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ABSTRACT  

The last 30 years has seen extraordinary development of new tools for the prediction of numerical 
and binary responses.  Examples include the LASSO and elastic net for regularization in 
regression and variable selection, quantile regression for heteroscedastic data, and machine 
learning predictive method such as classification and regression trees (CART), multivariate 
adaptive regression splines (MARS), random forests, gradient boosting machines (GBM), and 
support vector machines (SVM).  All these methods are implemented in SAS®, giving the user 
an amazing toolkit of predictive methods.  In fact, the set of available methods is so rich it begs 
the question, “When should I use one or a subset of these methods instead of the other methods?” 
In this talk I hope to provide a partial answer to this question through the application of several of 
these methods in the analysis of several real datasets with numerical and binary response 
variables. 

INTRODUCTION  

Over the last 30 years there has been substantial development of regression methodology for 
regularization of the estimation in the multiple linear regression model and for carrying out non-
linear regression of various kinds.  Notable contributions in the area of regularization include the 
LASSO (Tibshirani 1996), the elastic net (Zou and Hastie 2005), and least angle regression 
(Effron et al. 2002) which is both a regularization method and a series of algorithms that can be 
used to efficiently compute LASSO and elastic net estimates of regression coefficients.   
 
An early paper on non-linear regression via scatter plot smoothing and the alternating conditional 
expectations (ACE) algorithm is due to Breiman and Friedman (1985).  Hastie and Tibshirani 
(1986) extend this approach to create generalized additive models (GAM).  An alternative 
approach to non-linear regression using binary partitioning are regression trees (Breiman et al. 
1984).  Multivariate adaptive regression splines (MARS) (Friedman 1991) extended generalized 
linear and generalized additive models in the direction of modeling interactions, and considerable 
research of tree methods, notably ensembles of trees, resulted in the development of gradient 
boosting machines (GBM) (Friedman 2000) and random forests (Breiman 2001).  A completely 
different approach, based on non-linear projections is support vector machines, the modern 
development of which is usually credited to Vapnik (1995) and Cortes and Vapnik (1995). 
 
All of the methods listed above, and more, are implemented in SAS and other statistical packages 
giving statisticians a very large toolkit for analyzing and understanding data with a continuous 
(interval valued) response variable.  In SAS using the LASSO or fitting a regression tree or random 
forests is no harder than fitting an ordinary multiple regression with some traditional variable 
selection.  The LASSO has rapidly become a “standard” method for variable selection in 
regression, and all of these methods lend themselves to larger datasets, where there is a lot of 
information and statistical significance does not make sense. 
 
In this paper I hope to illustrate the use of some of these methods for the analysis of real datasets. 
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GETTING STARTED 

In the spirit of the “Getting Started” section of SAS procedure manual entries, we begin with a 
simple example that illustrates how tree methods can provide insight in situations where linear 
methods are less effective.  The data concern credit card applications to a bank in Australia 
(Quinlan, 1987).  The response variable is coded as “Yes” if the application was approved and 
“No” if it was not approved.  There are 15 predictor variables denoted by A1—A15, some 
categorical and some numerical.  For proprietary reasons the nature of the variables is not 
available.  We note that variables A9 and A10 are code as ‘t’ and ‘f’ which we take to mean ‘true’ 
and ‘false.’  A total of 666 observations had no missing values and of those 299 persons were 
approved for credit cards and 367 were not. 
 
A first step in a traditional analysis might be to fit a logistic regression, perhaps with some form of 
variable selection.  For this example I used backward elimination with a significance level to stay 
of ߙ ൌ 0.05.  The code is given below: 
 

   proc logistic data=CRX; 
      class A1 A4-A7 A9 A10 A12 A13 / param=glm; 
      model Approved (event='Yes') = A1-A15  
            / ctable pprob=0.5 selection=b slstay=0.05; 
      roc; 
   run; 

 

Eight variables were removed from the model.  From the output for the ctable option we obtain 
the classification accuracy metrics for the fitted model. 
 

Error! Reference source not found.. Classification accuracy for logistics regression on credit 
card approval data. 

Classification Table 

Prob 
Level 

Correct Incorrect Percentages 

Event 
Non- 
Event Event 

Non-
Event Correct Sensitivity Specificity 

False 
POS 

False
NEG 

0.500  273 319 57 28 87.4 90.7 84.8 17.3 8.1 

 

 

The accuracy of the predictions is quite good with an overall percent correct of 87.4% (which 
means the overall error rate is 12.6% = 0.126), and both the sensitivity (percent of approval 
correctly predicted) and specificity (percent of non-approvals correctly predicted) quite high at 
90.7% and 84.8%, respectively.  The receiving operating characteristic (ROC) curve is a graphical 
representation of the quality of the fit of predictive model for a binary target (response).  Figure 1 
shows the ROC curves for all the steps in the variable elimination process overlaid.  It is clear 
from this graph that the variables eliminated from the model were not contributing to the predictive 
accuracy and that the overall fit of the logistic regression model is rather good.  The AUC value 
of 0.9463 for the model is high. 
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Error! Reference source not found..  ROC Curve for the logistic regression model with variable 

selection. 

 

 

Table 2 contains the estimated coefficients for the variable remaining in the model.  From this 
table it is relatively difficult to tell what variables are most important for determining whether a 
credit card application will be approved or denied.  
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Error! Reference source not found.. Variable coefficient estimates, standard errors, and P-
values. 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept  1 2.7108 0.8244 10.8132 0.0010 

A4 l 1 17.8397 1689.7 0.0001 0.9916 

A4 u 1 0.8882 0.3224 7.5884 0.0059 

A4 y 0 0 . . . 

A6 ? 1 -18.5497 1593.5 0.0001 0.9907 

A6 aa 1 -2.8463 0.8545 11.0952 0.0009 

A6 c 1 -2.3329 0.8115 8.2632 0.0040 

A6 cc 1 -1.2618 0.9473 1.7739 0.1829 

A6 d 1 -2.1218 1.0280 4.2604 0.0390 

A6 e 1 -1.9622 1.0636 3.4034 0.0651 

A6 ff 1 -4.2731 1.0310 17.1793 <.0001 

A6 i 1 -3.2242 0.8971 12.9187 0.0003 

A6 j 1 -3.2649 1.3861 5.5480 0.0185 

A6 k 1 -2.9563 0.8881 11.0813 0.0009 

A6 m 1 -2.5419 0.9049 7.8906 0.0050 

A6 q 1 -2.1706 0.8490 6.5373 0.0106 

A6 r 1 -1.9058 3.8084 0.2504 0.6168 

A6 w 1 -1.8939 0.8474 4.9948 0.0254 

A6 x 0 0 . . . 

A9 f 1 -3.7630 0.3205 137.8444 <.0001 

A9 t 0 0 . . . 

A11  1 0.1644 0.0463 12.5904 0.0004 

A14  1 -0.00220 0.000881 6.2597 0.0124 

A15  1 0.000562 0.000182 9.5926 0.0020 

 

 

An alternative method that one might apply in this situation is a decision tree (Breiman et al. 1984).  
Decision trees (also known as classification and regression trees) work by recursive partitioning 
of the data into groups (“nodes”) that are increasingly homogeneous with respect to some kind of 
a criterion, such as mean squared error for regression trees and either entropy or the Gini index 
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for classification trees.  Ultimately the fitted tree is “pruned” back to remove branches and leaves 
of the tree that are just fitting noise in the data.  The pruning process is a critical part of fitting a 
classification tree:  unpruned trees overfit the data and are less accurate predictors for new data.  
The approach of segmenting the data space is quite different to that of fitting linear, quadratic or 
additive functions to the predictor variables.  In cases where there are strong interactions among 
predictor variables, classification trees can outperform linear and quasi linear methods. 
 
The first step in the fitting of a decision tree is to determine the appropriate size of the fitted tree.  
A plot of the cross-validated error rate against the size of the fitted tree is obtained using the code 
below: 
 
   proc hpsplit data=CRX cvmethod=random(10) seed=123  
                cvmodelfit plots(only)=cvcc; 
      class Approved A1 A4-A7 A9 A10 A12 A13; 
      model Approved (event='Yes') = A1-A15; 
      grow gini; 
   run; 
 
 

Error! Reference source not found..  Cross-validated error plotted against the size (number of 
leaves) of the fitted trees. 
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The plot shows that the minimum cross-validated error rate is achieved by a tree with just 5 leaves, 
which is a very small tree, and the 1-SE rule of Breiman et al. (1984) selects a tree with just two 
leaves.  That is, the tree splits the data just once.  Usually, for large datasets, one would not 
expect such small trees to be effective predictors but for these data they are, and they provide us 
with some insight into the data. 
The tree with just two leaves (terminal nodes branches) splits on the variable A9.  Among the 
persons with a value of ‘t’ on A9, 79.55% were approved for a credit card whereas of the persons 
with a value of ‘f’ on this variable, only 6.45% were approved for credit cards.  One can only 
speculate as to what this question was, with ‘t’ and ‘f’ being its only possible responses.  The 
overall error rate for this simple split of the data is 13.74%, which is very comparable to the 12.6% 
for the logistic regression model. 
 
How much can the error rate be reduced by using additional variables?  The surprising answer 
is, “not much.” The decision trees with 5 and 10 leaves have error rates of 14.36% and 14.44%, 
respectively, no better than—and , perhaps, a smidge worse than—the error rate for the simplest 
decision tree with just two leaves.  Even random forests, one of the most accurate machine 
learning predictive methods, can only reduce the error rate to 12.5%.  What this means is that 
nearly all of the information in these data about the approval or lack of approval of a credit card 
application is contained in the single variable, A9, and that a very simple decision tee identified 
this piece of information immediately. 
 
 

PREDICTION OF WINE QUALITY 

The second example of applying machine learning methods for prediction concerns data on the 
quality of white wine in Portugal (Cortez et al. 2009).  The response is the quality of the wine 
sample on a scale of 0—10, with 10 being the highest quality.  The median value of the score of 
3 experts was used.  Predictor variables are chemical and physical characteristics of the wine 
samples including pH, density, alcohol content (as a percentage), chlorides, sulfates, total and 
free sulfur dioxide, citric acid, residual sugar, and volatile acidity. 
 
In ordinary multiple linear regression we minimize the residual sum of squares, 
 

ܴܵܵ ൌ෍൫ ௜ܻ െ ଴ߚ െ ௜ଵݔଵߚ െ ௜ଶݔଶߚ െ ⋯െ ௜௣൯ݔ௣ߚ
ଶ

௡

௜ୀଵ

 

 
with respect to ߚ଴, ,ଵߚ ⋯,ଶߚ , ,଴ߚ ௣ to obtain the least squares estimates ofߚ ,ଵߚ ⋯,ଶߚ ,  ௣.  Theߚ
LASSO adds a penalty term to the residuals sum of squares.  That is, we minimize 
 

ܴܵܵ ൌ෍൫ ௜ܻ െ ଴ߚ െ ௜ଵݔଵߚ െ ௜ଶݔଶߚ െ ⋯െ ௜௣൯ݔ௣ߚ
ଶ

௡

௜ୀଵ

൅ |௝ߚ|෍ߣ

௣

௝ୀଵ

. 
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The parameter ߣ is varied and a specific value may be chosen by some criterion, such as AIC or 
SBC, or to minimize cross-validated prediction error.  In the SAS code below, the value of the 
LASSO parameter is selected by minimizing cross-validated error.  Fifty distinct values of ߣ are 
tried.  A plot of the coefficients as a function of ߣ follows the code. 
 
 
   title2 "Regression with LASSO and 10-fold Cross-validation"; 
   proc glmselect data=sasgf.WhiteWine plots=coefficients; 
      model Quality = fixed_acidity volatile_acidity citric_acid  
                      residual_sugar chlorides free_sulfur_dioxide  
                      total_sulfur_dioxide density pH sulphates  
                      alcohol / selection=LASSO(choose=cvex steps=50)  
                                cvmethod=split(10); 
   run; 
 

Error! Reference source not found..  Values of regression coefficients for different values of 
LASSO parameter ߣ. 

 
 
From this plot we see that alcohol is the first variable to have a non-zero coefficient as ߣ decreases 
and volatile_acidity is the second such variable.  For this model the cross validated prediction 
error (CVEX PRESS) is 0.5679 and the final model contains all the predictor variables except 
citric acid.  The LASSO estimates of the regression coefficients are given in Table 3.  Increased 
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quality is associated with larger values of alcohol, residual sugar, and pH.  Increased quality is 
associated with smaller values of density, chlorides, and volatile acidity.  The coefficient for 
density is very large relative to the other regression coefficients but that is only a reflection of the 
fact that the differences in densities among the wines are very, very small.  Fixing the random 
seed for the 10-fold cross-validation ensures that we are able to replicate results exactly when 
repeating the analysis. 
 
Error! Reference source not found.. LASSO estimates of regression coefficients for white wine 

data. 

 

Parameter Estimates 

Parameter DF Estimate

Intercept 1 121.032634

fixed_acidity 1 0.037306

volatile_acidity 1 -1.873477

residual_sugar 1 0.069450

chlorides 1 -0.357294

free_sulfur_dioxide 1 0.003608

total_sulfur_dioxide 1 -0.000234

density 1 -120.539600

pH 1 0.553261

sulphates 1 0.570229

alcohol 1 0.224899

 
 
The second step in the analysis to fit a classification tree to the data.  As was the case in the first 
example, the first step in fitting a classification tree is to determine how large the tree should be.  
Sample code for doing this is provided below: 
 
   title2 "Determining Appropriate Size of the Tree"; 
   proc hpsplit data=sasgf.WhiteWine cvmethod=random(10) seed=123    
                cvmodelfit intervalbins=10000; 
      model Quality = fixed_acidity volatile_acidity citric_acid  
                      residual_sugar chlorides free_sulfur_dioxide  
                    total_sulfur_dioxide density pH sulphates alcohol; 
   run; 
 
By default PROC HPSPLIT “bins” the values of each numerical predictor variable into 100 bins of 
equal width across the range of the predictor variable.  This is a small departure from the original 
algorithm of Breiman et al. (1984) in which the values of each numerical predictor variable are 
completely sorted.  This modification makes perfect sense for very large datasets for which the 
cost of complete sorting would be prohibitive.  For moderate sample sizes I prefer the original 
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algorithm and by selecting intervalbins=10000 I am effectively making it so there are only 1 
or 2 observations per bin, and hence coming close to a full sort of the predictor variables. 
 
The plot of cross-validated error against tree size is given below.  The cross-validated error is 
minimized for a large tree that has 57 leaves but the 1-SE rule of Breiman et al. (1984) selects a 
much smaller tree with only 5 leaves (Figure 5). 
 
 

Error! Reference source not found..  Cross-validated error against tree size for the white wine 
data. 

 
 
In figure 5 we see that at the root node, node 0, there are 4898 observations and the average 
quality score is 5.8779.  The first split is on alcohol, at a value of 10.801.  For the 3085 wines with 
alcohol < 10.801 the average quality score is 5.6055 whereas for the 1813 wines with alcohol ≥ 
10.801 the average quality score is 6.3414.  Thus the wines with higher alcohol content are rated 
higher, on average, and this result is consistent with the positive coefficient for alcohol in the 
regression.  The difference between these two values may seem modest but the vast majority of 
the wines have scores in the range 5—8.   
 
For the wines with alcohol < 10.801 the next split is on volatile_acidity at a value of 0.250.  The 
1475 wines with volatile_acidity < 0.250 have an average quality score of 5.8725 while the 1610 
wines with volatile_acidity ≥ 0.250 have an average score of 5.3609.  This is consistent with the 
regression results in which volatile_acidity had a negative coefficient.  
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The second split for the wines with alcohol ≥ 10.801, on free_sulfur_dioxide is much less 
interesting because only 114 out of the 1813 observations end up in the node corresponding to 
free_sulfur_dioxide < 11.012. 
 
The cross-validated prediction error for the regression tree with 5 leaves is 0.5892, which is 
slightly larger than the value 0.5679 for the regression using LASSO estimates of the coefficients.  
By fitting a much larger regression tree, the prediction error may be reduced to 0.5485. 
 
 
Error! Reference source not found..  First two levels of classification tree with 5 leaves (terminal 

nodes). 
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The third step in the analysis is to apply random forests to determine if higher predictive accuracy 
might be achieved. Random Forests (Breiman, 2001) takes predictions from many classification 
or regression trees and combines them to construct more accurate predictions.  The basic 
algorithm is as follows: 
 

1. Many random samples are drawn from the original dataset.  Observations in the original 
dataset that are not in a particular random sample are said to be out-of-bag for that 
sample. 
 

2. To each random sample a classification or regression tree is fit without any pruning.  
3. The fitted tree is used to make predictions for all the observations that are out-of-bag for 

the sample the tree is fit to. 
 

4. For a given observations, the predictions from the trees on all of the samples for which 
the observation was out-of-bag are combined.  In regression this is accomplished by 
averaging the out-of-bag predictions; in classification it is achieved by “voting” the out-of-
bag predictions, so the class that is predicted by the largest number of trees for which the 
observation is out-of-bag is the overall predicted value for that observation. 

 
Many details are omitted from the discussion here, including the number of samples to be drawn 
from the original data, the size of those samples, whether the samples are drawn with or without 
replacement, and the number of variables available for the binary partitioning in each tree and at 
each node. 
 
Random Forests may be fit using PROC HPFOREST in SAS® Enterprise Miner™.  Here is some 
sample code for the white wine data: 
 
   title1 "Fitting Regression Random Forests to White Wine Data"; 
   proc hpforest data=sasgf.WhiteWine maxtrees=200 scoreprole=oob; 
      input fixed_acidity volatile_acidity citric_acid residual_sugar  
            chlorides free_sulfur_dioxide total_sulfur_dioxide  
            density pH sulphates alcohol / level=interval; 
      target Quality / level=interval; 
   run; 
 
All the predictor variables are interval valued and go in a single input statement.  If there were 
categorical variables, we would need a second input statement for those variables with the option 
level=nominal.  The response variable, Quality, is also interval-valued and goes into a 
target statement.  The default number of subsets of the data and number of trees to fit is 200.  
The option scoreprole=oob asks for the out-of-bag error to be reported.  One advantage of 
random forests over other machine learning algorithms is that nearly everything is automated and 
default settings produce good results in a large number of problems and settings.  Table 4 below 
contains some accuracy results. 
 

Error! Reference source not found.. Random Forests predictive accuracies for selected 
numbers of trees. 
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Fit Statistics 

Number
of Trees

Number
of Leaves

Average
Square
Error

(Train)

Average
Square
Error
(OOB)

10 10472 0.08523 0.47121

50 51571 0.06476 0.36657

100 102746 0.06214 0.35143

200 205276 0.06076 0.34452

For the full 200 trees the out-of-bag average square error, which is equivalent to the cross-
validated prediction error for multiple linear regression and regression trees, is 0.3445, which is 
quite a bit lower than the value of 0.5679 obtained from the regression using LASSO and the 
values of 0.5892 and 0.5485 obtained for the regression trees with 5 and 57 leaves, respectively.  
Thus, this is one situation where the use of a high level machine learning algorithm, such as 
random forests, gradient boosting machines, or support vector machines, can result in a much 
higher predictive accuracy than that which traditional regression methods could achieve. 
 
A feature of random forests that is very popular with users is its algorithm for determining variable 
importance.  Table 5 contains the variable importances for the white wine data.  The data are 
sorted by the out-of-bag (OOB) mean squared error.  The largest value is for alcohol at 0.05605 
and there is a substantial drop to density at 0.02292.  We decided to refit random forests with just 
the six most important variables.  The out-of-bag error rate was 0.3709, which is a little higher 
than the value for the random forests fit with all 6 variables, but still much less than for the multiple 
linear regression model with LASSO estimation and the two regression trees. 
 
Error! Reference source not found.. Variable importance from random forests analysis of white 

wine data. 

Loss Reduction Variable Importance 

Variable 
Number
of Rules MSE

OOB
MSE

Absolute 
Error

OOB 
Absolute 

Error

alcohol  24312 0.127562 0.05605 0.082900 0.031738

density  19987 0.096659 0.02292 0.056390 0.005337

volatile_acidity  13769 0.076166 0.01713 0.072654 0.033952

free_sulfur_dioxide  19374 0.080078 0.00786 0.065752 0.016969

chlorides  17315 0.066279 0.00099 0.043994 ‐0.000145

citric_acid  15434 0.053505 ‐0.00788 0.053528 0.011781

residual_sugar  16974 0.053933 ‐0.00982 0.051778 0.008112

fixed_acidity  12515 0.044733 ‐0.01400 0.038773 0.001768
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Loss Reduction Variable Importance 

Variable 
Number
of Rules MSE

OOB
MSE

Absolute 
Error

OOB 
Absolute 

Error

pH  20868 0.056580 ‐0.01843 0.058464 0.006669

total_sulfur_dioxide  19861 0.059472 ‐0.01865 0.059930 0.007552

sulphates  24667 0.055985 ‐0.02316 0.063720 0.007702

 
 
What is the nature of the relationship between the individual predictors and the response variable?  
One approach to answering this is to construct partial dependence plots (Friedman 2000).  An 
alternative is to fit a generalized additive model (Hastie and Tibshirani 1986).  For an interval 
valued response we might assume an approximate normal distribution for the error terms and fit 
a GAM of the form: 
 

௜ܻ ൌ 	 ଴ݏ ൅ ௜ଵሻݔଵሺݏ ൅ ௜ଶሻݔଶሺݏ ൅ ⋯൅	ݏ௣ሺݔ௜௣ሻ ൅  ௜ߝ
 
where the ݏଵሺ ሻ, ଶሺݏ ሻ, ⋯ , ௣ሺݏ ሻ are smooth functions of the respective predictor variables.  

This model is non-linear in that the ݏ௝ሺ ሻ may be non-linear functions but it is also additive in the 
sense that no interactions among predictor variables are included.  The primary output from fitting 
such models is a set of scatter plots of the ݏ௝൫ݔ௜௝൯ against the values ݔ௜௝. 
 
One procedure in SAS for fitting GAMs is PROC GAMPL.  Sample code for fitting such a model 
to the white wine data using only the six most important variables identified by random forests 
follows: 
 
   title1 "Fitting a Generalized Additive Model to White Wine Data"; 
   title2 "Using 6 Variables Selected by Random Forests"; 
   proc gampl data=sasgf.WhiteWine plots(unpack)=all; 
      model Quality = s(volatile_acidity) s(citric_acid) s(chlorides) 
                      s(free_sulfur_dioxide) s(density) s(alcohol) 
                      / dist=normal; 
   run; 
 
For the variable alcohol, identified by random forests as the most important variable for predicting 
quality, we obtain the following plot.  This plot is remarkably linear. 
 
Error! Reference source not found..  Transformation plot for alcohol in a GAM for the white wine 

data. 
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On the other hand, for free_sulfur_dioxide we obtain the following plot, which is noticeably non-
linear. 
 

Error! Reference source not found..  Transformation plot for free_sulfur_dioxide in a GAM for 
the white wine data. 



15 

 
 
 
For these data most of the transformation plots are approximately linear which raises the question:  
“If the relationships between most of the predictor variables and the response are (approximately 
linear), how is it that random forests significantly outperforms a multiple linear regression model 
for these data?”  The answer lies in the fitting of interactions:  the multiple linear regression model 
and even the generalized additive model do not incorporate interactions among predictor 
variables whereas tree-based methods including random forest and gradient boosting machines 
do. 
 

CONCLUSION 

In this paper we have tried to illustrate the use of machine learning methods for regression 
problems.  In the first example, on credit card applications, a simple decision tree captured the 
salient information that is available in the data.  In the second example, random forests gave 
significantly more accurate predictions and generalized additive models provided a way to 
visualize the relationship between predictor variables and the response. 
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