PRELIMINARY GEOTECHNICAL SUMMARY REPORT

SCHUYLKILL RIVER TRAIL EXTENSION PROPOSED RETAINING WALL SOUTH STREET TO CHRISTIAN STREET PHILADELPHIA COUNTY, PENNSYLVANIA

Prepared for

Schuylkill River Development Corporation Philadelphia, Pennsylvania

and

Urban Engineers, Inc. Philadelphia, Pennsylvania

Prepared by

American Geotechnical & Environmental Services, Inc. King of Prussia, Pennsylvania

APRIL 2015

A.G.E.S., INC. PROJECT NO. 13004

American Geotechnical & Environmental Services, Inc.

American Geotechnical & Environmental Services, Inc.

1000 First Avenue, Suite 403 King of Prussia, PA 19406 Phone: 610-354-0333 Fax: 610-354-9333 www.agesinc.com

April 20, 2015

Mr. John E. Federico, P.E., P.P., A.I.C.P. Urban Engineers, Inc. 530 Walnut Street, 14th Floor Philadelphia, Pennsylvania 19106

Re: Preliminary Geotechnical Summary Report Schuylkill River Trail Extension – Proposed Retaining Wall South Street to Christian Street City of Philadelphia, Philadelphia County, Pennsylvania A.G.E.S. Project No. 13004

Gentlemen:

American Geotechnical & Environmental Services (A.G.E.S.), Inc. is pleased to present the Preliminary Geotechnical Summary Report for the above referenced structure site. Included in this report are results of the subsurface investigations, laboratory testing results, along with recommendations concerning the design and construction of the proposed retaining wall.

We wish to extend our appreciation to be of service to you. Should you have any questions or require additional information, please contact us.

Very truly yours,

American Geotechnical & Environmental Services, Inc.

ow.y.

Yojiro Yoshida, P.E. Project Engineer

Solveig Sahlin, P.E. Project Engineer

TABLE OF CONTENTS

INTI	RODUCTION1
1.1	Project Description and Proposed Construction1
1.2	Purpose and Scope1
BAC	KGROUND INFORMATION3
2.1	Existing Plans
2.2	Previous Subsurface Information3
2.3	Site Reconnaissance4
GEO	LOGIC CONDITIONS6
PRE	LIMINARY GEOTECHNICAL INVESTIGATION8
4.1	Test Boring Results8
4.2	Laboratory Testing Results10
ANA	LYSIS AND CONCLUSIONS11
REC	OMMENDATIONS14
6.1	General14
6.2	Soldier Pile and Lagging Wall15
6.3	Cast-in-Place Reinforced Concrete Wall17
6.4	Temporary Shoring18
6.5	Notes for Drawings19
	 1.1 1.2 BAC 2.1 2.2 2.3 GEO PRE 4.1 4.2 ANA REC 6.1 6.2 6.3 6.4

REFERENCES

TABLES

FIGURES

APPENDIX A - ENGINEER'S FIELD BORING LOGS

APPENDIX B – LABORATORY TESTING RESULTS

APPENDIX C – STRUCTURE BORING SHEETS

APPENDIX D – CORE BOX PHOTOS

- APPENDIX E CONCEPTUAL STRUCTURE PLAN (Provided by Urban Engineers, Inc.)
- **APPENDIX F GENERALIZED GEOLOGIC PROFILE**
- **APPENDIX G GEOTECHNICAL ANALYSIS**
- **APPENDIX H SITE PHOTOS**
- **APPENDIX I ROADWAY CROSS-SECITON**
- **APPENDIX J EXISTING BORINGS (Provided by URS Corporation)**
- **APPENDIX K QA FORM**
- **APPENDIX L SPECIAL PROVISIONS**
- **APPENDIX M DESIGN MODEL**

1.0 INTRODUCTION

1.1 Project Description and Proposed Construction

This project involves an approximately 1,400 foot long extension to the Schuylkill River Trail. The north end of the proposed extension will tie into the proposed Schuylkill Banks Boardwalk and Plaza area (currently under construction) and the existing stair tower to the South Street Bridge. The proposed trail will continue south to a proposed terminus near Christian Street. The Schuylkill River Trail within the area of the wall is located on the east bank of the Schuylkill River; between the river and the CSX railroad tracks. Refer to Figure 1 for the Project Location Map.

Proposed construction consists of a 12 foot wide paved trail, which widens to 14' in the vicinity of the plaza area. Protective steel fences will be provided between the trail and the CSX railroad tracks and also between the trail and the Schuylkill River. In order to construct the proposed trail extension, an approximately 90 foot long retaining wall will be constructed just south of the Schuylkill Banks Boardwalk and Plaza to span a fairly large washout area. Based on preliminary drawings, the maximum exposed height of the retaining wall is approximately 8'-0".

1.2 Purpose and Scope

This submission represents a preliminary geotechnical summary for the proposed retaining wall for the Schuylkill River Development Corporation. The objective of this report is to present the information determined from the preliminary site investigation, office research, subsurface investigation, laboratory testing, and analysis for the above referenced project. Accordingly, our tasks for this submission include:

• Review published geology, and complete a site visit to identify features that may impact our interpretation of the subsurface conditions;

- Perform a subsurface exploration program behind the proposed retaining wall at location determined by Urban Engineers, Inc.
- Conduct laboratory testing on select soil samples and rock cores;
- Interpret the subsurface data and prepared a generalized geologic profile at the proposed structure location;
- Prepare this report, documenting the data collected and analyses performed and provide recommendations concerning the type and depth of foundation support for the wall, relevant design parameters, and site preparation criteria.

2.0 BACKGROUND INFORMATION

2.1 Existing Plans

The proposed wall will be constructed at the existing washout area to accommodate a proposed 14 foot wide paved trail path. Refer to site photos included in Appendix H for the existing condition of the proposed wall location.

2.2 Previous Subsurface Information

Subsurface information from three (3) nearby projects was reviewed (Appendix J).

URS Corporation provided Structure Boring Sheets for the Schuylkill River Boardwalk and Plaza project. The Schuylkill River Boardwalk and Plaza project involves extension to the Schuylkill River Trail. The proposed retaining wall is a part of the construction of the trail extension. Applicable borings (Borings A-1 and A-2) were drilled for the Plaza directly north of the proposed retaining wall. Soil in the borings indicated various granular and fine-grained fill (SM, CL, sc, sp) over granular residual soil (sm, gm) to the top of bedrock. Top of rock was encountered at depths varying from 20.4 feet (Boring A-1) to 23.6 feet (Boring A-2). Bedrock consists of medium hard to very hard, slightly weathered to fresh mica schist, amphibolite, and schist.

Structure plans from the reconstruction of the South Street Bridge were also reviewed. The South Street Bridge is located approximately 200 feet north of the proposed retaining wall. Two (2) borings (Borings S11-19 and S11-20) were drilled for the proposed Pier 11, adjacent to the existing stairway north of the retaining wall. Soils reported in the boring logs are various granular and fine-grained soil layers (SM, GP-SP, ML, SP) to the top of bedrock. Top of rock in the borings were encountered at depths varying from 36.7 feet (S11-19) to 28.1 feet (S11-20). Bedrock consists of medium hard to hard, slightly weathered to fresh mica schist.

Structure plans for the proposed access ramp from the South Street Bridge to the Schuylkill River Trail (north of the South Street Bridge) were reviewed. The proposed access ramp is located immediately north of the South Street Bridge. Three (3) borings (Borings TB-01, TB-02, and TB-03) were drilled for the proposed access ramp north of the retaining wall. Soil in the borings indicated various granular and fine-grained fill and residual soil layers. Bedrock was not cored in the borings. Top of saprolite/top of highly weathered bedrock in the borings were encountered at approximate depths 33.0 feet (TB-01), 42.5 feet (TB-02) to 38.5 feet (TB-03). The saprolite/highly weathered bedrock consists of weathered schist.

2.3 Site Reconnaissance

A preliminary site reconnaissance was performed on February 6, 2013 to view the site and to verify site features and access routes for the drill equipment. Refer to Site Photographs included in Attachment H. The proposed retaining wall will be located between the Schuylkill River and CSX railroad tracks to the south of the South Street Bridge. Surface material in the area generally consists of random fill material including brick and asphalt fragments. The area between the South Street Bridge and Boring B-1 is generally flat with little vegetation. In the general vicinity of proposed Borings B-2 and B-3, there are some smaller trees, brush and vines.

There are existing wood tie bulkheads adjacent to the Schuylkill River on either side of the washout area. The bulkheads appear to be in fair condition and were likely added to protect the adjacent railroad from being undercut by scour. The existing slope where the proposed retaining wall will be located varies from approximately 1:1 (H:V) to approximately 4:1 (H:V). There were no obvious indications of slope instability noted during the site reconnaissance. Erosion and scour were noted within the wash-out area exposing the tree roots. Visible streambed material at the base of the wash-out area generally consists of gravel and cobbles with some sand, silt and clay.

There were no overhead utility lines (electric, cable and phone) observed within the limits of the proposed retaining wall. A locked, white PVC pipe was noted between the proposed wall and South Street Bridge. The owner or purpose of this pipe is not known at this time. Additionally,

there is an underground cable trench between the CSX rails and the proposed retaining wall. There are also underground drainage pipes, discharging into the Schuylkill River directly north of the proposed retaining wall location.

3.0 GEOLOGIC CONDITIONS

The geologic literature indicates that the proposed wall is within the Lowland and Intermediate Upland Section of the Atlantic Coast Plain Province. The dominant topographic form of the Lowland and Intermediate Upland Section is characterized by flat upper terrace surfaces cut by shallow valleys. The underlying material generally consists of unconsolidated to poorly consolidated sand and gravel underlain by schist, gneiss and other metamorphic rocks.

Based on the published literature the material below the proposed wall location is expected to consist of the Trenton Gravel (refer to Figure 2 – Geology Map). However, the geologic contact with the Pensauken and Bridgeton Formations, undifferentiated and Wissahickon formation are mapped to be in close proximity to the proposed wall location. The Trenton Gravel Formation consists of unconsolidated sands and gravels and may be hundreds of feet in thickness. The Trenton Gravel was deposited by fluvial erosion. In general, the Trenton Gravel consists of gray or pale-reddish-brown very gravelly sand with layers of cross-bedded sand. It also includes clay and silt layers. The Pensauken and Bridgeton Formations, undifferentiated consist of cross-stratified, unconsolidated material. Specifically, the material is reported to be dark-reddish-brown sand with some thin beds of fine gravel and rare layers of clay or silt. The Wissahickon formation generally consists of mica schist or gneiss bedrock. Depth to bedrock within the Wissahickon formation is generally shallow however it can be highly variable with zones of highly weathered rock interbedded with less weathered material.

Although the project is underlain by unconsolidated (soil) material, bedrock was not expected to be excessively deep because of the close proximity to the geologic contact of the Wissahickon formation. Bedrock was encountered between depths of 19.5 and 30.0 feet below ground surface.

From a review of the United States Department of Agriculture (USDA) Web Soil Survey, the proposed project is noted as being associated with Urban Land (Ub) which indicates that the surface is covered with pavement, buildings and other artificially covered areas. Therefore,

specific soil information is not available and is expected that the soils near the proposed wall will be highly variable.

4.0 PRELIMINARY GEOTECHNICAL INVESTIGATION

A subsurface exploration program was completed between August 6 and August 8, 2013. Stations, offsets, and elevations for the borings were provided by Urban Engineers, Inc. Drilling was completed by TRC Engineers, Inc. with boring inspection performed by A.G.E.S., Inc. personnel. A total of four (4) borings, three (3) structure borings and one (1) offset boring, were drilled for the proposed retaining wall structure. Engineer's Boring Logs are included in Appendix A. Refer to TS&L Plan included in Appendix E. Plotted Structure Borings Sheets are included in Appendix C. Photographs of the core boxes are provided in Appendix D. The Summary of Subsurface Explorations is detailed in Table 1.

Soil sampling was conducted using a Split Spoon Sampler in accordance with ASTM Design Method D1586-84. The samples were collected continuously by a 2-inch outside diameter Split Spoon Sampler that was driven 18 inches into the soil with blows from a 140 pound hammer falling a distance of 30 inches. The number of blows required to drive the sampler for each 6inch interval was recorded; with the cumulative number of blows for the last two (2) 6-inch intervals designated as the "Standard Penetration Resistance" or N-value. This value generally gives an indication of the in-situ relative density of granular soils or consistency of fine-grained soils and, in turn, their shear strength and compressibility. The N-values along with a visual identification of the materials are recorded. The soil sampling was advanced using a hollowstem auger until bedrock was encountered.

Once bedrock was encountered, continuous core samples were obtained. Bedrock samples with a minimum 2-inch diameter were obtained and visually identified with core recoveries and Rock Quality Designation (RQD) values measured by the boring inspector. The rock core description, core recovery for each core interval, and the RQD values (expressed in percent) for each lithologic unit are recorded.

4.1 Test Boring Results

Boring B-1 was drilled near the beginning of the proposed retaining wall and approximately 20 feet behind the front face of the wall. Soils encountered consisted of fill material, alluvial and

residual soils. Fill material consisted of fine and coarse grained material. Coarse grained fill material consisted of wet to moist, very loose to medium dense, silty sand to silty gravel (sm,gm). Fine grained fill material consisted of moist, stiff sandy silt (ml). Thickness of the fill material was 7.5 feet. Alluvial soil was encountered under the fill material. Alluvial soil consisted of coarse and fine grained material. Coarse grained alluvial soil consisted of wet, very loose to loose silty sand (SM). Fine grained fill material consisted of wet, medium stiff elastic silt (mh). Thickness of the alluvial soil was 9.0 feet. Residual soil encountered below the alluvial soil and above top of rock consisted of wet, medium dense to very dense silty sand with gravel (sm). Thickness of the residual soil was 3.0 feet. Bedrock consisted of schist. Schist was described as soft to medium hard, moderately to slightly weathered with a stratum RQD of 10 percent. The boring was terminated at a depth of 25.5 feet within schist. The 0-hour and 24-hour groundwater level readings were 5.7 and 7.0 feet below the ground surface, respectively. Petroleum odor was noted in soil samples between depths of 4.5 and 16.5 feet.

Boring B-2 was drilled near the middle of the proposed retaining wall approximately 19 feet behind the front face of the wall. Soils encountered consisted of fill material, alluvial and residual soils. Fill material consisted of wet to moist, very loose to medium dense silty sand with gravel (sm). Thickness of the fill material was 10.2 feet. Alluvial soil was encountered under the fill material. Alluvial soil consisted of coarse and fine grained material. Coarse grained alluvial soil consisted of wet, very loose to loose clayey sand with gravel (sc). Fine grained fill material consisted of wet, soft to stiff elastic silt (mh). Thickness of the alluvial soil was 8.3 feet. Residual soil encountered below the alluvial soil and above top of rock consisted of wet to moist, medium dense to very dense silty sand with gravel (sm). Thickness of the residual soil was 8.3 feet. Bedrock consisted of amphibolite. Amphibolite was described as soft to medium hard, highly to moderately weathered with a stratum RQD of 18 percent. The boring was terminated at a depth of 31.8 feet. The 0-hour and 24-hour groundwater level readings were 7.3 feet below the ground surface.

Boring B-3 was drilled near the end of the proposed retaining wall approximately 13 feet behind the front face of the wall. Soils encountered consisted of fill material, alluvial and residual soils. Fill material consisted of moist, loose to dense silty sand with gravel (sm). Thickness of the fill material was 4.5 feet. Alluvial soil was encountered under the fill material. Alluvial soil consisted of coarse and fine grained material. Coarse grained alluvial soil consisted of wet, very loose to loose silty sand with gravel (sm). Fine grained fill material consisted of moist, soft to hard elastic silt and sandy silt with gravel (mh, ml). Thickness of the alluvial soil was 18.5 feet. Residual soil encountered below the alluvial soil and above top of rock consisted of moist, dense to very dense silty sand with gravel (sm). Thickness of the residual soil was 7.0 feet. Bedrock consisted of schist. Schist was described as medium hard to hard, highly to slightly weathered with a stratum RQD of 35 percent. The boring was terminated at a depth of 32.0 feet. The 0-hour groundwater reading was 9.0 feet below the ground surface. The boring was grouted upon completion and 24-hour reading was not obtained.

4.2 Laboratory Testing Results

Laboratory testing for this project consisted of two (2) soil classification tests, one (1) direct shear test, and one (1) corrosion test on soil. The Summary of Laboratory Testing is shown in Table 2 and the Laboratory Test Result sheets are included in Appendix B.

Soil classification testing of the alluvial soil indicated that the soil was non-plastic silty sand (SM) and elastic silt with sand (MH). Natural moisture content of the soil varied from 44.8 to 71.8 percent.

A direct shear test was performed on the material that was classified as MH. The direct shear test yielded an ultimate friction angle of 20.9 degrees and an ultimate cohesion of 0.065 tsf.

Corrosion test was performed on a composite jar sample from the existing fill material and alluvial soil. Based on the corrosion test result, the soil had a pH of 6.4, chlorides of 30.0 ppm, sulfate of 16.0 ppm, and minimum resistivity of 7,400 ohm-cm. Based on these results, in-situ soil at the project site is not potentially corrosive.

5.0 ANALYSIS AND CONCLUSIONS

A total of three (3) structure borings were drilled for the proposed retaining wall. In general borings encountered the existing fill material near the surface underlain by alluvial and residual soils. The existing fill material generally consisted of very loose to dense coarse grained silty sand and gravel. Alluvial soil consisted of silty sand and elastic silt. Elastic silt exhibited relatively low blow counts. Direct shear test was performed on an undisturbed soil sample from the elastic silt layer. The direct shear test yielded internal friction angle of 20.9 degrees. Residual soil was generally described as medium dense to very dense silty sand with gravel. Bedrock was encountered 19.5 to 30.0 feet below the ground surface and consisted of soft to hard schist and soft to medium amphibolite.

Prior to the subsurface exploration, wall alternatives considered for the proposed retaining wall included: pre-cast concrete modular wall (T-Wall), stone gabion basket wall, soldier pile and lagging wall, cast-in-place reinforced concrete gravity wall, and sheet pile wall. Based on the preliminary cost and construction analyses, a T-Wall alternate appeared to be the preferred wall alternative. However, the subsurface exploration program revealed the presence of weak elastic silt layer below the streambed elevation. Based on analyses performed, overexcavation of this weak material was required for a T-Wall alternate to satisfy bearing capacity, external stability requirements and to not encroach on the underground fiber optics. Therefore, additional cost estimates and additional designs were performed incorporating the information from the subsurface exploration program. Wall alternatives considered for the revised cost estimate included: pre-cast concrete modular wall (T-Wall) with overexcavation of weak material, soldier pile and lagging wall, cast-in-place reinforced concrete wall supported on piles and without piles, stone gabion basket wall, unreinforced concrete gravity wall, and sheet pile wall. The soldier pile and lagging wall alternate was determined to be the most cost effective alternate. Based on the analyses, a sheet pile wall is not a feasible alternate due to the shallow depth to bedrock.

The proposed top of wall elevation ranges from elevation 10.89 feet at the beginning of the wall to 11.26 feet at the end of the wall. The proposed streambed elevation in front of the wall is

approximately at elevation 3.0 feet. Bottom of lagging and/or top of caisson is proposed at 6.0 feet below the proposed grade in front of the wall at elevation -3.0 feet. As a result, the design height of the wall is 14.0 feet. Caissons are to be 2.5 feet in diameter and will be spaced at a center to center spacing of 8.0 feet. In order to achieve fixity at the tip, caissons are to be advanced 5.0 feet into bedrock. Lateral deflection at the top of the caisson was calculated to be 0.45 inches which is less than the allowable limit of 0.5 inches. Lateral deflection at the top of the wall was calculated to be 1.18 inches. Sliding and overturning were also evaluated. Performance ratios of both sliding and overturning were greater than 1.0. Calculations for the soldier pile and lagging wall alternate are included in Appendix G.

Other Findings

- The proposed retaining wall is located in an washout area along Schuylkill River and signs of scour and erosion were observed during field reconnaissance. Scour protection will be provided per PennDOT DM-4.
- Based on the corrosion test performed on a soil sample from boring, soil at the project site is not potentially corrosive. However, due to the presence of the Schuylkill River, which has numerous sources of potentially corrosive material flowing into the river in front of the proposed retaining wall, the project site is treated as potentially corrosive.
- Since the wall system is supported by bedrock, settlement is not expected to be a concern.
- Global stability of the proposed retaining wall was also evaluated. Shear resistance from caissons were considered in the analysis. Based on the analysis, global stability is not expected to be a concern.
- If temporary shoring is required, utilize parameters included in the Recommendation Section.

Petroleum odor was noted for soil samples from Boring B-1 between depth 4.6 and 16.5 feet. Any material excavated shall be handled in accordance with Specification Section 026113 – Excavation of Contaminated Materials Handling.

6.0 **RECOMMENDATIONS**

The following is a list of recommendations for this project:

6.1 General

- The construction, including any temporary construction, is to be performed in accordance with PennDOT Publication 408. The Contractor is responsible for the stability of all excavated slopes. Perform all excavation in accordance with OSHA requirements.
- Recommended wall type for the proposed retaining wall is a soldier pile and lagging wall. Allowable alternate wall type is a cast-in-place reinforced concrete wall supported on piles.
- Design retaining wall so that none of the wall elements will encroach within 5.0 feet of existing underground fiber optic cable and do not extend into CSX Railroad right-of-way.
- Utilize frost depth of 3.0 feet in design.
- Consider extreme event condition (i.e., rapid drawdown) in design.
- Backfill behind the retaining wall in accordance with PennDOT Standard RC-12M.
 Structure backfill may consist of material meeting AASHTO No. 57 or PennDOT Open Graded Subbase (OGS) criterion.
- Temporary shoring and/or stream diversion barriers along with dewatering techniques may be required for construction of substructure units.
- Treat project location as potentially corrosive environment and corrosion protection measures are required.
- All excavated material shall be handled in accordance with Special Provision 'Off-Site Disposal of Contaminated Material'.

• Provide riprap rock scour protection as per DM-4, Section PP.7.2.5 and as shown on the plans. Bottom of riprap shall extend to bottom of lagging elevation.

6.2 Soldier Pile and Lagging Wall

- The soldier pile wall must be designed in accordance with all requirements listed in the AASHTO 2010 LRFD Bridge Design Specifications and PennDOT Design Manual -4, 2012, including all revisions. The design must include complete analyses of the proposed retaining wall including external stability.
- Temporary casing may be required to maintain an open borehole. If temporary casing is utilized, maintain concrete levels above the bottom of casing at all times during extraction to prevent caved material from contaminating the concrete.
- Backfill caisson borehole within 24 hours after drilling to limit the deterioration of the bearing material.
- The minimum required pile size is W12 x 190.
- The caisson diameter is 2.5 feet.
- Place bottom of lagging at elevation -3.0 feet.
- Extend caissons a minimum of 5.0 feet into bedrock.
- If subsurface condition encountered during construction varies from what was encountered during subsurface exploration program, perform global stability analysis of the retaining wall as directed by the Engineer.
- Design soldier pile and lagging wall based on the following parameters:

	Moist Unit Weight, pcf	Saturated Unit Weight, pcf	Internal Friction Angle, ¢, degrees	Cohesion, c, psf	Modulus of Subgrade Reaction, k, pci (above water /below water)	Axial Strain at 50% of Strength, ε50	p-y curve
Soil Retained Behind the Wall	110	115	25	0	25/20	-	Sand
Alluvial Soil Below Bottom of Lagging	105	110 21		0	25/20	-	Sand
Residual Soil	130	135	35	0	225/125	-	Sand
Bedrock	Bedrock 150		0	200,000 ⁽¹⁾	-	-	Vuggy Limestone

(1) Unconfined compressive strength of bedrock.

- Perform lateral load analysis of caisson with LPILE or COM 624P program using parameters presented above. The maximum allowable deflection at the top of caisson is 0.5 inches.
- Design the soldier pile and lagging wall utilizing the following Load and Resistance Factors:
 - Load Factor:
 - \circ Earth Horizontal = 1.5
 - \circ Live Surcharge = 1.75
 - \circ Hydrostatic Pressure = 1.0
 - Resistance Factor:
 - Passive Resistance = 0.75
 - Hydrostatic Pressure = 1.0

- Fill the gap between permanent lagging and temporary timber lagging with AASHTO No. 57 coarse aggregate.
- Provide galvanized steel pile and utilize Type II Cement for corrosion protection
- Blasting is not permitted as a method of excavation.
- Design the Soldier Pile and Lagging Wall for the models provided in Appendix M of the Preliminary Geotechnical Summary Report.
- No live load surcharge is required for design of the wall.

6.3 Cast-in-Place Reinforced Concrete Wall

- Support cast-in-place reinforced concrete wall on piles.
- A minimum pile length of 10.0 feet is required.
- Use a resistance factor of 0.35 to determine the axial structural pile resistance at the strength limit state.
- Use a resistance factor of 0.25 to determine the axial structural pil resistance at the service limit state.
- Drive piles to Case 2 Absolute End Bearing Refusal in bedrock in accordance with Pub. 408/2011, Section 1005.3(b)4. Use driving method A as per DM-4, Part A, Section 1.7.5.
- Design cast-in-place reinforced wall based on the following parameters:

	Moist Unit Weight, pcf	Saturated Unit Weight, pcf	Internal Friction Angle, φ, degrees	Cohesion, c, psf	Modulus of Subgrade Reaction, k, pci (above water /below water)	Axial Strain at 50% of Strength, ε50	p-y curve
Soil Retained Behind the Wall	110	115	25	0	25/20	-	Sand
Alluvial Soil Below Bottom of Lagging	105	110	21	0	25/20	-	Sand
Residual Soil	130	135	35	0	225/125	-	Sand
Bedrock	150	150	0	200,000 ⁽¹⁾	-	-	Vuggy Limestone

(1) Unconfined compressive strength of bedrock.

- Utilize 1/16" reduction in the pile section for design.
- Backfill behind the proposed wall in accordance with PennDOT Standard RC-12M.

6.4 Temporary Shoring

• Design temporary shoring utilizing the following soil and rock parameters:

Effective Friction Angle	21 degrees
Cohesion	0 psf
Moist Unit Weight	110 pcf
Saturated Unit Weight	115 pcf
Static Groundwater Level	Elevation 3.0 feet or stream level of Schuylkill
	River, whichever is higher.
Rock Undrained Shear Strength	10 ksf

6.5 Notes for Drawings

The following notes are developed for the soldier pile and lagging wall alternate:

- The construction, including any temporary construction, is to be performed in accordance with PennDOT Publication 408. The Contractor is responsible for the stability of all excavated slopes. Perform all excavation in accordance with OSHA requirements.
- Temporary shoring and/or stream diversion barriers along with dewatering techniques may be required for construction of substructure units.
- All excavated material shall be handled in accordance with Specification Section 026113

 Excavation of Contaminated Materials Handling.
- Provide galvanized pile for corrosion protection.
- Temporary casing may be required to maintain an open borehole. If temporary casing is utilized, maintain concrete levels above the bottom of casing at all times during extraction to prevent caved material from contaminating the concrete.
- Backfill caisson borehole within 24-hours after drilling to limit the deterioration of the bearing material.
- Backfill behind the retaining wall in accordance with PennDOT Standard RC-12M.
 Structure backfill may consist of material meeting ASSHEO No. 57 or PennDOT Open Graded Subbase (OGS) criterion.
- Fill the gap between permanent lagging in and temporary timber lagging with AASHTO No. 57 coarse aggregate.
- Blasting is not permitted as a method of excavation.

REFERENCES

- Berg, T. M., Edmunds, W. E., Geyer, A. R., and others, compilers, 1980, Geologic Map of Pennsylvania: Pennsylvania Geological Survey, 4th ser., Map 1, 2nd ed., 3 sheets, scale 1:250,000.
- Bureau of Topographic and Geologic Survey, 1990, Map 7 Geologic Map of Pennsylvania, Commonwealth of Pennsylvania Department of Conservation and Natural Resources.
- Geyer, Alan, and Wilshusen, J. Peter, Engineering Characteristics of the Rocks of Pennsylvania, Department of Environmental Resources, Office of Resources Management, Bureau of Topographic and Geologic Survey, Environmental Geology Report 1, 1982.
- 4. Pennsylvania Department of Transportation, Type 10 Map, Philadelphia County, Pennsylvania.
- 5. Sevon, W.D., 2000, Map 13, Physiographic Provinces of Pennsylvania, Commonwealth of Pennsylvania Department of Conservation and Natural Resources.
- U.S. Department of Agriculture, Soil Data Mart, Soil Survey for Montgomery County, Pennsylvania.
- U.S. Department of the Interior, Geologic and Topographic Survey, Philadelphia Topographic Quadrangle Map.
- Concise Reconnaissance Soils and Geological Engineering Report, March 2013, prepared by A.G.E.S., Inc.

TABLES

TABLE 1 SUMMARY OF SUBSURFACE EXPLORATION SCHUYLKILL RIVER TRAIL EXTENSION - SOUTH STREET TO CHRISTIAN STREET CITY OF PHILADELPHIA, PHILADELPHIA COUNTY, PENNSYLVANIA

						S	OIL				Top of			
Boring Designation	Station	Offset from Centerline	Ground Surface Elevation (ft)	Unsampled (ft)	Bituminous Concrete (ft)	Subbase (ft)	Fill (ft)	Alluvial (ft)	Residual (ft)	Total (ft)	Gravel/ Boulder/ Cobble Layer (ft)	Bottom of Boring Elevation (ft)	0 Hour Water Elevation (ft)	24 Hour Water Elevation (ft)
B-1	113+34	10 RT	9.3	-	-	-	7.5	9.0	3.0	19.5	-10.2	-16.2	5.7	7.0
B-2	112+89	9 RT	10.5	-	-	_	10.2	8.3	8.3	26.8	-16.3	-21.3	7.3	7.3
B-2A ⁽¹⁾	112+89	7 RT	10.5	15.0	-	-	-	2.0	-	17.0	-	-6.5	Dry	*
B-3	112+50	3 RT	13.0	-	-	-	4.5	18.5	7.0	30.0	-17.0	-19.0	9.0	*
Total				15.0	0.0	0.0	22.2	37.8	18.3	93.3				

Notes:

* - Boring grouted upon completion of drilling.

1. Unsampled drilling, 0.0 to 15.0 feet (elevation 10.5 to -4.5 feet).

Shelby tube, ST-1, obtained from 15.0 to 17.0 feet (elevation -4.5 to -6.5 feet).

TABLE 2SUMMARY OF LABORATORY TESTING

Schuylkill River Trail Extension – South Street to Christian Street City of Philadelphia, Philadelphia County, Pennsylvania

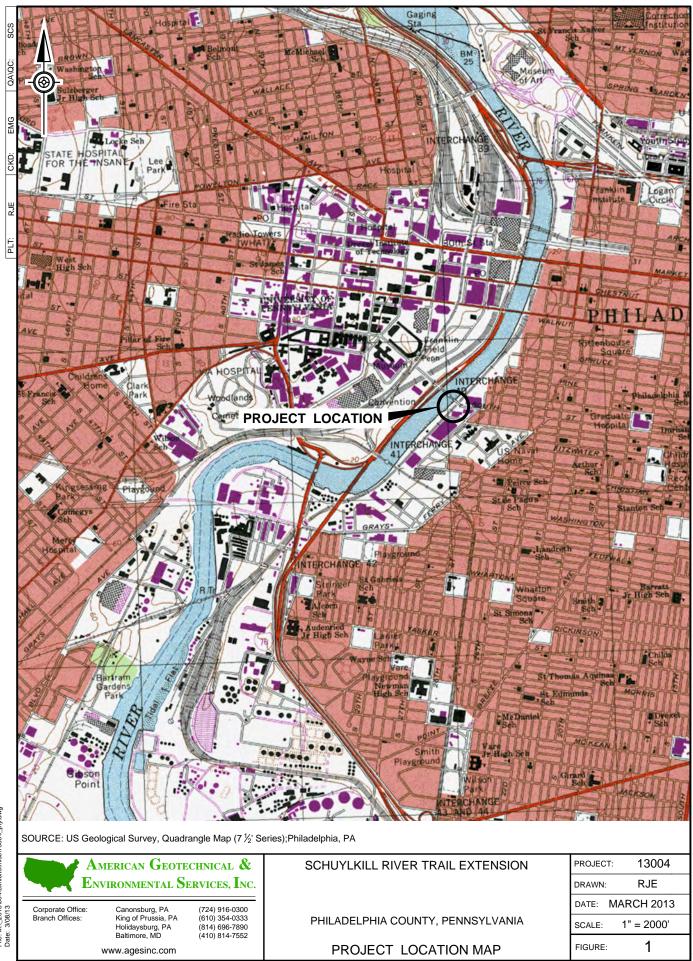
Summary of Soil Classification Testing

	Moisture	Atterberg Limits		USO	CS Grada	ation	Classification		
Sample ID	Content (%)	LL (%)	PI (%)	% Rock Frags	% Sand	% Fines	AASHTO	USCS	
Boring B-1 S-6,7,8,9 7.5 – 13.5 ft Alluvial	71.8	NP	NP	8.1	45.1	46.8	A-4(0)	SM	
Boring B-2A ST-1 15.0 – 17.0 ft Alluvial	44.8	56	32	3.2	15.8	81	A-7-5(22)	МН	

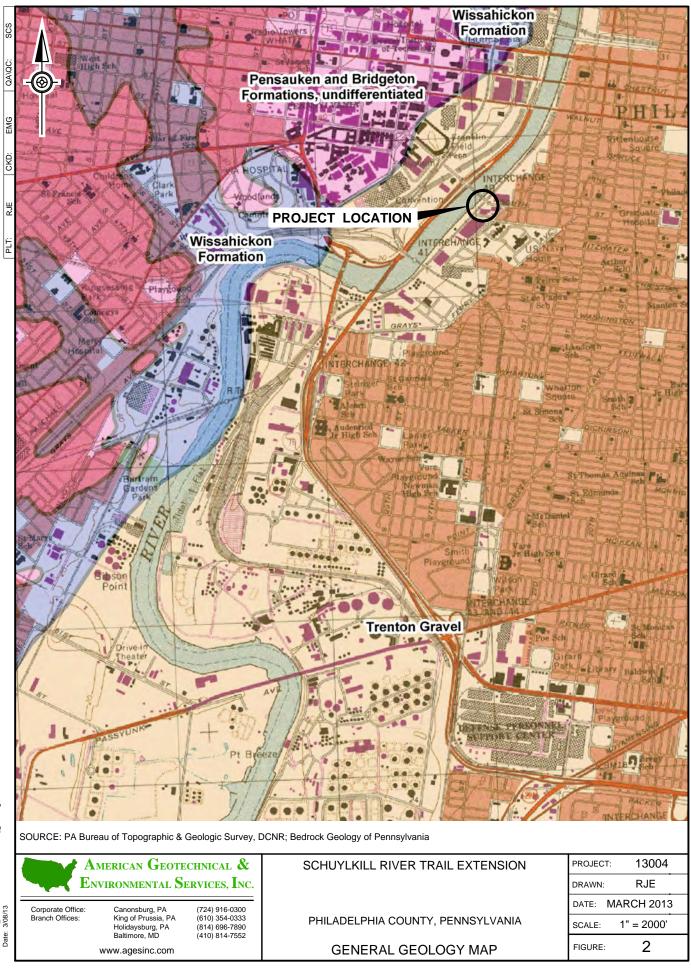
Summary of Moisture Content Testing

Boring Number	Sample Number	Depth	Origin	Moisture Content (%)
B-1	S-6,7,8,9	7.5 – 13.5 ft	Alluvial	71.8
B-2A	ST-1	15.0 – 17.0 ft	Alluvial	44.8

Summary of Direct Shear Testing


Boring	Average Initial/Test Dry Density (pcf)	Friction Angle at Failure (degrees)	Cohesion at Failure (tsf)	Ultimate Friction Angle (degrees)	Ultimate Cohesion (tsf)
Boring B-2A ST-1 15.0 – 17.0 ft Alluvial	73.0	21.0	0.190	20.9	0.065

Summary of Soil Corrosion Testing


Sample ID	Chlorides (ppm)	Sulfates (ppm)	рН	Resistivity (ohm-cm)
Boring B-3				
S-1 to 7	20.0	16.0	6.4	7 400
$0.0 - 15.0 \; ft$	30.0	16.0		7,400
Fill and Alluvial				

By: YZ 09-04-13Ckd: SCS 09-04-13

FIGURES

File: MA_2013\004\exhibits\misc\13004_prjl.dwg Date: 3/08/13

APPENDIX A ENGINEER'S FIELD BORING LOGS

Schuylkill River Trail Extension – Proposed Retaining Wall South Street to Christian Street City of Philadelphia, Philadelphia County, Pennsylvania Project No. 13004 October 2014

ENGINEER'S CERTIFICATION

I, the undersigned, hereby certify that I have observed the soil samples and rock cores for this project and that the classification of materials and depths presented on the following Engineer's Field Boring Logs are, to the best of my knowledge, correct as submitted.

American Geotechnical & Environmental Services, Inc.

Solveig Salin, P.E. Project Engineer

	ENGINEERS FIELD BORING LOG													
	τ ΝΔΝ	/F Schuvi	1-111 P	ivor Trail I	Extension		C	OUNTY		SHEET <u>1</u> OF <u>2</u> DATE: START 8-6-13				
STAT	E RT. NO).	-		SECT.	_	SI	EGMENT	Philadelphia I - OFFSET -	END 8-6-13				
STAT	ION	113	+34		OFFSE	T FROM	CENTE	RLINE	10 ft RT 0	D.G. ELEV. 9.3 ft.				
INSPE	ECTOR (S	SIGNED)			S. Y	ruan		DRIL	LERS NAME/COMPANY A. Scafidi	TRC Engineers, Inc.				
EQUI	PMENT U	JSED Acl	ker So	il X Track	Mount R	ig with Sat	fety Hamn	ner						
									Vireline with Water					
CASI	NG: SIZE	: <u> </u>	0 in I.	D.	DEPTH	I: <u>I</u>	9.5 ft TE:	_ WATER:	DEPTH: 5.7 ft TIME: 1300 DEPTH: 7.0 ft TIME: 0900	DATE: 8-6-13 DATE: 8-8-13				
CHEC	KED DI	·		303		DA	1L	9-0-13	NOT ENCOUNTERED □	DAIL. <u>6-6-15</u>				
	Αz		$\widehat{}$	/	ol									
Ê	AN RUJ	BLOWS/0.5 FT. ON SAMPLER	(FT	(%)	EI ISE		H ₂ O CONTENT							
DEPTH (FT.)	NO.	3LOWS/0.5 FT. ON SAMPLER	RΥ	Recovery (%) RQD (%)	JE BE	USCS AASHTO	ILN			DEMADIZO				
ILLA	LE SCC	SWC	OVE	RQI	UA.	US ASS	CC		DESCRIPTION	REMARKS				
ā	SAMPLE NO. AND TYPE/CORE RUN	BLC	RECOVERY (FT.)	4	POCKET PENET or TORVANE (TSF)		H ₂ C							
	S. T		м	/	д , .									
		4				ml		0.0 to 1.5	SANDY SILT with gravel (ml), brown to black, moist, stiff, homogeneous (FILL)	, _				
		6							sini, nonogeneous (1112)	_				
1.5	S-1	4	0.5	33	-	a-4	М		El. 7	7.8				
		4				sm /		1.5 to 4.5	SILTY SAND with gravel (sm), black, moist, medium	_				
		6							dense, homogenous (FILL)					
3.0	S-2	13	0.4	27	-		М							
	~ -	13				1 /				_				
		8												
4.5	S-3	18	0.5	33		a-2-4	М		El. 4	1.0				
4.5	3-3	18	0.5	- 33	-	gm /	IVI	4.5 to 7.5	SILTY GRAVEL with sand (gm), black, wet, loose,	+.0				
		7				° /			homogeneous (FILL)	Persistent petroleum odor				
										from 4.5-16.5 ft				
6.0	S-4	3	0.2	13	-	- /	W							
L _		2												
7.5	S-5	3	0.0	0	-	a-2-4	-		El.	1.8				
		2				SM		7.5 to 13.5	SILTY SAND (SM), black, wet, very loose to loose, homogeneous, (ALLUVIAL)					
		4							-					
9.0	S-6	1	0.6	40	-		W		Decomposed organics present, S-6	-				
		4												
		5												
10.5	S-7	3	0.3	20	-		W			-				
		5				1 /				Class. on				
		2								S-6 to S-9 — N.M.C.=71.8%				
12.0	S-8	2	0.3	20	_		W							
12.0	5-0	1	0.5	20	-	1/	**							
		2				/								
12 -	5.0		0.2	20			***							
13.5	S-9	1 2	0.3	20	-	A-4(0)	W	13.5 to 16.5	El4 ELASTIC SILT (mh), dark brown to black, wet, mediu					
						<u> </u>		1010 1010	stiff, homogeneous (ALLUVIAL)					
\vdash –		2												
15.0	S-10	4 3	1.0	67	0.75	+/	W							
										_				
L -		3								_				
16.5	S-11	2	1.4	93	1.0	a-7-5	W		El	7.2				
		5				sm		16.5 to 19.5	SILTY SAND with gravel (sm), dark brown to black, wet, medium dense to very dense, homogeneous,					
		8							(RESIDUAL)	-				
18.0	S-12	14	1.3	87	-		W							
		30								-				
		31	. ·							-				
19.2 19.5	S-13	50/0.2	0.4	33	-	a-2-4	W		El10	0.2				
	S-14	50/0.0	0.0	0	-	-	-	19.5 to 25.5	SCHIST, dark gray to orange/brown, soft to medium	TOP OF ROCK				
					L	I		L						

	ENGINEERS FIELD BORING LOG SHEET 2 OF 2													
DDOI		ME C.1	11 '11 D	· · · · · · · · · · · · · · · · · · ·	F (C							
PROJ.	ECINAL	VIE <u>Schuy</u>	/IKIII R	iver Trail	Extension		U	OUNIY	Philadelphia - OFFSET -	DA	TE: START <u>8-6-13</u>			
SIAI	E KI. N)	-	·	SECI.	-	51	EGMENT	OFFSE1	—	END <u>8-6-13</u>			
STAT	ION	11	3+34		OFFSE	I FROM	CENTE	RLINE	10 ft RT		G. ELEV. <u>9.3</u> ft.			
									LERS NAME/COMPANY	A. Scafidi / TF	C Engineers, Inc.			
									v. v.v					
									Vireline with Water	1200				
CASI	NG: SIZI	2: <u> </u>	3.0 in I.	D.	DEPTH		9.5 ft	_ WATER:	DEPTH: <u>5.7 ft</u> TIME:		PATE: 8-6-13			
CHEC	KED B1	:		SCS		DA	TE:	9-8-13	_ DEPTH: 7.0 ft TIME: NOT ENCOUNTERED □	<u> 0900 </u>	DATE: 8-8-13			
				1	H 1	1			NOT ENCOUNTERED					
	X X	⊢ ≃	Í.		SF)		Ę							
E.	0. A ER	.5 F PLE	ΥŒ	8) (%		~ 2	IE							
DEPTH (FT.)	OR N	BLOWS/0.5 FT. ON SAMPLER	ER	Recovery (%) RQD (%)	OCKET PENET o TORVANE (TSF)	USCS AASHTO	H ₂ O CONTENT		DESCRIPTION		REMARKS			
EPI	E/C E/C	WO 4 S∕	No.	8 / S	NE KE	P A	00							
	SAMPLE NO. AND TYPE/CORE RUN	O BL	RECOVERY (FT.)	14	POCKET PENET or TORVANE (TSF)		H ₂ (
	S F			100	₽/`	/			1 1 1 1 1 1 1 1 1 1		0 10 5 0			
20.5	R-1		1.0	100 0					hard, moderately to slightly weathered, intensely foliated (RD=60-65), extreme		@ 19.5 ft			
L				96	1				jointed (RD=5-10, 60-65, 85-90), very					
]			/					broken (RQD=10%)	6.7				
F -	1			/					(RMR: D=3, S=1, R=3, I=2, W=3-5)		-			
\vdash –	1			/					Moderately weathered, 21.4-24.4'		-			
\vdash –	-			/					moderatory weathered, 21.4-24.4		-			
				/										
				/										
	1			/										
⊢ –				/							_			
\vdash –				/							_			
25.5	R-2		4.8	12						El16.2				
									END OF BORING @ 25.5 ft		_			
	1										-			
											_			
<u> </u>														
L _														
											-			
											-			
											-			
											_			
<u> </u>	-										_			
<u> </u>	4										_			
]										-			
F -	1										-			
⊢ -	-										-			
⊢ –	-										4			
⊢ –											_			
L														
F -	1													
\vdash –	1										-			
⊢ –	-										-			
											-			
											_			
]													
F -	1													
⊢ –	-													
⊢ –														
											-			
											-			
	1													
F -	1										_			
\vdash –	-													

	ENGINEERS FIELD BORING LOG BORING NO. B-2 SHEET 1 OF 2													
DDOIE		/E. Calumi	11.:11 D		Dutanai an		C	OUNTY	Dhiladalahia		SHEET1OF2DATE:START8-7-13			
STATE	ERT. NO)	-		SECT.	_	C	EGMENT	Philadelphia OFFSET	-	END 8-7-13			
STATI	ON	112	2+89	·	OFFSE	T FROM	CENTE	RLINE	9 ft RT		O.G. ELEV. 10.5 ft.			
INSPE	CTOR (S	SIGNED)			S. Y	/uan		DRIL	LERS NAME/COMPANY	A. Scafidi	/ TRC Engineers, Inc.			
EQUIP	MENT U	JSED Acl	ker So	il X Track	Mount Ri	ig with Saf	fety Hamn	ner						
									Vireline with Water					
CASIN	IG: SIZE	:3	.0 in 1.	D.	DEPTH	$\frac{120}{DA}$	5.8 ft TE·	_ WATER: 9-8-13		TIME: <u>1130</u> TIME: 0700	DATE: 8-7-13 DATE: 8-8-13			
CHLC		·		303		DA	IL	2-0-15	NOT ENCOUNTEREI		_ DATE			
	₽ z			/	D or		<u> </u>							
(·L	SAMPLE NO. AND TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (FT.)	Recovery (%) RQD (%)	OCKET PENET o TORVANE (TSF)		H ₂ 0 CONTENT							
D H.	C NC	S/0	ER	ecovery (%) RQD (%)	E PE	USCS AASHTO	ENC		DESCRIPTION		REMARKS			
DEPTH (FT.)	PLF	WO.	NO	RQ RQ	RV/	U AA	ΟC		DESCINI HOIN					
Ω	SAMPLE NO. AND TYPE/CORE RUN	O BL	REC	7	POCKET PENET or TORVANE (TSF)		H_2							
	•1	4		1	~1	sm		0.0 to 10.2	SILTY SAND with gravel (sr	n), black, wet to moist,	verv			
		5							loose to medium dense, homo					
	~ .			_					Coal fragments, coal dust and	slag present, 0.0-9.0'				
1.5	S-1	5	0.1	7	-		M			81	_			
		6									_			
	~ -										_			
3.0	S-2	7 4	0.4	27	-		М	-			_			
		3							Wood fragments present, S-3					
	~ ~										_			
4.5	S-3	2 2	0.3	20	-		М	-						
$\vdash \dashv$		-												
	~ .													
6.0	S-4	2 3	0.2	13	-		М	-			_			
		2									_			
											_			
7.5	S-5	2 4	0.3	20	-		M	-			_			
		2									_			
											_			
9.0	S-6	1 3	0.4	27	-	/	W				_			
-		3				/					_			
		5		_		a-2-4					. 0.3			
10.5	S-7	1	0.1	7	-	sc	W	10.2 to 13.5	CLAYEY SAND with gravel loose to loose, homogeneous		'ery			
		3							iouse to iouse, noniogeneous	(ALLOVIAL)	_			
	~ ~										_			
12.0	S-8	2 5	0.4	27	-		W							
$\vdash \dashv$		3									-			
	G O										2.0			
13.5	S-9	2 5	0.0	0	-	/ a-2-6 MH /	-	13.5 to 18.5	ELASTIC SILT with sand (M		-3.0			
$\vdash \dashv$		7							stiff, homogeneous (ALLUVI		collected in offset Boring B-2A, 15.0 to 17.0 ft.			
	0.10		0.1	-	0.1		***							
15.0	S-10	2	0.1	7	0.1		W				Class on ST-1 N.M.C.=44.8%			
$\vdash \dashv$		-									11.11.044.070			
	a			100	0.1						_			
16.5	S-11	3 2	1.5	100	0.1	/	W				_			
$\vdash \dashv$		-												
	a 16													
18.0	S-12	2 3	1.4	93	0.1	A-7-	W							
$\vdash \dashv$		10				5(22) sm		18.5 to 26.8	SILTY SAND with gravel (sr		<u>-8.0</u> wet			
			0.5						to moist, medium dense to ver	ry dense, homogeneous				
19.5	S-13	10 6	0.3	20	-		W		(RESIDUAL-completely wea	thered amphibolite)	-			
		5												

ENGINEERS FIELD BORING LOG											
PROJECT NAME Schuylkill River Trail Extension COUNTY Philadelphia STATE RT. NO. - SECT. - SEGMENT - OFFSET -									SH	$\begin{array}{c} \text{EET} \underline{2} \text{OF} \underline{2} \\ \text{TE:} \overline{\text{START}} \overline{8-7-13} \end{array}$	
STATE RT NO					SECT - SEGMENT				OFESET	$ D^{A}$	END 8-7-13
STATION				OFFSE	- F EROM	CENTER			-	G. ELEV. 10.5 ft.	
INSPECTOR (SIGNED) S. Y						Yuan DRILL			FRS NAME/COMPANY	A Scafidi / TE	
INSPECTOR (SIGNED) S. Yuan DRILLERS NAME/COMPANY A. Scafidi / TRC Engineers, Inc. EQUIPMENT USED Acker Soil X Track Mount Rig with Safety Hammer Image: Comparison of the same state sta											
DRILLING METHODS Flush Joint Casing with Water, Split Inner Core Barrel, NX Wireline with Water											
		:3								1130 E	DATE: 8-7-13
CHEC	KED BY	:		SCS		DA	TE:	9-8-13	_ DEPTH:7.3 ftTIME:		DATE: 8-8-13
								-	NOT ENCOUNTERED \Box		
DEPTH (FT.)	SAMPLE NO. AND TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (FT.)	Recovery (%) RQD (%)	POCKET PENET or TORVANE (TSF)	USCS AASHTO	H ₂ O CONTENT		DESCRIPTION		REMARKS
DE	SAMP TYPE	BLO	RECC	Rec	POCK		H ₂ O				
		8									
21.0	S-14	21	0.0	0	-		-				
		11									-
21.8	S-15	50/0.3	0.6	75	-		М				-
											-
											-
											_
23.8	R-1		0	0							-
24.1	S-16	50/0.3	0.2	67	-		М				BX sized (1.0" O.D.) spoon
<u> </u>						/					used for S-16, S-17
⊢ –											-
25.5	R-2	50/0.2	0	0		/	M				-
25.8	S-17	50/0.3	0.2	67	-	/	M				-
						/					-
26.8				60 /		a-2-4		26.8 to 31.8	AMPHIBOLITE, black to dark gray, soft t	El16.3	TOP OF ROCK
				00				20.8 10 51.8	hard, highly to moderately weathered, inte		@ 26.8 ft -
									thinly foliated (RD=65-70), very closely to		_
									jointed (RD=25-30, 65-70), very broken to broken, (RQD=18%)	slightly	-
28.8	R-3		1.2	20					(RMR: D=3, S=1, R=3, I=2, W=1-3)		-
				83							-
											-
											-
											-
											-
31.8	R-4		2.5	/ 17						El21.3	4
	r		2.5	, 1/					END OF BORING @ 31.8 ft	Li, -21,J	_
\vdash –											4
L -											4
\vdash –											4
											_
L_											_
L_											_
											_
\vdash –											
\vdash –											
\vdash –											
\vdash –											
\vdash –											
\vdash –											

						ENGINEERS FIELD BORING LOG BORING NOB-2A									DRING NO. <u>B-2A</u>
	ЕСТ І	ΝΔΝ	IE Sci	mvlkill	River	Trail F	Tytension		C	OUNTY		Philadelphia			IEET <u>1</u> OF <u>1</u> ATE: START 8-8-13
STAT	ERT	. NO	. <u>.</u>	<u> </u>	KIVEI	<u>IIan I</u>	SECT.	_	C	EGMENT	-	OFFSET			END 8-8-13
STAT	ION		·	112+89)		OFFSE	Г FROM	CENTE	RLINE		7 ft RT			G. ELEV. 10.5 ft.
INSPE	ЕСТО	R (S	IGNE	D)			S. Y	'uan		DRIL	LERS NAM	E/COMPANY	A. S	cafidi / T	RC Engineers, Inc.
								g with Sat	ety Hamr	ner					
DRIL	LING	ME	THOE	S <u>HS</u>	A		DEDTU	·		WATED.	DEDTU	750	TIME. 11/		DATE: 0.0.12
CHEC	NG: 5 KED	BY			S	CS	DEPTH	: 	- TE:		DEPTH: DEPTH:	/.5 ft *		1 <u>- 0</u>	DATE: <u>8-8-13</u> DATE:
ende	11110	21			5	00		2.1		, 0 10	_ NOT	ENCOUNTERI			
	Ð	Z	r :	~ -		/	Γ or F)		F						
DEPTH (FT.)	SAMPLE NO. AND	TYPE/CORE RUN	BLOWS/0.5 FT.	ON SAMPLER	Recovery (%)	8	POCKET PENET or TORVANE (TSF)	<u> </u>	H ₂ 0 CONTENT						
TH (Й Ш	OR	VS/0	AMI	very	RQD (%)	T PE	USCS AASHTO	NO			DESCRIPTION	N		REMARKS
DEP	MPL	PE/(ΓΟΛ		Sec 1	X X	CKE	× ⊂	20 0						
	SAI	ТΥ	В		2 7		Q H		Ĥ						
										0.0 to 15.0	UNSAMPL	ED			*Boring grouted upon
															completion -
															_
															_
															_
															_
															_
															_
															_
															_
															-
															_
															-
															_
															_
															_
															_
L _															_
⊢ _															_
L _															
L _															_
⊢ –															-
⊢ –															-
⊢ –															-
⊢ –															
\mathbf{L}_{-}															1
15.0		-+			_			MH /		15.0 to 17.0	ELASTIC S	ILT with sand (MH), brown, wet,	El4.5	Class. onST-1
\vdash –								····· / .				is, (ALLUVIAI			
\vdash –															
	07	,		1	_ .	75	0.1	A-7-	44.0						.
17.0	ST-	-1		1.	3	75	0.1	5(22)	44.8	<u> </u>	END OF BO	ORING @ 17.0	ft	El6.5	,
\vdash –															
\vdash –															-
\vdash –															-
															-
															-

	ENGINEERS FIELD BORING LOG BORING NOB-3										
PROJECT NAME Schuylkill River Trail Extension COUNTY Philadelphia STATE RT. NO. SECT. OFFSET										$\begin{array}{c} \text{EET} \underline{1} \text{OF} \underline{2} \\ \text{TE:} \text{START} \underline{8-7-13} \end{array}$	
STATE R1	T. NO.	E <u>Schuy</u>	-		SECT.	_	SI	EGMENT	- OFFSET -		END 8-8-13
STATION		112	+50		OFFSE	T FROM	CENTE	RLINE	3 ft RT	0.0	G. ELEV. 13.0 ft.
INSPECTO	OR (SI	GNED)			S. Y	luan		DRIL	LERS NAME/COMPANY A. Sc		
EQUIPME	ENT U	SED Ac	ker So	il X Track	Mount Ri	ig with Saf	fety Hamn	ner			
									Vireline with Water		
CASING: S	SIZE:	3.	.0 in I.	D.	DEPTH	$1: \underline{30}$	0.0 ft TE:	WATER:	DEPTH: 9.0 ft TIME: 0920 DEPTH: * TIME:) [] 	DATE: 8-8-13
CHECKEL				363		DA	IL	9-0-13	_ DEFTIL HIME NOT ENCOUNTERED □	L	AIL
Ð	z			/	or fi		F -1				
(if I	RU	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (FT.)	Recovery (%) RQD (%)	OCKET PENET o TORVANE (TSF)		H ₂ O CONTENT				
DEPTH (FT.) MPLE NO. AN	ORE	S/0.5	ΞRΥ	ecovery (%) RQD (%)	Ed B	USCS AASHTO	INC		DESCRIPTION		REMARKS
PLE	EC	OW;	NO I	RQ	KET 8	U AA	o Cí		DESCRIPTION		
DEPTH (FT.) SAMPLE NO. AND	TYPE/CORE RUN	O BL	REC	7	POCKET PENET or TORVANE (TSF)		H ₂ (
		2		/	-,	sm /		0.0 to 4.5	SILTY SAND with gravel (sm), black to dark br	own	*Boring grouted upon
						···· /		010 10 110	moist, loose to dense, homogeneous (FILL)	o,	completion –
		4							Coal and concrete fragments, 0.0-4.5'		-
1.5 S-	-1	5 12	0.2	13	-	/	М	-	Cour and concrete magnenias, 0.0 1.5		-
											-
		10									-
3.0 S-	-2	12 15	1.1	73	-	/	M				-
						/					-
		20				/					-
4.5 S	-3	20 12	1.0	67	-	a-2-4 ml	M	4.5 to 10.5	SANDY SILT with gravel (ml), brown, moist, st	El. 8.5	-
\vdash –						···· /		4.5 10 10.5	hard, homogeneous (ALLUVIAL)	.111 to	-
		19				/					_
6.0 S	-4	14 6	0.8	53	-		М	-			-
									Trace organics, S-5		-
		5							Trace organics, 5-5		
7.5 S-	-5	5	1.0	67	1.0		М	-			
		12							Wood fragments present, S-6		
		14							wood nagments present, 5-0		
9.0 S-	-6	12	1.0	67	0.75		М	-			_
		5				/					
		10				/					_
10.5 S-	-7	8	0.4	27	-	a-4	М	10.5 . 10.5		El. 2.5	-
		5				sm		10.5 to 19.5	SILTY SAND with gravel (sm), light brown, we loose to loose, homogeneous (ALLUVIAL)	t, very	-
		3							, ,		_
12.0 S-	-8	2	0.0	0	-		-				4
\vdash \dashv		2									4
$\vdash \dashv$		2									-
13.5 S-	-9	2	0.1	7	-		W				-
		2									-
		2									-
<u>15.0</u> S-	-10	2	0.5	33	-		W				-
		3									-
		2									-
16.5 S-	-11	1	0.1	7	-		W				-
		2									-
		1									-
18.0 S-	-12	2	1.1	73	-		W				-
		1									
		1									
19.5 S-	-13	2	0.1	7	-	a-2-4	W			El6.5	7
		2				mh		19.5 to 23.0	ELASTIC SILT (mh), light brown, wet to moist,	soft to	

	ENGINEERS FIELD BORING LOG BORING NOB-3									
DDOIE		/E. Calumi	1.:11 D		Factorian		C	OUNTV		IEET <u>2</u> OF <u>2</u> ATE: START 8-7-13
STATE	ERT NO)	-		SFCT		U	FGMENT	Philadelphia DA	END 8-8-13
STATI	ON	, 	+50	`	OFESE	FROM	CENTE	RLINE	<u>3 ft RT</u> O.	G. ELEV. 13.0 ft.
INSPEC	CTOR (S	SIGNED)	150		S. Y	uan	CENTE	DRIL	LERS NAME/COMPANY A. Scafidi / T	
EQUIP	MENT U	USED Acl	ker So	il X Track	Mount Ri	g with Saf	fety Hamn	ner		
									Vireline with Water	
CASIN	G: SIZE	: 3.	0 in I.	D	DEPTH	:30	0.0 ft	WATER:	DEPTH: <u>9.0 ft</u> TIME: <u>0920</u>	DATE: <u>8-8-13</u>
CHECH	KED BY	:		SCS		DA	TE:	9-8-13	DEPTH: * TIME: 1	DATE:
				· · ·		,			NOT ENCOUNTERED	
	SAMPLE NO. AND TYPE/CORE RUN	E M	RECOVERY (FT.)	<u> </u>	POCKET PENET or TORVANE (TSF)		Łz			
DEPTH (FT.)	VO.	BLOWS/0.5 FT. ON SAMPLER	ε Υ (Recovery (%) RQD (%)	EN E	USCS AASHTO	H ₂ O CONTENT			
HL	CO CO	WS/	VEI	SO Vo	ET F	USCS	CO		DESCRIPTION	REMARKS
DEI	TPE/	DN S	SCO	Rec	OR ¹	A A	20			
	SA TY	щ	RE	/	D P	/	H			
		2				/			stiff, homogeneous, (ALLUVIAL)	
21.0	S-14	1	0.7	47	1.0		w			-
		2								
		7								-
	S 15		0.0	0						-
22.5	S-15	4 21	0.0	0	-	/	-	-		-
						/ a-7-5 sm		23.0 to 30.0	El10.0 SILTY SAND with gravel (sm), light gray, moist, dense	<u>)</u>
		28				5111		23.0 10 50.0	to very dense, homogeneous, (RESIDUAL-completely	-
24.0	S-16	17	1.5	100	-	/	M	-	weathered schist)	-
		18				/				-
		30				/				-
25.5	S-17	34	1.0	67	-	/	М			-
		21								-
		29								_
27.0	S-18	44	0.6	40			М			_
27.0	5-10	18	0.0	40		/	101			-
		18								-
	~									
28.5 28.7	S-19 S-20	26 50/0.2	1.0	67 100	-	/	M	-		
-						/				
						/				_
30.0						a-2-4			El17.0	
				100				30.0 to 32.0	SCHIST, dark gray to light brown/ orange, medium hard to hard, highly to slightly weathered, very intensely	TOP OF ROCK @ 30.0 ft
									foliated, (RD=55-60), very closely to closely jointed	e 50.0 ft
									(RD=5-10, 30-35, 55-60), very broken to slightly broken	,
32.0	R-1		2.0	35					(RDQ=35%) (RMR: D=3, S=1, R=3, I=2, W=1-3)	1
$ \vdash \dashv $									Foliations are wavy throughout El19.0	
-									END OF BORING @ 32.0 ft	' -
$\vdash \dashv$										1
$\vdash \dashv$										-
$\left - \right $										-
$\vdash \dashv$										-
-										-
										-
										-
										-
										4
[-]										-
-										4
$\vdash \dashv$										
$\vdash \dashv$										
$\vdash \dashv$										

APPENDIX B LABORATORY TESTING RESULTS

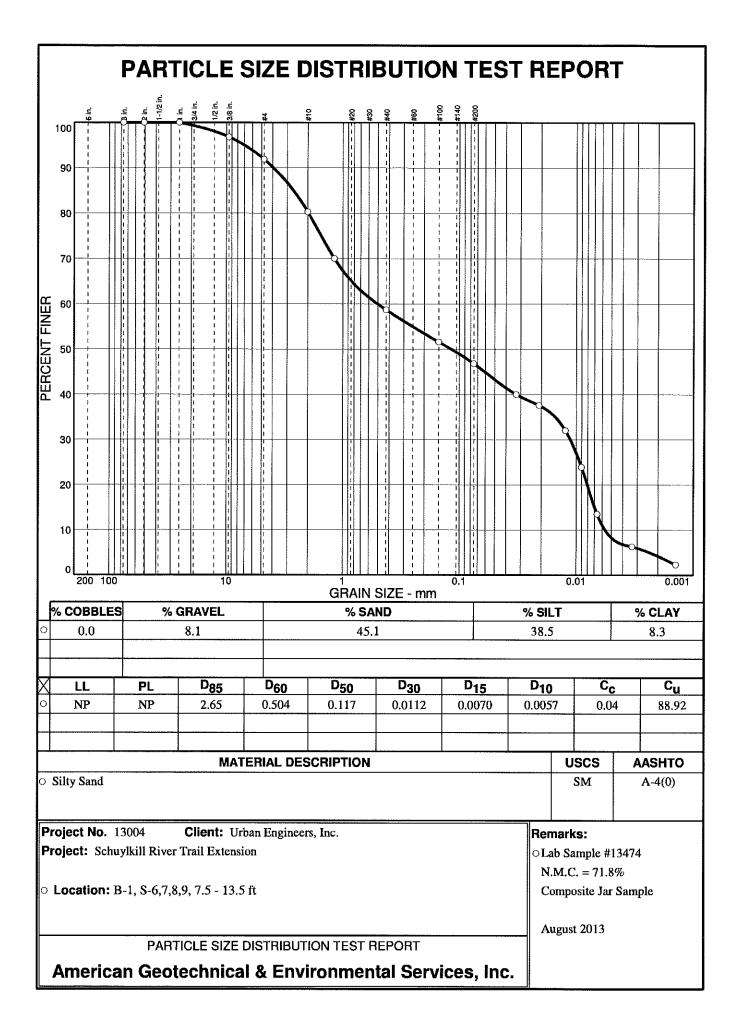
Schuylkill River Trail Extension – Proposed Retaining Wall South Street to Christian Street City of Philadelphia, Philadelphia County, Pennsylvania Project No. 13004 October 2014

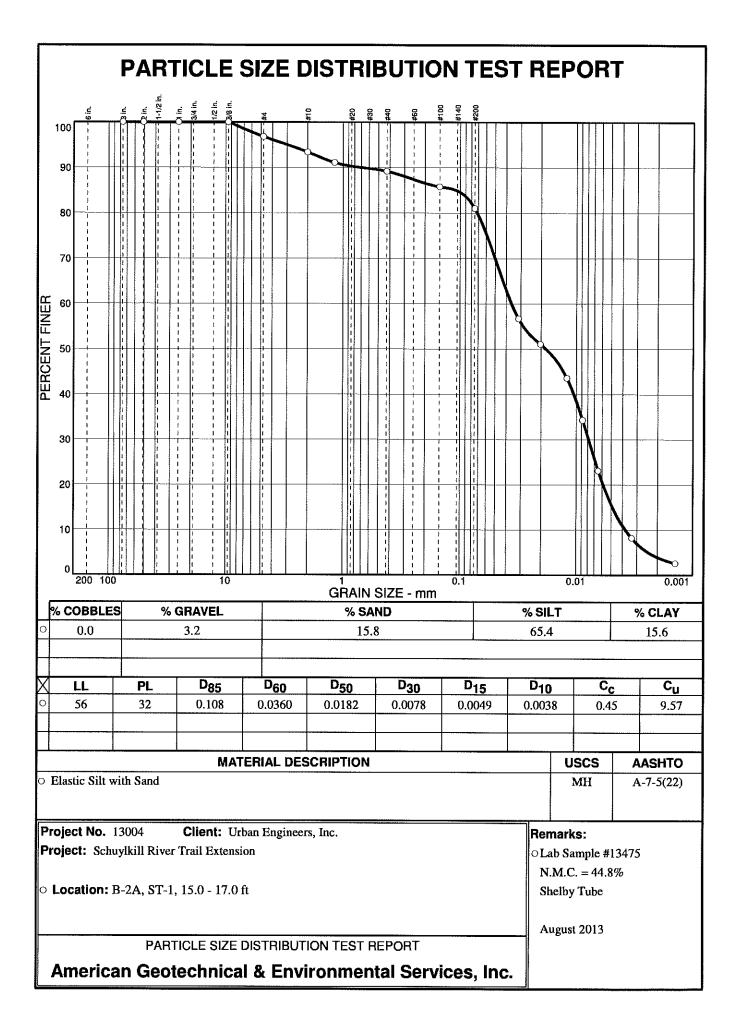
ENGINEER'S CERTIFICATION

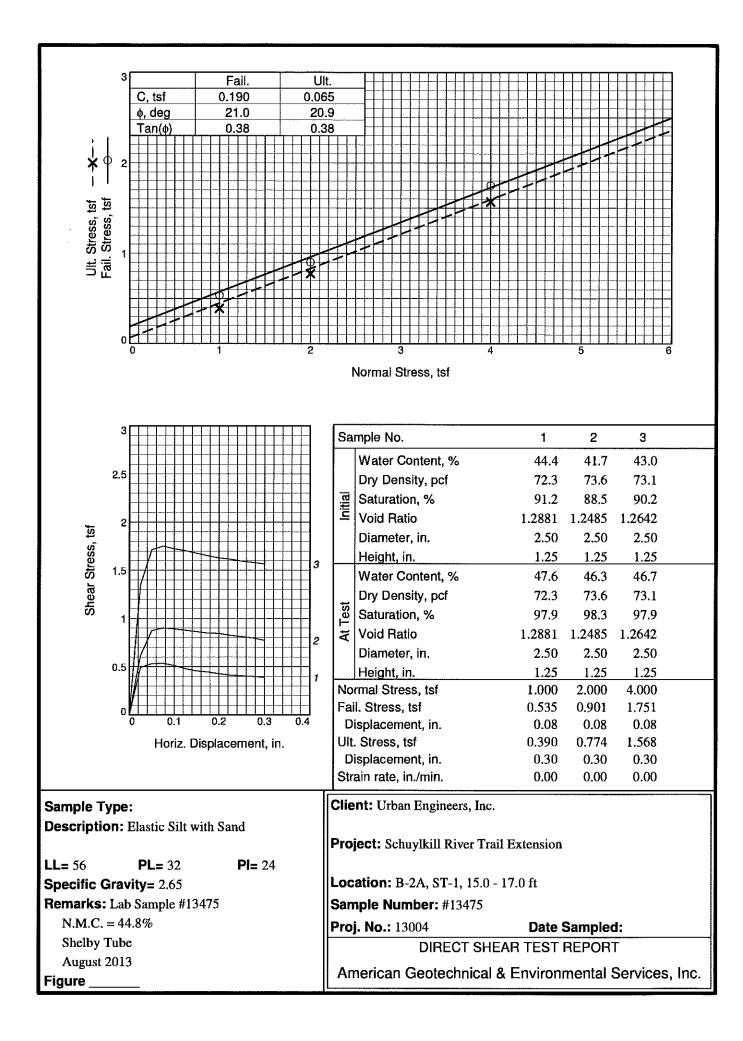
I, the undersigned, hereby certify that the laboratory testing was performed in accordance with the identified test methods, and the results have been checked to verify that to the best of my knowledge they represent the materials provided.

American Geotechnical & Environmental Services, Inc.

Solveig Salin, P.E. Project Engineer

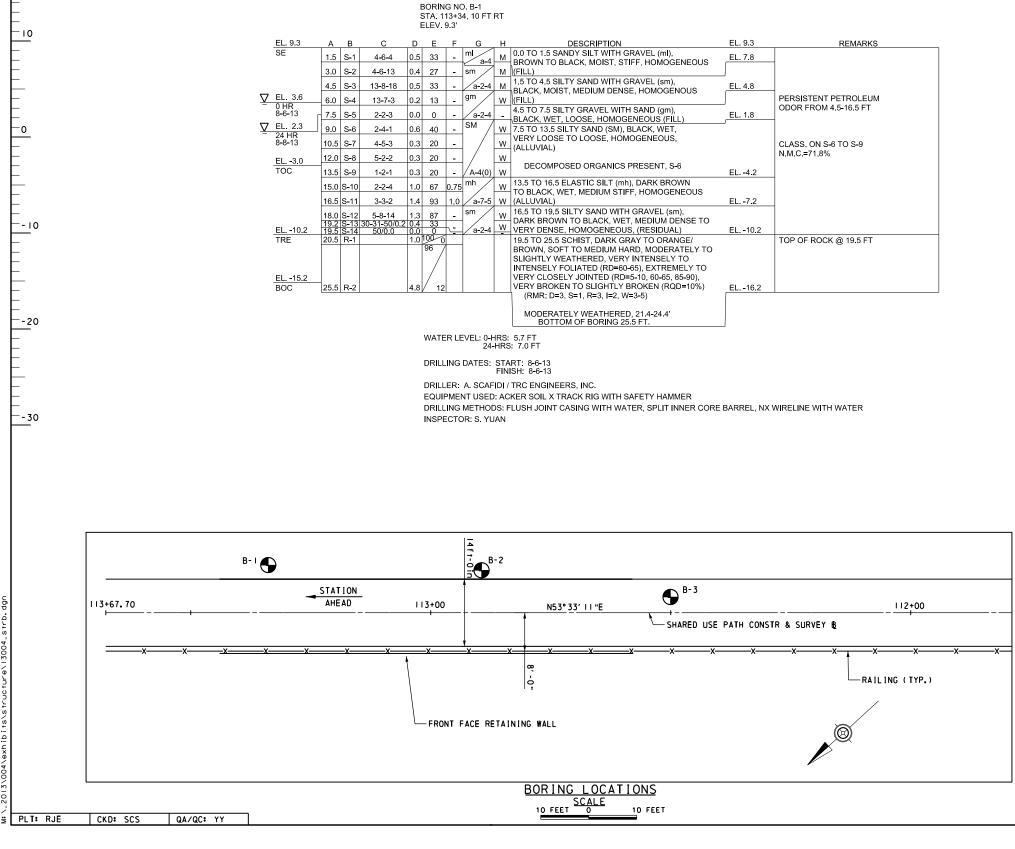

Corrosivity Test Report Schuylkill River Trail Extension Job #13004


Test Procedure

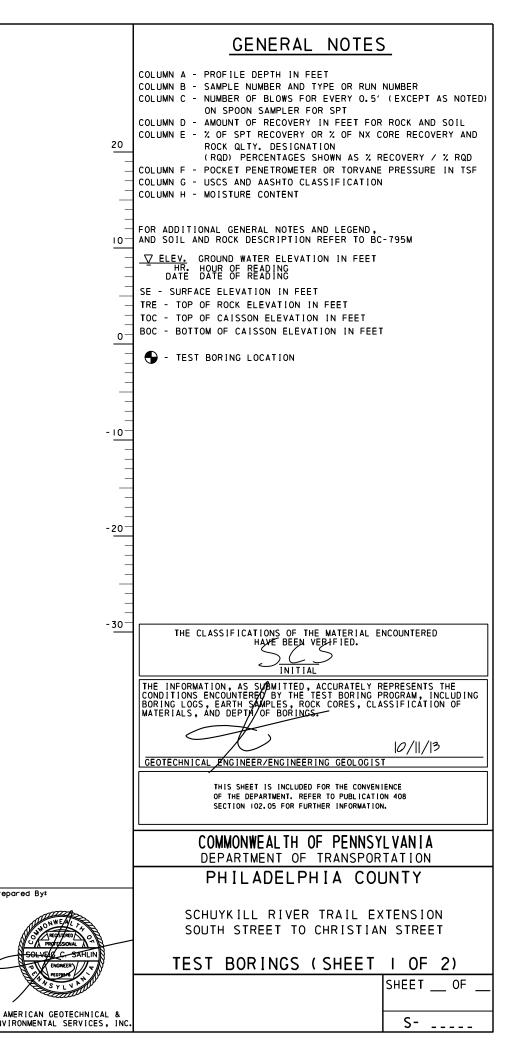

Soil	Water
pH – D4972	pH – D1067
Chloride content – CalDOT 422	Chloride content – D512
Sulfate content – CalDOT 417	Sulfate content – D516
Resistivity – PTM 133	Conductivity – D1125

Results

Sample ID	<u>pH</u>	Chlorides, ppm	<u>Sulfates, ppm</u>	Resistivity, ohm-cm <u>Conductivity, µS/cm</u>
B-3, S-1 to 7, 0.0 – 10.5 ft	6.4	30.0	16.0	7.4 x 10 ³

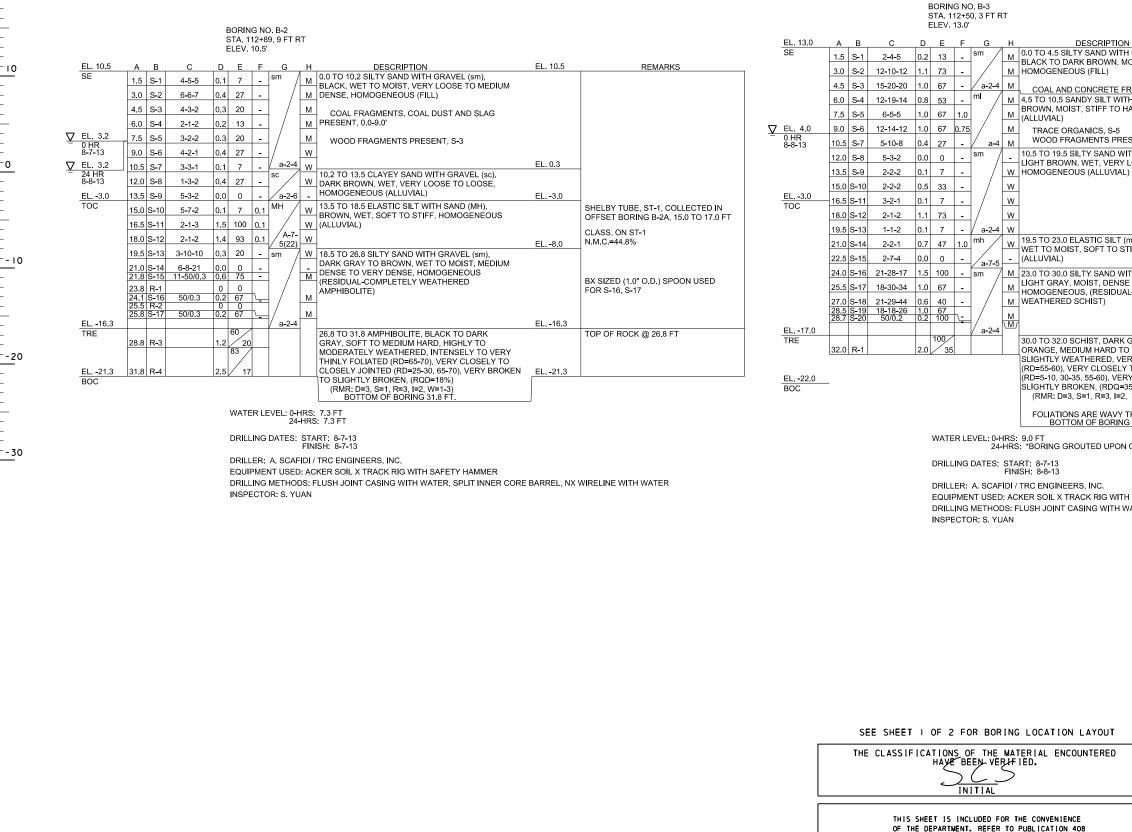


APPENDIX C STRUCTURE BORING SHEETS


RETAINING WALL (BORING B-I)

20

ENVIRONMENTAL SERVICES, INC


Prepared By:

RETAINING WALL (BORING B-2)

RETAINING (BORING B

SECTION 102.05 FOR FURTHER INFORMATION.

20

-0

CADD

W	AL	L
-	3)	

I		EL. 13.0	REMARKS		-				
GRAVEL (S	sm), SE TO DENSE,		* BORING GROUTED UPON COMPL	ETION	_				
0101, 2002	JE TO DENOE,				10-				
RAGMENTS		EL. 8.5			_				
H GRAVEL (ARD, HOMC					-				
					_				
SENT, S-6		EL. 2.5			_				
TH GRAVEL LOOSE TO I									
)	L003L,								
					_				
		EL6.5			_				
nh), LIGHT I		LL0.5			_				
TFF, HOMO	GENEOUS,	EL 10.0			- 10				
TH GRAVEL		EL10.0			_				
E TO VERY I L-COMPLET					-				
					_				
		EL 47.0			_				
	GHT BROWN/	EL17.0	TOP OF ROCK @ 30.0 FT		_				
) HARD, HIG RY INTENSE	SHLY TO ELY FOLIATED,	EL19.0			-20-				
TO CLOSEI Y BROKEN	LY JOINTED TO				_				
5%) W=1-3)					_				
THROUGHO	uт				_				
32.0 FT.					_				
COMPLETI	ON				_				
					- 30 -				
I SAFETY H	AMMER								
		BARREL, NX V	WIRELINE WITH WATER						
		COMMON							
			NWEALTH OF PENNSY TMENT OF TRANSPOR						
	PHILADELPHIA COUNTY								
	, c		LL RIVER TRAIL EX	TENSION					
			TREET TO CHRISTIAN						
	ĺ								
	TE	<u>ST_</u> B0	RINGS (SHEET	2 OF 2)					
				SHEET O	F				

20

APPENDIX D CORE BOX PHOTOS

Photo 1: B-1, Box 1 of 1.

Photo 2: B-2, Box 1 of 1.

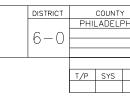


Photo 3: B-3, Box 1 of 1.

APPENDIX E CONCEPTUAL STRUCTURE PLAN (Provided by Urban Engineers, Inc.)

SCHUYLKILL RIVER DEVELOPMENT CORPORATION

STRUCTURAL DRAWINGS

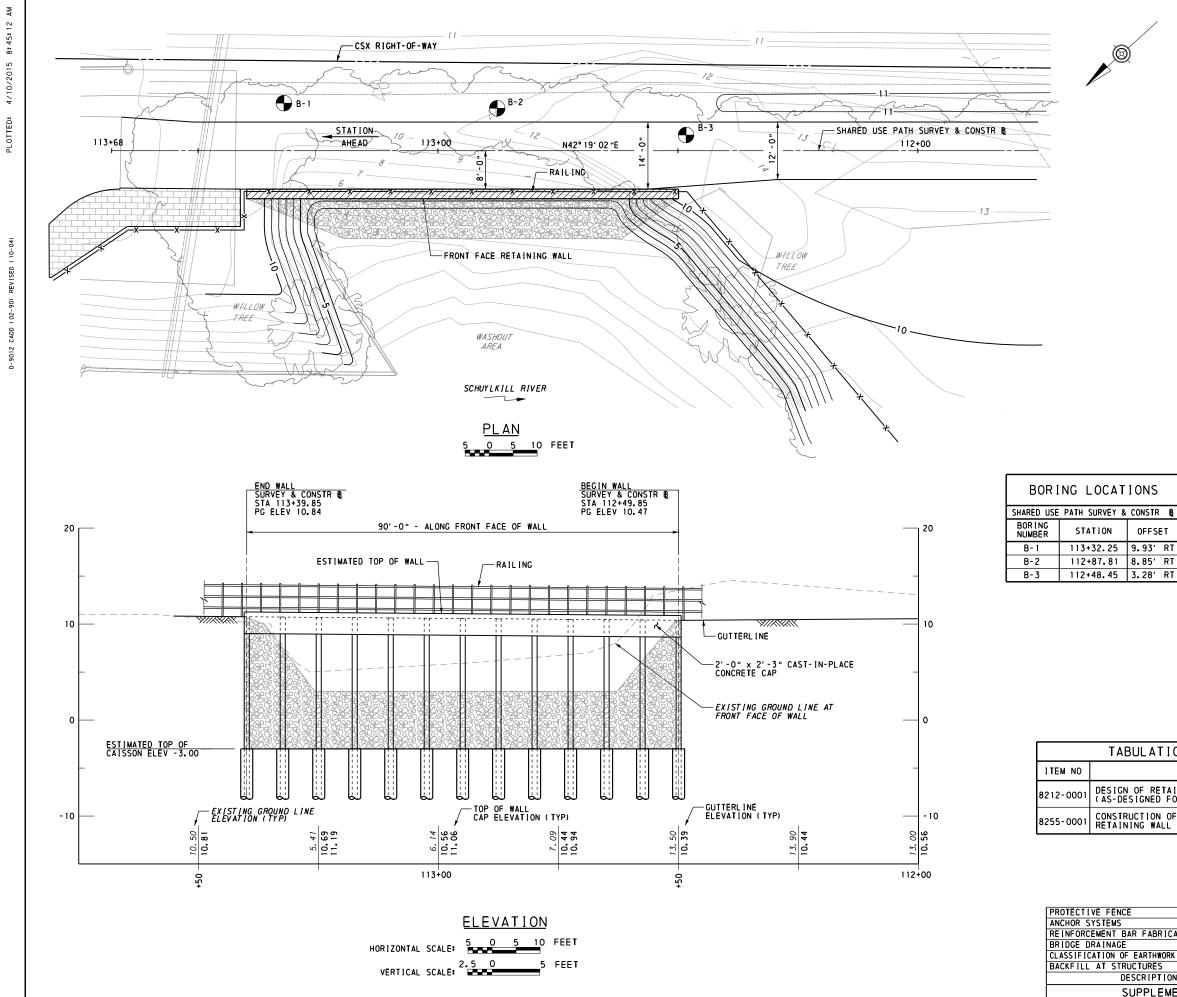
FOR

CONSTRUCTION

OF

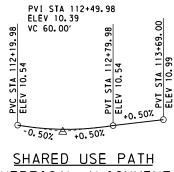
THE SCHUYLKILL RIVER TRAIL EXTENSION - SOUTH STREET TO CHRISTIAN STREET IN PHILADELPHIA COUNTY, PENNSYLVANIA

FROM STA. 99+56.00 TO STA. 113+68.00 LENGTH 1412.00 FT, 0.27 MI.


DESIGN DESIGNATION

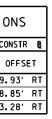
HIGHWAY CLASSIFICATION – SHARED USE PATH - 20 MPH DESIGN SPEED - 12'-0" PAVEMENT WIDTH - 2'-0" (NON-PAVED) SHOULDER WIDTH

4/10/2015


	TOWNSHIP		BOROUGH			ROUTE	SECTION		TOTAL SHEETS		
HIA	PHILADELPHIA							_	_		
									1 4 1		
					WBS E	LEMENT					
WO SPU		JR	PHA	SECTION	ORG	ORG		PRG	P_C		

PREPARED BY: URBAN ENGINEERS, INC. 530 WALNUT STREET, 7TH FL. PHILADELPHIA, PA 19106 215–922–8080		
	APPROVED	DATE:
	SCHUYLKILL RIV	PRESIDENT ER DEVELOPMENT CORPORATION

DISTRICT	COUNTY	ROUTE	ROUTE SECTION								
6-0	PHILADELPHIA	2 (DF 3								
CITY OF PHILADELPHIA											
REVISION NUMBER	REV	DATE	BY								


SCHUYLKILL RIVER TRAIL EXTENSION CONCEPTUAL STRUCTURE PLAN

VERTICAL ALIGNMENT

SHARED USE PATH HORIZONTAL ALIGNMENT

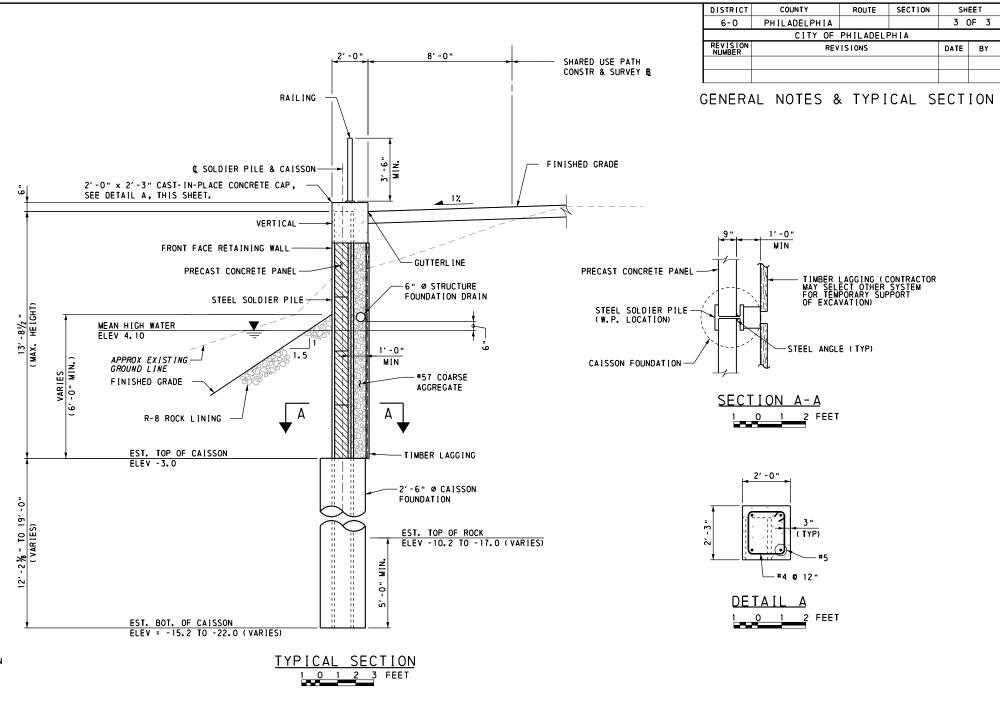
<u>NOTES</u>

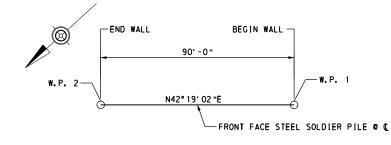
- 1. FOR GENERAL NOTES AND TYPICAL SECTION, SEE SHEET 2.
- 2. RAILING WILL BE CHOSEN IN FINAL DESIGN.

LEGEND

- AS DRILLED TEST BORING LOCATION
- RETAINING WALL
- R-8 ROCK SCOUR PROTECTION

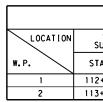
ATION OF STRUCTURE	ITEMS	
ITEM	UNIT	TOTAL
RETAINING WALL ED FOUNDATION PROVIDED)	LS	LUMP SUM
ON OF SOLDIER PILE WALL	LS	LUMP SUM


	BC-701M	5-18-12					
	BC-734M	10-26-10					
BRICATION DETAILS	BC-736M	5-18-12					
	BC-751M	5-18-12					
HWORK FOR STRUCTURES	RC-11M	6-1-10					
ES	RC-12M	6-1-10					
PTION	DWG NO	APP DATE					
LEMENTAL DRAWINGS							


GENERAL NOTES

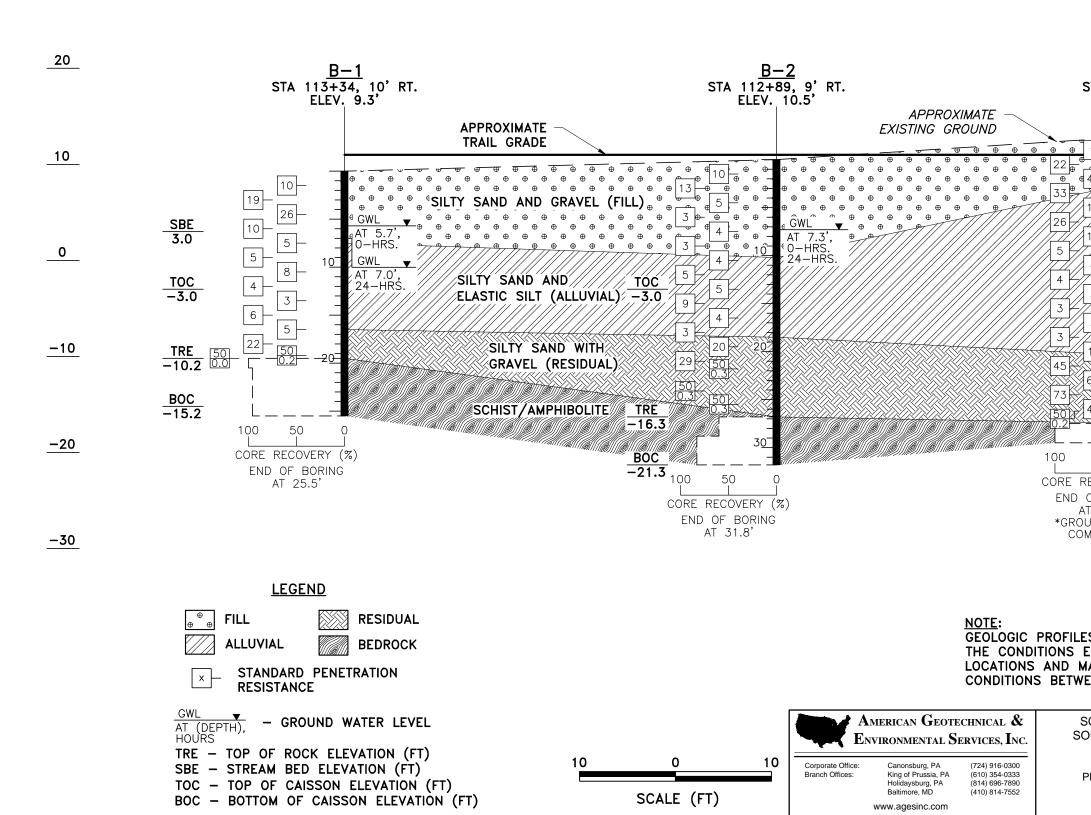
- PROVIDE MATERIALS AND PERFORM WORK IN ACCORDANCE WITH PENNSYLVANIA DEPARTMENT OF TRANSPORTATION SPECIFICATIONS, PUBLICATION 408/2011-5, AASHT0/AWS D1.5/D1.5M BRIDGE WELDING CODE (2008) AND CONTRACT SPECIAL PROVISIONS. USE AWS D1.1/D1.1M-2008 FOR WELDING NOT COVERED IN AASHT0/AWS D1.5/D1.5M-2008.
- PROVIDE STRUCTURAL STEEL (GALVANIZED AND COLOR COATED) CONFORMING TO AASHTO M270/M270M GRADE 50 (ASTM A709/A709M GRADE 50) EXCEPT WHEN NOTED OTHERWISE.
- 3. DESIGN SPECIFICATIONS: AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (2010) AND AS SUPPLEMENTED BY THE PENNDOT DESIGN MANUAL, PART 4, MAY 2012 EDITION. DESIGN IS IN ACCORDANCE WITH THE LRFD METHOD DESIGN LOAD: LIVE LOAD SURCHARGE PER DESIGN MANUAL, PART 4.
- 4. PROVIDE 2 IN. CONCRETE COVER ON REINFORCEMENT BARS, EXCEPT AS NOTED.
- 5. CHAMFER EXPOSED CONCRETE EDGES 1"x1", EXCEPT AS NOTED OTHERWISE.
- 6. USE CLASS AA CEMENT CONCRETE IN PRECAST CONCRETE PANELS.
- 7. USE CLASS A CEMENT CONCRETE FOR DRILLED CAISSON FOUNDATIONS.
- 8. UTILIZE TYPE II CEMENT FOR ALL CONCRETE STRUCTURES.
- 9. A HIGHER CLASS CONCRETE MAY BE SUBSTITUTED FOR A LOWER CLASS CONCRETE AT NO ADDITIONAL COST TO THE OWNER.
- 10. PROVIDE GRADE 60 REINFORCING STEEL BARS THAT MEET THE REQUIREMENTS OF A615/A615M-A996/A996M OR A706/A706M. DO NOT WELD GRADE 60 REINFORCING STEEL BARS UNLESS SPECIFIED. GRADE 40 REINFORCING STEEL BARS MAY BE SUBSTITUTED WITH A PROPORTIONAL INCREASE IN CROSS SECTIONAL AREA, IF APPROVED BY THE OWNER REPRESENTATIVE. DO NOT USE RAIL STEEL A996/A996M REINFORCEMENT BARS WHERE BENDING OR WELDING OF THE REINFORCEMENT BARS IS INDICATED.
- 11. USE EPOXY COATED REINFORCEMENT BARS IN PRECAST CONCRETE PANELS.
- 12. GALVANIZED REINFORCING STEEL BARS MAY BE SUBSTITUTED FOR EPOXY COATED REINFORCING STEEL BARS AT NO ADDITIONAL COST TO THE DEPARTMENT.
- 13. PROVIDE NO. 57 AGGREGATE DRAINAGE DETAILS AS INDICATED.
- 14. PROVIDE SHOP DRAWINGS IN ACCORDANCE WITH SECTION 105.02. SUBMIT DETAILED LAYOUT OF RETAINING WALL INCLUDING POST LOCATIONS WITH SHOP DRAWINGS FOR APPROVAL. SUBMIT ERECTION PROCEDURES, INCLUDING BRACING AND NECESSARY DETAILS FOR APPROVAL PRIOR TO CONSTRUCTION.
- 15. ALL DIMENSIONS ARE HORIZONTAL UNLESS NOTED OTHERWISE.
- 16. PROVIDE MINIMUM EMBEDMENT AND SPLICE LENGTHS IN ACCORDANCE WITH STANDARD DRAWING BC-736M, UNLESS OTHERWISE INDICATED.
- 17. WELDING OF REINFORCEMENT BARS DURING FABRICATION AND CONSTRUCTION IS NOT PERMITTED UNLESS SPECIFIED.
- 18. COORDINATE, LOCATE, AND CONDUCT ALL WORK RELATED TO PUBLIC AND PRIVATE UTILITES IN ACCORDANCE WITH SECTIONS 105.06 AND 107.12. PA ONE CALL SERIAL NUMBER 20130491115, 20130491116, & 20130491117. (1-800-242-1776)

FOUNDATIONS


- 1. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF ALL EXCAVATED SLOPES. PERFORM ALL EXCAVATIONS IN ACCORDANCE WITH OSHA REQUIREMENTS.
- 2. TEMPORARY SHORING AND/OR STREAM DIVERSION BARRIERS ALONG WITH DEWATERING TECHNIQUES MAY BE REQUIRED FOR CONSTRUCTION OF SUBSTRUCTURE UNITS.
- 3. ALL EXCAVATED MATERIAL SHALL BE HANDLED IN ACCORDANCE WITH SPECIFICATION "026113 EXCAVATION OF CONTAMINATED MATERIAL HANDLING."
- 4. PROVIDE GALVANIZED PILE FOR CORROSION PROTECTION.
- 5. TEMPORARY CASING MAY BE REQUIRED TO MAINTAIN AN OPEN BOREHOLE. IF TEMPORARY CASING IS UTILIZED, MAINTAIN CONCRETE LEVELS ABOVE THE BOTTOM OF CASING AT ALL TIMES DURING EXTRACTION TO PREVENT CAVED MATERIAL FROM CONTAMINATING THE CONCRETE.
- 6. BACKFILL CAISSON BOREHOLE WITHIN 24-HOURS AFTER DRILLING TO LIMIT THE DETERIORATION OF THE BEARING MATERIAL.
- 7. STRUCTURE BACKFILL MAY CONSIST OF MATERIAL MEETING ASSHTO NO. 57 OR PENNDOT OPEN GRADED SUBBASE (OGS) CRITERION.
- 8. FILL THE GAP BETWEEN PERMANENT LAGGING AND TEMPORARY TIMBER LAGGING WITH AASHTO NO. 57 COARSE AGGREGATE.
- 9. BLASTING IS NOT PERMITTED AS A METHOD OF EXCAVATION.

STAKE-OUT PLAN

NOT TO SCALE



۸M

64)

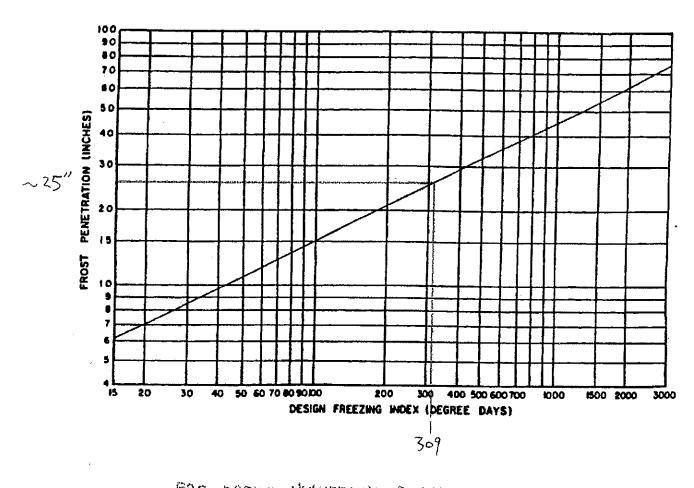
WC	ORK POINT	DATA						
SHARED USE PATH URVEY & CONSTR. & COORDINATES								
ATION	OFFSET	NORTHING	EASTING					
+49.85	10.00′LT	233577.6293	2686987.9173					
+39.85	10.00′LT	233644.1780	2687048.5083					

APPENDIX F GENERALIZED GEOLOGIC PROFILE

PLT: RJE CKD: SCS QAV

s: M:_2013\004\exhibits\profile\13004_gpro.dwg iac: 4/10/15

<u>B-3</u> STA 112+50, 3' RT. ELEV. 13.0'		_20_
		10
10 7 10 10 AT 9.0', 0−HRS. 4 3 7 7 7 7 7 7 7 7 7 7 7 7 7	SBE 3.0 TOC -3.0	
3 20 11 64		<u>-10</u>
50 0 50 (%) RECOVERY (%) OF BORING AT 32.0'	TRE -17.0 BOC -22.0	<u>–20</u>
OUTED UPON OMPLETION		<u>-30</u>
ES ARE INTERPRETED FF ENCOUNTERED AT THE MAY NOT REFLECT ACTU VEEN BORINGS.	BORING	
SCHUYKILL RIVER TRAIL EX OUTH STREET TO CHRISTIA		PROJECT: 13004 DRAWN: RJE DATE: SEP. 2013
PHILADELPHIA COUNTY, PENN GENERALIZED GEOLO PROFILE A-A		SCALE: AS SHOWN FIGURE:


APPENDIX G GEOTECHNICAL ANALYSIS

PENNDOT PUB 242 - PAVEMENT POLICY MANUAL, 20/0

By: YZ 09-04-13 Chk: SCS 09-08-13

1/2

Figure 9.1 Design Chart for Determination of Frost Penetration

FOR DREXEL UNIVERSITY, PHILADELPHIA COUNTY, INDEX 309 INDEX OF 309 >> FROST DEPTH = 25"

FOR DESIGN USE: FROST DEPTH = 3'-00" (36")

9-7

PENNDOT PUB 242 - PAVEMENT POLICY MANUAL, 2010

By: YZ 09-04-13 Cht: SCS 09-08-13 2/2

Location Elevation Index Winter Berks County Reading WB 266 436 62-63 Morgantown 595 664 62-63 Carbon County Palmerton 435 749* 62-63 Lehigh County Allentown WB 376 752 62-63 Allentown Gas 254 621 62-63 Monroe County Mt. Pocono 2 mi. N 1915 1194 62-63 Stroudsburg 480 987 62-63 Tobyhanna 1950 1216 62-63 Schuylkill County Port Clinton 450 971* 62-63 Northhampton County Bethlehem (Lehigh U) 411 752 62-63

DISTRICT 5

DISTRICT 6

Location	Elevation	Index	Winter
Bucks County			
George School	135	685*	60-61
Quakertown	490	669*	60-61
Chester County			
Coatsville 1 mi. SW	342	592*	60-61
Devalut 1 mi, W	360	629	60-61
Phoenixville	105	473	60-61
Delaware County			
Marcus Hook	12	228	60-61
Montgomery County			
Graterford 1 mi. E	240	718	60-61
Norristown	75	355	62-63
Philadelphia County			
Phila. Airport WB	7	506	60-61
> Drexel University	30	309	62-63
Pt. Breeze	32	184	62-63

D-3

THANKI TOO 273- CHAINDAUGIC ENGINEERING MANUAL

3

Chk: SCS . 09-08-13

Frost Susceptibility or Danger	Soils
None	Gravel, sand, gravelly tills
Moderate	Fine clay (≥ 40% clay ¹ content); sandy tills, clayey tills with 16% fines ²
Strong	Silt, course clay (clay ¹ content 15- 25%); silty tills
	or Danger None Moderate

¹Defined as -2 μ m. ²Defined as - 0.06 mm. FOR DESIGN USE: FROST GROUP III (STRONG

Figure 2.7.3.3.5(D) Frost susceptibility soil groups

2.7.3.4 COMPACTED SOILS

Information regarding the engineering behavior of compacted soils is required when subgrade soils cannot support structures and fills or when engineered fills for embankments or backfills are needed. Compaction is accomplished by mechanical compactors of a mass and type consistent with soil conditions and foundation requirements. Compaction requirements are developed considering the engineering properties needed for a particular situation (e.g., strength, compressibility, and/or permeability). Laboratory compaction tests to establish moisture content-dry unit weight relationships are used in combination with field measurements to determine whether field compaction efforts meet the compaction control criteria.[54, 55]

2.7.3.4.1 Compaction Criteria

In general, a Standard Proctor effort is specified as the reference compaction criterion for subgrade soils, and a Modified Proctor effort is specified as the reference compaction criterion for subbase and base soils. Usually the compaction specification is defined as a percentage (e.g., 90 to 100 percent) of the reference compaction level. Examples of moisture content-dry unit weight relationships (compaction curves) are presented in Figure 2.7.3.4.1 (A) for a range of soil types compacted to a Standard Proctor effort. Moisture-Density, curves have a distinctive shape typified by a peak defined by the maximum dry unit weight, γ_{dmax} and optimum moisture content, w_{opc} and the right side of the curve is parallel to the zero air voids curve. Moisture contents to the left of w_{opt} are referred to as dry of optimum, and to the right of w_{opt} as wet of optimum. As shown in Figure 2.7.3.4.1(B), higher compactive efforts result in compaction curves shifted upward and to the left such that the resulting compaction curve has higher values of γ_{dmax} and lower values of w_{opt} than at lower compactive efforts.

326

American Geotechnic	al &	1.1011 41		Sheet	1	- of <u>6</u>
Environmental Service Southpointe Business	es, Inc.	WALL #1	aritriandert	Dwg. By	4.7	- Date 9/11/13
4 Grandview Circle Canonsburg, PA 15317-6507		PARAMETER	DEVELOPMENT	Chk. By	565	– Date <u>9/27/13</u>
-	BORIN	165; B-1~	-B-3	-		
LAYERO -	G.S.J	E EL 3.0	CSOILS BEHIND	PROPOSED RETA	INING	VALI)
TO	GRAŻ <i>NED</i> DENSE	MATERZAL (SAND WITH SOME	HE PROPOSED WALL GARAVEL) WITH RI E SILT. DUE TO TO WING PARAMETERS	ELATIVE DENSI	271 OF	VERY LOOSE
		Visat =	= 110 PCF = 115 PCF = 25° = 0 PSF	2012 10.8.3.5.26-1P		
LAYER 2 -	EL-	3.0 ~ EL1	0,0 (Souls IMPLED	ZATELY BELL		SED BLPE) TY SAND AND I
			ELY BELOW PROPOSE		SISTS OF	ELASTIC
	SILT. FROM RESUL	DIRECT S THIS LATE TS. $Ya = 7$	SHEAR TEST WAS R FROM BORING 12.3~73.6, CUM.= 0	PERFORMED C B-2A AND YI O65TSF, PULS	IN A SA ELDED = 20,9°	MPLE FOLLOWING N.M.C.=445
	FOR	ANAL (SIS	USE $7 Y_n = 105 PC$ $Y_{sat} = 110 PCF$ $p = 21^{\circ}$	2		
			C=0 PSP	, CONSERVATIVEL DRAINED CONE		NED LONG TERI
LATER 3 -	EL:10	0~T.O.R. (E	L 17.0) (RESIDUAL)	SOIL)		
	RELA		OF COARSE GRAZ 2TT OF MEDIUM DEN: ANALY (SIS.			
		Ym=13 Sat-13 Ø=3 C=0	$ \begin{array}{c} 30PCF \\ 35PCF \\ 57PCF $	2- (35.26-19		
		A				

		Project 2	SCHUYLKILL	KLVEK IRA	IL EXTENS		2		6
American Geotechni Environmental Servi		WALL	#1			— Sheet — — Dwg.By –		– of – – Date	9/11/13
Southpointe Busines 4 Grandview Circle Canonsburg, PA 153	s Park	PARAM	ETER DE	VELOPMEN	ſ	— Chk. By —	SL	– Date	10-15-13
LAYER (F) -	COARS	EAC	GREGATE	BACKF:	ILL:				
	WITH WITH FOR P	EN BI COAR ROPEK	EARZNA M LSE GRAIN L'Y COMPAG	ATERIAL ED MATEI TED BAC	, IS REA GAL TO TH KFILL	IOVED, BA EBLPE.USE	CKFILL FOLLOWIN	EXCAV G PARJ	ATION
		Ysa Isa I	m= 20 PCF t=125PCF 5=34 1=0 PSF	TYPICAL SPECIFI	, PROPERTI ED BACKF	TES FOR ILL (BC-7	49H)		7
LAYER (5) -	BEDR	ock;	-						
	USE L SOIL.	EXAG	CERATED P $Y_{tot} = 150 Po \phi = 45° C = 1000 P$	CF PSF }For	R GLOBAL R OTHER A	STABTLET	(ANALYS	IS (), SHEAR	ULY. STRENKTI
LATER (D -	SPECI	FIEL	BACKFI	LLJ				_	
	Assun	ES	IMILAR 1	PROPERTY	AS MSE	E WALL	BACKFIL	4j (B	c-799M)
	Ym/	8sit =	120/125 PC 90195 PC \$=34°,	CF FOR S F FOR S C= OPSF	TRENGTH TRENGTH	I MAX / I MIN	AND SER CASES	VICE	CASES
GROUNDWATI	ERj		1-3.1	0 0					
			ELEVATION					R. B.1	TO
LAYER (7) -	RIP-RA	IP IN	FRONT OF	WALL, R-	Rock	1+			
	Ysat=	130 P 135 P 36° 0 PS1	DCF					-	

Project: Schuylkill River Trail Extension, South Street to Christian	Street
Wall #1	

Project No: 13004 Dwg. By: YY 9/11/13 Chk. By: SCS 9/12/13

 $\sigma_{tot} = (Depth at Middle of Sample) * (Assumed Unit Weight)$

 $\sigma_{eff} = \sigma_{tot} - [(Distance from Groundwater Table) * (Unit Weight of Water)]$

N-VALUE CORRECTION FOR HAMMER EFFICIENCY AND OVERBURDEN PRESSURE

 $\begin{array}{l} \textit{Ref: AASHTO (2012), Section 10.4.6.2.4} \\ \textit{N1}_{60} = \textit{C}_{\textit{N}}\textit{N}_{60} = [0.77log(40/(\sigma_{eff}/1000))] * \textit{N}_{60} \text{ where } \textit{C}_{\textit{N}}{\leq}2.0 \\ \textit{N}_{60} = (\textit{ER}/60\%)\textit{N} & \textit{where: ER} = 60\% \text{ for Safety Hammer} \\ \textit{ER} = 80\% \text{ for Automatic Hammer} \end{array}$

B-1 = Boring

9.3 = Ground Surface Elevation (ft)

2.3 = Elevation of Groundwater Table (GWT) (ft)

110.0 = Assumed Moist Unit Weight (pcf) (only an estimate for N1₆₀ calculations)

115.0 = Assumed Saturated Unit Weight (pcf) (only an estimate for N1₆₀ calculations)

62.4 = Density of Water (pcf)

Safety = Hammer Type ER (%) = 60

-3.0 = Bottom of Footing Elevation (BFE) (ft) 12.3 = Base of Footing Depth (ft) 12 = Footing Width, B (ft)

Sample		Depth to Bottom of Sample	Elevation at Middle of	σ _{tot} at Middle of Sample	Distance from GWT	σ _{eff} at Middle of Sample					Soil Classification	
No.	N	(ft)	Sample (ft)		(ft)	(psf)	N ₆₀	CN	N1 ₅₀	N1 _{60avg}	and Origin	
1	10	1.5	8.55	82.50	0.00	82.50	10	2.000	20	20	ml/A-4 (Fill)	
2	19	3.0	7.05	247.50	0.00	247.50	19	1.701	32	- 36	am/a 0 4 (510)	
3	26	4.5	5.55	412.50	0.00	412.50	26	1.530	40	30	sm/a-2-4 (Fill)	
4	10	6.0	4.05	577.50	0.00	577.50	10	1.417	14	10		
5	5	7.5	2.55	742.50	0.00	742.50	5	1.333	7	10	gm/a-2-4 (Fill)	
6	5	9.0	1.05	913.75	1.25	835.75	5	1.294	6			1
7	8	10.5	-0.45	1086.25	2.75	914.65	8	1.263	10	6	SM/A-4(0)	
8	4	12.0	-1.95	1258.75	4.25	993.55	4	1.236	5	7 °	(Alluvial)	Base of Footing Depth
9	3	13.5	-3.45	1431.25	5.75	1072.45	3	1.210	4			12.3
10	6	15.0	-4.95	1603.75	7.25	1151.35	6	1.186	7	6	mh/a-7-5	
11	5	16.5	-6.45	1776.25	8.75	1230.25	5	1.164	6	0	(Alluvial)	
12	22	18.0	-7.95	1948.75	10.25	1309.15	22	1.144	25			1
13	100	19.2	-9.30	2104.00	11.60	1380.16	100	1.126	113	83	sm/a-2-4	
14	100	19.5	-10.20	2207.50	12.50	1427.50	100	1.115	111	N. 221-	(Residual)	

Notes:

(1) For SPT N = 50/0.X - USE: N = 100

Project: Schuylkill River Trail Extension, South Street to Christian Street Wall #1 Project No: 13004 Dwg. By: YY 9/11/13 Chk. By: SCS 9/12/13

 σ_{tot} = (Depth at Middle of Sample) * (Assumed Unit Weight)

 $\sigma_{eff} = \sigma_{tot} - [(Distance from Groundwater Table) * (Unit Weight of Water)]$

N-VALUE CORRECTION FOR HAMMER EFFICIENCY AND OVERBURDEN PRESSURE

Ref: AASHTO (2012), Section 10.4.6.2.4

 $N1_{60} = C_N N_{60} = [0.77 log(40/(\sigma_{eff}/1000))] * N_{60}$ where $C_N {\leq} 2.0$

N₆₀ = (ER/60%)N where: ER = 60% for Safety Hammer

ER = 80% for Automatic Hammer

B-2 = Boring

10.5 = Ground Surface Elevation (ft)

3.2 = Elevation of Groundwater Table (GWT) (ft)

110.0 = Assumed Moist Unit Weight (pcf) (only an estimate for N1₆₀ calculations)

115.0 = Assumed Saturated Unit Weight (pcf) (only an estimate for N160 calculations)

62.4 = Density of Water (pcf)

Safety = Hammer Type

ER (%) = 60

-3.0 = Bottom of Footing Elevation (BFE) (ft) 13.5 = Base of Footing Depth (ft) 12 = Footing Width, B (ft)

Sample No.	N	Depth to Bottom of Sample (ft)	Elevation at Middle of Sample (ft)	σ _{tot} at Middle of Sample (psf)	Distance from GWT (ft)	σ _{eff} at Middle of Sample (psf)	N ₆₀	CN	N160	N1 _{60avg}	Soil Classification and Origin	
1	10	1.5	9.75	82.50	0.00	82.50	10	2.000	20			
2	13	3.0	8.25	247.50	0.00	247.50	13	1.701	22			
3	5	4.5	6.75	412.50	0.00	412.50	5	1.530	8			
4	3	6.0	5.25	577.50	0.00	577.50	3	1.417	4	10	sm/a-2-4	
5	4	7.5	3.75	742.50	0.00	742.50	4	1.333	5		(Fill)	
6	3	9.0	2.25	912.25	0.95	852.97	3	1.287	4		1 mar 1 mar 1	
7	4	10.5	0.75	1084.75	2.45	931.87	4	1.257	5		The second se	
8	5	12.0	-0.75	1257.25	3.95	1010.77	5	1.230	6		sc/a-2-6	
9	5	13.5	-2.25	1429.75	5.45	1089.67	5	1.205	6	6	(Alluvial)	Base of Footing Depth
10	9	15.0	-3.75	1602.25	6.95	1168.57	9	1.181	11			13.5
11	4	16.5	-5.25	1774.75	8.45	1247.47	4	1.160	5	6	MH/A-7-5(22)	
12	3	18.0	-6.75	1947.25	9.95	1326.37	3	1.139	3		(Alluvial)	
13	20	19.5	-8.25	2119.75	11.45	1405.27	20	1.120	22			
14	29	21.0	-9.75	2292.25	12.95	1484.17	29	1.102	32			
15	100	21.8	-10.90	2424.50	14.10	1544.66	100	1.088	109	10		
R-1	100	23.8	-12.30	2585.50	15.50	1618.30	100	1.073	107	84	sm/a-2-4	
16	100	24.1	-13.45	2717.75	16.65	1678.79	100	1.060	106		(Residual)	
R-2	100	25.5	-14.30	2815.50	17.50	1723.50	100	1.052	105	1		
17	100	25.8	-15.15	2913.25	18.35	1768.21	100	1.043	104			

Notes:

(1) For SPT N = 50/0.X - USE: N = 100

(2) Where coring was attempted, USE N =100.

4 07 6

Project: Schuylkill River Trail Extension, South Street to Christian Street Wall #1

Project No: 13004 Dwg. By: YY 9/11/13 Chk. By: SCS 9/12/13

 σ_{tot} = (Depth at Middle of Sample) * (Assumed Unit Weight)

 $\sigma_{eff} = \sigma_{tot} - [(Distance from Groundwater Table) * (Unit Weight of Water)]$

N-VALUE CORRECTION FOR HAMMER EFFICIENCY AND OVERBURDEN PRESSURE

Ref: AASHTO (2012), Section 10.4.6.2.4

 $N1_{60} = C_N N_{60} = [0.77 log(40/(\sigma_{eff}/1000))] * N_{60}$ where $C_N \le 2.0$

N₆₀ = (ER/60%)N where: ER = 60% for Safety Hammer

ER = 80% for Automatic Hammer

B-3 = Boring

13.0 = Ground Surface Elevation (ft)

4.0 = Elevation of Groundwater Table (GWT) (ft) (Note (2))

110.0 = Assumed Moist Unit Weight (pcf) (only an estimate for N1₆₀ calculations)

115.0 = Assumed Saturated Unit Weight (pcf) (only an estimate for N1₆₀ calculations)

62.4 = Density of Water (pcf)

Safety = Hammer Type ER (%) = 60

Depth to σtot at σ_{eff} at Bottom of **Elevation at** Middle of Distance Middle of Soil Sample Sample Middle of Sample from GWT Sample Classification No. N (ft) Sample (ft) (psf) (ft) (psf) and Origin N1 60avg N₆₀ CN N160 9 82.50 1 1.5 12.25 0.00 82.50 9 2.000 18 sm/a-2-4 2 22 3.0 10.75 247.50 0.00 247.50 22 1.701 37 39 (Fill) 3 40 4.5 9.25 412.50 0.00 412.50 40 1.530 61 33 4 6.0 7.75 577.50 0.00 577.50 33 1.417 47 5 10 7.5 6.25 742.50 0.00 742.50 10 1.333 13 ml/a-4 29 6 26 9.0 4.75 907.50 0.00 907.50 26 1.266 33 (Alluvial) 7 18 10.5 3.25 1076.25 0.75 1029.45 18 1.224 22 8 5 12.0 1.75 1248.75 2.25 1108.35 5 1.199 6 9 4 13.5 0.25 1421.25 3.75 1187.25 4 1.176 5 10 4 15.0 -1.25 1593.75 5.25 1266.15 4 1.155 5 sm/a-2-4 4 11 3 16.5 -2.75 1766.25 6.75 1345.05 3 1.134 3 (Alluvial) Base of Footing Depth 12 3 18.0 -4.25 1938.75 8.25 1423.95 3 1.115 3 16.0 13 3 19.5 -5.75 2111.25 9.75 1502.85 3 1.097 3 14 3 21.0 -7.25 2283.75 11.25 1581.75 3 1.080 3 mh/a-7-5 7 15 11 22.5 -8.75 2456.25 12.75 1660.65 11 1.064 12 (Alluvial) 16 45 24.0 -10.25 2628.75 14.25 1739.55 45 1.048 47 17 64 25.5 -11.75 2801.25 15.75 1818.45 64 1.034 66 sm/a-2-4 18 73 27.0 -13.25 2973.75 17.25 1897.35 73 1.019 74 66 (Residual) 19 44 28.5 -14.75 3146.25 18.75 1976.25 44 1.006 44 20 100 28.7 -15.60 3244.00 19.60 2020.96 100 0.998 100

Notes:

(1) For SPT N = 50/0.X - USE: N = 100

(2) Groundwater level is zero hour reading. Boring grouted upon completion. Because rock was cored and water was introduced to boring, water level may be artificially high (conservative to utilize).

-3.0 = Bottom of Footing Elevation (BFE) (ft) 16.0 = Base of Footing Depth (ft) 12 = Footing Width, B (ft)

SPECIFICATIONS

10.8.3.5.2 Estimation of Drilled Shaft Resistance in Cohesionless Soils

10.8.3.5.2b Side Resistance

The following shall supplement A10.8.3.5.2b.

A correlation between N_{60} blow count, friction angle and unit weight of material is provided in Table 10.8.3.5.2b-1P.

Table 10.8.3.5.2b-1P - Friction Angles and Unit Weights of Sand

COMMENTARY

when cleaning of the bottom of the drilled excavation is specified and can be acceptably completed before concrete placement.

An enlarged base may be used at the tip of a shaft to increase the tip bearing area, or to provide additional resistance to uplift loads. Due to the difficulty of excavation and support of enlarged bases, consideration should be given instead to extending the shaft to a greater depth to provide additional resistance. This avoids the construction difficulties and high additional cost of shafts with enlarged bases relative to straight-sided shafts.

\rightarrow	G.S.EEL. 3.0 (SOILS BEHIZND PRUPOSED WALL)
	DUE TO PRESENCE OF OF VERY LOOSE
	SOILS ENCOUNTERED, USE FORLOWING PARAMETERS.
	Yen=110 PCF
and the second second	Ssat = 115 PCF
	d = 2.5 °
1	C = 0 PSF
nds\	

CONSISTENCY	φ _í	N ₆₀	γ(kcf)	
Very Loose	25°- 30°	0 - 4	0.070-0.100	
Loose	27°- 32°	4-10	0.090-0.115	
Medium	30°- 35°	10-30	0.110-0.130	
Dense	35°- 40°	30-50	0.110-0.140	
Very Dense	38°- 43°	>50	0.130-0.150	

10.8.3.5.3 Shafts in Strong Soil Overlying Weaker Compressible Soil

The following shall supplement A10.8.3.5.3.

Where the tip of a shaft could bear on a thin firm soil layer underlain by a softer soil unit, the shaft shall be extended through the softer soil unit to eliminate the potential for a punching shear failure into the softer soil deposit.

10.8.3.5.4 Estimation of Drilled Shaft Resistance in Rock

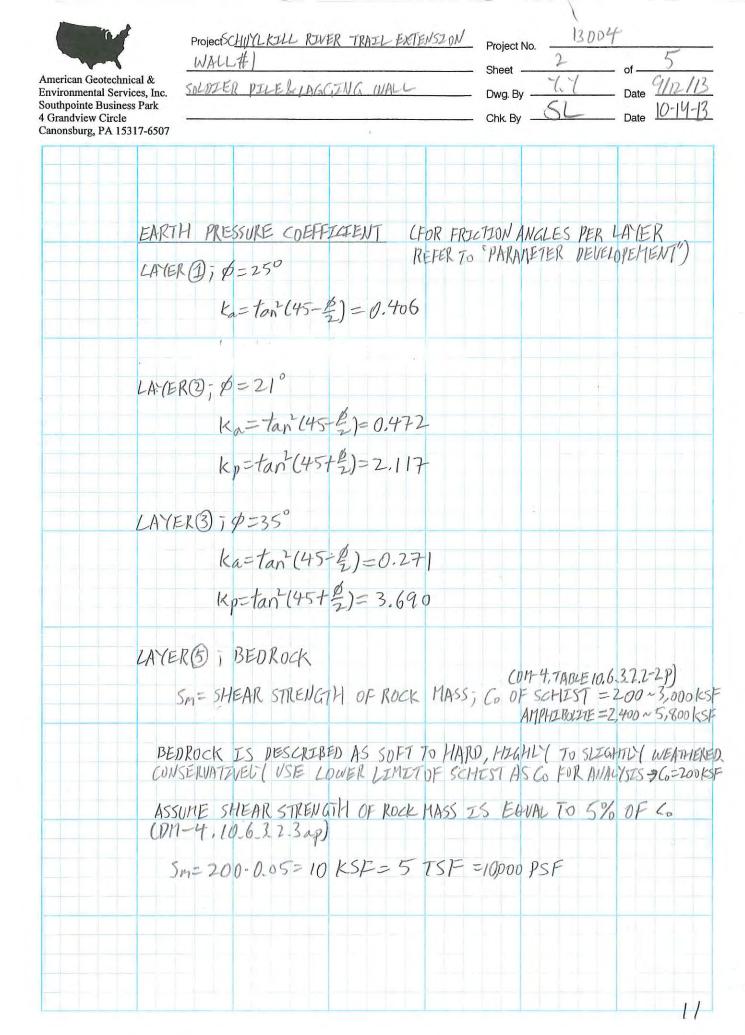
10.8.3.5.4a General

The following shall replace the 3rd bullet in A10.8.3.5.4a.

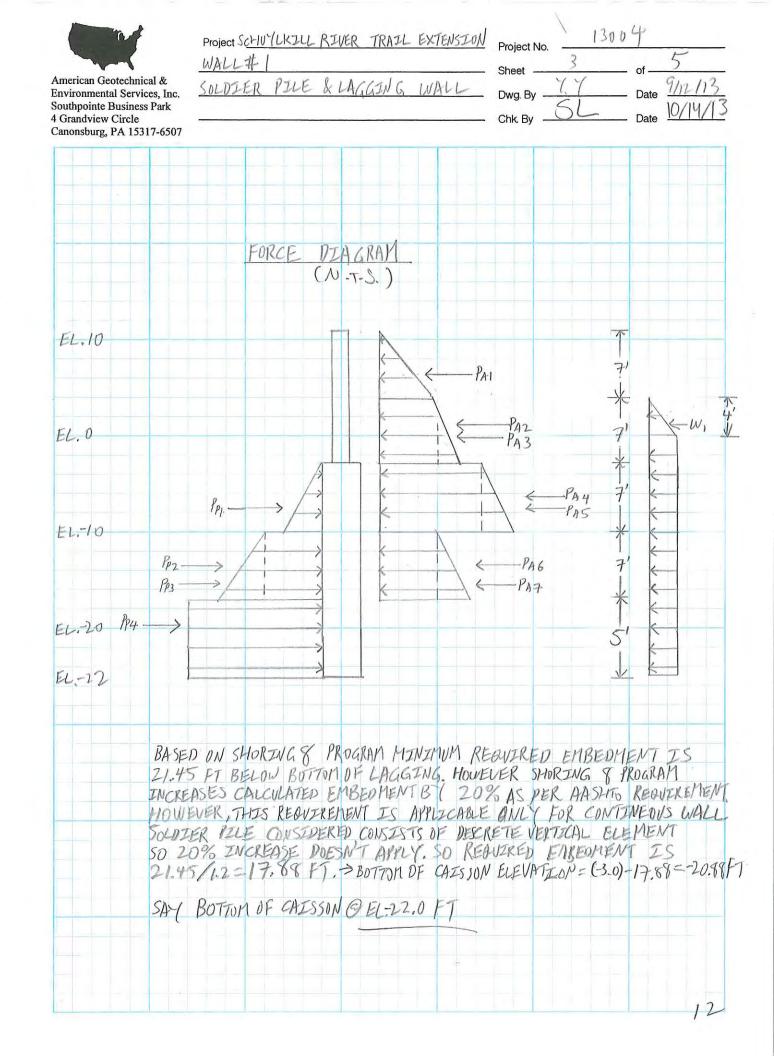
• A combination of both, with approval of the Chief Bridge Engineer.

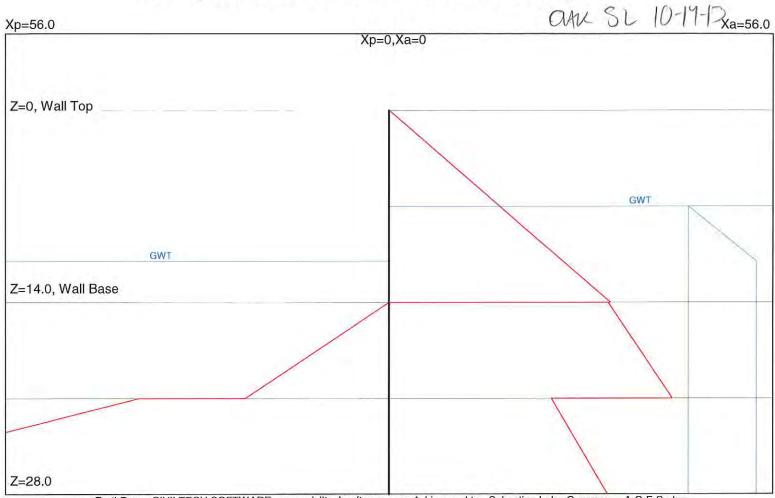
The following shall supplement A10.8.3.5.4a. The side resistance from overlying soil deposits and $\frac{40}{50} = EL - 10.0 - TOR. (EL-A.0)$ $Y_n = 130 PCF$ $Y_{sat} = 135 PCF$ $\varphi = 35°$ C10.8.3.5.3 C=0 PSF

The following shall supplement AC10.8.3.5.3.


Punching shear failure is a failure mode typically associated with drilled shafts bearing on soils which behave plastically, but it is also of concern where shafts bear on a thin firm soil layer underlain by a softer deposit. In such cases, the influence of the bearing load at the surface of the soft layer shall be analyzed.

C10.8.3.5.4a


The following shall supplement AC10.8.3.5.4a. Rock stratification should be considered in the design of rock sockets as follows:


• Sockets embedded in alternating layers of weak and strong rock should be designed using the strength of the weaker rock.

umerican Geote nvironmental S outhpointe Bus Grandview Cin	Services, Inc. Siness Park	WALL# SOLDIER	PILE S	LAGG	ENG WAL	DV DV	vg. By	17	— of — — Date — Date	9/12/1
anonsburg, PA	15317-6507		(30 IN)					1. 1. 1	1	1-11-11
	- ASSVA - ASSVA	E 2.5 E CAZ	FT DIAN SSON WIL	ETER (L BE	AZSSON EMBEDDE	SPACED (D S FT)	9 8.0 INTO B	FT EDROCK		
	- CONSER - CONSED	WATIVEL ER WAT	T NEGLEC ER BEHIZI	VD THI	SZVE PRE	SSURE FRI BEL. 4.0 A	ND MATE	RZAL IN L. O.O	FRONT ATFK	OF LAGO
EL.10				11				Ē	LIND	
52.10						LAYER (1)			
				-	Q (i)	LATEN	/	ĔĹ	<u>4. D</u>	
EL.D	n	4	5						+	
	EL-3.0					LAYER 2				
EL-ID	EL-10.0								_	
11.10				(2.5')		LA-1ER (3))			
	EL7-17.0)			11		1		EO.R.	
EL-22,0			Ť		l	AYER (5)				
	- REFER	To PAI	AMETER DE	VELOPN	ENT" FOI	R SOIL AN	D BEDR	OCK PA	RAMET	ERS
	_LOAD	AND RE	SISTANCI	E FAC	TORS	(DM-4, TA	BLE 3	4.1,1 P.	-3)	
	L	.0 AO FA	L		URCHAR	NTAL =1. GE =1.7				
	R (t	1.E.ST.STA. 1.N-4,TA	NCE FACT BLE11.5.6-	UR; 1 -1)	PASSIVE	RESISTAN	ICE = 0.	75	ISOTLI	& ROCK
	PROP TRAFF THE W	OSED W IC IS ALL AN	ANTICIPAT	BE : TED. C AAST	SX RAIL	IG TRAIL ROAD TRA 6.4. IZVI	K IS	2271	T BL	SHIND

X

Schuylkill River Trail Extension - Retaining Wall

<EarthPres> CIVILTECH SOFTWARE www.civiltechsoftware.com * Licensed to Sebastian Lobo-Guerrero A.G.E.S., Inc. UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf

1:\AGES\Projects\2013 - Jobs\13004 - Schuylkill Rvr Trail Ext S. St Christian St, Urban\Yoshi\13004 - Schuylkill River Trail Retaining Wall\Foundation Report\Shoring8'

Soil No.	Weight /	Saturate	Phi	Cohesion	Nspt	Туре	Description
1	110.0 0	115.0	25.00 /	0.0 /	0	4	Sand
2	105.0	110.0	21.00	0.0	0	4	Sand
3	130.0 /	135.0 /	35.00 /	0.0	0	4	Sand
4	150.0 /	150.0 🧹	0.00 🗸	10.0 /	0	2	Clay
Ground Su	rface at Active Side	ə:					
Line	Z1	Xa1	Z2	Xa2	Soil No.	Description	
1	0.0	0.0	0.0	800.0 /	1	Sand /	
2	14.0 /	0.0	14.0	800.0	2	Sand C	
3	21.0	0.0	21.0	800.0/	3	Sand	
4	28.0 <i><</i>	0.0	28.0	800.0	4	Clay	
Water Tab	e at Active Side:						
Point	Z-water	X-water					
1	7.0 /	0.0					
2	7.0	80000.0					
Ground Su	rface at Passive Si	de:					
Line	Z1	Xp1	Z2	Xp2	Soil No.	Description	/

800.0 /

2

Sand -

14.0

0.0

1

14.0

* INPUT DATA *

2 3	21.0 ° 28.0	0.0 0.0	21.0 28.0	800.0 800.0	3 4	Sand /	CHAS L10-14-13
--------	----------------	------------	--------------	----------------	--------	--------	----------------

Water Table at Passive Side:

Point	Z-water	X-water
1	11.0 /	0.0 /
2	11.0	80000.0 -/-

Wall Friction Options: 1.* No wall friction / Wall Batter Angle = 0 /

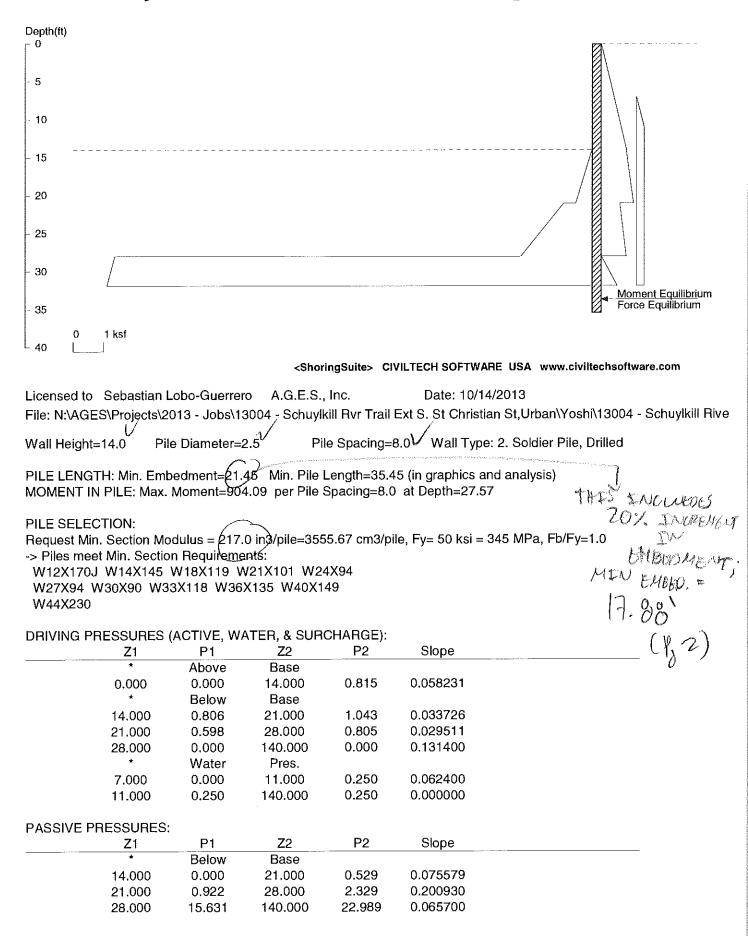
Apparent Pressure Conversion: 1.* Default (Terzaghi and Peck)*

Water Density = 62.4 //

Water Pressure: 1.* No seepage at wall tip

* OUTPUT RESULTS *

Total Force above Base= 5.71 per one linear foot (or meter) width along wall height Total Static Force above Base= 5.71. Distributed in Triangular Envelope along wall height. Ignore soil layers and water line


Driving Pro	essure above Bas	e - Output to Shori	ng - Multiplier o	f Pressure = 1.5	/	
Z1	Pa1	Z2	Pa2	Slope	K/Ka/Ko	
0.00	0.00	14.00	0.82	0.0582	0.5294	
Driving Pre	essure below Bas	e - Output to Shori	ng - Multiplier of	Pressure = 1.5		
Z1	Pa1	Z2	Pa2	Slope	Ka/Ko	
14.00	0.81	21.00	1.04	0.0337	0.7085	
21.00	0.60	28.00	0.80	0.0295	0.4065 /	
Passive Pi Z1	ressure below Bas Pp1	se - Output to Shor Z2	ing - Multiplier o Pp2	of Pressure = 0.7 Slope	5 Кр	
14.00	0.00	21.00	0.53	0.076	1.5878 🦯	
21.00	0.92	28.00	2.33	0.201	2.7676 -	
		Shoring - Multiplier				
No	Z1	Pw1	Z2	Pw2	kw1	

0 7.00 0.00 11.00 0.25 0.06	
1 1100 0.25 20.00 0.25 0.00	

UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf

Date: 10/14/2013 File Name: N:\AGES\Projects\2013 - Jobs\13004 - Schuylkill Rvr Trail Ext S. St Christian St, Urban\Yoshi\13004 - Schuylkill River

CMK SL 10-14-13 Schuylkill River Trail Extension - Retaining Wall

VSZ 10-14-13

ACTIVE SPACING:			
No.	Z depth	Spacing 🖉	
1	0.00	8.00	
2	14.00	2.50	
PASSIVE SPACING:			
No.	Z depth	Spacing 🗸	
1	14.00	7.50	······································

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

SHDRING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltechsoftware.com

*************** ShoringSuite Software is developed by CivilTech Software, Bellevue, WA, USA.
The calculation method is based on the following references:

FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015
STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987
DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982
TRENCHING AND SHORING MANUAL Revision 12, California Department of

report

- Transportation, January 2000
- EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002
 DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994
- 7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002
- 8. AASHTO HB-17, American Association of State and Highway Transportation Officials. 2 September 2002

UNITS: Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in

Licensed to Sebastian Lobo-Guerrero A.G.E.S., Inc. Date: 10/14/2013 File: N:\AGES\Projects\2013 - Jobs\13004 - Schuylkill Rvr Trail Ext S. St Christian St.Urban\Yoshi\13004 - Schuylkill River Trail Retaining wall\Foundation Report\Shoring8\Soldier Pile Lagging wall.sh8

Title: Schuylkill River Trail Extension - Retaining Wall Subtitle:

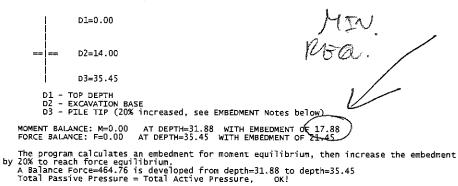
***** wall Type: 2. Soldier Pile, Drilled Wall Height: 14.00 Pile Diameter: 2.50 Pile Spacing: 8.00 Factor of Safety (F.S.): 1.00 Lateral Support Type (Braces): 1. No Top Brace Increase (Multi-Bracing): No Embedment Option: 1. Yes Friction at Pile Tip: No Pile Properties:

perties: Steel Strength, Fy: 50 ksi = 345 MPa Allowable Fb/Fy: 1.0 Elastic Module, E: 29000.00 Moment of Inertia, I: 1650 User Input Pile: w12x336j * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) *

No.	Z1 top	Top Pres.	ZZ botiom	Bottom Pres.	slope
1 2 3 4 5 6 7 8 9	* 0.000 * 14.000 21.000 28.000 * 7.000 11.000	Above 0.000 Below 0.806 0.598 0.000 Water 0.000 0.250	Base 14.000 Base 21.000 28.000 140.000 Pres. 11.000 140.000	0.815 1.043 0.805 0.000 0.250 0.250	0.058231 0.033726 0.029511 0.131400 0.062400 0.000000
		~~~~~			

Page 1

* PASSI No.	VE PRESSURE * Z1 top	Тор Ргез.	Z2 bottom	Bottom Pres.	Slope
1 2 3 4	* 14.000 21.000 28.000	Below 0.000 0.922 15.631	Base 21.000 28.000 140.000	0.529 2.329 22.989	0.075579 0.200930 0.065700
* ACTIVI No.	E SPACE * Z depth	Spacing			
1 2	0.00 14.00	8.00 2.50			
* PASSI' No.	VE SPACE * Z depth	Spacing			~
1	14.00	7.50			
For Ti	eback: Input1 =	Diameter; Inpu	t2 = Bond Stength	 h ssure	*


report

*For Plate: Input1 = Diameter; Input2 = Allowable Pressure *For Deaman: Input1 = Horz. Width; Input2 = Allowable Pressure; Angle = 0

****

The calculated moment and shear are per pile spacing. Sheet piles are per one foot or meter; Soldier piles are per pile.

Top Pressures start at depth = 0.00



*********

* EMBEDMENT Notes * Based on USS Design Manual, fist calculate embedment for moment equilibrium, then increased by 20 to 40 % to reach force equilibrium. The embedment for moment equilibrium is 17.88 Page 2

1-42017S/

nt	Project SCHUYLKILL RIVER TRAIL EXTENSION
~~~~	WALLA
can Geotechnical & onmental Services, Inc.	SOLDIER PILE AND LAGGING WALL
pointe Business Park	LPILE ANALYSIS

13004 Project No. 1 Sheet of -9/30, 2 Date Dwg. By 2 10 Chk. By Date

American Geotechni Environmental Servi Southpointe Busines 4 Grandview Circle Canonsburg, PA 15317-6507

- DETEKIT;	INE LATERAL DEFLECTIO	N AT TOP OF CAIDSON
- Assume	E SERVICE CASE (DM-1	4, SEC. 11. 5.2)
- ALLOWA	BLE DEFLECTION= 0.	5 IN @ TOP OF CAISSON.
- REFER -	TO PARAMETER DEVELOPM	ENT" FOR SOIL PARAMETER.
		Z
	EL3.0 7	0.0'
	VI	Ysat = 110 PCF
	LAYER	$\phi = 21^{\circ}$
		C= O PSF K= 20 PCI (FOR LOOSE SUIL)
		P-(CURVE: SAND
	EL10.0	7.0'(84")
		Ysat=135 PCF
	LATER 3	$\phi = 35^{\circ}$ C = D PSF
		C= D PSF K=125 PCI (FOR DENSE SOIL)
	EL-17.0	P-'(CURVE: SAND 14.0'(168")
		115
	LATER (3)	$Y_{T0T} = 150 PGF$ $C_0 = 200 \text{ KSF}$
		P- ' CURVE: VUGGY LIMESTONE
	EL-22.0	9'.σ'(228")-
End 10-	F AVALVETE AIFCIET	ANUN TOD SET OF MATCHTAL FOR
PASSAVE	RESISTANCE AS PER DH-4	ONLY TOP 3FT OF MATERIAL FO, C3, 11.5.6.
	(RZP-RAP (\$=36) 5 TAN	
- FOR SER	WICE CASE ASSUME WA	TER @ EL.3.0 BASED ON BORZNG

	Project SCHINCLKILL RIVER TRAIL EXTENSION WALL #	Project No. Sheet	<u>13004</u> 2	of
American Geotechnical & Environmental Services, Inc.	SOLDZER PILE AND LAGGENG WALL	Dwg. By	7.1	Date 10/14/13
Southpointe Business Park 4 Grandview Circle Canonsburg, PA 15317-6507	LAILE ANALYSIS	Chk. By —	SL	Date 10/15/13

CAISSON PROPERTIES, 30 IN DIANETER W/ WIZY170 PILE D = 30 IN $A = 707 IN^2$ ICONC=TU.R4 = 39,761 IN4 ISTEEL = 1,650IN# ECONC=57,000 FL =57,000 /3000 = 3,122,019 PSI ESTEEL = 29,000,000 PSI-MODULUS RATIO = 29000,000/3, 122, 019 = 9.3 CONVERT I COME TO ISTEEL= 39,761/93= 4275IN4 TUTAL I=1,650+4,275 = 5,925 IN4 20

umerican Geotechnical & nvironmental Services, Inc. outhpointe Business Park Grandview Circle canonsburg, PA 15317-6507	Project SCHUYLKILL RIVER TRAIL EXTENSION WALL#1 SOLDIER PILE AND LAGGING WALL LPILE ANALYSIS		M Project No. 130 Sheet 3 Dwg. By Y. Y Chk. By SL	of Date Date	
		FORCES	ACTING AT TOP	DF CAISSON	
EL,10 - EL.30'- EL.0	****			PAI PAI PAI PAI PAI PAI PAI	
EL-10-					
					2

	Project & HUYLKILL RIVER TRAIL EXTENSION WALL#	Project No.	<u> 1300 </u> 4	÷+ '
American Geotechnical & Environmental Services, Inc. Southpointe Business Park 4 Grandview Circle Canonsburg, PA 15317-6507	SOLDZER PILE AND LAGGING WALL LPILE ANALYSIS	Sheet Dwg. By Chk. By	Y.Y SL	Date <u>10/14/13</u> Date <u>10/14/13</u>

LOADING	AT TOP OF CAISSON		
LOAD PAI PAZ PAZ	INFACTORED FORCE, 1 (110)(8)2(0.406)(8 110)(8)(0.406)(6)(8) (115-62.4)(6)2(0.40	b)= 11,433 = 17,149 6)[q)= 3075	
Pp1 2	(135-62.4)(3)2(3.852,)(8)=10068	
Wi Z W2	(62.4)(3) ² (8) = 2.2 (62.4)(3)(3)(8) = 44	46 493	
TOTAL SHE	AR FORCE = PAITPAZ +PA	$s - P_{P_1} + W_1 + W_2 = 2$	8,328
		4	
MOMENT			
LOAD PAI PAZ PAZ	UNFACTORED LOAD 11,433 17,149 3,075	# MonENT ARM, FT 8,7 3.0 2.0	MONENT, 16-FT + 99,467 + 51,447 + 6,150
Pp1	1.9068	1.0	-10,068
W, Wz	2,246 4,493	4.0 1.5	+ 8,984 + 6,740
AXIAL L	OADJ		+ 162,720 (1,952,64015-in)
PILE;	WIZXIZO, HEIGH	T LAGGING =14FT	
	TOF PILES 1710 14/FT		12
	JASSUNE IFT THE		
	TOFLAGGZNG =8FT		
	AL LOAD=2,380 H		() (· · ·) / (/ · · ·
EVENL ARE	an comerciso fl	6,000-1-110016	
			2

	Solider Pile.lpo
LPILE Plus	for Windows, Version 5.0 (5.0.47)
Analysis of Subjected to	Individual Piles and Drilled Shafts Lateral Loading Using the p-y Method
(c)	1985-2010 by Ensoft, Inc. All Rights Reserved
his program is licensed to:	
yoshi ages	
	Files Used for Analysis
	N:\AGES\Projects\2013 - Jobs\13004 - Schuylkill Rvr ,Urban\Yoshi\13004 - Schuylkill River ⊤rail Retaining
Name of input data file: Name of output file: Name of plot output file: Name of runtime file:	Solider Pile.lpd Solider Pile.lpo Solider Pile.lpp
wame of runtime file:	
Ti	me and Date of Analysis
	r 15, 2013 / Time: 10:37:20
	Problem Title
Schuylkill River Trail Exten	
	Program Options
	US Customary Units: Inches, Pounds
Basic Program Options:	
Analysis Type 1:	e Response Using User-specified Constant EI
Computation Options: - Only internally-generated - Analysis does not use p-y i - Analysis soumes no shear - Analysis for fixed-length	p-y curves used in analysis multipliers (individual pile or shaft action only) resistance at pile tip pile or shaft only

No computation of foundation stiffness matrix elements
 Output pile response for full length of pile
 Analysis assumes no soil movements acting on pile

Page 1

Solider Pile.lpo - No additional p-y curves to be computed at user-specified depths Solution Control Parameters: - Number of pile increments 100 🗸 - Maximum number of iterations allowed = 100 / Deflection tolerance for convergence = 1.0000E-05 in
 Maximum allowable deflection = 1.0000E+02 in 1.0000E+02 in Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
 Printing Increment (spacing of output points) = 1 Pile Structural Properties and Geometry Pile Length 228.00 in 🗸 Depth of ground surface below top of pile = 0.00 in 1/ Slope angle of ground surface 0.00 deg. V Structural properties of pile defined using 2 points Point Point Pile Moment of Pile Modulus of Inertia in**4 Depth Diameter NO. Агеа Elasticity ìn ίn Sq.in lbs/sq.in ----.......... -----707.0000 29000000. 0.0000 30.0000000 5925.0000 228.0000 30.0000000 5925.0000 1 ī Soil and Rock Layering Information The soil profile is modelled using 3 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 0.000 in 84.000 in 20.000 lbs/in**3 20.000 lbs/in**3 / Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = * 84.000 in 168.000 in 125.000 lbs/in**3 125.000 lbs/in**3 Layer 3 is strong rock (vuggy limestone) Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 168.000 in / 228.000 in / (Depth of lowest layer extends 0.00 in below pile tip)

> Page 2

_____ Effective Unit Weight of Soil vs. Depth

Solider Pile.lpo

Effective unit weight of soil with depth defined using 6 points

Point	Depth X	Eff. Unit Weight
No.	in	lbs/in**3
1	0.00	0.02750
2	84.00	0.02750
3	84.00	0.04200
4	168.00	0.04200
5	168.00	0.05070
6	228.00	0.05070

Shear Strength of Soils

Shear strength parameters with depth defined using 6 points

1 0.000 0.00000 2 2 84.000 0.00000 - 3 84.000 0.00000 - 4 168.000 0.00000 - 5 168.000 1389.00000 - 6 228.000 1389.00000 -	21.00	

Notes:

Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. (1) (2) (3) (4)

Loading Type

Static loading criteria was used for computation of p-y curves.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load Case Number 1

are Shear and Moment (BC Type 1) 28328.000 lbs
28328.000 Tbs 🗸 🖊
1952640.000 in-1bs 芕
19180.000 Tbs

Non-zero moment at pile head for this load case indicates the pile-head Page 3

Solider Pile.lpo may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

******			Load Distri ading for Lo			
specified	boundary co shear forco moment at axia] load	e at pile h	iead ≕	Moment (Pil 28328.000 1 952640.000 i 19180.000 1	n-1bs	tion Type 1
Depth Es*h	Deflect.	Moment	Shear	51ope	Total	Soil Res.
X ≂/∟	У	×	v	S	Stress	P
in Ibs/in	in	lbs-in	1bs	Rad.	lbs/in**2	lbs/in
0.000	0.480442	1952640.	28328.0000	~0.0044323	4970.5211	0.0000
2.280	0.470366.	2017421.	28320.4557	-0.0044059	5134.5239	-6.6178
4.560	0.460351	2082167.	28297.7052	-0.0043787	5298.4366	-13.3387
6.840	0.450399	2146842.	28259.5601	-0.0043507	5462.1707	-20.1220
01.8609 9.120	0.440512	2211411.	28205.9240	-0.0043217	5625.6369	-26.9272
.39.3696 11.400	0.430692	2275839.	28136.7929	-0.0042920	5788.7454	-33.7142
78.4765 13.680	0.420941	2340090.	28052.2535	-0.0042613	5951.4069	-40.4431
19.0576 15.960	0.411260	2404130.	27952.4318	-0.0042299	6113.5327	-47.1198
18.240	0.401652	2467923.	27837.4357	-0.0041975	6275.0348	-53.7540
20.520	0.392119	2531435.	27707.4579	-0.0041644	6435.8259	-60.2617
22.800	0.382663	2594633.	27562.8236	~0.0041304	6595.8202	-66.6105
25.080	0.373285	2657483.	27403.9317	-0.0040955	6754.9341	-72.7684
44.4645	0.363987	2719953.	27231.2530	-0.0040598	6913.0864	-78.7042
92.9993 29.640	0.354772	2782013.	27045.3287	-0.0040233	7070.1989	-84.3873
42.3287 31.920	0.345641	2843632.	26846.5753	-0.0039860	7226.1967	-89.9577
93.4008 34.200	0.336596	2904782.	26635.3992	-0.0039479	7381.0065	-95.2845
45.4289 36.480	0.327639	2965435.	26412.4187	-0.0039089	7534.5580	~100.3125
98.0630	0.318771	3025564.	26178.3442	-0.0038692	7686.7850	-105.0160
51.1233	0.309995	3085146.	25933.9439	-0.0038286	7837.6255	~109.3703
04.4131 43.320	0.301313	3144158.	25680.0414	-0.0037873	7987.0220	-113.3513
357.7170	0.001010	5144130.	Page		, 307.0220	-113.323

45.600 912.2375	0.292725	3202578.	Solider P 25417.3035	ile.lpo ~0.0037452	8134.9222	-117.1205
47.880 970.9582	0.284234	3260388.	25145.7963	-0.0037023	8281.2764	-121.0438
50.160 1030.0249	0.275842	3317567.	24865.7441	-0.0036587	8426.0327	-124.6161
52.440 1089.2341	0.267551	3374096.	24577.9690	-0.0036143	8569.1442	-127.8182
54.720 1148.3605	0.259361	3429959.	24283.3361	-0.0035691	8710.5685	-130.6317
57.000 1207.1552	0.251276	3485140.	23982.7516	-0.0035233	8850.2687	-133.0389
59.280 1265.3431	0.243295	3539628.	23677.1612	-0.0034767	8988.2128	-135.0228
61.560	0.235422	3593412.	23366.9577	-0.0034293	9124.3748	-137.0855
1327.6366 63.840	0.227658	3646481.	23052.2185	-0.0033813	9258.7274	-139.0015
1392.1058 66.120 1456.4015	0.220003	3698826.	22733.5502	-0.0033326	9391.2453	-140.5321
68.400 1520.2710	0.212461	3750438.	22411.8443	-0.0032831	9521.9083	-141.6660
70.680	0.205032	3801311.	22088.0176	-0.0032330	9650.7014	-142.3925
72.960	0.197718	3851442.	21763.0097	-0.0031823	9777.6149	-142.7021
1645.5763 75.240 1707.0660	0.190521	3900829.	21437.7132	-0.0031308	9902.6448	-142.6457
77.520	0.183442	3949472.	21112.4562	-0.0030787	10025.7916	-142.6674
79.800	0.176482	3997371.	20787.6459	-0.0030260	10147.0551	-142.2540
82.080 1900.3651	0.169643	4044528.	20464.2843	-0.0029727	10266.4406	-141.3966
84.360 4151.1940	0.162927	4090948.	19964.9218	-0.0029187	10383.9592	-296.6407
86.640	0.156334	4135823.	19275.2595	-0.0028641	10497.5679	-308.3263
4496.6781 88.920	0.149866	4179094.	18560.2394	-0.0028089	10607.1128	~318.8842
4851.3583 91.200	0.143525	4220704.	17822.5428	~0.0027532	10712.4549	-328.2181
5213.9740 93.480	0.137312	4260605.	17064.8881	-0.0026969	10813.4713	-336.3912
5585.6211 95.760	0.131227	4298756.	16287.8215	-0.0026401	10910.0543	-345.2462
5998.4567 98.040 6423.0767	0.125273	4335109.	15491.9225	-0.0025829	11002.0874	-352.9108
100.320	0.119449	4369625.	14679.9806	~0.0025251	11089.4697	-359.3189
102.600	0.113758	4402270.	13854.9308	-0.0024669	11172.1167	~364.4090
104.880 7757.1432	0.108200	4433019.	13019.8419	-0.0024083	11249.9615	-368.1251
107.160 8217.3486	0.102776	4461851.	12177.9043	-0.0023493	11322.9550	~370.4166
109.440 8690.3673	0.097488	4488756.	11332.0279	-0.0022899	11391.0671	-371.5802
111.720 9174.5954	0.092335	4513726.	10484.8605	-0.0022302	11454.2824	-371.5491
114.000 9659.2486	0.087318	4536762.	9639.5813	-0.0021701	11512.6013	-369.9239
116.280	0.082439	4557872.	8799.8611 Page	-0.0021098 5	11566.0451	-366,6727

		Solider P	ile.loo		
10141.0268 118.560 0.077697	4577074.	7969.4322	-0.0020492	11614 6667	261 7727
10616.1066				11614.6567	-361.7737
120.840 0.073095 11080.0778	4594392.	7152.0636	-0.0019883	11658.5004	-355.2163
123.120 0.068631 11527.8746	4609861.	6351.5341	-0.0019273	11697.6625	-347.0025
125.400 0.064306 12099.5528	4623523.	5566.9129	-0.0018660	11732.2512	-341.2618
127.680 0.060122 12683.9793	4635409.	4796.5831	~0.0018046	11762.3418	-334.4661
129.960 0.056077 13265.3180	4645554.	4043.3494	-0.0017430	11788.0240	-326.2653
132.240 0.052174 13839.4472	4653999.	3310.3796	-0.0016813	11809.4054	~316.6907
134.520 0.048411 14401.6841	4660796.	2600.7541	~0.0016195	11826.6123	-305.7878
136.800 0.044789 14946.7375	4666000.	1917.4328	-0.0015576	11839.7879	-293.6168
139.080 0.041308 15468.6629	4669676.	1263.2197	-0.0014957	11849.0926	-280.2544
141.360 0.037969 15960.8214	4671891.	640.7252	-0.0014337	11854.7021	-265.7934
143.640 0.034770 16415.8447	4672723.	52.3281	~0.0013717	11856.8067	-250.3444
145.920 0.031714 16825.6107	4672250.	-499.8649	-0.0013097	11855.6099	-234.0354
148.200 0.028798 17181.2342	4670558.	-1014.0594	-0.0012477	11851.3261	-217.0124
150.480 0.026024 17473.0795	4667735.	-1488.8136	-0.0011858	11844.1795	-199.4387
152.760 0.023391 17690.8022	4663873.	-1923.0778	-0.0011238	11834.4014	-181.4948
155.040 0.020899 18717.6445	4659064.	~2325.5751	-0.0010620	11822.2278	-171.5730
157.320 0.018548 20126.8426	4653361.	-2707.8296	-0.0010002	11807.7894	-163.7380
159.600 0.016338 21677.2588	4646804.	-3071.5770	-0.0009385	11791.1892	-155.3387
161.880 0.014269 23393.5717	4639437.	-3415.5639	-0.0008769	11772.5380	-146.4042
164.160 0.012340 25307.2837	4631306.	-3738.6083	-0.0008154	11751.9531	-136.9681
166.440 0.010551 27459.3577	4622460.	-4039.6113	-0.0007540	11729.5589	-127.0696
168.720 0.008902 3166920.	4612951.	-18279.8939	-0.0006927	11705.4855	-12364.4064
171.000 0.007392 3166920.	4539164.	-44080.3554	-0.0006320	11518.6836	-10267.5773
173.280 0.006020 3166920.	4412000.	-65317.5000	-0.0005726	11196.7485	-8361.4969
175.560 0.004781 3166920.	4241366.	-82420.1428	-0.0005152	10764.7653	-6640.8213
177.840 0.003671 3166920.	4036209.	-95802.8325	-0.0004603	10245.3794	-5098.3801
180.120 0.002682 3166920.	3804546.	~105862.	-0.0004082	9658.8902	-3725.5519
182.400 0.001809 3166920.	3553513.	-112974.	-0.0003594	9023.3654	-2512.6016
184.680 0.001043 3166920.	3289418.	-117490.	-0.0003140	8354.7681	-1448.9801
186.960 0.000377 3166920.	3017787.	-119739.	-0.0002722	7667.0968	-523.5893
		Page	6		

Page 6

189.240 -0.000198	2743434.	Solider H -120022.	oile.lpo -0.0002340	6972.5303	274.9854
3166920. 191.520 -0.000690 3166920.	2470508.	-118616.	-0.0001994	6281.5787	958.2732
193.800 -0.001107 3166920.	2202562.	-115771.	~0.0001684	5603.2349	1537.7432
196.080 -0.001458 3166920.	1942609.	-111709.	~0.0001409	4945.1253	2024.6553
198.360 -0.001749 3166920.	1693179.	-106631.	-0.0001167	4313.6583	2429.9334
200.640 -0.001990 3166920.	1456381.	-100710.	-9.5842E-05	3714.1680	2764.0593
202.920 -0.002186 3166920.	1233950.	-94096.8709	-7.7993E-05	3151.0520	3036.9839
205.200 -0.002346 3166920.	1027306.	-86920.5273	~6.2990E~05	2627.9024	3258.0544
207.480 -0.002474 3166920.	837598.	~79289.3572	-5.0617E-05	2147.6290	3435.9545
209.760 -0.002576 3166920.		-71292.7006		1712.5732	3578.6565
212.040 -0.002659 3166920.		-63002.5771		1324.6134	3693.3817
214.320 -0.002726 3166920.		~54475.4323		985.2596	3786.5699
216.600 -0.002782 3166920.		-45753.9490		695.7384	3863.8541
218.880 -0.002829 3166920.	-	-36868.9099		457.0671	3930.0400
221.160 -0.002872 3166920.		-27841.1025		270.1169	3989.0893
223.440 -0.002912 3166920.		-18683.2608		135.6650	4044.1053
225.720 -0.002950 3166920.	10786.1613		-1.6732E-05	54.4355	4097.3196
228.000 -0.002988 1583460.	0.0000	0.0000	~1.6660E-05	27.1287	4150.0807

Output Verification:

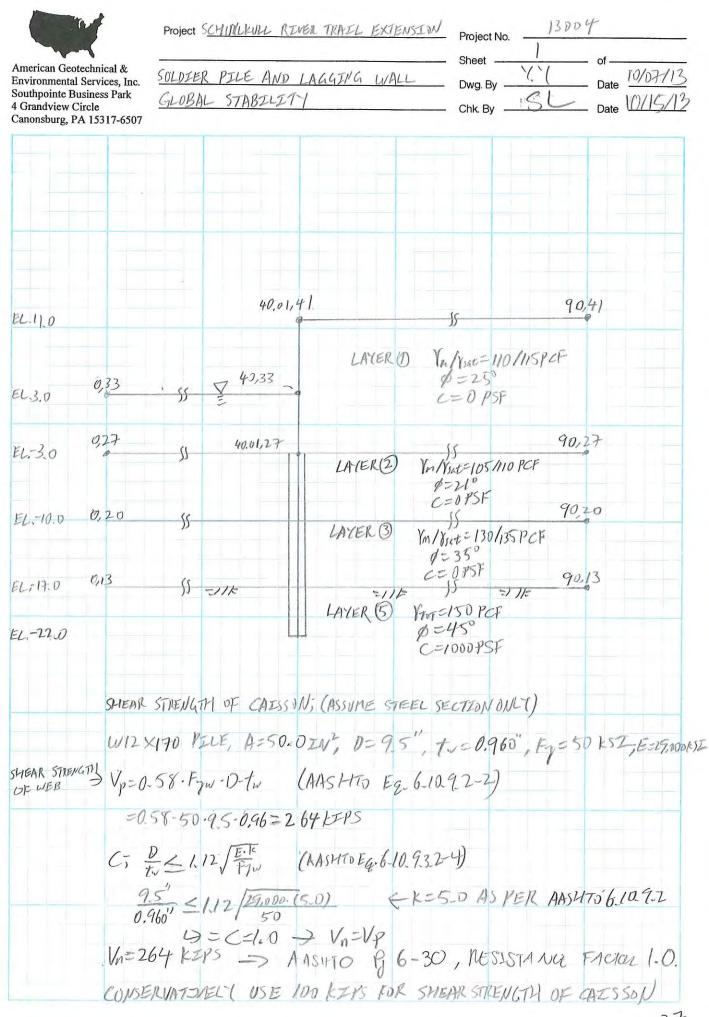
Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection		0.48044203 in
	-	-0.00443225
Maximum bending moment	=	
Maximum shear force		-120021.95077 lbs
Depth of maximum bending moment		
Depth of maximum shear force	=	189.24000 in
Number of iterations	=	9
Number of zero deflection points	Ξ	1

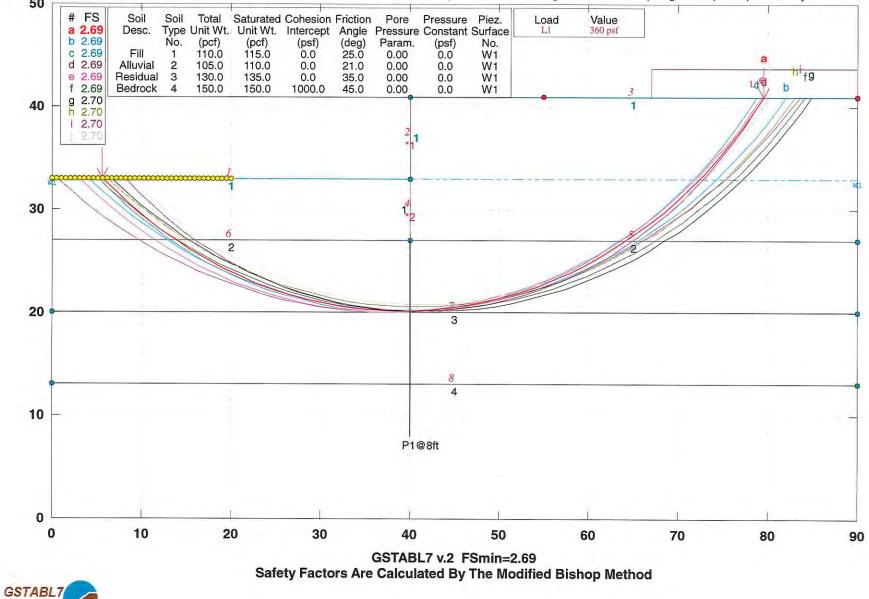
Summary of Pile Response(s)

Definition of Symbols for Pile-Head Loading Conditions:


Type 1 = Shear and Moment, Type 2 = Shear and Slope, Type 3 = Shear and Rot. Stiffnes: Type 4 = Deflection and Moment, Type 5 = Deflection and Slope,	M = Pil s, V = Pil S = Pil	Pile.lpo le-head displa le-head Moment le-head Shear le-head Slope, t. Stiffness d	: lbs-in Force lbs radians	in-lbs/rad
Load Pile-Head Pile-Head Type Condition Condition 1 2	Axial Load lbs	Pile-Head Deflection in	Maximum Moment in-lbs	Maximum Shear lbs
1 V= 28328. M= 1.95E+06	19180.0000	0.4804420	4672723.	-120022.
The analysis ended normally.				

CO.SIN, OK

Page 8


VSL 10-15-13

Schuylkill River Trail Extension Retaining Wall 1

n:\ages\projects\2013 - jobs\13004 - schuylkill rvr trail ext s. st christian st,urban\yoshi\13004 - schuylkill river trail retaining wall\foundation report\gstable\spl wall.pl2 Run By: YY 10/16/2013 08:53AN

CHK: VBP 10/16/13

spl wall.in PROFIL N:\AGES\Projects\2013 - Jobs\13004 - Schuylkill Rvr Trail Ext S. St Christian St,Urban\Yoshi\13004 - Schuylkill River Trail Retaining Wall\Foundation Report\GSTABLE\spl wall.in Version G7v2.004 [GSTABL72.EXE] е Schuylkill River Trail Extension Retaining Wall 1 8 3 0. 33. 40. 33. 1 40. 33. 40.01 41. 1 40.01 41. 90. 41. 1 40. 33. 40.01 27. 1 40. 35. 40.01 27. 1 40.01 27. 90. 27. 2 0. 27. 40.01 27. 2 0. 20. 90. 20. 3 0. 13. 90. 13. 4 0. 0. 0. SOIL Fill AlluvialResidualBedrock 4

 110.
 115.
 0.
 25.
 0.
 0.
 1

 105.
 110.
 0.
 21.
 0.
 0.
 1

 130.
 135.
 0.
 35.
 0.
 0.
 1

 150.
 150.
 1000.
 45.
 0.
 0.
 1

 WATER 1 62.4 2 0.5 0. 33. 90. 33. LOADS 67. 90. 360. 0. LIMITS 20 40. 33. 40.01 41. 40. 33. 40.01 27. PIERS 1 4 40.01 0. 100000. 8. 90. 19. CIRCL2 40 40 0. 20. 55. 90. 0. 2. 0. 0.

APPENDIX H SITE PHOTOS

Photo 1: View of proposed Plaza Area and the north end of proposed trail extension

Photo 2: Stakes showing approximate alignment of retaining wall

Photo 3: View of the wash-out area from the north

Photo 4: View from the wash-out area toward Schuylkill Expressway



Photo 5: View of the north (upstream) corner of the wash-out area

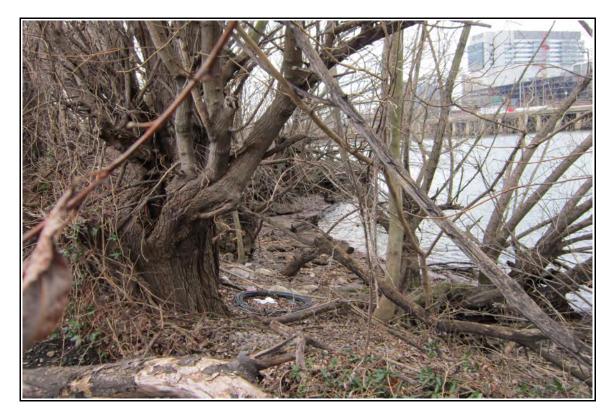
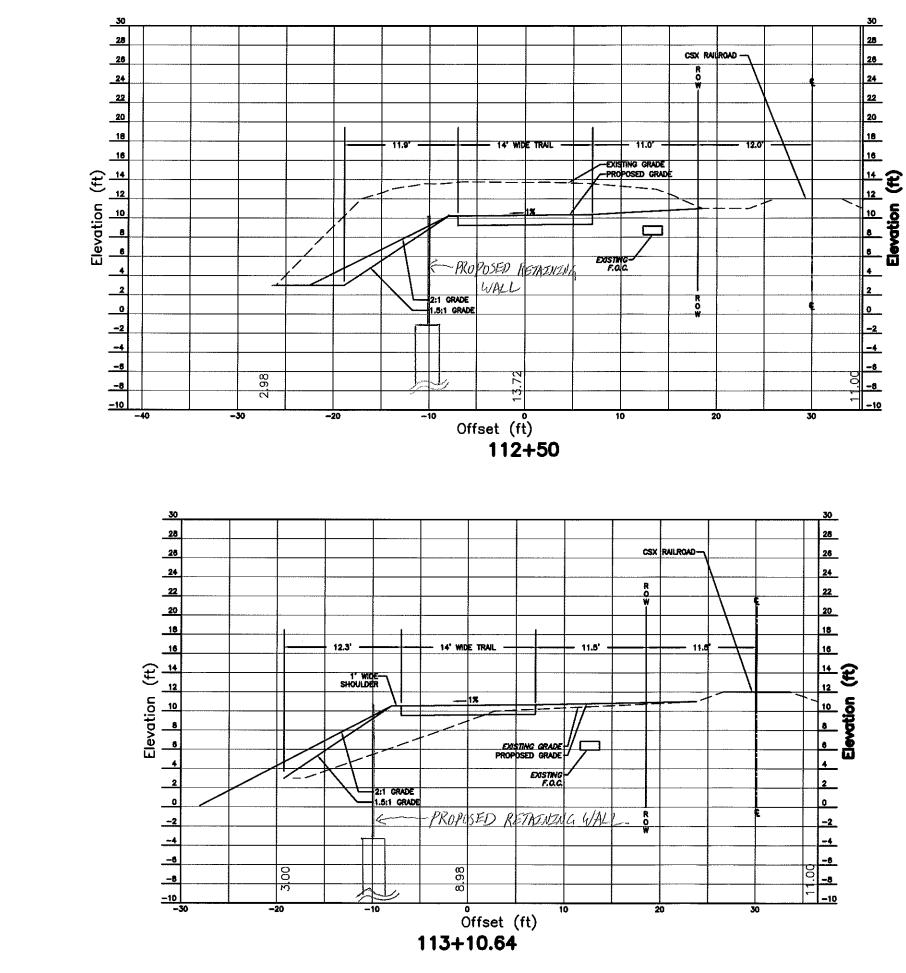
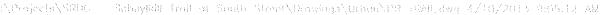
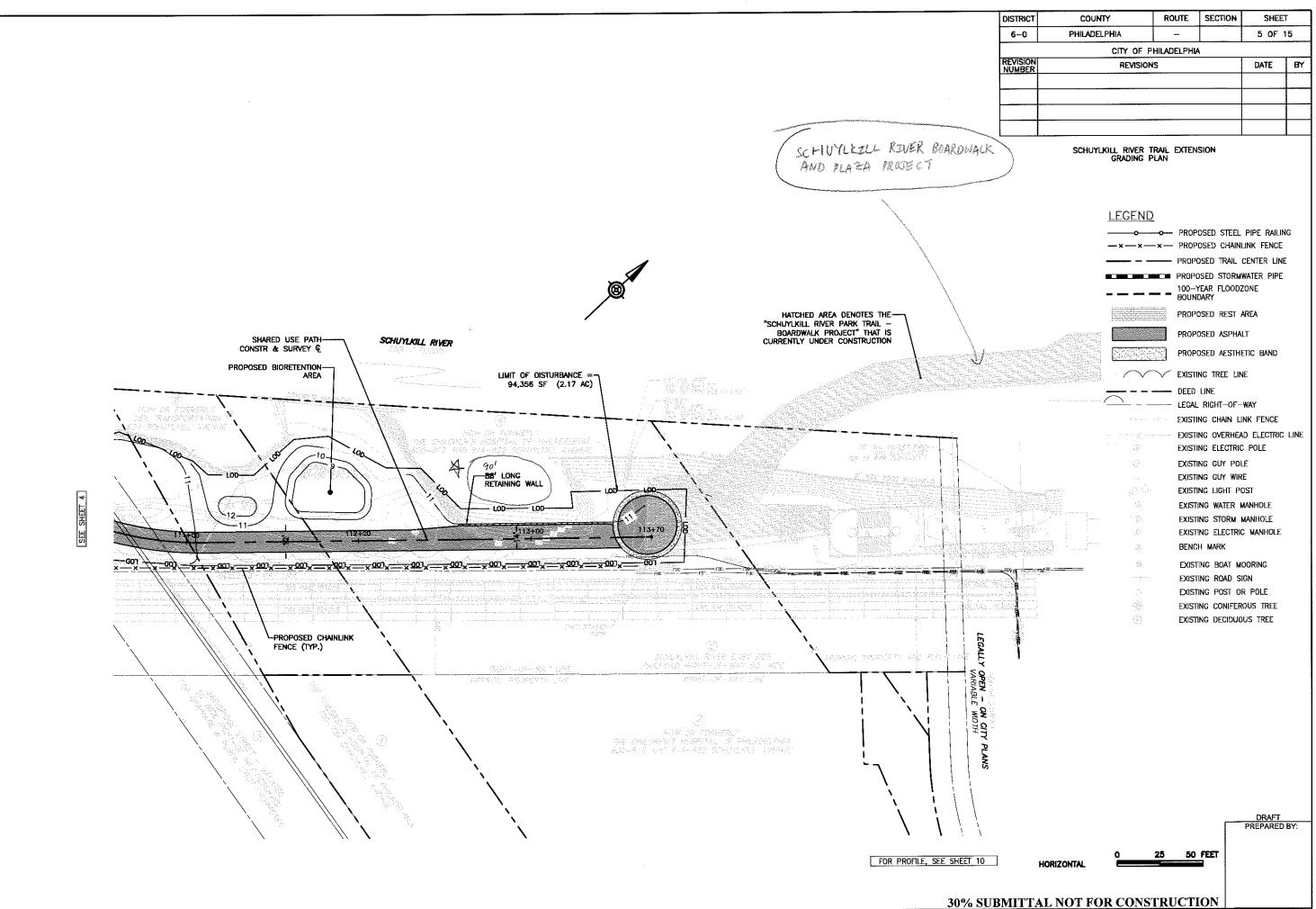
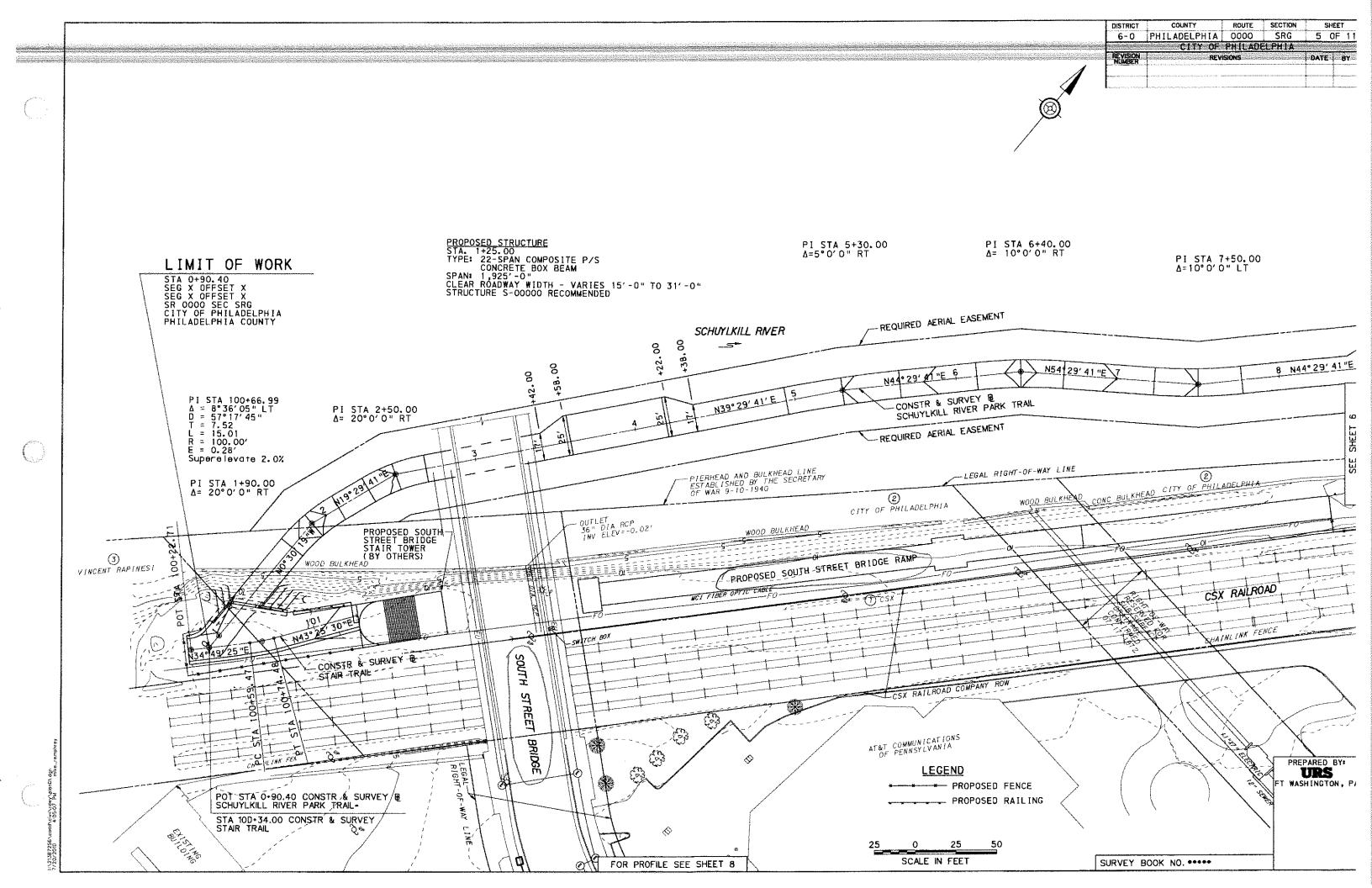
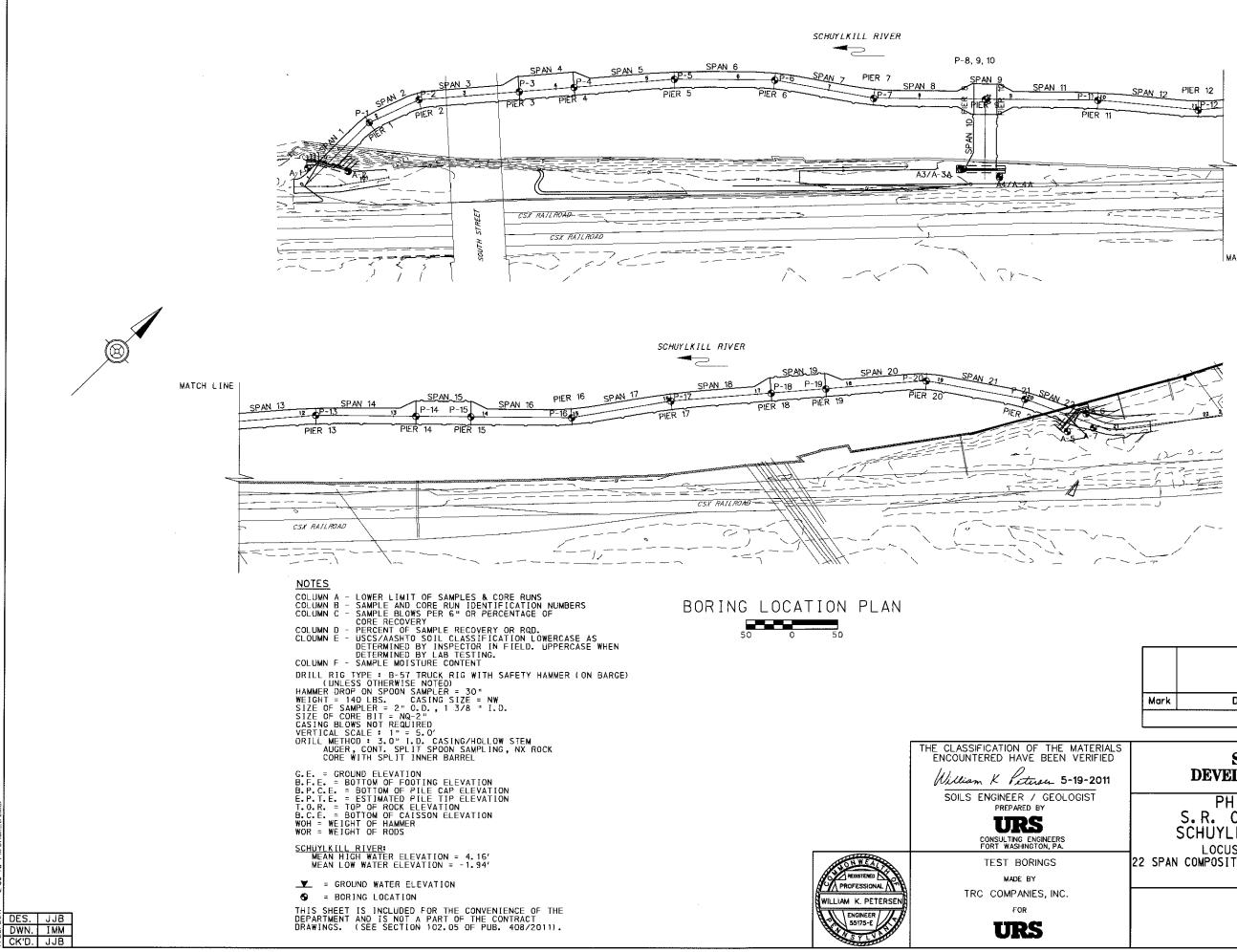




Photo 6: View of the south (downstream) corner of the wash-out area


APPENDIX I ROADWAY CROSS-SECTIONS (Provided by Urban Engineers, Inc.)




DISTRICT	COUNTY	ROUTE	SECTION	SHEE	т		
6-0	PHILADELPHIA	-	1				
	CITY OF	PHILADELPHI	4				
REVISION NUMBER	REVISION REVISIONS						
	· · · · · · · · · · · · · · · · · · ·						

APPENDIX J EXISTING BORINGS (Provided by URS Corporation)

SCHUYLKILL RIVER BOARDWALK AND PLAZE PROJECT

	Mark	Description	Ву	Chk'd.	App'd.	Date									
		REVISIONS													
ALS ID		SCHUYLKILL RIVER DEVELOPMENT CORPORATION													
	S	PHILADELPHI R. 0000 CHUYLKILL RIVE LOCUST STREET TO COMPOSITE P/S CONCRETE BORING L	SECT R PAR SOUTH PA BUL	ION K TF STREE B-TEE	AIL T	BRIDGE									
				SHE	ET <u>72</u>	OF <u>86</u>									
				BP/	4A-67	72732									

Mark	Description	By	Chk'd.	App'd.	Date		
REVISIONS							

MATCH LINE

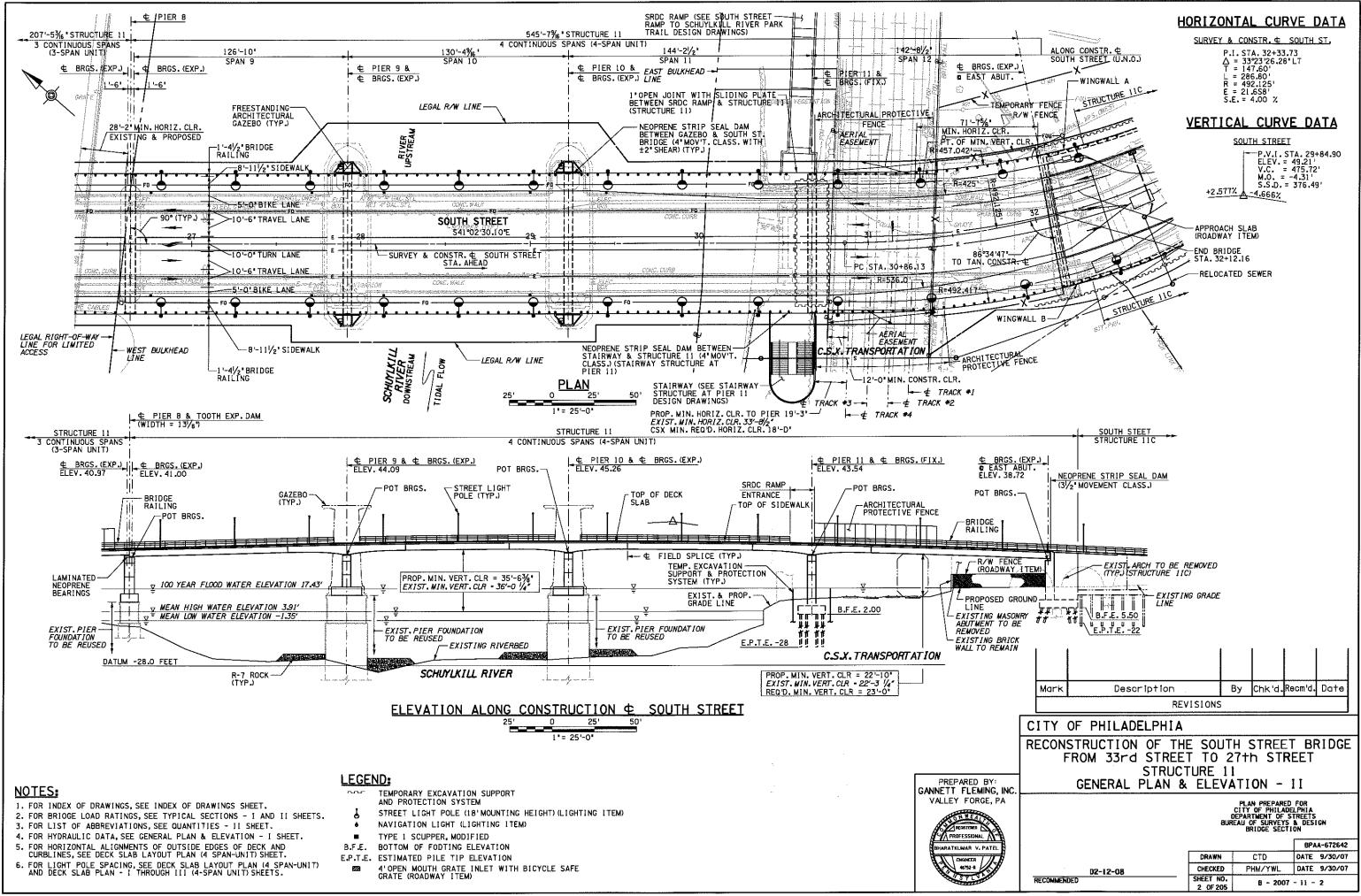
<u>ABUTMENT 1</u>

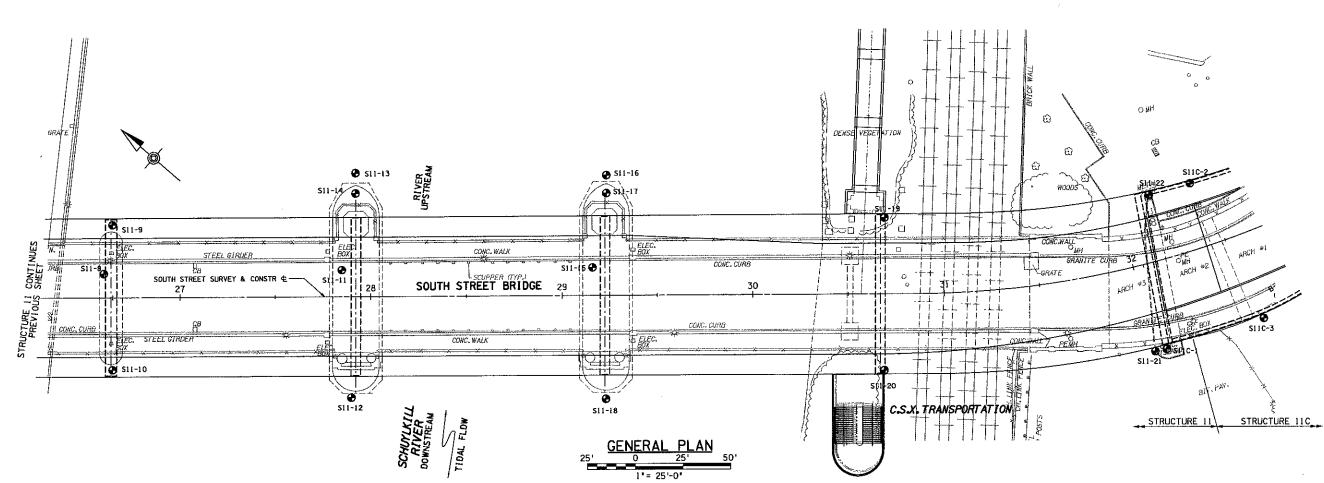
	15		C	ONSTR	8. R. S. R.	0000	A-1), STATIO	N 1+	+15, OFFSET 11' LT	
	10		A	B S-1	C 23-17-10	D 47%	E sm/a-1-b	F	G.E. 10.9' SILTY SAND WITH GRAVEL, DARK	
			3.0'	S-2	9-7-5	27%	sm/a-1-b	DRY	BROWN TO DARK GRAY, LOOSE TO MEDIUM DENSE (FILL)	
	. –		4.5'	S-3	6-4-1	33%	sm⁄a-1-b	DRY		
	5	¥ ELEV. 3.9'	6.0'	S-4	5-4-4	47%	SM/A-1-b	DRY	-	🗸 EL
		0 HR. 5/6/10	7.5'	S-5 S-6	4-4-3 5-6-3	20%	sm/a-1-b 	DRY	-	0
	0	B.P.C.E. 3.5'	<u>9.0'</u> 10.5'	S-7	3-2-1	100%	c1/a-4	WET	SANDY CLAY, BROWN TO GRAY,	в.
		▼ ELEV. 3.3′ 24 HR. 5/7/10	12.0'	S-8	2-1-2	0%			SOFT TO MEDIUM STIFF (FILL)	▼ EL 24
			13.5'	S-9	2-3-1	100%	c1/a-4	₩ET	-	24
	-5		15.0'		1-1-2 2-3-4	40% 60%	CL/A-4	WET	-	
			16.5' 18.0'		3-2-2	60%	c1/a-4	WET	-	
			19.5'	S-13	5-8-13	60%	sp/o-3	₩ET	POORLY GRADED SAND WITH GRAVEL, BLACK, MEDIUM DENSE (FILL)	
	-10	<u>T. O. R. /E. P. T. E.</u> -9. 5'	20.4'	<u>S-14</u>	50/.4	75%	gm/a-1-b 	WET	SILTY GRAVEL, GRAY TO BLACK, VERY	
			22.5'	R-1	90%	0%			DENSE (RESIDUAL)	т.
	- 15		27.5'	R-2	90%	36%			MICA SCHIST, GRAY TO PINK TO BROWN, MEDIUM HARD TO HARD, SLIGHLY WEATHERED, INTENSELY FOLIATED (RD=75°-B5° AND 35°-45°) CLOSELY TO MEDIUM JOINTED (RD=75°-B5°, 5°-55°)	<u>T.</u> -1
				R-3	100%	17%				
	-20		30.5'		E /E /0010				END OF BORING AT 30.5'	
	-25		COM DRII CAS	LETED LER : ING DE	5/5/2010 : 5/6/2010 FRANCO BRA PTH : 20.4' TYPE: CME	VO / 1				
	-30									
	-35									
	-40									
	- 45									
	-50									
	-55									
cings.dgn	-60									
js∖srpt_trac	-65									
t∖Geotech∖Lo M brian_trexie	-70									
	DES. JJB DWN. IMM CK'D. JJB								NOTE: FOR BORING LOCATION PLAN, SEE SHEET 72. THIS SHEET IS INCLUDED FOR THE CONVENIENCE OF TH DEPARTMENT AND IS NOT A PART OF THE CONTRACT DRAWINGS. (SEE SECTION 102.05 OF PUB. 408/2011)	IE -

	А	в	С	D	E	F			
	1.5'	S-1	5-13-11	33%	sm/a-2-4	DRY	SILTY SAN		
	3.0'	S-2	14-11-11	0%			GRAY, BLA MEDIÚM DE		
	4.5	S-3	7-5-4	60%	sm/a-2-4	ORY			
	6.0	S-4	7-2-12	33%	ѕти∕ а- 2- 4	DRY			
▼ ELEV. 3.8'	7.5'	S-5	12-7-6	13%	sm/a-2-4	DRY			
0 HR. 5/6/10	9.0'	S-6	3-2-1	53%	sm/a-2-4	WET			
B.P.C.E. 3.5'	10.5	S-7	5-9-21	13%	sc/a-2-4	WET	CLAYEY SA		
▼ ELEV. 3.2'	12.0'	S-8	19-6-4	33%	sc/a-2-4	WET	GRAY TO E VERY LOOS		
24 HR. 5/7/10	13.5'	S-9	3-2-2	47%	sc/a-2-4	WET			
	15.0'	S-10	5-5-3	53%	sc/a-2-4	WET			
	16.5'	S-11	1-1-1	60%	sc/a-2-4	WET			
	18.0'	S-12	2-2-2	47%	sc/a-2-4	WET			
	19.5'	S-13	6-4-5	47%	sc/a-2-4	₩EŤ			
	21.0'	S-14	5-2-3	33%	SC/A-2-4	WET			
	22.5'	S-15	5-6-10	67%	sc/a-2-4	₩EŤ]		
T. O. R. /E. P. T. E.	23.6'	S-16	42-46-50/.1	100%	sm/a-2-4	MOIST	SILTY SA		
-12.6'	25.5'	R-1	63%	0%			Moist, V		
	27,8'	R-2	100%	26%			AMPHIBOLI SLIGHTLY (RD=40°-4		
	32.8'	R-3	94%	44%			(RD=40°-4 SCHIST, TO SLIGH (RD=20°-		
		R-4	100%	60%			<u>(RD=20°-</u> SCHIST, I		
34.8' 1002 007 STARTED : 5/6/2010 COMPLETED : 5/6/2010 DRILLER : FRANCO BRAVO / TRC									
	CACI	NC DE	DTU + 27 0/						

COMPLETED : 5/6/2010 DRILLER : FRANCO BRAVO / TRC CASING DEPTH : 23.0' DRILL RIG TYPE: CME 45 TRACK RIG

THE CLASSIFICATION OF THE MATERIA ENCOUNTERED HAVE BEEN VERIFIE William K Petersen 5-19-201 SOILS ENGINEER / GEOLOGIST PREPARED BY URS CONSULTING ENGINEERS FORT WASHINGTON, PA.

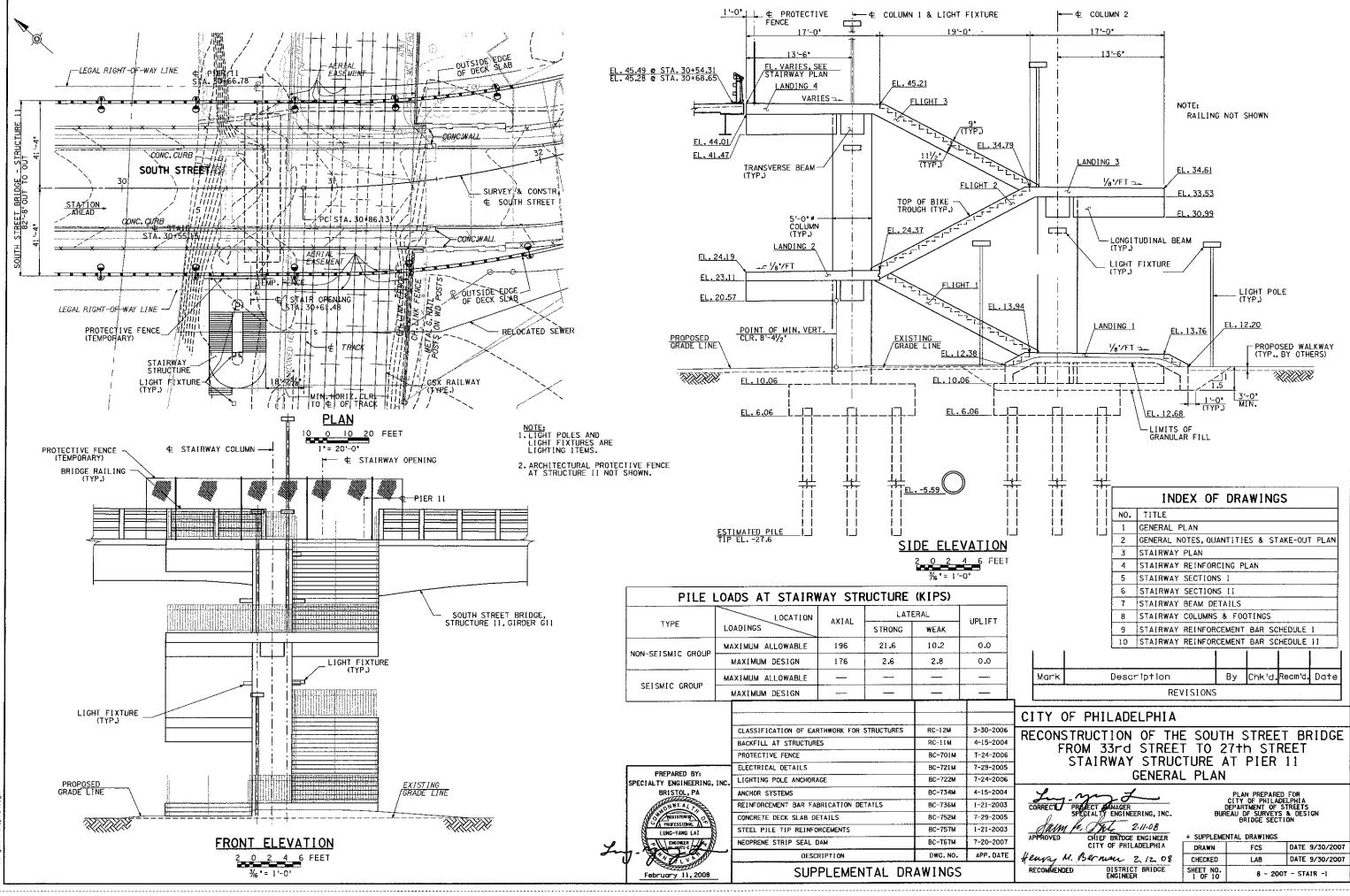

PROFESSIONAL


ENGINEER 55175-E


WILLIAM K. PETERSEN

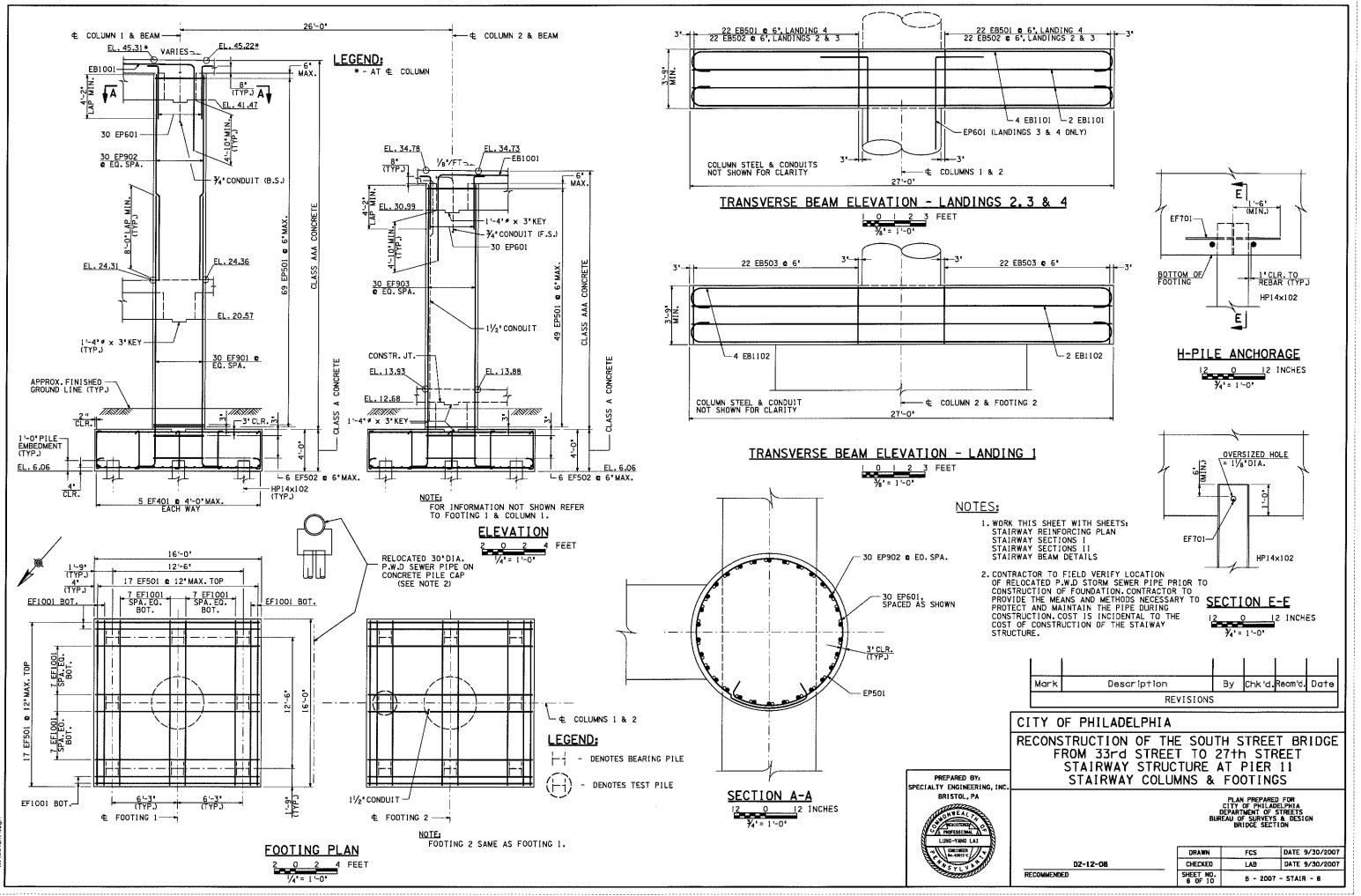
С	ONSTR	. B <u>.</u> S.R.	0000	A-2 , statio	N 1+	30, OFFSET	20' F	۲T				-	15
	в	C	D	E	F		G.E.	1 0/					
5′	S-1	5-13-11	33%	sm/a-2-4	DRY	SILTY SAND WI	TH GRAV	EL AND COAL.	BROWN,			-	10
) '	S-2	14-11-11	0%		* *	GRAY, BLACK A MEDIUM DENSE	(FILL)	GE, VERT LOOS	EIU				
5'	S-3	7-5-4	60%	sm/a-2-4	DRY	-							5
<u>)'</u>	S-4 S-5	7-2-12	33% 13%	sm/a-2-4 sm/a-2-4	DRY DRY	-						-	
5′ 0′	S-6	3-2-1	53%	sm/a-2-4	WET								
<u>5</u> ′	S-7	5-9-21	13%	sc/a-2-4	WET	CLAYEY SAND W							0
0′	S-8	19-6-4	33%	sc/a-2-4		GRAY TO BLACK VERY LOOSE (F	ILL)	W DENSE TO				-	
5′_	S-9	3-2-2	47%	sc/a-2-4	WET	-							
<u>0'</u>	S-10 S-11	5-5-3	53% 60%	sc/a-2-4 sc/a-2-4	WET WET								-5
5' 0'	S-12	2-2-2	47%	sc/a-2-4	WET								
5'	S-13	6-4-5	47%	sc/a-2-4	₩ET								
0′	S-14	5-2-3	33%	SC/A-2-4	₩ET							-	-10
5'	S-15	5-6-10	67%	sc/a-2-4	WET	1 							
-	S-16 R-1	42-46-50/. 63%	1 100% 0%	sm/ <u>a-2-4</u>	MOIST	SILTY SAND, MOIST, VERY	GRAY AND DENSE (É	BLACK,					
5′						AMPHIBOLITE,	BLACK,	MEDIUM HARD T	O HARD,			-	- 15
8'	R-2	100%	26%			(RD=40°-45°)	VERY CL	VERY INTENSÉL DSELY TO CLOS	Y FULIATED ELY JOINTED				
						(RD=40°-45°)							. 20
	R-3	94%	44%			SCHIST, DARK	GRAY, H	ARD TO VERY	ARD, FRESH				-20
8′			-			(RD=20°-40°)	CLOSELY	D, INTENSELY	DINTED				
81	R-4	100%	60%					ARD TO VERY F	ARD, FRESH,				-25
DMP RIL ASI	LETED	5/6/2010 : 5/6/201 FRANCO BR PTH : 23.0 TYPE: CME	AVO / 1 '			END OF BORING	EDIUM JO	INTED (RD=20°)= 20° - 40°) - 40°)				-30
													-35
													10
												-	-40
												-	-45
								T		1			
							Mark	De	escription	Ву	Chk'd.	App'd.	Oate
								.1	REVISIONS	L			
							L						
		TH	ENCOUN	SIFICATION ITERED HAV m K Pa	E BEE				CHUYLKILL OPMENT COI			ON	
			SOILS	ENGINEER PREPARE		DLOGIST		S.R. 0	LADELPHIA 000 S ILL RIVER	ECT	ION	SRG RAIL	
	11117-			CONSULTING FORT WASHIN			00 00 /	LOCUS [*]	T STREET TO SO	ритн	STREE	T T	
	N WEA			TEST BO MADE			22 SPA	N COMPOSITE	P/S CONCRETE P	'A BUL GS I	8-165 [BFUW	BRIDGE
	FESSIONA		Т	RC COMPAN		C.						ET <u>73</u>	OF <u>86</u>
	ENGINEER 55175-E			FOR UR								<u> </u>	72732
~	the state										ייטן	л <u>н</u> =0.	12172

SOUTH STREET BRIDGE



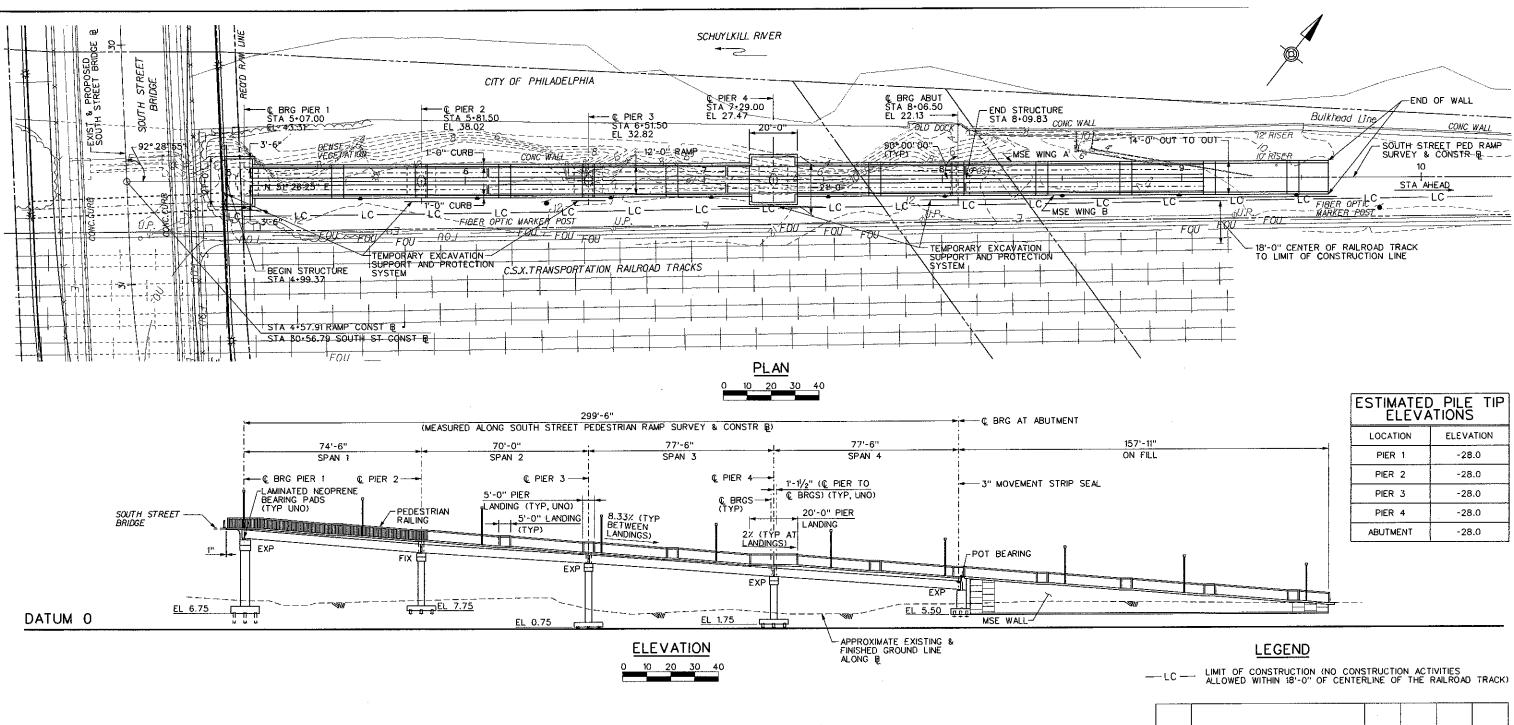
LEGEND:

	Mark	Descr	iption		Ву	Chk'd.	Recm'd.	Date	
			REVI	SIONS					
С	ITY	OF PHILADE	LPHIA				••		
RI				T0 URE	27 + 11	ר ST		RIDGE	
PLAN PREPARED FOR CITY OF PHILADELPHIA DEPARTMENT OF STREETS BUREAU OF SURVEYS & DESIGN BRIDGE SECTION									
BPAA-672642									
				DRAWN		BMJ	DATE	9/30/07	
				CHECKED	1	СМВ	DATE	9/30/07	'
			1	SHEET NO 192 OF 20		B - 200	07 - 11 -	192	


		STRUCTURE II	
		PIER II	COLUM Colum Colum
	5.0	\$11-20	COLUMI
	_	SI1-19 STATION 1+630.6, 12.0 LT , S.R. SOUTH ST. A B C D E F G.E. 3.71M 0.46 S-1 5-5-9 43% D BROWN, DRY TO WETLLOOSE TO DENSE, ASH, 0.46 S-1 5-5-9 43% D BROWN, DRY TO WETLLOOSE TO DENSE, ASH, 0.46 S-1 1-2-4 33% D BRICK AND MICA, SOME SAND, BLACK TO GRAYISH BLACK, DRY TO MOIST, LOOSE TO	
		0.91 S-2 8-6-5 52% D COAL FRAGMENTS, BRICK, TRACE GRAVEL, (FILL) 1.37 S-3 8-7-4 48% D 1.83 S-4 7-5-3 43% D	GE - (B.P.C. E.P.T.
	B.P.C.E. <u>0.61M</u> (2.00 FT)	2.29 S-5 4-4-2 65% D 2.74 S-6 3-3-5 54% M 2.74 S-6 3-3-5 54% M 0.81 GRUND SURFACE 0.61 0.61 3.20 S-7 3-2-4 52% M 0RIGINAL GROUND SURFACE 0.9M	
	— (2.00 FT) 	3.66 S-8 4-2-4 33% W MICA, SOME SILT WITH DEPTH, GRAYISH BROWN, WET, LOOSE 0,2M 0,2M 22 0,1% W 4.11 S-9 6-4-3 100% W 0.0M HRS 4.11 S-9 3-2-1 33% W	
		5.03 S-11 3-1-1 14% W I.2M SILTY SAND, (SM/A-4), TRACE OF FINE GRAVEL, LITTLE MICA, BROWN, WET, VERY LOOSE 5.03 S-11 2-2-2 65% W -1.3M 5.49 S-12 I-1-1 74% W Sint Construction 5.03 S-11 2-2-2 65% W -1.3M 5.49 S-12 I-1-1 74% W Sint Construction <	
		5.94 (5-13) 2-4-5 767 W 1.1M GRAVEL AND SAND (GP-SP/A-1-A), BROWN, 6.40 (5-14) 2-2-2 30% W WET, LOOSE TO VERY LOOSE WITH DEPTH 6.40 (5-14) 2-1-1 9% M 6.86 (5-15) 1-1-1 W -3.2M 6.86 (S-15) 4-3-3 35% M	
		7.32 IS-16 2-3-7 762 W SAND, TRACE OF MICA AND WOOD PIECES, BROWN TO GRAYISH BROWN, WET TO MOIST, VERY LOOSE 7.77 IS-17 W0H-2-2 762 M TO GRAYISH BROWN, WET TO MOIST, VERY LOOSE 8.23 IS-18 3-3-3 1002 M 6.86-8.22M: LAB CLASSIFIED 8.23 IS-18 3-3-3 1002 M 6.86-8.22M: LAB CLASSIFIED	SITE BL
- " "	<u>-5.0</u> 	B.69 S-19 5-6-15 1002 M 0.6M SAND, (SP/A-3), TRACES OF GRAVEL, QUARTZ 9.14 S-20 29-29-33 462 M PIECES, LITTLE MICA, REDDISH BROWN TO 9.14 S-20 29-29-33 462 M PIECES, LITTLE MICA, REDDISH BROWN TO 9.38 S-21 33-507 952 -5.5M 9.44 R-1 442, 02 WIDELY SPACED FRACTURES, 9.38 S-20 9.09M Image: Composed MICA Schist, GRAVISH Schist, GRAVISH Schist, GRAVISH Schist, GRAVISH	DRILLER GANNETT CONSULTANT THE CLASSIFICA ENCOUNTERED HAS
		10.29 R-1 0% 0% DENSE E.P.T.E. -7.19M 10.97 R-3 0% 0%	SOILS ENGINEER
		11.20 R-2 50/0.0M 0% TOP OF ROCK -7.5M (-23.6 FT) 1.20 S-22 4.6M MICA SCHIST, QUARTZ SEAMS, GRAYISH BLACK WITH WHITE SEAMS, HARD, SLIGHTLY 11.89 R-4 51% 18% 12.11 R-3 25% 0% FRACTURED, SLIGHTLY 11.89 R-4 51% 18% 12.11 R-3 25% 0% FRACTURED, SLIGHTLY BROKEN 12.3-12.15M: SOFT SEAM 12.11 R-3 25% 0% FRACTURED, SLIGHTLY BROKEN TO BROKEN 11.89 12.3-12.15M: SOFT SEAM	
	- - -10.0	13.02 R-4 93% 60% 13.10-13.14M, 13.19-13.25M, 13.39- 13.10-13.14M, 13.19-13.25M, 13.39- 13.41M, 13.63-13.80M; VERY BROKEN SEAMS	
		14.54 R-5 64% 18% 13.70-13.73M: VERY SOFT SEAMS 14.54 R-5 64% 18% 13.70-13.73M: VERY SOFT SEAMS 14.55 R-6 75% 57% -10.6M 00 RILLER: S. PARISANO/SITE BLAUVELT CASING LENGTH: 00 RILLING METHOD: HSA, SPLIT SPOON SAMPLING, NX CORING 01 RIG TYPE: CME 45C SKID RIG	
	_ _ _	I5.76 R-6 89% 38% -12.1M STARTED: 11-12-98, COMPLETED: 11-12-98 DRILLER: S. PARISANO/SITE BLAUVELT CASING LENGTH: DRILLING METHOD: HSA, SPLIT SPOON SAMPLING, NX CORING RIG TYPE: CME 45C SKID RIG	
0.17		PREP/ GANNETT	ARED BY: FLEMING, INC.
5-2008 IC			
JATE: 06-Fel			

	CENERAL NOTES MAN A - LOWER LIMIT OF SAMPLES OR CORE RUNS MAN B - SAMPLE OR CORE RUN IDENTIFICATION I MAN C - SAMPLE BLOWS PER ISOM MAN 0 - PERCENTAGE OF SOIL SAMPLE RECOVERY CORE RECOVERY MAN E - POCKET PENERROMETER TEST READING (A OR ROCK CORE RQO MAN F - WATER CONTENT MAN G - DESCRIPTION ELEV. GROUND ELEVATION C.E MAXIMUM BOTTOM OF PILE CAP ELEVATION T.E ESTIMATEO PILE TIP ELEVATION IN METH	NUMBERS OR ROCK KPA) N N IN METERS	5.0				
BI	LAUVELT						
ERED 1	T FLEMING, INC. CATION OF THE MATERIALS HAS BEEN VERIFIED. Unit 2/6/08 ER / GEOLOGIST THIS SHEET IS INCLUDED FOR THE CITY OF PHILADELPHIA DEPARTMENT OF STREETS, AND SHALL NOT BE CONSIDERED AS PART OF THE CONTRACT DRAWINGS. (SEE PAOOT PUBLICATION 408M, SECTION 102.05)						
	Mark Description REVISIONS	By Chk'd.	Recm'd, Date				
		27th STF 1	T BRIDGE REET				
NC.	STRUCTURE BORINGS PLAN PREPARED FOR CITY OF PHILADELPHIA DEPARTMENT OF STREETS BUREAU OF SURVEYS & DESIGN BRIDGE SECTION BRAA-672642						
ÿ	DRAWN CHECKED SHEET NO. 204 OF 205	BMJ CMB B - 200	DATE 9/30/07 DATE 9/30/07 7 - 11 - 204				

'11/2008
'11/2008


R

2/7/2008

S

SOUTH STREET BRIDGE TO THE SCHUYLKILL RIVER TRAIL

NOTE:

1. FOR VERTICAL GEOMETRY SEE ROADWAY PLANS.

SUPPLEMENTAL DRAWINGS						
DESCRIPTION	DWG NO	APP. DATE	REG			
MECHANICALLY STABILIZED EARTH RETAINING WALLS	BC-799M	7-24-06				
GENERAL NOTES AND LEGENDS FOR SOIL/ROCK DESCRIPTION	BC-795M	1-21-03	1			
TYPICAL WATERPROOFING AND EXPANSION DETAILS	BC-788M	1-21-03	ĺ			
MISCELLANEOUS PRESTRESS DETAILS	BC-775M	7-29-05	1			
NEOPRENE STRIP SEAL DAM	BC-767M	7-24-06	1			
STEEL PILE TIP REINFORCEMENT & SPLICES	BC-757M	1-21-03				
BEARINGS	BC-755M	7-29-05				
CONCRETE DECK SLAB DETAILS	BC-752M	7-29-05				
REINFORCEMENT BAR FABRICATION DETAILS	BC-736M	1-21-03				
WALL CONSTRUCTION & EXPANSION JOINT DETAILS	BC-735M	1-21-03				
ANCHOR SYSTEMS	BC-734M	4-15-04				
PERMANENT METAL DECK FORMS	BC-732M	7-24-06				
ELECTRICAL DETAILS	BC-721M	7-29-06				
BACKFILL AT STRUCTURES	RC~12M	3-30-06				
CLASSIFICATION OF EARTHWORK FOR STRUCTURES	RC-11M	4-15-04				

REFERENCES:

2. SLOPE DRAINAGE PROTECTION DETAIL

1. GENERAL NOTES

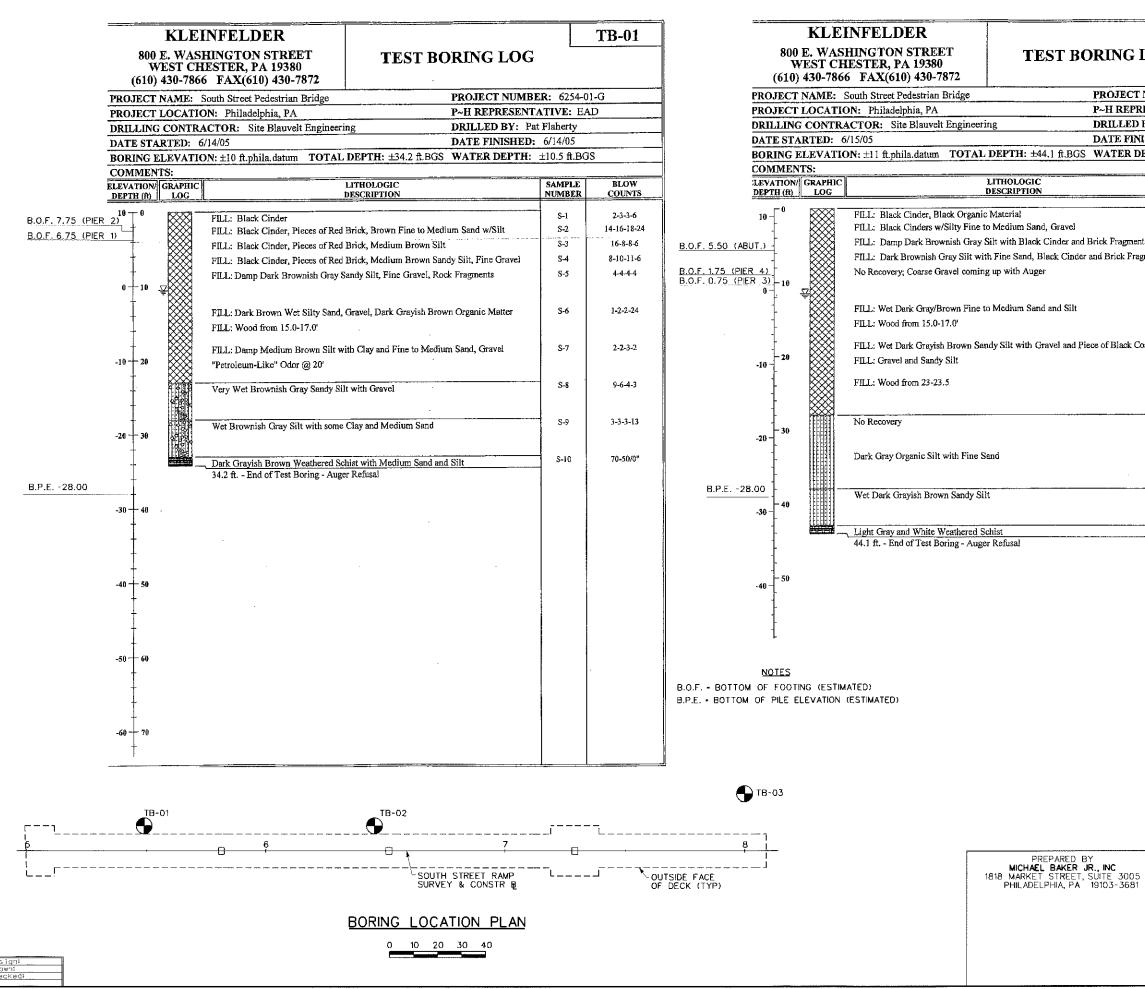
4. TYPICAL SECTION

5. DECK ELEVATIONS

6. BRIDGE LOAD RATINGS

3. QUANTITIES

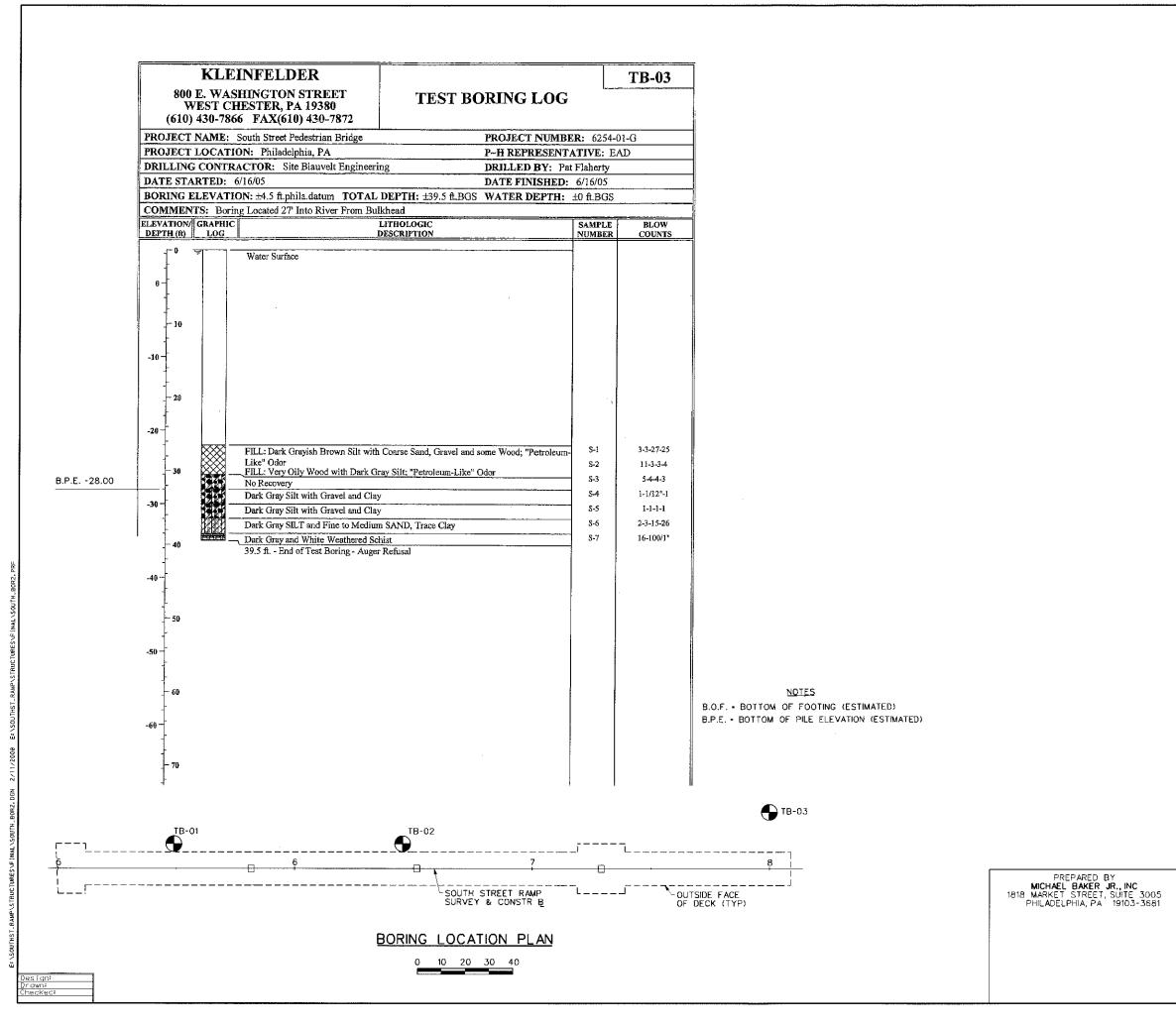
SHEE 2


5

PREPARED BY MICHAEL BAKER JR., INC 1818 MARKET STREET, SUITE 3005 PHILADELPHIA, PA 19103-3681 PROFESSIONAL UDREY ANN CO Audurant Concolo EGISTERED/ PROFESSIONAL ENGINEER DATE: 2408

esian: BTD rawn: EAR hecked: KMA

<u>T:</u>	Mark	Description	Ву	Chk'd.	App'd.	Date		
		REVISION	IS					
		SCHUYLKIL DEVELOPMENT (ION			
		PHILADELPHIA SCHUYLKILL RIVEI			RAIL			
	SOUTH STREET RAMP TO SCHUYLKILL RIVER PARK TRAIL 4 SPAN COMPOSITE P/S CONCRETE BOX BEAM BRIDGE GENERAL PLAN & ELEVATION							
	RECOMN	IENDED		- SHE	ET <u>1</u>	OF <u>33</u>		
				BF	PAA 6	572611		


ESTIMATED PILE TIP ELEVATIONS					
LOCATION	ELEVATION				
PIER 1	-28.0				
PIER 2	-28.0				
PIER 3	-28.0				
PIER 4	-28.0				
ABUTMENT	-28.0				

Mar al.				·					050		A1.1		
Mark		De	escriptic		EVIS	LONS	8			1.	App'd.	Da	
L		REVISIONS											
SCHUYLKILL RIVER													
								-					
	DE		CHU LOP					-		TI	ION		
		PH	LOP HIL AI	MEN	NT PH		ORF CO	0 U	RA NT`	Y			
		PH	LOP	MEN	NT PH		ORF CO	0 U	RA NT`	Y		_	
	SCI	PH HUY	LOP HIL AI LKIL	MEN Del L F	NT PH RI∨	CC IIA ER	CO P		RA NT` K	Υ ΤΙ	RAIL		
SOUTH	SCI	EVE: PH HUY	LOP HIL AI LKIL	MEN DEL L F	NT .PH RI∨ sc					r TI	R AIL	< TI	
SOUTH 4 SP /	SCI	EVE PH HUY REET OMP(LOP HIL AI LKIL	MED DEL L F P/S	NT PH RIV				RA NT K RIVE	r TI	R AIL	< TI	
4 SP	SCI 1 STF AN C	PH HUY REET OMP(LOP HIL AI LKIL RAME DSITE BOR	MEL DEL L F P/S ING					RA NT K RIVE	r R BE	R AIL	< ti BRI(DG
	SCI 1 STF AN C	PH HUY REET OMP(LOP HIL AI LKIL RAME DSITE BOR	MEL DEL L F P/S ING					RA NT K RIVE	r R BE		< ti BRI(DG

		TB-02						
LOG								
T NUMBER: 6254-01-G								
RESENTATIVE: EAD								
DBY: Pat Flaherty								
NISHED: 6/15/05								
DEPTH:	±11.5 ft.BO	35						
	0.1340T D	NF ON						
	SAMPLE NUMBER	BLOW COUNTS						
	S-1	2023						
	S-1 S-2	2-2-2-3 6-5-5-5						
ents	S-3	3-5-3-4						
ragments	S-4	9-9-10-8						
-6	S-5	6-5-6-6						
	S-6	1-1-2-1						
Coal	S-7	6-4-5-7						
	S-8	100/1"						
	S-9	5-12-3-5						
	S-10	2-3-3-3						
	S-11	5-3-5-5						
	S-12	42-50/0"						

TD 00

SCHUYLKILL RIVE DEVELOPMENT CORPOR	
PHILADELPHIA COUN SCHUYLKILL RIVER PARK	· ·
SOUTH STREET RAMP TO SCHUYLKILL RI 4 SPAN COMPOSITE P/S CONCRETE BO BORING LOG 3	
RECOMMENDED	SHEET <u>33</u> 0F <u>33</u>
	BPAA 672611

REVISIONS

Mark

Description

By Chk'd. App'd. Date

APPENDIX K QA FORM D-517 (5-12) REPRODUCE LOCALLY

QUALITY ASSURANCE FORM FOR FINAL DESIGN OF FLEXIBLE RETAINING WALLS

De:	signer: JOHN E, FEDERICO, P.E., P.P., AI.C.P. / URBAN ENGINE (DESIGN OFFICE & NAME OF DESIGNER	ERS , INC. Date: 007.2013
1.	PROJECT INFORMATION SCHWILLKELL REWER TRAIL	Project MPMS/ECMS No.:
	County: PHILADELPHITA S.R.: Sec.:	Along: SCHUYLKZUL RIVER
	S-No.: Stations: Begin Wall2754-0 0	
2.	GEOMETRIC DESIGN INFORMATION	
	Wall Type: Permanent 🖾 or Temporary 🗖	
	Cantilever 💢 or Tie Back/Anchored 🗆	
	If Tie Back/Achored Wall, No. of Anchors per Vertical Element:/A	
	Permanent Tie Back/Anchored Walls:	
	Method of Installation: Top Down 🖄 or Bottom Up 🔲	
	Lagging Type: Precast 🗵 ; Timber 🗆 or N / A	
	Support/Pile Type: Double Pile 🛛 ; Single Pile 📈 or Internal	
	BEARING PLATE ANCHOR HEAD ANCHOR HEAD ANCHOR HEAD ANCHOR HEAD ANCHOR BEARING SUPPORT WALL (VERTICAL ELEMENTS WITH FACING) FINISHED GRADE BESIGN GRADE BESIGN GRADE BESIGN GRADE BESIGN GRADE BESIGN GRADE BESIGN GRADE ANCHOR HEAD BESIGN GRADE BESIGN GRADE	STOP OR H/S ANCHOR INCLINATION BODDO SYON ANCHOR INCLINATION BODDO SYON ANCHOR INCLINATION BODDO SYON ANCHOR INCLINATION BODDO SYON SYNCH ANCHOR INCLINATION BODDO SYNCH ANCHOR INCLINATION SYNCH ANCHOR INCLINATION SYNCH ANCHOR INCLINATION SYNCH ANCHOR INCLINATION SYNCH ANCHOR INCLINATION SYNCH ANCHOR INCLINATION SYNCH ANCHOR INCLINATION SYNCH ANCHO

Ap.A - 56

QUALITY ASSURANCE FORM FOR FINAL DESIGN OF FLEXIBLE RETAINING WALLS

Designer: <u>JOHN E, H</u>	EDERILO, P.E., P.P., A.I.C.P. / URBAN ENGINEEL (DESIGN OFFICE & NAME OF DESIGNER)	<u>RS, TNC,</u> Date: <u>007.201</u>
Dosign		
Dimensions \rightarrow	1= 14.0 2= 12.2 TO 19.0 (VARIES)	ft.; Calc. Page/
	2= 12.2 TO 19.0 (VARIES)	ft.; Calc. Page <i>[_()</i>
	3 = <u>//</u>	ft.; Calc. Page
	4 = <u>//</u> A	ft.; Calc. Page
	5 = <u>N /A</u>	
	6= 19.0	
	7=N/A	
	8=6.0	ft.; Calc. Page/ 1
	9 =	
Angles →	A=/A	
-		_Degrees; Calc. Page
3. SOIL AND FOU		
In-Situ Soil Type:	SANDY SELT TO SELTY GRAVEL	; Calc. Page <u>4-5</u>
ist/SdualedUnit Density :	$= \frac{1/0/115}{100}$ kcf, Cohesion (c) =	kcf; Calc. Page
	mal Friction = 25°	
Stability Num	ber (N) (D3.11.5.7) =///	≤ 3.0; Calc. Page
Foundation Mater		
Soil 📿 F	ROCK K ELASTIC SILT/RESIDVAL/BEDROCK	; Calc. Page
Type ELANTE	C STLT/SZLTY SAND/SCHIZEST AND AMPHEODOLET	Calc. Page
Maddiat Density S.d. aded Unit Density :	C 55LT/SZLTY SAND/SCHZEST AND ANPHZOBOLIT 105/130/150 =1 <u>10/135/150</u> kcf; Cohesion (c) = <u>0/0/10.0</u>	ksf kcf, Calc. Page
Angle of Inter	mal Friction = $\frac{21^{\circ}/35^{\circ}/0^{\circ}}{10^{\circ}}$; Calc. Page
	ber (N) (D3.11.5.7) =/ A	
Foundation Desig		· · · · · · · · · · · · · · · ·
-	<i>4</i> / 1	
Pressure: Re	esistance = $\frac{N/A}{}$; Actual = $\frac{N/A}{}$) ; Calc. Page -

D-517 (5-12)

QUALITY ASSURANCE FORM FOR FINAL DESIGN OF FLEXIBLE RETAINING WALLS

Designer: <u>Ju</u>	HN E. FEDERICO, RE, R.R., A.J.C.P./ URBAN ENGINEERS, JUL (DESIGN OFFICE & NAME OF DESIGNER)	Date:
Slope	e Stability Analysis Performed? Yes ⊠ No □ (GS7ABL)	; Calc. Page_ <u>25-2</u> 7
	ing Resistance = N/A	
	mum Bearing Pressure = N/A	
Live	Load Surcharge Used =/A	; Calc. Page
Earth	Pressure Used: Active 🛛 Passive 🖾 ; Calc. Page_ / (1-14
4. VERTICA	AL ELEMENT DATA	
· ·	AESSON : Size: 2.5'DZA. CAISSON	
Spacing:	8-0 FT; Embedment Length = 12.2 To 19.0 FT (VAR	#\$)Calc. Page <u>10-14</u>
Design C	hecked for Staged Construction? Yes \Box No 🛛 ; Calc. Page	
Corrosion	Protection UTILIZE CALVANIZED STEEL	
Special D	etails:A	
5. ANCHOP	R DATA N/A	
Туре:		; Calc. Page
Size:	; Spacing:	;Calc. Page
Loads: R	esistance =; Design:	; Calc. Page
Bond Len	gth based on: Soil 🗌 Rock 🗌 ; Calc. Page	
Corrosion	Protection	
Is Anchor	Installation Procedure included? Yes 🗌 No 🗌	
6. LAGGIN	G AND FACING DATA	
Lagging:	Temporary D Permanent	;Calc. Page
Туре:	PRE-CAST CONCRETE PANEL	; Calc. Page
Maxir	num Design Bending Moment =/A	; Calc. Page

QUALITY ASSURANCE FORM FOR FINAL DESIGN OF FLEXIBLE RETAINING WALLS

	.		. — _		. —	. 1 15			
Facing:	Cast-in-F	Place Concre	ete 🗆 🛛 P	recast Con	crete 🗀	NA	5	Calc. Page	
Concrete Class =; Thickness =;								Calc. Page	
Reinfo	orcement:	Wire Mesh	☐ or	Bars]	,	; Calc. Page	
		Plain	□ or	Ероху-Со	ated 🗌];		Calc. Page	
Maxin	num Desigr	n Bending M	loment =					Calc. Page	
Attach	hment Deta	iils Designe	d? Yes	□ No	□;			Calc. Page	
DRAINAG	GE DETAIL	DATA							
Are Drain	age Panels	s provided I	pehind wall?		Yes 🗖	No 🗆			
Do Draina	age Panels	extend full	height of wa	all?	Yes 🗌	No 🗆			
ls Insulati	ion provide	d to preven	t freeze/thav	v damage	Yes 🗆	No⊠			
MISCELL	ANEOUS	DATA	J/A						
If Tie Back	k/Anchored	Wall is in a	fill situation,	is the nece	essary app	roval from t	he		
Chief Brid	ge Enginee	r included v	vith the subm	ission?	Yes 🗌	No 🗆			
For Tie Ba	ack/Anchore	ed Walls, do	the plans a	nd special p	provisions	for this sub	mission o	contain the proof,	
performan	ice, creep, a	and lift off te	sting of the	anchors?	Yes 🛛	No 🗆			
	NTS								

APPENDIX L SPECIAL PROVISION

SPECIAL PROVISION FOR DESIGN-BUILD RETAINING WALL

<u>SPECIAL BIDDING – DESIGN-BUILD</u>

The Retaining Wall component of this project will utilize the Design-Build method of contracting. This component will be included in the overall contract between the Owner and the successful Bidder.

I. DESIGN ACTIVITIES

Design activities include:

• DESIGN OF RETAINING WALL (AS DESIGNED FOUNDATION PROVIDED)

II. REVIEW SUBMISSION CONTACTS

Include all design activities, submission dates, and review periods in the construction schedule. Include the submission schedule in the Quality Plan. Make all required submissions for each design activity to the Owner Representative, as defined in **Section 011000 – Summary**.

III. SUBMISSION REQUIREMENTS/REVIEW TIMES:

The following table provides the required number of plans and/or documents and the schedule of review times for complete submissions. Partial submissions, where specified, will be reviewed in the time specified below for each submission. Partial submissions will require the submission of the number of plan sets and calculations specified below for the applicable design activity. Be responsible for reproduction costs for submissions and final drawings, including providing the Owner with two half-size sets of all final drawings for use during construction, in addition to any copies specified below.

Item	Plan Sets	Sets of Calculations	Initial Submission Review Time (working days)	Subsequent Submission Review Time (working days)
Quality Plan	2	2	10	5
Preliminary Structure Plans	2	2	10	5
Final Structure Plans	2	2	10	5
Foundation Submission *	2	2	10	5
As-Built Plans	2	2	10	5

* Only applicable if "Alternate Wall" specification is used

Review times begin and end when a submission is logged in and out, respectively, by all designated reviewers. The login time will be taken as the latest date in which the submission is received by the reviewers. Submittals received after 11:00 a.m. will be logged in as the next working day following receipt of the submission. For electronic submissions, the login time will be taken when the appropriate reviewer and Owner Representative receive an email stating a submission is ready for review. Logout time occurs when the reviewer sends an email to the Contractor with an approval and/or comments. If a submission is incomplete or otherwise requires additional information or data to complete the review properly, the review time will begin as specified for the submission when all required information is received.

Additional contract time or price adjustment to any contract items will not be considered due to failure to obtain approvals within the specified review times resulting from incomplete or non-conforming submissions. Working days are weekdays, Monday through Friday, excluding official holidays. Include all review periods identified above as activities in the project schedule.

IV. GENERAL DESIGN REQUIREMENTS

Have the design completed by a Professional Engineer licensed in the State. Have all surveys completed by a Professional Land Surveyor licensed in the State. Provide all Professional Engineer's seals in accordance with Pa. Code § 37.59.

Provide the Design Engineer's P.E. seal, the date signed, and business name and address on the first sheet of all computations, including computations for partial submissions. Provide the appropriate seal and signature on plan sheets in accordance with the Pennsylvania Department of Transportation's Design Manuals. Also, provide the Design Engineer's P.E. seal, signature, and date signed on the first sheet of all computations, including computations for partial plans submissions.

Designs copied directly from Pennsylvania Department of Transportation Standard Drawings need not be documented through independent computations. List such designs on the submission by referencing the drawing number of the applicable standard, and the sheet number, table, or graph.

Experimental or demonstration-type design concepts, products, structures, or elements not preapproved by the Owner for general usage at the time of bid, will not be allowed. Designs that take advantage of any errors and/or omissions in the following requirements will not be accepted. In the event any such error, omission, or discrepancy is discovered, immediately notify the Owner. Failure to notify the Owner will constitute a waiver of all claims for misunderstanding, ambiguities, or other situations resulting from the error, omission, or discrepancy.

Final Plans must include a note on all tabulation of quantities sheets included therein that states "Item numbers and descriptions listed in Tabulations are solely for the purposes of identifying the specified units of work and locations, and are not to be construed as contract or pay items."

Design and construct any support of excavation required by any Design Activities identified in Section I of this Special Provision in accordance with the Special Provision titled TEMPORARY EXCAVATION SUPPORT AND PROTECTION SYSTEM FOR DESIGN-BUILD PROJECTS.

During construction, Contractor's engineer shall be responsible for reviewing and approving shop drawings. A copy of each shop drawing must also be submitted to Owner.

Design Specifications

Perform the design activities identified in Section I, Design Activities, in accordance with the latest published edition of all Pennsylvania Department of Transportation Standards, Specifications, Regulations, Strike-off Letters, and other industry standards, at the time of advertisement, unless directed otherwise, or as identified in the bid package. These include, but are not limited to the following:

- Special Provisions;
- Publication 408, Specifications
- Publication 72M, Standards for Roadway Construction
- Publication 218M, Standard Drawings for Bridge Design
- Publication 219M, Standard Drawings for Bridge Construction
- Publication 10 Design Manual Part 1 Transportation Program Development and Project Delivery Process
- Publication 10A Design Manual Part 1A Pre-TIP and TIP Program Development Procedures
- Publication 10B Design Manual Part 1B Post-TIP NEPA Procedures
- Publication 10C Design Manual Part 1C Transportation Engineering Procedures
- Publication 10X Design Manual Part 1X Appendices to Design Manuals 1, 1A, 1B, and 1C
- Publication 13M Design Manual Part 2 Highway Design
- Publication 14M Design Manual Part 3 Plans Presentation
- Publication 15M Design Manual Part 4 Structures
- Publication 16M Design Manual Part 5 Utility Relocation
- Publication 584, Drainage Manual
- Publication 46, Traffic Engineering Manual
- Publication 149, Traffic Signal Design Handbook

- Publication 35, Approved Construction Materials
- Publication 203, Work Zone Traffic Control
- Publication 213, Temporary Traffic Control Guidelines
- Publication 222, Subsurface Boring, Sampling, and Testing Contract
- Publication 293, Geotechnical Engineering Manual
- Publication 378, Right-of-Way Manual
- Pa Code Title 67, Chapter 204, Guidelines to Implement Act 229 of 2002, Additional Traffic Control Devices in Highway Work Zones, Statement of Policy
- Pa Code Title 67, Chapter 212, Official Traffic Control Devices (Publication 212)
- Publication 236M, Handbook of Approved Signs
- Publication 242, Pavement Policy Manual
- Publication 281, Waste Site Evaluation Procedures for Highway Project Development Process;
- Publication 371, Grade Crossing Manual
- Publication 122M, Surveying and Mapping Manual
- Publication 111M, Traffic Control Pavement Markings and Signing Standards
- Publication 148, Traffic Standards Signals
- Publication 611, Waste Management Guidance Manual
- Publication 7, Items Catalog
- Manual on Uniform Traffic Control Devices (FHWA)
- A Policy on Geometric Design of Highway and Streets, AASHTO "Green Book"
- A Policy on Design Standards Interstate System (AASHTO)
- AASHTO Guide Specifications for Horizontally Curved Highway Bridges
- AASHTO LRFD Bridge Design Specifications or, when applicable, AASHTO Standard Specifications for Highway Bridges

The design should be performed using the most conservative design criteria from the sources listed above. In the event that a clear order of predominance cannot be established, or a difference in interpretation of the design cannot be resolved, the Owner Representative will be the arbiter and his/her decision will be final. For bridge/structures related design activities, refer to the "Bridge/Structures Related Effective Policy Letters" for additional design policy Strike-Off Letters that are applicable to the structure design.

In the event that certain design parameters, stresses, or specifications are in conflict regarding bridge/structures related design activities, the following order of predominance governs:

- Design requirements listed herein and addenda (addendum) to the proposal.
- Design related Strike-Off Letters in effect on the date of project advertisement.
- Publication 15M Design Manual Part 4, Structures
- Publications 218M and 219M Standard Drawings for Bridge Design and Bridge Construction
- AASHTO LRFD Bridge Design Specifications or, when applicable, AASHTO Standard Specifications for Highway Bridges

The design should be performed using the most conservative design criteria from the sources listed above. In the foregoing instances, in the event that a clear order of precedence cannot be established, or a difference in the interpretation of the design criteria, standards, specifications, or methodology cannot be resolved, the Owner Representative will be the arbiter and whose decision will be final.

V. SCHEDULE OF VALUES

Where indicated, partial payment for lump sum design-build items will be made on Current Estimate Payments based on the amount of work completed during the estimate period based on a payout schedule (Schedule of Values). The Owner will base amount of the partial payments on the total value of the work performed to the date of the estimate cut-off, less payments previously made, in accordance with the approved Schedule of Values.

Prepare a Schedule of Values for each lump sum Item associated with the design or construction of the Design Activities identified in Section I of this Special Provision, where the Special Provision for that "Design" or "Construct" Item indicates lump sum measurement and payment by Schedule of Values, using the attached Schedule of Values template as a guide. Hereinafter, Design Items are defined as the Contract Item associated with the Design Activities identified in Section I, and Construct Items are defined as the Contract Item associated with the construction of the Design Activities identified in Section I. Distribution of payments among Schedule of Values Components must bear a reasonable resemblance to the actual value of work.

(a)For Design items, if a Component is not applicable, indicate 0%; otherwise do not indicate values less than 5% in any Component. Include those Schedule of Values Components identified in the associated Design Item Special Provisions. Payment for Design Item Schedule of Values Components will be made in the amount of the approved percentage upon completion of the identified task. When Schedule of Values Components are identified in the Special Provisions with "Approval" in the Schedule of Values Component title, 75% of the approved percentage may be paid on the next estimate following login of that submission, and the remaining 25% of the approved percentage will be paid following approval of that submission. Otherwise, no partial payment will be made for Design Item Components.

(b)For Construct Item, include Schedule of Values Components relevant to the scope of work of the particular item, using the attached Schedule of Values template as a general guide. No partial payment will be made for Construct Item Schedule of Values Components. Accordingly, develop the Schedule of Values to include Schedule of Values Components in sufficient numbers and detail to be payable upon semi-monthly estimates throughout the duration of the Contract.

Submit the Schedules of Values to the Owner for review and approval. No estimate will be processed until all Schedules of Values are approved.

VI. CONSTRUCTION CONTACT

The Owner's contact for Current Estimate Payments as defined in Section 110.05 will be:

• The Project Manager identified in Section II of this Special Provision.

DESIGN OF RETAINING WALL

(AS DESIGNED FOUNDATION PROVIDED)

DESCRIPTION

This work is the design and preparation of construction plans for a retaining wall of the type indicated on the Owner's Conceptual Structure Plans or an alternate type retaining wall. Preparation of a Preliminary Structure Submission for the proposed retaining wall type is also required.

DESIGN

(a) General

The Owner's Conceptual Structure Plans represent a retaining wall type and layout that will meet safety, hydraulic, geometric, environmental, and load carrying capacity requirements for the project. A retaining wall type and configuration as that shown on the Conceptual Structure Plans or an alternate type retaining wall subject to the requirements specified herein may be designed and constructed. Prepare and submit a Preliminary Structure submission for the proposed retaining wall for review and approval.

Foundation type(s) along with geotechnical design parameters are provided for the retaining wall foundation. Use the foundation type(s) and design parameters (hereinafter referred to as "as-designed") to design the retaining wall or develop an alternate foundation type and design parameters subject to the limitations specified. Provide design and drawings in the units of measurement shown on the Conceptual Structure Plans.

Provide a complete set of computations for the retaining wall, excluding piles and drilled caissons. If an alternate foundation is proposed, also provide a complete set of computations for the proposed foundation type. Provide additional calculations, as requested by the Owner's Representative, to evaluate any details throughout the life of the contract.

Design wall for the models provided in Appendix M of the Preliminary Geotechnical Summary Report. No live load surcharge is required for design of the wall.

Structure types, concepts, construction sequencing, or other details that are not covered in the design and construction specifications or standards, or practice not commonly used in Pennsylvania are allowed only when specifically indicated herein. Where design or construction

that deviates from standard Pennsylvania Department of Transportation practice is proposed, submit a conceptual design before the Preliminary Structure Plans for review and approval. Include in the submittal conceptual plans, and a list of items that deviate from standard design and construction, including but not limited to design methodology, the computer program that will be used in the design, construction sequencing, and any specialized construction techniques. No extensions of contract time will be granted for pursuits of alternates or non-standard designs.

(b) Additional Designer Qualifications

None.

(c) Additional Information/Data Made Available to the Contractor by the Owner

The following information/data will be made available to the Contractor during the advertisement period: (*List the following, as applicable*)

• Test Boring Core Boxes: Test boring core boxes are available for inspection. Contact *Lane Fike at 215-222-6030* to arrange for a date and time to inspect the core boxes.

(d) Design Specifications

Develop the Preliminary Structure Plans and prepare the structure construction plan in accordance with the Special Provision titled SPECIAL BIDDING – DESIGN-BUILD, Section IV – General Design Requirements, Design Specifications.

(e) Design Requirements

1. General

- Slip-formed barriers are not allowed.
- Lightweight concrete is not allowed.
- MSE walls are not allowed.
- Precast modular wall are not allowed.
- Precast barriers are not allowed.
- Barrier type differing from that shown on the Conceptual Structure Plan is not allowed.
- Post and Panel type walls are allowed.
- Permanent anchored walls are not allowed.

- Driven piles are not permitted for use with precast concrete wall panels.
- Cast-In-Place concrete wall panels are allowed.
- Shotcrete wall panels or facing is not allowed.
- Timber lagging wall panels are not allowed.
- The base of the wall or wall panel must extend 6 feet minimum below the proposed ground line.
- Secant walls are not allowed.
- Reinforced Soil Slopes are not allowed.
- Soil Nail Walls are not allowed.
- Design for the presence of water behind the wall as shown on design models.
- Limit the allowable lateral deflection at the top of caissons to ½ inch for service condition
- Cast-in-place reinforced concrete walls supported on piles are allowed.
- Provide galvanized steel piles.
- Excavate according to OSHA or other applicable local, state, and federal regulations. Provide temporary shoring of excavated areas as necessary. It is the contractor's responsibility to ensure stability of the excavation.

2. Geometry

Design the structure according to the geometrics shown on the Conceptual Structure Plans, except changes will be allowed as follows:

- Horizontal Alignment: No Change Allowed.
- Vertical Alignment: No Change Allowed.
- Wall Length: No Change Allowed.

3. Seismic

Site Class is not Class E.

4. Maintenance of Traffic During Construction

Not Applicable.

5. Railroad Requirements

Design the wall to meet the following railroad requirements:

- Minimum Horizontal Clearance: CSX Railroad right-of-way line is located approximately 27 feet behind the front face of the proposed wall.
- Temporary Support for Railroad Tracks: Not Applicable.

6. Inspection and Maintenance Accessibility

Provide inspection and maintenance accessibility equivalent to that provided in the Conceptual Structure Plans, or alternate means acceptable to the Owner. In case of a disagreement on accessibility, the Owner Representative's decision will be binding.

7. On-Wall Lighting

None.

8. Waterway Requirements

None.

8.a. Structure Shown on the Conceptual Structure Plan:

See attached plans for Conceptual Structure Plan.

9. Environmental

Refer to Section 026113 – Excavation of Contaminated Materials Handling.

10. Utilities

Design the retaining wall to accommodate the existing utility facilities at the retaining wall.

Underground fiber optics cable is located approximately 19 feet behind the front face of the proposed retaining wall. Do not excavate any soils within 5 feet of the underground fiber optics cable. If necessary, utilize temporary excavation support system to avoid any disturbance to the underground fiber optics cable.

If utility relocations are required as part of an alternate structure, be responsible for securing approvals from the affected utility companies.

11. Other

None.

(f) Foundations

- **1.** General Design the retaining wall using as-designed geotechnical design parameters and requirements or an alternate foundation type as allowed herein.
 - The construction, including any temporary construction, is to be performed in accordance with PennDOT Publication 408. The Contractor is responsible for the stability of all excavated slopes. Perform all excavation in accordance with OSHA requirements.
 - Recommended wall type for the proposed retaining wall is a soldier pile and lagging wall. Allowable alternate wall type is a cast-in-place reinforced concrete wall supported on piles.
 - Design retaining wall so that none of the wall elements will encroach within 5.0 feet of existing underground fiber optic cable and do not extend into CSX Railroad right-of-way.
 - Utilize frost depth of 3.0 feet in design.
 - Consider extreme event condition (i.e., rapid draw down) in design.
 - Backfill behind the retaining wall in accordance with PennDOT Standard RC-12M. Structure backfill may consist of material meeting AASHTO No. 57 or PennDOT Open Graded Subbase (OGS) criterion.
 - Temporary shoring and/or stream diversion barriers along with dewatering techniques may be required for construction of substructure units.
 - Treat project location as potentially corrosive environment and corrosion protection measures are required.

- All excavated material shall be handled based on Section 026113 Excavation of Contaminated Materials Handling.
- Provide riprap rock scour protection as per DM-4, Section PP.7.2.5 and as shown on the plans. Bottom of riprap shall extend to bottom of lagging elevation.
- **2. As-Designed Foundation** Use the following in conjunction with the foundation type(s) shown on the Conceptual Structure Plans:

2.a. Geotechnical Design Parameters

- 2.a.1. Spread Footings on Soil: Not Applicable.
- **2.a.2.** Spread Footing on Rock: Not Applicable.
- **2.a.3.** Pile Supported Footings: Not Applicable.
- 2.a.4. Drilled Caisson Supported Footings:

Bottom of Footing Elevation: Refer to the Conceptual Structure Plans

Estimated Length of Shaft in Soil: Refer to the Conceptual Structure Plans

Estimated Length of Shaft in Rock: Refer to the Conceptual Structure Plans

Estimated Length of Rock Socket: Refer to the Conceptual Structure Plans

Extend caissons a minimum of 5.0 feet into bedrock.

The caisson diameter is 2.5 feet with center-to-center spacing of 8.0 feet.

Utilize galvanized steel piles.

Design wall utilizing the models provided in Appendix M of the Preliminary Geotechnical Summary Report

2.a.5. Permanent Anchored Walls: Not Applicable.

2.b. Foundation Design Information

- The soldier pile wall must be designed in accordance with all requirements listed in the AASHTO 2010 LRFD Bridge Design Specifications and PennDOT Design Manual -4, 2012, including all revisions.
- Temporary casing may be required to maintain an open borehole. If temporary casing is utilized, maintain concrete levels above the bottom of casing at all times during extraction to prevent caved material from contaminating the concrete.

- Backfill caisson borehole within 24 hours after drilling to limit the deterioration of the bearing material.
- The minimum required pile size is W12 x 190.
- The caisson diameter is 2.5 feet.
- Place bottom of lagging at elevation -3.0 feet.
- Extend caissons a minimum of 5.0 feet into bedrock.
- If subsurface condition encountered during construction varies from what was encountered during subsurface exploration program, perform global stability analysis of the retaining wall as directed by the Engineer.
- Design soldier pile and lagging wall with the following parameters.

	Moist Unit Weight, pcf	Saturated Unit Weight, pcf	Internal Friction Angle, ¢ degrees	Cohesion, c, psf	Modulus of Subgrade Reaction, k, pci (above water /below water)	Axial Strain at 50% of Strength, ε50	p-y curve
Soil Retained Behind the Wall	110	115	25	0	25/20	_	Sand
Alluvial Soil Below Bottom of Lagging	105	110	21	0	25/20	-	Sand
Residual Soil	130	135	35	0	225/125	-	Sand
Bedrock	150	150	0	200,000 ⁽¹⁾	-	-	Vuggy Limestone

⁽¹⁾ Unconfined compressive strength of bedrock.

- Perform lateral load analysis of caisson with LPILE or COM 624P program using parameters presented above. A maximum allowable deflection at the top of caisson is 0.5 inches.
- Design the soldier pile and lagging wall utilizing the following Load and Resistance Factors:
 - Load Factor:
 - Earth Horizontal = 1.5
 - Live Surcharge = 1.75
 - \circ Hydrostatic Pressure = 1.0
 - Resistance Factor:
 - Passive Resistance = 0.75

- Hydrostatic Pressure = 1.0
- Fill the gap between permanent lagging and temporary timber lagging with AASHTO No. 57 coarse aggregate.
- Provide galvanized steel pile and utilize Type II Cement for corrosion protection
- Blasting is not permitted as a method of excavation.

2.c. Construction Requirements

- 2.c.1. Test Piles Not Applicable.
- **2.c.2.** Subgrade Preparation Not Applicable.
- **2.c.3.** Pile Dynamic Analysis Not Applicable.
- **2.c.4.** Load Tests Not Applicable.
- **2.c.5.** Settlement Monitoring Not Applicable.

3. Relocated Retaining Wall Using the As-Designed Foundation

Relocation of Retaining Wall is not allowed.

4. Alternate Foundations – Alternate foundation designs must be completed in accordance with the "Alternate Walls" specification. Alternate walls are allowed as follows:

4.a. Allowable Foundation Types

Cast-in-place reinforced concrete wall supported on piles.

4.a.1. Geotechnical Design Parameter Limitations

Determine the applicable resistances to be used to design the substructures, limited to the maximum Ultimate Capacities given below. Designs utilizing Ultimate Capacities exceeding the maximum values indicated below will not be accepted.

4.a.2. Spread footings on Soil

Not Applicable.

4.a.3. Spread Footings on Rock

Not Applicable.

4.a.4. Pile Supported Foundations

Point Bearing Piles:

Ultimate pile capacity is limited to a maximum yield strength of 50 ksi.

Utilize 1/16 inch reduction in the pile section for design.

End Bearing Piles:

Ultimate pile capacity is limited a maximum yield strength of 50 ksi. Utilize 1/16 inch reduction in the pile section for design.

- Support cast-in-place reinforced concrete wall on piles.
- A minimum pile length of 10.0 feet is required.
- Use a resistance factor of 0.35 to determine the axial structural pile resistance at the strength limit state.
- Use a resistance factor of 0.25 to determine the axial structural pile resistance at the service limit state.
- Drive piles to Case 2 Absolute End Bearing Refusal in bedrock in accordance with Pub. 408/2011, Section 1005.3(b)4. Use driving method A as per DM-4, Part A, Section 1.7.5.
- Design cast-in-place reinforced wall with following parameters.

	Moist Unit Weight, pcf	Saturated Unit Weight, pcf	Internal Friction Angle, ø degrees	Cohesion, c, psf	Modulus of Subgrade Reaction, k, pci (above water /below water)	Axial Strain at 50% of Strength, ε50	p-y curve
Soil Retained Behind the Wall	110	115	25	0	25/20	-	Sand
Alluvial Soil Below Bottom of Lagging	105	110	21	0	25/20	-	Sand

Residual Soil	130	135	35	0	225/125	-	Sand
Bedrock	150	150	0	200,000 ⁽¹⁾	-	-	Vuggy Limestone

⁽¹⁾ Unconfined compressive strength of bedrock.

- Utilize 1/16" reduction in the pile section for design.
- Backfill behind the proposed wall in accordance with PennDOT Standard RC-12M.

Friction Piles:

Not Applicable.

4.a.5. Drilled Caisson Supported Foundations

Not Applicable.

4.b. Required Geotechnical Exploration

None.

4.c. Foundation Submission

Prepare and submit a foundation report according to the requirements of Publication 15M, Design Manual Part 4 (DM 4), Policies and Procedures (PP), Section 1.9.4. Cost comparisons per Section 1.9.4.3(c) are not required.

4.d. Construction Requirements

4.d.1. Test Piles

Not Applicable.

4.d.2. Subgrade Preparation

Not Applicable.

4.d.3. Pile Dynamic Analysis

Not Applicable.

4.d.4. Load Tests

Not Applicable.

4.d.5. Settlement Monitoring

Not Applicable.

4.d.6. Other

Not Applicable.

(g) Submittals

1. Preliminary Structure Submission

Include the following information in the Preliminary Structure submission:

1. Preliminary Structure submission letter: In accordance with DM 4, PP Section 1.9.3.3.1(a).

- 2. Preliminary Structure plans: In accordance with DM 4, PP Section 1.9.3.3.1(b).
- 3. Supply the following additional information:
 - (a) Name of Lead Design Engineer

2. Foundation Submission

Not applicable for as-designed foundation.

3. Final Structure Plans and Computations

In accordance with applicable sections of DM 4. Include in the Final Structure Plans the Core Boring Logs as provided in the Conceptual Drawings in unmodified form; with the exception of superimposition of sheet numbering consistent with the Final Structure Plans and prominent designation of each sheet as "Information Provided by Others." Sign and seal each plan sheet per DM 4, Section PP 1.6.3.1, with the exception of the aforementioned Core Boring Logs. Upon completion of Quality Assurance Review, or Owner's Perspective Review, as applicable, and receipt of drawings stamped "Recommended for Construction," provide the Owner with one paper copy for signature by the Owner Representative.

4. Revisions During Construction, As-Built Drawings, and Shop Drawings

In accordance with DM 4, PP Section 1.10, except that the Lead Design Engineer is responsible for making changes to the contract drawings, and making and distributing necessary copies of the revised plans to all affected parties. PP Section 1.10.5 is modified as follows: If a design error occurs, the Contractor is fully responsible for the costs associated with providing additional design analysis and construction modifications, acceptable to the Owner, to correct the problem. The Owner will require reimbursement for design errors to cover engineering review costs. This amount shall be deducted from the lump sum cost for the construction of structure item via work order.

Maintain and submit As-Built Drawings in accordance with Publication 10C, Design Manual Part 1C, Transportation Engineering Procedures, Section 5.7, As-Built Plans, except include major quantity changes (such as foundation pile length changes, etc).

All as-built drawings are the sole responsibility of the Contractor and must be submitted to the Owner within 3 months of final inspection acceptance as defined in Section 110.08(a).

During construction, Contractor's engineer shall be responsible for reviewing and approving shop drawings. A copy of each shop drawing must also be submitted to the Owner.

(h) Submittal Review, Approval, and Distribution

Make all submissions in accordance with the Special Provision titled SPECIAL BIDDING – DESIGN-BUILD, except as follows;

- Partial Plans Submissions: None.
- Utilities: Additional contract time will not be considered for additional utility relocation work associated with an alternate structure.

MEASUREMENT AND PAYMENT - Lump Sum

Partial payment will be made for the design activity based on the approved Schedule of Values in accordance with Section V of Special Provision titled SPECIAL BIDDING – DESIGN-BUILD, utilizing the following components:

- Preliminary Plan Approval
- Final Plan Approval
- Final Plan for Signature
- As-Built Drawings

ALTERNATE WALLS

DESCRIPTION

This work is for construction of retaining walls as-designed or designing and constructing equivalent retaining walls of an alternate design in place of the "as-designed" retaining walls.

DESIGN

(a) General. If alternate design retaining walls are bid, furnish, to the Owner, preliminary conceptual design calculations and drawings for the alternate retaining walls. Provide an alternate design equivalent to the original design and meeting applicable design criteria for strength and serviceability. Submit the alternate design to the Owner for acceptance. Refer to PennDOT Design Manual Part 4, PP 1.10, Bridge Submissions-Construction Phase, for details on procedures for contractor submissions. If the equivalency of an alternate design cannot be clearly established, the Owner Representative will be arbiter and the Owner Representative's decision will be final. Furnish, with the preliminary conceptual design submission, a tabulation identifying the differences between the "as designed" retaining walls and the alternate design retaining walls.

On the alternate design plans include the type of wall, location, length, top elevation(s), proposed bottom of footing/leveling pad elevation(s), cross-sections including backfill material type and limits, and quantities. Also show, as required, details for concrete bridge barriers and/or railings, copings, conduit, or other attachments to precast wall panels/units. Show complete layout plans and fabrication details for precast wall panels/units and footings/leveling pads including reinforcement and attachments, and step-by-step erection instructions. Include details for strip or wire mesh reinforcement and attachments, for anchoring panels into the soil. Any fabrication done before acceptance of the plans will be at the Contractor's risk.

Any delay in submission and acceptance of a proposed alternate design or a revision, and/or approval of required permits, will not extend the contract time.

If alternate design retaining walls is bid, and an acceptable preliminary conceptual design is not approved within 30 calendar days from the award date (6 days for the submission and 24 days for Owner review), construct the "as-designed" retaining walls at no additional cost to the Owner.

Alternate designs which take advantage of any errors and/or omissions in the plans for the "asdesigned" wall or discrepancies between the "as-designed" wall plans and the special provisions covering alternate designs, will not be accepted. In the event any such error, omission, or discrepancy is discovered, immediately notify the Owner. Failure to notify the Owner will constitute a waiver of all claims for misunderstandings, ambiguities, or other situations resulting from the error, omission, or discrepancy.

Experimental or demonstration-type design concepts; or products, structures, or elements not preapproved by the Owner for general usage, will not be allowed in the alternate design.

Value Engineering may be applied to the "as-designed" retaining walls, but do not Value Engineer alternate design retaining walls.

Have the alternate design completed by a Professional Engineer registered in the Commonwealth of Pennsylvania. All engineering firms must have a current Annual Qualification Package on file with the Bureau of Project Delivery's Consultant Management Section and be registered business partners in ECMS.

Submit an affidavit, before or along with the preliminary conceptual design submission, stating that the designer is familiar with AASHTO, PennDOT, and other applicable design criteria, standards, and construction specifications. Also, submit a list of similar retaining walls and/or wingwalls/bridges designed within the past 7 years.

In identifying alternate design retaining walls, retain the "as designed" retaining wall number, but suffix the number with the letters A, B, etc. Proprietary walls shall have a P suffix as detailed in Design Manual Part 4 PP3.3.4.7(k).

Show, on first sheet of the alternate design, the seal of a Professional Engineer registered in the Commonwealth of Pennsylvania, a valid signature in ink, the date signed, a business name, a business address, and the note "These drawings (S-XXXXA) supersede drawings (S-XXXXX) approved (insert appropriate date)". Also include a statement "All assumptions made in the design are validated either by details or notes on these drawings."

The Owner will furnish CADD files for the "as-designed" retaining walls upon request.

Prepare alternate design plans using Pennsylvania Department of Transportation drafting standards.

(b) **Design Computations and Design Specifications**. On the first sheet of the computations for the alternate design, show the seal of a Professional Engineer registered in the Commonwealth of Pennsylvania, a valid signature in ink, and the date signed.

Provide a complete set of computations for the alternate design of the retaining walls. Reproduce and insert computations from the "as-designed" walls, as needed. Provide additional calculations, as requested by the Owner Representative to justify the design, throughout the life of the contract.

Designs copied directly from approved Pennsylvania Department of Transportation Standards need not be documented through independent computations. List such designs on the submission by referencing the drawing number of the applicable standard, and the sheet number, table, or graph.

Use PennDOT Design Manual Part 4 for design policy procedures and criteria. All design related Strike-off Letters listed in PART B, "SPECIAL DRAWINGS AND SPECIAL DESIGN REQUIREMENTS", are applicable to the alternate design.

In the event that certain design parameters, stresses, or specifications are in conflict, the following order of predominance governs:

- Design requirements listed herein, in PART B, "SPECIAL DRAWINGS AND SPECIAL DESIGN REQUIREMENTS" and addenda (addendum) to the proposal.
- Design related Strike-off Letters in effect on the date of project advertisement.
- PennDOT Design Manual Part 4, "Structures" including revisions (Publication 15M).
- PennDOT Bridge Design and Bridge Construction Standards (Publications 218M and 219M).
- AASHTO LRFD Bridge Design Specifications as indicated for the "as-designed" walls.

In the event that a clear order of predominance cannot be established, or a difference in the interpretation of the design criteria, standards, specifications, or methodology cannot be resolved, the Owner Representative will be arbiter and the Owner Representative's decision will be final.

Submit shop drawings to the Owner as specified in Section 105.02 for review and acceptance. The Owner is not responsible for work done without approved shop drawings.

If any provisions in PART B conflict with those in PART A, the provisions in PART B are to govern.

Within 60 calendar days after completion of the walls, revise the original drawings to show "asbuilt" conditions and submit them to the Owner Representative.

(c) **Design Requirements**. In the design of alternate retaining walls, comply with PennDOT Design Manual Part 4, "Structures", Section 11, and other design criteria as specified for the "as-designed" retaining walls, subject to the exceptions and/or additions in PART B, "SPECIAL DRAWINGS AND SPECIAL DESIGN REQUIREMENTS".

Provide equivalent inspection and maintenance accessibility for the alternate retaining wall as for the "as-designed" retaining wall. In case of a disagreement on accessibility, the Owner Representative's decision will be final.

Do not change the indicated horizontal and vertical alignment of retaining walls, except as noted in PART B, "SPECIAL DRAWINGS AND SPECIAL DESIGN REQUIREMENTS".

Design alternate retaining walls to be within the indicated limits of factored foundation bearing resistance and factored pile resistance as indicated for the "as designed" walls.

Provide clear span(s) and/or distances from wall faces of not less than the minimum values indicated for the "as-designed" retaining walls, except as noted in PART B, "SPECIAL DRAWINGS AND SPECIAL DESIGN REQUIREMENTS".

Comply with all requirements of the approved permit(s). Obtain approved/amended waterway permit(s) for alternate structures if necessary.

Be responsible for the cost and delay of any additional utility relocation that results from changes in the Contractor's plans or construction sequences made subsequent to (1) acceptance of the utility's relocation plans and (2) where the utility has physically moved its facilities based upon those relocation plans.

MATERIALS

As indicated and as specified for each respective item included in the "as-designed" retaining walls.

CONSTRUCTION

In accordance with Publication 408, Special Provisions for each respective item, and any additional requirements specified herein. Submit construction procedures for an alternate design for acceptance, if other than those specified herein.

If utility relocations are required as part of an alternate design, be responsible for the cost of the utility relocations and any related delay claim costs.

MEASUREMENT AND PAYMENT - Lump Sum

For the type of alternate design wall selected; subject to a reduction equal to the amount of the Contractor's share of the Owner's engineering costs as follows:

•	For each alternate wall \$100,000 or less	\$1,000
•	For each alternate wall over \$100,000 but less than \$500,000	\$2,000
•	For each alternate wall over \$500,000 but less than \$1,000,000	\$3,500
•	For each alternate wall \$1,000,000 or more	\$5,000

The Contractor's share of the Owner's engineering costs will be recovered by processing a contract adjustment (Alternate Design Review) to reduce the contract lump sum price by an amount equal to the Contractor's share.

A utility company's share of fabricated structural steel and/or installation of sleeves, inserts, casings, hanger assemblies, ducts, etc. for utilities is to be a separate item. Do not include the utility company's share in the bid price for the alternate design walls unless otherwise specified.

All items of work are to be included in and will be paid for as part of the contract lump sum price; except, bearing piles; pile tip reinforcement; pile load tests; dynamic pile testing; Class C cement concrete under footings; Class 3 excavation, reinforcement bars, and Class A cement concrete for pedestals; and caissons.

(a) **Retaining Walls As Designed**. If the "as-designed" retaining walls are bid, submit the "Component Item Schedule", included with the Proposal, as specified in Section 103.01(a).

Make the "Total" at the end of the "Component Item Schedule" equal the amount of the lump sum bid for Retaining Walls As Designed.

(b) Alternate Retaining Walls. If an alternate design retaining wall is bid, the apparent low bidder is required to submit a "Component Item Schedule for Alternate Design" as specified in Section 103.01(a). Tabulate the quantities, unit prices, and bid prices for excavation, select granular material, precast wall panels/units, and footings/leveling pads. Furnish a similar tabulation for any miscellaneous items such as concrete bridge barriers, copings, conduit, junction boxes, lighting pole anchorages, and lighting poles. No adjustments will be made to the contract lump sum price bid for alternate design retaining walls for any field adjustments necessary to complete the structures.

Make the "Total" at the end of the "Component Item Schedule for Alternate Design" equal the amount of the lump sum bid for Alternate Retaining Walls.

(c) Alternate Structure Design Costs. The apparent low bidder is to include a component item for Alternate Design Costs in the Component Item Schedule when an alternate design is bid. Include the cost of this item in the total of the lump sum bid price. Payment of 25% of the total design costs will be made upon approval of the preliminary conceptual design. The remaining amount will be paid for in a proportionate manner, designated by the Owner, on the basis of approval of the final design.

CONSTRUCTION OF RETAINING WALL

DESCRIPTION

This work is the construction of a retaining wall of the type bid in the corresponding specification entitled "Design of Retaining Wall" and in accordance with the approved design and structure drawings. Construction of a temporary excavation support and protection system is included, if applicable.

MATERIALS

As indicated and as specified for each respective item included in the retaining wall.

CONSTRUCTION

In accordance with Publication 408, Special Provisions for each respective item, and any additional requirements specified herein.

Prepare and submit Shop Drawings in accordance with Publication 15M, Design Manual Part 4 (DM 4), Policies and Procedures (PP) Section 1.10.2.

Prepare and submit Pile Hammers for approval in accordance with DM 4, PP Section 1.10.3.

Prepare and submit Pile Load Test Evaluations in accordance with DM 4, PP Section 1.10.4.

The Owner will require reimbursement for design errors to cover engineering review costs. This amount will be deducted from the lump sum cost for the construction of structure item in accordance with Section 110.03.

Be responsible for making changes to the contract drawings, and making and distributing necessary copies of revised plans to all affected parties in accordance with applicable sections of DM4, PP Section 1.10.6.

Do not start construction until structure plans stamped "Released for Construction" are transmitted by a letter indicating which work can proceed. Construction may start on components of the structure provided that partial structure plans stamped "Released for Construction" are transmitted by a letter indicating which work can proceed.

If utility relocations are required as part of an alternate retaining wall, be responsible for the cost and delay of the utility relocations in excess of those indicated in the contract documents. Additional contract time will not be considered for additional utility relocation work associated with an alternate retaining wall.

MEASUREMENT AND PAYMENT – Lump Sum

(a) General

Partial payment will be made for all work indicated on the Final Structure Drawings based on the approved Schedule of Values in accordance with Section V of the Special Provision titled SPECIAL BIDDING – DESIGN-BUILD, except as indicated otherwise herein.

(b) Bearing Piles

Bearing piles furnished in accordance with the as-designed foundation parameters will be considered as included in the contract lump sum price, except adjustment to the contract lump sum price, via work order, will be made for driving bearing piles to elevations beyond the asdesigned estimated pile tip elevations using the following methodology:

- Determine the average overlength or underlength for all point bearing piles based on the estimated pile tip elevations. Determine the average overlength or underlength for each pile size separately.
- Adjustment to the contract lump sum price will be determined as follows:

A = "Average overlength or underlength of Bearing Piles" x "Total Number of Bearing Piles" x "Bid rate for Bearing Piles" (positive value for overlength, negative value for underlength)

Cost Adjustment = SUM ("A" for each pile size), except that no adjustment will be made when SUM ("A" for each pile size) is a negative value.

Test pile extensions, if necessary, will be considered as included in the lump sum price.

Bearing piles for relocated retaining walls and bearing piles designed by the Contractor as an alternate to the as-designed foundation will be considered as included in the contract lump sum price.

(c) Drilled Caissons

Drilled caissons furnished in accordance with the as-designed foundation parameters will be considered as included in the contract lump sum price, except adjustment will be made to the contract lump sum price, via work order, for installing shaft sections or rock sockets to lengths beyond the as-designed lengths using the following methodology:

- Determine the average overlength or underlength for all drilled shafts based on the asdesigned lengths and the actual lengths. Determine the average overlength or underlength for each caisson diameter separately for: shaft section in soil; shaft section in rock; and rock socket.
- Adjustment to the contract lump sum price will be determined as follows:

A = "Average overlength or underlength of Shaft In Soil" x "Total Number of Caissons" x "Bid rate for Shaft in Soil" (positive value for overlength, negative value for underlength)

B = "Average overlength or underlength of Shaft In Rock" x "Total Number of Caissons" x "Bid rate for Shaft in Rock" (positive value for overlength, negative value for underlength)

C = "Average overlength or underlength of Rock Socket" x "Total Number of Caissons" x "Bid rate for Rock Socket" (positive value for overlength, negative value for underlength)

Cost Adjustment = SUM [(A + B + C) for each caisson diameter], except that no adjustment will be made when SUM [(A + B + C) for each caisson diameter] is a negative value.

Caissons for relocated retaining walls and caissons designed by the Contractor as an alternate to the as-designed foundation will be considered as included in the contract lump sum price.

(d) Bearing Piles and Caissons

Adjustment to the contract lump sum price for projects with both as-designed bearing piles and as-designed caissons will be computed as follows:

Cost Adjustment = [Cost Adjustment for Bearing Piles] + [Cost Adjustment for Caissons], except that no adjustment will be made when [Cost Adjustment for Bearing Piles] + [Cost Adjustment for Caissons] is a negative value.

(e) Other

Not Applicable

TEMPORARY EXCAVATION SUPPORT AND PROTECTION SYSTEM

FOR DESIGN BUILD PROJECTS

DESCRIPTION

This work is the design and construction of a temporary excavation support and protection system or appropriately designed open cut excavation, as indicated, with a service life of less than or equal to 36 months.

MATERIALS

Provide certification or laboratory test results verifying material properties. For used steel, the salvage design values from AASHTO Guide Design Specification for Bridge Temporary Works (AASHTO Guide Spec) may be used as an alternate to testing to determine grade of steel. Materials need not be new but must be in serviceable condition as determined by the Engineer. Temporary material used does not have to be from a Bulletin 15 source, but must meet the following:

- Structural Steel......AASHTO M 270M/270 (ASTM A709M/A709) Grade 250(Grade 36), Grade 345(Grade 50) or Grade 345W(Grade 50W)
- Steel Sheet Piling......ASTM A328M/A328, ASTM A572M/A572
- Steel H-Piles......AASHTO M 270M/270 (ASTM A709M/A709), Grade 250(Grade 36)
- Wood Lagging......Rough Cut Species in AASHTO Guide Spec Appendix A and AASHTO Construction Handbook for Bridge Temporary Works Appendix C
- Cement......AASHTO M85 and AASHTO M240
- Pre-Stressing Steel.....ASTM A416 Grade 270
- Welded Wire Fabric......AASHTO A55 (ASTM A185)
- Reinforcement Bars......AASHTO M 31M/31 (ASTM A615M/A615), AASHTO M42M/M42, (ASTMA616M/A616), Grade 420(Grade 60)
- Other Material.....In accordance with applicable Sections of Publication 408

DESIGN

Design the temporary excavation support and protection system in accordance with current AASHTO LRFD Bridge Design Specifications and Design Manual, Part 4 Specifications,

current FHWA guidelines and AASHTO Guide Spec. Design temporary excavation support and protection system for final condition and all construction conditions, including surcharge loads due to vehicle traffic and construction equipment. Submit 4 sets of design calculations and 4 sets of completed detailed drawings, signed and sealed by a Professional Engineer, registered in the Commonwealth of Pennsylvania to the Owner Representative for review. Include in the design calculations all material properties, design loads, and design assumptions. Include on the completed detailed drawings all design dimensions, limits of work, elevations, material, member sizes and construction sequence. Provide cutoff elevation of steel and wooden components for work in streambed. Include specific installation procedures and testing requirements as part of the submittal. Allow 14 days for the review by the Owner.

Ensure that temporary excavation support and protection system design and construction conforms to the following:

a) Open cut excavations are allowed, provided they meet OSHA requirements, the safety of the traveling public, the approved traffic control plan and existing structure is assured, and they stay within the legal right-of-way lines. Cuts can extend beyond legal right-of-way lines only with the written approval of the Owner and written permission of the property owners. Ensure environmental compliance if cut extends beyond area cleared by the Owner. Submit slope stability analysis in accordance with Publication 293.

b) The temporary excavation support and protection system will be selected by the Contractor. Examples include anchored walls, mechanically stabilized earth walls, prefabricated modular walls, cantilever walls, cofferdams, and soil nailing walls. These systems may be comprised of one or more of the following: Soldier Piles, Timber Lagging, Steel Sheet Piling, Caissons, Slurry Walls, Tiebacks, Soil Nails, Shotcrete, Deadman Anchors, Wales, Cross lot Bracing, Raker Braces, Precast Concrete, Precast Lagging, Soil Cement Lagging, Cement Bentonite, Gabions, Minipiles, Concrete Reaction Blocks, Mechanically Stabilized Earth Walls or other methods.

c) Design temporary excavation support and protection system based on the following parameters:

1. Soil parameters (*see Project Specific Details for following parameters*):

1.a Effective angle of friction _____

1.b Moist unit weight of soil _____

1.c Saturated unit weight of soil _____

1.d Effective cohesion _____

1.e Static groundwater level at elevation _____

1.f Undrained shear strength of cohesive soil _____

1.g Shear strength for rock mass _____

Provide other soil/rock properties with test data, needed in the design of the temporary excavation support and protection system.

2. Ensure that all components stay within the legal right-of-way unless an easement is obtained by the Contractor.

CONSTRUCTION

Install temporary excavation support and protection system in accordance with applicable sections of Publication 408. All steel and wooden components may remain in place to pavement subgrade or 0.6 meters (2 feet) below finish grade, whichever is higher elevation. Treated wood is not required unless it is within 2 meters (6 feet) of finish grade and is to remain in place. Pressure treat with chromate copper arsenate (CCA) to refusal. Finish grade is defined as top of pavement when a roadway is behind the temporary excavation support and protection system. Have a Professional Engineer, registered in the Commonwealth of Pennsylvania, certify that the temporary excavation support system or open cut excavation has been installed as shown on the Professional Engineer's signed and sealed drawings. Submit the certification to the Representative within 3 working days of completion of the system.

QUALIFICATIONS

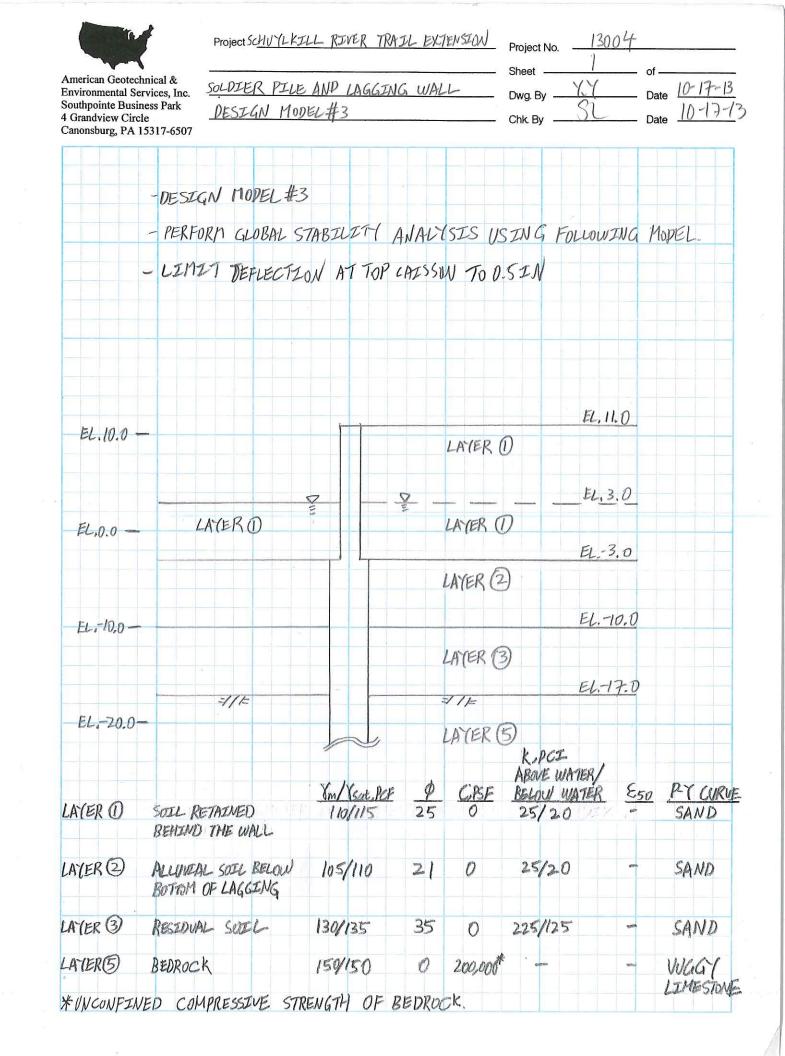
The work must be supervised by a superintendent or foreman who is experienced, in the construction of temporary excavation support and protection system proposed. If the design height of the temporary excavation support and protection system exceeds 6 meters (20 feet), provide the following with the design submission:

- For the superintendent or foreman who will supervise the work, submit a list containing at least 5 projects which demonstrate a minimum of 3 years experience in the construction of the temporary excavation support and protection system proposed. Include a brief description of each project and the name and phone number of the owner's representative knowledgeable in each project listed.
- The name of the Professional Engineer, registered in the Commonwealth of Pennsylvania and having at least 3 years experience in the design and construction of temporary excavation support and protection systems, who will design and specify the sequence of construction of the temporary excavation support and protection of system.

MEASUREMENT AND PAYMENT - Incidental to construction of the retaining wall.

If an acceptable open cut excavation is provided in lieu of the temporary excavation support indicated, payment will be made for the as-bid lump sum temporary excavation support item, but no additional payment will be made for any class of excavation, structure backfill or additional shoring as a result of the open cut excavation or to restore the facilities to their original condition.

PROJECT SPECIFIC DETAILS


The Soil Parameters as indicated in III. (c) 1. are:

- 1.a Effective angle of friction: 21 degrees
- 1.b Moist unit weight of soil: 110 pcf
- 1.c Saturated unit weight of soil: 115 pcf
- 1.d Effective cohesion: 0 psf
- 1.e Static groundwater level at elevation: Elevation 3.0 feet or stream level of Schuylkill River, whichever is higher.
- 1.f Undrained shear strength of cohesive soil: N/A
- 1.g Shear strength of rock mass: 10 ksf

APPENDIX M DESIGN MODEL

American Geotech Environmental Se Southpointe Busir Grandview Circ Canonsburg, PA 1	rvices, Inc.	DESIGN MO		GING l	VALL C	Sheet Dwg. By Chk. By	Y.Y SL	of Date Date	<u>10-17-1</u> 10-17-1
	DESIG	N MODEL #							
	- DETER DEPT RAPID - LINIT	MINE NECE H, USI DRAW DOWN DEFLECTION E NO SOIL	SSAR (PIL ING FOL CONDITIO ATTOPD	LOWZNO V. CAIS	MODE IN TO O.	1 CONS	MBEDMI IDER 2	ENT	
			.j				EL.11.	0	
EL.10.0-		+ 			LAYER	D			
				<u>₹</u>			EL. 4.	0	
EL. 0.0-	EL. 0.0			e.	LATER	D			
H2.0,0	GROVIND EL	EVATZAN FOR DESS	2G.N.				EL;3.0	2	
					LATER (2)			
EL.=10.0-							EL10,	0	
					LAYER (3			
		411			1/2		EL17	.0	
EL20.0-					LAYER (5			
						K, PC.	L		
	5	4	To Ket B	x B	C.PSF	ABOVE W. BELDIN W	MER/	E50 P	Y CURVE
LAYER O		TAINED THE WALL	Vm/Xs.A. 110/115	25	0	25/2	0		AND
AVER D		SOIL BELOW FLAGGING	105/110	21	0	25/2)	- 5	AND
A (ER 3)	RESIDUAL	SOIL	130/135	35	0	225/1	25	- S/	ND
AVER (5)	BEDROC	ck	150/150	0	200,000	to			IGGY
*IN	ONFINED	COMPRESSI	VE STRENGT	HOFI	REDROCK			LI.	MESTOM

		Project <u>SC</u>	IVYLKILL RIV	EK TRA.	IL EXTENS	DON Project No	13004	
Environmental Southpointe B 4 Grandview (American Geotechnical & Environmental Services, Inc. Southpointe Business Park 4 Grandview Circle Canonsburg, PA 15317-6507		PILE AND LI I MODEL 7		— Sheet —	1. (.) 52	of Date <u>10-17-1</u> Date <u>10-17</u>	
	DESIL	N NODE	L # 2					
	- DETER FOLLOU	CNIVE L VIVG MO	ATERAL DE, DEL, MODEL CTION AT T	RECTI CONSTO	ON AT T	TOP OF CA. RVICE CASE	ISSON U E COMPI	SING TION
					N N			
	- NEGLE OF W	CT PASSI IALL.	VE PRESSUR	E FROI	1 TOP 3	3FT OF R:	CP-RAP :	IN FRONT
8								
							EL. 11.0	
FL,10,0 -					LAYE	RD		
					-			
				`	<u>×</u>		EL.3.0	
EL. 0.0 -	-	LAYER	E Inn		LAYEI			
		LAICK					EL3.0	,
					LAYER	R(2)		
EL+10.0 -							EL:-10. 0	
					LATE	R (3)	·	
			5				FL,-17. D	
EL 200		=///:			ヨノト			
EL,-20.0 -				1	LAYEI			
						K, PCI ABOVE WATER,	1	8
LATERD	SOTL RETAI	THED	Xm / Ysst. PC 110/115	F Φ 25	C,PSF O	BELOW WATER		P-Y CURVI
LAILINU	BEHIND TH		10/115	43	U	25/20		SAND
LAYER (2)	ALLUNIAL S BOTTOM OF L		105/110	21	0	25/20	-	SAND
LAYER 3	RESIDUAL	SOIL	130/135	35	0	225/125	-	SAND
LAYER 5	BEDROCK		150/150	0	200,000*	-	-	VUGGY LIMESTOM
LATER	RIP-RAP ENED COMPI		30/135	36	0	225/125		SAND

