

Contents

Teaching and learning approaches4Basic logic functions 8
Combinational logic circuits 40
Converting logic circuits to Boolean expression and truth tables 52
Appendix 1

 81

Teaching and learning approaches

Introduction

This guide provides suggestions, ideas and activities for practitioners on the delivery of combinational logic, which forms one learning outcome of the Circuit Design unit in National 5 Practical Electronics.
The content also covers all the combinational logict ics rquired in Circuit Design at National 4 so this guide can also be used fonthis level but this will require more tutorial exe

This guidance is intended to sunpg (t) Me practitid in in the delivery Practical Electronics: Circuit Design, om inationa Los The materials provide giacevon the on mind three parts:

1. basic logic function
2. converting uth ables to ogr cheuits and converting Boolean expres io or ogic cr
3. convertipo gic cir to Boolean expressions.

Learners could be en courg to work through the exercises both individually and in pairs.

Once the basic concepts have been learned, simulation packages and logic tutor boards could be used to enhance the learning and provide practical hands-on experience.

The guidance will support practitioners in giving the learners the opportunity to gain an understanding of the basic gates used in combinational logic, their truth tables and Boolean expression.

They could also be able to convert truth tables and Boolean expressions to logic circuits and convert logic circuits to Boolean expressions.

Seyyed Shahbaz Tariq

Introduction

The first part of the advice and guidance covers the basic logic gates and provides the ANSI 2 and the BS EN 60617 logic symbols, truth table and Boolean expression for each gate.

The second part describes how truth tables and Boolean expressions are converted into logic circuits.

The third part describes how logic circuits are converted into Boolean expressions.

Learners sometimes cannot see the relevance to real-life situations of combinational logic, so practitioners may make refere oce how logic is used everyday, ie 'I will buy you a coffee - not' is an erare the NOT or invert logic function.
Practical examples of where logic is used corld also beiacl bit, eg:

- Computers need combinational logi circuits to V nt
- Modern cars have electronic c \quad planits (ENS). Dese are small, powerful computers thaterarious within the car, such as the fuel management syster
- Televisions can have eevew, whi hi a argital television signal that uses combinationa 10_{5}.
Practitioners arry ish to proviceso e other examples.

Suggested learnis sand eaching approaches

The skills and knowledge required will be gained as the learner progresses through each topic.

Monitoring progress

As each topic builds on the previous one, it is important that the learner is confident before moving on.

Learners therefore should be encouraged to take responsibility for their own progress so that they can work at their own pace and difficulties are identified as early as possible.

Seyyed Shahbaz Tariq

Suggested Learning and Teaching Approaches

These will be dependent on the facilities and expertise available in the centre but the following are suggested:

- worked examples for each topic
- tutorials to build up knowledge and understanding
- learner-centred building and testing on simulation software
- logic tutor-type boards individually and/or in pairs.

Resources

 test circuits. Thrs is a sa end to use before they go on to use the more hands-on logic tutor yems

Learners using simulation software can work either individually or in pairs. Circuits can be built and tested then saved. They can then be demonstrated at a later time.

The PowerPoint Presentation contains all the basic logic symbols and these can be used to make up further exercises if required.

Seyyed Shahbaz Tariq

Once the learners have gained experience using the simulation software, the circuits could be built and verified using logic tutor boards or whatever practical system the centre employs.

Because this is a practical learning environment, the relevant safety precautions must be observed.

A list of device numbers and pin connections for all the basic gates is provided in Appendix 1.

Basic logic functions

This section provides an introduction to the various logic gates AND, OR, NOT, XOR, NAND and NOR.

For each gate the logic symbol is provided along with the truth table and Boolean expression.
Both the ANSI 2 and the EN BS 60617 logic symb re after the tutorial questions in the first part of the Cl ent, only the ANSI 2 symbols will be used as they are more commo sed.

A short explanation of truth tables and Boolen algebr Aso been included but will need further explan/ion or expar ing ng the lesson. Learners often don't understand er the logic 1. 0 s for the inputs come from. A short refresher on b, ary arthmeti mak be appropriate here so learners understand hou t Pura from 0 to 7 in binary.
Another method someras used is Dhe value of the binary column, 8, 4,2 , 1 etc, to det mi the nun be then 1 s together, ie starting from the top, the corm will h followed by eight 1 s , the 4 column will have four os ollowedrb for 1 s etc. 1
This is an easy meth d roducing the truth tables and allows the learner to concentrate on the our of the table rather than how to produce the input values.

In order to aid the learner's understanding, the concept for each logic gate, where possible, has been introduced using a simple electrical circuit using switches as the inputs and a light as the output. It would be beneficial to the learner if, during teaching, more examples could be given so reinforcing the idea that logic is used in all sorts of areas.

For example, a two-way lighting circuit used on staircases with one switch at the top and one at the bottom is an example of the XOR function.

Seyyed Shahbaz Tariq

The PowerPoint Presentation contains all the logic symbols used in these notes and these can be used to develop more tutorial exercises if required.

An internet search will provide a number of examples of simple uses of combinational logic circuits.

After the learners have gone through the tutorial exercises, the basic logic functions should be reinforced using simulation software such as Electronic workbench, MultiSim or whatever software package the centre uses to test logic functions.

This will provide added value to the learner's knowledge.

Tutorial

1. Identify the logic gate from the logis sym

AND

NOR

NAND

Learners could also be asked to write the Boolean expression for each gate.
2. Draw the logic gate and write the Boolean apession described by the

XOR logic syr bo
$\mathrm{O} / \mathrm{P}=\mathrm{A} \oplus \mathrm{B}$

OR logic symbol
$\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B}$

B	A	O/P
0	0	0
0	1	0
1	0	0
1	1	1
AND		

B	A	O/P
0	0	1
0	1	1
1	0	1
1	1	0
NAND		

AND logic symbol
$\mathrm{O} / \mathrm{P}=\mathrm{A} . \mathrm{B}$
NAND logic symbol

$$
\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \mathrm{~B}
$$

B	A	O/P
0	0	1
0	1	0
1	0	0
1	1	0
NOR		

A	O / P
0	0
1	1

NOR logic symbol

$$
\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B}
$$

3. Determine the logic function represented by the following Boolean expressions:
$\mathrm{O} / \mathrm{P}=\overline{\mathrm{P}}$
$\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$

NOT
AND
$\mathrm{O} / \mathrm{P}=\mathrm{P}+\mathrm{Q}$

OR
$O / P=\bar{A}+B$

NOR
Learners could also be as ed produc the truth table for each expression.

Convertingron truth tables o logic circuits

This section bunds on thedge of the basic gates by first taking the truth table and expla tha only lines on the truth table where the output is a logic 1 are required to gign the logic circuit. This is because the circuit has to produce a logic 1 output for only these input conditions.

It could be highlighted that the inputs to the circuit are tied together on a truth table by the Boolean AND function. It could also be mentioned, that this AND function is called the 'product of sums' form.

Following on from this, all the lines on a truth table that have a logic 1 output are tied to each other by the Boolean OR function. This is called the 'sum of products' form. Boolean expressions produced from a truth table will always be in the sum of products form.

Seyyed Shahbaz Tariq

The practitioner could emphasise the following:

- Because the circuit has only one output, there can only be one logic gate producing this output. Because the Boolean expression is in the sum of products form, the output gate will be an OR gate if more than one line on the truth table is a logic 1 . However, if only one line on the truth table is a logic 1 then the output gate will be an AND gate.
- The number of product terms, ie the number of lines on the truth table whose output is logic 1, also determines how many inputs there will be into the output gate.
- It doesn't matter what order the inputs are written in; A.B.C is exactly the same as C.A.B or B.C.A.
- $\mathrm{A}+\mathrm{B}+\mathrm{C}$ is the also same as $\mathrm{B}+\mathrm{A}+\mathrm{C}$ etc
Practitioners should emphasise to learners (ay type of Nectrical circuit diagram flows from left to right on the page ie signals inopu \quad the left and output on the right. Also, when drawing logic circuits kind of electrical diagram, wiring must alw bedrawn e banzontally or vertically, never at an angle.

Once the learners have proore through be urse the circuits could then be constructed and tested irswing a latron package, then with a logic tutor.
When using relosic tutor syste \mathfrak{n}, learners should be instructed to always connect all also good practre

Example

Design a logic circuit for the following truth table.

R	P	Q	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Seyyed Shahbaz Tariq

The two lines that have the output at logic 1 are $\bar{R} . P . Q$ and R.P.Q.
These are the two products of sum expressions.

The output is therefore $\mathrm{O} / \mathrm{P}=\overline{\mathrm{R}} \cdot \mathrm{P} \cdot \mathrm{Q}+\mathrm{R} \cdot \overline{\mathrm{P}} \cdot \mathrm{Q}$

The output gate is an OR gate with two inputs. One input is R.P.Q and the other is R.P.Q.

The circuit can now be built up from the output gate back to the input.
Although the complete logic circuit is shown below, in uld be built up in stages from the output gate back to demonstrate hatranstructed.

Tutorial: Logic circuits from truth tables

Draw the logic circuit described by the truth tables below:
1.

B	A	O / P
0	0	0
0	1	0
1	0	0
1	1	1

AND truth table
2.

OR truth table
$\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B}+\mathrm{C}$

A
B
C

O/P
3.

B	A	O / P
0	0	0
0	1	1
1	0	1
1	1	0

$$
\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B} \bigcirc
$$

4.

5.

C	B	A	O / P
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$
\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}}
$$

Seyyed Shahbaz Tariq

6.

C	B	A	O / P
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Although it is not part of this course, the above diagram illustrates one of De Morgan's theorems in a practical circuit, ie move the inversion(s) from the input to the output and change the gate from AND to OR.
7.

8.

C	B	A	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$
\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \mathrm{C}
$$

9.

C	B	A	O / P
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Seyyed Shahbaz Tariq

10.

R	Q	P	O / P
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$
\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}
$$

Note: It might be advisable to tell the learners to on losely at the truth

11.

Z	Y	X	O / P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

12.

C	B	A	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Seyyed Shahbaz Tariq

Logic circuits from Boolean expressions

This technique is harder for learners as the output gate can be any of the basic gates. Learners often find difficulty in deciding what the output gate should be and the expression doesn't need to be very complex for this to happen.

Analysing expressions to deduce the output gate, without drawing the logic circuit, is good practice for learners and centres could produce a range of examples for this purpose.

Encouraging learners to use brackets, as they would for ordinary algebra, also greatly helps them to determine the output gate.

Again, learners should be taught to work back from the gate, working out the logic for each branch back to the input. Winhretice, the logic diagrams will get tidier and clearer.

The learners should build and test the circu using a s

Logic circuits from Boolean expressions

Draw the logic circuit for each of the Boolean expressions given below.

1. A.B.C

2. $\overline{\mathrm{A}}+\overline{\mathrm{B}}$
3. A.B $+C$

4. A.B.C

5. $\mathrm{A} \cdot \overline{\mathrm{B}}+\mathrm{C}$

The output gate in this case is a NOR. The bar above the A + B groups them together as one input to the NOR gate.

8. $A . B+C$

9. $\overline{(P+Q) \cdot(P+R)}$

The output gate is NAND.
10. $(A . B) \oplus C$

Seyyed Shahbaz Tariq

Boolean expressions and truth tables from logic circuits

Conversion of a logic circuit into a Boolean expression is very straightforward. Simply start at the input to the circuit and at the output of every gate write down on the logic diagram the logic expression for that gate based on the inputs.

Continue this until the expression for the output gate has been derived.

Common mistakes:

- Learners do not pay attention to the type of gate.
- They mix up AND and OR functions.
- They often forget that a circle on the output of gat eans that there has been an inversion and there should be a bar overne of the output of that gate.
- They recognise that the gate has an iny riof(b) put the ar on each of the inputs individually.
- They correctly derive the output of ate but do no he complete expression as the input to the nex gto ie they your the bar above an expression. cannot be understated. It oonen very iff culco understand the function of a logic circuit from the Bam or th Bexpression. However, a truth

For example, he folloving ogic circuit:

The output expression for this circuit is A. $\bar{B}+\bar{A} . B$.

Anyone who has logic experience will recognise this as an XOR function, but learners may struggle to see this.

However, the truth table for the circuit is:

B	A	O / P
0	0	0
0	1	1
1	0	1
1	1	0

Learners should now be able to see that this is the truth table for the XOR gate studied earlier.

The circuit in the diagram below uses two-input to provide a three-input AND gate.

Seyyed Shahbaz Tariq

A truth table drawn for both circuits will show the logic function clearly:

C	B	A	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

This is the truth table for both circuits above.
Similarly, a three- or four-input gate can $<$ use a two-i dut device by using two of the inputs and tying the other the permarenty 1. Alternatively, it could be used by tyip two inputs ger ane input and doing the same with the other two

Logic 1
Tying two inputs to logic 1
Using two inputs tied together for each input

All the circuits in this section should be built and tested using the logic tutor boards.

Questions 2, 4 and 11 in the tutorial can be simplified. This should be highlighted to the learner.

Conversion of logic circuits to Boolean expressions

Derive the truth table and Boolean expression for the output of the following logic circuits.
1.

C	B	A	(A.B)	(A.B). C
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

This circuit can be replaced by a three input AND gate
3.

4.

This circuit can be replaced by a three-input OR gate.
5.

It is hard to see from the logic diagram or the Boolean expression, but the truth table shows that this circuit can be replaced by a three-input AND gate.
7.

8.

This circuit can be replaced by a two-input NOR gate.
9.

10.

11.

12.

Combinational logic circuits

Logic functions

Logical operations are used in everyday life. Statements such as 'I will buy you a coffee - not' are common. In this statement the person is saying something positive then making it into the opposite with the 'not' at the end of the sentence. Other logical operations are things surf as:

- To use your computer system the computer mut be switched on and the monitor must be switched on.

- To get out of the house you can exit by the front do rom me back door. Logic systems have only two state and car be ep rented by various methods, ie high or low, up or dow h, $\&$ or 0 , on f , true or false etc.

Computer systems use race ration analdical circuits are used to produce these logic furgions. Identification f the function is by a symbol and there are different symbols use for arch of the basic logic functions.
Two sets of yo rare use ar symbols and IEC symbols. Both will be shown for the back gateche the ANSI symbols will be used for the rest of the module.

All logic gates use elea signals being either on or off to represent the logic states 1 and 0 , ie a signal present is represented by logic 1 and a signal not present by logic 0 .

The basic logic functions are termed gates, and gates are combined together to produce logic circuits.

The basic logical functions (gates) are AND, OR, NOT, XOR, NAND and NOR.

They can have one or more inputs but only one output.

Inputs

A two-input logic function

All logical functions or circuits, from the simplest to the more complex, can be represented in various forms. Truth tables are ofe prm Boolean algebra is another.
 always produce the samerneonditi inesp of what has been present before, ie if an ipp t of logic 1 on npyt A and logic 0 on input B produced an output o divill alwas ocke that output for that logic function.

An example or a tuth table pr a wo-input logic circuit is shown below:

Inf It	Input B	Output
0	0	0
0	1	1
1	0	0
1	1	1

The inputs for truth tables are simply a binary count from 0 to all 1 s , for example the above truth table starts at input $A=0$ and input $B=0$ and counts up by one on every line until both inputs are at logic 1 . The count in binary is therefore $00,01,10,11$ and the count in decimal is $0,1,2,3$.

If the logic function had three inputs then the count would start at 000 and go up to 111. In decimal this would be 0 to 7 .

Boolean algebra

Boolean algebra is a mathematical method of representing logic functions and can be manipulated in a similar way to ordinary algebra.
It uses letters or names for the inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or P, Q etc. that are connected to the gate and connects them using special symbols to represent the logic function.

The basic logic gates are provided in the following pages with their truth tables and Boolean expressions.

AND gate

The easiest way to show the AND logic gate operation is using an electrical circuit:

As can be seen, the lamp will only light when both switches are on.

ANSI two-input AND gate symbol
AND gate

The truth table below shows that the output y will be at logic 1 only when both the inputs are at logic 1.

A	B	O / P
0	0	0
0	1	0
1	0	0
1	1	1

Truth table for a two-input AND gate

Boolean expression

The other method to show the function of the circuit is to use Boolean algebra. This uses the names of the inputs connected with symbols that represent the function.

$$
1=\text { switch on } 0=\text { switch off }
$$

As can be seen, the lamp will light when either or both switches are on.

ANSI symbol for a two-input OR gate

BS EN 60617 symbol for a two-input OR gate

Boolean expression

 algebra.The symbol ror th OR oner tor sa plus (+) sign, not to be confused with the addition sign.

The Boolean express fin the two-input OR gate above is:
$\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B}$
This is read as $\mathrm{O} / \mathrm{P}=1$ when A is 1 or B is 1 or both are 1 .
This is more correctly termed the inclusive OR function as it includes all the conditions: A or B or both.

COMBINATIONAL LOGIC CIRCUITS

NOT gate

The electrical circuit for the NOT function is shown below. It is also called an inverter gate.

Notice the bubble on the output of the NOT gate. This bubble signifies that an inversion has taken place (ie a logic 0 becomes a logic 1 and a logic 1 becomes a logic 0).

A	O / P
0	1
1	0

Truth table for a NOT gate

Boolean expression

The Boolean expression for a NOT operator is obtained by placing a line called a bar above the function:
$\mathrm{O} / \mathrm{P}=\overline{\mathrm{A}}$
This is read as the output $=$ not A , ie the output is PD site of the input A .

Exclusive OR function (XOR)

As can be seen, the lamp will light when switch A is in position 1 and switch B is in position 0 or when switch A is in position 0 and switch B is in position 1.

ANSI symbol for an exclusive (XOR) OR gate

BS EN 60617 symbol for an exclusive (XOR) OR gate

Boolean expression

In the case of the XOR functron Boolea opy ator is a plus sign inside a circle:
$\mathrm{O} / \mathrm{P}=\mathrm{A}$

The NOT And or NANGate
This is an AND gate vith the output inverted.

ANSI symbol for a two-input NAND gate

BS EN 60617 symbol for a two-input NAND gate

Note the bubble, which indicates an inversion.

A	B	O / P
0	0	1
0	1	1
1	0	1
1	1	0

Truth table for a two-input NAND gate

The Boolean expression takes the output of the AND gate and inverts it:
$\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \mathrm{B}$

NOT OR or NOR gate

ANSI symb? NOR gate
 NOR gate
indicates an inversion.

A	B	O / P
0	0	1
0	1	0
1	0	0
1	1	0

Truth table for a two-input NOR gate

The Boolean expression takes the output from an OR gate and inverts it:
$\mathrm{O} / \mathrm{P}=\overline{\mathrm{A}+\mathrm{B}}$

The above logic gates have been shown as having only two inputs. However, gates are available with more than two inputs, but the function remains the same. For example, an AND gate with three inputs will only produce a logic 1 output when all three inputs are at logic 1 , as shown below.

P	Q	R	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

The Boolean expression for this gate is

Summary of logic gates
An AND gate will only proar er ivgic 1 o Ttp all the inputs are at logic 1.
An OR gate will proden output f D 1 when any or all the inputs are at logic 1.

A NOT gate prod ces an ant is the opposite of its input.
An XOR gate will o Iy reace an output of logic 1 when both inputs are different.

A NAND gate will only produce a logic 0 output when all the inputs are at logic 1.

A NOR gate will only produce a logic 1 output when all the inputs are at logic 0 .

Tutorial Logic Gates

1. Identify the logic gate from the logic symbol.

2. Draw the logic gate and write the Boolean expression described by the following truth tables.

B	A	O/P
0	0	0
0	1	1
1	0	1
1	1	0

B	A	O/P
0	0	0
0	1	1
1	0	1
1	1	1

B	A	O / P
0	0	0
0	1	0
1	0	0
1	1	1

B	A	O / P
0	0	1
0		1
1		1

3. Determipe he logintio represented by the following Boolean expressions:

$\mathrm{O} / \mathrm{P}=\overline{\mathrm{P}}$
$\mathrm{O} / \mathrm{P}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$
$\mathrm{O} / \mathrm{P}=\mathrm{P}+\mathrm{Q}$
$\mathrm{O} / \mathrm{P}=\mathrm{A} . \mathrm{B}$
$\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B}$
$\mathrm{O} / \mathrm{P}=\mathrm{P} \oplus \mathrm{Q}$

Converting logic circuits to Boolean expressions and truth tables

Converting truth tables or Boolean expressions to logic circuits involved first identifying the output gate and the number of inputs to that gate, then working each of these inputs in turn back to the input signals using the Boolean expression for the output of each gate.

By looking at the circuit, it can be seen that there are two logical paths from the input signals to the output.

One path is through the top AND gate and the other path is through the bottom OR gate.

Work out for one of these gates, eg the AND gate, what its inputs are and what the output expression is.

The inputs are A and B, and it is an AND gate so the output is (A.B).

Now repeat this for the OR gate.

The inputs are A and C, and it is an OR gate so the output is $(A+C)$.

Write the output expression for the two gates on the respective outputs, as shown in the diagram below.

It is sometimes a good idea to enclose the inputs to a logic gate in brackets. This keeps the output expression each gate linked together.

It is often useful to produce the truth table for the circuit as the function of the circuit can then be determined.

To make things a bit easier, the outputs from all the logic gates should be shown on the truth table, as demonstrated below.

Example 2

Derive the truth table and Boolean expression for the following logic circuit:

The output of the last AND gate will be $\overline{(\mathrm{A}+\mathrm{B})} \cdot \overline{(\mathrm{A}+\mathrm{C})}$

The truth table for the circuit is:

C	B	A	$A+B$	$A+C$	O / P F($\mathrm{CO}(\mathrm{A}+\mathrm{C})$
0	0	0	1	1	$\bigcirc 1$
0	0	1	0	0	
0	1	0	0	1	
0	1	1	0		
1	0	0	1	0	
1	0	1		\bigcirc	- 0
1	1	0	1	0	0
1	1		0		0

Remember when both the ind ts are loge 0.

The output is an AN gatest the output will be logic 1 when all inputs are logic 1.

Example 3

Derive the truth table and Boolean expression for the following logic circuit:

\qquad

The output expression is therefore (A.B) + C

The truth table for this circuit is given below:

C	B	A	$\overline{\text { A.B }}$	--- $($ A.B) $+C$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	0

Tutorial: Conversion of logic circuits to Boolean expressions

Derive the truth table and Boolean expression for the output of the following logic circuits.
1.

4.

5.
6.

7.

8.
9.

10.

Converting Boolean expressions to logic circuits

Logic circuits can also be designed from Boolean expressions.
Often designers work out how the circuit should perform using Boolean algebra. This will produce a Boolean expression that describes the operation of the logic circuit.
As was seen earlier with truth tables, the output gar an or gate or an AND gate, and the Boolean expression is always in the sum of products form.

With Boolean expressions, however, it's not simple \quad oUtput gate could be any of the basic gates and the out could be in he of products (OR or NOR gate) form or it could be in the product of m form. This form is where each input to the final gate 0 nnected than AnD gate (or NAND) so the output gate is an AND Gat (or NAN ρ),
$\mathrm{O} / \mathrm{P}=\mathrm{A}+\mathrm{B} \cdot \mathrm{A}+\mathrm{C}$

This is not very ar. However if rats are used, exactly the same as in ordinary alg br express 10 mes much clearer:
$\mathrm{O} / \mathrm{P}=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$

In this case the output is an AND gate with two inputs: $(\mathrm{A}+\mathrm{B})$ and $(\mathrm{A}+$ C).

The circuit diagram is drawn using exactly the same method as for the truth tables, ie draw the output gate then work each input of that gate back to the input of the circuit.

Step 1

Draw the output gate.

Step 2
First complete (A + B).

$(\mathrm{A}+\mathrm{C})$

Step 3
Complete (A + C).

Step 2

Take each input in turn and determine the gate and its inputs.

Example 2

Design the logic circuit for the following sore (1)expressid
$\mathrm{O} / \mathrm{P}=\overline{(\mathrm{A}+\mathrm{B}}) \cdot(\mathrm{A}+\mathrm{C})$
At first glance, this looks li de
 shows that there is a bar absent wholnores ion. This means that the output gate is a NAND ga with two in pu s:
$(\mathrm{A}+\mathrm{B})$, ie a NOR gate, ind $(\mathrm{A} \sim 1 \mathrm{O}$ OR gate.

Step 1

Draw the output gate sh w mo inputs.

$(A+B) \cdot(A+C)$

$$
(\mathrm{A}+\mathrm{C})
$$

Step 2
Take each input in turn and determine the gate and its inputs.

Tutorial: Logic circuits from Boolean expressions

Draw the logic circuit for each of the Boolean expressions given below.

1. A.B.C
2. $\bar{A}+\bar{B}$
3. A.B + C
4. A.B.C
5. A.B $+C$
6. $P+Q$
7. $\mathrm{A}+\mathrm{B}+\mathrm{C}$
8. A.B + C
9. $(\mathrm{P}+\mathrm{Q}) \cdot(\mathrm{P}+\mathrm{R})$
10.

Converting truth tables to logic circuits

Logic gates can be used either individually or combined with other logic gates to produce circuits that provide some function.

For example, a circuit is required that will sound an alarm if the water in a tank drops to a level that activates the low water level alarm and the drain valve is open. This is a simple AND function with one from the low water alarm and the other from the drain valve.

The low water level alarm signal is at logic whe alarm is activated. The drain valve signal will be at logic 1 when edravalve is op

The truth table is:

The Boolean expression for this circuit is:
alarm = low water level • drain valve
ie the alarm will sound when the water trips the low level alarm and the drain valve is open.

TRUTH TABLES TO LOGIC CIRCUITS

Example 1

A machine for cutting metal will only activate the cutter when the safety guard is in position, the operator holds the safety handle and the footswitch is activated.

This is another AND function, with the safety guard as one input, the safety handle as another input and the footswitch as the third input.

The truth table is:

Circuit designers often use truth tables as the specification for a logic circuit.

A truth table is a table that shows all combinations of inputs and the corresponding output for each input combination. The only outputs that need to be considered are the ones that have logic 1 as the output. Logic 0 outputs do not get used.

If an input (eg input A) is at logic 1 then that input is simply called A (or P, or Q etc).

However, if the input to a logic gate is $\overline{\mathrm{A}}$ (or $\overline{\mathrm{P}}$, or $\overline{\mathrm{R}}$ etc.) then this is the opposite of the input signal and is produced by using an inverter gate in the circuit to change A to $\overline{\mathrm{A}}$.

Example 2

Consider the following truth table.

B	A	O / P
0	0	0
0	1	1
1	0	0
1	1	0

There is only one condition where the out ut is at ogic 1: , pen input A is at logic 1 and input B is at logic 0 .
It is important to note that the inputs to output is O / P.

Input A is A but input B bat is 0 is B . B not B.A.

In algebra 2×3 is the ar as 3×2 and this is also true in Boolean algebra:
B.A is exactly the same as A.B

As there is only one output in the truth table at logic 1 , the Boolean expression for the truth table is:
$\mathrm{O} / \mathrm{P}=\overline{\mathrm{B}} \cdot \mathrm{A}$
This could also have been written as $\mathrm{O} / \mathrm{P}=\overline{\mathrm{A}} . \mathrm{B}$.

All the inputs for a particular output are connected together using an AND function, as shown above.

TRUTH TABLES TO LOGIC CIRCUITS

All the circuits we will look at in this course will have two or more inputs, but only one output. This means there will be a single logic gate producing the output.

This logic gate brings all the parts of either the truth table or the Boolean expression together to a single output.

If we are producing a logic circuit from a truth table, then the output gate will always be an OR gate (or NOR) if there is more than one line in the truth table at logic 1 .

If there is only one line on the truth table at logic 1 then the output gate will be an AND gate (or NAND).

Consider the example above. The output is givgh. ${ }^{-}$. This is called the product of sums form, ie all inputs are cone an AN gate.
By looking at the expression we can sge the there arg puts, A and B, and the gate is an AND gate, signified

B

This is the logic circuit described by the truth table.

Example 2

Draw the logic diagram for the truth table given below.

R	Q	P	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Step 1

Write the Boolean expression for all line wher output Dogic 1.

$\mathrm{O} / \mathrm{P}=\overline{\mathrm{R}} \cdot \mathrm{Q} \cdot \mathrm{P}+\mathrm{R} \cdot \overline{\mathrm{Q}} \cdot \mathrm{P}$
This expression is called the sum of products form, in which the inputs for each line are connected by an AND function (product of sums) and the expression for each line is connected by an OR function.

The output gate is an OR gate with one input $\bar{R} . P . Q$ and the other input R.P.Q.

TRUTH TABLES TO LOGIC CIRCUITS

Now complete the circuit for R.P.Q.

TRUTH TABLES TO LOGIC CIRCUITS

Tutorial: Logic circuits from truth tables

Draw the logic circuit described by the truth tables below.
1.

B	A	O / P
0	0	0
0	1	0
1	0	0
1	1	1

2.
3.

4.

C	B	A	O / P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

5.
6.

7.

C	B	A	O / P
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

8.

10.

R	Q	P	O / P
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

11.
12.

Appendix 1

