.html
http://www.toyota.co.jp/en/vision/production_system/video.html
http://www.toyota.co.jp/en/

18 CHAPTER 1 HISTORY

3. Table 1.1 lists similarities between manufacturing and product develop-
ment. Discuss this table with your team, one line at a time. Does it make
sense in your world to think of partially done work as inventory? Do the
other analogies make sense? Analogies are a double-edged sword. Where
might the analogies between manufacturing and product development lead
you astray?

4. Work-arounds: You have an organization of intelligent people. Do these
people make it their job to work around problems, or are problems consid-
ered a trigger to stop-the-line and find the root cause? Make a list of the
Top 10 problems that occurred in your group in the last week. List after
each problem the way it was resolved. Rank each problem on a scale of 0–
5. The rank of 5 means that you are confident that the cause of the problem
has been identified and eliminated and it is unlikely to occur again. The
rank of 0 means that there is no doubt the problem will crop up again.
What is your total score?

5. If people in your organization instinctively work around problems, they
have the wrong reflexes! Brainstorm what it will take to develop a culture
that does not tolerate abnormalities, whether it is a broken build or a mis-
communication, a failed installation or code that is not robust enough to
hold up in production. Have a “stop-the-line” committee investigate the
ideas and choose the best candidate to get started. In the one chosen area,
switch from a work-around culture to a stop-the-line culture. Be sure
reflexive stop-the-line habits are developed! Repeat.

This page intentionally left blank

257

3D modeling, 118
3M

example, 213–214
feasibility stage, 47
focus on the job, 52
handspreads, 47
samples of new products, 47

7 principles. See seven principles.
7 wastes. See seven wastes.
14 points of Deming, 122–123
80/20 rule, 25–26

A
A3 reports, 157–158
acceptance tests, 150, 186. See also story

tests.
accommodations, 233
accountability, 64–65
Aden, Jill, 195
adopting new technologies, 230–231
agile software development, tools for. See

Rally.
Airline Information Management System,

119
airport check-in desk example, 110
airport delays, example, 136–137
Aisin fire, 208–209, 211
AJAX, 150
Alias, 55
alignment, 69
allegiance, 214–216
Allen, Charles, 234
American auto industry, 2–3
American System of Manufacture, 1
analyzing the situation, 169
andon, 139–140
annual performance rating. See

performance evaluations.
applause, 210
Appleton, Brad, 202
approval process, 84, 103
architecture, software

definition, 20

divisible systems, 182
feedback and quality, 182

assemble-to-order, 34
assembly line. See mass production.
assessment, 188–189
asynchronous cadence, 109
Austin, Rob, 40
auto industry. See also specific industries.

America, 2–3
Japan, 4–7
used car sales, 41

Autodesk, 55
automating complexity, 72–73
automating routine tasks, 197–198, 227–

228, 231–232
autonomation (Jidoka), 5–6
availability of processes, 98

B
BAA airport management, 217–218,

220–221
backlog items, 185–186
balanced scorecards, 144
barriers

eliminating, 210
interdepartmental, 122

batch and queue approach, 88
Beck, Kent, xx
Bell, Gordon, 165
bell curve, and individual performance,

130
Bell Laboratories, 121
Benneton, 67
Beyond the Goal, 230
big visible charts, 140
billing system example, 167–168
Black Belts, 229
blame, 143
Blanc, Honoré, 1–2
Blenko, Marcia, 57
BMI, 39
BMI call center, outsourcing, 215
Boehm, Barry, 33

Index

258 INDEX

Boeing
777 project, 117–120, 140, 230
787 Dreamliner, 210
outsourcing, 216–217

Bohnet, Ralph, 167
bonuses as incentives, 145, 146
books and publications

Beyond the Goal, 230
Cheaper by the Dozen, 37
“Collaboration Rules,” 208
Conquering Complexity in Your Business, 67
“Do You Have Too Much IT?”, 69
Estimating and Planning, 232–233
Fit for Developing Software, 187
Hidden Value, 146
The Instructor, the Man and the Job, 234
The Knowledge-Creating Company, 156
Lean Software Development: An Agile

Toolkit, xxiii
Lean Solutions, 43
The Living Company, 141, 225
The Machine That Changed the World, 11
Managing the Unexpected, 9
Product Development for the Lean

Enterprise, 15
Product Development Performance, 13, 52
“Quality With a Name,” 20
Taxonomy of Problem Management

Activities, 20
Toyota Production System, 5
The Toyota Way, 14
The Ultimate Question, 241
“When IT’s Customers Are External,” 62–63
Who has the D?, 57
Working Effectively with Legacy Code, 167

bottleneck elimination, xix
bottlenecks (Muri), xix
boundaries, organizational

cascading queues, 113–114
cost of crossing, 39–40, 243
lean supply chains, 13
relational contracts, 221
teams, 214
value streams, 84

boundaries, system, 201
Brin, Sergey, 46
building quality in, 25–29
burn-down charts, 140
business case, 240
business intent, testing, 200
business process, 17, 20, 181

business success
constraints, 153
responsibility for, 13, 16, 53
rewards for, 145

C
cadence

asynchronous, example, 109
cycle time reduction, 108–109
establishing, 108–109

Cagan, Martin, 53
Canada, 231–232
capable development process, 98
capacity, limiting work to

cycle time reduction, 110–111
teams, 134

cascading queues, 113–114
cash stage, 49
cause. See root causes.
champions, 52–57, 133
change

agents, 229
management, 25
scope bloat, 25
scope control, 25
tolerance, 182
waste, 25

change for the better (Kaizen) events, 173–175
change requests, 62
chartering teams, 241
charts, 140
Cheaper by the Dozen, 37
chief architect, 133
chief engineer, 53–55
Christensen, Clayton, 226
Chrysler

NS minivan, 56
QFD (quality function deployment) analysis,

56
shared leadership, 56

churn
requirements, 24, 91
test-and-fix, 24
value streams, 91
waste, 24

Clark, Kim B., 52
Clark, Mike, 197
ClearStream Consulting, 167–168
Cleland-Huang, Jane, 182
CMM, 124
coaches, 133

INDEX 259

code
complexity, 69
source of waste, 74–75
technical debt, 150
undeployed, 75
undocumented, 75
unsynchronized, 74
untested, 74

code reviews, 194–195
coffee cup simulation, 10–11
Cohn, Mike, 232
collaboration. See partners; teams.
“Collaboration Rules,” 208
co-located teams, 211, 213
commitment. See also Just-in-Time commitment.

to change, 151
deferring, principle of, 32–33
iterative development, 186
planning as, 33

committers, 209–210
companies

life expectancy, 225–227
organizational boundaries

cascading queues, 113–114
cost of crossing, 39–40, 243
lean supply chains, 13
relational contracts, 221
teams, 214
value streams, 84

purpose of, 123
types of, 141

compensation
alternatives to money, 145–146
annual raises, 144
balanced scorecards, 144
bonuses, 145, 146
promotion systems, 143–144
reward basis, 144–145
span of influence versus span of control, 144–

145
competing on the basis of time, 34
competitive advantage

complexity, 69
customer satisfaction, 241
development speed, 35
expert workforce, 37
feedback, 177
lean principles, 11
management innovation, 124
outsourcing, 215–216
Toyota, 224
user interface, 189

complete teams, 57–60
complexity

automating, 72–73
competitive advantage, 69
cost of, 69–70
limiting features and functions, 70–71
minimum useful feature sets, 71–72
pricing structure, example, 72–73
prioritizing features, 71–72
root cause of waste, 67
software code, 69

concept stage, 46
concurrent development, 182
concurrent engineering, 16
condensing knowledge, 157
configuration management, 201–202
conflict of interest, 215
conquering complexity, 5
Conquering Complexity in Your Business, 67
constraints, 230–233
continuous improvement

cadence, 168
complexity reduction, 166
configuration management, 201
Deming’s 14 points, 122
development organization objectives, 239
at PatientKeeper, 98
principle of, 38
waste elimination, 166

continuous integration, 202–203
contractors, 218
contracts

BAA airport management, 217–218, 220–221
fixed price, 125
Norwegian Computer Society, 218–219
NTNU (Norwegian University of Science and

Technology), 218–219
PS 2000, 218–219
purpose of, 217
relational, 219–221
T5 Agreement, 217–218
time and materials, 218

Cook, Scott, 51, 55
costs

competing on the basis of time, 34
complexity, 24–25, 69–70
crossing organizational boundaries, 39–40,

243
economies of scale, 5
extra features, 24–25
joint ventures, 220
Keiretsu advantage, 12

260 INDEX

costs (continued):
lifecycle, 20, 70–71
refactoring, 166
of software maintenance, 20–21
standards, 193
support and warranty, 164
synergistic relationships, 221
target, 180, 218–219, 221

counterintuitive concepts
continuous integration, 202
Lean, 11
new paradigms, 11
object orientation, 195
set based development, 161
seven principles, 23

Crawford-Mason, Clare, 125
create knowledge, principle of, 29–32
Critical Chain, 232–233
cross-functional teams, 56, 64, 78, 122
Cunningham, Ward, 187
custom systems. See software development,

custom systems.
customer-focused organizations

champions, 52–57
chief engineer, 53–55
complete teams, 57–60
decision making, 57
designing for manufacturability, 58–59
designing for operations, 58–59
development goal, 55
facilitating information flow, 52–60
leadership, 52–57
leadership teams, 55
Murphy’s Law, 59–60
responsibility, 56–57
shared leadership, 56
What can go wrong, will go wrong, 59–60

customers
delighting, 49–52. See also Google.
focus on the job, 51–52
Kano model, 49–52
needs, 43
satisfaction, 49–52
satisfaction, as competitive advantage, 241
satisfaction, measurements, 241
service, example, 111–112
understanding, 50

cycle time
measurements, 238–240
PatientKeeper, 97–98
reducing

establishing a cadence, 108–109

evening out work arrival, 103–105
limiting work to capacity, 110–111
minimizing process elements, 105–107
minimizing process size, 107–108
pull scheduling, 112–114

speed, 98–99
utilization and, 102

D
Darwin Information Typing Architecture

(DITA), 131
dashboards, 136, 140–141
de Geus, Arie, 141, 225
decisions. See also commitment.

irreversible, 160
key, 162
making, 57

decomposition, optimizing by, 40–41
defects

discovering versus preventing, 27, 82. See
also test-driven development.

inspecting for, 27, 82
as management problems, 29
queues, 25–26
rates, 27, 34, 81, 85
seven wastes, 81–82
tracking systems, 27

defer commitment, principle of, 32–33
delays

mapping in value streams, 91
seven wastes, 80–81

delighters, 65
delighting customers, 49–52
deliver fast, principle of, 34–35. See also speed.
Dell Computer, 11–13
Deming, W. Edwards

14 points
overview, 122–123
point 12, 210
points 6 and 7, 210

causes of problems, 121, 123–124
choosing suppliers, 122, 123
Deming Cycle, 121
dependence on inspection, 122
fear, 122
inherent system variation, 121
interdepartmental barriers, 122
introduction, 120
leadership, 122
numerical quotas, 123
PDCA (plan, do, check, act), 121, 154–155
pride of workmanship, 123

INDEX 261

psychology, 122
purpose of a company, 123
scientific method, 121
slogans, exhortations, and targets, 123
synergy, 121
System of Profound Knowledge, 121
theory of knowledge, 121
training, 122, 123

Deming Cycle, 121
democracy principle, Google, 45
Denne, Mark, 182
dependencies, teams, 135
deployment

available to production, 87, 90
average time, 6, 86
concept-to-launch time, 99, 103
cycle time, 170, 238–239
delays, 91
incremental, 178–179
minimum useful feature sets, 71
obsolescence, 91
Polaris project, 178–179
QFD (quality function deployment) analysis,

56
undeployed code, 75

design
of code. See software development.
intent, testing, 200
for manufacturability, 58–59
for operations, 58–59
of products. See Toyota Product Development

System; Toyota Production System.
Design for Six Sigma (DFSS), 229
design/build teams, 118, 123, 133
deskilling, 228
deterministic school, 21
detractor, 65, 241
Detroit, 2, 4, 117
developing software. See software development.
development teams

3M, 56–60
capacity, 99
champions, 132
DFSS (Design for Six Sigma), 229
error prevention, 82
expertise, 129–130, 212
goal of, 240
incentives, 123
interaction designers, 189
joined at the hip, 55
maintenance duties, 79
measurements, 237

pride in workmanship, 210
process improvement, 31
pull scheduling, 112–114
rewards, 145
set-based concurrent engineering, 16
size, and technical debt, 153

DFSS (Design for Six Sigma), 229
differentiation, 50
discipline

automating routine tasks, 197–198
code reviews, 194–195
configuration management, 201–202
continuous integration, 202–203
five S’s, 190–192
merging subsystems, 203–204
mistake-proofing, 196–198
nested synchronization, 203–204
Open Source reviews, 196
organizing a workspace, 190–192
pairing, 195–196
shine (seiso), 191–192
sort (seiri), 191–192
standardize (seiketsu), 191–192
standards for software development, 193–196
sustain (shitsuke), 191–192
systematize (seiton), 191–192
test-driven development, 198–201

dispatching, 137–138
DITA (Darwin Information Typing

Architecture), 131
divisible systems architecture, 182
Do It Right the First Time, 165
do it right the first time, 29
“Do You Have Too Much IT?”, 69
doctor’s appointments, example, 104–105
documentation, 74, 77
domain, 82, 180, 183
domain models, 185–186
Drucker, Peter, 12–13, 220–221
dual ladder, 143
dysfunctional measurements, 238

E
Easel Corporation, xvii
economic companies, 141
economies of scale, 4, 68
education. See training.
80/20 rule, 25–26
eliminate waste, principle of, 23–25
eliminating barriers, 210
embedded software, 20, 163
empirical school, 21

262 INDEX

employees. See partners; people; teams.
engaged thinking people, 35, 37, 117, 237
enterprise software, 20
entrepreneurial leaders, 16, 37, 54
ERP (Enterprise Resource Planning), 231
estimates

as commitments, 232
granular level, 134
implementation effort, 185
stories, 183
tasks, 97

Estimating and Planning, 232–233
Evans, Eric, 186
Evans, Phillip, 208
Excel, 36
excellence principle, Google, 45
exchanging tests, 212
exhortations, 123
exhortations as incentives, 123
expediting projects, 98
experimentation, 171–172
expert technical workforce, 37
expertise, in teams, 129–131
exploratory tests, 201
extra features, as waste, 24–25, 75

F
FAA (Federal Aviation Administration), 119
face-to-face discussion, 78
fail fast, 118–119
fast delivery. See deliver fast; speed.
fear as incentive, 122
feasibility stage, 46–47
Feathers, Michael, 167
features

limiting, 70–71, 165
minimum useful sets, 71–72
prioritizing, 71–72
wastes, 24–25, 75
YAGNI (You Aren’t Going to Need It), 165

FedEx, 34
feedback, and quality

architecture, 182
competitive advantage, 177
iterative development, 183–190
Polaris program, 177–182
release planning, 179–181

financial results. See return on investment.
fire, Aisin plant, 208–209, 211
FIT (Framework for Integrated Tests), 75, 150,

187
Fit for Developing Software, 187

Fitnesse, 150
five S’s, 190–192
fixed price contracts, 125
fixtures, 187
focus on the job, 51–52
Ford, Henry, 2–3
Ford Motor Company, 2–3
14 points of Deming, 122–123
Fowler, Martin, 167
framework for integrated tests. See FIT

(Framework for Integrated Tests).
France, 1–2
Francis, Charles A., 3
frequent integration, 212
Fujimoto, Takahiro, 52
Fujitsu, 39
funding profiles, 61
future blindness, 226

G
games, 17, 48, 181
Gap, 68
Gates, Bill, 36
GE Workout, 173–175
genchi-genbutsu (go, see, confirm), 54
General Motors, 2–3
George, Michael, 67
Gilbreth, Frank, 37–38
Gilbreth, Lillian, 37–38
global networks, 210–214
global teams, 212
global work groups, 212
goal setting, 223
Goldratt, Eliyahu, 230, 232
Google

corporate philosophy, 44
customer satisfaction, 50
democracy principle, 45
excellence principle, 45
history of, 43–44
Keyhole, 45
maps, 45
page rank system, 48
product development principles, 44–45
product development timeline

cash stage, 49
concept stage, 46
feasibility stage, 46–47
pilot stage, 48
systems design stage, 47

queuing theory, 101–102
speed principle, 45

INDEX 263

startup, 46–47
value principle, 44
workforce utilization, 101–102

Google Earth, 45
Google Local, 45
Green Book, 6

H
hack-a-thon, 152
hacking versus speed, 35
Hamel, Gary, 117, 124–125
handoffs, 77–78
hangers, theft of, 125
hardening software, 150–151
haste makes waste, 35
Heathrow, 217
help desk, BMI, 39
help each other, 35, 127, 129, 183
Hidden Value, 146
history of lean software development

See Just-in-Time
See mass production
See Toyota Product Development System
See Toyota Production System

H&M, 67
Honda, xxiii, 55
Honeywell, 119–120
HTTPUnit, 150
hypothesis development, 171, 234–241

I
IBM AT cables, 196–198
incentives

applause, 210
blame, 143
individual performance, 142
performance evaluations, 141–143
rankings, 142–143

incremental development, dangers of, 164
incremental funding, 61
Inditex, 67, 69
individual performance as incentives, 142
industrial model, 2, 5, 11
infrastructure, outsourcing, 214–215
innovation

management, 124, 218
start of, 46
Web inspired, 233

inspections
dependence on, 122

discovering defects, 27, 82. See also test-
driven development.

preventing defects, 27, 82. See also test-
driven development.

purpose of, 27
types of, 27

The Instructor, the Man and the Job, 234
integration

continuous, 202–203
frequent, 212

interaction designers, 55, 130, 189
interchangeable parts, 1–2
interchangeable people, 2–3
interdepartmental barriers, 122
Internet age, and knowledge creation, 159
intrinsic rewards, 146
Intuit

complete teams, 57–58
founding of, 51
leadership teams, 55
limiting complexity, 70
QuickBooks, 70
Quicken

introduction of, 51
leadership teams, 55

Quicken Rental Property Management, 57–
58

inventory. See also Just-in-Time.
coffee cup simulation, 10–11
pull system, 10–11
rocks-and-stream metaphor, 7–8
as waste, 24

irreversible decisions, 160
ISO 9000, 124–125
IT departments

accountability, 64–65
business collaboration, 62–65
cost, 68
external customers, 62–63
fixing, 64
guide to the use of technology, 69
versus software companies, 62–65
we-they model, 63
workload example, 103–104

iterative development
assessment, 188–189
commitment, 186
example, 184
feedback and quality, 183–190
FIT (Framework for Integrated Tests), 187
implementation, 186–188
introduction, 183–184

264 INDEX

iterative development (continued):
overview, 183
planning, 186
preparation, 185–186
stories, 183–186
story-test driven development, 186
user interface variation, 189–190

J
Japan. See also Toyota; Toyota Product

Development System; Toyota Production
System.

auto industry, 4–7
textile industry, 3–4

Java, five S’s, 192
Jefferson, Thomas, 1
Jensen, Bent, 80
Jidoka (autonomation), 5–6
JIFFIE, 151
job grades, 143–144
Job Instruction (JI) module, 235–236
Job Methods (JM) module, 235–236
Job Relations (JR) module, 235–236
Johnson, Jim, 24
joined at the hip, 55
joint ventures, 220–221
Jones, Daniel, 43
journey

accommodations, 233
adopting new technologies, 230–231
automating routine tasks, 227–228, 231–232
centering on people, 227–228
corporate life expectancy, 225–227
Critical Chain, 232–233
developing a hypothesis, 234–241
ERP (Enterprise Resource Planning), 231
future blindness, 226
goal setting, 223
measurement, 237–241
push versus pull systems, 236–237
right to think, 237
road map, 242
schedules, 228
Six Sigma, 229–230
Theory of Constraints, 230–233
thinking, 236–237
tools versus results, 229–230
training, 234–236
the use of technology, 227–228

JR (Job Relations) module, 235–236
Jula, John, 54
junior people, 130–131, 144

JUnit, 150
Juran, J. M., 26
Just-in-Time. See also inventory.

autonomation (Jidoka), 5–6
definition, 4
Green Book, 6
Just-in-Time flow, 5
maximizing local efficiencies, 8
mistake-proof systems, 6–7
nonstock production, 6
rocks-and-stream metaphor, 7–8
stop-the-line culture, 5–6
zero inspection, 6–7

Just-in-Time commitment. See also commitment.
dangers of incremental development, 164
Do It Right the First Time, 165
example, 167–168
examples

medical device interface, 162
pluggable interfaces, 163
red-eye reduction, 162–163

introduction, 159–160
irreversible decisions, 160
key decisions, 162
legacy systems, 166–168
refactoring, 164–168
and scientific method, 154
set-based design, 160–164
and waste, 164
YAGNI (You Aren’t Going to Need It), 165

Just-in-Time manufacturing, 4–7

K
Kaizen (change for the better) events, 173–175
Kanban, 10–11, 136, 138–139
kanban cards, 10–11
Kano, Noriaki, 49–52
Kano model, 49–52
Keiretsu, 12–13
Kennedy, Michael, 15
key decisions, 162
Keyhole, 45
knowledge

creation
A3 reports, 157–158
condensing knowledge, 157
in the Internet age, 159
keeping notebooks, 156–157
lost knowledge, 155–159
principle of, 29–32
problem definition, 152–153
at Rally Software Development, 149–152

INDEX 265

technical debt, 150
tracking knowledge, 155–159

theory of, 121
knowledge-based engineering, 15
The Knowledge-Creating Company, 156

L
large group improvement, 173–175
large-batch software development, 71, 102
last responsible moment, 32, 161, 185
lava lamp, 140, 198
leadership

customer-focused organizations, 52–57
Deming’s points, 122
entrepreneurial, 16, 37, 54
Honda, 55
Intuit, 55
Open Source, 209–210
process, 132–133
Strong Project Leader, 54
teams, 55, 132–133
technical, 132–133
traveling team leaders, 213

lean
definition, xxiii
initiatives

first step, 153
initiating. See journey.
reasons for failure, 153

manufacturing
versus development, 14
overview, 11–12

principles, competitive advantage, 11. See
also seven principles.

production
See also lean, software development
See also mass production
See also Toyota Product Development

System
See also Toyota Production System
Dell Computer, 11–13
flowchart, 12
Keiretsu, 12–13
knowledge-based engineering, 15
manufacturing, 11–12
manufacturing versus development, 14
operations, 11–12
product development, 13–15
Southwest Airlines, 11–12
supply chain, 12–13
Toyota versus other vehicle manufacturers,

13

software development
history of

See lean, production
See mass production
See Toyota Product Development

System
See Toyota Production System

overview, 17
Lean Solutions, 43
learn-by-doing, 19
learning. See training.
legacy systems, 166–168
Lexus, 13
lifecycle costs, 20, 70–71
Liker, Jeffrey, 14
limiting work to capacity, 110–111, 134
Linux security breach, example, 207–208, 211
Little’s Law, 100–101
The Living Company, 141, 225
L.L. Bean, 34
local efficiencies, 8
looms, automated, 3–4
lost knowledge, 155–159

M
MacCormack, Alan, 30
MacGibbon, Simon, 62
The Machine That Changed the World, 11
maintenance

cost of, 20–21
staffing for, 79–80

management
functional, 133
innovation as competitive advantage, 124
people. See people, managing.
project, 133. See also project managers.

Managing the Unexpected, 9
manufacturing. See also Toyota Product

Development System; Toyota Production
System.

versus development, 14
Just-in-Time, 4–7
lean, 14
lean production, 11–12
mass production, 12–13
video cassettes, 59

mapping value streams. See value streams.
maps, Google, 45
Marick, Brian, 166, 199
market research, 56, 62–63
market share, 61, 241
Martens, Ryan, 149

266 INDEX

mass production
See also lean, production
See also Toyota Product Development System
See also Toyota Production System
American auto industry, 2–3
American System of Manufacture, 1
Ford Motor Company, 2–3
General Motors, 2–3
interchangeable parts, 1–2
interchangeable people, 2–3
Japanese auto industry, 4–7
Japanese textiles, 3–4
Just-in-Time manufacturing, 4–7
and lean manufacturing, 12–13

maximizing local efficiencies, 8
McAfee, Andrew, 69
McCabe Cyclomatic Complexity Index, 194–

195
Measure UP, 40–41
measurements

customer satisfaction, 241
cycle time, 238–240
decreasing number of, 40–41
dysfunctional, 238
improving the wrong ones, 237
Measure UP, 40–41
net promoter score, 241
optimize by decomposition, 40–41
raising levels, 40–41
reducing the number of, 238
ROI (return on investment), 240–241
Sloan, Alfred P., 40–41
Sloan’s metrics, 40–41
statistical process control, 120–122

medical device interface example, 162
Meszaros, Gerard, 167
MetaScrum meeting, xvii
metrics. See measurements.
Microsoft, respect for people, 36
Miller, Lynn, 55, 189
mindfulness, 9
mind-meld, 50
minimum useful feature sets, 71–72
Minoura, Teruyuki, 236
mistake-proofing, 6–7, 196–198
money, as incentive, 145–146
Muda (waste), xix
Mugridge, Rick, 187
Mulally, Alan, 118, 123, 140
multitasking, causing waste, 78–80
Mura (stress), xix
Muri (bottlenecks), xix

Murphy’s Law, 59–60
myths

finishing the code, 79
haste makes waste, 35
one best way, 37–38
optimize by decomposition, 40–41
planning is commitment, 33
predictable outcomes, 31–32
specifications reduce waste, 24–25
testing to find defects, 28–29

N
National Center for Manufacturing Sciences

(NCMS), 13
nested synchronization, 203–204
net promoter score, 241
New United Motor Manufacturing Incorporated

(NUMMI), 226
newspaper, online subscription, 50
no partial credit, 188
no secrets, 118
Nonaka, Ikujiro, 156
nonfunctional requirements, testing, 201
nonstock production, 6
non-value-added waste, 23, 83
Norwegian Computer Society, 218–219
Norwegian University of Science and

Technology (NTNU), 218–219
notebooks, keeping, 156–157
NS minivan, 56
numerical quotas, 123

O
Ohno, Taiichi

introduction, 5–6
planning, 33
value streams, 83
waste, 23–25, 75

on the job training, 234–236
one best way, 2, 37–38
one click build, 198
Oobeya, 213
Open Source

chief engineer approach, 54
leadership, 54
reviews, 196
software example, 209–210
Strong Project Leader, 54

operations, lean, 11–12
optimize by decomposition, 40–41
optimize the whole, principle of, 38– 41

INDEX 267

options-based development, 135
ordinary employees, 117, 227
O’Reilly, Charles, 146
organizational boundaries. See boundaries,

organizational.
organizing a workspace, 190–192
organizing work, 138–139
outsourcing

basic principles, 216–217
BMI call center, 215
Boeing, 216–217
competitive advantage, 215–216
conflict of interest, 215
development, 216–217
infrastructure, 214–215
introduction, 214
Procter & Gamble, 216–217
Toyota, 216–217
transactions, 215

overproduction, 25, 75
overtime, 110–111

P
Page, Larry, 46
page rank system, Google, 48
pairing, 195–196
Pareto analysis, 26
partially done work, 74–75
partners. See also teams.

committers, 209–210
contracts

BAA airport management, 217–218, 220–
221

Norwegian Computer Society, 218–219
NTNU (Norwegian University of Science

and Technology), 218–219
PS 2000, 218–219
purpose of, 217
relational, 219–221
T5 Agreement, 217–218

Deming point 12, 210
eliminating barriers, 210
equality of, 213
examples

3M, 213–214
Boeing 787 Dreamliner, 210
Linux security breach, 207–208, 211
Open Source software, 209–210
Procter & Gamble, 210

exchanging tests, 212
frequent integration, 212
global networks, 210–214

global teams, 212
global work groups, 212
joint ventures, 220–221
leaders, 209–210
Oobeya, 213
outsourcing

basic principles, 216–217
BMI call center, 215
Boeing, 216–217
development, 216–217
infrastructure, 214–215
introduction, 214
Procter & Gamble, 216–217
Toyota, 216–217
transactions, 215

proxies, 213
rotating people, 212
synergy, 207–217
traveling team leaders, 213
war room, 213

PatientKeeper
cycle time, 97–98
delivery speed, 95–98
development teams, 97
introduction of Scrum, xvii
limiting complexity, 71
limiting work to capacity, 134
product managers, 97
release schedules, 97

PBS documentary, 119
PDCA (plan, do, check, act), 121, 154–155
people, managing

andon, 139–140
under the bell curve, 130
Boeing 777 project, 117–120, 140
causes of low quality and productivity, 121
centering on people, 227–228
choosing suppliers, 122
compensation

alternatives to money, 145–146
annual raises, 144
balanced scorecards, 144
bonuses, 145, 146
promotion systems, 143–144
reward basis, 144–145
span of influence versus span of control,

144–145
dashboards, 136, 140–141
Deming Cycle, 121
Deming on, 120–123
dependence on inspection, 122
fear, 122

268 INDEX

people, managing (continued):
incentives

individual performance, 142
performance evaluations, 141–143
rankings, 142–143

inherent system variation, 121
interdepartmental barriers, 122
job grades, 143–144
junior people, 130–131, 144
kanban, 136, 138–139
leadership, 122
numerical quotas, 123
ordinary employees, 117, 227
organizing work, 138–139
PBS documentary, 119
PDCA (plan, do, check, act), 121, 154–155
pride of workmanship, 123
projects versus products, 62
psychology, 122
rotating assignments, 212
scientific method, 121
self-directing work, 137–141
sharing early and often, 118
slogans, exhortations, and targets, 123
stop-the-line culture, 139–140
synergy, 121
System of Profound Knowledge, 121
testing early, failing fast, 118–119
theory of knowledge, 121
training, 122, 123, 129
trust, 125
visible signals, 139–140
visual workspace, 136–141
wall charts, 140
why programs fail, 124–125
Working Together program, 118–120

performance evaluations as incentives, 141–143
personnel. See partners; people; teams.
PERT (Program Evaluation and Review

Technique), 179
Pfeffer, Jeffrey, 146
pilot stage, 48
P&L (profit and loss) model, 240
plan, do, check, act (PDCA), 121, 154–155
plan-driven methods, 33
planning

as commitment, 33
iterative development, 186
Taiichi Ohno on, 33

pluggable interfaces example, 163
Polaris program, 177–182
policies. See practices; principles.

Post-it Notes, 139
practices. See also principles.

definition, 19
for successful software development, 30

predictable outcomes, 31–32
Price, Jerry, 125
pricing structure, complexity example, 72–73
pride of workmanship, 123
principles. See also practices.

continuous improvement, 38
definition, 19
Google

democracy principle, 45
excellence principle, 45
product development principles, 44–45
speed principle, 45
value principle, 44

lean software development. See seven
principles.

learn-by-doing, 19
of outsourcing, 216–217
software development, 20–21
understand-before-doing, 19

prioritizing features, 71–72
Prius, 21
problem solving

analyzing the situation, 169
defining the problem, 152–153, 169
disciplined approach, 169–172
experimentation, 171–172
first rule, 168
follow up, 172
hypothesis generation, 171
introduction, 168
Kaizen (change for the better) events, 173–

175
large group improvement, 173–175
scientific method, 154, 169–172
standardization, 172
verifying results, 172

process cycle efficiency, 85–86, 90–92, 108
process leadership, 132–133
processes

availability, 98
average time, calculating, 100–101
capable, 98
minimizing elements, 105–107
minimizing size, 107–108
quality measurement, 99
robust, 177
too big, 107–108
too many things, 105–107

INDEX 269

Procter & Gamble, 51, 210, 216–217
product development, lean, 13–15
Product Development for the Lean Enterprise,

15
Product Development Performance, 13, 52
product managers, 133
product owners, 133
productivity, 28
products

concept stage, 46
development. See software development;

Toyota Product Development System;
Toyota Production System.

versus projects, 60–63
specifications

basis for acceptance tests, 150
waste reduction, 24–25

profit, definition, 152
profit and loss (P&L) model, 240
profitability, 61, 122, 241–242
Program Evaluation and Review Technique

(PERT), 179
programmer tests. See unit tests.
programmers. See partners; people; teams.
project managers, 42, 127, 133, 237. See also

management.
projects

average process time, calculating, 100–101
average speed, 99–100
cycle time, 98–99
dividing work into stories, 99
expediting, 98
measuring, 99
PatientKeeper delivery cycle, 95–98
process availability, 98
process capability, 98
versus products, 60–63
red flags, 98
setting upper limits, 99
setting upper size limits, 99
time delays, 98–99

promotion systems as incentives, 143–144
property tests, 201
Proulx, Tom, 55
proxies, 213
PS 2000 contract, 218–219
psychology, 122
pull scheduling, example, 112–113
pull systems, 10–11, 236–237
push systems, 236–237

Q
QA (Quality Assurance), 89, 96
QFD (quality function deployment) analysis, 56
quality

building in, principle of, 25–29
change tolerance, 182
discipline

automating routine tasks, 197–198
code reviews, 194–195
configuration management, 201–202
continuous integration, 202–203
five S’s, 190–192
merging subsystems, 203–204
mistake-proofing, 196–198
nested synchronization, 203–204
Open Source reviews, 196
organizing a workspace, 190–192
pairing, 195–196
shine (seiso), 191–192
sort (seiri), 191–192
standardize (seiketsu), 191–192
standards for software development, 193–

196
sustain (shitsuke), 191–192
systematize (seiton), 191–192
test-driven development, 198–201

divisible systems architecture, 182
iterative development

assessment, 188–189
commitment, 186
example, 184
FIT (Framework for Integrated Tests), 187
implementation, 186–188
introduction, 183–184
overview, 183
planning, 186
preparation, 185–186
stories, 183–186
story-test driven development, 186
user interface variation, 189–190

robust development processes, 177
role of feedback

architecture, 182
iterative development, 183–190
Polaris program, 177–182
release planning, 179–181

Quality Assurance (QA), 89, 96
quality function deployment (QFD) analysis, 56
“Quality With a Name,” 20
queuing theory. See also speed.

average process time, calculating, 100–101
cascading queues, 113–114

270 INDEX

queuing theory (continued):
cycle time reduction

establishing a cadence, 108–109
evening out work arrival, 103–105
limiting work to capacity, 110–111
minimizing process elements, 105–107
minimizing process size, 107–108
pull scheduling, 112–114

examples
airport check-in desk, 110
asynchronous cadence, 109
customer service, 111–112
doctor’s appointments, 104–105
IT workload, 103–104
pull scheduling, 112–113
release cycles, 107–108
a seven year list, 106–107
thrashing, 111–112

Google, 101–102
Little’s Law, 100–101
system stability, 101–102
utilization, 101–102
variation, 101–102

QuickBooks, 70
Quicken Rental Property Management, 57–58

R
raises as incentives, 144
Rally Software Development, 149–152
ranking people, 128, 142–143
Raymond, Eric, 54
red-eye reduction example, 162–163
refactoring, 164–168
Reichheld, Fred, 241
relational contracts, 219–221
relearning, 76
release cycles, example, 107–108
release planning, 179–181
remote teams, 212–213
repeatable reliable cycle time, 238
requirements

churn, 24, 91
nonfunctional, 182, 201
overloading, 25
SRS (Software Requirements Specifications),

75
stale, 74
test specs, 82
timing assumptions, 233
too early, 24, 91

respect for people, 3, 36–38
response time

by category, 84

at peak capacity, 101
queue length, 172
reliability, 98
testing, 201

responsibility, 56–57
responsibility-based planning and control, 133–

135
retrospectives, 236
return on investment (ROI), 41, 240–241
reversible decisions, 32
rewards. See also compensation; incentives.

basis for, 144–145
intrinsic, 146

right to think, 237
risk

contracting away, 218
custom software development, 181
partially done work, 24
refactoring, 164

river companies, 141
robust development processes, 177
rocks-and-stream metaphor, 7–8
Rogers, Paul, 57
root causes

failure of lean initiatives, 153
group improvement failure, 174
low quality and productivity, 121, 123–124
of problems, 121, 123–124
technical debt, 150
waste, 67

rotating people, 212

S
safety considerations, stop-the-line culture, 9
sales, engineering, development (SED) system,

55
Sapolsky, Harvey, 179
satisfaction, customer, 49–52, 241
schedules

inventory. See Just-in-Time.
Kanban, 10–11
PatientKeeper releases, 97
philosophy of, 228
slipping dates, 133–134
and teams, 134, 135

Schnaith, Kent, 192
Schwaber, Ken, xvii
scientific method

Deming Cycle, 121
Just-in-Time commitment, 154
managing people, 121
problem solving, 154, 169–172
steps of, 154

INDEX 271

stop-the-line culture, 154
Toyoda, Kiichiro, 154
Toyoda, Sakichi, 154
Toyota Production System, 154

scope bloat, 25
scope control, 25
Scrum

bottleneck elimination, xix
creation of, xvii–xviii
definition, 28
quality improvement, 28
stress avoidance, xix
Type A, xvii
Type B, xvii
Type C, xvii
waste elimination, xix
winning companies, xvii
winning product portfolio, xvii
winning teams, xvii

Scrum Product Owners, 133
ScrumMasters, 133
Sears, 34
SED (sales, engineering, development) system,

55
seiketsu (standardize), 191–192
seiri (sort), 191–192
seiso (shine), 191–192
seiton (systematize), 191–192
self-directing work, 137–141
self-organization, 17, 19, 97
set-based design, 160–164
seven principles

building quality in, 25–29
create knowledge, 29–32
defer commitment, 32–33
deliver fast, 34–35
eliminate waste, 23–25
myths

haste makes waste, 35
one best way, 37–38
optimize by decomposition, 40–41
planning is commitment, 33
predictable outcomes, 31–32
specifications reduce waste, 24–25
testing to find defects, 28–29

optimize the whole, 38– 41
respect people, 36–38

seven wastes. See also waste.
defects, 81–82
delays, 80–81
extra features, 75
handoffs, 77–78

partially done work, 74–75
relearning, 76
task switching, 78–80

seven year list, example, 106–107
shared leadership, 56
sharing early and often, 118
Shewhart Cycle, 121
Shimmings, Ian, 41
shine (seiso), 191–192
Shingo, Shigeo

introduction, 6–7
purpose of inspections, 82
seven wastes, 73
types of inspections, 27

ship builders, training, 234–236
shitsuke (sustain), 191–192
Shook, Jim, 35
Shore, Jim, 20
Sienna minivan, 53–55
Silicon Valley Product Group, 53
silos, 40, 131
simulation, kanban cards, 10
single point of responsibility, 65
Six Sigma, 124, 229–230
slack, 15, 88, 102, 112, 134
slipping dates, 133–134
Sloan, Alfred P., 2, 40–41
slogans as incentives, 123
small batches, 15, 74, 101–102, 196
Smalley, Art, 153
Smith, Levering, 178
Sobek, Durwood, 53
software

cost of maintenance, 20–21
development timeline, 20
difficult to change. See legacy systems.
embedded, definition, 20
enterprise, definition, 20
legacy, 166–168
structure of. See architecture, software.

software companies versus internal IT, 62–65
software development

capable processes, 98
concurrent, 182
defect queues, 25–26
detailed design, 29–30
deterministic school, 21
empirical school, 21
handling changes. See change, management.
large-batch approach, 71, 102
outsourcing, 216–217
plan-driven methods, 33

272 INDEX

software development (continued):
principles of. See principles; seven principles.
process quality measurement, 99
speed, competitive advantage, 35
speed versus hacking, 35
systematic learning, 31
waterfall model, 22, 29–30

software development, custom systems
accountability, 64–65
beginning/end criteria, 62
change requests, 62
funding profiles, 61
IT departments

accountability, 64–65
fixing, 64
versus software companies, 62–65
we-they model, 63

IT—business collaboration, 62–65
products versus projects, 60–63
software companies versus internal IT, 62–65
staffing, 62
we-they model, 63

Software Requirements Specifications (SRS), 75
sort (seiri), 191–192
Southwest Airlines, 11–12
span of influence versus span of control, 144–

145
specialists in teams, 130–131
specification-by-example, 200
specifications, 24–25, 150
speed. See also deliver fast; queuing theory.

average projects, 99
cycle time, 98–99
dividing work into stories, 99
expediting, 98
versus hacking, 35
measuring, 99
PatientKeeper delivery cycle, 95–98
principle of, 45
process availability, 98
process capability, 98
red flags, 98
setting upper limits, 99
time delays, 98–99
unique projects, 100

Spolsky, Joel, 36
Spring, 150
Sprints, at PatientKeeper, xvii
SRS (Software Requirements Specifications), 75
staffing. See partners; people; teams.
Stalk, George, 5, 35
standardization, problem solving, 172

standardize (seiketsu), 191–192
standards for software development, 193–196
statistical process control, 120–122
stealing hangers, 125
stop-the-line culture

andon, 139–140
definition, 5–6
safety considerations, 9
and scientific method, 154

stories
dividing work into, 99
iterative development, 183–186
no partial credit, 188

story tests, 200. See also acceptance tests.
story-test driven development, 186
strangling legacy code, 167
stress (Mura), xix
stress avoidance, xix
Strong Project Leader, 54
suggestion systems, 236
supervisors. See people, managing.
suppliers, choosing, 122, 123
supply chain, lean, 12–13
sustain (shitsuke), 191–192
Sutcliffe, Kathleen M., 9
Sutherland, Jeff, 71, 96
synchronization, nested, 203–204
synergy, 121, 207–217
System of Profound Knowledge, 121
system stability and queuing theory, 101–102
system variation, 121
systematic learning, 31
systematize (seiton), 191–192
systems design stage, 47

T
T5 Agreement, 217–218
tacit knowledge, 14, 31, 77–78, 156–157
Takeuchi, Hirotaka, 156
target costs, 180, 218–219, 221
targets as incentives, 123
task switching, 78–80
Taxonomy of Problem Management Activities,

20
Taylor, Frederick Winslow, 2, 37, 227
TDD (test-driven development). See test-driven

development.
teachers. See training.
teams. See also partners.

barriers to, 128
champions, 133
characteristics of, 126–127

INDEX 273

chartering, 241
coaches, 133
co-located, 211, 213
complete, 57–60
cross-functional, 56, 64, 78, 122
dependencies, 135
design/build, 118, 123, 133
development

3M, 56–60
capacity, 99
champions, 132
DFSS (Design for Six Sigma), 229
error prevention, 82
expertise, 129–130, 212
goal of, 240
incentives, 123
interaction designers, 189
joined at the hip, 55
maintenance duties, 79
measurements, 237
pride in workmanship, 210
process improvement, 31
pull scheduling, 112–114
rewards, 145
set-based concurrent engineering, 16
size, and technical debt, 153

expertise, 129–131
global, 212
Honda, 55
versus individual efforts, 126
Intuit, 55, 57–58
leadership, 55, 132–133
limiting work to capacity, 134
organizational boundaries, 214
product managers, 133
Quicken, 55
ranking systems, 128
remote, 212–213
responsibility-based planning and control,

133–135
schedules, 134, 135
Scrum Product Owners, 133
ScrumMasters, 133
silos, 131
slipping dates, 133–134
specialists, 130–131
variation, 135
winning, xvii
work breakdown structure, 135
versus workgroups, 126–127, 212

Teamwork is the key..., 56–57
technical debt, 150

technical leadership, 132–133
technical success, 145
technical writers, 75, 130–131
test early, fail fast, 118–119
test harness

acceptance tests, 202
benefits of, 82
legacy systems, 166–167
schedule, 27
unit tests, 200
usability tests, 201
user interface, 151

test-and-fix churn, 24
test-driven development (TDD)

exploratory tests, 201
productivity, 28
property tests, 201
purpose of, 199
story tests, 200
types of tests, 199
unit tests, 200
usability tests, 201

testing
3D modeling, 118
automating, 82
Boeing 777, 118–120
business intent, 200
design intent, 200
to find defects, 28–29. See also test-driven

development.
nonfunctional requirements, 201
testing early, failing fast, 118–119
too late, 88, 91
user interface, 150–151, 201
verification, role of, 29

testing early, failing fast, 118–119
tests

acceptance, 150, 186
acceptance-test-driven development, 186
exchanging, 212
programmer. See unit tests.
story-test driven development, 186
unit, 200
usability, 21

textile industry, Japan, 3–4
Theory of Constraints, 230–233
theory of knowledge, 121
thinking, 236–237
thinking tools, 21–22, 195
thrashing, example, 111–112
time, competing on the basis of, 34
timebox, 32, 181

274 INDEX

timelines. See value streams.
too many things in processes, 105–107
too much work. See limiting work to capacity.
tools versus results, 229–230
towering technical competence...., 129
Toyoda, Eiji, 5, 226
Toyoda, Kiichiro

incentives, 141
introduction, 4
scientific method, 154
tracking knowledge, 155

Toyoda, Sakichi
evolutionary thinking, 226–227
incentives, 141
introduction, 3
scientific method, 154
tracking knowledge, 155

Toyota
chief engineer, 53–55
competitive advantage, 224
fire at Aisin plant, 208–209, 211
genchi-genbutsu (go, see, confirm), 54
versus other vehicle manufacturers, 13
outsourcing, 216–217
problem definition, 152–153
product delivery deadlines, 161
profits, xxiii
responsibility, 56–57
responsibility-based planning and control,

133–135
set-based design, 161
Sienna minivan, 53–55
Smart Car initiative, 224–225
Teamwork is the key..., 56–57
towering technical competence...., 129
training new engineers, 129

Toyota Product Development System
See also Just-in-Time manufacturing
See also mass production
See also Toyota Production System
cornerstone elements, 16
entrepreneurial leadership, 16
expert engineering workforce, 16
respect for people, 36–37
responsibility-based planning and control, 16
set-based concurrent engineering, 16
software development philosophy, 21
study of, 15

Toyota Production System
See also Just-in-Time manufacturing
See also mass production
See also Toyota Product Development System

automated looms, 3
autonomation (Jidoka), 5–6
detecting abnormalities. See autonomation

(Jidoka); stop-the-line culture.
goals, 152–153
Japanese auto industry, 4–7
Just-in-Time flow, 4–5
overview, 4–7
push versus pull systems, 236–237
scientific method, 154
versus Six Sigma, 229–230
thinking, 236–237
value streams, 83

Toyota Production System, 5
The Toyota Way, 14
traceability, 75, 199
tracking knowledge, 155–159
tradeoffs, 41, 158, 241
training

Allen’s steps, 234–236
Deming’s points, 122, 123
on the job, 234–236
Job Instruction (JI) module, 235–236
Job Methods (JM) module, 235–236
Job Relations (JR) module, 235–236
new engineers, 129
ship builders, 234–236
TWI (Training Within Industry), 235–236
vocational education, 234–236

Training Within Industry (TWI), 235–236
transactions, outsourcing, 215
traveling team leaders, 213
trust, 125
Turner, Richard, 33
Type A Scrum, xvii
Type B Scrum, xvii
Type C Scrum, xvii

U
The Ultimate Question, 241
uncoded documentation, waste, 74
undeployed code, waste, 75
understand-before-doing, 19
undocumented code, waste, 75
unit tests, 200
United Airlines, 117–118
United Kingdom, 41, 193, 217
United States

3M tour, 213
Deming and, 121
doctor’s appointments, 104
invention of interchangeable parts, 1–3

INDEX 275

liens registry, 231
Toyota manufacturing, 216, 226
Toyota moves to, 12

unsynchronized code, waste, 74
untested code, waste, 74
unused documentation, waste, 77
US War Production Board, 235
usability tests, 201
used car sales, 41
user interface

competitive advantage, 189
iterative design, 189–190
testing, 150–151, 201
variation, 189–190

utilization
and cycle time, 102, 244
full, 88
Google workforce, 101–102
and queuing theory, 101–102
and variation, 101–114

V
value

customer-focused organizations
champions, 52–57
chief engineer, 53–55
complete teams, 57–60
decision making, 57
designing for manufacturability, 58–59
designing for operations, 58–59
development goal, 55
facilitating information flow, 52–60
leadership, 52–57
leadership teams, 55
Murphy’s Law, 59–60
responsibility, 56–57
shared leadership, 56
What can go wrong, will go wrong, 59–60

customers
delighting, 49–52. See also Google.
focus on the job, 51–52
Kano model, 49–52
needs, 43
satisfaction, 49–52
understanding, 50

value principle, 44
value streams

churn, 91
delays, 91
examples, 85–91
for future processes, 92
keeping it simple, 85

mapping, 83–84
owner identification, 84–85
preparation, 83–84
start/stop points, 84
waste diagnosis, 91

Van Schooenderwoert, Nancy, 27
variation

inherent in the system, 121
and queuing theory, 101–102
and utilization, 101–114

variation in teams, 135
verification, and long release cycles, 107–108
verifying results of problem solving, 172
video cassettes, manufacturing, 59
visible signals, 139–140
vision, 16
visual workspace, 136–141
“vital few and trivial many” rule, 26
vocational education, 234–236
voice of the customer, 53, 229
volunteers, 54, 208–210

W
waiting. See delays.
Wake, Bill, 165
wall charts, 140
war room, 213
waste. See also seven wastes.

80/20 rule, 25–26
anticipating, 76
biggest source of, 24–25
churn, 24
complexity and, 67, 69–73
diagnosing. See value streams.
elimination

principle of, 23–25
reducing by specification, 24–25
Taiichi Ohno on, 23–25

extra features, 24–25
inventory as, 24
Just-in-Time commitment, 164
lost knowledge, 76
Muda, xix
multitasking, 78–80
non-value-added, 23, 83
partially done software, 24
recognizing, 23. See also value streams.
requirements churn, 24
root cause, 67
test-and-fix churn, 24
uncoded documentation, 74
undeployed code, 75

276 INDEX

waste (continued):
undocumented code, 75
unsynchronized code, 74
untested code, 74
unused documentation, 77
“vital few and trivial many” rule, 26

waste (Muda), xix
waterfall development model, 22, 29–30
Weick, Karl E., 9
Welch, Jack, 173
we-they model, 63
What can go wrong, will go wrong, 59–60
“When IT’s Customers Are External,” 62–63
Whitney, Eli, 1
Who has the D?, 57
Wild, Werner, 159
winning companies, xvii
winning product portfolio, xvii
winning teams, xvii

Wolf, Bob, 208
Womack, James, 43
work breakdown structure, 135
workers. See partners; people; teams.
workgroups, 126–127, 212
Working Effectively With Legacy Code, 167
Working Together program, 118–120
Workout, 173–175
write less code, 29, 67–73

Y
YAGNI (You Aren’t Going to Need It), 165
Yamada, Kosaku, 13
Yokoya, Yuji, 53–55

Z
Zara, 67–68
zero inspection, 6–7

	Contents
	Foreword by Jeff Sutherland
	Foreword by Kent Beck
	Preface
	Chapter 1: History
	Interchangeable Parts
	Interchangeable People
	The Toyodas
	The Toyota Production System
	Taiichi Ohno
	Shigeo Shingo

	Just-in-Time
	Lean
	Lean Manufacturing / Lean Operations
	Lean Supply Chain
	Lean Product Development
	Lean Software Development

	Try This

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

