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Principles of Lean Software Development  

Eliminate Waste
The three biggest wastes in software development are:

Extra Features
We need a process that allows us to develop just those 20 percent of the features that give 80 
percent of the value.

Churn
If you have requirements churn, you are specifying too early. 
If you have test and fix cycles, you are testing too late.

Crossing Boundaries
Organizational boundaries can increase costs by 25 percent or more. They create buffers that 
slow down response time and interfere with communication.

Build Quality In 
If you routinely find defects in your verification process, your process is defective.

Mistake-Proof Code with Test-Driven Development
Write executable specifications instead of requirements.

Stop Building Legacy Code
Legacy code is code that lacks automated unit and acceptance tests.

The Big Bang Is Obsolete
Use continuous integration and nested synchronization.

Create Knowledge
Planning is useful. Learning is essential.

Use the Scientific Method
Teach teams to establish hypotheses, conduct many rapid experiments, create concise docu-
mentation, and implement the best alternative.   

Standards Exist to Be Challenged and Improved
Embody the current best known practices in standards that are always followed while actively 
encouraging everyone to challenge and change the standards.

Predictable Performance Is Driven by Feedback
A predictable organization does not guess about the future and call it a plan; it develops the 
capacity to rapidly respond to the future as it unfolds.



Defer Commitment
Abolish the idea that it is a good idea to start development with a complete specification.

Break Dependencies
System architecture should support the addition of any feature at any time.

Maintain Options
Think of code as an experiment—make it change-tolerant.

Schedule Irreversible Decisions at the Last Responsible Moment
Learn as much as possible before making irreversible decisions.

Deliver Fast
Lists and queues are buffers between organizations that slow things down.

Rapid Delivery, High Quality, and Low Cost Are Fully Compatible
Companies that compete on the basis of speed have a significant cost advantage, 
deliver superior quality, and are more attuned to their customers’ needs.

Queuing Theory Applies to Development, Not Just Servers
Focusing on utilization creates traffic jams that actually reduce utilization. 
Drive down cycle time with small batches and fewer things-in-process.

Limit Work to Capacity
Establish a reliable, repeatable velocity with iterative development. 
Aggressively limit the size of lists and queues to your capacity to deliver.

Respect People
Engaged, thinking people provide the most sustainable competitive advantage.

Teams Thrive on Pride, Commitment, Trust, and Applause
What makes a team? Members are mutually committed to achieve a common goal.

Provide Effective Leadership
Effective teams have effective leaders who bring out the best in the team.

Respect Partners
Allegiance to the joint venture must never create a conflict of interest. 

Optimize the Whole
Brilliant products emerge from a unique combination of opportunity and technology.

Focus on the Entire Value Stream
—from concept to cash.
—from customer request to deployed software.

Deliver a Complete Product
Develop a complete product, not just software.
Complete products are built by complete teams.

Measure UP
Measure process capability with cycle time.
Measure team performance with delivered business value.
Measure customer satisfaction with a net promoter score.



Praise for Implementing Lean Software Development

“This book offers a wealth of advice for any organization that wishes to succeed at the
software development game. It will help you to realize the value of adopting a product
mindset to software development to recognize the inherent wastage and risk in tradi-
tional software development practices. Mary has hit another one out of the park.”

—Scott Ambler, practice leader, Agile modeling

“This remarkable book combines practical advice, ready-to-use techniques, and a deep
understanding of why this is the right way to develop software. I have seen software
teams transformed by the ideas in this book.”

—Mike Cohn, author of Agile Estimating and Planning

“As a lean practitioner myself, I have loved and used their first book for years. When
this second book came out, I was delighted that it was even better. If you are interested
in how lean principles can be useful for software development organizations, this is the
book you are looking for. The Poppendiecks offer a beautiful blend of history, theory,
and practice.”

—Alan Shalloway, coauthor of Design Patterns Explained

“I’ve enjoyed reading the book very much. I feel it might even be better than the first
lean book by Tom and Mary, while that one was already exceptionally good! Mary espe-
cially has a lot of knowledge related to lean techniques in product development and
manufacturing. It’s rare that these techniques are actually translated to software. This is
something no other book does well (except their first book).”

—Bas Vodde

“The new book by Mary and Tom Poppendieck provides a well-written and comprehen-
sive introduction to lean principles and selected practices for software managers and
engineers. It illustrates the application of the values and practices with well-suited suc-
cess stories. I enjoyed reading it.”

—Roman Pichler

“In Implementing Lean Software Development, the Poppendiecks explore more deeply
the themes they introduced in Lean Software Development. They begin with a compel-
ling history of lean thinking, then move to key areas such as value, waste, and people.
Each chapter includes exercises to help you apply key points. If you want a better under-
standing of how lean ideas can work with software, this book is for you.”

—Bill Wake, independent consultant
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Foreword
Jeff Sutherland

I created the first Scrum in 1993 at Easel Corporation in Burlington, Massachu-
setts,1 in cooperation with our CEO, who bet his company on the team that
made the first Scrum work. In 1995, I began working with Ken Schwaber, who
formalized the process for worldwide deployment.2 In four companies since
Easel, I have used the self-organizing nature of Scrum to move from a Type A
Scrum (winning teams) to a Type B Scrum (winning product portfolios) to a
Type C Scrum (winning companies). 

In 2000, I introduced Scrum to PatientKeeper, and this has proven to be an
excellent vehicle for lean development. Over the years we have shortened cycle
times to exactly what customers need: one week for critical items, one month
for minor enhancements, and three months for significant new products. The
three-month releases are accumulations of one-month Sprints, and every Sprint
is a release. 

At PatientKeeper the entire company runs as a Scrum and inspects, adapts,
self-organizes, and changes every Monday when we have our MetaScrum meet-
ing.3 The Product Owner runs this meeting, and all company stakeholders are
present, including the CEO. Lean concepts are carefully examined here, and
Sprints are started, stopped, or changed only in this meeting. The whole com-
pany, including affected customers, can be reset in one afternoon with decisions
made during the weekly MetaScrum.

1. Sutherland, J., “Agile Development: Lessons Learned from the First Scrum,” Cutter 
Agile Project Management Advisory Service: Executive Update, 2004, 5(20): pp. 1–4.

2. Schwaber, K., “Scrum Development Process,” in OOPSLA Business Object Design 
and Implementation Workshop, J. Sutherland, et al., editors. 1997, Springer: 
London.

3. Sutherland, J., “Future of Scrum: Parallel Pipelining of Sprints in Complex 
Projects,” in AGILE 2005 Conference. 2005. Denver, Colorado: IEEE.
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We have a chief Product Owner with a team that gets the Product Backlog
“ready.” We have a chief ScrumMaster, who runs a 15-minute daily Scrum of
Scrums. What did teams do yesterday, what will they do today, and what are
the impediments to delivery? We manage 45 releases of software per year into
large, mission-critical enterprises using these short meetings and using an auto-
mated system that tracks the state of concurrent Sprint backlogs. Dates are
committed to customers before the start of a Sprint, and thousands of Web
users and hundreds of physicians with PDAs go live at the end of every Sprint.
For PatientKeeper, concept (Product Backlog) to cash (product in production)
occurs in one-month intervals. We have had to eliminate waste everywhere—
before, during, and after the implementation process.

In 1993, lean product development was not well understood in any industry.
Scrum was the first concrete implementation of lean thinking to software devel-
opment that allowed organizations of all types and sizes to start up lean teams
in a couple of days using a standard pattern that was easily understood. What
was hard was explaining why and how to implement the pattern to generate
continuous quality and productivity improvement.

Today, the writing and courses from Mary and Tom Poppendieck provide a
proven set of principles that organizations can use to adapt tools, techniques,
and methods to their own specific unique contexts and capabilities. Now we
can explain how to use Scrum to lean out software development. In addition to
my company, PatientKeeper, I use the procedures and processes outlined in this
book to teach practitioners worldwide how to optimize Scrum. 

Lean software development views all agile methods as valid, proven applica-
tions of lean thinking to software. It also goes beyond agile, providing a
broader perspective that enables agile methods to thrive. First, it looks along
the whole value chain, from concept to cash and tries to address all the waste
and delays that happen before and after the coders contribute their part. Sec-
ond, it establishes a management context to extend, nourish, and leverage agile
software practices. Third, it provides a proven set of principles that each orga-
nization can use to adapt tools, techniques, and methods to their own specific
unique contexts and capabilities.

Every chapter in this book illustrates a set of principles that can be imple-
mented to build more productive teams. If you want to be like Toyota, where
productivity is consistently four times that of its competitors and quality is
twelve times better, these practices are essential. If you execute well on the prin-
ciples in this book, resistance by your competition is futile, and winning in your
market is certain. The return on investment in practices outlined in this book
can be very high.
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To create the lean “secret sauce” for your company, we have found you must
systematically implement this accumulated lean wisdom. In short, you must
deeply understand the Japanese concepts of Muri, Mura, and Muda. Mary and
Tom unfold them as the seven lean principles and the seven wastes of software
development to help you easily understand how they work and know what to
do. 

Muri relates to properly loading a system and Mura relates to never stressing
a person, system, or process. Yet many managers want to load developers at
110 percent. They desperately want to create a greater sense of “urgency” so
developers will “work harder.” They want to micromanage teams, which stifles
self-organization. These ill-conceived notions often introduce wait time, churn,
death marches, burnout, and failed projects.

When I ask technical managers whether they load the CPU on their laptop to
110 percent they laugh and say, “Of course not. My computer would stop run-
ning!” Yet by overloading teams, projects are often late, software is brittle and
hard to maintain, and things gradually get worse, not better. One needs to
understand that Toyota and Scrum use a pull system that avoids stress (Mura)
and eliminates bottlenecks (Muri). The developers take what they need off the
Product Backlog just in time. They choose only Product Backlog that is ready to
take into a Sprint, and they never take more than they can get done in a Sprint.
They go faster by surfacing impediments and working with management to
eliminate waste (Muda). By removing waste, they have less work to do. Produc-
tivity goes up, and they have time to deliver quality software and focus on
exactly what the customers need. 

So by understanding loading (Muri) and avoiding stress (Mura) you shorten
cycle time. This leans out the environment causing impediments that create
waste (Muda) to be highly visible. When you eliminate these impediments, your
teams move faster, do more with less, increase quality, and move the product
right into the sweet spot for the customer. 

I recommend you keep the Poppendiecks’ books on your desk and use them
regularly to help with systematic and continuous implementation of lean princi-
ples. Practice hard, and you will rapidly double productivity by using lean
development to do less by avoiding waste, and then double it again by working
smarter by eliminating impediments. By going four times faster in the right way,
your quality will improve by a factor of twelve like Toyota. 

—Jeff Sutherland, Ph.D.
Chief Technology Officer, PatientKeeper

Certified ScrumMaster Trainer
Inventor of the Scrum Development Process

July 2006
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Foreword
Kent Beck

Software development is a chain with many links, and improving overall effec-
tiveness requires looking at the whole chain. This book is for people involved in
software development—not just programmers, but also managers, sponsors,
customers, testers, and designers. The principles presented here eventually
affect everyone connected to the development of software. This book speaks to
those of you who are ready to look at the big picture of development. 

For ideas to have impact, they must be grounded in both theory and experi-
ence. By translating well-proven ideas from lean manufacturing, this book pre-
sents theory and practice and applies them to software development. Many of
the fundamental problems with manufacturing are also problems with software
development: dealing with uncertainty and change, continuously improving
processes, and delivering value to customers.

What does this book offer you? First, a wide variety of theories that provide
alternative ways of thinking about how software development can be
improved. Second, a set of stories about the application of these theories to real
projects. Third, provocative questions to help you apply the theories and the
lessons in the stories to your unique situation.

Mary is uniquely qualified to present this material. She experienced lean
manufacturing firsthand, helping rescue a plant from being shut down by trans-
forming its operations. She’s also experienced software development as a pro-
grammer and a manager. I once shared a seminar with Mary, and it was a treat
to see the force and confidence with which she presents her material. I can hear
that same direct voice in her writing here.

If you’ve read the Poppendiecks’ precursor book, Lean Software Develop-
ment, this book offers new guidance towards its implementation. It reiterates
the theory in the previous volume, but always with an eye towards applying the
ideas in real situations. The result is a readable and practical guide to ideas that
have the potential to help you transform your development.
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This is a book for doers, doers who want their actions aligned with where
they can do the most good. If you are such a person, I recommend this book to
you as a source of ideas and energy for positive change.

—Kent Beck
Three Rivers Institute

July 2006
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Preface

The Sequel 

Lean was an idea borrowed from the 1990s when we wrote the book Lean
Software Development: An Agile Toolkit in 2003. We had observed that break-
through ideas from manufacturing and logistics often take a decade or two
before they are adapted to provide suitable guidance for development efforts.
So we decided it was not too late to use well-proven lean concepts from the
1980s and 1990s to help us explain why agile methods are a very effective
approach to software development.

The strategy worked. The book Lean Software Development presents a set
of thinking tools based on lean thinking that leaders continue to find useful for
understanding agile software development. The book has been purchased by
many a developer who gave it to his or her manager to read, and many manag-
ers have distributed multiple copies of the book to colleagues in support of a
transition to lean/agile software development.

Meanwhile, something unexpected happened to lean. In the last couple of
years lean initiatives have experienced a resurgence in popularity. The word
lean was originally popularized in the early 1990s to characterize the Japanese
approach to automobile manufacturing.1 In recent years, Honda and Toyota
have been doing increasingly well in the North American auto market, while
Detroit automakers are restructuring. For example, Toyota’s profits rose from
more than $8 billion in the fiscal year ending March 31, 2003, to more than
$10 billion in 2004, $11 billion in 2005, and $12 billion in 2006. Many com-

1. James Womack, Daniel Jones, and Daniel Roos, The Machine That Changed the 
World, Rawson Associates, 1990.
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panies have taken a second look at lean to try to understand what’s behind such
steady and sustained success.

Lean initiatives seldom start in the software development or product devel-
opment area of a company, but over time, successful lean initiatives make their
way from manufacturing or logistics to development departments. However,
lean practices from manufacturing and other operational areas do not adapt
easily to a development environment, so lean initiatives have a tendency to stall
when they reach software development. While the underlying lean principles
remain valid, it is usually inappropriate to apply operational practices and mea-
surements to a development environment. When lean initiatives stall in soft-
ware development areas, many companies have discovered that the book Lean
Software Development gives them a good foundation for thinking about how
to modify their approach and adapt lean ideas to a development organization.

The benefits of lean and agile software development have become widely
known and appreciated in the last few years, and many organizations are
changing the way they develop software. We have traveled around the world
visiting organizations as they implement these new approaches, and we have
learned a lot from our interaction with people working hard to change the way
they develop software. As our knowledge has grown, so has the demand for
more information on implementing lean software development. We realized
that a new book would allow us to share what we’ve learned with many more
people than we can contact personally. Therefore we have summarized our
experiences in this book, Implementing Lean Software Development: From
Concept to Cash.

This book is not a cookbook for implementing lean software development.
Like our last book, it is a set of thinking tools about how to go about adapting
lean principles to your world. We start this book where the last book left off
and go deeper into the issues and problems that people encounter when trying
to implement lean and agile software development. You might consider this
book a sequel to Lean Software Development. Instead of repeating what is in
that book, we take a different perspective. We assume the reader is convinced
that lean software development is a good idea, and focus on the essential ele-
ments of a successful implementation. We look at key aspects of implementa-
tion and discuss what is important, what isn’t, and why. Our objective is to help
organizations get started down the path toward more effective software devel-
opment.

The first chapter of this book reviews the history of lean, and the second
chapter reviews the seven principles of lean software development presented in
Lean Software Development. These are followed by chapters on value, waste,
speed, people, knowledge, quality, partners, and the journey ahead. Each of
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these eight chapters begins with a story that illustrates how one organization
dealt with the issue at hand. This is followed by a discussion of key topics we
have found to be important, along with short stories that illustrate the topic,
and answers to typical questions we often hear. Each chapter ends with a set of
exercises that helps you explore the topics more deeply.
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Chapter 1

History

Interchangeable Parts

Paris, France, July 1785. It was 18 months after the end of the Revolutionary
War in America, and four years before the start of the French Revolution. The
need for weapons was on everyone’s mind when Honoré Blanc invited high-
ranking military men and diplomats to his gunsmith shop in Paris. He had
taken apart 50 firing mechanisms (called “locks”) and placed the pieces in
boxes. The astonished visitors took random parts from the bins, assembled
them into locks, and added them to muskets. They found that the parts fit
together perfectly. For the first time it seemed possible to make guns out of
interchangeable parts.

Thomas Jefferson, a diplomat in Paris at the time, was at the demonstration.
The future United States president saw a way to address a big problem in his
fledgling country. The United States was facing a shortage of weapons to defend
itself and expand its boundaries. If interchangeable parts could be easily pro-
duced, then relatively unskilled workers could assemble a lot of guns at low
cost, a real boon to the start-up country that had neither the money to buy guns
nor the craftsmen to make them.

The challenge of creating a manufacturing process precise enough to make
interchangeable parts for guns was taken up by Eli Whitney, who had recently
patented the cotton gin. In 1798 Whitney was awarded a government contract
to make 10,000 guns in two years. Ten years and several cost overruns later he
finally delivered the guns, and even then the parts were not fully interchange-
able. Nevertheless, Whitney is considered a central figure in developing the
“American system of manufacture,” a manufacturing system in which semi-
skilled workers use machine tools and precise jigs to make standardized parts
that are then assembled into products.

During the 1800s the United States grew dramatically as an industrial power,
with much of the credit given to the new manufacturing system. Meanwhile in
Europe there was strong resistance to replacing craft production. In France,
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Honoré Blanc’s work was terminated by a government that feared losing its
control over manufacturing if unregulated workers could assemble a musket. In
England, the inventors of machines that automated both spinning and weaving
were attacked by angry crowds who feared losing their jobs. But in America,
labor was scarce and there were few craft traditions, so the new industrial
model of interchangeable parts took root and flourished.

Interchangeable People

Detroit, USA, January 1914. Henry Ford raised wages of workers from $2.40
for a nine-hour day to $5 for an eight-hour day as he began assembly line pro-
duction of the Model T. The press suggested that he was crazy, but it was a
shrewd move. Ford had taken more than 85 percent of the labor out of a car, so
he could well afford to double wages. He had already dropped the price of the
car dramatically. Now he drove up wages and shortened work hours to help
create a middle class with the time and money to buy automobiles. 

It used to take more than 12 hours to assemble an automobile; now it took
about 90 minutes. What happened to all of the time? Ford managers applied
the ideas of efficiency expert Frederick Winslow Taylor as they designed the
production line jobs. Taylor believed that most fixed wage workers spent their
time trying to figure out how to work slowly, since being efficient brought no
extra pay and could threaten jobs. His approach was to divide the assembly line
work into very small steps, and time the workers to uncover the “one best way”
to do each step. 

Work on the assembly line was boring, repetitive, and tightly controlled. The
workers were shown exactly how to do their job and told how much time they
had to complete it. They could be trained in ten minutes, and they could be
replaced in ten minutes. Like the interchangeable parts of a century earlier,
interchangeable workers were at the center of a new industrial model: mass
production. 

High wages were supposed to make up for the lack of variety and autonomy,
and for a while they did. And for a while, things went very well for Ford. Sales
soared, and Ford owned the market. But after a while the Model T grew old
and an increasingly prosperous middle class wanted to trade in their old cars
for more stylish sedans. Ford was slow to respond, because his production sys-
tem was most efficient when making only one kind of car. Meanwhile at Gen-
eral Motors, Alfred P. Sloan had created an organization structured to produce
multiple models aimed at segmented markets. As the demand for variety and
complexity grew, Ford’s production system grew unwieldy. 
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Also as time passed workers began to feel trapped in untenable working con-
ditions. They had become accustomed to a high standard of living and were
unable to find comparable salaries elsewhere. The widespread labor unrest in
the United States in the 1930s is often attributed to a system which held little
respect for workers and regarded them as interchangeable.

The Toyodas

Kariya, Japan, February 1927. Toyoda Automatic Loom Works held a work-
shop for textile engineers to showcase the company’s new loom. First the visi-
tors saw how Toyoda looms were manufactured with high precision tools, and
then they were taken on a tour of the experimental spinning and weaving facil-
ity where 520 of the Toyoda looms were in operation. The looms were a won-
der to behold; they ran at a blazingly fast 240 picks per minute and were
operated by only 20 weavers. Anticipating a law abolishing nighttime labor, the
machines were fully automatic and could run unattended all night. When a
shuttle flying across the loom was just about out of thread, a new shuttle
replaced it in a smooth, reliable exchange. If even one of the hundreds of warp
threads broke or the weft thread ran out, the loom immediately stopped and
signaled a weaver to fix the problem.

If you want to understand the Toyota1 Production System, it is important to
appreciate just how difficult it was to develop and manufacture the “perfect
loom.” Sakichi Toyoda built his first power loom in 1896 and invented an auto-
mated shuttle changing device in 1903. A test was set up to compare 50 Toyoda
shuttle changing looms with a similar number of simple power looms from
Europe. The results were disappointing. These early Toyoda looms were com-
plex, low precision machines that were balky and difficult to maintain. 

Sakichi Toyoda recruited technically competent employees and hired an Ameri-
can engineer, Charles A. Francis, to bring the American system of manufacture to
his company. Francis redesigned the manufacturing equipment and built a
machine tool shop to produce it. He developed standard specifications, produced
standardized gauges and jigs, and reorganized the manufacturing line. At the same
time, Sakichi Toyoda designed wider all-iron looms, and by 1909 he had patented
a superior automated shuttle-change mechanism. Over the next decade, as war
distracted Europe and America, looms designed by Sakichi Toyoda sold very well.

1. The “d” in the Toyoda family name was changed to a “t” when the Toyota Motor 
Company was established. The Japanese characters are similar, but Toyota takes 
two less brush strokes than Toyoda.
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Although Sakichi Toyoda readily adopted high precision interchangeable
parts, the loom manufacturing business had no room for interchangeable peo-
ple. Automatic looms are complex, high precision machines, very sensitive to
changes in materials and a challenge to keep running smoothly. Thus, highly
skilled weavers were needed to set up and keep 25 or 30 machines running at
once. If running a loom required skill, the design and manufacture of auto-
mated looms was even more demanding. Sakichi Toyoda had a reputation for
hiring some of the most capable engineers being trained at Japanese universi-
ties. He kept his development team intact even as he started new companies,
and he depended on them to carry on research in loom design and manufacture.

In 1921 Sakichi Toyoda’s son Kiichiro joined his father’s company and
focused on advancing loom automation. In 1924 they jointly filed a patent for
an improved automatic shuttle-change mechanism. The research team also
developed methods to detect problems and stop the loom, so that looms could
run unattended at night. Kiichiro Toyoda oversaw the building and start-up of
a factory to produce the new looms, and set up 520 of them in the Toyoda
experimental weaving factory. After he proudly showed off these “perfect
looms,” orders for the automated looms poured in. Kiichiro used the profits to
start up an automotive business. He toured Detroit and spent years learning
how to build engines. Toyota’s first production car hit the market in 1936, but
manufacturing was soon interrupted by war.

The Toyota Production System

Koromo, Japan, October 1949. Passenger car production restrictions were
lifted in post-war Japan. In 1945, Kiichiro Toyoda had challenged his company
to “catch up with America,” but it was clear that Toyota could not catch up by
adopting America’s mass production model. Mass production meant making
thousands of identical parts to gain economies of scale, but materials were
scarce, orders were spotty, and variety was in demand. Economies of scale were
simply not available. 

Kiichiro Toyoda’s vision was that all parts for assembly should arrive at the
assembly line “Just-in-Time” for their use. This was not to be accomplished by
warehousing parts; parts should be made just before they are needed. It took
time to make this vision a reality, but in 1962, a decade after Kiichiro Toyoda’s
death, his company adopted the Toyota Production System companywide.
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Taiichi Ohno

Taiichi Ohno was a machine shop manager who responded to Kiichiro Toyoda’s
challenge and vision by developing what came to be known as the Toyota Pro-
duction System. He studied Ford’s production system and gained insight from the
way American supermarkets handled inventory. To this he added his knowledge
of spinning and weaving and the insights of the workers he supervised. It took
years of experimentation to gradually develop the Toyota Production System, a
process that Ohno considered never-ending. He spread the ideas across the com-
pany as he was given increasingly broad areas of responsibility. 

In his book, Toyota Production System, 2 Ohno calls the Toyota Production
System “a system for the absolute elimination of waste.” He explains that the sys-
tem rests on two pillars: Just-in-Time flow and autonomation (also called Jidoka). 

Just-in-Time Flow

It is important to note that Just-in-Time flow went completely against all con-
ventional wisdom of the time. Resistance to Ohno’s efforts was tremendous,
and he succeeded because he was backed by Eiji Toyoda, who held various
senior management positions in the company after his cousin Kiichiro left in
1950. Both Toyodas had brilliantly perceived that the game to be played was
not economies of scale, but conquering complexity. Economies of scale will
reduce costs about 15 percent to 25 percent per unit when volume doubles. But
costs go up by 20 percent to 35 percent every time variety doubles.3 Just-in-
Time flow drives out major contributors to the cost of variety. In fact, it is the
only industrial model we have that effectively manages complexity. 4

Autonomation (Jidoka)

Toyoda automated looms could operate without weavers present because the
looms detected when anything went wrong and shut down automatically.
Autonomation, or its Japanese name Jidoka, means that work is organized so
that the slightest abnormality is immediately detected, work stops, and the
cause of the problem is remedied before work resumes. Another name for this
critical concept, and one that is perhaps easier to remember, is “stop-the-line.”

2. This section is based on Taiichi Ohno’s book, Toyota Production System: Beyond 
Large-Scale Production, Productivity Press, written in Japanese in 1978 and trans-
lated into English in 1988. It is an excellent book, very readable and highly recom-
mended even today. 

3. George Stalk, “Time—The Next Source of Competitive Advantage,” Harvard Busi-
ness Review, July 1988.

4. See “Lean or Six Sigma,” by Freddy Balle and Michael Balle, available at 
www.lean.org/library/leanorsigma.pdf.

http://www.lean.org/library/leanorsigma.pdf
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Ohno called autonomation “automation with a human touch.” He pointed
out how the related word “autonomic” brings to mind another way to look at
this concept. Our bodies have an autonomic nervous system that governs
reflexes such as breathing, heartbeat, and digestion. If we touch something hot,
our autonomic nerves cause us to withdraw our hand without waiting for the
brain to send a message. Autonomation means the organization has reflexes in
place that will respond instantly and correctly to events without having to go to
the brain for instructions.5 

Shigeo Shingo

Shigeo Shingo was a consultant who helped Ohno implement the Toyota Pro-
duction System at Toyota, and later helped companies around the world under-
stand and implement the system. Those of us who implemented Just-in-Time
manufacturing in the early ’80s fondly remember the “Green Book,”6 the first
book on Just-in-Time published in English. It was not a good translation, and
the material is heavy and technical, but it is a stunningly insightful book. 

Shingo covers two major themes in the book: nonstock production and zero
inspection. A careful look shows that these are actually the engineering equiva-
lent of Ohno’s pillars of the Toyota Production System.

Nonstock Production 

Just-in-Time flow means eliminating the stockpiles of in-process inventory that
used to be made in the name of economies of scale. The focus is on making
everything in small batches, and in order to do this, it is necessary to be able to
changeover a machine from making one part to making a different part very
quickly. In software development, one way to look at set-up time is to consider
the time it takes to deploy software. Some organizations take weeks and
months to deploy new software, and because of this they put as many features
into a release as possible. This gives them a large batch of testing, training, and
integration work to do for each release. On the other hand, I expect the antivi-
rus software on my computer to be updated with a well-tested release within
hours after a new threat is discovered. The change will be small, so integration
and training are generally not a concern.

Zero Inspection

The idea behind autonomation is that a system must be designed to be mistake-
proof. There should not be someone looking for a machine to break or testing

5. Taiichi Ohno, Ibid., p. 46.
6. Shigeo Shingo, Study of ‘Toyota’ Production System, Productivity Press, 1981.



JUST-IN-TIME 7

product to see if it is good. A properly mistake-proofed system will not need
inspection. My video cable is an example of mistake-proofing. I can’t plug a
monitor cable into a computer or video projector upside down because the
cable and plug are keyed. So I don’t need someone to inspect that I plugged the
cable in correctly, because it’s impossible to get it wrong. Mistake-proofing
assumes that any mistake that can be made will eventually be made, so take the
time at the start to make the mistake impossible. 

Just-in-Time

The Toyota Production System was largely ignored, even in Japan, until the oil
crisis of 1973, because companies were growing quickly and they could sell
everything they made. But the economic slowdown triggered by the oil crisis
sorted out excellent companies from mediocre ones, and Toyota emerged from
the crisis quickly. The Toyota Production System was studied by other Japanese
companies and many of its features were adopted. Within a decade America
and Europe began to feel serious competition from Japan. For example, I
(Mary) was working in a video cassette plant in the early ’80s when Japanese
competitors entered the market with dramatically low pricing. Investigation
showed that the Japanese companies were using a new approach called Just-in-
Time, so my plant studied and adopted Just-in-Time to remain competitive.

The picture that we used at our plant to depict Just-in-Time manufacturing is
shown in Figure 1.1.

Figure 1.1 Lower inventory to surface problems
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Inventory is the water level in a stream, and when the water level is high, a
lot of big rocks lurking under the water are hidden. If you lower the water level,
the big rocks begin to surface. At that point, you have to clear the rock out of
the way, or your boat will crash into them. As the big rocks are removed, you
can lower inventory level some more, find more rocks, clear them out of the
stream, and keep on going until there are just pebbles left. 

Why not just keep the inventory high and ignore the rocks? Well, the rocks
are things like defects that creep into the product without being detected, pro-
cesses that drift out of control, finished goods that people aren’t going to buy
before the shelf life expires, an inventory tracking system that keeps on losing
track of inventory—things like that. The rocks are hidden waste that is costing
you a lot of money—you just don’t know it unless you lower the inventory
level. 

A key lesson from our Just-in-Time initiative was that we had to stop trying
to maximize local efficiencies. We had a lot of expensive machines, so we
thought we should run them each at maximum productivity. But that only
increased our inventory, because a pile of inventory built up at the input to each
machine to keep it running, and at the output from each machine as it merrily
produced product that had nowhere to go. When we implemented Just-in-Time,
the piles of inventory disappeared, and we were surprised to discover that the
overall performance of the plant actually increased when we did not try to run
our machines at maximum utilization (see Figure 1.2).

Figure 1.2 Stop trying to maximize local efficiencies.
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Stop-the-Line and Safety Consciousness 
One Just-in-Time practice that was easy to adopt was a stop-the-line culture.
Our video tape plant made tape out of some rather volatile materials, so we had
an aggressive safety program in place. Through our safety program we already
knew that it was important to investigate even the smallest accident, because
small accidents will eventually turn into big accidents if they are ignored. 

The book Managing the Unexpected 7 by Weick and Sutcliffe shows that
organizations like our plant create an environment where people pay
attention to safety by maintaining a state of mindfulness. According to the
authors, mindfulness has five characteristics:

1. Preoccupation with Failure
We spent a lot of time thinking about what could go wrong and being
prepared.

2. Reluctance to Simplify
We had a large, complex plant, so safety was a large, complex issue.

3. Sensitivity to Operations
Every manager in the plant was expected to spend time working on the
line.

4. Commitment to Learn from Mistakes
Even the smallest incident was investigated to determine how to prevent it
from ever happening again.

5. Deference to Expertise
Every manager knew that the people doing the work were the ones who
really understood how the plant worked. 

It was a small step to turn our safety culture into a stop-the-line culture. We
added to our preoccupation with accidents a preoccupation with defects.
Every step of every operation was mistake-proofed as we focused on
eliminating the need for after-the-fact inspection. Whenever a defect
occurred, the work team stopped producing product and looked for the root
cause of the problem. If defective material made it through a process
undetected, we studied the process to find out how to keep that from
happening again. When I say “we” I refer to our production workers, because
they were the ones who designed the process in the first place.

—Mary Poppendieck

7. Karl E. Weick and Kathleen M. Sutcliffe, Managing the Unexpected: Assuring High 
Performance in an Age of Complexity, Jossey-Bass, 2001.
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Figure 1.3 Coffee cups simulating inventory carts with kanban cards

When we decided to move our plant to Just-in-Time, there were few consult-
ants around to tell us what to do, so we had to figure it out ourselves. We cre-
ated a simulation by covering a huge conference table with a big sheet of brown
paper, then drawing the plant processes on the paper. We made “kanban cards”
by writing various inventory types on strips cut from index cards. We put an
inventory strip into a coffee cup and—viola!—that cup became a cart full of the
indicated inventory. (See Figure 1.3.) Then we printed a week’s packing orders
and simulated a pull system by attempting to fill the orders, using the cups and
the big sheet of paper like a game board. When a cup of inventory was packed,
the inventory strip (kanban card) was moved to the previous process, which
used it as a signal to make more of that material.8 

With this manual simulation we showed the concept of a pull system to the
production managers, then the general supervisors, then the shift supervisors.
Finally, the shift supervisors ran through the simulation with every worker in
their area. Each work area was asked to figure out the details of how to make
this new pull system work in their environment. It took some months of
detailed preparation, but finally everything was ready. We held our collective
breath as we changed the whole plant over to a pull system in one weekend.
Computerized scheduling was turned off, its place taken by manual scheduling

8. This scheduling approach is called Kanban, and the token showing what each pro-
cess should make is called a kanban card.
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via kanban cards. Our Just-in-Time system was an immediate and smashing
success, largely because the details were designed by the workers, who therefore
knew how to iron out the small glitches and continually improve the process.

Lean

In 1990 the book The Machine That Changed the World 9 gave a new name to
what had previously been called Just-in-Time or the Toyota Production System.
From then on, Toyota’s approach to manufacturing would become known as
Lean Production. During the next few years, many companies attempted to
adopt Lean Production, but it proved remarkably difficult. Like all new indus-
trial models, resistance from those invested in the old model was fierce. 

Many people found Lean counterintuitive and lacked a deep motivation to
change long established habits. Quite often companies implemented only part
of the system, perhaps trying Just-in-Time without its partner, stop-the-line.
They missed the point that, “The truly lean plant…transfers the maximum
number of tasks and responsibilities to those workers actually adding value to
the car on the line, and it has in place a system for detecting defects that quickly
traces every problem, once discovered, to its ultimate source.”10 

Despite the challenges faced when implementing a counterintuitive new para-
digm, many lean initiatives have been immensely successful, creating truly lean
businesses, which have invariably flourished. Lean thinking has moved from man-
ufacturing to other operational areas as diverse as order processing, retail sales,
and aircraft maintenance. Lean principles have also been extended to the supply
chain, to product development, and to software development. See Figure 1.4.   

Lean Manufacturing/Lean Operations

Today lean manufacturing sets the standard for discipline, efficiency, and effec-
tiveness. In fact, using lean principles in manufacturing often creates a signifi-
cant competitive advantage that can be surprisingly difficult to copy. For
example, Dell Computer’s make-to-order system routinely delivers a “custom-
built” computer in a few days, a feat which is not easily copied by competitors
unwilling to give up their distribution systems. Lean has moved into nonmanu-
facturing operations as well. Southwest Airlines focuses on transporting custom-

9. James Womack, Daniel Jones, and Daniel Roos, The Machine That Changed the 
World, Rawson Associates, 1990. 

10. Ibid., p. 99. Italics are from original text.
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ers directly from point A to point B in relatively small planes, while competitors
can’t easily abandon their large-batch oriented hub-and-spoke systems. A few
industries, such as rapid package delivery, have been structured based on lean
principles, and in those industries, only companies with lean operations can
survive. 

Lean Supply Chain 

When lean production practices reach the plant walls, they have to be extended
to suppliers, because mass production and lean manufacturing do not work
well together. Toyota realized this early, and helped its suppliers adopt the Toy-
ota Production System. Peter Drucker estimated that Toyota’s supplier network,
which Drucker calls a Keiretsu, gives it a 25 percent to 30 percent cost advan-
tage relative to its peers.11 When Toyota moved to the United States in the late
1980s, it established a similar supplier network. Remarkably, US automotive
suppliers often have lean sections of their plants dedicated to supplying Toyota,
while the rest of the plant has to be run the “traditional” way because other
automotive companies cannot deal with a lean supplier.12 A lean supply chain is

11. Peter Drucker, Management Challenges for the 21st Century, Harper Business, 
2001, p. 33.

12. See Jeffrey Dyer, Collaborative Advantage: Winning Through Extended Enterprise 
Supplier Networks, Oxford University Press, 2000.
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Figure 1.4  The lean family tree
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also essential to Dell, since it assembles parts designed and manufactured by
other companies. Through “virtual integration,” Dell treats its partners as if
they are inside the company, exchanging information freely so that the entire
supply chain can remain lean. 

In lean supply chains, companies have learned how to work across company
boundaries in a seamless manner, and individual companies understand that
their best interests are aligned with the best interests of the entire supply chain.
For organizations involved in developing software across company boundaries,
supply chain management provides a well-tested model of how separate compa-
nies might formulate and administer lean contractual relationships. 

Lean Product Development

“The real differential between Toyota and other vehicle manufacturers is not
the Toyota Production System. It’s the Toyota Product Development System,”
says Kosaku Yamada, chief engineer for the Lexus ES 300.13 Product develop-
ment is quite different than operations, and techniques that are successful in
operations are often inappropriate for development work. Yet the landmark
book Product Development Performance14 by Clark and Fujimoto shows that
effective product development has much in common with lean manufacturing.
Table 1.1 summarizes the similarities described by Clark and Fujimoto.

If any company can extract the essence of the Toyota Production System and
properly apply it to product development, Toyota would be the top candidate. So
there was no surprise when it became apparent in the late 1990s that Toyota has
a unique and highly successful approach to product development. Toyota’s
approach is both counterintuitive and insightful. There is little attempt to use the
manufacturing-specific practices of the Toyota Production System in product
development, but the underlying principles clearly come from the same heritage. 

The product coming out of a development process can be brilliant or mun-
dane. It might have an elegant design and hit the market exactly right, or it
might fall short of both customer and revenue expectations. Toyota products
tend to routinely fall in the first category. Observers attribute this to the leader-
ship of a chief engineer, responsible for the business success of the product, who
has both a keen grasp of what the market will value and the technical capability

13. Gary S. Vasilash, “Engaging the ES 300,” Automotive Design and Production, Sep-
tember, 2001.

14. Kim B. Clark and Takahiro Fujimoto, Product Development Performance: Strategy, 
Organization, and Management in the World Auto Industry, Harvard Business 
School Press, 1991.
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Table 1.1 Similarities between Lean Manufacturing and Effective Product 
Development15 

to oversee the systems design. In the book The Toyota Way,16 Jeffrey Liker
recounts the stories of the development of the Lexus and the Prius, emphasizing
how these breakthrough designs were brought to market in record time under
the leadership of two brilliant chief engineers.

Product development is a knowledge creation process. Toyota’s Product
Development System creates knowledge through broad exploration of design
spaces, hands-on experimentation with multiple prototypes, and regular inte-

Lean Manufacturing Lean Development

Frequent set-up changes Frequent product changes (software 
releases)

Short manufacturing throughput 
time

Short development time

Reduced work-in-process inventory 
between manufacturing steps

Reduced information inventory 
between development steps

Frequent transfer of small batches of 
parts between manufacturing steps

Frequent transfer of preliminary infor-
mation between development steps

Reduced inventory requires slack 
resources and more information flow 
between steps 

Reduced development time requires 
slack resources and information flow 
between stages

Adaptability to changes in volume, 
product mix, and product design

Adaptability to changes in product 
design, schedule, and cost targets

Broad task assignments for produc-
tion workers gives higher productivity

Broad task assignments for engineers 
(developers) gives higher productivity

Focus on quick problem solving and 
continuous process improvement 

Focus on frequent incremental innova-
tion and continuous product and pro-
cess improvement

Simultaneous improvement in qual-
ity, delivery time, and manufacturing 
productivity

Simultaneous improvement in quality, 
development time, and development 
productivity

15. Adapted from Kim B. Clark and Takahiro Fujimoto, Product Development Perfor-
mance, p. 172.

16. Jeffrey Liker, The Toyota Way: 14 Management Principles from the World’s Great-
est Manufacturer, McGraw Hill, 2004.
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gration meetings at which the emerging design is evaluated and decisions are
made based on as much detailed information as possible. The tacit knowledge
gained during both development and production is condensed into concise and
useful one-page summaries that effectively make the knowledge explicit. Gener-
ating and preserving knowledge for future use is the hallmark of the Toyota
Product Development System. 

The National Center for Manufacturing Sciences (NCMS) conducted a multi-
year study of the Toyota Product Development System, and the findings are
summarized by Michael Kennedy in the book Product Development for the
Lean Enterprise.17 In this book Kennedy identifies four cornerstone elements of
the Toyota Product Development System (see Figure 1.5). 

Figure 1.5 Cornerstone elements of the Toyota Product Development System18

17. Michael Kennedy, Product Development for the Lean Enterprise: Why Toyota’s 
System Is Four Times More Productive and How You Can Implement It, Oaklea 
Press, 2003.

18. This figure is from Michael Kennedy, Ibid., p. 120. Used with permission.
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19. For more on set-based engineering, see Chapter 7.

The Toyota Product Development System

The Toyota Product Development System has four cornerstone elements:

1. System Design by an Entrepreneurial Leader
The chief engineer at Toyota owns responsibility for the business success of
the product. He is a very experienced engineer, fully capable of creating the
system-level design of the vehicle. But he is also responsible for developing
a deep understanding of the target market and creating a vehicle that will
delight the customers. The chief engineer creates a vision of the new prod-
uct which he transmits to the development team and refreshes frequently by
talking to the engineers making day-to-day decisions. He defends the vision
when necessary and arbitrates tradeoffs if disagreements arise. He sets the
schedule and modifies the process so everything is pulled together on time. 

2. Expert Engineering Workforce
From the days of Sakichi Toyoda, the Toyoda and Toyota companies have
always had top notch technical people designing their technically sophisticated
products. It takes years for an engineer to really become an expert in a partic-
ular area, and at Toyota, engineers are not moved around or motivated to
move into management before they truly master their field. Managers are
teachers who have become masters in the area they supervise; they train new
engineers and move them from apprentice to journeyman to master engineer.

3. Responsibility-Based Planning and Control
The chief engineer sets the vehicle development schedule, which consists
of key synchronization points about two or three months apart. Engineers
know what is expected at the next synchronization point, and they deliver
the expected results without being tracked. If engineers need information to
do their job, they are expected to “pull” it from its source. Recently, Toyota
chief engineers have pioneered the practice of an “Oobeya” or large room
where team members may work, and the whole team meets regularly. The
Oobeya contains big visible charts to show issues and status.

4. Set-Based Concurrent Engineering
Set-based engineering means exploring multiple design spaces and con-
verging on an optimal solution by gradually narrowing options. What does
this mean in practice? It means being very careful not to make decisions
until they absolutely must be made and working hard to maintain options so
that decisions can be made as late as possible with the most amount of
information possible. The paradox of set-based design is that this approach
to creating knowledge builds redundancy into the development approach,
which might appear to be a waste. However, when looking at the whole sys-
tem, set-based design allows the development team to arrive at a more opti-
mal solution much faster than an approach that closes off options quickly for
the sake of being “decisive.”19
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Lean Software Development

Software development is a form of product development. In fact, much of the
software you use was probably purchased as a product. Software that is not
developed as a standalone product may be embedded in hardware, or it may be
the essence of a game or a search capability. Some software, including much
custom software, is developed as part of a business process. Customers don’t
buy the software we develop. They buy games or word processors or search
capability or a hardware device or a business process. In this sense, most useful
software is embedded in something larger than its code base. 

It is the product, the activity, or the process in which software is embedded
that is the real product under development. The software development is just a
subset of the overall product development process. So in a very real sense, we
can call software development a subset of product development. And thus, if
we want to understand lean software development, we would do well to dis-
cover what constitutes excellent product development.

The Toyota Production System and the Toyota Product Development System
stem from the same underlying principles. The first step in implementing lean
software development is to understand these underlying principles, which will
be discussed in the next chapter.

Try This19

1. Go to the Toyota Web site, and view the videos on Jidoka (www.toy-
ota.co.jp/en/vision/production_system/video.html20). The videos on Just-in-
Time and the Toyota Production System are also worth viewing.

2. Do you have a tendency to work in batches? If you had to mail 100 letters,
how would you go about folding the letters, stuffing the envelopes, adding
address labels and stamps? Would you process one envelope at a time, or
would you perform each step in a batch? Why? Try timing both ways and
see which is faster. If you have children, ask them how they would
approach the problem.

19.

20. This was a newly published Web site as of April, 2006. The page can also be 
reached by going to www.toyota.co.jp/en/ and following this sequence: Top Page > 
Company > Vision & Philosophy > Toyota Production System > Video Introducing 
the Toyota Production System. 

http://www.toyota.co.jp/en/vision/production_system/video.html
http://www.toyota.co.jp/en/vision/production_system/video.html
http://www.toyota.co.jp/en/
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3. Table 1.1 lists similarities between manufacturing and product develop-
ment. Discuss this table with your team, one line at a time. Does it make
sense in your world to think of partially done work as inventory? Do the
other analogies make sense? Analogies are a double-edged sword. Where
might the analogies between manufacturing and product development lead
you astray?

4. Work-arounds: You have an organization of intelligent people. Do these
people make it their job to work around problems, or are problems consid-
ered a trigger to stop-the-line and find the root cause? Make a list of the
Top 10 problems that occurred in your group in the last week. List after
each problem the way it was resolved. Rank each problem on a scale of 0–
5. The rank of 5 means that you are confident that the cause of the problem
has been identified and eliminated and it is unlikely to occur again. The
rank of 0 means that there is no doubt the problem will crop up again.
What is your total score?

5. If people in your organization instinctively work around problems, they
have the wrong reflexes! Brainstorm what it will take to develop a culture
that does not tolerate abnormalities, whether it is a broken build or a mis-
communication, a failed installation or code that is not robust enough to
hold up in production. Have a “stop-the-line” committee investigate the
ideas and choose the best candidate to get started. In the one chosen area,
switch from a work-around culture to a stop-the-line culture. Be sure
reflexive stop-the-line habits are developed! Repeat. 
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