Potential Actions

What follows is a series of changes to http://schema.org/Action, currently used to describe past
actions, to also enable describing the capability to perform an action in the future, as well as how

that capability can be exercised.

Part 1: Action status
Thing > Action
Thing > Intangible > Enumeration > ActionStatusType
Example: actionStatus
Part 2: Connecting Actions to Things
Thing
Example: Thing.potentialAction
Part 3: Action EntryPoints
Example: Action target URL
Action
Thing > Intangible > EntryPoint
Scheme-based encoding of EntryPoint
Example: Multiple platform URLs
Part 4: Input and Output constraints
Thing > Intangible > PropertyValueSpecification
Example: Text search deep link with -input
request
Example: Product purchase API call with -output
description

request
response

Example: Movie review site API with -input and -output
description
request
response

Status of this Document:

This document revises the April 7th Potential Actions draft, addressing comments received
during final review <http://lists.w3.org/Archives/Public/public-vocabs/2014Apr/0065.html>.

The following changes were made:

e Revised the actionStatus mechanism. Instead of an all purpose 'action' property (inverse
of 'object'), we use potentialAction for actions that are potential. This removes the need to

specify a default actionStatus and clarifies that potential action descriptions serve as
templates.

We introduce a 'target' property that indicates an EntryPoint, instead of overloading 'url'
for this purpose. Using a dedicated property also allows for clearer documentation,
without complicating the description of 'url'.

Several commentators noted that ProtocolElement added no value, so we have
removed it.

Changed Entrypoint to EntryPoint (several people thought the lowercase spelling was a
mistake).

This version introduces an httpMethod property for EntryPoint.

Added an urlTemplate property to EntryPoint, to more clearly distinguish URLs from URL
Templates.

Renamed the three ActionStatusType types from PotentialAction, ActiveAction,
CompletedAction to PotentialActionStatus, ActiveActionStatus, CompletedActionStatus.
This clarifies that these are not classes of Action, and avoids having 'potentialAction' and
'PotentialAction' names differ only by case.

Replaced the '/' character used for '/input’, ‘/output’ with '-', i.e. 'xyz/input' becomes
'xyz-input'. This addresses a concern that such property names can't be serialized in
W3C RDF/XML format, as well as making these annotations more distinct from other
kinds of schema.org extension.

Part 1: Action status

First, we need a mechanism for differentiating potential actions from actions that have actually
taken place or are even still in-progress. The expectation is that the status of an action will often
be self-evident based on the usage context, so this property can often be elided. However, it
may still be necessary for resolving ambiguous cases when they arise. For this we introduce a
new property of Action called "actionStatus.

Thing > Action

Property Expected Type Description

actionStatus ActionStatusType Indicates the current disposition of the Action.

Thing > Intangible > Enumeration > ActionStatusType

PotentialActionStatus - A description of an action that is supported
ActiveActionStatus - An in-progress action (e..g, while watching the movie, or driving to
a location)

CompletedActionStatus - An action that has already taken place.

Example: actionStatus

{

"Qcontext": "http://schema.org",
"@type": "WatchAction",
"actionStatus": "CompletedActionStatus",
"agent" : {

"@type": "Person",

"name": "Kevin Bacon"
by
"object" : {

"@type": "Movie",

"name": "Footloose"
by
"startTime" : "2014-03-01"

Part 2: Connecting Actions to Things

Frequently actions are taken or offered in the context of an object (e.g., watch this movie, review
this article, share this webpage, etc.). We introduce a new property called potentialAction for
describing the "prototype" of an action that can be taken on that Thing.

Thing
Property Expected Type Description
potentialAction Action Indicates a potential Action, which describes an

idealised action in which this thing would play the
‘object' role.

Example: Thing.potentialAction

{

"@type": "WatchAction"
}

"Qcontext": "http://schema.org",
"@type": "Movie",

"name": "Footloose",
"potentialAction" : {

Part 3: Action EntryPoints

Potential actions are materialized via execution against the target EntryPoint of an Action.

Example: Action target URL

{
"@context": "http://schema.org",
"@type": "Movie",
"name": "Footloose",
"potentialAction" : {
"@type": "WatchAction",
"target" : "http://example.com/player?id=123"

For some platforms and use cases, however, a simple URL is insufficient for formulating a
request and/or processing the result, so we are introducing a new EntryPoint class for
specifying that additional context beyond a URL when necessary.

Action
Property Expected Type | Description
target EntryPoint An entrypoint used to execute the action.

Thing > Intangible > EntryPoint

Property Expected Type Description

urlTemplate Text An url template (RFC6570) that will be used to
construct the target of the execution of the action.

encodingType | Text Supported MIME type(s) for the request

contentType Text Supported MIME type(s) of the response

httpMethod Text An HTTP method that specifies the appropriate

HTTP method for a request to an HTTP Entrypoint.
Values are capitalized strings as used in HTTP.

application SoftwareApplication | The host application

Scheme-based encoding of EntryPoint

Ideally, the simple "deep link" use cases should work with just a simple URL template. In some
cases, new schemes might even be created to make that possible for some platforms, for
example:

android-app://{package id}/{scheme}/{host path}

Example: Multiple platform URLs

Note: we expect the detail of platform-specific bindings to evolve and be clarified through
implementation experience. These examples indicate the general approach rather than the exact
information needs of each platform. Also note that the example syntax shown here is not strictly
JSON; inline comments have been added for readability.

"@context": "http: schema.org",

"@type": "Restaurant",
"name": "Tartine Bakery",
"potentialAction": {
"@type": "ViewAction",
"target": [
/* Web deep link */
"http://www.urbanspoon.com/r/6/92204",

/* HTTP API that returns JSON-LD */

{
"@type": "EntryPoint",
"urlTemplate": "http://api.urbanspoon.com/r/6/92204",
"contentType": "application/json+ld"

b,

/* Android app deep link */
"android-app://com.urbanspoon/http/www.urbanspoon.com/r/6/92204"

~

/* i0S deep link */
{

"@type": "EntryPoint",
"urlTemplate": "urbanspoon://r/6/92204",
"application": {

"@type": "SoftwareApplication",

"@id": "284708449",

"name": "Urbanspoon iPhone & iPad App",

"operatingSystem": "iOS"

}
b,

/* Windows Phone deep link */
{

"@type": "EntryPoint",
"urlTemplate": "urbanspoon://r/6/92204",
"application": {
"@type": "SoftwareApplication",
"@id": "5b23b738-bb64-4829-9296-5bcb59bb0d2d",
"name": "Windows Phone App",
"operatingSystem": "Windows Phone 8"

Part 4: Input and Output constraints

Additional information is often required from a user or client in order to formulate a complete
request. To facilitate this process we need the ability to describe within a potential action how to
construct these inputs. Since we need this capability for filling in any property of an Action, we
introduce a notion of property annotations using a hypen ("-") delimiter. For example, by
specifying a "location-input" property on a potential action we are indicating that "location" is a
supported input for completing the action.

Similarly, it is also helpful to indicate to clients what will be included in the final completed version
of an action, so we introduce the corresponding -output annotation for indicating which properties
will be present in the completed action.

Annotation Expected Type Description

<property>-input PropertyValueSpecification | Indicates how a property should be filled in
before initiating the action.

<property>-output | PropertyValueSpecification | Indicates how the field will be filled in when
the action is completed.

Thing > Intangible > PropertyValueSpecification

A property value specification.

Property Expected Description
Type
valueRequired Boolean Whether the property must be filled in to complete the
action. Default is false. Equivalent to HTML's
input@required.
defaultValue Thing, The default value for the property. For properties that
DataType expect a DataType, it's a literal value, for properties that
expect an object, it's an ID reference to one of the current
values. Equivalent to HTML's input@value.
valueName Text Indicates the name of the PropertyValueSpecification to be
used in URL templates and form encoding in a manner
analogous to HTML's input@name.
readonly Value Boolean Whether or not a property is mutable. Default is false.
Equivalent to HTML's input@readonly. Specifying this for a
property that also has a value makes it act similar to a
"hidden" input in an HTML form.
multipleValues Boolean Whether multiple values are allowed for the property.
Default is false. Equivalent to HTML's input@multiple.
valueMinLength Number Specifies the minimum number of characters in a literal
value. Equivalent to HTML's input@minlength.
valueMaxLength | Number Specifies the maximum number of characters in a literal
value. Equivalent to HTML's input@maxlength.
valuePattern Text Specifies a regular expression for testing literal values
Equivalent to HTML's input@pattern.
minValue Number, Specifies the allowed range and intervals for literal values.
Date, Time, | Equivalent to HTML's input@min, max, step.The lower
DateTime value of some characteristic or property
max Value Number, The upper value of some characteristic or property.
Date, Time, | Equivalent to HTML's input@min, max, step.
DateTime
stepValue Number The step attribute indicates the granularity that is expected
(and required) of the value.

The minValue, maxValue and stepValue properties specify the allowed range and intervals for
literal values and are equivalent to HTML's input@min, max, step. It should also be noted that if

both a property and its -input annotation are present, the value of the un-annotated property
should be treated as the allowed options for input (similar to <select><option> in HTML) unless
the Input indicates that the value is also readonly, in which case the value(s) should all be
returned in a manner analogous to hidden inputs in forms.

Textual representations of Input and Output
For convenience, we also support a textual short-hand for both of these types that is formatted
and named similarly to how they would appear in their HTML equivalent. For example:

"<property>-input": {
"@type": "PropertyValueSpecification",
"valueRequired": true,
"valueMaxlength": 100,
"valueName": "qg"

}

Can also be expressed as:

<property>-input: "required maxlength=100 name=g"

URI Templates

Finally, we also allow URI templating (using REC6570) for inlining the resulting value of -input

properties into action URLs. The allowed references in the templates for substitution are dotted
schema paths to the filled-in properties (relative to the Action object).

Example: Text search deep link with -input

description
{
"@Qcontext": "http://schema.org",
"@Qtype": "WebSite",
"name": "Example.com",
"potentialAction": {
"@type": "SearchAction",
"target": "http://example.com/search?g={q}",
"query-input": "required maxlength=100 name=q"
}
}
reguest
GET http://example.com/search?g=the+search

Example: Product purchase API call with -output

description

{

"@type": "Product",
"url": "http://example.com/products/ipod",
"potentialAction": {
"@type": "BuyAction",
"target": {
"@type": "EntryPoint",
"urlTemplate™: "https://example.com/products/ipod/buy",
"encodingType": "application/ld+json",
"contentType": "application/ld+json"
bo
"result": {
"@type": "Order",
"url-output": "required",
"confirmationNumber-output": "required",
"orderNumber-output”": "required",
"orderStatus-output": "required"
}
}
}
reguest

POST https://example.com/products/ipod/buy

response
{

"@type": "BuyAction",

"actionStatus": "CompletedActionStatus",

"object": "https://example.com/products/ipod",

"result": {
"@type": "Order",
"url": "http://example.com/orders/1199334"
"confirmationNumber": "1ABBCDDF23234",
"orderNumber": "1199334",

"orderStatus": "PROCESSING"
b

Example: Movie review site APl with -input and -output

description

{
"Qcontext": "http://schema.org",
"@type": "ReviewAction",
"target": {
"@type": "EntryPoint",
"urlTemplate”: "https://api.example.com/review",
"encodingType": "application/ld+json",
"contentType": "application/ld+json"
by
"object" : {
"Q@type": "Movie",
"url-input": "required",
},
"resultReview": {
"url-output": "required",
"reviewBody-input": "required",
"reviewRating": {
"ratingValue-input": "required"

request

POST https://api.example.com/review
{

"@context": "http://schema.org",
"@type": "ReviewAction",
"object" : {
"@id": "http://example.com/movies/123"
bo
"resultReview": {
"reviewBody": "yada, yada, yada",
"reviewRating": {
"ratingValue": "4"
}
}
}
response
{
"@context": "http://schema.org",

"@type": "ReviewAction",

"actionStatus": "CompletedActionStatus",
"resultReview" : {

"url": "http://example.com/reviews/abc"

