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Introduction

“Algebra is the offer made by the devil to the mathematician. The devil
says: I will give you this powerful machine, it will answer any question
you like. All you need to do is give me your soul: give up geometry and
you will have this marvellous machine.” / Michael Atiyah [3].

In Paul Halmos’s famous essay on how to write mathematics [53], Halmos writes
“Just as there are two ways for a sequence not to have a limit (no cluster points or too
many), there are two ways for a piece of writing not to have a subject (no ideas or too
many).” The book you are now starting has two main subjects, which is hopefully a
reasonable amount. These two subjects, the polynomial method and incidence theory,
are closely tied and hard to separate.

Geometric incidences are a family of combinatorial problems, which existed for
many decades as part of discrete geometry. In the past decade, incidence problems
have been experiencing a renaissance. New interesting connections between incidences
and other parts of mathematics are constantly being exposed (such as harmonic anal-
ysis, theoretical computer science, model theory, and number theory). At the same
time, significant progress is being made on long-standing open incidence problems.
The study of geometric incidences is currently an active and exciting research field.
One purpose of this book is to survey this field, the recent developments in it, and a
variety of connections to other fields.

Figure 1: A configuration of four points, four lines, and nine incidences.

In an incidence problem we have a set of points P and a set of geometric objects V .
An incidence is a pair (p, V ) ∈ P ×V such that the point p is contained in the object

vii
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V . We denote by I(P ,V) the number of incidences in P × V , and (most commonly)
wish to study the maximum value I(P ,V) can have. One of the simplest incidence
problems studies the maximum number of incidences between m points and n lines
in the real plane (see Figure 1). Other variants include incidences with other types
of curves, incidences with higher-dimensional algebraic objects in Rd, and incidences
with semi-algebraic sets in Rd. Incidence problems are also being studied in Cd, in
spaces over finite fields, o-minimal structures, and more.

Much of the recent progress in studying incidence problems is due to new algebraic
techniques. One may describe the philosophy behind these techniques as

Collections of objects that exhibit extremal behavior often have hidden
algebraic structure. This algebraic structure can be exploited to gain a
better understanding of the original problem.

For example, in a point-line configuration that determines many incidences, one
might expect the point set to have some sort of a lattice structure. Intuitively, one
exposes the algebraic structure by defining polynomials according to the problem, and
then studying properties of these polynomials. In an incidence problem, one might
wish to study a polynomial that vanishes on the point set. This approach is often
referred to as the polynomial method. In our study of incidences, we will focus on
polynomial methods. In addition, we will see how polynomials methods are used to
study problems that do not directly involve incidences.

The polynomial approach to studying incidence problems started around 2010.
The field is still developing, and in some sense the foundations are not completely
established yet. In particular, there are many interesting open problems, some which
have not been thoroughly studied yet. Many chapters end by describing such open
problems and conjectures. These are mostly long-standing difficult problems, and
are meant to illustrate the current fronts of the field and the main difficulties we are
currently facing.

Two other good sources for polynomial methods in Discrete Geometry are Guth’s
book “Polynomial Methods in Combinatorics” [49] and Dvir’s survey “Incidence the-
orems and their applications” [27]. Although the current book and these two sources
deal with similar topics, the overlap between them is smaller than one might expect
and each has a different focus.

Glancing at the table of contents, one notices that some sections are defined as
optional. Some optional sections contain standard technical parts of a proof which
may not provide any new insights. Other optional sections require familiarity with
a topic orthogonal to the main theme of the book. For example, the optional Sec-
tions 7.5 and 9.3 require basic familiarity with Differential Topology. The reason for
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marking each section optional is explained in the relevant chapter.
Many results that are stated as claims, rather than as theorems or lemmas. These

are results that seem worth stating but are too minor to call a theorem.

How to read this book

There are many ways to read this book, depending on the goal of the reader. One
can of course read from cover to cover, but here are some other options.

� A quick glance at Discrete Geometry. For a brief introduction to inci-
dences, other related Discrete Geometry problems, and basic classical proof
techniques: read Chapter 1. This chapter does not involve any polynomial
methods.

� A basic polynomial incidence proof. To understand how to derive inci-
dence results using polynomial methods: read Chapters 1–3. Chapter 2 contains
a minimal introduction to Algebraic Geometry in the real plane. Chapter 3 de-
rives the basics of the polynomial partitioning technique, and uses this technique
to prove basic incidence bounds in the real plane.

� A variety of polynomial methods in combinatorics. To see a variety
of polynomial methods in combinatorics: read Chapters 1–6. In addition to
proving incidence results using polynomial partitioning, Chapters 5 and 6 con-
tain three other polynomial breakthroughs. Chapter 4 introduces more basic
concepts from real Algebraic Geometry, this time in Rd. Chapter 5 contains
the joints theorem of Guth and Katz [50]. It is also a warmup for working in
higher-dimensions without using polynomial partitioning. Chapter 6 contains
two combinatorial results in finite fields: The finite field Kakeya theorem and
the cap set problem.

� The distinct distances theorem. To understand the distinct distances theo-
rem of Guth and Katz [51]: read Chapters 1–5 and 7–10, with Chapters 5, and
10 optional. Chapter 7 focuses on incidences in the complex plane. While do-
ing that, the chapter also introduces the constant-degree polynomial-partitioning
technique and uses it to derive incidence bounds in Rd. Chapters 8 and 9 prove
the distinct distances theorem. These chapters reduce the distances problem
to an incidence problem in R3 and solve this incidence problem. Chapter 10
studies a couple of variants of the distinct distances problem.



� Incidences in Rd. To understand advanced incidence techniques in Rd: read
Chapters 1–5 and Chapters 11–12. Chapter 11 contains more advanced tech-
niques for deriving incidence bounds with real varieties of any dimension. Chap-
ter 12 describes a few applications for incidence problems in Rd.

� Incidences in spaces over finite fields. To study the most recent incidence
results in finite fields: Read Chapters 6 and 13. It might be nice to get some
context by first reading Chapter 1 or Chapters 1–3, but not necessary. The
techniques in these chapters are very different than the ones in the rest of the
book, and only require glancing at a couple of lemmas from previous chapters.

Figure 2 illustrates the chapter dependencies, and shows the various ways to read
the book.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 7

Chapter 5

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12 Chapter 13

Chapter 6

Figure 2: Chapter dependencies.

This book draft is not yet complete. A few chapters containing the most advanced
topics are still missing.

Notation and inequalities

We use standard asymptotic notation. That is, f(n) = O(g(n)) implies that there
exist constants c, n0, such that for any n ≥ n0, we have f(n) ≤ c · g(n). For example,
10n2 + 1000 = O(n2) holds since we can take c = 100 and n0 = 20. Similarly,
f(n) = Ω(g(n)) implies that there exist constants c, n0, such that for any n ≥ n0, we
have f(n) ≥ c · g(n). In addition, f(n) = Θ(g(n)) implies that both f(n) = O(g(n))
and f(n) = Ω(g(n)) hold. The notation f(n) = o(g(n)) implies that f(n) = O(g(n))
and f(n) 6= Θ(g(n)) (that is, that f(n) is asymptotically smaller than g(n)). When

x



writing an expression of the form Os,t(·), we mean that the hidden constant may
depend on the variables s and t. For example, 10s100n2 + st

100s
= Os,t(n

2).
We use standard graph theoretic notation. We usually denote a graph as G =

(V,E). We denote a bipartite graph as G = (V ∪ U,E), where V and U are the two
vertex sets. For positive integers s and t, we define by Ks,t the complete bipartite
graph with s vertices on one side, t vertices on the other side, and all of the st edges
between the two sides.

We denote the expectation of a random variable X as E[X]. This is to prevent
confusion between expectation and sets that are denoted as E.

Inequalities. We will use the Cauchy-Schwarz inequality rather often.

Theorem (The Cauchy-Schwarz Inequality). Consider a positive integer n and
two sequences of real numbers a1, a2, . . . , an and b1, b2, . . . , bn. Then

n∑
i=1

|aibi| ≤

√√√√( n∑
i=1

a2i

)(
n∑
i=1

b2i

)
.

We will also rely on Hölder’s inequality, which generalizes the Cauchy-Schwarz
inequality.

Theorem (Hölder’s Inequality). Consider a positive integer n and two sequences
of real numbers a1, a2, . . . , an and b1, b2, . . . , bn. Let 1 < p, q satisfy 1/p + 1/q = 1.
Then

n∑
i=1

|aibi| ≤
(

n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q

.
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Chapter 1

Incidences in Classical Discrete
Geometry

“My most striking contribution to geometry is, no doubt, my problem
on the number of distinct distances. This can be found in many of my pa-
pers on combinatorial and geometric problems.” / Paul Erdős, in a survey
of his favorite contributions to mathematics, compiled for the celebrations
of his 80’th birthday [38].

1.1 Introduction

In this chapter we introduce the concept of incidences, together with some first bounds
and related problems. At this point we only discuss classical discrete geometry, from
before the introduction of the polynomial method. This makes the current chapter
rather different than the rest of the book (readers who prefer to avoid graph theory
may wish to skip Sections 1.3–1.5). Nevertheless, some tricks that are introduced in
this chapter are used throughout the book.

Given a set P of points and a set L of lines, both in R2, an incidence is a pair
(p, `) ∈ P ×L such that the point p is contained in the line `. We denote by I(P ,L)
the number of incidences in P × L. For example, Figure 1 (in the introduction of
this book) depicts a configuration with nine incidences. For any m and n, Erdős
constructed a set P of m points and a set L of n lines with Θ(m2/3n2/3 + m + n)
incidences. Erdős and Purdy [36] conjectured that no point-line configuration has
an asymptotically larger number of incidences. This conjecture has been proven by
Szemerédi and Trotter [97] in 1983.

1



2 CHAPTER 1. INCIDENCES IN CLASSICAL DISCRETE GEOMETRY

Theorem 1.1 (The Szemerédi-Trotter theorem). Let P be a set of m points
and let L be a set of n lines, both in R2. Then I(P ,L) = O(m2/3n2/3 +m+ n).

Szemerédi and Trotter’s original proof is rather involved. In this chapter we
present a later elegant proof by Székely [96]. A more general algebraic proof is
presented in Chapter 3.

Finding the maximum number of incidences between points and lines in R2 is
one of the simplest incidence problems, and almost the only one that is completely
settled. Other problems involve incidences with circles or other types of curves,
incidences with varieties in Rd, with semi-algebraic objects in Rd, in complex spaces
Cd, in spaces over finite fields, and many more. In each of these problems we wish to
find the maximum number of incidences between a set of points and a set of geometric
objects. This introductory chapter consists mostly of incidences with lines in R2.

One reason for studying incidence problems is that they are natural and ele-
mentary combinatorial problems. In this chapter we start to observe two additional
reasons for studying incidence problems:

� Incidence problems do not involve only combinatorial work, but also the study of
the underlying geometry. One example of this appears in Section 1.5, where we
introduce the unit distances problem. As we will see, this problem involves study-
ing properties that distinguish the Euclidean norm from almost all other distance
norms.

� Incidence results are useful also for problems that may not seem related to geometry.
In Section 1.8 we will see the sum-product problem, which started as a number
theoretic problem not involving any geometry.

1.2 First proofs

The purpose of this section is to develop some initial intuition about incidences. We
begin by deriving our first bound for an incidence problem. This is a weak bound
and easy to prove. However, it is still useful in some cases (for example, see the proof
of Lemma 1.15 below).

Lemma 1.2. Let P be a set of m points and let L be a set of n lines, both in R2.
Then I(P ,L) = O(m

√
n+ n) and I(P ,L) = O(n

√
m+m).

Proof. We only derive I(P ,L) = O(m
√
n + n). The other bound is obtained in

a symmetric manner. If I(P ,L) < 2n then we are done, so we may assume that
I(P ,L) ≥ 2n. Consider the set of triples

T = {(a, b, `) ∈ P2 × L : a and b are both incident to `}.
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Let mj be the number of points of P that are incident to the j’th line of L. Note
that I(P ,L) =

∑n
j=1mj. Moreover, the number of triples of T that include the j’th

line of L is exactly
(
mj

2

)
. That is, |T | = ∑n

j=1

(
mj

2

)
. By applying the Cauchy-Schwarz

inequality and recalling the assumption I(P ,L) ≥ 2n, we have

|T | =
n∑
j=1

(
mj

2

)
=

n∑
j=1

mj(mj − 1)

2
=

∑n
j=1m

2
j

2
−
∑n

j=1mj

2

≥ I(P ,L)2

2n
− I(P ,L)

2
= Ω

(
I(P ,L)2

n

)
.

Since for every a, b ∈ P at most one line of L is incident to both a and b, we have
|T | = O(m2). By combining the two bounds for |T |, we get that I(P ,L)2/n = O(m2).
Tidying this up yields I(P ,L) = O(m

√
n).

In the proof of Lemma 1.2 we used a common combinatorial method called double
counting. In this method we bound some quantity in two different ways, and then
compare the two bounds to obtain new information about a different quantity. For
example, in the above proof we counted the size of T in two different ways, and by
comparing these two bounds we obtained a bound for the number of incidences. We
will encounter this technique rather frequently in this book.

Note that in the proof of Lemma 1.2 we did not use any geometry beyond the
observation that two lines intersect at most once. When replacing the lines with
arbitrary sets that satisfy this property, the bound of the lemma becomes tight.
Thus, to obtain the stronger Szemerédi-Trotter bound (Theorem 1.1) we need to rely
on additional geometric properties of lines.

We now consider an asymptotically tight lower bound for Theorem 1.1. Instead
of Erdős’ original construction, we present a simpler construction due to Elekes [32].

Figure 1.1: Elekes’ construction, rotated by 90◦.

Claim 1.3. For every m and n there exist a set P of m points and a set L of n lines,
both in R2, such that I(P ,L) = Θ(m2/3n2/3 +m+ n).
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Proof. It is not difficult to check that the m term dominates the bound when m =
Ω(n2). In this case we can simply take m points on a single line, to obtain m inci-
dences. Similarly, the n term dominates the bound when n = Ω(m2). In this case we
take n lines through a single point, to obtain n incidences. It remains to construct a
configuration with Θ(m2/3n2/3) incidences when m = O(n2) and n = O(m2).

Let r = (m2/4n)1/3 and s = (2n2/m)1/3 (for simplicity, instead of taking the
ceiling function of s and r, we assume that these are integers). We set

P = { (i, j) : 1 ≤ i ≤ r and 1 ≤ j ≤ 2rs } ,

and

L = { y = ax+ b : 1 ≤ a ≤ s and 1 ≤ b ≤ rs } .
Note that this construction consists of a rectangular section of the integer lattice

and of a “lattice” of lines; such a configuration is depicted in Figure 1.1, rotated by
90◦. Also, notice that we indeed have

|P| = 2r2s = 2 · m4/3

(4n)2/3
· (2n2)1/3

m1/3
= m,

and

|L| = rs2 =
m2/3

(4n)1/3
· (2n2)2/3

m2/3
= n.

Consider a line ` ∈ L that is defined by the equation y = ax + b, for some
valid values of a and b. Notice that for any x ∈ {1, . . . , r}, there exists a unique
y ∈ {1, . . . , 2rs} such that the point (x, y) is incident to `. That is, every line of L is
incident to exactly r points of P , and thus

I(P ,L) = r · |L| = m2/3

(4n)1/3
· n = 2−2/3m2/3n2/3.

1.3 The crossing lemma

The crossing number of a graph G = (V,E), denoted cr(G), is the smallest integer k
such that we can draw G in the plane with k edge crossings. Figure 1.2(a) depicts
a drawing of K5 with a single crossing.1 Since it is known that K5 cannot be drawn
without crossings, we have cr(K5) = 1. Given a graph G = (V,E), we are interested
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(a) (b)

1
2

3

Figure 1.2: (a) A drawing of K5 with a single crossing. (b) Two bounded faces and one
unbounded.

in a lower bound for cr(G) with respect to |V | and |E|. A graph G is said to be planar
if cr(G) = 0.

We consider a connected planar graph G = (V,E) with v vertices and e edges.
More specifically, we consider a drawing of G in the plane with no crossings. The
faces of this drawing are the maximal two-dimensional connected regions that are
bounded by the edges (including one outer, infinitely large region; e.g., see Figure
1.2(b)). Denote by f the number of faces in the drawing of G. According to Euler’s
formula (also known as Euler’s polyhedron formula), we have

v + f = e+ 2. (1.1)

This formula does not hold for planar graphs that are not connected.
Every edge of G is either on the boundary of two faces or has both of its sides on

the boundary of the same face. Moreover, the boundary of every face of G consists
of at least three edges. Thus, we have 2e ≥ 3f . Plugging this into (1.1) yields

e = v + f − 2 ≤ v +
2e

3
− 2.

That is, for any planar graph G = (V,E), we have2

|E| ≤ 3|V | − 6. (1.2)

This inequality leads to our first lower bound on cr(G).

Lemma 1.4. For any graph G = (V,E), we have cr(G) ≥ |E| − 3|V |+ 6.

1The complete graph Km has m vertices and an edge between every two vertices
2This is also valid for non-connected graphs, since the number of edges in Euler’s formula becomes

smaller when the graph is not connected.
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Proof. Consider a drawing of G in the plane that minimizes the number of crossings.
Let E ′ ⊂ E be a maximum subset of the edges such that no two edges of E ′ intersect
in the drawing. By (1.2), we have |E ′| ≤ 3|V | − 6. Since every edge of E \ E ′
intersects at least one edge of E ′, and since |E \ E ′| ≥ |E| − 3|V | + 6, there are at
least |E| − 3|V |+ 6 crossings in the drawing.

Since K5 has five vertices and ten edges, Lemma 1.4 yields the correct value
cr(K5) = 1. However, in general the bound of this lemma is rather weak. For example,
it is known that cr(Kn) = Θ(n4) while Lemma 1.4 implies only cr(Kn) = Ω(n2). We
now amplify the lower bound of Lemma 1.4 by combining it with a probabilistic
argument.

Lemma 1.5 (The crossing lemma). Let G = (V,E) be a graph with |E| ≥ 4|V |.
Then cr(G) = Ω (|E|3/|V |2).

Proof. Consider a drawing of G with cr(G) crossings. Set p = 4|V |
|E| , and notice that

by the assumption we have 0 < p ≤ 1. We remove every vertex of V from the
drawing with probability 1− p (together with the edges that are adjacent to it). Let
G′ = (V ′, E ′) denote the resulting subgraph, and let c′ denote the number of crossings
that remain in the drawing.

To avoid confusion with the edge set E, we denote expectation of a random variable
as E[·]. Since every vertex remains with probability p, we have E[|V ′|] = p|V |. Since
every edge remains if and only if its two endpoints remain, we have E[|E ′|] = p2|E|.
Finally, since each crossing remains if and only if the two corresponding edges remain,
we have E[c′] = p4cr(G). By linearity of expectation

E[c′ − |E ′|+ 3|V ′|] = p4cr(G)− p2|E|+ 3p|V |

=
44|V |4
|E|4 cr(G)− 42|V |2

|E|2 · |E|+
4|V |
|E| · 3|V |

=
44|V |4
|E|4 cr(G)− 4|V |2

|E| .

Since this is the expected value, there exists a subgraph G∗ = (V ∗, E∗) with c∗

crossings remaining from the drawing of G, such that

c∗ − |E∗|+ 3|V ∗| ≤ 44|V |4
|E|4 cr(G)− 4|V |2

|E| . (1.3)
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By Lemma 1.4, we have c∗ ≥ |E∗| − 3|V ∗|+ 6. Combining this with (1.3) implies

0 < 6 ≤ c∗ − |E∗|+ 3|V ∗| ≤ 44|V |4
|E|4 cr(G)− 4|V |2

|E| .

Tidying up this inequality yields the bound asserted in the lemma.

It can be easily checked that the bound of Lemma 1.5 indeed implies cr(Kn) =
Ω(n4). This lemma was originally derived in [1, 62].

1.4 Szemerédi-Trotter via the crossing lemma

We are now ready to prove Theorem 1.1. To help the reader, we first repeat the
statement of the theorem.

Theorem 1.1. Let P be a set of m points and let L be a set of n lines, both in R2.
Then I(P ,L) = O(m2/3n2/3 +m+ n).

Proof. We write L = {`1, . . . , `n} and denote by mi the number of points of P that
are on `i. Notice that I(P ,L) =

∑n
i=1mi. We may remove any line `i that satisfies

mi = 0, since this would have no effect on the number of incidences.
We build a graph G = (V,E) as follows. Every vertex of V corresponds to a point

of P . For v, u ∈ V , we have (v, u) ∈ E if v and u correspond to consecutive points
along one of the lines of L. Notice that `i corresponds to exactly mi − 1 edges of E.
Thus, we have |V | = m and |E| = ∑n

i=1(mi − 1) = I(P ,L)− n.
If |E| < 4|V |, then we immediately have I(P ,L) = O(m + n), as required. If

|E| ≥ 4|V |, then by Lemma 1.5 we have

cr(G) = Ω

(
(I(P ,L)− n)3

m2

)
. (1.4)

We next draw G according to the point-line configuration — every vertex is at the
corresponding point and every edge is the corresponding line segment. Since every
crossing in this drawing corresponds to an intersection of two lines of L, and since
every two lines intersect at most once, we have cr(G) ≤

(
n
2

)
= O(n2). Combining this

with (1.4) implies
(I(P ,L)− n)3

m2
= O(n2).

Rearranging this equation yields I(P ,L) = O(m2/3n2/3 + n), as asserted.



8 CHAPTER 1. INCIDENCES IN CLASSICAL DISCRETE GEOMETRY

Notice that this proof is based on the double counting method. Specifically, to
obtain a bound for the number of incidences, we counted cr(G) in two different ways.

As in the proof of the weaker incidence bound in Lemma 1.2, we relied on the
observation that two lines intersect at most once. This time we used a second geo-
metric property, when stating that the line `i corresponds to exactly mi − 1 edges of
E. This step relied on the fact that a line consists of a single connected component,
and does not intersect itself. When replacing the lines with other curves that satisfy
the above properties, the proof of Theorem 1.1 remains valid.

1.5 The unit distances problem

The unit distances problem is one of the main open problems of Discrete Geometry.
Although it has proven to be extremely difficult to solve, this problem is very easy to
state: How many pairs of points in a planar set of n points could be at unit distance
from each other? We denote the maximum number of such pairs as u(n). By taking
a set of n points equally spaced on a line, we immediately obtain u(n) ≥ n − 1.
Erdős [35] introduced the problem in 1946 and derived the bounds u(n) = O(n3/2)
and u(n) = Ω(n1+c/ log logn) (for some constant c). Even though this is such a central
problem in Discrete Geometry, in the seven decades that have passed the lower bound
was never improved and the upper bound was improved only once. The bound u(n) =
O(n4/3) was derived by Spencer, Szemerédi, and Trotter [92] in 1984.

Consider a set P ⊂ R2 of n points such that the number of unit distances between
pairs of points of P is u(n). We draw a unit circle (a circle of radius one) around
each point of P , and denote the set of these n circles as C. Every two points p, q ∈ P
that determine a unit distance correspond to two incidences in P × C — the circle
around p is incident to q and vice versa. Thus, to bound u(n) it suffices to bound the
maximum number of incidences between n points and n unit circles (it is not hard to
show that the two expressions are in fact asymptotically equivalent).

Theorem 1.6. Let P be a set of n points and let C be a set of n unit circles, both in
R2. Then I(P , C) = O(n4/3).

Notice that the theorem immediately implies the current best bound u(n) =
O(n4/3).

Proof. We imitate the proof of Theorem 1.1. Let C = {c1, . . . , cn} and denote by
mi the number of points of P that are on ci. Notice that I(P , C) =

∑n
i=1mi. We

may remove any circle ci that satisfies mi < 3, since these circles yield at most 2n
incidences.
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We build a graph G = (V,E) as follows. Every vertex of V corresponds to a point
of P . For v, u ∈ V , we have (v, u) ∈ E if v and u are consecutive points along at
least one of the circles of C. Notice that ci corresponds to exactly mi edges of E, and
that every edge originates from at most two unit circles. Thus, we have |V | = n and
|E| ≥∑n

i=1mi/2 = I(P , C)/2.
If |E| < 4|V |, then we immediately have I(P , C) = O(n), as required. If |E| ≥

4|V |, then by Lemma 1.5 we have

cr(G) = Ω

(
I(P , C)3
n2

)
. (1.5)

We next draw G according to the point-circle configuration — every vertex is at
the corresponding point and every edge is the corresponding circle arc. Since every
crossing in the drawing corresponds to an intersection of two circles of C, and since
every two circles intersect at most twice, we have cr(G) ≤ 2

(
n
2

)
= O(n2). Combining

this with (1.5) implies
I(P , C)3
n2

= O(n2).

Rearranging this equation yields I(P , C) = O(n4/3), as asserted.

The common belief seems to be that the following conjecture holds.

Conjecture 1.7. u(n) = O(n1+ε) for any ε > 0.

The above is a good example for how little we currently know about incidences.
Even though the case of incidences with lines in R2 has been settled for decades,
already when moving to unit circles the problem is wide open.

As another indication that the unit distances problem is deeper than it might at
first seem, the answer to this problem significantly depends on the norm that is used:

� For `2 this is a long-standing difficult problem.
� For `1 and `∞ the problem is trivially Θ(n2).
� Valtr [102] showed that there is a simply defined norm for which the answer is

Θ(n4/3).
� Matoušek [65] showed that for a generic norm the maximum number of unit

distances is O(n log n log log n).

Note that the conjectured bound n1+c/ log logn for `2 is different from all of the
bounds stated above. This is why one may say that this is a problem about the
underlying geometry. In particular, about studying properties that are unique for the
Euclidean distance.
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1.6 The distinct distances problem

The distinct distances problem can be considered as the twin problem of the unit
distances problem, and it was introduced in the same 1946 paper of Erdős [35]. The
question asks for the minimum number of distinct distances that can be determined
by a set of n points in the plane. That is, denoting the distance between two points
p, q ∈ R2 as |pq|, we wish to find min|P|=n |{|pq| : p, q ∈ P}|. We denote this quantity
as d(n).

It can be easily verified that a set of n points that are equally spaced on a line
determines n − 1 distinct distances. Thus, we have d(n) ≤ n − 1. A better bound
appeared in Erdős’ original paper. Specifically, Erdős considered a

√
n×√n integer

lattice. The number of distances that are determined by this set is an immediate
corollary of a result from number theory.

Theorem 1.8. (Landau and Ramanujan [11, 60]) The number of positive inte-
gers smaller than n that are the sum of two squares is Θ(n/

√
log n).

Every distance in the
√
n×√n integer lattice is the square root of a sum of two

squares between 0 and n. Thus, Theorem 1.8 implies that the number of distinct
distances in this case is Θ(n/

√
log n).

Theorem 1.9 (Erdős [35]). d(n) = O(n/
√

log n).

For the lower bound on d(n), we begin by deriving Erdős’ original bound (using
a different proof).

Claim 1.10. d(n) = Ω(n1/2).

Proof. Consider an n point set P and two points v, u ∈ P . Let dv denote the number
of distinct distances between v and P \ {v}. Notice that the points of P \ {v} are
contained in dv circles that are centered at v. We denote this set of circles as Cv. We
define du and Cu symmetrically. Each of the n − 2 points of P \ {v, u} is contained
in the intersection of a circle of Cv and a circle of Cu. Since the number of such
intersections is at most 2|Cv||Cu| = 2dvdu, we have 2dvdu ≥ n − 2, which in turn
implies max{dv, du} = Ω(n1/2). (An example is depicted in Figure 1.3.)

We now derive an improved bound by using incidences. This bound was originally
derived by Moser [68] in 1952, using a different argument.

Claim 1.11. d(n) = Ω(n2/3).
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v u

Figure 1.3: The points of P \ {v, u} are contained in the intersections of Cv and Cu.

Proof. Consider an n point set P that determines d distinct distances, and denote
these distances as D = {δ1, . . . , δd}. Let C denote the set of n · d circles with a center
in P and a radius in D. The claim is proved by double counting I(P , C).

For every point v ∈ P , the points of P \ {v} are contained in the d circles of C
centered at v. Thus, I(P , C) = n(n− 1).

Next, let Ci denote the subset of circles of C with radius δi. By Theorem 1.6, we
have I(P , Ci) = O(n4/3) (notice that Theorem 1.6 is valid for any set of circles with
the same radii). Thus, we have

I(P , C) =
d∑
i=1

I(P , Ci) = O(dn4/3).

Combining our two bounds for I(P , C) immediately implies the assertion of the
claim.

A simpler proof of Claim 1.11 goes as follows. Each of the
(
n
2

)
pairs of points

determines a distance. By Theorem 1.6 any distance occurs O(n4/3) times, so to
cover Θ(n2) pairs there must be Ω(n2/3) distinct distances. We presented the longer
proof since it sheds more light about how to use incidences.

Both proofs show that the distinct distances problem can in some sense be reduced
to the unit distances problem. An upper bound of u(n) = O(n1+c/ log logn) would yield
an almost tight bound for d(n).

In 2010, Guth and Katz [51] proved the almost tight bound d(n) = Ω(n/ log n).
Unlike the two proofs above, this is a deep result that combines tools from several
different fields. One of the peaks of this book is a proof of this result. Even though
the distinct distances problem is solved (up to a gap of

√
log n), interesting variants

of it are still wide open. A couple of examples:

� The problem is still open in Rd for any d ≥ 3. Erdős constructed a set of n points
in Rd that determines Θ(n2/d) distinct distances, and conjectured that no set
determines a smaller number. So far no one managed to apply the polynomial
method even for the case of R3.
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� In R2, characterizing the n point sets that determine O(n/ log n) distinct dis-
tances seems to be a very difficult problem. The past several decades yielded
many conjectures regarding this but hardly any results.

For a list of many other related open problems, see [85].

1.7 A problem about unit area triangles

In this section we briefly mention a problem that can be considered as one of the
many generalizations of the unit distances problem. The problem is: What is the
maximum number of unit area triangles that have their vertices in a set of n points
in R2?

Consider two points p, q ∈ R2 at a distance of d from each other. A key observation
is that p and q form a unit area triangle with a third point r if and only if r is on
one of the two lines that are parallel to the segment pq and at a distance of 2/d from
this segment (e.g., see Figure 1.4(a)). Thus, by taking two parallel lines at a distance
of 2 from each other, and placing n/2 points at unit intervals on each, we obtain
Θ(n2) unit triangles (e.g., see Figure 1.4(b)). Erdős and Purdy [39] showed that a√

log n × n/√log n section of the integer lattice determines Ω(n2 log log n) triangles
of the same area.

(a) (b)

2p q
4
|pq|

Figure 1.4: (a) The points that form a unit triangle with p and q are on two parallel lines. (b)
A configuration with Θ(n2) unit triangles.

Claim 1.12 (Pach and Sharir [69]). Every planar set of n points determines
O(n7/3) unit triangles.

Proof. Consider a set P of n points. For a point p ∈ P we bound the number of unit
triangles that are determined by p and two other points of P . For any q ∈ P \ {p},
we denote by `pq, `

′
pq the lines that are parallel to the segment pq and at a distance

of 2/|pq| from it. We set Lp = {`pq, `′pq : p, q ∈ P}. Notice that any line `p,q can
originate from at most two points q ∈ P \ {p}. Thus, n − 1 ≤ |Lp| ≤ 2n − 2. The
number of unit triangles that involve p is at least I(P ,Lp)/2. By Theorem 1.1, we
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have I(P ,Lp) = O(n4/3). The assertion of the claim is obtained by summing this
bound over every p ∈ P .

Recently, Raz and Sharir [74] improved this bound to O(n20/9) by considering
incidences with two-dimensional surfaces in R4.

1.8 The sum-product problem

In this section we examine an application of the Szemerédi-Trotter theorem for a
problem that at first may not seem related to geometry. Given a set A of n real
numbers, we consider the sets

A+ A = {a+ b : a, b ∈ A} , and AA = {ab | a, b ∈ A} .

It is not difficult to find sets A that satisfy |A+A| = Θ(n). For example, we can
take A to be {1, 2, 3, . . . , n}, or any other arithmetic progression. Similarly, to obtain
|AA| = Θ(n), we can take A to be a geometric progression. Erdős and Szemerédi [40]
made the following conjecture.

Conjecture 1.13. For any ε > 0, there exists n0, such that any set A of n > n0

integers satisfies

max{|A+ A|, |AA|} = Ω(n2−ε).

Over the years this question has been generalized to various fields, and received the
name the sum-product problem. In 1997, Elekes [30] introduced a geometric approach
for the sum-product problem, which influenced many later works. We now study
Elekes’ result.

Theorem 1.14. Let A be a set of n real numbers. Then

max{|A+ A|, |AA|} = Ω(n5/4).

Proof. Consider the point set

P = {(c, d) : c ∈ A+ A and d ∈ AA}.

Notice that |P| = |A+ A| · |AA|. We also consider the set of lines

L = {y = a(x− a′) : a, a′ ∈ A}
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(where by y = a(x−a′) we refer to the line that is defined by this expression). Notice
that |L| = n2.

The proof is based on double counting I(P ,L). First, a line that is defined by
the equation y = a(x − a′) (with a, a′ ∈ A) contains the points of P of the form
(a′ + b, ab) for every b ∈ A. That is, every line of L is incident to at least n points of
P . Therefore, we have

I(P ,L) ≥ |L|n = n3.

On the other hand, by applying Theorem 1.1 we obtain

I(P ,L) = O
(
|P|2/3|L|2/3 + |P|+ |L|

)
= O

(
|A+ A|2/3|AA|2/3n4/3 + |A+ A| · |AA|+ n2

)
.

By combining the two bounds for I(P ,L), we get

n3 = O
(
|A+ A|2/3|AA|2/3n4/3 + |A+ A| · |AA|+ n2

)
,

or

|A+ A| · |AA| = Ω
(
n5/2

)
,

which implies the assertion of the theorem.

Elekes’ bound has been improved several times, always using geometric arguments.
Most notably, Solymosi [89] derived the bound Ω(n4/3/ log1/3 n).

Figure 1.5: A construction with n/4 vertical lines, n/4 horizontal lines, n/2 diagonal lines,
and Θ(n2) points that are 3-rich.
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1.9 Rich points

Given a set of n lines in R2 and an integer r ≥ 2, we say that a point p ∈ R2 is r-rich
if at least r lines of L are incident to p. Note that a 4-rich point is also 3-rich and
also 2-rich. In a set of n lines that intersect at the origin there is a single 2-rich point
— the origin. Let M≥r(n) denote the maximum number of r-rich points that a set of
n lines in R2 can have. For example, Figure 1.5 demonstrates that M≥3(n) = Ω(n2).
Rich points have an important role in advanced proofs that we will see in Chapter 9.

Rich points lead us to an equivalent formulation of the Szemerédi-Trotter theorem.
By ’equivalent’, we mean that each formulation can be easily derived from the other
by using only basic arguments.

Lemma 1.15. The Szemerédi-Trotter theorem is equivalent to the claim that M≥r(n) =

O
(
n2

r3
+ n

r

)
holds for every r ≥ 2.

Proof. We first prove that Szemerédi-Trotter bound implies M≥r(n) = O(n2/r3) for
every r ≥ 2. We have M≥r(n) = O(n2) for every r ≥ 2, since there are O(n2)
intersection points in a set of n lines. This completes the proof when r is a constant,
so we may assume that r is larger than the constant in the O(·)-notation of the
Szemerédi-Trotter bound.

Consider a set L of n lines in R2 and a sufficiently large value of r. Let P
denote the set of points that are incident to at least r lines of L, and set mr = |P|.
By definition, we have I(P ,L) ≥ mrr. On the other hand, the Szemerédi-Trotter

bound implies I(P ,L) = O(m
2/3
r n2/3 + n+mr). Combining these two bounds yields

mrr = O(m
2/3
r n2/3 +n+mr). Since r is larger than the constant in the O(·)-notation,

it cannot be that the dominating term inside of the O(·)-notation is mr, and thus

mrr = O(m
2/3
r n2/3 + n). This immediately implies mr = O

(
n2

r3
+ n

r

)
, as required.

We now assume that M≥r(n) = O(n2/r3 +n/r) holds for every r ≥ 2, and rely on
this to prove the Szemerédi-Trotter bound. Consider a set P of m points and a set L of
n lines. If m = Ω(n2), then by Lemma 1.2 we have I(P ,L) = O(n

√
m+m) = O(m).

Thus, we may assume that m = O(n2).
Let m̂i denote the number of points of P that are incident to more than 2i−1 lines

of L and to at most 2i such lines. Let P+ be the set of points of P that are incident
to more than

√
n lines of L, and set k =

⌈
log
(
n2/3/m1/3

)⌉
. Since m = O(n2), we get

that k ≥ 1. Thus,

I(P ,L) ≤
(logn)/2∑
i≥0

m̂i2
i + I(P+,L) =

k∑
i=0

m̂i2
i +

(logn)/2∑
i=k+1

m̂i2
i + I(P+,L). (1.6)
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If k ≥ 1
2

log n, we ignore the second sum in (1.6) and have the index of the first
sum stop at 1

2
log n. Since m̂i ≤ m obviously holds for every i, we have

k∑
i=0

m̂i2
i ≤

k∑
i=0

m2i = O
(
m2/3n2/3 +m

)
.

For the second sum of (1.6), we notice that when i ≤ √n the bound on M≥r(n)
yields m̂i = O(n2/23i). Thus, we get

(logn)/2∑
i=k+1

m̂i2
i =

(logn)/2∑
i=k+1

O

(
n2

22i

)
= O

(
m2/3n2/3

)
.

It remains to bound I(P+,L). By the bound on M≥r(n), we have |P+| = O(
√
n).

By plugging this into the bound I(P ,L) = O(m
√
n+ n) from Lemma 1.2, we obtain

I(P+,L) = O(n).

Given a set of m points in R2 and an integer r, we say that a line ` ⊂ R2 is
r-rich if ` is incident to at least r of the points. This leads to yet another equivalent
formulation of the Szemerédi-Trotter theorem (see Problem 1.15).

1.10 Exercises

Problem 1.1. Let P be a set of m points in R2. Derive an upper bound on the
number of lines that contain at least k points of P , for any k ≥ 2.

Problem 1.2. Construct a set P of m points and a set Γ of n parabolas that are
defined by equations of the form y = ax2 + bx + c, such that I(P ,Γ) = Θ(m1/2n5/6)
(hint: Adapt the proof of Claim 1.3).

Problem 1.3. Let P be a set of n points in R2 and let Γ be a set of n distinct
hyperbolas, where each hyperbola is defined by an equation (x − a)2 − (y − b)2 = 1
(for some a, b ∈ R). Use the crossing lemma to prove that I(P ,Γ) = O(n4/3).

Problem 1.4. Prove that the maximum number of right-angled triangles that can
be determined by a set of n points in R2 is O

(
n7/3

)
(be careful about having identical

lines).

Problem 1.5. Define a unit chain as a triple of points (a, b, c) ∈ R2 such that
|ab| = |bc| = 1 and a 6= c. Derive asymptotically tight bounds for the maximum
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number of unit chains that a set of n points in R2 can span. (While the unit distances
problem is extremely difficult, this variant is surprisingly simple).

Problem 1.6. Given a set P of n points in R2 \ {(0, 0)}, we consider the set of
triangles whose vertices are the origin and two points from P . If two such triangles
are congruent, we say that they belong to the same congruency class. Derive asymp-
totically tight bounds for the minimum number of triangle congruency classes that P
can span.

Problem 1.7. ([99]) Let A be a set of n real numbers. We define

A+ AA = {a+ bc : a, b, c ∈ A} .

Prove that |A+ AA| = Ω(n3/2). (Hint: Consider the point set A× (A+ AA).)

Problem 1.8. Let P be a set of n points in R2. Prove that for at least n− 1 points
p ∈ P there are Ω(n1/2) distinct distances between p and the points of P \ {p}.
Problem 1.9. ([9]) Let P be a set of m points in R2, and let L denote the set of all
lines that are incident to at least two points of P . Prove that either there exists a
line containing Ω(m) points of P or |L| = Ω(m2).

To prove the claim, set Lj = {` ∈ L : 2j ≤ |P ∩ `| < 2j+1}. There are Θ(n2)
pairs of points of P , and each pair is contained in one line of L. Prove that there
exists a sufficiently large constant c, such that at most m2/100 pairs are on the lines

of
⋃log(m/c)
j=log c Lj. Then consider the remaining pairs.

Problem 1.10. Let A be a set of m real numbers. Prove that the number of collinear
triples of points3 in the lattice A× A ⊂ R2 is O(m4 logm).

Problem 1.11. In Section 1.5 we mentioned that the behaviour of the unit distances
problem depends on the notion of distance that is used. The L1 distance (or Man-
hattan distance) between two points (x1, y1), (x2, y2) ∈ R2 is |x1 − x2| + |y1 − y2|.
Find an asymptotically tight bound for the unit distances problem when using the
L1 distance.

Problem 1.12. Find an asymptotically tight bound for the distinct distances prob-
lem when using the L1 distance (as defined in the previous problem).

Problem 1.13. The following theorem is taken from [52].

Theorem. Let L be a set of lines and let P be a set of m points, both in R3, such
that each line of L contains at least r points of P. If |L| = Ω (m2/r4 +m/r)

3three points are collinear if there exists a line that is incident to all three.
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then there exists a plane containing Ω(m/r2) points of P.

Rely on this theorem to prove the following corollary, while also finding what the
question marks should be replaced with.

Corollary. Let L be a set of n lines and let P be a set of m points, both
in R3, such that every plane contains O(???) points of P. Then I(P ,L) =
O
(
m1/2n3/4 +m logm+ n

)
.

Problem 1.14. ([41]) A matrix is said to be totally positive if all of its minors are
positive. Let M be an n× 2 totally positive matrix. Prove that the number of 2× 2
minors of M that are equal to 1 is O(n4/3).

Problem 1.15. Adapt the proof of Theorem 1.15 to show that the Szemerédi-Trotter
theorem is equivalent to a bound on the number of r-rich lines in R2.

1.11 Open problems

In this chapter we focused mainly on point-line incidences in R2, which is one of the
few incidence problems that are completely settled. In general, after obtaining an
asymptotically tight bound for an extremal combinatorics problem, the next step is
to characterize the configurations that achieve this bound. In Discrete Geometry,
problems of characterizing the extremal configurations tend to be unusually difficult,
and only few such problems are solved. The case of point-line incidences in R2 is no
different, in the sense that not much is known about point-line configurations that
determine a large number of incidences. In Claim 1.3, we saw Elekes’ construction
for obtaining the Szemerédi–Trotter bound Θ(m2/3n2/3). Both this construction and
Erdős’ earlier construction consider a point set that is a rectangular section of the
integer lattice. One can obtain somewhat different point sets by applying various
projective transformations on these constructions.

Conjecture 1.16. Consider sufficiently large positive integers m and n that satisfy
m = O(n2) and m = Ω(

√
n). Let P be a set of m points and L be a set of n lines,

both in R2, such that I(P ,L) = Θ(m2/3n2/3). Then there exists a subset P ′ ⊂ P such
that |P ′| = Θ(m) and P ′ is contained in a section of the integer lattice of size Θ(m),
possibly after applying a projective transformation to it.

Note that we already mentioned several open problems throughout the chapter:
the unit distances problem, two distinct distances problems, the maximum number
of unit area triangles, and the sum-product problem.



Chapter 2

Basic Real Algebraic Geometry in
R2

“Everyone knows what a curve is, until he has studied enough mathe-
matics to become confused through the countless number of possible excep-
tions” / attributed to Felix Klein [16].

This chapter is a very basic introduction to algebraic geometry over the reals.
At this point we focus mainly on the plane R2, postponing the treatment of Rd to
Chapter 4. This allows us to discuss several planar results in Chapter 3, before dealing
with more involved algebraic geometry.

2.1 Varieties

Algebraic geometry can be thought of as the study of geometries that arise from
algebra (or more specifically, from polynomials). In this section we present varieties,
which are central geometric objects of Algebraic Geometry.

The polynomial ring R[x1, . . . , xd] is the set of polynomials in the variables x1, . . . , xd
and with coefficients in R. Given a (possibly infinite) set of polynomials f1, . . . , fk ∈
R[x1, . . . , xd], the affine variety V(f1, . . . , fk) is defined as

V(f1, . . . , fk) = {(a1, . . . , ad) ∈ Rd : fj(a1, . . . , ad) = 0 for all 1 ≤ j ≤ k}.
The adjective “affine” distinguishes the variety from projective varieties. At this

point we only consider affine varieties, and for brevity refer to those simply as vari-
eties.1 For example, some varieties in R3 are a torus, a union of a circle and a line,

1Some authors call these objects algebraic sets, while using the word variety for what we will
refer to as an irreducible variety.
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and a set of 1000 points.
The following is a special case of Hilbert’s basis theorem (e.g., see [23, Section

2.5]).

Theorem 2.1. Every variety can be described by a finite set of polynomials.

Theorem 2.1 is valid in every field. When working over the reals, we can say
something stronger.

Corollary 2.2. Every variety in Rd can be described by a single polynomial.

Proof. Consider a variety U ⊂ Rd. By Theorem 2.1, there exist f1, . . . , fk ∈ R[x1, . . . , xd]
such that U = V(f1, . . . , fk). We set f = f 2

1 + f 2
2 + · · · + f 2

k . Notice that for any
point p ∈ Rd we have f(p) = 0 if and only if f1(p) = · · · = fk(p) = 0. Thus, we have
U = V(f).

We consider some basic properties of varieties.

Claim 2.3. Let U,W ⊂ Rd be two varieties, and let τ : Rd → Rd be an invertible
linear map (such as a translation, rotation, reflection, or stretching). Then
(a) U ∩W is a variety,
(b) U ∪W is a variety, and
(c) τ(U) is a variety.

Proof. Since U and W are varieties, there exist f1, . . . , fk, g1, . . . , gm ∈ R[x1, . . . , xd]
such that U = V(f1, . . . , fk) and W = V(g1, . . . , gm).2 For (a), notice that we have
U ∩W = V(f1, . . . , fk, g1, . . . , gm). For (b), we have U ∪W = V(H), where

H =
⋃

1≤i≤k
1≤j≤m

{fi · gj}.

For (c), we write the inverse of τ as ψ ∈ (R[x1, . . . , xd])
d. Then

τ(U) = V (f1 ◦ ψ, . . . , fd ◦ ψ) .

At this point it might be instructive to ask what subsets of Rd are not varieties.

Claim 2.4. The set X = {(x, x) : x ∈ R, x 6= 1} ⊂ R2 is not a variety.

2By Corollary 2.2, it suffices to use a single polynomial for each variety. We present this slightly
less elegant proof since it applies in every field.
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Proof. Assume for contradiction that there exist f1, . . . , fk ∈ R[x1, x2] such that X =
V(f1, . . . , fk). For every 1 ≤ i ≤ k, we set gi(t) = fi(t, t) and note that gi ∈ R[t].
Since gi(t) vanishes on every t 6= 1 we have that gi(t) = 0 (recall that 0 is the
only univariate polynomial that has infinitely many zeros). This in turn implies
that fi(1, 1) = 0. Since this holds for every 1 ≤ i ≤ k, we get a contradiction to
(1, 1) /∈ X.

Similarly, a line segment and half a circle are not varieties. For other types of sets
that are not varieties, see Problem 2.1.

We say that a set U ′ is a subvariety of a variety U if U ′ ⊆ U and U ′ is a variety.
We say that U ′ is a proper subvariety of U if U ′ is non-empty a subvariety of U ′ and
U ′ 6= U . A variety U is reducible if there exist two proper subvarieties U ′, U ′′ ⊂ U
such that U = U ′ ∪ U ′′. Otherwise, U is irreducible. For example, the union of the
two axes V(xy) ⊂ R2 is reducible since V(xy) = V(x)

⋃
V(y).

Every variety U can be decomposed into distinct irreducible subvarieties U1, U2, . . . , Uk
such that U =

⋃k
i=1 Ui (to see why the number of such components is finite, see Prob-

lem 4.1). After removing every Ui that is a proper subvariety of another Uj, we obtain
a unique decomposition of U . The subvarieties of this decomposition are said to be
the irreducible components of U (or components, for brevity).

2.2 Curves in R2

Chapter 4 contains a detailed discussion about degrees, singular points, and other
basic properties of varieties in Rd. At this point we only consider the case of R2,
where these concepts are significantly simpler. For now we also avoid defining the
dimension of a variety.

We say that an irreducible variety in R2 is a curve if it is not a single point or
one of the trivial varieties ∅ and R2 (note that a set of several points is reducible).
A reducible variety is a curve if each of its components is a curve. This definition
corresponds to what we would intuitively call a polynomial curve.

Degrees and intersections. We say that the degree of a curve γ ⊂ R2 is the
minimum integer k such that there exists a polynomial f ∈ R[x, y] of degree k with
V(f) = γ.

We now present a real variant of Bézout’s theorem. This theorem is ubiquitous
in this book, with a large variety of applications. Proving the theorem requires more
advanced algebraic geometry tools, and is postponed to Chapter ???.



22 CHAPTER 2. BASIC REAL ALGEBRAIC GEOMETRY IN R2

Theorem 2.5 (Bézout’s theorem). Let f and g be two polynomials in R[x, y]
of degrees kf and kg, respectively. If f and g do not have common factors, then
V(f) ∩V(g) consists of at most kf · kg points.

As simple examples, notice that two lines indeed intersect in at most one point
and that two ellipses (which are of degree 2) intersect in at most four points.

Figure 2.1: Every point of the circle has a well defined tangent line. In the other two curves
the tangent is not well defined at the origin. These curves are V(y2−x3−x2) and V(x3−y2).

Singular points Consider a curve γ ⊂ R2 and a point p ∈ γ. Intuitively (and with
some exceptions), p is a singular point of γ if one of the following holds:

� The tangent line to γ at p is not well defined. For example, see Figure 2.1.
� The point p is contained in more than one irreducible component of γ. For

example, consider the union of two circles that intersect at a point p and have
the same tangent line at p. Although one might say that the tangent line is well
defined at p, we still consider p as a singular point.

� The point p is an isolated point of γ. That is, there exists an open set that
contains p and no other point of γ.

A point of γ that is not singular is said to be a regular point of γ. For a reader
that is unfamiliar with real algebraic geometry, it might seem as if the third bullet
is redundant, since a curve cannot have a component that is a single point. To see
why this is not the case, consider the cubic curve V(y2 − x3 + x2) which is depicted
in Figure 2.2. Even though this is an irreducible variety, it consists of a connected
component that looks like a curve together with the origin. The set obtained by
removing the origin is not a variety. Thus, by the third bullet, the origin is a singular
point of the curve V(y2 − x3 + x2).

We now provide a rigorous definition of a singular point of a curve γ ⊂ R2. Given
a polynomial f ∈ R[x, y], the gradient of f is

∇f =

(
∂f

∂x
,
∂f

∂y

)
.
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Figure 2.2: The irreducible curve V(y2 − x3 + x2).

Consider a minimum-degree polynomial f ∈ R[x, y] such that V(f) = γ. Then
p ∈ γ is a singular point of γ if and only if ∇f(p) = 0 (that is, if the gradient is a
vector of two zeros). We denote the set of singular points of γ as γsing.

To see why we require f to be of a minimum degree, let γ ⊂ R2 be the x-axis.
It can be easily verified that γ has no singular points by writing γ = V(y) (and this
also fits the above intuitive definition). If instead we rely on γ = V(y2), we get the
gradient ∇y2 = (0, 2y) which is 0 at every point of γ. Thus, by using y2 instead of y
we get the false impression that every point of γ is singular.

A polynomial f ∈ R[x1, . . . , xd] is said to be square-free if in the factorization
of f into irreducible factors, no factor has a multiplicity larger than one. Let f ∈
R[x1, . . . , xd] be a square-free polynomial and let g be an irreducible factor of f that
depends on xi. Then ∂f

∂xi
is not divisible by g. Indeed, write f = g · h for some

h ∈ R[x1, . . . , xd] that does not have g as a factor, and notice that

∂f

∂xi
=

∂g

∂xi
· h+ g · ∂h

∂xi
.

Since the second summand is divisible by has g but the first summand is not, this
expression does not have g as a factor.

We now rely on square-free polynomials to establish that a curve cannot have too
many singular points.

Theorem 2.6. Let γ ⊂ R2 be an irreducible curve of degree k. Then γsing is a set of
at most k(k − 1) points.

Proof. Consider a minimum-degree polynomial f ∈ R[x, y] such that V(f) = γ. Since
removing repeated factors from f does not affect V(f), we know that f is square-free.
Since γ is irreducible, we have that f is irreducible. Without loss of generality, we
assume that f contains the variable x.

By the definition of a singular point, both fx = ∂f
∂x

and f vanish on every singular
point of γ. Since f is square-free, it has no common components with fx. By Bézout’s
theorem (Theorem 2.5), V(f) ∩V(fx) consists of at most k(k − 1) points. Thus, γ
has at most k(k − 1) singular points.
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As already mentioned, the above intuitive definition of a singular point is not
completely accurate. While the three cases in that definition always lead to singular
points, there are singular points that do not fit any of these cases. As an example,
consider the polynomial f = y3+2x2y−x4 ∈ R[x, y]. The curve γ = V(f) is depicted
in Figure 2.3. Notice that γ is an irreducible variety that does not intersect itself and
has a well-defined tangent line at every point. Nonetheless, it can be easily verified
that ∇f(0, 0) = (0, 0) so the origin is a singular point of γ. (For a discussion of this
phenomenon, see for example [12, Section 3.3].)

Figure 2.3: The variety V(y3 + 2x2y − x4) ⊂ R2.

Hopefully the definition of a connected component of a variety is sufficiently intu-
itive not to require a rigorous definition. We conclude this chapter by bounding the
number of connected components that a variety in R2 can have.

Theorem 2.7 (Harnack’s curve theorem). Let f ∈ R[x, y] be a polynomial of
degree k. Then the number of connected components of V(f) is O(k2).

The exact bound of Harnack’s theorem is 1 +
(
k−1
2

)
. The proof that is presented

here yields a slightly worse bound.

Proof. We may assume that f is square-free, since removing repeated factors does not
change V(f). Every bounded connected component of V(f) has at least two extreme
points in the x-direction (its leftmost and rightmost points). Such a point p ∈ V(f)
satisfies f(p) = ∂f

∂y
(p) = 0. Since f is square-free, it has no common components with

fy = ∂f
∂y

. Thus, by Bézout’s theorem (Theorem 2.5) V(f)∩V (fy) has at most k(k−1)
points. This in turn implies that the number of bounded connected components of
V(f) is at most k(k − 1)/2.

To bound the number of unbounded connected components of V(f), we consider
a sufficiently large constant c so that only the unbounded connected components
intersect the lines V(x− c), V(x+ c), V(y− c), and V(y+ c). By Bézout’s theorem,
V(f) intersects each of those lines in at most k points, so there are at most 4k
unbounded connected components.
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2.3 Exercises

Problem 2.1. For each of the following sets, prove that it is not a variety:
(a) The sine wave {(x, sinx) : x ∈ R} (hint: consider lines that intersect this set).
(b) The disc {(a, b) ∈ R2 :

√
a2 + b2 ≤ 1}.

(c) Every point set in R2 whose cardinality is countably infinite.

Problem 2.2. Let γ ⊂ R2 be a curve of degree k. Prove that the number of singular
points of γ is O(k2) (Theorem 4.8 applies only to the case where γ is irreducible).

Problem 2.3. Prove or disprove:
(a) If U, V ⊂ R2 are varieties then the cartesian product U × V ⊂ R4 is a variety.
(b) If U ⊂ R3 is a variety then the projection of U onto the xy-plane is a variety
(that is, the set {(x, y) ∈ R2 : (x, y, z) ∈ U for some z ∈ R}).
(c) The complex variant of Theorem 2.5 (where f, g ∈ C[x, y]) immediately implies
the real variant.

Problem 2.4. Let P be a set of n points in R2 and let f ∈ R[x, y] satisfy V(f) = P .
Prove that deg f = Ω(n1/2).



Chapter 3

Polynomial Partitioning

In this chapter we finally start to discuss the polynomial method. We introduce the
polynomial partitioning theorem, use this theorem to derive a bound for incidences
with general algebraic curves in R2, and then prove the theorem. Although we only
consider incidences in R2, we prove the polynomial partitioning theorem in Rd. This
simple proof is identical in any dimension and does not require any of the properties
of varieties in Rd that are presented in the following chapter.

3.1 The polynomial partitioning theorem

Consider a set P of m points in Rd. For any r > 1, we say that f ∈ R[x1, . . . , xd] is an
r-partitioning polynomial for P if every connected component of Rd \V(f) contains
at most m/rd points of P .1 Notice that there is no restriction on the number of points
of P that lie in V(f). Figure 3.1 depicts a 2-partitioning polynomial for a set of 12
points in R2.

The following result is due to Guth and Katz [51].

Theorem 3.1 (Polynomial partitioning [51]). Let P be a set of m points in Rd.
Then for every 1 < r ≤ m, there exists an r-partitioning polynomial f ∈ R[x1, . . . , xd]
of degree O(r).

To estimate the number of cells in such a partition, we rely on the following
theorem.

1Currently there is no standard definition for an r-partitioning polynomial. Some authors define
it to be a polynomial with every cell of Rd \ V(f) containing at most m/r points, others use the
notation 1/r-partitioning polynomial, and so on. We chose the definition that in our opinion is the
easiest one to work with.

26
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Figure 3.1: A 2-partitioning polynomial for a set of 12 points in R2.

Theorem 3.2 (Warren [104]). For a polynomial f ∈ R[x1, . . . , xd] of degree k, the
number of connected components of Rd \V(f) is Od

(
kd
)
.

By Theorem 3.2, a polynomial of degree O(r) yields O(rd) cells, which is asymp-
totically the minimum required to have at most m/rd points in each cell. Thus,
Theorem 3.1 is asymptotically tight (usually most of the points will indeed be in the
cells and not on the partition itself).

In some degenerate cases, it might happen that all of the cells of the partition
are empty. For example, consider a set P of m points in R2, all on the x-axis, and
let f be an r-partitioning polynomial P (for r asymptotically smaller than m). If
V(f) does not contain the x-axis, then by Bézout’s theorem V(f) intersects the x-
axis in O(r) points. This in turn implies that most of the points of P are in O(r)
cells, contradicting the property that every cell contains at most m/r2 points of P .
Therefore V(f) contains the x-axis and all of the cells are empty.

3.2 Incidences with algebraic curves in R2

Consider a point set P and a set of curves Γ, both in R2. The incidence graph of
P×Γ is a bipartite graph G = (V1∪V2, E), where the vertices of V1 correspond to the
points of P , the vertices of V2 correspond to the curves of Γ, and an edge (vi, vj) ∈ E
implies that the point that corresponds to vi is incident to the curve that corresponds
to vj; that is, E can be thought as the set of incidences in P × Γ. An example is
depicted in Figure 3.2.

Recall that Ks,t is a complete bipartite graph with s vertices on one side and
t vertices on the other. Our goal in this section is to prove the following theorem
(variants of this result originally appeared in [22, 70]).

Theorem 3.3. Let P be a set of m points and let Γ be a set of n distinct irreducible
algebraic curves of degree at most k, both in R2. If the incidence graph of P × Γ
contains no copy of Ks,t, then

I(P ,Γ) = Os,t,k

(
m

s
2s−1n

2s−2
2s−1 +m+ n

)
.



28 CHAPTER 3. POLYNOMIAL PARTITIONING

b

c

d

a

a

b

c

d

A
B

C
D

E

A

B

C

D

E

Figure 3.2: A point-line configuration and its incidence graph.

It is straightforward to generalize Theorem 3.3 to sets of curves that are neither
distinct nor irreducible. We include these restrictions only to simplify the analysis
(see also Problem 3.5). To emphasize the strength of Theorem 3.3, we consider some
common types of curves:

� If Γ is a set of lines, since two lines intersect in at most one point, the incidence
graph contains no copy of K2,2. That is, Theorem 3.3 generalizes the Szemerédi-
Trotter theorem.

� If Γ is a set of unit circles, the incidence graph contains no copy of K2,3. That is,
Theorem 3.3 generalizes the best bound for the unit distances problem (Theorem
1.6).

� If Γ is a set of arbitrary circles, the incidence graph contains no copy of K3,2.
In this case we obtain the bound I(P ,Γ) = O

(
m3/5n4/5 +m+ n

)
.

It is known that Theorem 3.3 is not tight in various cases, such as for parabolas
and arbitrary circles. For some of the current best bounds and common conjectures,
see Section 3.6.

We begin by proving a weaker incidence bound, which is purely combinatorial.
This bound can be seen as a special case of the Kővari–Sós–Túran theorem from
Extremal Graph Theory (e.g., see [64, Section 4.5]).

Lemma 3.4. Let P be a set of m points and let Γ be a set of n curves, both in R2.
If the incidence graph of P × Γ contains no copy of Ks,t, then

I(P ,Γ) = Os,t

(
mn1− 1

s + n
)
.

Proof. Let T be the set of (s+1)-tuples (a1, . . . , as, γ) such that a1, . . . , as ∈ P , γ ∈ Γ,
and a1, . . . , as ∈ γ. We prove the lemma by double counting |T |.
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On one hand, there are
(
m
s

)
subsets of s points of P , and every such subset is

contained in at most t− 1 curves of Γ. That is,

|T | ≤
(
m

s

)
(t− 1) = Os,t (ms) . (3.1)

Let Γ = {γ1, · · · , γn}. For each γi ∈ Γ put di = |P∩γi|, so that I(P ,Γ) =
∑n

i=1 di.
We have

|T | =
n∑
i=1

(
di
s

)
= Ωs

(
n∑
i=1

(di − s)s
)
.

By applying Hölder’s inequality (see the “Notation and inequalities” part of the
introduction) with ai = di − s and bi = 1 for every 1 ≤ i ≤ n, and with p = s, we get

n∑
i=1

(di − s) ≤
(

n∑
i=1

(di − s)s
)1/s( n∑

i=1

1

)(s−1)/s

=

(
n∑
i=1

(di − s)s
)1/s

n(s−1)/s.

Since I(P ,Γ) =
∑n

i=1 di, we get

|T | = Ω

(
n∑
i=1

(di − s)s
)

= Ω

(
(I(P ,Γ)− sn)s

ns−1

)
. (3.2)

By combining (3.1) and (3.2), we obtain

(I(P ,Γ)− sn)s

ns−1
= Os,t (ms) .

Hence I(P ,Γ) = Os,t

(
mn(s−1)/s + n

)
, as asserted.

To prove Theorem 3.3, we partition R2 into cells using Theorem 3.1, and then
applying the bound of Lemma 3.4 separately in each cell. That is, we amplify the
weak bound of Lemma 3.4 by combining it with polynomial partitioning.

We first present some intuition for why the above approach works. One way to
think of the bound of Lemma 3.4 is that on average each point of P contributes
O
(
n(s−1)/s) incidences (where n is the number of curves). On the other hand, when

applying Lemma 3.4 separately in each cell, it is as if every point p contributes

O
(
n
(s−1)/s
p

)
incidences, where np is the number of curves that intersect the specific

cell that contains p. Since a curve cannot intersect many cells, we expect
∑

p np to

be significantly smaller than mn(s−1)/s.
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Proof of Theorem 3.3. By Theorem 3.1, there exists an r-partitioning polynomial f ∈
R[x, y] for P of degree O(r). We may assume that f is a minimum-degree polynomial
that defines V(f). In particular, this means that f is square-free. The value of r will
be determined below.

Let c denote the number of cells in (i.e., connected components of) R2 \V(f). We
denote by P0 = V(f)∩P the set of points of P that are contained in V(f). Similarly,
we denote by Γ0 the set of curves of Γ that are fully contained in V(f). For 1 ≤ i ≤ c,
let Pi denote the set of points that are contained in the i-th cell and let Γi denote
the set of curves of Γ that intersect the i-th cell. Notice that

I(P ,Γ) = I(P0,Γ0) + I(P0,Γ \ Γ0) +
c∑
i=1

I(Pi,Γi).

We bound each of these three expressions separately.
We begin with

∑c
i=1 I(Pi,Γi), for which we require an upper bound on the number

of cells c. By Theorem 3.2, we have c = O(r2). We setmi = |Pi| ≤ m/r2 and ni = |Γi|.
By applying Lemma 3.4 separately in each cell, we have

c∑
i=1

I(Pi,Γi) = Os,t

(
c∑
i=1

(min
s−1
s

i + ni)

)
= Os,t

(
m

r2

c∑
i=1

n
s−1
s

i +
c∑
i=1

ni

)
.

We claim that any curve γ ∈ Γ intersects Ok(r) cells of the partition. When
traveling across a connected component of γ, to enter a new cell of the partition we
must first intersect V(f). By Bézout’s theorem, the number of intersection points
between a curve γ ∈ Γ and V(f) is Ok(r). By Harnack’s curve theorem (Theorem
2.7), γ has Ok(1) connected components. These two bounds do not suffice to claim
that γ intersects Ok(r) cells, since in any intersection point between γ and V(f), the
curve γ may split into several cells (e.g., See Figure 3.3). Consider such an intersection
point p and let Cp be a circle that is centered at p and of a sufficiently small radius.
By Bézout’s theorem, γ and Cp intersect in at most 2k points. Thus, γ may split into
Ok(1) cells in an intersection point with the partition. This completes our claim that
γ intersects Ok(r) cells of the partition.

Since any curve γ ∈ Γ intersects Ok(r) cells of the partition, we have
∑c

i=1 ni =
Ok(nr). By Hölder’s inequality, we have

c∑
i=1

n
s−1
s

i ≤
(

c∑
i=1

ni

) s−1
s
(

c∑
i=1

1

) 1
s

= Ok

(
(nr)

s−1
s
(
r2
) 1

s

)
= Ok

(
n

s−1
s r

s+1
s

)
.
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Figure 3.3: The dashed lines represent the partition. In an intersection with the partition, the
red curve splits into six cells.

Combining the above implies

c∑
i=1

I(Pi,Γi) = Os,t,k

(
m

r2

c∑
i=1

n
s−1
s

i +
c∑
i=1

ni

)
= Os,t,k

(
mn

s−1
s

r
s−1
s

+ nr

)
. (3.3)

Next, consider a curve γ ∈ Γ\Γ0. Since the number of intersection points between
γ and V(f) is Ok(r), we get

I(P0,Γ \ Γ0) = Ok(nr). (3.4)

It remains to bound I(P0,Γ0). Notice that V(f) consists of O(r) one-dimensional
(irreducible) components. Since the curves of Γ are irreducible and distinct, each
component of V(f) corresponds to at most one curve of Γ. Recall that a point that
is contained in more than one component of V(f) is a singular point of V(f). Thus,
every regular point of V(f) is incident to at most one curve of Γ0. That is, there
are O(m) incidences between curves of Γ0 and points of P0 that are regular points of
V(f).

Since it is impossible for both first partial derivatives of f to be identically zero,
without loss of generality we assume that fx = ∂f

∂x
is not identically zero. By definition,

fx vanishes on every singular point of V(f). Since f is square-free, it has no common
components with fx. Consider γ ∈ Γ0, and notice that γ and V(fx) also have no
common components. By Bézout’s theorem, γ∩V(fx) consists of Ok(r) points. That
is, γ is incident to Ok(r) singular points of V(f). By summing the above over every
γ ∈ Γ0, we have

I(P0,Γ0) = Ok(nr +m). (3.5)

By combining (3.3), (3.4), and (3.5), we obtain

I(P ,Γ) = Os,t,k

(
mn

s−1
s

r
s−1
s

+ nr +m

)
.
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It remains to find the value of r that minimizes the above bound. Since the
first term in this bound is decreasing in r while the second is increasing in r, the
optimal bound is obtained when both terms are equivalent. Thus, the optimal value

for r is Θ
(
m

s
2s−1/n

1
2s−1

)
. Setting this value immediately implies the assertion of the

theorem.
One minor issue: When m = O(n1/s) we might have m

s
2s−1/n

1
2s−1 < 1, which may

lead to an invalid value of r. Fortunately, in this case Lemma 3.4 implies the bound
I(P ,Γ) = Os,t(n).

We briefly repeat the main steps for deriving an incidence bound using polynomial
partitioning, since several variants of this approach appear in the following chapters.

� First, we obtain a “weak” incidence bound by using a combinatorial argument
(see Lemma 3.4).

� We partition the space into cells by using a partitioning polynomial.
� We apply the weak incidence bound separately in each cell of the partition.
� Finally, we bound the number of incidences on the partition itself.

3.3 Proving the polynomial partitioning theorem

In this section we prove the polynomial partitioning theorem. We first repeat the
statement of this theorem.

Theorem 3.1. Let P be a set of m points in Rd. Then for every 1 < r ≤ m, there
exists an r-partitioning polynomial f ∈ R[x1, . . . , xd] of degree O(r).

Intuitively, to prove the theorem we iteratively partition P . That is, we first
partition P into two disjoint sets P1,P2 ⊂ P that are not too large (and may not
contain some points of P). We then partition both P1 and P2 to obtain four sets
P ′1,P ′2,P ′3,P ′4, etc. An example of this process is depicted in Figure 3.4.

V(f1) V(f2) V(f3)

Figure 3.4: Repeatedly partitioning a set of 15 points in the plane. At the end of this process
no cell contains more than two points.
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A hyperplane in Rd is a variety that is defined by a linear equation (and thus
looks like a copy of Rd−1). A hyperplane h in Rd bisects a finite point set P ⊂ Rd

if each of the two open halfspaces bounded by h contains at most |P|/2 points of P .
The bisecting hyperplane may contain any number of points of P . The following is a
discrete version of the ham sandwich theorem (e.g., see [63]).

Theorem 3.5. Every d finite point sets P1, . . . ,Pd ⊂ Rd can be simultaneously bi-
sected by a hyperplane.

A planar example of Theorem 3.5 is depicted in Figure 3.5. To iteratively partition
P , we can apply Theorem 3.5. However, after about log2 d steps we obtain more than
d sets of points, and can no longer apply the theorem. Indeed, it is not hard to
find d + 1 sets of points that cannot be simultaneously bisected by a hyperplane.
To overcome this difficulty, we instead use a discrete version of the polynomial ham
sandwich theorem.

Figure 3.5: The line simultaneously bisects the set of blue points and the set of orange points.

A polynomial f ∈ R[x1, . . . , xd] bisects a finite point set P ⊂ Rd if f(p) > 0 for at
most |P|/2 points p ∈ P and f(p) < 0 for at most |P|/2 points p ∈ P . The variety
V(f) may contain any number of points of P .

Theorem 3.6 (Stone and Tukey [95]). Let P1, . . . ,Pt ⊂ Rd be t finite point
sets, and let D be an integer such that

(
D+d
d

)
− 1 ≥ t. Then there exists a nonzero

polynomial f ∈ R[x1, . . . , xd] of degree at most D that simultaneously bisects all of
the sets Pi.

Proof. The number of monomials that a polynomial of degree at mostD in R[x1, . . . , xd]
can have is

(
D+d
d

)
; this is illustrated in Figure 3.6. Let

UD = {(u1, . . . , ud) ∈ Zd : 1 ≤ u1 + · · ·+ud ≤ D and ui ≥ 0 for every 1 ≤ i ≤ d}.
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Intuitively, this is the set of exponents of nonconstant monomials of degree at most
D in R[x1, . . . , xd]. Set m = |UD| and note that m =

(
D+d
d

)
− 1. The Veronese map

νD : Rd → Rm is defined as

νD(x1, . . . , xd) := (xu11 x
u2
2 · · ·xudd )u∈UD

.

x31 x22 . . . x3d Extras

Figure 3.6: Every monomial of degree at most D in x1, . . . , xd corresponds to a unique choice
of the d gray blocks out of a total of D + d blocks.

Every coordinate in Rm corresponds to a nonconstant monomial of degree at most
D in R[x1, . . . , xd], and νD(·) maps a point p in Rd to the tuple of the values of these
monomials at p. For example, the Veronese map ν2 : R2 → R5 is

ν2(x, y) = (x2, xy, y2, x, y).

For every 1 ≤ i ≤ t, we set P ′i = νD(Pi). That is, every P ′i is a finite point
set in Rm. By the assumption on D, we have m ≥ t. Thus, by Theorem 3.5 there
exists a hyperplane Π ⊂ Rm that simultaneously bisects all of the sets P ′i. We denote
the coordinates of Rm as yu (for each u ∈ U), so that Π can be defined by a linear
equation of the form h0 +

∑
u∈U yuhu, for a suitable set of constants hu ∈ R.

Returning to Rd, we consider the polynomial f(x1, . . . , xd) = h0+
∑

u∈U hux
u1
1 x

u2
2 · · ·xudd .

For any point a ∈ Rd and a′ = νD(a), we have that h0 + (hu)u∈U · a′ = f(a). That
is, for every point a ∈ Rd, f(a) > 0 (resp., f(a) < 0) if and only if νD(a) is in the
positive side of Π (resp., in the negative side of Π). Since Π bisects every P ′i, the
polynomial f bisects every Ai. This concludes the proof since f is of degree at most
D.

Guth and Katz relied on the polynomial ham sandwich theorem to derive the
polynomial partitioning theorem.

Proof of Theorem 3.1. Theorem 3.6 implies the existence of a bisecting polynomial of
degree at most cdt

1/d, for a constant cd depending only on d. To prove the theorem,
we show that there exists a sequence of polynomials f1, f2, . . . such that the degree of
fj is smaller than cd2

(j+1)/d/(21/d − 1) and every connected component of Rd \V(fj)
contains at most m/2j points of P . An example is depicted in Figure 3.4. This would
complete the proof since we can then choose f = fs, where s is the minimum integer
satisfying 2s ≥ rd.
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We prove the existence of fj by induction on j. The existence of f1 is immediate
from Theorem 3.5, so we move to the induction step. By the induction hypothesis,
there exists a polynomial fj of degree smaller than cd2

(j+1)/d/(21/d − 1) such that
every connected component of Rd \V(fj) contains at most m/2j points of P . Since
|P| = m, the number t of connected components of Rd \ V(fj) that contain more
than m/2j+1 points of P is smaller than 2j+1. Let P1, . . . ,Pr ⊂ P be the subsets of
P that are contained in each of these connected components (that is, |P1|, . . . , |Pr| >
m/2j+1). By Theorem 3.6, there is a polynomial gj of degree smaller than cd2

(j+1)/d

that simultaneously bisects every Pj. We can set fj+1 = fj · gj, since every connected
component of Rd \ V(fj · gj) contains at most m/2j+1 points of P and fj · gj is a
polynomial of degree smaller than

cd2
(j+1)/d

21/d − 1
+ cd2

(j+1)/d = cd2
(j+1)/d ·

(
1

21/d − 1
+ 1

)
=
cd2

(j+2)/d

21/d − 1
.

This completes the induction step, and thus also the proof.

3.4 Curves containing lattice points

We conclude this chapter with a simple application of Theorem 3.3. Let G be a√
n × √n section of the integer lattice in R2. It is easy to show that any constant-

degree algebraic curve is incident to O(
√
n) points of G (e.g., by using Bézout’s

theorem). This bound is tight, since a line can pass through Θ(
√
n) points of G.

We now show that every non-line constant-degree algebraic curve passes through an
asymptotically smaller number of lattice points (it is based on ideas similar to those
of Iosevich [56]). In Problem 3.13 we derive the improved bound Ok(n

1/3), while
the stronger bound Ok(n

1/(2k)) was derived by Bombieri and Pila [13], relying on
number-theoretic methods.

Claim 3.7. Let G be a
√
n×√n section of the integer lattice in R2, and let γ be an

irreducible algebraic curve of degree k ≥ 2. Then γ contains Ok

(
nk

2/(2k2+1)
)

points

of G.

Proof. Let x denote the number of points of G that are incident to γ, let p be a point
of G that is incident to γ, and let T denote the set of translations of R2 that take p
to another point of G. We apply each of the translations of T on γ to obtain a set Γ
of n copies of γ. An example is depicted in Figure 3.7(a,b).

Some of the translated copies of γ might contain fewer than x points of G. To
fix this, we also apply each translation of T on the points of G (see Figure 3.7(c)).
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(a) (b) (c)

p p p

Figure 3.7: (a) A curve γ containing lattice points. (b) Applying the translations of T on γ.
(c) Applying the translations of T on G.

Notice that this results in a set G ′ of less than 4n distinct lattice points. To complete
the proof, we double count I(G ′,Γ). After inserting the additional points, each of the
n copies of γ contains at least x points of G. That is, I(G ′,Γ) = Ω(nx).

Notice that two translated copies of an irreducible curve cannot have a common
component. Thus, by Bézout’s theorem any two curves of Γ have at most k2 points
in common. By Theorem 3.3 with s = k2 + 1, we obtain the bound I(G ′,Γ) =
Ok(n

(3k2+1)/(2k2+1)). Combining our two bounds for I(G ′,Γ) immediately implies the
assertion of the claim.

3.5 Exercises

Problem 3.1. Find a set P of n points in R2, a point q /∈ P , and an integer r, such
that there is no r-partitioning polynomial of P that does not contain q. That is, show
that Theorem 3.1 is no longer true when also asking V(f) not to contain a specific
point.

Problem 3.2. Show that Theorem 3.1 is no longer true when asking f to be irre-
ducible. That is, find a set P of n points in R2 and an integer r such that there is no
irreducible r-partitioning polynomial of P .

Problem 3.3. Let P be a set of m points and let C be a set of n circles, both in R2.
Theorem 3.3 implies I(P ,Γ) = O

(
m3/5n4/5 +m+ n

)
.

(a) Derive a stronger bound for the case where the centers of all the circles are on the
x-axis.
(b) Derive a stronger bound for the case where no line contains more than 1,000 circle
centers.

Problem 3.4. For m ≤ n, let P be a set of m points on the x-axis and let P ′ be a
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set of n points. Let D(P ,P ′) denote the number of distinct distances between P and
P ′. That is, we only consider distances between pairs of points from P × P ′. Prove
that D(P ,P ′) = Ω(

√
mn). Hint: Recall the proof of Claim 1.11 and use Problem 3.3.

Problem 3.5. Prove that Theorem 3.3 remains valid also after removing the re-
strictions about the curves being irreducible and distinct (hint: This can be done by
treating the proof of Theorem 3.3 as a black box, rather than changing the proof of
this theorem).

Problem 3.6. Let P be a set of n points in R2, let D ≥ 2, and let νD be the Veronese
map of degree D from R2. Prove that νD(P) = {νD(p) : p ∈ P} is in convex position.
(Recall that a point set is in convex position if every p ∈ P can be separated from
P \ {p} by a hyperplane.)

Problem 3.7. Radon’s theorem states that any set of d + 2 points in Rd can be
partitioned into two disjoint subsets whose convex hulls intersect. We say that a
polynomial f ∈ R[x1, . . . , xd] separates two finite point sets P1,P2 ⊂ Rd if f(p) > 0
for every p ∈ P1 and f(q) < 0 for every q ∈ P2. It is known that the convex hulls of
two finite point sets are disjoint if and only if no hyperplane separates them.

We are given a set P of n points in Rd such that n is much larger than d. Use
Radon’s theorem to prove that P can be partitioned into two disjoint subsets P1,P2 ⊂
P such that all of the polynomials that separate P1 and P2 are of degree Ωd(n

1/d)
(you may rely on the statements in the first paragraph without proving them).

Problem 3.8. Let P be a set of n points in R2. Prove that P spans Ω(n3/4) distinct
distances. (Hint: Recall the proof of Claim 1.11.)

Problem 3.9. Prove that the maximum number of isosceles triangles that can be
determined by a set of n points in R2 is O

(
n7/3

)
. While it is possible to solve the

problem by using point–line incidences, you are asked to solve it by reducing the
problem to point–circle incidences.

Problem 3.10. Show that the polynomial partitioning theorem (Theorem 3.1) re-
mains valid after adding the following restriction: No monomial of f contains a
variable with an exponent larger than r/2.

Problem 3.11. Let P be a set of m points and let L be a set of n lines, both in R2.
Prove that there exist P ′ ⊂ P and L′ ⊂ L such that |P ′| = Θ(m), |L′| = Θ(n), and
I(P ′,L′) = 0. (Hint: Consider a large constant r.)

Problem 3.12. Let P be a set of n points in R2. Prove that there exists P ′ ⊂ P
such that |P ′| = Θ(n) and no unit distances are spanned by P ′. (Hint: How is this
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related to Problem 3.11?)

Problem 3.13. Your goal in this problem is to improve the bound of Claim 3.7 to
Ok

(
n1/3

)
. The following paragraph suggests one approach for doing this.

Construct the sets G ′ and Γ as in the original proof, and then move to a dual
plane, as follows. Recall that every curve γj ∈ Γ is a translation of γ, which can be
decomposed into a horizontal translation followed by a vertical translation. Instead of
γj, consider a point vj whose x-coordinate is the distance of the horizontal translation,
and whose y-coordiante is the distance of the vertical one. Replace every point p ∈ G ′
with the set Sp of the points in R2 that correspond to translations of γ that are
incident to p (we do not refer only to points that correspond to curves in Γ, but
rather to any point that parameterizes a translated copy of γ incident to p). How
does the set Sp look like?

Problem 3.14. The bound of Theorem 3.3 is of the form Os,t,k(·). We wish to remove
t from the subscript. That is, we wish to find the dependency of the bound in t (for
example, this is useful when t = logm or t = nα for some 0 < α < 1). Revise the
proof of Theorem 3.3 accordingly. There is no need to rewrite the entire proof —
focus on the parts that need to be revised.

Problem 3.15. Let P be a set of m points and let L be a set of n lines, both in Rd.
By Theorem 3.1, there exists a partition with O(rd) cells, each containing at most
m/rd points of P (for some 1 < r < m). Unfortunately, for the application that we
have in mind, we also require the property that no cell is intersected by many lines
of L.

Show that we can further partition the existing O(rd) cells so that (i) every new
cell is intersected by at most n/rd−1 lines of L, and (ii) the number of cells remains
O(rd). Do this by partitioning each cell C into several abstract subcells (i.e., different
subcells do not necessarily correspond to different geometric areas), where each subcell
of C consists of the same set of points as C but only of a subset of the lines. As before,
every point-line incidence is required to appear in exactly one subcell (unless it is on
the original partitioning, in which case it is in none of the cells and subcells).

3.6 Open problems

Theorem 3.3 provides a general point–curve incidence bound in R2. In Chapter 1 we
saw that this bound is tight for the case of lines. However, the theorem is suspected
not to be tight for almost any other case. The following appears to be a common
conjecture.
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Conjecture 3.8. Let P be a set of n points and let Γ be a set of n algebraic curves
of degree at most k, both in R2. If the incidence graph of P × Γ contains no copy of
Ks,t, then

I(P ,Γ) = Os,t,k

(
n4/3

)
.

Conjecture 3.8 is known to be false when the number of curves is significantly
larger than the number of points. For example, there exists a set of m points and a
set of n parabolas, both in R2, with Θ

(
m1/2n5/6

)
incidences (see Problem 1.2). This

expression is asymptotically larger than m2/3n2/3 when n is asymptotically larger than
m.

As mentioned in Chapter 1, for any ε > 0 it is conjectured that the number of
incidences between n points and n unit circles is O(n1+ε). This might also be the
case for several other variants, such as the case of the degenerate hyperbolas that
were described in Problem 1.3. Currently no method is known for obtaining a bound
asymptotically smaller than O(n4/3).

When s > 2, the lens cutting method yields bounds that are somewhat stronger
than the ones of Theorem 3.3. The following theorem contains the best known bounds
for these cases.

Theorem 3.9 ([83]). Let P be a set of m points and let Γ be a set of n irreducible
algebraic curves of degree at most k in R2. Assume that we can parameterize these
curves using s parameters. Then for every ε > 0 we have

I(P ,Γ) = Ok,s,ε

(
m

2s
5s−4

+εn
5s−6
5s−4 +m2/3n2/3 +m+ n

)
.

Finally, Figure 3.8 is a good recap for everything that we have seen in the past
couple of sections.
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Figure 3.8: A drawing by Zachary Chase.



Chapter 4

Basic Real Algebraic Geometry in
Rd

“Every field has its taboos. In algebraic geometry the taboos are (1)
writing a draft that can be followed by anyone but two or three of one’s
closest friends, (2) claiming that a result has applications, (3) mentioning
the word “combinatorial”, and (4) claiming that algebraic geometry existed
before Grothendieck.” / Gian-Carlo Rota [79].

In this chapter we generalize to Rd several of the definitions and results that were
studied in R2 in Chapter 2. For this, we first introduce the notion of a polynomial
ideal and define the dimension of a variety in Rd.

4.1 Ideals

In Chapter 2 we introduced varieties, which are the basic geometric objects of Alge-
braic Geometry. We now introduce polynomial ideals, which are the basic algebraic
objects that are studied in this book. A subset J ⊆ R[x1, . . . , xd] is an ideal if it
satisfies:

� 0 ∈ J .

� If f, g ∈ J then f + g ∈ J .

� If f ∈ J and h ∈ R[x1, . . . , xd], then f · h ∈ J .

As a first example of an ideal, consider a polynomial f ∈ R[x1, . . . , xd] and notice
that the set {f · h : h ∈ R[x1, . . . , xd]} is an ideal. More generally, given f1, . . . , fk ∈

41
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R[x1, . . . , xd], the set

〈f1, . . . , fk〉 =

{
k∑
i=1

fi · hi : h1, . . . , hk ∈ R[x1, . . . , xd]

}

is an ideal. We say that this ideal is generated by f1, . . . , fk. We also say that
{f1, . . . , fk} is a basis of this ideal.1

We are specifically interested in ideals of varieties. Given a variety U ⊂ Rd, the
ideal of U is

I(U) = {f ∈ R[x1, . . . , xd] : f(a) = 0 for every a ∈ U}.

It can be easily verified that I(U) satisfies the three requirements in the definition
of an ideal. This leads to the question: Given f1, . . . , fk ∈ R[x1, . . . , xd], is it always
the case that 〈f1, . . . , fk〉 = I(V(f1, . . . , fk)) ?

Claim 4.1. Given f1, . . . , fk ∈ R[x1, . . . , xd], we have 〈f1, . . . , fk〉 ⊆ I(V(f1, . . . , fk))
although equality need not occur.

Proof. To see that the containment relation holds, we set U = V(f1, . . . , fk). If
g ∈ 〈f1, . . . , fk〉 then by definition g vanishes on every point of U , and is thus in
I(V(f1, . . . , fk)).

To see that equality does not always hold, we set f = x2 + y2. We then have
V(f) = {(0, 0)} ⊂ R2, x ∈ I(V(f)), and x /∈ 〈f〉.

As we shall see, when defining a variety U it is often useful to use a basis of I(U)
rather than an arbitrary set of polynomials that define U . We now inspect another
connection between ideals and varieties.

Claim 4.2. Let U,W ⊂ Rd be varieties. Then
(a) U ( W if and only if I(W ) ( I(U).
(b) U = W if and only if I(W ) = I(U).

Proof. We only prove part (a); part (b) is proved in a similar manner.
First assume that U ⊂ W and consider a polynomial f ∈ I(W ). That is, f

vanishes on every point of W . Since U ⊂ W we get that f vanishes on every point of
U , which implies f ∈ I(U). To see that this containment is proper, notice that there

1There are many different notations for an ideal generated by a set of polynomials. We use 〈·〉
following the notation of [23].
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must exist polynomials that vanish on U but not on W (otherwise we would have
U = W ).

Next, assume that I(W ) ⊂ I(U) and consider a point p ∈ U . Every polynomial
of I(U) vanishes on p, which in turn implies that every polynomial of I(W ) vanishes
on p. Thus, we have p ∈ W . There must exist q ∈ W \ U , since otherwise we would
have I(W ) = I(U).

We conclude this section with (a special case of) a classic result called the ascend-
ing chain condition.

Theorem 4.3. Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an infinite chain of ideals in R[x1, . . . , xd]
(or in a polynomial ring over any other field). Then there exists an integer n ≥ 1
such that In = In+1 = In+2 = · · · .

4.2 Dimension

Consider an irreducible variety U ⊂ Rd. One intuitive definition of the dimension d′

of U , denoted dimU , is the maximum integer such that there exists a sequence

U0 ⊂ U1 ⊂ · · · ⊂ Ud′ = U,

where all of the subsets are proper and all of the sets Ui are irreducible varieties. If
U ⊂ Rd is a reducible variety with irreducible components U1, . . . , Uk, then we define
dimU = maxi{dimUi}.

The above definition of dimension corresponds to our intuitive one. For example,
any finite point set in Rd is a variety of dimension zero, any finite union of lines and
circles in Rd is a variety of dimension one, and so on.

Claim 4.4. Let U and V be two varieties in Rd, both of dimension d′ and with no
common components. Then dim(U ∩ V ) < d′.

Proof. We first assume that U and V are both irreducible. Assume for contradiction
that dim(U ∩ V ) ≥ d′. Let W be a component of U ∩ V of dimension at least d′. By
definition, there exists a chain

W0 ⊂ W1 ⊂ · · · ⊂ Wd′−1 ⊂ W,

where all of the subsets are proper and all of the sets are irreducible varieties. Since
U and V have no common components, W is a proper subset of U . Thus, the chain

W0 ⊂ W1 ⊂ · · · ⊂ Wd′−1 ⊂ W ⊂ U
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also consists only of proper subsets and irreducible varieties. This contradicts the
dimension of U being d′, so dim(U ∩ V ) < d′.

Next, we consider the case where U and V may be reducible. Let U1, . . . , Uk
be the components of U and let V1, . . . , V` be the components of V . Notice that
U ∩ V =

⋃
1≤i≤k
1≤j≤`

(Ui ∩ Vj). By the above, every Ui ∩ Vj is of dimension smaller than

d′. We thus have dim(U ∩ V ) = maxi,j{dim(Ui ∩ Vj} < d′.

We now list some useful definitions. A curve is a variety with all of its components
of dimension one (note that this indeed extends the definition of a curve that was
given in Chapter 2 for the special case of R2). A k-flat is a translation of a k-
dimensional linear space. A hypersurface in Rd is a variety with all of its components
of dimension d− 1. Similarly, a hyperplane in Rd is a (d− 1)-flat, a hypersphere is a
(d− 1)-dimensional sphere, etc.

As we will see rather often, hypersurfaces are easier to study than lower dimen-
sional varieties. The following lemma is one of the main reasons for this. We will
prove this lemma in Chapter ???, after studying more properties of polynomials.

Lemma 4.5. For every hypersurface U ⊂ Rd there exists a polynomial f ∈ R[x1, . . . , xd]
such that 〈f〉 = I(U).

Given an irreducible variety U ⊂ Rd of dimension d′, one might expect U to look
like a d′-dimensional set in a small neighborhood around any point p ∈ U . To see
that this is not the case, consider the cubic curve V(y2−x3+x2). Even though this is
an irreducible variety, it consists of a one-dimensional curve together with the origin;
see the left part of Figure 4.1. If we remove the origin, we obtain a set that is not a
variety. A similar example is the Whitney umbrella V(x2− y2z) ⊂ R3, which consists
of a two-dimensional surface together with the z-axis; see the right part of Figure 4.1.
As before, if we remove the line we obtain a set that is not a variety.

Figure 4.1: A cubic curve in R2 and the Whitney umbrella.
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4.3 Singular points

Consider a variety U ⊂ Rd and a point p ∈ U . The tangent space of U at p, denoted
TpU , is a real vector space in Rd that contains every vector that has a direction at
which one can tangentially pass through p; note that TpU is not necessarily incident
to p.

In Chapter 2 we discussed singular points of curves in R2. We now extend this
definition to singular points of varieties in Rd. Consider a variety U ⊂ Rd and a point
p ∈ U . Intuitively (and with some exceptions), p is a singular point of U if one of the
following holds:

� The tangent space TpU is not well defined. For example, the apex of a circular
conical surface is a singular point (see Figure 4.2).

� The point p is contained in more than one irreducible component of U . For
example, consider the union of two spheres in R3 that intersect at a point p and
have the same tangent plane at p. Although one might say that the tangent
plane is well defined at p, we still consider p as a singular point.

� The dimension of the tangent space TpU is smaller than the dimension of an
irreducible component that contains p. For example, the line of the Whitney
umbrella consists of singular points.

While a point that falls under at least one of these three cases is always singular, there
are singular points that do not fit any of these cases. For an example, see Section 2.2.
A point of U that is not singular is said to be a regular point of U .

Figure 4.2: The apex of a conical surface is a singular point.

For a more rigorous definition of a singular point, we begin with the special case
of hypersurfaces. Given a polynomial f ∈ R[x1, . . . , xd], the gradient of f is

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)
.

Notice that this is a generalization of the definition that was given in Chapter 2.
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Let U ⊂ Rd be a hypersurface. By Lemma 4.5 there exists f ∈ R[x1, . . . , xd] such
that I(U) = 〈f〉. A point p ∈ U is singular if and only if ∇f(p) = 0 (that is, the
gradient is a vector of d zeros). We denote the set of singular points of U as Using,
and the set of regular points of U as Ureg. For a discussion about why the condition
I(U) = 〈f〉 is necessary, see Section 2.2.

Recall that a polynomial f ∈ R[x1, . . . , xd] is said to be square-free if in the
factorization of f into irreducible factors, no factor has a multiplicity larger than one.
Let f ∈ R[x1, . . . , xd] be a square-free polynomial and let g be a component of f that
depends on xi. Then ∂f

∂xi
is not divisible by g, as explained in Section 2.2.

Claim 4.6. Every hypersurface U ⊂ Rd contains a regular point.

Proof. Let C be a component of U . By Lemma 4.5 there exists f ∈ R[x1, . . . , xd]
such that I(C) = 〈f〉. We assume, without loss of generality, that f1 = ∂f

∂x1
is not

identically zero. Since f is square-free by definition, the variety V(f1) has no common
components with C. By Claim 4.4, the intersection C∩V(f1) is of dimension at most
d − 2. Similarly, the intersection of C with each of the other components of U is of
dimension at most d − 2. Any point of C that is not contained in V(f1) or in any
of the other components of U is a regular point. Since a finite number of varieties of
dimension at most d− 2 cannot cover a variety of dimension d− 1, we conclude that
C contains regular points.

To define singular points of varieties that are not hypersurfaces, we require a
generalization of the gradient. Given f1, . . . , fk ∈ R[x1, . . . , xd], the Jacobian matrix
of f1, . . . , fk is

Jf1,...,fk =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xd

· · · · · · · · · · · ·
∂fk
∂x1

∂fk
∂x2

· · · ∂fk
∂xd


Let U ⊂ Rd be a variety of dimension d′, and consider f1, . . . , fk ∈ R[x1, . . . , xd]

such that I(U) = 〈f1, . . . , fk〉. Then p ∈ U is a singular point if and only if
rank (Jf1,...,fk(p)) < d−d′. Recall that rank (Jf1,...,fk(p))+ker (Jf1,...,fk(p)) = d. More-
over, the tangent space TpU is orthogonal to ∇fi, for every 1 ≤ i ≤ k. Thus, we can
intuitively think of d− rank (Jf1,...,fk(p)) as the dimension of TpU .

It is tempting to think that for a variety U ⊂ Rd of dimension d′, the ideal I(U) is
generated by d− d′ polynomials. To see that this is not necessarily the case, consider
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the twisted cubic U = {(x, x2, x3) ∈ R3 : x ∈ R}. This is a one-dimensional variety
in R3, but the ideal I(U) is generated by the three polynomials x1x3 − x22, x2 − x21,
and x3 − x1x2.

Claim 4.7. Every variety U ⊂ Rd contains a regular point.

We do not prove Claim 4.7. For more details, see [12, Section 3.3].

4.4 Degrees

We will sometimes consider a generic object. When we say that a generic point of
Rd has property X, we mean that the set of points in Rd that do not have property
X are contained in a proper subvariety (and is thus of measure zero). For example,
given a plane h ⊂ R3, a generic point of R3 is not contained in h. We can talk about
objects that are not points in a similar manner. For example, describing a circle in
R2 requires three parameters — two coordinates for the center and a radius. We
can thus think of the circles of R2 as the points of a three-dimensional space. When
saying that a generic circle in R2 is not incident to the origin, we mean that the set
of circles that are incident to the origin are contained in a proper subvariety of this
three-dimensional space.

Defining the degree of a real variety is somewhat problematic. In a complex
space there is a well-defined notion of degree, with many equivalent definitions. For
example, a variety U ⊂ Cd of dimension d′ has degree k if it intersects a generic
(d− d′)-flat of Cd in exactly k points. To see that this definition does not make sense
over the reals, consider a circle in R2. Intuitively we expect a circle to have degree 2
(and also by the definition given in Chapter 2), but we cannot claim that a generic
line intersects a circle in two points.

By corollary 2.2, every real variety is the zero set of a single polynomial, and it
might seem tempting to consider the minimum degree of such a polynomial. Unfor-
tunately this definition also has weird consequences. For example, if U ⊂ Rd consists
of a single point, then it has degree 2.

This has led to a situation where several non-equivalent definitions of degree are
being used in Rd, and some works simply avoid defining this notion. In this book,
we often consider the degree as being constant, and then obtain the same asymptotic
results for any reasonable definition of degree. For our purposes, we define the degree
of a variety U ⊂ Rd as

min
f1,...,fk∈R[x1,...,xd]

V(f1,...,fk)=U

max
1≤i≤k

deg fi. (4.1)
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That is, the degree of U is the minimum integer D such that U can be defined by a
finite set of polynomials of degree at most D.

Given a variety U ⊂ Rd of dimension d − 1, by Lemma 4.5 the ideal I(U) is
generated by a single polynomial f ∈ R[x1, . . . , xd]. This implies that f is a minimum-
degree polynomial in I(U), and thus that the degree of U is deg f . In particular, we
get that (4.1) generalizes the definition of degree from Chapter 2.

Theorem 4.8. Let U ⊂ Rd be a variety of degree k and dimension d′. Then Using is
a variety of dimension smaller than d′ and of degree Ok,d(1).

Proof. By definition, there exist polynomials f1, . . . , f` of degree at most k such that
〈f1, . . . , f`〉 = I(U). We have

Using =

{
p ∈ U : rank (Jf1,...,fk(p)) < d− d′

}
.

Notice that Jf1,...,fk(p) is of rank smaller than d− d′ if and only if every (d− d′)×
(d − d′) minor of Jf1,...,fk(p) is zero. Such a minor is an equation of degree at most
k(d−d′), so Using is a variety that is defined by a set of polynomials of degree at most
k(d− d′) = Od,k(1).

To prove that Using is of dimension smaller than d′, we first consider the case where
U is an irreducible hypersurface. By Claim 4.7, U contains a regular point, so Using is
a proper subvariety of U (or empty). Since U is irreducible, Using must have a smaller
dimension.

It remains to prove that Using is of dimension smaller than d′ when U is reducible.
By the above, the set of points that are singular points of a specific component are
of dimension smaller than d′, so it remains to consider points that are singular due
to an intersection of at least two components. This is straightforward, since the
intersection of two distinct irreducible varieties of dimension d′ must be of a smaller
dimension.

One disadvantage of the definition of degree in (4.1) is that it does not generalize
Bézout’s theorem (Theorem 2.5) in dimensions d ≥ 3. For example, consider the
varieties W = V((x1 − 1)2(x1 − 2)2(x1 − 3)2 + (x2 − 1)2(x2 − 2)2(x2 − 3)2) ⊂ R3

and U = V(x3) ⊂ R3. Note that W is a set of nine lines and of degree six, and
that U is a plane and of degree one. However, U ∩ W is a set of nine points, so
|U ∩W | > degU · degW . As long as we are careful, the failure of Bézout’s theorem
in higher dimensions will not be a big issue for us.

The degree of a variety also controls the number of irreducible components.
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Lemma 4.9. Let U ⊂ Rd be a variety of degree k. Then the number of irreducible
components of U is Od,k(1).

Proof sketch. Consider first the case where U is a hypersurface. By Lemma 4.5, there
exists a polynomial f ∈ R[x1, . . . , xd] of degree k such that V(f) = U . We factor f
into irreducible factors f = f1 · f2 · · · f`. Note that ` ≤ k. For every 1 ≤ j ≤ ` the
variety V(fj) is irreducible, since otherwise fj would not be irreducible. Since each
irreducible component of U is equal to at least one of the sets Uj, we get that U has
at most k irreducible components.

The case where U is not a hypersurface is more involved. We can first handle the
part of U that is a hypersurface as above. To handle the m-dimensional components
of U (for any m ≤ d− 2), we can project these components onto an (m+ 1)-flat and
consider this flat as Rm+1. This turns the m-dimensional components into hypersur-
faces, which can be handled as above. The projection step should be done carefully
to avoid some issues. We only study projections of varieties in Chapter 7, so for now
we do not give the full details of this step.

For a different proof over an algebraically closed field, see [17, Lemma A.4].

4.5 Polynomial partitioning in Rd

The polynomial partitioning theorem that was presented in Chapter 3 holds in Rd

for every d ≥ 2. When using this theorem in dimension d ≥ 3, it would be helpful to
have the following slightly revised variant.

Theorem 4.10 (Zahl [107]). Let P be a set of m points in Rd. Then for every
1 < r ≤ m, there exists an r-partitioning polynomial f ∈ R[x1, . . . , xd] of degree
O(r). Moreover, we may assume that V(f) is a hypersurface.

Note that the only new claim in Theorem 4.10 is that the partition can always
be a hypersurface. To prove this claim, we cannot simply remove lower dimensional
components of V(f), even though such removals cannot cause cells to merge. The
issue is that lower dimensional components of V(f) may contain many points of P ,
so removing such components may cause some cells to contain too many points. The
proof of the hypersurface property requires several additional tools from algebraic
geometry, which we will not discuss here.

When using polynomial partitioning in R2, we relied on Bézout’s theorem (Theo-
rem 2.5) to bound the number of cells that are intersected by a curve. In dimension
d ≥ 3, we instead rely on the following more involved result.
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Theorem 4.11 (Barone and Basu [5]). Let U and W be varieties in Rd such that
W is defined by a single polynomial of degree kW ≥ 2 degU . Then the number of
connected components of U \W is Od

(
kdimU
W degUd−dimU

)
.

Finally, we will also rely on the following classical result, which is an extension of
Theorem 2.7 to Rd.

Theorem 4.12 (Milnor–Thom). Let f1, . . . , fm ∈ R[x1, . . . , xd] be of degree at most
k. Then the number of connected components of V(f1, . . . , fm) is at most

k(2k − 1)d−1.

4.6 Exercises

Problem 4.1. Prove that every variety can be decomposed into a finite number of
irreducible components, without using the degree of the variety (that is, not as in the
proof of Lemma 4.9).

Problem 4.2. (a) Consider two polynomials f, g ∈ R[x1, x2, x3] of degrees kf and
kg, respectively. Prove that if f and g have no common factors then V(f) ∩ V(g)
contains at most kfkg lines (hint: consider a generic plane).

(b) Consider two polynomials f, g ∈ R[x1, . . . , xd] of degrees kf and kg, respec-
tively. Prove that if f and g have no common factors then V(f) ∩V(g) contains at
most kfkg flats of dimension d− 2.

Problem 4.3. (a) Prove Warren’s theorem (Theorem 3.2) using the Milnor–Thom
theorem (Theorem 4.12). Hint: Change the polynomial by an ε.

(b) Let V be a variety of degree k in Rd. Use Warren’s theorem to prove that V
has Od(k

d) connected components.

Problem 4.4. (a) Show that Warren’s theorem (Theorem 3.2) is asymptotically
tight. That is, for every d ≥ 2 and k prove that there exists a polynomial f ∈
R[x1, . . . , xd] of degree k such that Rd \V(f) has Θ(kd) connected components. You
might like to first consider the case of d = 2.

(b) Show that the Milnor–Thom theorem (Theorem 4.12) is asymptotically tight.
That is, for every d ≥ 2 and k prove that there exists a polynomial f ∈ R[x1, . . . , xd]
such that V(f) has Θ(kd) connected components. You might like to use ideas from
Problem 4.3.



Chapter 5

The Joints Problem and Degree
Reduction

“The situation is a little bit like the spread of a disease in a population.
If each member of a population is exposed to many other members of the
population, then a fairly small outbreak can become an epidemic.” / Larry
Guth explaining a degree reduction argument [49].

In some sense the use of polynomial methods to study incidence problems started
with a work of Guth and Katz [50], in which they used polynomial methods to solve
two problems. In this chapter we study one of these problems: the joints problem.
Since this was an early application of the polynomial methods, it is relatively simple
and a good warmup for working in dimensions d ≥ 3. In Section 5.2 we study two
additional problems that can be solved using similar polynomial arguments. A large
part of this chapter is based on ideas presented in [49].

5.1 The joints problem

Let L be a set of lines in R3. A joint of L is a point of R3 that is incident to three lines
`1, `2, `3 ∈ L such that no plane contains `1, `2, and `3 (and possibly to additional lines
of L). In other words, the directions of `1, `2, and `3 should be linearly independent.
The joints problem asks for the maximum number of joints in a set of n lines in R3.

Claim 5.1. There exists a set of n lines in R3 that spans Θ(n3/2) joints.

Proof. Consider n/3 lines in the direction of the x-axis, n/3 lines in the direction of

51
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the y-axis, and n/3 lines in the direction of the z-axis:

L =
{

V(x− a, y − b) ⊂ R3 : a, b ∈ N and 1 ≤ a, b ≤
√
n/3
}

⋃{
V(x− a, z − c) ⊂ R3 : a, c ∈ N and 1 ≤ a, c ≤

√
n/3
}

⋃{
V(y − b, z − c) ⊂ R3 : b, c ∈ N and 1 ≤ b, c ≤

√
n/3
}
.

The joints spanned by this set are{
(a, b, c) ∈ N3 : 1 ≤ a, b, c ≤

√
n/3
}
.

In the above construction, the lines have structure in the sense that every two lines
are either parallel or orthogonal. We can obtain the same number of joints without
having such structure.

Claim 5.2. There exists a set of n lines in R3 that spans Θ(n3/2) joints, with no two
lines being parallel or orthogonal.

Proof. Let Π be a set of m generic planes in R3, for a parameter m that will be set
below. By generic planes, we mean that no two planes are parallel, no three intersect
in a line, and no four intersect in a point. Set

L = {h ∩ h′ : h, h′ ∈ Π and h 6= h′}.

Since no three planes intersect in a line, L is a set of
(
m
2

)
distinct lines. We may

also assume that no two lines of L are parallel or orthogonal. We fix the value of m
such that |L| = n, and note that m = Θ(

√
n). For any three distinct planes h, h′, h′′,

the three lines h ∩ h′, h ∩ h′′, and h′ ∩ h′′ form a distinct joint. Thus, the number of
joints is

(
m
3

)
= Θ(n3/2).

The joints problem seems to have started as a Discrete Geometry problem (for
examlpe, see [19]), but over the years it also attracted the attention of researchers from
Harmonic Analysis. Wolff [106] observed a connection between the joints problem and
the Kakeya problem. After a sequence of increasingly better bounds, the problem was
completely solved by Guth and Katz.

Theorem 5.3 (Guth and Katz [50]). The maximum number of joints in a set of
n lines in R3 is Θ(n3/2).
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A generalization of the joints problem to Rd was derived by Kaplan, Sharir, and
Shustin [57] and independently by Quilodrán [73].

We already established the lower bound of Theorem 5.3, so it remains to prove
a matching upper bound. The polynomial technique in Chapter 3 was based on
studying polynomials that partition a point set into “well-behaved” cells. We now
use a different polynomial argument, considering polynomials that contain a point
set.

Lemma 5.4. Given a set P of m points in Rd and a positive integer D such that(
d+D
d

)
> m, there exists f ∈ R[x1, . . . , xd] \ {0} of degree at most D such that P ⊂

Z(f).

Proof. In the proof of the polynomial ham sandwich theorem (Theorem 3.6), we
argued that the number of distinct monomials in R[x1, . . . , xd] of degree at most D is(
D+d
d

)
. Set k =

(
D+d
d

)
and note that by assumption k > m.

Consider a polynomial f of degree D, and denote the coefficients of the monomials
of f as c1, . . . , ck. Asking for f to vanish on a point p ∈ P corresponds to a linear
homogeneous equation in c1, . . . , ck. Thus, we have a set of m linear homogenous
equations in k variables. Since k > m, the system must have a non-trivial solution.
A solution corresponds to a choice of coefficients for f such that f vanishes on P ,
and a non-trivial solution corresponds to a nonzero polynomial

Lemma 5.5. Let L be a set of lines in R3 and let J be the set of joints of L. Then
there exists a line of L that is incident to at most 3|J |1/3 of the joints.

Proof. Assume for contradiction that every line of L is incident to more than 3|J |1/3
joints. Let f ∈ R[x1, x2, x3] be a minimum degree nonzero polynomial that vanishes

on J . Since
(
3+3|J |1/3

3

)
> |J |, Lemma 5.4 implies that deg f ≤ 3|J |1/3.

Consider a line ` ∈ L and a generic plane h that contains `. Notice that γ =
V(f)∩h is a variety of dimension at most one and of degree at most deg f ≤ 3|J |1/3.
By applying Bézout’s theorem (Theorem 2.5) in the plane h, we get that either γ
contains ` or |γ ∩ `| ≤ 3|J |1/3. By assumption ` contains more than 3|J |1/3 points,
so we must have ` ⊆ γ ⊂ V(f). That is, V(f) contains every line of L.

Consider a point p ∈ J , and let `1, `2, `3 ∈ L be three lines that are incident to p
and are not contained in a common plane. By the above, we have `1, `2, `3 ⊂ V(f).
Let `′1, `

′
2, and `′3 be the respective translations of `1, `2, and `3 such that `′1 ∩ `′2 ∩ `′3

is the origin. If p is a regular point of V(f), then the tangent plane TpV(f) must
contain `′1, `

′
2, `
′
3. This is a contradiction since these three lines cannot be contained

in a common plane. Thus, p is a singular point of f , which in turn implies that
∇f(p) = 0 for every p ∈ J .
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Without loss of generality, we assume that f involves the coordinate x1. This
implies that the first partial derivative f1 = ∂f

∂x1
is not identically zero. By the above

property of ∇f , we have that f1 vanishes on every point of J . This contradicts f
being a minimum degree polynomial that vanishes on J , and completes the proof of
the lemma.

After deriving Lemma 5.5, it is straightforward to prove Theorem 5.3.

Proof of Theorem 5.3. Let L be a set of n lines in R3, let J be the set of joints of L,
and put x = |J |. We repeatedly consider a line that is incident to at most 3x1/3 joints
of J , remove this line from L, and update J accordingly (the value of x remains fixed
during this process). By Lemma 5.5, such a line exists at every step. Since every
line removal destroys at most 3x1/3 joints, and since after removing all of the lines no
joint remains, we have

x ≤ n · 3x1/3.
The assertion of the theorem is obtained by tidying up this equation.

5.2 Additional applications of the polynomial ar-

gument

In this section we study two additional uses of the polynomial technique that we used
to solved the joints problem.

Reguli. Let `1, `2, `3 be parallel lines in R3 and consider the union of all lines in
R3 that intersect `1, `2, and `3. When `1, `2, `3 are contained in a common plane h,
every line that intersects them is also contained in h and the union of these lines is
h. When `1, `2, `3 are not contained in a common plane no line intersects all three, so
the union is empty. You might like to spend a minute thinking about the case where
only two of the lines are parallel.

A regulus is the union of all lines that intersect three pairwise-skew lines `1, `2, `3
in R3. That is, no two lines of `1, `2, `3 are parallel and no two intersect. One example
of a regulus is the hyperbolic paraboloid V(z − xy) ⊂ R3 (see Figure 5.1). Note that
this paraboloid contains every line of the form V(x − c, z − cy) where c ∈ R, and
also every line of the form V(y − c, z − cx). Lines from the same family of lines are
pairwise-skew. The paraboloid can be defined by fixing three lines `1, `2, `3 from the
same family and taking the union of all lines that intersect `1, `2, `3.
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Figure 5.1: The hyperbolic paraboloid V(z− xy) contains two families of pairwise-skew lines.

Lemma 5.6. Every regulus in R3 is contained in an irreducible variety of dimension
two and degree two.

Proof. Consider a regulus S defined by the three pairwise-skew lines `1, `2, `3. Let
P be a set of nine points obtained by arbitrarily choosing three points out of each
of the lines `1, `2, `3. Since

(
3+2
3

)
= 10 > 9, by Lemma 5.4 there exists a nontrivial

polynomial f ∈ R[x, y, z] of degree at most two that vanishes on P . By Bézout’s
theorem, since `1 intersects V(f) in at least three points, we have `1 ⊂ V(f) (as
before, we apply Bézout in a generic plane containing `1). For the same reason, we
also have `2, `3 ⊂ V(f). If deg f = 1, then `1, `2, `3 are contained in a common plane,
contradicting these lines being pairwise-skew. Similarly, V(f) cannot be the union of
two planes since then at least two of the lines `1, `2, `3 would be on a common plane.
We conclude that V(f) is an irreducible variety of degree two.

Consider a line `′ that intersects all three lines `1, `2, `3. The three intersection
points are distinct since `1, `2, `3 are disjoint. Since `′ intersects V(f) in at least three
points, by Bézout’s theorem `′ ⊂ V(f). Since S is the union of all lines that intersect
`1, `2, `3, we get that S ⊂ V(f).

With some more work, one can show that the reguli in R3 are exactly the hyper-
bolic paraboloids and the hyperboloids of one sheet. However, proving this will not
be helpful for practicing polynomial methods, which is the purpose of this section.

Degree reduction. In the proof of Lemma 5.5 we forced lines to be in a variety
V(f) by showing that every line has many common points with V(f) and applying
Bézout’s theorem. We then used the same idea in the proof of Lemma 5.6. The
following claim is a straightforward generalization of this idea.

Claim 5.7. Let L be a set of n lines in R3. Then there exists a nontrivial polynomial
in R[x1, x2, x3] of degree smaller than 3

√
n that vanishes on all the lines of L.
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Proof. We create a point set P by arbitrarily choosing 4
√
n points from every line of

L. Note that |P| ≤ 4n3/2. Since
(
3+3
√
n

3

)
> 4n3/2, Lemma 5.4 implies the existence of

a nontrivial polynomial f ∈ R[x1, x2, x3] of degree at most 3
√
n that vanishes on P .

For every line ` ∈ L, since f vanishes on at least 4
√
n points of `, Bézout’s theorem

implies that ` is contained in V(f).

When every line of L contains many intersection points with other lines of L, we
can improve the bound of Claim 5.7. This idea is called degree reduction, and the
quote at the beginning of this chapter refers to its proof.

Lemma 5.8. Let L be a set of n lines in R3, such that each line of L contains at
least k distinct points where it intersects other lines of L (k may depend on n). Then

there exists a nontrivial polynomial in R[x1, x2, x3] of degree at most O
(
n3/4/

√
k
)

that vanishes on all the lines of L.

Proof. When k ≤ 502
√
n, the lemma is immediately implied by Claim 5.7. We thus

assume that k > 502
√
n. When n is smaller than some constant, the lemma is

immediate by taking a large constant in the O(·)-notation. We thus assume that n is
at least some sufficiently large constant.

We set a probability p = 100
√
n/k, and consider a subset L′ ⊂ L by choosing

every line of L with probability p. With positive probability, |L′| < 200n3/2/k and
every line of L\L′ has at least

√
n intersection points with lines of L′. The full details

of this standard probabilistic calculation can be found in Section 5.3 below. Since
this scenario occurs with positive probability, there exists a subset L′ that satisfies
these properties. We consider such a subset.

By Claim 5.7, there exists a nontrivial polynomial f ∈ R[x1, x2, x3] of degree at
most 3 ·

√
200n3/4/

√
k < 45n3/4/

√
k that vanishes on every line of L′. Consider a line

` ∈ L \ L′. Since k > 502
√
n, we have that deg f <

√
n. Since f vanishes on at least√

n points of `, Bézout’s theorem implies that ` is contained in V(f). We conclude
that V(f) contains every line of L.

5.3 (Optional) The probabilistic argument

In this section we prove the probabilistic statement that was made in the proof of
Lemma 5.8. We begin by recalling some basic probability. A random variable with a
binomial distribution B(n, p) represents the number of coin flips that landed on heads
when performing n independent coin flips, each with a probability of p for landing
heads. For a proof of the following lemma, see for example [2, Theorem A.1.15].



5.3. (OPTIONAL) THE PROBABILISTIC ARGUMENT 57

Lemma 5.9 (Chernoff bounds). Let X ∼ B(n, p) where 0 < p < 1, and let δ > 0.
Then

Pr[X ≥ (1 + δ)np] ≤
(

eδ

(1 + δ)1+δ

)np
.

Pr[X ≤ (1− δ)np] ≤ e−pnδ
2/2.

We are now ready to prove the asserted probabilistic result.

Lemma 5.10. Let L be a set of n lines, for a sufficiently large n. Each line contains
at least k distinct intersection points with other lines of L, where 502

√
n < k < n.

Let p = 100
√
n/k and let L′ be a subset of L obtained by choosing every line of L

with probability p. Then with positive probability |L′| < 200n3/2/k and every line of
L \ L′ contains at least

√
n distinct intersection points with lines of L′.

Proof. Note that |L′| ∼ B(n, p). By Lemma 5.9 with δ = 1,

Pr
[
|L′| ≥ 200n3/2/k

]
≤
(e

4

)100n3/2/k

<

(
3

4

)100
√
n

.

For a line ` ∈ L, we assume that ` has exactly k distinct intersection points with
the other lines of L, by discarding some intersection points if necessary. Out of these
k intersection points, let X` denote the number of intersection points that ` has with
lines of L′. Note that X` ∼ B(k, p). By Lemma 5.9 with δ = 1/2, we have

Pr
[
X` <

√
n
]
< Pr

[
X` ≤ 50

√
n
]

= Pr [X` ≤ kp/2] ≤ e−100
√
n/8 < e−10

√
n.

Recall the union bound principle, stating that the probability of at least one out
of a set of events happening is at most the sum of the probabilities of the individual
events. In our case, the probability that |L′| ≥ 200n3/2/k or that at least one line of
L \ L′ has fewer than

√
n intersection points with the lines of L′ is smaller than(

3

4

)100
√
n

+ n · e−10
√
n.

When n is sufficiently large, this probability is smaller than 0.5. Thus, with posi-
tive probability |L′| < 200n3/2/k and every line of L \L′ has at least

√
n intersection

points with the lines of L′.
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5.4 Exercises

Problem 5.1. How will the restriction on D in Lemma 5.4 change when:
(a) In every monomial of f , the degree of each variable must be even.
(b) The degree of f must be even.
(c) In every monomial of f , the degree of x1 must be at least one.

Problem 5.2. Let L be a set of n lines in R3. Prove that there exists a nonzero
polynomial of degree O(n1/2) that vanishes on every line of L. Hint: One way is to
apply Lemma 5.4 without thinking about the proof of this lemma.

Problem 5.3.
(a) Let P be a set of m points in R2. Use Theorem 5.4 to prove that the number of
ellipses in R2 that are incident to more than 4

√
m points of P is O(

√
m).

(b) For any 0 < α < 1/2, use part (a) to prove that the number of ellipses that
contain Ω(mα+1/2) points of P is O(n1/2−α) (hint: this requires familiarity with the
probabilistic method).

Problem 5.4. Let L be a set of lines in Rd. A joint of L is a point of Rd that is
incident to d lines `1, . . . , `d ∈ L such that no hyperplane contains `1, . . . , `d. Derive
an upper bound for the maximum number of joints of L, and prove that this bound
is asymptotically tight.

Problem 5.5. A planar curve in R3 is a curve contained in some plane in R3.
(a) Prove Claim 5.7 when the lines are replaced with irreducible planar curves of
degree d in R3. The bound of the claim should change from 3

√
n to O(

√
n · d3/2).

(b) Prove Lemma 5.8 when the lines are replaced with irreducible planar curves
of degree d in R3. The bound of the lemma should change from O(n3/4/

√
k) to

O(n3/4d11/4/
√
k). If you prefer not to delve into the probabilistic calculations from

Section 5.3, you can instead assume that everything random behaves like its expec-
tation.



Chapter 6

Polynomial Methods in Finite
Fields

In this chapter, we use polynomial methods to study incidence-related problems in
spaces over finite fields. We focus on two breakthroughs: A solution to the finite
field Kakeya problem and the cap set problem. The proofs of these results are short,
elegant, and require mostly elementary tools. In Chapter 13 we study point–line
incidences in spaces over finite fields, which requires more involved arguments.

6.1 Preliminaries

Recall that a field is finite if it contains finitely many elements, and that the order of
a finite field is the number of elements in it. There is a finite field of order q ∈ N\{0}
if and only if q = pr for some prime p and positive integer r. Moreover, for every such
q there is a unique field of that order (up to an isomorphism). We denote this finite
field as Fq or Fpr .

For a prime p, the field Fp is the set of integers {0, 1, . . . , p−1} under addition and
multiplication mod p. In general, for a prime p and positive integer r, we can define
the field Fpr by considering an irreducible polynomial f ∈ Fp[x] of degree r. We can
then think of Fpr as the set of polynomials in Fp[x] under addition and multiplication
mod f . That is, when multiplying two polynomials in Fp[x] we first perform the
standard polynomial multiplication, then replace each coefficient with its value mod
p, and finally divide by f and take the remainder. For example, by setting f = x2 +1
we get F9 = {0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2}. The multiplicative group of
Fpr is cyclic, and the additive group of Fpr is the direct product of r cyclic groups of

59
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order p.

Figure 6.1: The line in F2
5 defined by y = x+ 2.

In this chapter we work in the vector space Fdq , for some prime power q and integer
d ≥ 2. We borrow most of the standard geometric notation from Rd. For example,
we refer to F2

q as a finite plane and to an element of F2
q as a point in this plane.

A line in F2
q is defined as the zero set of a linear polynomial in Fq[x, y]. Figure 6.1

demonstrates that such a line might have a somewhat surprising behavior.
When working in Fdpr , our calculations are the aforementioned operation involving

mod q and mod an irreducible polynomial of degree r. To distinguish this operation
from standard additions and multiplications, we use the notation x ≡ y (for brevity
we do not add the mod part afterwards).

We denote by 0d a vector of d zeros. In other words, it is the origin of a d-
dimensional space.

6.2 The finite field Kakeya problem

A Kakeya set is a set in Rd that contain a segment of length 1 in every possible
direction. Surprisingly, there exist Kakeya sets in Rd of measure zero, for any d ≥ 2.
This led to studying the minimum dimension that Kakeya sets must have, which have
become a main problem in harmonic analysis. Since this difficult problem is far from
being resolved, Wolff [106] suggested that it might be worth considering a finite field
variant of the problem. Dvir [26] settled the finite field problem by using a simple
and elegant algebraic approach. Some people consider this work as the beginning of
the new algebraic techniques in Discrete Geometry.

Consider a finite field Fq, and let ` be a line in Fdq . We can write ` = {u+xv : x ∈
Fq}, where u ∈ Fdq is a point incident to ` and v is the direction vector of `. A point
set P ⊂ Fdq is a Kakeya set if it contains at least one line in every direction (that is,
at least one line for every direction vector v as defined above). By containing a line,
we mean containing the set of points of Fdq that are incident to the line. For example,
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it is not difficult to verify that in F2
q a Kakeya set needs to contain q + 1 lines with

distinct directions.

Theorem 6.1 (Finite field Kakeya [26]). Let P ⊂ Fdq be a Kakeya set. Then
|P| = Θd(q

d).

Theorem 6.1 states that any Kakeya set in Fdq contains at least some constant
fraction of the points of Fdq .

It is clear that the only polynomial of R[x1, . . . , xd] that vanishes on all of Rd is
0. When working in Fq[x1, . . . , xd], this claim is no longer true. As a simple example,
note that x21 − x1 ∈ F2[x1, . . . , xd] vanishes on Fd2. We rely on the following result to
address this issue (see Problem 6.1 for a proof).

Lemma 6.2 (Schwartz–Zippel [82, 111]). Let f ∈ Fq[x1, . . . , xd]\{0} be of degree
k. Then f vanishes on at most kqd−1 points of Fdq.

We will also rely on the following lemma, which is a finite field variant of Lemma
5.4. The proof is identical to the proof of Lemma 5.4, so we do not repeat it here.

Lemma 6.3. Given a set P of m points in Fdq and a positive integer k such that(
d+k
d

)
> m, there exists a polynomial f ∈ Fq[x1, . . . , xd] \ {0} of degree at most k such

that f vanishes on every point of P.

By Lemma 6.2, when applying Lemma 6.3 with k ≤ q−1 the resulting polynomial
f does not vanish on all of Fdq .

Proof of Theorem 6.1. Assume for contradiction that there exists a Kakeya set P ⊂
Fdq such that |P| ≤ (q − 1)d/d!. By Lemma 6.3 there exists a polynomial f ∈
Fq[x1, . . . , xd] of degree 1 ≤ k ≤ q − 1 that vanishes on P . Write f =

∑k
j=0 fj,

where fj is a homogeneous polynomial of degree j. By the definition of k we have
that fk 6≡ 0.

Let v ∈ Fdq \ {0d} be an arbitrary vector. Since P is a Kakeya set, it contains a
line of direction v. That is, there exists u ∈ P such that {u+ tv : t ∈ Fq} ⊂ P . Since
f vanishes on P , we get that f(u+ tv) vanishes on every t ∈ Fq. Since f is of degree
at most q − 1, Lemma 6.2 implies f(u + tv) ≡ 0. In particular, the coefficient of tk

in f(u + tv) is zero. Note that the coefficient of tk in f(u + tv) is fk(v). We obtain
that fk(v) ≡ 0 for every nonzero vector v, so Lemma 6.2 implies that fk ≡ 0. This
contradicts f being of degree k, and completes the proof.
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6.3 The cap set problem

A lot of effort has been dedicated to studying the dense sets that do not contain any
arithmetic progressions. For example, the following result was cited as one of the two
reasons for Klaus Roth’s Fields Medal.

Theorem 6.4 (Roth [80]). There exists a constant c > 0 such that the following
holds for every positive integer n. Any set A ⊂ {1, 2, . . . , n} with |A| ≥ cn/ lg lg n
contains a 3-term arithmetic progression.

Many further works improved Theorem 6.4, generalized it, and studied variants of
it. We now consider a finite fields variant of the problem, called the cap set problem.

We say that three distinct points p, q, r ∈ Fn3 form a 3-term arithmetic progression
if there exists d ∈ Fn3 such that q = p + d and r = p + 2d. This is equivalent to
p+ r − 2q = 0n and thus to p+ q + r = 0n. We say that a set A ⊂ Fn3 is a cap set if
no three points of A form a 3-term arithmetic progression.

Figure 6.2: The card game Set corresponds to F4
3.

If you know the card game Set, you can also think about the cap set problem as
such a game. In this game, every card has four properties: number, color, pattern,
and shape (see Figure 6.2). The cap set problem is obtained by taking every card to
have n properties, and asking for the maximum number of cards that do not contain
a set.

It is easy to verify that {0, 1}n ⊂ Fn3 is a cap set of size 2n. In F2
3 there is no

cap set of size larger than four. However, for every n ≥ 3 there exists a cap set in
Fn3 of size larger than 2n. Edel [29] proved that there exists a cap set in Fn3 of size
Ω(2.217n). The cap set problem asks for the maximum size of a cap set in Fn3 .

By adapting Roth’s argument, Meshulam [66] proved that any capset in Fn3 is of
size O(3n/n). Meshulam’s proof is a simple and elegant Fourier transform argument.
Bateman and Katz [8] introduced a long and involved analysis that pushed further
Meshulam’s argument. This sophisticated proof improved the bound to O(3n/n1+ε),
for some small ε > 0.
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For years, experts disagreed about whether the answer to the cap set problem
should involve a number smaller than 3 at the base of the exponent. Recently, El-
lenberg and Gijswijt [34] settled this by proving that every cap set in Fn3 is of size
O(2.756n). Their proof was surprisingly short and elegant. Rather than using Fourier
analysis, it used a somewhat elementary polynomial proof (building on a previous re-
sult of Croot, Lev, and Pach [24]).

In Section 6.5 we present an elegant variant of the cap set proof by Tao [98]. Both
the original proof and Tao’s variant rely on the linear algebra notions of dimension
and rank. As a warm-up, in Section 6.4 we solve two other combinatorial problems
by using these linear algebra notions.

6.4 Warmups: two distances and odd towns

The two distances problem. What is the maximum size of a set P ⊂ Rd such
that the distance between every two points of the set is 1? By taking the vertices of
a d-dimensional simplex with side length 1 in Rd, we obtain d + 1 points that span
only the distance 1. It is not difficult to show that every set of d + 2 points in Rd

spans more than a single distance.
A point set P is a two-distance set if there exist r, s ∈ R such that the distance

between every pair of points of P is either r or s. What is the maximum size of a
two-distance set in Rd?

Consider the set of all points in Rd that have two coordinates with value 1 and
the other d− 2 coordinates with value 0. There are

(
d
2

)
such points, and the distance

between every pair of those is either
√

2 or 2. Larman, Rogers, and Seidel [61] showed
that the above example is not far from being tight.

Theorem 6.5. Every two-distance set in Rd has size at most
(
d
2

)
+ 3d+ 2.

Proof. Let P = {p1, p2, . . . , pm} be a two-distance set in Rd, and denote the two
distances as r, s ∈ R. We denote the distances between points a, b ∈ Rd as D(a, b).
We refer to a point in Rd as x = (x1, . . . , xd). For 1 ≤ j ≤ m, define the polynomial
fj ∈ R[x1, . . . , xd] as

fj(x) =
(
D(x, pj)

2 − r2
)
·
(
D(x, pj)

2 − s2
)
.

Note that fj vanishes on q ∈ Rd if and only if the distance between pj and q is
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either r or s. Every fj(x) is a linear combination of the polynomials(
d∑
j=1

x2j

)2

, xk

d∑
j=1

x2j , xk, x`xk, 1,

for every 1 ≤ `, k ≤ d. Since every fj is a linear combination of t =
(
d
2

)
+ 3d + 2

polynomials, we can represent fj as a vector in Rt. That is, the vector (v1, . . . , vt)
corresponds to the polynomial

v1 ·
(

d∑
j=1

x2j

)2

+ v2 · x1
d∑
j=1

x2j + v3 · x2
d∑
j=1

x2j + · · ·+ vt · 1.

For 1 ≤ j ≤ m, let Vj be the vector corresponding to fj(x). Consider α1, . . . , αm ∈
R such that

∑m
j=1 αjVj = 0. Let g(x) =

∑m
j=1 αjfj(x) = 0. For some fixed pk ∈ P ,

note that fj(pk) = 0 for every j 6= k and that fj(pj) = r2s2. Combining the above
implies

g(pk) =
m∑
j=1

αjfj(pk) = αkr
2s2.

Since g(x) = 0, we have that αk = 0. That is, the only solution
∑m

j=1 αjVj = 0 is
α1 = · · · = αm = 0. This implies that the vectors V1, . . . , Vm are linearly independent.
Since these vectors are in Rt, we conclude that m ≤ t =

(
d
2

)
+ 3d+ 2.

In the proof of Theorem 6.5 we think of a space of polynomials as a vector space,
and study the dimension of this space. The following problem can be solved in a
similar manner. We present the proof in slightly different manner, to involve the
rank of a matrix. This will prepare us for the cap sets proof in the following section.

The odd town problem. The odd town problem studies sets of odd size that have
even-sized intersections.

Theorem 6.6. In the town of Liouville there are n people and m clubs. Every club
has an odd number of members. For every two clubs, the number of people who are
in both is even. Then m ≤ n.

Proof. Let P = {p1, . . . , pn} be the set of people and let C = {c1, . . . , cm} be the
set of clubs. Let Z be an m ×m matrix with entries in F2. The value of Zj,k is the
number of people who are in both cj and ck, modulo 2. In other words, Z has 1’s on
the main diagonal and 0’s everywhere else. This implies that rk(Z) = m.
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For 1 ≤ j ≤ n, let W j be an m×m matrix with entries in F2, such that W j
k,` = 1

if and only if person pj is a member of both cj and ck. Clearly Z =
∑n

j=1W
j, under

addition mod 2.
We now study W j for a fixed 1 ≤ j ≤ n. For 1 ≤ k ≤ m, if person pj is not

a member of club ck then the k’th row of W j is all zeros. Also, all the nonzero
rows of W j are identical (there are 1’s exactly for the clubs of pj). This implies that
rk(W j) ≤ 1. Since Z is a sum of n matrices of rank at most one, we have rk(Z) ≤ n.
Recalling that rk(Z) = m, we conclude that m ≤ n.

In the two distances problem we studied the dimension of a vector space. In the
two distances problem we studied ranks of matrices. For the cap set problem, we will
further generalize this approach to three-dimensional objects.

6.5 The slice rank method

We now return to studying sets in Fn3 . Consider a set A ⊂ Fn3 and a polynomial
f : A× A× A→ F3. We say that f(x, y, z) has a slice rank of 1 if we can write

f(x, y, z) = g(x) ·h(y, z) or f(x, y, z) = g(y) ·h(x, z) or f(x, y, z) = g(z) ·h(x, y),

for some polynomials g : A → F3 and h : A × A → F3. More generally, we say that
f(x, y, z) has a slice rank of k if k is the smallest integer that satisfies the following:
There exist k polynomials f1, . . . , fk : A × A × A → F3 of slice rank 1 such that
f(x, y, z) =

∑k
j=1 fj(x, y, z). We write sr(f) = k. As a first observation, note that

the slice rank of a polynomial is at most the number of monomials it has. As another
example, when A = F3 we have sr(x+ y + z) = 2.

We consider g, h : A → F3 as the same function if g(a) = h(a) for every a ∈ A.
That is, g and h may be distinct as general functions but identical when their range
is restricted to A. The heart of the cap set proof lies in the following property of slice
rank.

Lemma 6.7. Let A ⊂ Fn3 and let f : A × A × A → F3 satisfy that f(x, y, z) 6= 0 if
and only if x = y = z. Then sr(f) = |A|.

Note the similarity to the odd town proof, where cj ∩ ck 6≡ 0 mod 2 if and only
if j = k.

Proof. For a ∈ A, we define the function 1a : A→ F3 as

1a(x) =
n∏
j=1

(
1− (aj − xj)2

)
.
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For c, d ∈ F3, note that 1 − (c − d)2 ≡ 0 unless c = d. Thus, 1a(x) ≡ 1 when a = x
and otherwise 1a(x) ≡ 0.

We have that

f(x, y, z) =
∑
a∈A

1a(x)f(a, y, z).

Since this is a sum of |A| polynomials of slice rank one, we get that sr(f) ≤ |A|. Note
that this bound holds for every polynomial f(x, y, z).

By the definition of sr(f), there exist polynomials fj : A→ F3 and gj : A×A→ F3

such that

f(x, y, z) =
s∑
j=1

fj(x)gj(y, z) +
t∑

j=s+1

fj(y)gj(x, z) +

sr(f)∑
j=t+1

fj(z)gj(x, y). (6.1)

Let P be the space of functions from A to F3. For any function h : A → F3

we have h(x) =
∑

a∈A h(a) · 1a(x). Thus, P is spanned by |A| polynomials. These
polynomials are linearly independent, so dimP = |A|.

Let P ′ be the set of polynomials h ∈ P that satisfy the following: For every
1 ≤ j ≤ s we have

∑
a∈A

fj(a)h(a) ≡ 0.

This is a set of s homogeneous equations in elements of P , so dimP ′ ≥ |A| − s.
For a polynomial h ∈ P ′, denote the support of h as Sh = {a ∈ A : h(a) 6= 0}.

Fix h ∈ P ′ with a maximal support. If |Sh| < dimP ′ then there is a nonzero h′ ∈ P ′
that vanishes on every point of Sh. (As above, asking a polynomial to vanish on a
point corresponds to one homogeneous equation.) Then h+ h′ ∈ P ′ and has a larger
support than h, contradicting our choice of h. Then h+h′ would have a larger support
than h, contradicting our choice of h. We conclude that |Sh| ≥ dimP ′ ≥ |A| − s.
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Recalling (6.1), we have that

F (y, z) =
∑
a∈A

h(a) · f(a, y, z)

=
∑
a∈A

h(a)

 s∑
j=1

fj(a)gj(y, z) +
t∑

j=s+1

fj(y)gj(a, z) +

sr(f)∑
j=t+1

fj(z)gj(a, y)


=

s∑
j=1

(
gj(y, z)

∑
a∈A

fj(a)h(a)

)
+

t∑
j=s+1

(
fj(y)

∑
a∈A

gj(a, z)h(a)

)

+

sr(f)∑
j=t+1

(
fj(z)

∑
a∈A

gj(a, y)h(a)

)

By the definition of P ′, we have that
∑

a∈A fj(a)h(a) = 0 and may remove the
first term in the above expression. Rewriting the above, there exist polynomials
ϕj : A→ F3 such that

F (y, z) =
t∑

j=s+1

fj(y)ϕj(z) +

sr(f)∑
j=t+1

fj(z)ϕj(y). (6.2)

Imitating the proof of Theorem 6.6, we complete the current proof by double
counting the rank of a matrix. Write A = {a1, a2, . . . , a|A|}. Let Z be an |A| × |A|
matrix such that Zj,k = F (aj, ak). By the assumption of the theorem, we have
f(x, y, z) = 0 whenever y 6= z. This implies that F (y, z) =

∑
a∈A h(a) · f(a, y, z) = 0

whenever y 6= z. Thus, Z is a diagonal matrix. Similarly, we get that F (y, y) =
h(y) · f(y, y, y). This implies that F (y, y) 6= 0 for every y ∈ Sh. Recalling that
|Sh| ≥ |A| − s, we get that rk(Z) ≥ |A| − s.

For s < j ≤ t, let W j be the |A| × |A| matrix defined by W j
k,` = fj(ak) · ϕj(a`).

For t < j ≤ sr(f), let W j be the |A| × |A| matrix defined by W j
k,` = fj(a`) ·ϕj(ak). It

can be easily verified that every two rows of every W j are linearly dependent. Thus,
the rank of every W j is at most 1.

By (6.2), we note that Z =
∑sr(f)

j=s+1Wj. Since Z is a sum of sr(f)− s matrices of
rank at most one, we get that rkZ ≤ sr(f)− s. Combining this with rk(Z) ≥ |A| − s
implies |A| ≤ sr(f), which completes the proof.

The proof of the cap sets result is now mostly an application of Lemma 6.7.

Theorem 6.8. Let A be a cap set in Fn3 . Then |A| = O(2.756n).
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Proof. Since A is a cap set, we have that a, b, c ∈ A satisfy a+ b+ c = 0n if and only
if a = b = c. Consider the polynomial f : A× A× A→ F3 defined as

f(x, y, z) =
n∏
j=1

(
1− (xj + yj + zj)

2
)
. (6.3)

Similarly to an argument in the proof of Lemma 6.7, we note that f(x, y, z) ≡ 1
if x + y + z = 0n and otherwise f(x, y, z) ≡ 0. That is, for a, b, c ∈ A we have that
f(a, b, c) ≡ 1 if and only if a = b = c. We may thus apply Lemma 6.7 with A and
f(x, y, z), to obtain that sr(f) = |A|.

For x = (x1, . . . , xn) and p = (p1, . . . , pn), we write xp = xp11 x
p2
2 · · ·xpnn . We also

write |p| = p1 + p2 + · · · + pn with summation over R. We say that degree of a
monomial of f(x, y, z) in x is the sum of the degrees of x1, . . . , xn in this monomial
(over R). Since deg f(x, y, z) ≤ 2n, each monomial of f(x, y, z) has degree at most
2n/3 in at least one of x, y, and z. We can thus rewrite (6.3) as

f(x, y, z) =
∑
p∈Fn3
|p|≤2n/3

xpgx,p(y, z) +
∑
p∈Fn3
|p|≤2n/3

ypgy,p(x, z) +
∑
p∈Fn3
|p|≤2n/3

zpgz,p(x, y). (6.4)

Here gx,p, gy,p, gz,p : A× A→ F3 are polynomials of degree at most 2n.
Set r = |{p ∈ Fn3 : |p| ≤ 2n/3}|. By (6.4) we have that sr(f) ≤ 3r. Recalling that

sr(f) = |A| gives |A| ≤ 3r. It remains to derive an upper bound for r. This can be
done using elementary combinatorial tools, and is in some sense less interesting.

Given p ∈ Fn3 , for 0 ≤ j ≤ 2 we denote by mj the number of coordinates of p that
are equal to j. Using this notation, we get that

r =
∑

m0+m1+m2=n
m1+2m2≤2n/3

n!

m0!m1!m2!
.

The multinomial theorem (for example, see [14, Chapter 4]) implies

(
1 + x+ x2

)n
=

∑
m0+m1+m2=n

n!

m0!m1!m2!
· xm1+2m2 .
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Assuming that 0 < x < 1, the above leads to

x−2n/3
(
1 + x+ x2

)n
=

∑
m0+m1+m2=n

n!

m0!m1!m2!
· xm1+2m2−2n/3

>
∑

m0+m1+m2=n
m1+2m2≤2n/3

n!

m0!m1!m2!
· xm1+2m2−2n/3

>
∑

m0+m1+m2=n
m1+2m2≤2n/3

n!

m0!m1!m2!
= r.

Set g(x) = x−2/3 (1 + x+ x2). It can be easily verified that the minimum of g(x)
when 0 < x < 1 is obtain for x = (

√
33 − 1)/8. This minimum value satisfies

g(x) < 2.76, implying that |A| ≤ 3r = O(2.76n).

6.6 Exercises

Problem 6.1. It is common to prove Lemma 6.2 (Schwartz–Zippel) by induction on
d. In this question you will prove Lemma 6.2 in a different way.

Let fk be the homogeneous component of degree k of f . Let p ∈ Fdq \ {0n} such
that fk(p) 6= 0. Partition Fqd into qd−1 lines with direction p. Complete the proof by
showing that f is never identically zero when restricted to such a line.

Problem 6.2. For 0 < α < 1, we say that P ⊂ Fdq is a qα-Kakeya set if for every
u ∈ Fdq \ {0d} there exists a line with direction u that contains at least qα points of
P . Adapt the proof of finite field Kakeya theorem to obtain a lower bound for the
minimum size of a qα-Kakeya set.

Problem 6.3. Construct a two-distance set in Rn of size
(
n
2

)
+ 1.

Problem 6.4. A library contains n + 1 books and has n members. Every member
read at least one book from the library. Prove that there exist two disjoint sets of
members that read exactly the same set of books. It does not matter how many
people from the same set read a book, and some members may not be in either set.

Problem 6.5. Solve the library problem (Problem 6.4) with n+2 books by applying
Radon’s Theorem. Radon’s theorem states that any set of d + 2 points in Rd can be
partitioned into two disjoint subsets whose convex hulls intersect.

Problem 6.6. In the even town problem every club has an even number of members
and every two clubs have an odd number of common members.
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(a) Use a simple reduction to the odd town problem, to show that there are at most
n+ 1 clubs.
(b) Assuming that n is even, imitate the proof of Theorem 6.6 to show that there are
at most n clubs.



Chapter 7

Constant-degree Polynomial
Partitioning and Incidences in C2

In this chapter we study incidences with complex algebraic curves in the complex
plane C2. Most of the time we will think of C2 as R4, so this chapter is also our
first step in studying incidences in Rd (where d ≥ 3). To handle such incidence
problems we introduce an alternative way of using polynomial partitioning, which
we refer to as constant-degree polynomial partitioning.1 In R2 this technique leads to
incidence bounds that are slightly worse than those presented in Chapter 3. However,
in dimension d ≥ 3 it is often significantly simpler to derive incidence bounds by using
constant-degree polynomial partitioning.

7.1 Introduction: Incidence issues in C2 and Rd

Consider a point-curve incidence problem in C2. That is, we have a set of complex
points and curves in C2 where each curve is defined by a polynomial in C[z1, z2] (and
the variables z1 and z2 get values in C). It is tempting to try to imitate the proof
from Chapter 3 for incidences in R2 — combinatorially obtain a weak incidence bound,
partition C2 using polynomial partitioning, and then apply the weak bound separately
in every cell. Unfortunately, partitioning polynomials do not exist in complex spaces,
since removing a variety from Cd cannot disconnect it into more than one connected
component. That is, we cannot split the space into cells using varieties.

One way to overcome the above issue is to think of C2 as R4, since partitioning

1As usual, there is no standard name for this technique. Some papers refer to it as “low degree
polynomial partitioning”.

71
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polynomials do exist in R4. Specifically, we define four real variables x1, x2, y1, y2 and
rewrite the two complex coordinates as z1 = x1 + iy1 and z2 = x2 + iy2. Let the map
φ : C2 → R4 be defined as

φ(x1 + iy1, x2 + iy2) = (x1, y1, x2, y2).

Using φ, we move from a point-curve incidence problem in C2 to an incidence
problem with two-dimensional varieties in R4. Indeed, consider a curve in C2 that is
defined by a polynomial f ∈ C[z1, z2]. Asking f to vanish on a point (x1 + iy1, x2 +
iy2) is equivalent to asking both the real and the imaginary parts of f to vanish
on x1, y1, x2, y2. That is, φ(V(f)) ⊂ R4 is a variety defined by two polynomials
in R[x1, y1, x2, y2] of degree at most deg f . Note that φ maintains the point-curve
incidences.

We now point out a basic issue that arises when studying incidence problems in
dimension d ≥ 3. For simplicity, we consider one of the simplest cases: incidences
between points and planes in R3. Let ` ⊂ R3 be a line, let P be a set of m points on `,
and let Π be a set of n planes that contain ` (e.g., see Figure 7.1). This construction
satisfies I(P ,Π) = mn, implying that the problem is trivial.

Figure 7.1: By having planes that contain a common line, we can obtain mn point-plane
incidences.

To turn the point-plane problem into a non-trivial one, one adds additional restric-
tions on the points and planes. The most common restriction is probably requiring
the incidence graph of P ×Π not to contain a copy of Ks,t (for some constants s and
t). This problem is interesting (and open), and to obtain some bound for it we try
to adapt our proof for the case of point-curve incidences in R2. Such a restriction
arises naturally in many cases. For example, assuming that no k points of P are
collinear implies that the incidence graph contains no Kk,2. Below we will see that
this restriction is also useful when studying incidences in C2.

Now that we have a non-trivial point-plane incidence problem in R3, we would like
to study it using polynomial partitioning as in Chapter 3. By inspecting the proof of
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our weak incidence bound (Lemma 3.4), we notice that it is not only valid for curves
in R2, but rather for any set of varieties in Rd and also after replacing R with another
field. In particular, this lemma is just a bound on the number of edges in a bipartite
graph with no copy of Ks,t, and does not involve any geometry.

Lemma 7.1. Let F be a field and let d be a positive integer. Let P be a set of m
points in Fd and let V be a set of n subsets of Fd. If the incidence graph of P × V
contains no copy of Ks,t, then

I(P ,V) = Os,t

(
mn1− 1

s + n
)
.

The polynomial partitioning theorem also holds in any dimension, and we can
use it to partition P . In fact, repeating the analysis for incidences in the cells of the
partition as in Chapter 3 is straightforward. On the other hand, the last step of the
analysis — handling incidences on the partition itself — becomes significantly more
difficult than in the planar case. The partition is a two-dimensional variety, possibly
of a large degree. It can contain most of the points of P and intersect most of the
planes of Π in high-degree curves.

When deriving incidence bounds in dimension d ≥ 3, usually the main difficulty is
bounding the number of incidences on the partition. Solymosi and Tao [90] introduced
the constant-degree polynomial partitioning technique to overcome this difficulty.

7.2 Curves in higher dimensions

In this brief section we present a generalization of the point-curve incidence bound
in R2 (Theorem 3.3) to higher dimensions. We will rely on this result below, and it
is also a good introduction to projections of varieties onto lower dimensional spaces.

Figure 7.2: The curve V(xy − 1).

Let U ⊂ Rd be a variety of degree k and of dimension d′. Let π : Rd → Re be a
standard projection: a linear map that keeps e out of the d coordinates of a point in
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Rd. The projection π(U) is not necessarily a variety. For example, the projection of
V (xy − 1) ⊂ R2 onto the x-axis is the set {x ∈ R2 : x 6= 0}, which is not a variety
(see Figure 7.2). However, π(U) is contained in a variety of dimension at most d′ and
of degree Ok,d(1) (e.g., see [12, Proposition 2.8.6]2). We denote this variety as π(U).

Lemma 7.2. Consider an integer d ≥ 2. Let P be a set of m points and let Γ be a
set of n varieties of dimension at most one and degree at most k, both in Rd. If the
incidence graph of P × Γ contains no copy of Ks,t, then

I(P ,Γ) = Os,t,k,d

(
m

s
2s−1n

2s−2
2s−1 +m+ n

)
.

Proof. We will assume that no two varieties of Γ have a common component. It is
not difficult to handle the case where there are common components (see Problem
3.5). We split every reducible one-dimensional variety of Γ into irreducible curves and
possibly also one zero-dimensional variety of degree at most k. By Lemma 4.9, every
variety of Γ consists of Ok,d(1) irreducible components. Thus, after the splitting step
we have |Γ| = Ok,d(n).

We first bound the number of incidences between P and the zero-dimensional
varieties of Γ. By Theorem 4.12, the number of points in such a variety is Od,k(1).
Since each zero-dimensional variety participates in Od,k(1) incidences, in total such
varieties contribute Od,k(n) incidences.

We remove the zero-dimensional varieties from Γ, so that Γ becomes a set of
Ok,d(n) irreducible curves. We perform a generic rotation of Rd around the ori-
gin and then project P and Γ onto the x1x2-plane (that is, we use the projection
π(x1, x2, . . . , xd) = (x1, x2)). This process is equivalent to a projection of P and Γ
onto a generic 2-flat of Rd. We set

P ′ = {π(p) : p ∈ P}, and Γ′ = {π(γ) : γ ∈ Γ}.

Projecting the elements of Γ might introduce new intersection points between the
curves of Γ′. However, since we first perform a generic rotation, we may assume that
the projection does not lead to new incidences. This implies that I(P ′,Γ′) = I(P ,Γ)
and that the incidence graph of P ′ × Γ′ does not contain a copy of Ks,t. Also due to
the generic rotation, we may assume that the points of P ′ are distinct and that no
two curves of Γ′ have a common irreducible component. We apply our point-curve
incidence result in R2 (Theorem 3.3) on P ′ and Γ′. This yields the assertion of the
lemma.

2I still need to add a proper reference for the degree property.
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While Lemma 7.2 is a generalization of Theorem 3.3 to Rd, we can obtain a better
bound when d ≥ 3. For more details see Chapter 11.

7.3 Constant-degree polynomial partitioning

In this section we introduce the constant-degree polynomial partitioning technique.
Instead of immediately considering incidences in higher dimensions, we first use this
technique to prove a weaker version of the Szemerédi–Trotter theorem. This allows
us to see the basic ideas without handling the additional issues that arise in higher
dimensions.

Theorem 7.3. Let P be a set of m points and let L be a set of n lines, both in R2.
Then for any ε > 0, we have I(P ,L) = Oε(m

2/3+εn2/3 +m+ n).

A warning for readers who are not used to working with asymptotic notation:
It is risky to use an O(·)-notation in the statement of the bound that is proved by
induction. To see the issue, we now prove the false claim 2n = O(n) by induction on
n. For the induction basis, the claim holds for n ≤ 10 by taking the hidden constant
in the O(·)-notation to be sufficiently large. For the induction step, assume that
2n = O(n) for a specific value of n and note that 2n+1 = 2 ·2n = 2 ·O(n) = O(n). The
mistake in the above argument is that the induction step does not really close. While
we get an asymptotically correct upper bound for 2n+1, the hidden constant that we
get in the O(·)-notation is larger than the constant from the induction hypothesis.
That is why in the following proof we require the α variables.

Proof of Theorem 7.3. We prove the theorem by induction on m+n. Specifically, we
prove by induction that, for any fixed ε > 0, there exist constants α1, α2 such that

I(P ,L) ≤ α1m
2/3+εn2/3 + α2(m+ n).

For the induction basis, the bound holds for small m+ n (e.g., for m+ n ≤ 100)
by taking α1 and α2 to be sufficiently large.

For the induction step, we first recall our weak incidence bound (Lemma 7.1),
which implies I(P ,L) = O(m

√
n + n). When m = O (

√
n) this implies I(P ,L) =

O(n), which completes the proof. Thus, we may assume that

n = O
(
m2
)
. (7.1)

We take r to be a sufficiently large constant, whose value depends on ε and will
be determined below. Let f be an r-partitioning polynomial of P . According to
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the polynomial partitioning theorem (Theorem 3.1), f is of degree O(r) and V(f)
partitions R2 into connected cells, each containing at most m/r2 points of P . By
Warren’s theorem (Theorem 3.2), the number of cells is c = O(r2). The relations
between the constants of this proof are3

2ε � r � α2 � α1.

Let L0 denote the subset of lines of L that are contained in V(f), and let P0 =
P ∩ V(f). Denote the cells of the partition as C1, . . . , Cc. For j = 1, . . . , c, put
Pj = P ∩ Cj and let Lj denote the set of lines of L that intersect Cj. Note that

I(P ,L) = I(P0,L0) + I(P0,L \ L0) +
c∑
j=1

I(Pj,Lj).

For any line ` ∈ L\L0, by Bézout’s theorem (Theorem 2.5) ` and V(f) have O(r)
common points. This immediately implies

I(P0,L \ L0) = O(nr). (7.2)

Set m0 = |P0| and m′ = m−m0; that is, m′ is the number of points of P that are
in the cells. Since f is of degree O(r), we get that V(f) can contain at most O(r)
lines. This implies

I(P0,L0) = O(m0r). (7.3)

It remains to bound
∑c

j=1 I(Pj,Lj). For j = 1, . . . , c, put mj = |Pj| and nj = |Lj|.
Note that m′ =

∑c
j=1mj, and recall that mj ≤ m/r2 for every 1 ≤ j ≤ c. By the

induction hypothesis, we have

c∑
j=1

I(Pj,Lj) ≤
c∑
j=1

(
α1m

2/3+ε
j n

2/3
j + α2(mj + nj)

)
≤ α1

(m
r2

)2/3+ε c∑
j=1

n
2/3
j + α2

(
m′ +

c∑
j=1

nj

)
. (7.4)

The above bound of O(r) on the number of intersection points between a line
` ∈ L \ L0 and V(f) implies that each line enters O(r) cells (a line has to intersect

3By a� b we mean that the constant b is larger than some expression depending on the constant
a. For example, we might require that b = Ω(aa).
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V(f) when moving from one cell to another). This implies
∑c

j=1 nj = O(nr). Com-
bining this with Hölder’s inequality (see the “Notation and inequalities” part of the
introduction) yields

c∑
j=1

n
2/3
j ≤

(
c∑
j=1

nj

)2/3( c∑
j=1

1

)1/3

= O
(

(nr)2/3 · r2/3
)

= O
(
n2/3r4/3

)
. (7.5)

By combining (7.4) and (7.5), we obtain

c∑
j=1

I(Pj,Lj) = O

(
α1m

2/3+εn2/3

r2ε
+ α2nr

)
+ α2m

′.

Combining this with (7.2) and (7.3) yields

I(P ,L) = O

(
α1m

2/3+εn2/3

r2ε
+ α2nr +m0r

)
+ α2m

′.

By taking α2 to be sufficiently large with respect to r and the constant in the
O(·)-notation, we get

I(P ,L) = O

(
α1m

2/3+εn2/3

r2ε
+ α2nr

)
+ α2(m

′ +m0)

= O

(
α1m

2/3+εn2/3

r2ε
+ α2nr

)
+ α2m. (7.6)

From (7.1) we have n = n2/3n1/3 = O(m2/3n2/3). By taking α1 to be sufficiently
large with respect to α2, r, and the constant in the O(·)-notation in (7.6), we obtain
O(α2nr) ≤ α1

2
m2/3n2/3. Similarly, by taking r to be sufficiently large with respect to

ε and the constant in the O(·)-notation in (7.6), we may assume that

O

(
α1m

2/3+εn2/3

r2ε

)
≤ α1

2
m2/3+εn2/3.

Combining this with (7.6) completes the induction step, and thus the proof of the
theorem.

Remarks. (i) Without the extra ε in the exponent of the bound of Theorem 7.3,
the induction step would have failed. Specifically, when using the induction hypothesis
to sum up the incidences inside of the cells, we would have obtained an expression
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that has the correct asymptotic value but with a leading constant that is larger than
the one we started with. A similar situation always occurs when using constant-
degree polynomial partitioning, and in some sense this is the main disadvantage of
the technique.

(ii) Even though we do not apply the weak incidence bound (Lemma 7.1) in every
cell as before, the proof still relies on this bound in a different place.

7.4 The Szemerédi–Trotter theorem in C2

Now that we have a basic understanding of constant-degree polynomial partitioning,
we use this technique to handle a more difficult problem — the Szemerédi–Trotter
theorem in C2. That is, we have a point set P and a set of lines L, both in C2. One
can think of a complex line as the zero set (over the complex numbers) of a linear
bivariate polynomial with coefficients in C.

Theorem 7.4. Let P be a set of m points and let L be a set of n lines, both in C2.
Then for any ε > 0, we have I(P ,L) = Oε(m

2/3+εn2/3 +m+ n).

Proof. We move from C2 to R4 by using the map φ defined in Section 7.1. That
is, a point (x1 + iy1, x2 + iy2) ∈ C2 is considered as the point (x1, y1, x2, y2) ∈ R4,
and the set P becomes a set of m points in R4. Given a line ` in C2, we can write
` = V((a + ia′)z1 + (b + ib′)z2 + (c + ic′)) for some constants a, a′, b, b′, c, c′ ∈ R. A
point (x1 + iy1, x2 + iy2) ∈ C2 is in ` if and only if

(a+ ia′)(x1 + iy1) + (b+ ib′)(x2 + iy2) + (c+ ic′) = 0,

or equivalently,

bx2 − b′y2 + ax1 − a′y1 + c = 0 and b′x2 + by2 + a′x1 + ay1 + c′ = 0.

Thus, when moving to R4 a line ` is defined by two linear equations. It is not
difficult to verify that each equation defines a distinct hyperplane, and that these two
hyperplanes are not parallel. That is, ` becomes a 2-flat in R4. We thus consider L
as a set of n 2-flats in R4. Note that the set of incidences in P × L does not change
when moving from C2 to R4. Since two lines in C2 intersect in at most one point,
every two 2-flats of L intersect in at most one point. That is, the incidence graph of
P × L contains no K2,2. To complete the proof of the theorem, we derive an upper
bound on the number of point-flat incidences in R4.
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An incidence bound in R4. Imitating the proof of Theorem 7.3, we prove the
point-flat incidence bound by induction on m+n. Specifically, we prove that for any
fixed ε > 0 there exist constants α1, α2 such that

I(P ,L) ≤ α1m
2/3+εn2/3 + α2(m+ n). (7.7)

For the induction basis, the bound holds for small m + n by choosing α1 and α2

sufficiently large. For the induction step, we recall that the incidence graph contains
no copy of K2,2. As before, the weak incidence bound (Lemma 7.1) implies I(P ,L) =
O(m

√
n + n). When m = O (

√
n) this implies I(P ,L) = O(n), which completes the

proof. We may thus assume that

n = O
(
m2
)
. (7.8)

We take r to be a sufficiently large constant, whose value depends on ε and will
be determined below. Let f be an r-partitioning polynomial of P . According to the
polynomial partitioning theorem, f is of degree O(r) and V(f) partitions R4 into
connected cells, each containing at most m/r4 points of P . By Warren’s theorem
(Theorem 3.2), the number of cells is c = O(r4). As in the proof of Theorem 7.3, the
relations between the constants of this proof are

2ε � r � α2 � α1.

Denote the cells of the partition as C1, . . . , Cc. For j = 1, . . . , c, put Pj = P ∩ Cj
and let Lj denote the set of 2-flats of L that intersect Cj. Let L0 denote the subset
of 2-flats of L that are contained in V(f), and let P0 = P ∩V(f). Notice that

I(P ,L) = I(P0,L0) + I(P0,L \ L0) +
c∑
j=1

I(Pj,Lj).

Unlike in the planar case, we cannot rely on Bézout’s theorem (Theorem 2.5) to
bound the number of cells that are intersected by a 2-flat h ∈ L. Instead, we notice
that every cell of the partition that is intersected by a 2-flat h ∈ L corresponds to
at least one connected component of h \ V(f). By Theorem 4.11 with U = h and
W = V(f), we get that h intersects O(r2) cells.

Bounding
∑c

j=1 I(Pj,Lj). For j = 1, . . . , c, put mj = |Pj| and nj = |Lj|. We also

set m′ =
∑c

j=1mj, and recall that mj ≤ m/r4 for every 1 ≤ j ≤ c. By the induction
hypothesis, we have



80 CHAPTER 7. CONSTANT-DEGREE PARTITIONS AND C2

c∑
j=1

I(Pj,Lj) ≤
c∑
j=1

(
α1m

2/3+ε
j n

2/3
j + α2(mj + nj)

)
≤ α1

(m
r4

)2/3+ε c∑
j=1

n
2/3
j + α2

(
m′ +

c∑
j=1

nj

)
. (7.9)

The above bound of O(r2) on the number of cells that are intersected by a 2-
flat implies

∑c
j=1 nj = O(nr2). Combining this with Hölder’s inequality (see the

“Notation and inequalities” part of the introduction) implies

c∑
j=1

n
2/3
j = O

((
nr2
)2/3 · r4/3) = O

(
n2/3r8/3

)
. (7.10)

By combining (7.9) and (7.10), we obtain

c∑
j=1

I(Pj,Lj) ≤ O

(
α1m

2/3+εn2/3

r4ε
+ α2nr

2

)
+ α2m

′.

Note that (7.8) implies n = O(m2/3n2/3). Thus, by taking α1 to be sufficiently
large with respect to α2 and r, we have

c∑
j=1

I(Pj,Lj) ≤ O

(
α1m

2/3+εn2/3

r4ε

)
+ α2m

′.

Finally, by taking r to be sufficiently large with respect to ε and the constant of
the O(·)-notation, we have

c∑
j=1

I(Pj,Lj) ≤
α1

3
m2/3+εn2/3 + α2m

′. (7.11)

Bounding I(P0,L \ L0). If a 2-flat h ∈ L is not contained in V(f), then V(f) ∩ h
is at most one-dimensional. Specifically, V(f) ∩ h is a variety of dimension at most
one and of degree O(r) (since it is defined by the linear equations of h and by f). We
denote the set of these lower-dimensional varieties as Γ = {h ∩V(f) : h ∈ L \ L0}.
We also set |P0| = m0. Note that the incidence graph of Γ × P0 contains no K2,2.
Thus, Lemma 7.2 implies

I(P0,L \ L0) = I(P0,Γ) = Or

(
m

2/3
0 n2/3 +m0 + n

)
.
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As before, by using (7.8) and taking α1 and α2 to be sufficiently large with respect
to r and the constant of the O(·)-notation, we have

I(P0,L \ L0) ≤
α1

3
m2/3n2/3 +

α2

2
m0. (7.12)

Bounding I(P0,L0). Consider a point p ∈ P0 such that p is incident to two 2-flats
h, h′ ∈ L0. By performing a translation of R4 so that p becomes the origin, we can
then think of h and h′ as vector subspaces. Recall that h and h′ intersect only in p,
which implies that the vectors from these two spaces span all of R4. Since both h
and h′ are contained in V(f), their tangent planes at p (which are identical to h and
h′, respectively) are contained in the tangent hyperplane TpV(f). Since two 2-flats
cannot span R4 while also being contained in the same hyperplane, TpV(f) is not
well defined. We conclude that p is a singular point of V(f).

The above implies that at most one plane of L0 can be incident to a point of P0

that is a regular point of V(f). Such regular points contribute O(m0) incidences to
I(P0,L0).

Let Vsing be the set singular points of V(f). By Theorem 4.8, the set Vsing is a
variety of dimension at most two and of degree Or(1). Thus, Vsing contains Or(1)
2-flats of L0 and these yield Or(m0) incidences with the points of P0. The 2-flats of
L0 that are not contained in Vsing intersect Vsing in varieties that are at most one-
dimensional and of degree Or(1). By Lemma 7.2, the number of incidences that these
lower-dimensional varieties contribute is Or

(
m2/3n2/3 +m0 + n

)
. By combining the

singular and regular cases, we get

I(P0,L0) = Or

(
m2/3n2/3 +m0 + n

)
.

Once again, by using (7.8) and taking α1 and α2 to be sufficiently large with
respect to r and the constant of the O(·)-notation, we have

I(P0,L0) ≤
α1

3
m2/3n2/3 +

α2

2
m0. (7.13)

The induction step is obtained by combining (7.11), (7.12), and (7.13), and this
in turn completes the proof of the theorem.

Zahl [108] removed the ε in the bound of Theorem 7.4 by using a more involved
analysis. An alternative proof that does not rely on polynomial partitioning and leads
to a bound with no ε was obtained by Tóth [101].

Solymosi and Tao proved an incidence result that is more general than the one
stated for 2-flats in the proof of Theorem 7.4. The proof of the more general incidence
is very similar to the one presented above.
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Theorem 7.5 (Solymosi and Tao [90]). Let P be a set of m points and let V be
a set of n varieties of degree at most k, both in Rd, such that:

� The dimension of every variety of V is at most d/2.
� The incidence graph contains no copy of Ks,t.
� There are no incidences between a point p ∈ P and a variety U ∈ V where p is

a singular point of U .
� If a point p ∈ P is incident to two varieties U,W ∈ V and p is a regular point

of both U and W , then the tangent spaces TpU and TpW intersect only in the
origin.

Then I(P ,V) = Oε,k,d,s,t

(
m

s
2s−1

+εn
2s−2
2s−1 +m+ n

)
.

Note that this result can be seen as a generalization of the planar incidence bound
from Theorem 3.3.

7.5 (Optional) Arbitrary curves in C2

After using constant-degree polynomial partitioning to extend the Szemerédi–Trotter
theorem to C2, we would like to derive a general point-curve incidence bound in
C2. Unfortunately, the proof of Theorem 7.4 does not easily extend even to the case
of circles. In that proof we relied on the property that if two 2-flats intersect in a
point p, then their tangent planes at p also intersect in a single point. This property
holds since if two lines in C2 intersect in a point p, then their tangent lines at p also
intersect in a single point. Hardly any other family of curves in C2 has this property.
For example, two circles in C2 may intersect in a point p while having the same
tangent line at p.

Without the aforementioned tangent intersection property, we are no longer able
to use the above argument for bounding the number of incidences with curves that
are contained in the partition. To overcome this difficulty, we rely on a more analytic
argument from [88]. We begin by defining some basic concepts from Differential
Geometry. Since these concepts will not be used anywhere else in the book, we will
be somewhat less rigorous than usual.

Intuitively, a set M ⊆ Rc is a d-dimensional smooth manifold if for every point
p ∈ M there exists an open set of M that contains p and “behaves” like a d-flat
(specifically, the open set needs to be homeomorphic to an open subset of a d-flat).
For our purpose, it suffices to state that any open subset of a d-dimensional variety V
that does not contain any singular points of V is a d-dimensional smooth manifold.
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For example, any open subset of a plane in R3 is a 2-dimensional smooth-manifold.
An open subset of a circular conical surface is a smooth manifold if and only if it does
not contain the apex (see Figure 4.2). For brevity, below we omit the word “smooth”
and use the term manifold.

Let M be a d-dimensional manifold. The tangent bundle of M is a 2d-dimensional
manifold defined as

TM = {(p, v) ∈M × (Rd \ {0} : v ∈ TpM}.

For d′ < d, let E ⊂ TM be a (d + d′)-dimensional sub-manifold of TM . We
say that E is a d′-dimensional sub-bundle of TM if for every point p ∈ M we have
({p}×TpM)∩E = {p}×V , where V is a d′-dimensional vector subspace of TpM = Rd.
We denote the subspace V as E(p) ⊂ Rd.

A vector field of a manifold M ⊂ Rc is an assignment of a vector of Rc to each point
of M . That is, if X is a vector field on a manifold M ⊂ Rc, then X : M → Rd\{0}. As
with any function, a vector field X is said to be smooth if X is infinitely differentiable.
Note that a one-dimensional sub-bundle of a manifold M is a smooth vector field on
M . Abusing notation, we sometimes write X(p) = v instead of X(p) = (p, v) ∈ TM .
If E is a sub-bundle of TM and X : M → TM is a vector field, we say that X takes
values in E if X(p) ∈ E for all p ∈M .

We are only interested in smooth vector fields. As with manifolds, we will omit the
word smooth for brevity. The following is a variant of the Picard–Lindelöf theorem
(e.g., see [58]).

Theorem 7.6. Let X be a vector field on a manifold M and let p ∈ M . Then for
any sufficiently small ε > 0 there exists a unique smooth arc α : [−ε, ε]→M starting
at p whose tangent vectors are in X; that is, a unique arc α that solves the initial
value problem

α(0) = p, α′(t) = X
(
α(t)

)
for all t ∈ [−ε, ε]. (7.14)

We will also briefly work with complex varieties. The definition of a variety re-
mains identical in this case: Given a set of polynomials f1, . . . , fk ∈ C[x1, . . . , xd], the
variety VC(f1, . . . , fk) is defined as

VC(f1, . . . , fk) = {(a1, . . . , ad) ∈ Cd : fj(a1, . . . , ad) = 0 for all 1 ≤ j ≤ k}.

To prevent confusion regarding what field a variety is in, we will sometimes also use
the notation VR(f1, . . . , fk) to refer to a real variety.



84 CHAPTER 7. CONSTANT-DEGREE PARTITIONS AND C2

Irreducibility, dimension, and singular points of a complex varieties are defined in
the same way as for real varieties. For example, a singular point of a variety U is a
point where the rank of the Jacobian matrix of U is smaller than the dimension of U
(see Section 4.3 for the full definition). For a variety U , recall that we denote the set
of singular points of U as Using, and the set of regular points of U as Ureg. Bézout’s
theorem (Theorem 2.5) and Theorem 4.8 also remain valid for complex varieties.

In the lemma below we have a polynomial f ∈ R[x1, y1, x2, y2] and consider the
set VR(f)reg\VC(f)sing. This set consists of the regular points of the variety that
is defined by f in R4 that are not singular points of the variety that is defined by
f in C4. For example, let f = x21 + x22 ∈ R[x1, x2, x3]. Since VR(f) is the x3-
axis, the set VR(f)reg is also the x3-axis. Since VC(f) is a union of two planes
that intersect in the x3-axis, the set VC(f)sing is also the x3-axis. We conclude that
VR(f)reg\VC(f)sing = ∅.

Recall that the map φ : C2 → R4 is defined by φ(x1+iy1, x2+iy2) = (x1, y1, x2, y2).
The following lemma will be our main tool for bounding the number of incidences on
a constant-sized partitioning polynomial.

Lemma 7.7. Consider f ∈ R[x1, y1, x2, y2] such that the variety VR(f) is three-
dimensional. Then for every p ∈ VR(f)reg\VC(f)sing, there is at most one irreducible
complex curve γ ⊂ C2 with p ∈ φ(γ)reg and φ(γ) ⊂ VR(f).

Proof. We set M = VR(f)reg \VC(f)sing. By Lemma 4.8, the set VR(f)reg is a three-
dimensional manifold and the set VC(f)sing is a variety of dimension at most two.
Thus, the set M is a three-dimensional manifold in R4. The isomorphism φ turns
multiplication by i in C2 into the linear transformation

J : R4 → R4, J(x1, y1, x2, y2) = (−y1, x1,−y2, x2).
Notice that for every u ∈ R4 we have J(J(u)) = −u. Thus, for any linear subspace

U ⊂ R4 we have J(J(U)) = U . Since J corresponds to multiplication by i in C2,
a linear subspace U ⊆ R4 is J-invariant if and only if U = φ(U ′) for some complex
subspace U ′ ⊆ C2. In particular, all J-invariant subspaces are even dimensional.

For every point p ∈M we define the linear subspace Ep = TpM ∩ J−1(TpM). In-
tuitively, Ep is the largest linear subspace of TpM that is invariant under J . Since the
linear subspace TpM is three-dimensional, it cannot be J-invariant. This implies that
J−1(TpM) is a different three-dimensional subspace, and thus Ep is a two-dimensional
linear subspace. As p varies, the union of the p × Ep forms a two-dimensional sub-
bundle E of the tangent bundle TM .

Fix a point p ∈ M , and let X be a vector field such that X is defined in an
open neighbourhood U ⊆ M of p, the restriction of X to U takes values in E, and
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X(p) 6= 0. Note that if such a vector field does not exist, then no irreducible curve
γ ⊂ C2 satisfies p ∈ φ(γ)reg and φ(γ) ⊂ VR(f). We thus assume that X exists. By
Theorem 7.6 there is a unique arc α : [−ε, ε]→ γreg that solves (7.14) (for a sufficiently
small ε > 0). Two distinct irreducible curves intersect in a zero-dimensional variety,
and by Theorem 4.12 this variety consists of finitely many points. Thus, there could
be at most one irreducible one-dimensional variety that contains γ. We denote this
curve as α∗ (if no such curve exists then we are done).

Consider an irreducible complex curve γ ⊂ C2 that satisfies φ(γ) ⊂ VR(f) and a
point p ∈ φ(γ)reg. For a point q ∈ γ, note that if φ(q) ∈ φ(γ)reg then the tangent space
Tqγ is a complex line in C2. Since Tφ(q)φ(γ) = φ

(
Tqγ), the tangent space Tφ(q)φ(γ) is

a J-invariant 2-flat in R4 that is contained in TqM . This implies that Tφ(q)φ(γ) = Eq,
so X(q) is tangent to φ(γ). By applying Theorem 7.6 to the manifold φ(γ)reg, and
the restriction of X to φ(γ)reg, we obtain an arc β : [−ε′, ε′] → φ(γ)reg that solves
the same equation (7.14) (for a sufficiently small 0 < ε′ ≤ ε). The uniqueness of the
solution implies that α∗ and β must have a common sub-arc around p.

Assume for contradiction that there exists another irreducible complex curve γ′ ⊂
C2 that satisfies φ(γ′) ⊂ VR(f) and p ∈ φ(γ′)reg. By repeating the argument from
the previous paragraph, we get another arc β′ : [−ε′′, ε′′]→ φ(γ)reg such that α∗ and
β′ have a common sub-arc α′ around p. This in turn implies that β and β′ have a
common sub-arc around p. We got a contradiction to Bézout’s theorem, which states
that γ and γ′ have a finite intersection. That is, at most one curve γ satisfies the
above properties.

We are finally ready to study incidences with arbitrary curves in C2.

Theorem 7.8. Let P be a set of m points and let Γ be a set of n distinct irreducible
algebraic curves of degree at most k, both in C2. If the incidence graph of P × Γ
contains no copy of Ks,t, then for any ε > 0 we have

I(P ,Γ) = Os,t,k,ε

(
m

s
2s−1

+εn
2s−2
2s−1 +m+ n

)
.

Proof. The first half of the proof is very similar to the proof of Theorem 7.3. A
reader who wishes to avoid reading this repetition may like to skip to the part titled
“Incidences on the partition”.

From Lemma 7.1 we get the weak bound I(P ,Γ) = Os,t

(
mn1− 1

s + n
)

. When

m = O(n1/s), this implies the bound I(P ,Γ) = O(n). We may thus assume that

n = O (ms) . (7.15)
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We will prove by induction on m+ n that

I(P ,Γ) ≤ α1m
s

2s−1
+εn

2s−2
2s−1 + α2(m+ n),

where α1, α2 are sufficiently large constants. The base case where m+ n is small can
be handled by choosing sufficiently large values of α1 and α2.

We set P∗ = {φ(p) : p ∈ P} and Γ∗ = {φ(γ) : γ ∈ Γ}. Note that P∗ is a set of
m points in R4 and that Γ∗ is a set of n two-dimensional varieties of degree Ok(1) in
R4. As in the proof of Theorem 7.3, we will bound I(P∗,Γ∗). Since φ : C2 → R4 is a
bijection, we indeed have I(P ,Γ) = I(P∗,Γ∗).

Partitioning R4. Let f be an r-partitioning polynomial of P∗, for a sufficiently
large constant r. According to the polynomial partitioning theorem (Theorem 4.10),
f is of degree O(r) and V(f) partitions R4 into connected cells, each containing at
most m/r4 points of P∗. By Warren’s theorem (Theorem 3.2), the number of cells is
c = O(r4). The asymptotic relations between the various constants in the proof are

21/ε � r � α2 � α1.

Let C1, . . . , Cc be the cells of the partition. Let Vj be the set of varieties from
Γ∗ that intersect the interior of Cj and let Pj be the set of points p ∈ P∗ such
that p∗ ∈ Cj. Let mj = |Pj|, m′ =

∑c
j=1mj, and nj = |Vj|. By Theorem 4.10,

mj = O(m/r4) for every 1 ≤ j ≤ c. Notice that

I(P∗,Γ∗) = I(P0,Γ0) + I(P0,Γ
∗ \ Γ0) +

c∑
j=1

I(Pj,Γj).

For every every U ∈ Γ∗, applying Theorem 4.11 with W = V(f) implies that U
intersects Ok(r

2) cells of R4 \V(f). Therefore,
∑c

j=1 nj = Ok (nr2). Combining this
with Hölder’s inequality implies

c∑
j=1

n
2s−2
2s−1

j = Ok

((
nr2
) 2s−2

2s−1 c
1

2s−1

)
= Ok

(
n

2s−2
2s−1 r

4s
2s−1

)
.



7.5. (OPTIONAL) ARBITRARY CURVES IN C2 87

By the induction hypothesis, we have

c∑
j=1

I(Pj,Γj) ≤
c∑
j=1

(
α1m

s
2s−1

+ε

j n
2s−2
2s−1

j + α2(mj + nj)

)

≤ Ok

(
α1m

s
2s−1

+εr−
4s

2s−1
−4ε

c∑
j=1

n
2s−2
2s−1

j

)
+

c∑
j=1

α2(mj + nj)

≤ Ok

(
α1r

−εm
s

2s−1
+εn

2s−2
2s−1

)
+ α2

(
m′ +Ok

(
nr2
))
.

By (7.15), we have n
1

2s−1 = O
(
m

s
2s−1

)
, which in turn implies n = O

(
m

s
2s−1n

2s−2
2s−1

)
.

Thus, when α1 is sufficiently large with respect to r and α2, we have

c∑
j=1

I(Pj,Γj) = Ok

(
α1r

−εm
s

2s−1
+εn

s
2s−1

)
+ α2m

′.

By taking r to be sufficiently large with respect to ε, k, and the implicit constant
in the O-notation, we have

c∑
j=1

I(Pj,Γj) ≤
α1

2
m

s
2s−1

+εn
2s−2
2s−1 + α2m

′. (7.16)

Incidences on the partition. It remains to bound incidences with points that
are on the partitioning hypersurface V(f). Let P0 = P∗ ∩ V(f), let m0 = |P0| =
m − m′, and let Γ0 = {U ∈ Γ∗ : U ⊂ V(f)}. By Lemma 7.7, every point of
(P0 ∩ VR(f)reg)\VC(f)sing is a regular point of at most one variety of Γ0. That is,
these points form at most m0 incidences with regular points of varieties of Γ0. It
remains to bound the number of incidences (p, U) ∈ P0 × Γ∗ that satisfy one of the
following:

� The point p is in VR(f)sing or in VC(f)sing.
� The point p is a singular point of U .
� The variety U is not in Γ0.

Let S = VR(f)sing ∪ (VC(f)sing ∩ R4). We first consider the case where U is
contained in S. Since S is a two-dimensional variety of degree Ok,r(1), it contains
Ok,r(1) varieties of Γ∗. Thus, the total number of incidences with the varieties of Γ∗

that are in S is Ok,r(m0).
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Next, we set

Γ∗0 = {U∩S : U ∈ Γ0 and U 6⊆ S}
⋃
{U∩V(f) : U ∈ Γ∗\Γ0}

⋃
{Using : U ∈ Γ∗}.

Note that Γ∗0 is a set of O(n) varieties in R4, each of dimension at most one and
of degree Or,k(1). This is straightforward for the first two parts in the definition of
Γ∗0, and is implied by Theorem 4.8 for the third part. By Lemma 7.2 we obtain

I(P0,Γ
∗
0) = Os,t,k,r

(
m

s
2s−1

0 n
2s−2
2s−1 +m0 + n

)
.

Combining the three cases above gives

I(P0,Γ
∗) = Os,t,k,r

(
m

s
2s−1

0 n
2s−2
2s−1 +m0 + n

)
.

Taking α1, α2 to be sufficiently large with respect to s, t, k, r, and the constant of
the O-notation, we have

I(P0,Γ
∗) ≤ α1

2
mk/(2k−1)n(2k−2)/(2k−1) + α2(m0 + n).

Combining this with (7.16) completes the proof of the induction step.

7.6 Exercises

Problem 7.1. The following result is from [45].

Theorem. Let P be a set of n points in R2. Then at most n2/6−n/2 + 1 lines
contain three points of P.

Use this theorem to prove that the same result holds for any set of n points in Rd

(for every integer d ≥ 3).

7.7 Open problems

In this chapter we saw how constant-degree polynomial partitioning makes it easier
to study incidence problems in dimension d ≥ 3. In Chapter 11 we will see more
advanced uses of this technique for incidences in Rd. This technique has one obvious
drawback — it adds an extra ε to the exponent of the incidence bound. As already
mentioned, Zahl [108] removed the ε in the special case that arises in the proof of
Theorem 7.4. In Section 11.5 we will mention some other cases in which this ε was
removed.
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Open Problem 7.1. Remove the ε from the exponent in the bound of Theorem
7.8. More generally, develop a technique for removing the extra ε from the exponent
whenever constant-degree polynomial partitioning is used.

We saw in this chapter how to derive point-curve incidence bounds in the complex
plane C2. Unfortunately, so far it is not known how to extend our techniques to higher
dimensional complex spaces. Elekes and Szabó [33] derived a bound for arbitrary
point-variety incidences in Cd. Their analysis relies on older incidence tools, so their
bounds are weaker than the bounds obtained in Rd using polynomial partitioning (see
Chapter 11). Dvir and Gopi [28] and Zahl [109] studied a specific point-line incidence
problem in Cd, for any d ≥ 3. However, at the moment we do not have a reasonable
bound for what may be considered as the main point-line incidence problem in C3.

Open Problem 7.2. For every d ≥ 3, extend the known point-variety incidence
bounds in Rd to Cd.



Chapter 8

The Elekes–Sharir–Guth–Katz
Framework

“By the way, in case of something unexpected happens to me (car ac-
cident, plane crash, a brick on the top of my skull) I definitely ask you to
publish anything we have, at your will.” / György Elekes, in an email to
Micha Sharir, a few years before he passed away.

Elekes and Sharir used to think about the planar distinct distances problem.
Around the turn of the millennium Elekes communicated to Sharir the basics of a
reduction from this problem to a problem involving intersections of helices in R3.
Later on, Elekes sent Sharir the above quote.

Elekes passed away in 2008 and, as he requested, Sharir then published their ideas.
Before publishing, Sharir simplified the reduction so that it led to a problem involving
intersections of parabolas in R3. Publishing the reduction, thereby exposing it for the
first time to the general community, proved to be a good idea. Hardly any time
had passed before Guth and Katz managed to apply it to almost completely solve
the planar distinct distances problem. (Recall from Chapter 1 that the current best
upper bound for the problem is Ω(n/

√
log n).)

Theorem 8.1 (Guth and Katz [51]). Every set of n points in R2 determines
Ω(n/ log n) distinct distances.

To obtain this result, Guth and Katz further improved the reduction so that it
led to a problem concerning intersections between lines in R3. We thus refer to this
reduction as the Elekes–Sharir–Guth–Katz framework (or the ESGK framework, for
short).

90
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The original proof of Guth and Katz is rather involved. In the following two
chapters we will present a proof of slightly weaker variant of Theorem 8.1. This
variant was introduced by Guth [48], and it allows us to avoid several of the more
technical parts of the original proof such as studying ruled surfaces and flat points.

Theorem 8.2. For every ε > 0, any set of n points in R2 determines Ω(n1−ε) distinct
distances.

The purpose of the current chapter is to introduce the first step of the proof: the
ESGK framework.

8.1 Warmup: Distances between points on two

lines

Before presenting the ESGK framework, we begin with a different distinct distances
problem that can be easily reduced to an incidence problem. While working on this
simpler problem we will encounter a couple of ideas used in the ESGK framework.

In a bipartite distinct distances problem we have two point sets P1 and P2, and are
interested in the number D(P1,P2) of distinct distances between pairs from P1×P2.
That is,

D(P1,P2) =
∣∣∣{|pq| : p ∈ P1, q ∈ P2}

∣∣∣
(where |pq| denotes the distance between the points p and q).

We consider a planar bipartite problem where P1 is a set of m points that lie
on a line `1 and P2 is a set of n points that lie on a different line `2. Without
loss of generality, we assume that n ≥ m. When the two lines are either parallel or
orthogonal, the points can be arranged so that D(P1,P2) = Θ(n). Such constructions
are illustrated in Figure 8.1.

On the other hand, when the two lines are neither parallel nor orthogonal, the
current best construction for minimizing the number of distances yields D(P1,P2) =
Θ
(
n2/
√

log n
)

(see Elekes [31]). In this construction, we take `1 to be the x-axis and
`2 to be the line V(y−x) (the line of slope one that is incident to the origin). We set

P1 = {(j, 0) : 1 ≤ j ≤ n} and P2 = {(j, j) : 1 ≤ j ≤ m} .

Recall that Theorem 1.8 states that the number of positive integers smaller than n
that are the sum of two squares is Θ(n/

√
log n). In our case, every distance between

a point of P1 and a point of P2 is of the form
√
d2x + d2y, where both dx and dy are
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(1, 0) (2, 0) ... (m, 0)

(1, 1) (2, 1) ... (n, 1)

(
√
1, 0) (

√
2, 0) (

√
n, 0)...

(0,
√
1)

(0,
√
2)

...
(0,

√
m)

Figure 8.1: When the lines are either parallel or orthogonal, the points can be arranged so that
D(P1,P2) = Θ(n).

integers between −n and n. We may remove the square root since we only care about
which distances are distinct, and not about the values of these distances. By Theorem
1.8 we obtain D(P1,P2) = Θ

(
n2/
√

log n
)
.

We now derive the current best lower bound for the problem of distinct distances
on two lines. Note the huge gap between the current best upper and lower bounds.

Theorem 8.3 ([87]). Let `1 and `2 be lines in R2 that are neither parallel nor
orthogonal. Let P1 be a set of n points on `1 and let P2 be a set of m points on `2.
Then

D(P1,P2) = Ω
(
min

{
n2/3m2/3, n2,m2

})
.

Proof. We begin by simplifying the problem. We rotate the plane so that `1 becomes
the x-axis. We then translate the plane so that the intersection point `1∩ `2 becomes
the origin. Note that these transformations do not change the number of distinct
distances. Let s denote the slope of `2 after the rotation. By the assumption, s is
finite and nonzero. If the origin is in P1 or in P2 then we remove it from these sets.
This can only decrease the number of distinct distances.

We set D = D(P1,P2) and denote the D distinct distances in P1×P2 as δ1, . . . , δD.
We also define the set of quadruples

Q = {(a, p, b, q) ∈ P1 × P2 × P1 × P2 : |ap| = |bq| > 0} .

The quadruples of Q are ordered, so that (a, p, b, q) and (b, q, a, p) are considered as
two distinct elements of Q. An example of a quadruple of Q is depicted in Figure 8.2.

We prove the theorem by double counting |Q|. For every 1 ≤ j ≤ D, let

Ej = {(a, p) ∈ P1 × P2 : |ap| = δj}.
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p

a b

q

Figure 8.2: In a quadruple (a, p, b, q) ∈ Q, we have |ap| = |bq| > 0.

Since every pair of P1 × P2 is in exactly one set Ej, we have

D∑
j=1

|Ej| = |P1| · |P2| = mn.

Note that the number of quadruples of Q that consist of two pairs of points at
distance δj is |Ej|2. This implies that |Q| =

∑D
j=1 |Ej|2. By the Cauchy–Schwarz

inequality (
D∑
j=1

|Ej|
)2

≤
(

D∑
j=1

|Ej|2
)(

D∑
j=1

1

)
= D

D∑
j=1

|Ej|2.

By combining the above, we get

|Q| =
D∑
j=1

|Ej|2 ≥
1

D

(
D∑
j=1

|Ej|
)2

=
m2n2

D
. (8.1)

Deriving an upper bound for |Q|. Consider a quadruple (a, p, b, q) ∈ P1 ×P2 ×
P1×P2, and write a = (ax, 0), b = (bx, 0), p = (px, spx), and q = (qx, sqx). Recall that
this quadruple is in Q if and only if |ap| = |bq|, or equivalently

(ax − px)2 + s2p2x = (bx − qx)2 + s2q2x. (8.2)

For every pair (p, q) ∈ P2
2 we define a corresponding point vpq = (px, qx) ∈ R2. We

define P ′ = {vpq : (p, q) ∈ P2
2}. Note that P ′ is a set of m2 distinct points in R2.

For every pair (a, b) ∈ P2
1 we define a corresponding hyperbola

γab = V
(
a2x − b2x − 2axx+ 2bxy + x2(1 + s2)− y2(1 + s2)

)
.

Finally, we define H = {γab : (a, b) ∈ P2
1}. Note that H is a set of n2 distinct hyper-

bolas.
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For a quadruple (a, p, b, q), condition (8.2) is satisfied if and only if the point vpq is
incident to the hyperbola γab (place the coordinates of vpq in the polynomial defining
γab). Thus, to obtain an upper bound for |Q| it suffices to obtain an upper bound for
I(P ′,H). Recalling that s 6= 0, it is not difficult to verify that no hyperbola in H is
degenerate (that is, the union of two lines).

By Bézout’s theorem (Theorem 2.5), two non-degenerate hyperbolas intersect in
at most four points. Thus, there is no K5,2 in the incidence graph of P ′ ×H. This is
a rather weak restriction, but we can improve it as follows. The roles of (`1,P) and
(`2,P2) are symmetric and can be interchanged. That is, we can take pairs of P2

1 to

form a point set P ′ and pairs of P2
2 to form a set of hyperbolas H (in the same way

we created P ′ and H). As before, Bézout’s theorem implies that the incidence graph

of P ′×H contains no copy of K5,2. The incidence graph of P ′×H is identical to the
incidence graph of P ′ ×H but with the two sides of the graphs switched, since both
describe the quadruples of Q. Thus, the incidence graph of P ′ ×H contains no copy
of K2,5. We apply our point-curve incidence bound (Theorem 3.3) on P ′ × H with
s = 2 and t = 5, to obtain

|Q| = O
(
|P ′|2/3|H|2/3 + |P ′|+ |H|

)
= O

(
m4/3n4/3 +m2 + n2

)
.

Combining this upper bound with the lower bound in (8.1) implies the assertion of
the theorem. When comparing these two bounds, we split the analysis into three
cases according to the term that dominates the upper bound for |Q|. Each case leads
to a different term in the bound of the theorem.

8.2 The ESGK Framework

We are now ready to present the ESGK Framework. For this purpose, we return to
the original problem of having a set P of n points in R2. Let x denote the number of
nonzero distinct distances that are determined by pairs of points from P . Similarly
to the warmup problem, we consider the set

Q =
{

(a, p, b, q) ∈ P4 : |ap| = |bq| > 0
}
.

The quadruples in Q are ordered in the sense that (a, p, b, q), (b, q, a, p), (p, a, q, b), and
the other possible permutations are all considered as distinct elements of Q. Note
also that some of the four points in a quadruple may be identical. As before, the
reduction is based on double counting |Q|, and we begin by deriving a lower bound.
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We denote the set of nonzero distinct distances that are determined by P × P as
δ1, . . . , δx. For every 1 ≤ j ≤ x we set

Ej =
{

(p, q) ∈ P2 : |pq| = δj
}
.

We consider (p, q) and (q, p) as two distinct pairs of Ej.
Since every ordered pair of distinct points of P×P is contained in a unique set Ej,

we have
∑x

j=1 |Ej| = n2 − n. Moreover, the number of quadruple of Q that consist

of two pairs of points at distance δj is |Ej|2. This implies that |Q| =
∑x

j=1 |Ej|2.
Applying the Cauchy-Schwarz inequality as in the previous section leads to

|Q| =
x∑
j=1

|Ej|2 ≥
1

x

(
x∑
j=1

|Ej|
)2

=
(n2 − n)2

x
= Θ

(
n4

x

)
. (8.3)

It remains to derive an upper bound for |Q|. Specifically, if we manage to derive the
bound |Q| = O(n3+ε), combining it with (8.3) would immediately imply x = Ω(n1−ε).

A transformation of R2 is a rigid motion if it preserves distances between points.
The rigid motions of R2 are rotations, translations, reflections, and their combina-
tions. A proper rigid motion is a rigid motion that also preserves orientation. That
is, every ordered triple of points (a, b, c) ∈ R2 forms a left turn after applying the
transformation if and only if it formed a left turn before the transformation. See
Figure 8.3 for an example.

a b

c

d

a
b

c

d
d

ab

c

Proper

rigid
motion

proper

rigid

motion

Not a

Figure 8.3: The second transformation is a rigid motion but not a proper one.

The only proper rigid motions of R2 are rotations and translations. Any combina-
tion of rotations and translations results in a single translation or in a single rotation
(more details can be found in [94, Section 1.5] and in the exercises following it.)

For a pair of points a, b ∈ P , consider the rotations that take a to b. The origin
of such a rotation is equidistant from a and b. In other words, the centers of these
rotations must all be on the perpendicular bisector of the segment ab. Conversely,
every point on the perpendicular bisector of ab is the origin of a rotation that takes
a to b. See Figure 8.4(a) for an illustration.
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a b

p q

a

p

b q

(b) (c)

a b

(a)

Figure 8.4: (a) The origin of the rotation is on the perpendicular bisector. (b) If the perpen-
dicular bisectors are parallel then there is a translation taking ap to bq. (c) If the perpendicular
bisectors intersect, there is a rotation taking ap to bq, and its origin is the intersection point.

Consider a quadruple (a, p, b, q) ∈ Q and recall that by definition |ap| = |bq| > 0.
We can always apply a translation that takes a to b and then rotate around the new
position of a until p is taken to q. This translation followed by a rotation is a proper
rigid motion taking ap to bq. To see that there is a unique proper rigid motion that
takes ap to bq, we denote by `1 and `2 the perpendicular bisectors of the segments
ab and pq, respectively. If `1 and `2 are parallel, then there is a unique translation
taking ap to bq, and no rotations (for example, see Figure 8.4(b)). Similarly, if `1 and
`2 intersect, then there is a unique rotation taking ap to bq, and no translations. The
origin of this rotation is the point `1 ∩ `2, and the angles of rotation from a to b and
from p to q are equal because |ap| = |bq| (see Figure 8.4(c)).

By the above, we have the following equivalent definition for Q: A quadruple
(a, p, b, q) is in Q if and only if there exists a proper rigid motion τ that takes a to
b and p to q. We say that the quadruple (a, p, b, q) corresponds to τ . To derive an
upper bound for |Q| it suffices to derive an upper bound for the number of quadruples
from P4 that correspond to a proper rigid motion. In particular, we would like to
prove that the number of such quadruples is O(n3+ε). As already stated, combining
this upper bound with (8.3) would lead to the required bound x = Ω(n1−ε).

We first bound the number of quadruples in Q that correspond to a translation.
Given the first three points of a quadruple (a, p, b, ?), there is at most one point in P
that can complete it to a quadruple that corresponds to a translation. Thus, O(n3)
quadruples in Q correspond to a translation.

Bounding the number of quadruples in Q that correspond to a rotation is signifi-
cantly more difficult. A rotation of R2 can be described using three parameters: two
coordinates for the center of rotation and another for the angle of rotation. Given a
rotation with origin (ox, oy) and an angle of α, Guth and Katz [51] parameterized it
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as (ox, oy, cot(α/2)) ∈ R3. With this parametrization, the set of rotations that take a
fixed point a ∈ R2 to a fixed point b ∈ R2 form the following line in R3:

`ab =

{(
ax + bx

2
,
ay + by

2
, 0

)
+ t

(
by − ay

2
,
ax − bx

2
, 1

)
: t ∈ R

}
. (8.4)

Showing that `ab is the set of rotations taking a to b is a standard technical
calculation, so we postpone it to Section 8.3. A reader who is not interested in
standard technical details might prefer skip Section 8.3.

The projection of `ab on the xy-plane is clearly a line, and by setting t = 0 in
(8.4) we note that this projection contains the midpoint of a and b. Moreover, it is
not difficult to verify that the projection is orthogonal to the line incident to both a
and b. We conclude that the projection of `ab on the xy-plane is the perpendicular
bisector of a and b (the set of points that are equidistant from a and b). That is, the
line `ab is obtained by lifting the perpendicular bisector of a and b to a line in R3

incident to the midpoint of a and b and with a slope of 2/|ab| in the z-direction.
Consider a quadruple (a, p, b, q) ∈ P4 and the corresponding lines `ab and `pq in R3.

If the intersection point p = `ab∩`pq exists, then p is the parametrization of a rotation
that takes both a to b and p to q. That is, the quadruple (a, p, b, q) corresponds to
a rotation (and is thus in Q) if and only if the lines `ab and `pq intersect. For an
example, see Figure 8.5.

Figure 8.5: A quadruple of points in the plane, the two perpendicular bisectors, and their lifting
to R3. Since the lifted lines intersect, there exists a rotation that takes one blue point to the
other blue point and one red point to the other red point.

Let
L = {`ab : (a, b) ∈ P2}.

Note that L is a set of n2 lines in R3,. By the above, there is a bijection between
quadruples of Q that correspond to rotations and pairs of intersecting lines from L2.
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Thus, an upper bound of O(n3+ε) for the number of pairs of intersecting lines would
imply |Q| = O(n3+ε), as required. One can easily find sets of n2 lines in R3 with
Θ(n4) intersecting pairs. However, as we will see in the following chapters, the lines
of L have additional properties that prevent having too many intersecting pairs.

8.3 (Optional) Lines in the parametric space R3

In this section we study the parametrization of rotations of R2 that was presented
in Section 8.2. That is, a rotation centered at a point o ∈ R2 and of angle α is
parameterized as

(
ox, oy, cot α

2

)
∈ R3. Given points a, b ∈ R2, we show that the set of

parameterizations of rotations that take a to b is the line (8.4).
As stated above, the center of any rotation that takes a to b is on the perpendicular

bisector of a and b. Let c = ((ax + bx)/2, (ay + by)/2) be the midpoint of the segment
between a and b, and set δ = |ab| =

√
(ax − bx)2 + (ay − by)2. For example, see

Figure 8.6.

a

c

b

oα/2

α/2

δ
2

δ
2

Figure 8.6: A rotation with origin o and angle α that takes a to b.

By definition, the perpendicular bisector of a and b is incident to the midpoint c
and its slope is s = (ax − bx)/(by − ay). That is, the perpendicular bisector can be
defined by

y − ay + by
2

= s

(
x− ax + bx

2

)
.

Since o is incident to the perpendicular bisector of ab, we have

oy −
ay + by

2
= s

(
ox −

ax + bx
2

)
. (8.5)

We consider the case where s 6= 0, ox ≥ cx, and oy ≥ cy (the other cases can be
handled in a symmetric manner). We set dx = ox − cx and dy = oy − cy. By (8.5) we
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have dy = sdx, which implies

|co| =
√
d2x + d2y = dx

√
1 + s2 = dx

√
(ax − bx)2 + (by − ay)2

(by − ay)2
=

δdx
by − ay

. (8.6)

By looking at Figure 8.6, we notice that |co| = δ
2

cot α
2
. Combining this with (8.6)

gives
by − ay

2
· cot

α

2
= dx = ox − cx. (8.7)

By (8.5) and (8.7), we have that
(
ox, oy, cot α

2

)
is on the line

`ab =

{(
ax + bx

2
,
ay + by

2
, 0

)
+ t

(
by − ay

2
,
ax − bx

2
, 1

)
: t ∈ R

}
.

Conversely, since we can choose o to be any point on the perpendicular bisector,
any point on `ab is the parametrization of a rotation that takes a to b. Thus, `ab is
exactly the set of parametrizations of the rotations that take a to b.

8.4 Exercises

Problem 8.1. Let P be a set of n points in R2. We apply the ESKG framework to
P , obtaining a set of n2 lines in R3. Let a, a′, b, b′, c, c′ be distinct points of P .
(a) Assume that every pair of the lines `aa′ , `bb′ , `cc′ intersect. What does this say
about the points a, a′, b, b′, c, c′?
(b) Assume that the three lines `aa′ , `bb′ , `cc′ intersect at a single point. What new
information do we have, beyond the properties obtained in part (a).

8.5 Open Problems

To obtain Theorem 8.1, Guth and Katz proved that every set of n points in R2 satisfies
|Q| = O(n3 log n) (where Q is defined as in Section 8.2). There are sets of n points
for which this bound is tight, such as

P = {(a, b) ∈ Z2 : 1 ≤ a, b ≤ √n}.

Thus, one cannot hope to eliminate the remaining gap between the current best upper
and lower bounds for the distinct distances problem in R2 by deriving an improved
upper bound for |Q|.
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When considering the above set P , we note that the gap between the lower and
upper bounds for Q comes from the Cauchy-Schwarz argument in (8.3). More specif-
ically, because of a non-tight application of Cauchy-Schwarz, (8.3) only leads to the
bound |Q| = Ω(n3

√
log n) (even though |Q| = Θ(n3 log n) in this case). We conclude

that, to completely settle the distinct distances problem in R2, one has to change the
ESKG framework.

Open Problem 8.1. Remove the
√

log n gap between the current best lower and
upper bounds for the distinct distances problem in R2.

We now return to the problem of distinct distances between points on two lines,
which was presented in Section 8.1. One reason for why this problem is important
is that it has many generalizations (for example, see [72, 75, 76]). Improving the
known bounds for this distances problem tends to lead to improvements for various
generalizations. Quoting Hilbert [77]:

“The art of doing mathematics is finding that special case that contains
all the germs of generality.”

Open Problem 8.2. Improve the current best bounds for the problem of distinct
distances between points on two lines.

For example, consider the case where there are about n points on each line. In
this case Theorem 8.3 implies that the number of distinct distances is Ω(n4/3), while
it seems likely that the bound Ω(n2−ε) should also hold.



Chapter 9

Lines in R3

In Chapter 8 we reduced the planar distinct distances problem to a problem about
pairs of intersecting lines in R3. In the current chapter we further reduce the problem
to a point-line incidence problem in R3, and then solve this incidence problem. This
completes the proof of the Guth-Katz distinct distances theorem. The incidence
problem is where we use the simplified proof of Guth [48] instead of the original more
involved argument. Due to this simplification, we prove Theorem 8.2 instead of the
slightly stronger Theorem 8.1.

9.1 From line intersections to incidences

We begin by recalling where we stand in the proof of Theorem 8.2. For points a, b ∈
R2, we define the line `a,b ⊂ R3 as

`ab =

(
ax + bx

2
,
ay + by

2
, 0

)
+ t

(
by − ay

2
,
ax − bx

2
, 1

)
, for t ∈ R. (9.1)

The line `ab is the set of parameterizations of the rotations of R2 that take a to b.
In the distinct distances problem, we are given a set Q of n points in R2 and wish

to prove that Q spans many distinct distances (we reserve our standard notation P
for a point set we will study in R3). For this purpose, we consider the set of n2 lines

L = {`ab : a, b ∈ Q}. (9.2)

It is impossible for two lines of L to be identical. Indeed, if `ab = `cd then every
point on this line corresponds to a rotation of R2 taking both a to b and c to d.

101
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However, unless (a, b) = (c, d), there exists at most one rotation with such a property.
Thus, any two lines of L can intersect in at most one point.

As we saw in Chapter 8, to prove that Q determines Ω(n1−ε) distinct distances, it
suffices to prove that the number of pairs of intersecting lines in L is O(n3+ε). Denote
the number of such pairs as XL. We associate every pair of intersecting lines with
their point of intersection. To derive an upper bound for XL, it suffices to go over
every point of R3 and check how many pairs are associated with it. A point in R3

that is incident to r lines of L corresponds to 2
(
r
2

)
pairs of intersecting lines. We

say that a point is r-rich if it is incident to at least r lines of L (as already defined
in Section 1.2). For a positive integer r, let Pr(L) be the set of r-rich points. We
perform a dyadic decomposition of L, where for each j we consider points that are
2j-rich but not 2j+1-rich. For a fixed j, these points are contained in P2j(L), so the
decomposition gives

XL <

2 logn∑
j=1

|P2j(L)| · 22j+2. (9.3)

To obtain the desired bound for XL, we will prove the following theorem.

Theorem 9.1. Let Q be a set of n points in R2, and let L be the set of lines defined
in (9.2). Then for any ε > 0 and 2 ≤ r ≤ n2, we have

|Pr(L)| = O

(
n3+ε

r2

)
.

Let 0 < ε′ < ε. Applying Theorem 9.1 with ε′ and combining the result with (9.3)
gives

XL = O

(
2 logn∑
j=1

n3+ε′

22j
· 22j

)
= O(n3+ε′ log n) = O(n3+ε).

That is, to prove Theorem 8.2 it remains to prove Theorem 9.1. We thus reduced
the problem of bounding pairs of intersecting lines to a point-line incidence problem
in R3.

Theorem 9.1 is false for arbitrary sets of n2 lines in R3. For example, let h be an
arbitrary plane in R3 and let L consist of n2 generic lines in h. In this case every pair
of lines intersect, so we cannot hope to prove that the number of intersecting pairs is
O(n3+ε). A similar issue occurs when L consists of n2 lines in R3, all incident to the
origin. Fortunately, since our set of lines L is constructed according to (9.2), it has
additional properties.
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Lemma 9.2. Let Q be a set of n points in R2, and let L be the set of lines defined
in (9.2). Then
(i) Every point of R3 is incident to at most n lines of L.
(ii) Every plane in R3 contains at most n lines of L.

Proof. For a point a ∈ Q, we set

La = {`ab : b ∈ Q}.

(i) Consider two lines `ab, `ac ∈ La. Recall from Chapter 8 that every point of
`ab parameterizes a rotation of R2 that takes a to b, and similarly for the points of
`ac. Since no rotation of R2 can take a to both b and c, the lines `ab and `ac do not
intersect. Consider a point p ∈ R3. Since the lines of La do not intersect, at most
one line of La is incident to p. Since L = ∪a∈QLa and p is incident to at most one
line from each family La, we conclude that p is incident to at most n lines of L.

(ii) When two lines are in the same plane in R3, they either intersect or are parallel.
From part (i) of the current proof , we know that two lines from the same family La
cannot intersect. By (9.1), the direction of the line `ab is

(
by−ay

2
, ax−bx

2
, 1
)

, so two

lines from La cannot be parallel. This implies that two lines from the same family
cannot lie on a common plane. We conclude that every plane in R3 contains at most
n lines of L.

By Lemma 9.2(ii), when r > n we have Pr(L) = ∅. It remains to prove Theorem
9.1 for the case of 2 ≤ r ≤ n. For that purpose, we prove the following two results.
For a set of lines L and a two-dimensional variety S, both in R3, we define

LS = {` ∈ L : ` ⊂ S}.

Theorem 9.3. For any ε > 0, there exist sufficiently large constants C and D that
satisfy the following. Let L be a set of n lines in R3, let 2 ≤ r ≤ 2n1/2, and let
r′ = d9r/10e. Then there exists a set V of varieties in R3 such that

� Every variety of V is irreducible, of dimension two, and of degree at most D.
� Every variety of V contains at least n1/2+ε lines of L.
� |V| ≤ 2n1/2−ε.
� |Pr(L) \ ∪S∈VPr′(LS)| ≤ Cn3/2+ε/r2.

Lemma 9.4. Let Q be a set of n points in R2, and let L be the set of lines defined
in (9.2). Then any irreducible two-dimensional variety U ⊂ R3 of degree at most D
contains less than 2D2n lines of L.
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Using Theorem 9.3 and Lemma 9.4, it is straightforward to prove Theorem 9.1.

Proof of Theorem 9.1. By Applying Theorem 9.3 with L, we obtain a set V of vari-
eties in R3 of degree at most D, each containing at least n1+ε lines of L. (Theorem
9.3 states that there are at least n1/2+ε lines in a vareity, but the theorem is stated
for n lines and we are applying it to a set of n2 lines.) By applying Lemma 9.4, we
get that no surface of degree D can contain n1+ε lines of L, so V = ∅. When V = ∅,
Theorem 9.3 implies

|Pr(L)| = |Pr(L) \ ∪S∈VPr′(LS)| ≤ Cn3+ε/r2,

as required.

In Section 9.2 we prove Theorem 9.3, and in Section 9.3 we prove Lemma 9.4.
Since the proof of Lemma 9.4 is rather technical, we mark Section 9.3 as optional.
In particular, in this section we rely on some basic Differential Topology, as already
introduced in (the optional) Section 7.5.

It is not difficult to show that the bound of Theorem 9.1 is close to tight in some
cases.

Claim 9.5. There exists a set L of n2 lines in R3 such that P3(L) = Θ(n3) and every
plane in R3 contains O(n1/2) lines of L.

Proof. We imitate the proof of Claim 5.2. Let Π be a set of m generic planes in R3,
for a parameter m that will be set below. By generic planes, we mean that no two
planes are parallel, no three intersect in a line, and no four intersect in a point. Set

L = {h ∩ h′ : h, h′ ∈ Π and h 6= h′}.

Since no three planes intersect in a line, L is a set of
(
m
2

)
distinct lines. We may also

assume that no two lines of L are parallel. We fix the value of m such that |L| = n2,
and note that m = Θ(n). For any three distinct planes h, h′, h′′, the three lines h∩h′,
h ∩ h′′, and h′ ∩ h′′ intersect at a distinct point. Thus, |P3(L)| =

(
m
3

)
= Θ(n3).

9.2 Rich points in R3

The goal of this section is to prove Theorem 9.3. That is, in this section we study
rich points of lines in R3. In Section 1.2 we briefly studied rich points of lines in R2.
In particular, Lemma 1.15 states that the number of r-rich points in any set of n lines

in R2 is O
(
n2

r3
+ n

r

)
. This bound easily extends to R3.
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Claim 9.6. Let L be a set of n lines in R3 and let r ≥ 2. Then |Pr(L)| = O
(
n2

r3
+ n

r

)
.

Proof. Let h be a generic plane in R3, let π : R3 → h be the projection onto h, let
P ′ = {π(p) : p ∈ Pr(L)}, and let L′ = {π(`) : ` ∈ L}. Since h is chosen generically,
we may assume that every point of Pr(L) is projected onto a distinct point in h and
that every line of L is projected onto a distinct line in h. In particular, |L′| = |L|
and |P ′| = |Pr(L)|.

Applying Lemma 1.15 in h implies that |Pr(L)| = O
(
n2

r3
+ n

r

)
. Noting that

P ′ ⊆ Pr(L′) leads to

|Pr(L)| = |P ′| ≤ |Pr(L′)| = O

(
n2

r3
+
n

r

)
.

When r is large, the following argument gives a good upper bound for the number
of r-rich points.

Lemma 9.7. Let L be a set of n lines in R3 and let r > 2n1/2. Then |Pr(L)| ≤ 2n/r.

Proof. Set M = |Pr(L)| and write Pr(L) = {p1, . . . , pM}. We assume for contradic-
tion that M ≥ r/2. By definition, at least r lines of L are incident to p1. At least
r− 1 lines of L are incident to p2 but not to p1. At least r− 2 lines of L are incident
to p3 but to neither of p1 and p2. Continuing in this manner, we obtain

n = |L| ≥
r/2−1∑
j=0

(r − j) > (r/2) · (r/2) = r2/4. (9.4)

Since this contradicts the assumption r > 2n1/2, we get that M < r/2. Repeating
the argument leading to (9.4) now gives

n = |L| ≥
M−1∑
j=0

(r − j) > (r/2) ·M.

The assertion of the lemma is obtained by rearranging this inequality.

We will require the following variant of Problem 4.2(a).

Lemma 9.8. Consider two distinct irreducible two-dimensional varieties U,W ⊂ R3

of respective degrees dU and dW . Then U ∩W contains at most dU · dW lines.
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Proof. Since U and W are distinct and irreducible, U ∩W is a variety of dimension
at most one. We may assume that this intersection is of dimension exactly one, since
otherwise it contains no lines. Since U ∩W consists of a finite number of irreducible
components, it contains a finite number of lines.

Let h be a generic plane in R3, such that h is neither U nor W , every line contained
in U∩W intersects h in a distinct point, and h does not contain any of the components
of U ∩ W . Then h ∩ U is a variety of dimension at most one and degree at most
degU , and h ∩W is a variety of dimension at most one and degree at most degW .
By applying Bezout’s theorem (Theorem 2.5) inside of h, we obtain that h ∩ U ∩W
consists of at most dU ·dW points. Since every line in U ∩W intersects h at a distinct
point, there are at most dU · dW such lines.

The following result is obtained by imitating the proof of Lemma 9.7. Problem
9.2 is about practicing the same technique in a graph theoretic context.

Lemma 9.9. Let L be a set of n lines in R3. Let V be a set of irreducible varieties
in R3 of dimension two and degree at most D, each containing at least X lines of L.
If X > 2Dn1/2 then |V| ≤ 2n/X

Proof. Set M = |V| and write V = {S1, . . . , SM}. We assume for contradiction that
M ≥ X/2D2. By Lemma 9.8, for every distinct Sj, Sk ∈ V , the intersection Sj ∩ Sk
contains at most D2 lines of L.

By definition, at least X lines of L are contained in S1. At least X −D2 lines of
L are contained in S2 but not in S1. At least X − 2D2 lines of L are contained in S3

but in neither S1 nor S2. Continuing in this manner, we obtain

n = |L| ≥
X/2D2−1∑

j=0

(X − j ·D2) > (X/2D2) · (X/2) = X2/4D2. (9.5)

Since this contradicts the assumption X > 2Dn1/2, we get that M < X/2D2.
Repeating the argument leading to (9.5) now gives

n = |L| ≥
M−1∑
j=0

(X − j ·D2) > (X/2) ·M.

The assertion of the lemma is obtained by rearranging this inequality.

We are now ready to prove Theorem 9.3, and first repeat the statement of this
theorem.
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Theorem 9.3. For any ε > 0, there exist sufficiently large constants C and D that
satisfy the following. Let L be a set of n lines in R3, let 2 ≤ r ≤ 2n1/2, and let
r′ = d9r/10e. Then there exists a set V of varieties in R3 such that

� Every variety of V is irreducible, of dimension two, and of degree at most D.
� Every variety of V contains at least n1/2+ε lines of L.
� |V| ≤ 2n1/2−ε.
� |Pr(L) \ ∪S∈VPr′(LS)| ≤ Cn3/2+ε/r2.

Proof. The proof idea is similar to that of the constant-degree polynomial partitioning
technique (as described in Chapter 7): We prove the theorem by induction on n,
partition the space into a constant number of cells, and apply the induction hypothesis
separately in each cell. Unlike the analysis in Chapter 7, there may exist cells in which
the induction hypothesis cannot be applied. For example, the induction hypothesis
does no apply in cells that do not satisfy the assumption r ≤ 2n1/2. Addressing this
issue requires some new ideas.

As already stated, the proof is by induction on n. For the induction basis, the
claim holds for small n by taking C to be sufficiently large and V = ∅. We move to
prove the induction step, assuming that n is at least some large constant.

Set m = |Pr(L)|. We apply the polynomial partitioning theorem (Theorem 3.1)
with Pr(L) and a sufficiently large constant s. This yields a polynomial f ∈ R[x, y, z]
of degree O(s), such that each of connected component of R3 \ V(f) contains at
most m/s3 points of Pr(L). Denote the open cells of the partition as C1, . . . , Cv. By
Theorem 3.2, we have that v = O(s3). For each 1 ≤ j ≤ v, denote by Lj the set of
lines of L that intersect Cj, and set Pj = Pr(L) ∩ Cj.

We set nj = |Lj|. For a line ` ⊂ R3, we apply Bezout’s theorem in a generic plane
containing `, obtaining that either ` ⊂ V(f) or |V(f) ∩ `| ≤ deg f . When travelling
along `, each point where we cross to a new cell of the partition is in V(f) ∩ `. This
implies that every line of L intersects at most deg f + 1 = O(s) cells of R3 \V(f).
Therefore,

∑v
j=1 nj = O(ns).

For a parameter 0 < α < 1, we say that a cell Cj is α-good if nj ≤ αn/s2. Note
that the number of cells that are not α-good is O(ns/(αn/s2)) = O(αs3). Since each
cell contains at most m/s3 points of Pr(L), the number of points that are in non-α-
good cells is O(αm). We take α to be a sufficiently small constant so that at most
m/10 points of Pr(L) are contained in non-α-good cells. Let PB be the set of these
points. For brevity, we say that a cell is good if it is α-good for the chosen value of α.

Rich points in good cells. Let G be the set of indices 1 ≤ j ≤ v for which Cj is
a good cell. We would like to apply the induction hypothesis separately in each good
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cell, but cells for which r > 2n
1/2
j do not satisfy the assumption of the theorem. Let

Gr ⊂ G be the set of indices j ∈ G that satisfy r ≤ 2n
1/2
j . For every j ∈ Gr we apply

the induction hypothesis on Lj, to obtain a set of varieties Uj such that

|Uj| ≤ 2n
1/2−ε
j ≤ 2(αn/s2)1/2−ε.

Since Cj ∩ Pr(L) ⊂ Pr(Lj), the induction hypothesis gives

∣∣(Cj ∩ Pr(L)) \ ∪S∈UjPr′(LS)
∣∣ ≤ ∣∣Pr(Lj) \ ∪S∈UjPr′(LS)

∣∣ ≤ Cn
3/2+ε
j

r2

≤ C(αn/s2)3/2+ε

r2
. (9.6)

For j ∈ G \ Gr we have r > 2n
1/2
j , so we can apply Lemma 9.7 with Lj. By also

recalling that r ≤ 2n1/2, we obtain

|Cj ∩ Pr(L)| ≤ |Pr(Lj)| ≤ 2nj/r < 2n/r ≤ 4n3/2/r2.

By setting Uj = ∅ and taking C to be sufficiently large with respect to α and s, we
obtain (9.6) also in this case. That is, (9.6) holds for every j ∈ G. By summing up
over every good cell, we obtain∑
j∈G

∣∣(Cj ∩ Pr(L)) \ ∪S∈UjPr′(LS)
∣∣ = O

(
s3 · C(αn/s2)3/2+ε

r2

)
= O

(
C(αn)3/2+ε

s2εr2

)
.

By taking s to be sufficiently large with respect to ε and to the constant of the
O(·)-notation, we get∑

j∈G

∣∣(Cj ∩ Pr(L)) \ ∪S∈UjPr′(LS)
∣∣ ≤ Cn3/2+ε

20r2
. (9.7)

Rich points on the partition. We denote the irreducible components of V(f)
as Z1, Z2, . . . , Zu, and set P ′j = V(f) ∩ Pr(L). Some points of Pr(L) may appear in
several sets P ′j, but this will not affect the analysis. Consider a component Zj and
a point p ∈ P ′j such that p /∈ Pr′(LZj

). Since r′ = d9r/10e, there are at least r/10
lines of L that are incident to p and are not contained in Zj. By Bezout’s theorem,
every line of L that is not contained in Zj intersects Zj in at most degZj points.
Combining the above gives∣∣P ′j \ Pr′(LZj

)
∣∣ ≤ 10n · degZj

r
.
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Summing this over every Zj, recalling that r ≤ 2n1/2, and taking C to be suffi-
ciently large with respect to s, yields∣∣∣∣∣(Pr(L) ∩V(f)) \

u⋃
j=1

Pr′(LZj
)

∣∣∣∣∣ ≤ 10n · deg f

r
≤ 20n3/2 · deg f

r2
≤ Cn3/2

20r2
. (9.8)

Let V ′ be a collection of varieties, consisting of every irreducible component of
V(f), and of the varieties of Uj for every j ∈ G. By combining (9.7) and (9.8), and
recalling that PB is the set of points in the non-good cells, we have∣∣∣∣∣Pr(L) \

⋃
S∈V ′
Pr′(LS)

∣∣∣∣∣ ≤ |PB|+ Cn3/2+ε

10r2
. (9.9)

Taking D to be larger than deg f = O(s), we get that every variety in V ′ is of
degree at most D. The number of varieties in V ′ is at most

O(s) + v · 2(αn/s2)1/2−ε = O(s2+2εn1/2−ε).

Rich points in non-good cells. We almost obtained the statement of the theorem:
The two remaining issues are the size of |PB| and that some varieties of V ′ may contain
fewer than n1+ε lines of L. To resolve the first issue, we set P1 = Pr(L), V1 = V ′, and
P2 = P1 \ ∪S∈V1Pr′(LS). We then repeat the entire analysis for P2, and iteratively
repeat this process. That is,

Pj = Pj−1 \ ∪S∈Vj−1
Pr′(LS). (9.10)

By adapting (9.9) to the repeated argument and recalling that |PB| ≤ |P1|/10,
we obtain

|Pj| ≤
|Pj−1|

10
+
Cn3/2+ε

10r2
. (9.11)

Since every two lines intersect at most once, we have the trivial bound |P1| ≤ n2.
Let w = E · log n for some sufficiently large constant E. Then we have

|Pw| <
Cn3/2+ε

5r2
.

Indeed, (9.11) implies that |Pj+1| < |Pj|/2 for every |Pj| ≥ Cn3/2+ε

5r2
.
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Set V∗ =
⋃w−1
j=1 Vj. Then∣∣∣∣∣Pr(L) \

⋃
S∈V∗
Pr′(LS)

∣∣∣∣∣ = |Pw| <
Cn3/2+ε

5r2
. (9.12)

For every 1 ≤ j ≤ w we have that |Vj| = O(s2+2εn1/2−ε). By summing over every
j we obtain |V∗| = O(s2+2εn1/2−ε log n). We still have the issue that varieties of V∗
may contain fewer than n1+ε lines of L. Let V be the set of varieties of V∗ that contain
at least n1/2+ε lines of L.

In the induction step we consider n larger than some sufficiently large constant, so
we may assume that nε > 2D. We may thus apply Lemma 9.9 with L and X = n1/2+ε,
obtaining that

|V| ≤ 2n/X = 2n1/2−ε.

It remains to show that Pr(L)\⋃S∈V Pr′(LS) is not too large. Recalling (9.12), it
suffices to show that

⋃
S∈V∗\V Pr′(LS) is not too large. We perform a dyadic decom-

position, defining V∗j to be the set of varieties of V∗ that contain at least 2j lines of

L and less than 2j+1 such lines. Note that V∗ \ V =
⋃logn1/2+ε

j=0 V∗j .
Consider a variety S ∈ V∗j . By Claim 9.6, the number of r′-rich points in a set of

less than 2j+1 lines is

O

(
22j

(r′)3
+

2j

r′

)
= O

(
22j

r3
+

2j

r

)
. (9.13)

When 2j > 2Dn1/2, applying Lemma 9.9 with L and X = 2j implies that |V∗j | ≤
2n/2j. When 2j ≤ 2Dn1/2, we use the trivial bound |V∗j | ≤ |V∗| = O(s2+2εn1/2−ε log n).
Combining these two bounds with (9.13) implies

∑
S∈V∗\V

|Pr′(LS)| =
logn1/2+ε∑

j=0

∑
S∈V∗j

|Pr′(LS)| = O

logn1/2+ε∑
j=0

|V∗j | ·
(

22j

r3
+

2j

r

)
= O

log 2Dn1/2∑
j=0

s2+2εn1/2−ε log n ·
(

22j

r3
+

2j

r

)
+

logn1/2+ε∑
j=log 2Dn1/2

2n

2j
·
(

22j

r3
+

2j

r

)
= O

((
s2+2εD2n3/2−ε log n

r3
+
s2+2εDn1−ε log n

r

)
+

(
n3/2+ε

r3
+

log n

r

))
.

Recall that in the induction hypothesis n is assumed to be larger than some
sufficiently large constant, and that r ≤ 2n1/2. By also taking C to be sufficiently
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large with respect to the constant of the O(·)-notation, s, and D, we obtain∑
S∈V∗\V

|Pr′(LS)| ≤ Cn3/2+ε

10r2
.

Combining this with (9.12) leads to∣∣∣∣∣Pr(L) \
⋃
S∈V

Pr′(LS)

∣∣∣∣∣ < Cn3/2+ε

r2
.

This completes the induction step, and the proof of the theorem.

9.3 (Optional) Lines in a two-dimensional surface

The purpose of this section is to prove Lemma 9.4. That is, we study the structure of
lines that are contained in a two-dimensional variety in R3. Throughout the section
we will use definitions and tools from Section 7.5, such a vector fields and tangent
bundles. We will repeat the meaning of some of these definitions, but not all.

We begin with the following structural lemma. For a point a ∈ R2 we define
La = {`a,b : b ∈ R2}, where `a,b is defined as in (9.1). A vector field V of R3 is a map
V : R3 → R3 \ {0}. That is, V associates a vector with each point of R3.

Lemma 9.10. For a point a ∈ R2:
(i) Every point in R3 is incident to exactly one line of La.
(ii) There exists a vector field Va : R3 → R3 \ {0} with the following properties: For
every x ∈ R3 the vector Va(x) has the direction of the unique line of La incident to
x. Each of the three coordinates of Va(x) is a polynomial of degree at most 1 in the
coordinates of a and of degree at most 2 in the coordinates of x.

Proof. (i) To distinguish between points in R2 and points in R3, we write a =
(ax, ay) ∈ R2 but denote the coordinates of x ∈ R3 as x1, x2, x3. For a point b ∈ R2,
by inspecting (9.1) we note that `ab can be defined by

2x1 = ax + bx + x3(by − ay),
2x2 = ay + by + x3(ax − bx).

We rewrite this as a system of equations in the coordinates of b:(
1 x3
−x3 1

)(
bx
by

)
= (2x1 − ax + ayx3, 2x2 − ay − axx3).
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The determinant of the matrix on the left side is 1+x23 > 0. Since this determinant
is nonzero, for any fixed x ∈ R3 there is a unique b that solves the above system.
That is, for every x ∈ R3 there is a unique line `ab ∈ La that is incident to x.

(ii) One can easily solve the above system for b by using Cramer’s rule. This leads
to

bx =
2x1 − ax + ayx3 − x3(2x2 − ay − axx3)

x23 + 1
,

by =
2x2 − ay − axx3 + x3(2x1 − ax + ayx3)

x23 + 1
.

By (9.1), the direction of `a,b is
(
by−ay

2
, ax−bx

2
, 1
)

, or equivalently (by − ay, ax − bx, 2).

Plugging in the above values for bx and by gives(
2x2 − ay − axx3 + x3(2x1 − ax + ayx3)

x23 + 1
− ay,

ax −
2x1 − ax + ayx3 − x3(2x2 − ay − axx3)

x23 + 1
, 2

)
.

Multiplying each coordinate by x23 + 1 leads to

Va(x) =

(
2x2 − ay − axx3 + x3(2x1 − ax + ayx3)− ay(x23 + 1),

ax(x
2
3 + 1)− 2x1 − ax + ayx3 − x3(2x2 − ay − axx3), 2(x23 + 1)

)
.

We conclude that the vector field Va(x) satisfies all of the required properties.

We next recall a few properties of varieties from Chapter 4. The gradient of a
polynomial f ∈ R[x1, x2, x3] is

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
.

Let U ⊂ R3 be a two-dimensional variety and let f ∈ R[x1, x2, x3] satisfy I(U) = 〈f〉.
Then a point p ∈ U is a singular point of U if and only if ∇f(p) = (0, 0, 0). If p is a
regular point of U then ∇f(p) is orthogonal to the tangent plane TpU .
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We are now ready to prove Lemma 9.4, and first repeat the statement of this
lemma.

Lemma 9.4. Let Q be a set of n points in R2, and let L be the set of lines defined
in (9.2). Then any irreducible two-dimensional variety U ⊂ R3 of degree D contains
less than 2D2n lines of L.

Proof. The case where U is a plane was already proved in Lemma 9.2. We thus
assume that D > 1. To prove the lemma, we will show that at most one line family
La can have many of its lines contained in U .

Since U is an irreducible hypersurface of degree D, there exists f ∈ R[x1, x2, x3]
of degree D such that 〈f〉 = I(U) (see Lemma 4.5). Consider a point a ∈ Q, a line
` ∈ La contained in U , and the vector field Va defined in Lemma 9.10(b). Let p be a
regular point of U that is also incident to `. Since ` ⊂ U , this line is also contained
in the tangent plane TpU , which in turn implies that Va(p) · ∇f(p) = 0. When p is a
singular point we still have that Va(p) ·∇f(p) = 0, since in this case ∇f(p) = (0, 0, 0).
To recap, every line of La that is contained in U is also contained in V(Va · ∇f).

Assume that at least 2D2 lines of La are contained in U , and set Wa = V(Va ·∇f).
By the previous paragraph, the intersection Wa ∩ U contains at least 2D2 lines. By
Lemma 9.10(b), each part of Va is of degree at most 2 in p. Since every part of ∇f
is of degree at most D − 1, we get that Wa ∩ U is of degree at most D + 1. Since
deg f = D and the intersection Wa∩U contains at least 2D2 > D(D+1) lines, Lemma
9.8 implies that U and Wa have a common component. Since U is irreducible, we get
that U ⊆ Wa.

We next assume that there exist distinct points a, b ∈ Q such that each of La and
Lb has at least 2D2 lines in U . By Lemma 9.10(b), the polynomial Va ·∇f is linear in
the coordinates of a (some coordinates of a may not appear in Va · ∇f). Since both
Va · ∇f and Vb · ∇f vanish on U , so does Vc · ∇f for any c in the affine span of a and
b.

Let p be a regular point of U (recall from Theorem 4.8 that almost every point of
U is regular), and let Up be an open neighborhood of p in U that consists of regular
points of U . Let c be in the affine span of a and b. By the preceding paragraph,
Vc · ∇f vanishes on U . This implies that the restriction of Vc to Up is a sub-bundle
of the tangent bundle TUp. We denote this restriction of Vc as V p

c . By the Picard–
Lindelöf theorem (Theorem 7.6) with the manifold Up and vector field V p

c , there is a
unique arc α : [−ε, ε]→ Up that solves (7.14) (for a sufficiently small ε > 0). By the
Picard–Lindelöf theorem with R3 and Vc, there exists a unique arc β : [−ε′, ε′]→ Up
that solves (7.14). Note that β clearly defines a segment of a line of Lc. Since V p

c is a
restriction of Vc, the curves defined by α and β coincide in some small neighborhood
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of p. That is, in a sufficiently small neighborhood of p, the curve described by α is a
segment of a line of Lc.

In the preceding paragraph we proved that U contains a segment of a line ` ∈ Lc,
and this segment is incident to p. Since U is a variety, it must contain ` (for example,
by Bezout’s theorem). This holds for every c in the affine span of a and b. Recalling
that no line in R3 is contained in more than one family Lc, we get that there are
infinitely many lines contained in U and incident to p. Since p is a regular point
of U , all of these lines are contained in the plane TpU . Applying Lemma 9.8 with
U and TpU implies that these two varieties have a common component. Since U is
irreducible and TpU is a plane, the two varieties are identical, which contradicts the
assumption D > 1. Thus, there cannot exist distinct a, b ∈ Q such that each of La
and Lb has at least 2D2 lines in U .

By the above, for at most one a ∈ Q the line family La has 2D2 or more lines in
U . At most n − 1 lines from this family are in L. For every other b ∈ Q, at most
2D2 − 1 lines of Lb are in U . Summing up, we conclude that the number of lines of
L that are in U is at most (n− 1) + (n− 1)(2D2 − 1) < 2nD2.

9.4 Exercises

Problem 9.1.
(i) Construct a set of n lines in R2 with Θ(n) points that are n1/3-rich. (Hint: You
might like to start with the construction of Claim 1.3 with m = n.)
(ii) Construct a set of n lines in R3 such that no plane contains more than n1/2 of the
lines and the number of n1/6-rich points is Θ(n).

Problem 9.2. Consider a coloring of the edges of the complete graph Kn with the
following properties: (i) No vertex is incident to two edges of the same color. (ii) There
are no two colors c1, c2 and two vertices v, u such that both v and u are incident to
an edge of color c1 and to an edge of color c2 (see Figure 9.1). Prove that the coloring
consists of Θ(n2) colors.

u v

Figure 9.1: Both v and u are incident to an edge of color c1 and to an edge of color c2.
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Problem 9.3. Consider a distinct distances variant for triangles, where two triangles
are distinct if they are not congruent. We say that a point set spans a triangle if the
three vertices of the triangle are points of the set. Prove that any set of n points in
R2 spans Ω (n2−ε) distinct triangles. (hint: There is no need to change the rich points
proof — only the ESGK framework from Section 9.1). Also prove that this bound is
tight up to the extra ε in the exponent.

Problem 9.4. Let P be a set of n points in R2 that spans O(n/
√

log n) distinct
distances. Prove that there exists a rotation of R2 that takes Ω(2log0.49 n) points of P
to points of P . Hint: Take another look at the calculation below the statement of
Theorem 9.1.

9.5 Open problems

In this chapter we studied the number of rich points in a set of n lines in R3, when
every constant-degree two-dimensional variety contains O(n1/2) of the lines. Claim
9.5 shows that our bound for this problem cannot be significantly improved. However,
it is not clear what happens when we further restrict the lines.

Open Problem 9.1. Let L be a set of n lines in R3 such that every constant-degree
two-dimensional variety in R3 contains O(1) lines of L. For r ≥ 2, what is the
maximum number of r-rich points that L can have?

Beyond being difficult to solve, this problem is also interesting since it is related to
several other main open problems. For example, the unit distances problem (presented
in Section 1.5) can be reduced to a variant of Open Problem 9.1. One may also ask
what happens when at most q lines are contained in a constant-degree two-dimensional
variety, for any q = o(n1/2).

As already stated in Chapter 1, the distinct distances problem was asked for point
sets in Rd. That is, what is the minimum number of distinct distances that can be
determined by a set of n points in Rd. When d ≥ 3, the gap between the current best
lower and upper bounds is polynomial in n. For such d, it is not difficult to show that
an n1/d × n1/d × · · · × n1/d section of the integer lattice Zd spans Θ(n2/d) distances,
and this is conjectured to be tight.

Conjecture 9.11. For d ≥ 3, every set of n points in Rd determines Ω(n2/d) distinct
distances.

The current best bound is a combination of a result of Solymosi and Vu [91] with
the planar bound of Guth and Katz [51]. For the full details, see for example [85].



116 CHAPTER 9. LINES IN R3

One common belief is that the approach of Guth and Katz in R2 could be extended
to Rd. Bardwell-Evans and Sheffer [4] reduced the distinct distances problem in Rd

to an incidence problem with (d − 1)-flats in R2d−1. These flats are well-behaved in
several ways, such as that every two flats intersect in at most one point. However, it
is currently not known how to solve such incidence problems.



Chapter 10

Distinct Distances Variants

After a rather technical chapter which completed the proof of the distinct distances
theorem, we move to a short lighter chapter. We now study the current best bounds
for a couple of open variants of the distinct distances problem.

10.1 Subsets with no repeated distances

Given a set P of points in R2, let subset(P) denote the size of the largest subset
P ′ ⊂ P such that every distance is spanned by the points of P ′ at most once. That
is, there are no points a, b, c, d ∈ P ′ such that |ab| = |cd| > 0 (including cases where
a = c). Figure 10.1 depicts a set of 25 points and a subset of four points that span
every distance at most once.

Figure 10.1: A set of 25 points and a subset of four points that span every distance at most
once. No subset of five points has this property.

Let subset(n) = min|P|=n subset(P). In other words, subset(n) is the maximum
number satisfying that every set of n points in R2 contains a subset of subset(n)
points that do not span any distance more than once. We are interested in the
asymptotic value of subset(n).

117
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If every distance spanned by a subset P ′ ⊂ P is unique, then the number of
distances spanned by P must be at least

(|P ′|
2

)
. That is, when P spans d distinct

distances we have |P ′| = O
(√

d
)

. Let L be a
√
n×√n section of the integer lattice

Z2. By Theorem 1.9, the set L spans Θ(n/
√

log n) distinct distances. Therefore,

we have subset(n) ≤ subset(L) = O
(√

n/ log1/4 n
)

. This is the current best upper

bound for subset(n).
The following is the current best lower bound for subset(n).

Theorem 10.1 (Charalambides [18]). subset(n) = Ω
(
n1/3/ log1/3 n

)
.

The proof of Theorem 10.1 combines the Guth-Katz distinct distances result with
a simple probabilistic argument. For this proof, we require a bound on the maximum
number of isosceles triangles that are spanned by a set of n points in R2 (triangles
whose three vertices are in the point set). The current best bound, by Pach and
Tardos [71], is O(n2.137). The following weaker bound suffices for proving Theorem
10.1.

Claim 10.2. Let P be a set of n points in R2. Then P determines O(n7/3) isosceles
triangles.

Proof. For a fixed point p ∈ P , we bound the number of isosceles triangles having p
as one of the vertices incident to the base edge. For a point q ∈ P \ {p}, we consider
such triangles where q is the vertex not incident to the base edge. The third vertex
of such a triangle is on the circle centered at q and incident to p (see Figure 10.2(a)).
We denote this circle as Cq, and set C = {Cq : q ∈ P \ {p}}. The number of isosceles
triangles in which p is incident to the base edge is I(P \ {p}, C).

Note that no two circles of C are identical, since each circle has a distinct center.
In a general point-circle incidence problem, the incidence graph may contain a K2,2.
In the current scenario, since the circles of C are all incident to p, the incidence graph
of (P \ {p}) × C does not contain a K2,2 (see Figure 10.2(b)). Theorem 3.3 implies
that I(P \ {p}, C) = O

(
n4/3

)
. By summing this bound over every p ∈ P , we obtain

that the number of isosceles triangles spanned by P is O(n7/3).

We are now ready to derive an upper bound for subset(n).

Proof of Theorem 10.1. Consider a set P of n points in R2. Similarly to the ESGK
framework, we define the set

Q =
{

(a, b, c, d) ∈ P4 : |ab| = |cd| > 0
}
.
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q

p

(a) (b)

p

Figure 10.2: (a) In an isosceles triangle where p incident to the base edge but not q, the third
vertex is on the circle centered at q and incident to p. (b) Circles that intersect at p lead to an
incidence graph with no K2,2 (when p is not a vertex of this graph).

Unlike the ESGK framework, we only consider quadruples that consist of four distinct
points. In Chapters 8 and 9, we proved that |Q| = O(n3+ε). The more involved proof
of Guth and Katz implies |Q| = O(n3 log n). Let T be the set of isosceles triangles
spanned by points of P (including equilateral triangles). By Claim 10.2, we have
|T | = O(n7/3).

Consider a probability 0 < p < 1 that will be set below. Let P ′ ⊆ P be a
subset that is obtained by choosing every point of P with probability p. Then we
have the expectation E[|P ′|] = pn. Let Q′ ⊆ Q be the set of quadruples of Q that
contain only points of P ′. Every quadruple of Q is in Q′ with a probability of p4,
so E[|Q′|] ≤ αp4n3 log n for a sufficiently large constant α. Let T ′ ⊆ T be the set of
isosceles triangles of T that have their three vertices in P ′. We have E[|T ′|] ≤ αp3n7/3,
for a sufficiently large constant α. The points of P ′ span every distance at most once
if and only if |Q′| = |T ′| = 0. We fix a sufficiently large constant α that satisfies the
above. By linearity of expectation we have

E [|P ′| − |Q′| − |T ′|] ≥ pn− αp4n3 log n− αp3n7/3.

By setting p = 1/(2αn2 log n)1/3, for sufficiently large n we obtain

E [|P ′| − |Q′| − |T ′|] ≥ n1/3

21/3α1/3 log1/3 n
− n1/3

24/3α1/3 log1/3 n
− n1/3

2 log n
>

n1/3

3α1/3 log1/3 n
.

Thus, there exists a subset P ′ ⊂ P for which |P ′| − |Q′| − |T ′| > n1/3

3(α1 logn)1/3
. We

construct P ′′ ⊆ P ′ by arbitrarily removing from P ′ a point from every tuple of Q′ and
T ′. The subset P ′′ does not span any repeated distances and contains Ω(n1/3/ log1/3 n)
points of P .
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10.2 Point sets with few distinct distances

Characterizing the point sets in R2 that determine a small number of distinct distances
appears to be one of the most difficult open problems concerning distinct distances.
Erdős asked whether every set of n points in R2 that spans O(n/

√
log n) distances

“has lattice structure” [37]. In Chapter 1 we saw that a
√
n × √n section of Z2

determines O(n/
√

log n) distinct distances. The same holds for
√
n×√n sections of

other lattices (for example, see [85]). Since proving the conjecture seems to be very
difficult, Erdős suggested to first prove that for every such point set there exists a
line containing Ω(

√
n) points of the set [37]. This would imply that the point set can

be covered by a relatively small number of lines. Since this also appears to be quite
difficult, Erdős asked whether there exists a line containing Ω(nε) points of the set,
for any ε > 0. Embarrassingly, even this weaker variant remains open after several
decades.

We now present the current best bound for the above problem. To derive this
bound, we require the following straightforward generalization of Theorem 3.3 (see
also Problem 3.14).

Theorem 10.3. Let P be a set of m points and let Γ be a set of n distinct irreducible
algebraic curves of degree at most k, both in R2. If the incidence graph of P × Γ
contains no copy of Ks,t, then

I(P ,Γ) = Os,k

(
m

s
2s−1n

2s−2
2s−1 t

1
2s−1 + tm+ n

)
.

Claim 10.4. Let P be a set of n points in R2 that spans O(n/
√

log n) distinct dis-
tances. Then there exists a line that contains Ω(log n) points of P.

Proof. Let D be the set of distances spanned by P . We construct a set C of circles by
placing |D| = O(n/

√
log n) circles around every point of P . For each point, we place

one circle for each distance of D, where the distance is the radius of the corresponding
circle. Note that |C| = O(n2/

√
log n). Since the circles centered at a point p ∈ P

form exactly one incidence with each point of P \ {p}, we have

I(P , C) = n(n− 1). (10.1)

Let x denote the maximum number of points of P that are on a common line.
Given two points p, q ∈ P , if a circle C ∈ C contains both p and q then the perpendic-
ular bisector of p and q is incident to the center of C. This implies that the incidence
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graph of P × C contains no copy of K2,x+1. Applying Theorem 10.3 implies

I(P , C) = O

(
n2/3

(
n2

√
log n

)2/3

x1/3 + nx+
n2

√
log n

)

= O

(
n2x1/3

log1/3 n
+

n2

√
log n

+ nx

)
.

Combining this with (10.1) implies the assertion of the claim.

10.3 Exercises

Problem 10.1. Let A ⊂ R be a set of n real numbers. Prove that there exists a
subset A′ ⊂ A such that |A′| = Ω(n1/3) and no difference repeats more than once in
A′. That is, there do not exist a, b, c, d ∈ A′ such that a− b = c− d. (Hint: Define a
set of quadruples and derive an upper bound on its size.)

Problem 10.2. Let P be a set of n points in R2, such that no four distinct points
a, b, c, d ∈ P are the vertices of an isosceles trapezoid. Prove that P determines Ω(n)
distinct distances. You might like to use the following approach.

Let x be the number of distinct distances spanned by P . Consider the set of
isosceles triangles that are spanned by P :

T = {(a, b, c) ∈ P3 : |ab| = |ac| and b 6= c}. (10.2)

Prove the claim by double counting |T |. Use the Cauchy-Schwarz inequality to find
a lower bound for the number of triangles that involve a specific a ∈ P . The points
of P \ {a} are on at most x circles centered at a. Two points b, c ∈ P form a triple
with a if and only if they are on the same circle. To derive an upper bound for |T |,
find a connection to perpendicular bisectors of pairs of points of P .

Problem 10.3. Let P be a set of n points in R2, such that no three points of P
are collinear. Prove that there exists a point p ∈ P such that the number of distinct
distances between p and P \ {p} is at least (n− 1)/3.

You might like to imitate the proof of Problem 10.2, by defining T as in (10.2)
and double counting |T |. In this case, x is the maximum number of distinct distances
between any point p ∈ P and P \ {p}.



Chapter 11

Incidences in Rd

In this chapter we continue to study incidences in Rd. As a warmup, we derive an
incidence bound for curves in R3 (stronger than the bound presented in Chapter
7). The main result of this section is a general point-variety incidence bound in
Rd. Deriving this result requires additional tools from Algebraic Geometry, and in
particular the concept of Hilbert polynomials.

11.1 Warmup: Incidences with curves in R3

In Chapter 7 we saw how to use the “constant-degree polynomial partitioning” tech-
nique to derive incidence bounds in Rd. In particular, Theorem 7.5 contains a point-
variety incidence bound that holds in any dimension d. Recall that this theorem ap-
plies only to incidences with varieties of dimension at most d/2. Moreover, it seems
to give the conjectured incidence bound only when the dimension of the varieties is
exactly d/2 (see Section 11.5 for details about the conjectured bound). As a first
example of improving the bound of Theorem 7.5, we now derive a stronger bound for
curves in R3. The comparison to Theorem 7.5 is not accurate, since the assumptions
satisfied by the curves are rather different in the two cases. The following bound
has a simple proof, and is presented as a warmup before getting to a more involved
technique for incidences in Rd. A reader who does not wish to see yet another use of
constant-degree polynomial partitioning may prefer to skip this section.

We recall Lemma 7.2, in which we proved that our point-curve incidence bound
in R2 holds in any dimension.

Lemma 7.2. Consider an integer d ≥ 2. Let P be a set of m points and let Γ be a
set of n varieties of dimension at most one and degree at most k, both in Rd. If the

122



11.1. WARMUP: INCIDENCES WITH CURVES IN R3 123

incidence graph of P × Γ contains no copy of Ks,t, then

I(P ,Γ) = Os,t,k,d

(
m

s
2s−1n

2s−2
2s−1 +m+ n

)
.

Without additional assumptions we cannot expect a point-curve bound in R3 (or
in any dimension d ≥ 3) to be stronger than the point-curve incidence bound in R2.
Indeed, assume that a point set P and a set of curves Γ in R2 yield a large number
of incidences. We can obtain the same number of incidences in R3 by taking an
arbitrary plane Π ⊂ R3 and placing P and Γ in Π. For the same reason, any general
point-curve incidence bound that holds in Rd for some d ≥ 3 also holds in R2.

In the above explanation for why we cannot obtain a stronger point-curve incidence
bound in R3, our example is two-dimensional: The curves are contained in a single
plane. When dealing with specific types of curves we can sometimes replace the plane
with a different surface. For example, it is possible to take a configuration of circles
in R2 and place it on a sphere in R3 while maintaining incidences. If the set of curves
is required to be “truly three-dimensional” in the sense that no low-degree surface
contains many curves, then we can obtain a stronger bound.

Theorem 11.1. For any ε > 0 there exists a constant cε that satisfies the following.
Let P be a set of m points and let Γ be a set of n irreducible algebraic curves of degree
at most k, both in R3. Assume that the incidence graph of P × Γ contains no copy
of Ks,t and that every two-dimensional variety in R3 of degree at most cε contains at
most q curves of Γ. Then

I(P ,Γ) = Os,t,k,ε

(
m

s
3s−2

+εn
3s−3
3s−2 +m

s
2s−1

+εn
3s−3
4s−2 q

s−1
4s−2 +m+ n

)
.

As an example, consider the case where Γ is a set of lines, m = n, and every
surface of degree at most cε contains at most

√
n lines of Γ. Applying Theorem 11.1

with s = 2 and q =
√
n gives I(P ,Γ) = Oε

(
n5/4+ε

)
. Lemma 7.2 leads to the weaker

bound I(P ,Γ) = O
(
n4/3

)
.

Proof of Theorem 11.1. Let α1 and α2 be sufficiently large constants that depend on
s, t, k, and ε. The hidden constants in the O(·)-notations throughout the proof may
also depend on s, t, k, and ε. For brevity we write O(·) instead of Os,t,k,ε(·). We prove
by induction on m+ n that

I(P ,Γ) ≤ α1

(
m

s
3s−2

+εn
3s−3
3s−2 +m

s
2s−1

+εn
3s−3
4s−2 q

s−1
4s−2

)
+ α2(m+ n).

For the induction base, the case where m and n are sufficiently small can be
handled by choosing sufficiently large values of α1 and α2. We move to consider
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the induction step. Since the incidence graph contains no copy of Ks,t, Theorem 7.1
implies I(P ,Γ) = O(mn1−1/s + n). When m = O(n1/s) this implies I(P ,Γ) = O(n),
and we may thus assume that

n = O(ms). (11.1)

Partitioning the space. Let f be an r-partitioning polynomial of P , for a suf-
ficiently large constant r. The asymptotic relations between the various constants
are

21/ε, k, s, t� r � α2 � α1.

By the polynomial partitioning theorem (Theorem 3.1), we have deg f = O(r). By
Warren’s theorem (Theorem 3.2), the number of cells is c = O(r3). Denote the cells
of the partition as C1, . . . , Cc. For each j = 1, . . . , c, let Γj denote the set of curves of
Γ that intersect Cj and set Pj = Cj ∩ P . We also set mj = |Pj|, m′ =

∑c
j=1mj, and

nj = |Γj|. Note that mj ≤ m/r3 for every 1 ≤ j ≤ c. For any curve γ ∈ Γ, Theorem
4.11 with U = γ and W = V(f) implies that γ intersects O(r) cells of R3 \ V(f).
Therefore,

∑c
j=1 nj = O(nr), and according to Hölder’s inequality we have

c∑
j=1

n
3s−3
3s−2

j ≤
(

c∑
j=1

nj

) 3s−3
3s−2

(
c∑
j=1

1

) 1
3s−2

= O
(

(nr)
3s−3
3s−2 r

3
3s−2

)
= O

(
n

3s−3
3s−2 r

3s
3s−2

)
,

c∑
j=1

n
3s−3
4s−2

j ≤
(

c∑
j=1

nj

) 3s−3
4s−2

(
c∑
j=1

1

) s+1
4s−2

= O
(

(nr)
3s−3
4s−2 r

3s+3
4s−2

)
= O

(
n

3s−3
4s−2 r

3s
2s−1

)
.

Combining the above with the induction hypothesis implies

c∑
j=1

I(Pj,Γj) ≤
c∑
j=1

(
α1

(
m

s
3s−2

+ε

j n
3s−3
3s−2

j +m
s

2s−1
+ε

j n
3s−3
4s−2

j q
s−1
4s−2

)
+ α2(mj + nj)

)

≤ α1

(
m

s
3s−2

+ε

r
3s

3s−2
+3ε

c∑
j=1

n
3s−3
3s−2

j +
m

s
2s−1

+εq
s−1
4s−2

r
3s

2s−1
+3ε

c∑
j=1

n
3s−3
4s−2

j

)
+

c∑
j=1

α2(mj + nj)

= α1 ·O
(
m

s
3s−2

+εn
3s−3
3s−2

r3ε
+
m

s
2s−1

+εn
3s−3
4s−2 q

s−1
4s−2

r3ε

)
+ α2 (m′ +O(nr)) .

By (11.1) we have n = O
(
m

s
3s−2n

3s−3
3s−2

)
. Thus, when α1 is sufficiently large with



11.1. WARMUP: INCIDENCES WITH CURVES IN R3 125

respect to r and α2, we get

c∑
j=1

I(Pj,Γj) = α1 ·O
(
m

s
3s−2

+εn
3s−3
3s−2

r3ε
+
m

s
2s−1

+εn
3s−3
4s−2 q

s−1
4s−2

r3ε

)
+ α2m

′.

When r is sufficiently large with respect to ε and to the constant hidden in the
O(·)-notation, we have

c∑
j=1

I(Pj,Γj) ≤
α1

2

(
m

s
3s−2

+εn
3s−3
3s−2 +m

s
2s−1

+εn
3s−3
4s−2 q

s−1
4s−2

)
+ α2m

′. (11.2)

Incidences on the partition. It remains to study incidences with points that lie
on V(f). Set P0 = P ∩ V(f) and m0 = |P0| = m − m′. Let Γ0 denote the set of
curves that are contained in V(f). Set Γ′ = Γ \Γ0, n0 = |Γ0|, and n′ = |Γ′| = n−n0.
By Theorem 4.11 every curve of Γ′ intersects V(f) in O(r) points. That is, every
such curve is incident to O(r) points of P0. Summing this over every curve of Γ′ and
taking α2 to be sufficiently large gives

I(P0,Γ
′) = O(nr) ≤ α2

2
n. (11.3)

It remains to derive a bound for I(P0,Γ0). For this purpose, we set cε so that
cε > deg f and cε = O(r). By the assumption of the theorem we get that |Γ0| ≤ q.
By applying Lemma 7.2 (which is restated in the beginning of this section) on P0 and
Γ0, we obtain

I(P0,Γ0) = O
(
m

s
2s−1

0 q
2s−2
2s−1 +m0 + q

)
.

Since q ≤ n and m0 ≤ m, we have

m
s

2s−1

0 q
2s−2
2s−1 ≤ m

s
2s−1n

3s−3
4s−2 q

s−1
4s−2 .

Combining this with a sufficiently large choice of α1 and α2 implies

I(P0,Γ0) = O
(
m

s
2s−1n

3s−3
4s−2 q

s−1
4s−2 + n+m0

)
≤ α1

2
m

s
2s−1n

3s−3
4s−2 q

s−1
4s−2 +

α2

2
(n+m0). (11.4)

By combining (11.2), (11.3), and (11.4), we complete the induction step and thus
the proof of the theorem.
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It is not difficult to extend Theorem 11.1 to incidences with curves in any dimen-
sion. As the dimension grows, the bound becomes stronger while the restrictions over
the set of curves become more involved (see [86]). That is, we can improve Theorem
7.5 when d ≥ 3 and the varieties are curves. This improved bound is obtained under
different restrictions on the curves: Instead of a restriction concerning the tangents
of the curves we have a restriction concerning the number of curves in a low-degree
variety. It is conjectured that similar improved bounds exist whenever the dimension
of the varieties is not d/2 (see Section 11.5 for the conjectured bounds).

So far the conjectured bounds for incidences in Rd have only been obtained for
curves, varieties of dimension d/2, and hypersurfaces. We have seen the case of
curves in Theorem 11.1 and the case of varieties of degree d/2 in Theorem 7.5. In the
following sections we will study the case of hypersurfaces.

11.2 Hilbert polynomials

As already stated, the main goal of this chapter is to derive a general point-variety
incidence bound in Rd. This bound is derived in Section 11.3. In the current section
we prepare for the proof in Section 11.3 by introducing more tools from Algebraic
Geometry.

For an integer m ≥ 0, we denote by R[x1, . . . , xd]≤m the set of polynomials of
degree at most m in R[x1, . . . , xd]. Similarly, if J ⊂ R[x1, . . . , xd] is an ideal, we
denote by J≤m = J ∩ R[x1, . . . , xd]≤m the set of polynomials in J of degree at most
m. Note that R[x1, . . . , xd]≤m is not a ring and that J≤m is not an ideal. As seen in
the proof of Theorem 3.6, there are

(
d+m
m

)
monomials in the variables x1, . . . , xd of

degree at most m (ignoring the coefficient of the monomial). Thus, we can consider
R[x1, . . . , xd]≤m as a vector space of dimension

(
d+m
m

)
. Specifically, R[x1, . . . , xd]≤m

is isomorphic to R(d+m
m ).1 Similarly, J≤m is a vector space of a finite dimension (for

example, see Problem 11.1(a)) and a subspace of R[x1, . . . , xd]≤m.
As a simple example, consider the ideal J = 〈x2y, xy2〉 ⊂ R[x, y] (that is, every

term of every polynomial in J is a multiple of x2y or of xy2). An ideal that is generated
by monomials is called a monomial ideal. While all of the following definitions and
results hold for arbitrary ideals, we use a monomial ideal as an example since it is

1Since constant multiples of the same polynomial define the same variety, we can consider such
multiples as equivalent. With this equivalence relation R[x1, . . . , xd]≤m behaves like the projective

space RP(d+m
m )−1. We will not rely on any projective properties in this chapter, so we stick to the

affine space R(d+m
m ).
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1 x x2 x3 x4

xy

xy2
xy3
xy4 x4y4

x2y

J J≤4

(a) (b) (c)

Figure 11.1: (a) Every lattice point corresponds to a monomial of R[x, y]. (b) The ideal
J = 〈x2y, xy2〉. (c) The vector space J≤4.

easier to understand. The first advantage of dealing with a monomial ideal as an
example is that we can think of the set of monomials in R[x, y] as a lattice (ignoring
the real coefficients), as shown in Figure 11.1(a). Figure 11.1(b) shows the structure
of J , and Figure 11.1(c) shows J≤4.

Every element R[x, y]≤3 can be written as

c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 + c7x
3 + c8x

2y + c9xy
2 + c10y

3,

and we can think of it as the point (c1, . . . , c10) ∈ R10. We write the coordinates of
R10 as x1, . . . , x10. In the example ideal J = 〈x2y, xy2〉 ⊂ R[x, y], we get that J≤3 is
the 2-flat in R10 defined by x1 = · · · = x7 = x10 = 0.

The quotient R[x1, . . . , xd]≤m/J≤m is also a vector space.2 The Hilbert function of
an ideal J ⊂ R[x1, . . . , xd] is defined as

hJ(m) = dim (R[x1, . . . , xd]≤m/J≤m) .

In the example J = 〈x2y, xy2〉 ⊂ R[x, y], the quotient R[x, y]≤m/J≤m is the set
of polynomials in R[x, y]≤m that do not have monomials that are divisible by x2y
and xy2. Equivalently, R[x, y]≤m/J≤m is the set of polynomials in R[x, y]≤m that are
generated by monomials that are not in J (this property is special to monomial ideals,
and does not hold in general). When m = 3, the quotient R[x, y]≤3/J≤3 is the set
of polynomials of the form c1 + c2x + c3y + c4x

2 + c5xy + c6y
2 + c7x

3 + c10y
3. More

2Given a vector space A and a subspace B, recall that in the quotient A/B two elements a, a′ ∈ A
are equivalent if and only if there exists b ∈ B such that a+ b = a′.
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generally, we get that

hJ(m) = dim (R[x, y]≤m/J≤m) =


1, m = 0,

3, m = 1,

2 + 2m, m ≥ 2.

In the above, when ignoring the first two values of hJ(m) we get that it is a
linear polynomial. This is an example of the following property of Hilbert functions.
For every ideal J ⊂ R[x1, . . . , xd], there exists an integer mJ ≥ 0 and a polynomial
HJ ∈ R[m] such that for every m > mJ we have hJ(m) = HJ(m). That is, for
sufficiently large m the Hilbert function behaves like a polynomial. The polynomial
HJ is called the Hilbert polynomial of J , and mJ is called the regularity of J . From
the above, we have that the Hilbert polynomial of 〈x2y, xy2〉 is 2 + 2m and that its
regularity is 1.

Let U ⊂ Rd be a variety. Then the dimension of U is equal to the degree of the
Hilbert polynomial HI(U)(m). That is, Hilbert polynomials provide an alternative
way to define the dimension of a variety. The coefficient of the leading term mdimU of
HI(U)(m) is always positive. As with previous uses of an ideal of a variety I(U), the
above definition of dimension does not remain valid for every ideal J ⊂ R[x1, . . . , xd]
that satisfies U = V(J). To get the correct dimension of U , one has to use the Hilbert
polynomial of the ideal I(U).

Let U ⊂ Rd be a variety of degree k and dimension d′, and let J = I(U). Then
the regularity mJ of J is Od,k(1). By combining this with the above properties of the
Hilbert polynomial, we get that for every m > mJ

hJ(m) = Θd,k

(
md′
)
. (11.5)

A more detailed introduction to Hilbert polynomials, including proofs for most of
the above claims, can be found in [23, Chapter 9]. For the bound on the regularity
mJ , see [44, Theorem B] and [42].

11.3 A general point-variety incidence bound

We are now ready to state our general incidence bound in Rd. This result was derived
in [42].

Theorem 11.2. Let P be a set of m points and let V be a set of n varieties of degree
at most k, both in Rd. Assume that the incidences graph of P × V does not contain
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a copy of Ks,t. Then for every ε > 0, we have

I(P ,V) = Ok,s,t,d,ε

(
m

(d−1)s
ds−1

+εn
d(s−1)
ds−1 +m+ n

)
.

Note that Theorem 11.2 holds for varieties of any dimension. It leads to the
current best bounds for varieties of dimension larger than d/2, although it achieves
the conjectured bounds only for hypersurfaces. An improved bound for the case when
the varieties of V are of dimension smaller than d− 1 can be found in Problem 11.2.

We now present a non-rigorous explanation of our strategy for proving Theorem
11.2. Once again, we rely on the constant-degree polynomial partitioning technique.
As always, the main difficulty with this technique is to bound the number of incidences
on the partition (that is, incidences with points that are not in any cell). In Chapter
7 we handled these incidences by using an assumption about the tangent spaces of
the varieties. In Theorem 11.1 we handled these incidences by using the assumption
that not many curves can be contained in a low-degree surface. In Theorem 11.2 we
have arbitrary varieties with no additional assumptions to rely on.

Let U ⊂ Rd be a variety that is our constant-degree partition. Let P0 = P ∩ U
be the set of points on this partition. To handle incidences with the points of P0

we will take a second constant-degree partitioning polynomial f2 ∈ R[x1, . . . , xd]. The
polynomial f2 is not required to partition Rd but rather U . That is, the cell of the
second partition are the connected components of U \V(f2) and we would like none
of these cells to contain many points of P0.

Even if we can obtain a second partitioning polynomial and handle the incidences
in the second set of cells, there might remain additional incidences to study. In
particular, there may be many points on U2 = U ∩V(f2), and incidences with points
on U2 were not handled in any of the cells. To handle these incidences, we take a third
partition which divides U2 into cells. We continue performing partitioning steps, and
after each such step the remaining incidences are contained in a lower-dimensional
variety.

To use the above approach of multiple polynomial partitions, we need to derive a
variant of the polynomial partitioning theorem (Theorem 3.1). We begin by deriving
a variant of the ham sandwich theorem (Theorem 3.6), by relying on Hilbert polyno-
mials. Recall from Chapter 3 that a polynomial f : Rd → R bisects a finite point set
P ⊂ Rd if each of the two sets {x ∈ Rd : f(x) < 0} and {x ∈ Rd : f(x) > 0} contains
at most |P|/2 points of P .

Lemma 11.3. Let U ⊂ Rd be an irreducible variety of dimension d′ ≥ 1 and degree k,
and let P1,P2, . . . ,Pt be finite sets of points in Rd. Then there exists f ∈ R[x1, . . . , xd]
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such that f /∈ I(U), the polynomial f bisects each of the sets P1,P2, . . . ,Pt, and
deg f = Od,k(t

1/d′).

Proof. This proof is a variant of the proof of Theorem 3.6. Let J = I(U). As stated
in Section 11.2, there exists a constant mJ = Od,k(1) such that (11.5) holds for every
m > mJ . That is, for every such m the quotient R[x1, . . . , xd]≤m/J≤m is a vector
space of dimension dm = Θd,k(m

d′). Consider the minimum integer m that satisfies
dm ≥ t. If m > mJ then

t = Θd,k

(
md′
)
, or equivalently m = Θd,k

(
t1/d

′
)
.

If m ≤ mJ = Od,k(1) then we also have that m = Od,k

(
t1/d

′)
, by taking the constant

of the O(·)-notation to be sufficiently large.
Let p1, . . . , pdm be a basis for the vector space R[x1, . . . , xd]≤m/J≤m. Consider the

map φ : Rd → Rdm defined by

φ(x) = (p1(x), . . . , pdm(x)).

For every 1 ≤ j ≤ t, let P ′j = φ(Pj) ⊂ Rdm . For any points u1, u2 ∈ U , the
quotient R[x1, . . . , xd]≤m/J≤m contains a polynomial that vanishes on u1 but not on
u2. For example, a generic hyperplane through u1 is not incident to u2 and not in
J≤m. This implies that φ is injective on U = V(J), and thus that |P ′j| = |Pj|. Since
dm ≥ t, the original ham sandwich theorem (Theorem 3.5) states that there exists
a hyperplane Π ⊂ Rdm that bisects each of the sets P ′1,P ′2, . . . ,P ′k. We write the
coordinates of Rdm as y1, . . . , ydm , and note that Π = V(a1y1 + . . .+admydm) for some
a1, . . . , adm ∈ R. That is, for each 1 ≤ j ≤ t we have

|{y ∈ P ′j : a1y1 + · · ·+ admydm > 0}| ≤ |P ′j|/2,

and
|{y ∈ P ′j : a1y1 + . . .+ admydm < 0}| ≤ |P ′j|/2.

We set f = a1p1 + · · · + admpdm ∈ R[x1, . . . , xd]. By the definition of the basis
elements pj, the polynomial f is of degree at most m and is not in J . For a point
p ∈ Rd, note that f(x) > 0 if and only if a1φ(p)1 + . . .+ admφ(p)dm > 0 (where φ(p)j
is the j’th coordinate of φ(p)). Thus, for each 1 ≤ j ≤ dm we have

|{x ∈ Pj : f(x) > 0}| ≤ |Pj|/2 and |{x ∈ Pj : f(x) < 0}| ≤ |Pj|/2.

This completes the proof of the lemma.
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Note that the main change between the proof of Lemma 11.3 and the proof of
the original polynomial ham sandwich (Theorem 3.6) is that the Veronese map was
replaced with a somewhat different map. The Veronese map takes points of Rd to a
space isomorphic to R[x1, . . . , xd]≤m, and we look for our bisecting polynomial in that
space. The new map takes points of Rd to a space isomorphic to R[x1, . . . , xd]≤m/J≤m.
The reason for moving to R[x1, . . . , xd]≤m/J≤m is that the only polynomial in this
quotient that vanishes on every point of U is 0. Indeed, every polynomial that vanishes
on U is in J≤m and thus equivalent to 0. Since we move to a subset of R[x1, . . . , xd]≤m,
we need to take a larger value of m to get to a space of dimension at least t. We
bounded this increase in m using a basic property of Hilbert polynomials

The following result will allow us to use multiple polynomial partitions.

Theorem 11.4. Let P be a set of m points in Rd and let U ⊂ Rd be an irreducible
variety of dimension d′ and degree k. Then there exists an r-partitioning polynomial
f of P such that f /∈ I(U) and deg f = Od,k(r

d/d′).

For our purpose, we only need to use Theorem 11.4 in the case where P ⊂ U . We
do not include this restriction in the statement of the theorem, since omitting it does
not affect the proof.

Proof of Theorem 11.4. This proof is almost identical to the proof of Theorem 3.1.
Let cd,k be the hidden constant in the O(·)-notation of the bound on deg f in the
statement of Lemma 11.3. That is, applying Lemma 11.3 on U implies the existence
of a polynomial of degree at most cd,kt

1/d′ . Let J = I(U). We will show that there
exists a sequence of polynomials f0, f1, f2, . . . such that the degree of fj is smaller than
cd,k2

(j+1)/d′/(21/d′−1), the polynomial fj in not in J , and every connected component
of Rd \V(fj) contains at most m/2j points of P . This would complete the proof since
we can then choose f = fs, where s is the minimum integer satisfying 2s ≥ rd.

We prove the existence of fj by induction on j. For the induction basis we may
take f0 = 1, so we move to the induction step. By the induction hypothesis, there
exists a polynomial fj of degree smaller than cd,k2

(j+1)/d′/(21/d′ − 1) such that fj /∈ J
and every connected component of Rd \ V(fj) contains at most m/2j points of P .
Since |P| = m, the number t of connected components of of Rd \V(fj) that contain
more than m/2j+1 points of P is smaller than 2j+1. Let P1, . . . ,Pt ⊂ P be the
subsets of P that are contained in each of these connected components (that is,
|P1|, . . . , |Pt| > m/2j+1). By Lemma 11.3, there is a polynomial gj of degree smaller
than cd2

(j+1)/d′ that simultaneously bisects P1, . . . ,Pt. Let fj+1 = fj · gj. Note that
every connected component of Rd \ V(fj · gj) contains at most m/2j+1 points of P
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and that fj · gj is a polynomial of degree smaller than

cd2
(j+1)/d′

21/d′ − 1
+ cd2

(j+1)/d′ = cd2
(j+1)/d ·

(
1

21/d′ − 1
+ 1

)
=
cd2

(j+2)/d′

21/d′ − 1
.

Since fj /∈ J and gj /∈ J , we get that fj+1 /∈ J . This completes the induction step
and the proof of the theorem.

Now that we established the existence of multiple polynomial partitions, we are
ready to use these to derive an incidence bound. Theorem 11.2 is an immediate
corollary of the following result (by setting U = Rd).

Theorem 11.5. Let U ⊂ Rd be an irreducible variety of dimension d′ and degree at
most k. Let P ⊂ U be a set of m points and let V be a set of n varieties of degree
at most k in Rd, such that the incidences graph of P × V does not contain a copy of
Ks,t. In addition, no variety of V contains U . Then for every ε > 0, we have

I(P ,V) = Ok,s,t,d,ε

(
m

(d′−1)s

d′s−1
+εn

d′(s−1)

d′s−1 +m+ n

)
.

Proof. We prove the theorem by induction on d′. Let α1,d′,k and α2,d′,k be sufficiently
large constants that depend on s, t, d, k, ε, and d′. We will prove that

I(P ,V) ≤ α1,d′,km
(d′−1)s

d′s−1
+εn

d′(s−1)

d′s−1 + α2,d′,k(m+ n). (11.6)

The hidden constants in the O(·)-notations throughout the proof may also depend on
s, t, d, k, and ε. For brevity we write O(·) instead of Os,t,d,k,ε(·).

For the induction basis, consider the case of d′ = 1. Assuming that m ≥ s, since
the incidence graph contains no Ks,t we get that at most t−1 varieties of V can contain
U . By the Milnor-Thom theorem (Theorem 4.12), every other variety of V intersects
U in O(1) points and thus contributes O(1) incidences. We conclude that in this case
I(P ,V) = O(m+ n), and the claim holds when α1,1,k and α2,1,k are sufficiently large.

For the induction step, consider d′ > 1 and assume that the theorem holds for
smaller values of d′. We prove the induction step using a second induction on m+ n.
That is, we will prove (11.6) for a fixed d′ > 1 by induction on the size of P and V .
For the induction basis, when both m and n are at most some constant the claim
holds by taking sufficiently large α1,d′,k and α2,d′,k.

We move to the induction step of induction on m+ n. Since the incidence graph
contains no copy of Ks,t, Theorem 7.1 implies I(P ,V) = O(mn1−1/s). When m =
O(n1/s), this implies I(P ,V) = O(n). We may thus assume that

n = O(ms), (11.7)
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which in turn implies

n = n
d′(s−1)

d′s−1 n
d′−1
d′s−1 = O

(
m

(d′−1)s

d′s−1 n
d′(s−1)

d′s−1

)
. (11.8)

Partitioning the space. Let f /∈ I(U) be an r-partitioning polynomial of P , for a
sufficiently large constant r. The asymptotic relations between the various constants
are

d, k, s, t, 21/ε � r � α2,d′,k � α1,d′,k.

By Theorem 11.4 we have deg f = O(rd/d
′
). Since P ⊂ U , we define the cells of

the partition to be the connected components of U \ V(f). By Theorem 4.11 with
W = V(f), the number of cells is c = O

(
(rd/d

′
)d
′)

= O
(
rd
)
. Denote the cells of

the partition as C1, . . . , Cc. For each j = 1, . . . , c, let Vj be the set of varieties of
V that intersect Cj and set Pj = Cj ∩ P . We also set mj = |Pj|, m′ =

∑c
j=1mj,

and nj = |Vj|. Note that mj ≤ m/rd for every 1 ≤ j ≤ c. For any W ∈ V , since
dim(W ∩ U) ≤ d′ − 1, Theorem 4.11 implies that W intersects O

(
rd(d

′−1)/d′) cells of

U \V(f) (recall that by assumption U 6⊆ W ). Therefore,
∑c

j=1 nj = O
(
nrd(d

′−1)/d′),
and according to Hölder’s inequality we have

c∑
j=1

n
d′(s−1)

d′s−1

j ≤
(

c∑
j=1

nj

) d′(s−1)

d′s−1
(

c∑
j=1

1

) d′−1
d′s−1

= O

((
nrd(d

′−1)/d′
) d′(s−1)

d′s−1
r

d(d′−1)

d′s−1

)

= O

(
n

d′(s−1)

d′s−1 r
ds(d′−1)

d′s−1

)
.

Combining the above with the hypothesis of the second induction implies

c∑
j=1

I(Pj,Vj) ≤
c∑
j=1

(
α1,d′,km

(d′−1)s

d′s−1
+ε

j n
d′(s−1)

d′s−1

j + α2,d′,k(mj + nj)

)

≤ α1,d′,k
m

(d′−1)s

d′s−1
+ε

r
ds(d′−1)

d′s−1
+dε

c∑
j=1

n
d′(s−1)

d′s−1

j +
c∑
j=1

α2,d′,k(mj + nj)

= O

α1,d′,k
m

(d′−1)s

d′s−1
+εn

d′(s−1)

d′s−1

rdε

+ α2,d′,k

(
m′ +O

(
nrd(d

′−1)/d′
))

.
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By applying (11.8) and taking α1,d′,k to be sufficiently large with respect to r and
α2,d′,k, we obtain

c∑
j=1

I(Pj,Vj) = O

α1,d′,k
m

(d′−1)s

d′s−1
+εn

d′(s−1)

d′s−1

rdε

+ α2,d′,km
′.

When r is sufficiently large with respect to ε and to the constant hidden in the
O(·)-notation, we have

c∑
j=1

I(Pj,Vj) ≤
α1,d′,k

2
m

(d′−1)s

d′s−1
+εn

d′(s−1)

d′s−1 + α2,d′,km
′. (11.9)

Incidences on the partition. Let U0 = U ∩V(f), P0 = P ∩U0, and m0 = |P0| =
m − m′. Let V0 denote the set of varieties of V that are contained in V(f). Set
V ′ = V \ V0, n0 = |V0|, and n′ = |V ′| = n− n0.

It remains to bound incidences with the points of P0. We partition these incidences
into two types:

� Let I1 be the set of incidences (p,W ) ∈ P0 × V such that some irreducible
component of U0 contains p and is contained in W .

� Let I2 be the set of incidences (p,W ) ∈ P0 × V such that no irreducible com-
ponent of U0 contains p and is contained in W .

Note that I(P0,V) = |I1|+ |I2|.
We first derive an upper bound for |I1|. Since U is an irreducible variety and

U 6⊆ I(f), we get that U0 is a variety of dimension at most d′ − 1 and of degree
k0 = O(rd/d

′
). By Lemma 4.9, the number of irreducible components of U0 is Or(1).

The degree of each such component is at most k0.
Consider an irreducible component A of U0. If A contains at most s − 1 points

of P0, then these points contribute at most (s − 1)n incidences to I1. If A contains
at least s points of P0 then at most t − 1 varieties of V contain A. In this case, the
points in A contribute at most (t− 1)m0 incidences to I1. By summing these bounds
over every irreducible component of U0, choosing sufficiently large α1,d′,k and α2,d′,k,
and recalling (11.8), we have

|I1| = Or (n+m0) <
α1,d′,k

4
m

s(d′−1)

d′s−1 n
d′(s−1)

d′s−1 +
α2,d′,k

2
m0. (11.10)

We next derive an upper bound for |I2|. Because U0 is of dimension at most
d′ − 1, we can apply the induction hypothesis with each irreducible component A of
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U0. Specifically, we apply the hypothesis in A with the point set P0 ∩ A and the set
of varieties of V that do not contain A. Since U0 has Or(1) irreducible components
and each is of degree at most k0, we get

|I2| = Or

(
α1,d′−1,k0m

s(d′−2)

(d′−1)s−1
+ε

0 n
(d′−1)(s−1)

(d′−1)s−1 + α2,d′−1,k0(m0 + n)

)
. (11.11)

By (11.7) we have that

m
s(d′−2)

(d′−1)s−1
+ε

0 n
(d′−1)(s−1)

(d′−1)s−1 ≤ m
s(d′−2)

(d′−1)s−1
+ε
n

d′(s−1)

d′s−1 n
s−1

(d′s−s−1)(d′s−1) = O

(
m

s(d′−1)

d′s−1
+εn

d′(s−1)

d′s−1

)
.

By combining this with (11.8) and (11.11), and taking α1,d′,k and α2,d′,k to be suffi-
ciently large with respect to α1,d′−1,k0 and α2,d′−1,k0 , we obtain

|I2| ≤
α1,d′,k

4
m

s(d′−1)

d′s−1
+εn

d′(s−1)

d′s−1 +
α2,d′,k

2
m0. (11.12)

Combining (11.9), (11.10), and (11.12) completes the induction step and the proof
of the theorem.

11.4 Exercises

Problem 11.1. (a) Let m be a positive integer and let ` ⊂ R2 be a line. Find the
dimension of the vector space I(`)≤m (as a function of m).
(b) Find the Hilbert polynomial and the regularity of the ideal J = 〈x3, x2y〉.
Problem 11.2. Let P be a set of m points and let V be a set of n varieties of degree
at most k and dimension at most d′ < d, both in Rd. The incidences graph of P × V
does not contain a copy of Ks,t. Prove that for every ε > 0, we have

I(P ,V) = Ok,s,t,d,ε

(
m

d′s
(d′+1)s−1

+ε
n

(d′+1)(s−1)

(d′+1)s−1 +m+ n

)
.

(Hint: There is no need to use an involved analysis — there is a short proof.)

Problem 11.3. Let P be a set of m points and let Γ be a set of n circles in R2.
While we learned in Chapter 3 how to derive an upper bound for I(P ,Γ), in this
problem you are asked to study a dual proof.

Given a circle γ = I ((x− a)2 + (y − b)2 − r2)), define the dual point of γ as
γ∗ = (a, b, r2) ∈ R3. Consider the point set Γ∗ = {γ∗ : γ ∈ Γ}. Define a dual set
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P∗ of varieties and derive a bound for I(P ,Γ) by obtaining a bound for the dual
incidence problem.

Problem 11.4. Change the proof of Theorem 11.5 so that it would show the depen-
dency of the bound in t. In particular, prove that

I(P ,V) = Ok,s,d,ε

(
m

(d′−1)s

d′s−1
+εn

d′(s−1)

d′s−1 t
d′−1
d′s−1 +mt+ n

)
.

Problem 11.5. Let P be a set of m points in R3. Prove that there exists a variety
of dimension one and degree O(

√
m) that contains P (hint: Recall Lemma 5.4 and

use (11.5) as in the proof of Lemma 11.3).

11.5 Open problems

In Section 11.1 we mentioned conjectured bounds for point-variety incidences in Rd,
depending on the dimension of the varieties. We now discussion these conjectured
bounds in more detail. Let P be a set of m points and let V be a set of n varieties of
degree at most k and dimension d′, both in Rd. Assume that the incidence graph of
P×V contains no copy of Ks,t. To bound the number of incidences in P×V , we use the
partitioning polynomial technique as studied in Chapter 3 (that is, a partitioning not
of a constant degree). Specifically, we use an r-partitioning polynomial to partition
Rd into O(rd) cells and then apply the weak combinatorial bound of Lemma 7.1

separately in each cell. A simple calculation shows that setting r = m
s

ds−d+d′ n
−1

ds−d+d′

implies that the total number of incidences in the cells is

Od,k,s,t

(
m

sd′
ds−d+d′ n

ds−d
ds−d+d′ +m+ n

)
. (11.13)

As we have seen, when dealing with incidences in dimension d ≥ 3 the most
difficult part of the analysis is handling the incidences that are on the partition. Thus,
the above bound for the number of incidences inside the cells might be meaningless.
Nonetheless, this bound does match the bounds of the three cases that were already
established (up to the extra ε in the exponent):

� Theorem 11.2 matches the bound of (11.13) in the case where d′ = d− 1.
� Theorem 7.5 matches the bound of (11.13) in the case where d′ = d/2. This

requires an extra assumption regarding the tangents of the varieties.
� The simple extension of Theorem 11.1 to Rd matches the bound of (11.13) in

the case where d′ = 1. This requires an extra assumption regarding the number
of varieties of V that can be contained in a low-degree variety.
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It seems reasonable to make the following conjecture.

Conjecture 11.6. Let P be a set of m points and let V be a set of n varieties of degree
at most k and dimension d′, both in Rd. Assume that the incidence graph contains
no copy of Ks,t and that the varieties of V satisfy some reasonable conditions. Then
for any ε > 0 we have

I(P ,V) = Od,k,s,t,ε

(
m

sd′
ds−d+d′ n

ds−d
ds−d+d′ +m+ n

)
.

The statement “the varieties of V satisfy some reasonable conditions” is not well
defined, and it is not clear what the “right” conditions are. Possible conditions
might be a bound on the number of elements of V in a low degree variety and/or a
condition about the tangent spaces as in Theorem 7.5. While one can make a more
rigorous conjecture regarding what these conditions should be, we do not state such
a conjecture here.

The distinct distances problem in Rd can be reduced to an incidence problem
with (d− 1)-flats in R2d−1 (see [4]). This problem and others suggest that the case of
d′ = (d− 1)/2 (for odd d) is a main open case of Conjecture 11.6.

Theorem 11.2 is known to be tight up to an ε in the exponent when s = 2 and
d ≥ 4, for many types of hypersurfaces (see [84]). When s ≥ 3, it is not clear whether
the bound of Theorem 11.2 is close to being tight. Recall from Section 3.6 that the
planar variant of Theorem 11.2 (Theorem 3.3) is tight for some types of curves when
s = 2, but that stronger bounds are known when s ≥ 3.

Open Problem 11.1. Find whether the bound of Theorem 11.2 is tight when s ≥ 3
and d ≥ 3. That is, either find a construction that matches the bound of the theorem
or derive an improved upper bound.

We already know that the ε in Theorem 11.2 can be removed when d = 2 (this
is the planar bound from Section 3.6). Zahl [107] showed that the ε can be removed
from the incidence bound when d = 3 and assuming that the intersection of every
three varieties is a finite point set. Basu and Sombra [7] extended this to the case of
d = 4, when assuming that the intersection of every four varieties is a finite point set.

Open Problem 11.2. Find whether the ε in the exponent of Theorem 11.2 can be
removed when d ≥ 5, possibly under additional (reasonable) assumptions.



Chapter 12

Applications in Rd

“The older I get, the more I believe that at the bottom of most deep
mathematical problems there is a combinatorial problem.” / Israel Gelfand.

In Chapter 11 we derived bounds for point-variety incidences in Rd. In particular,
Theorem 11.2 is a general point-variety incidence bound in Rd. In the current chapter
we study a couple of applications for that theorem. These applications do not require
reading any part of Chapter 11 beyond the statement of Theorem 11.2.

The first application comes from Discrete Geometry, and is a distinct distances
problem. The second application comes from a discrete Fourier restriction problem
in Harmonic Analysis (for simplicity, we only discuss the combinatorial part of this
problem).

12.1 Distinct distances with local properties

Our first application concerns a family of distinct distances problems that were posed
by Erdős [36]. Let φ(n, k, `) denote the minimum number of distinct distances that
are determined by a set P of n points in R2, such that any k points of P determine
at least ` distinct distances. That is, we wish to show that a local property for small
subsets of points can be used to obtain a global property of the entire point set.

(1, 0) (2, 0) (4, 0) (5, 0) (10, 0) (11, 0) (12, 0) (13, 0)

Figure 12.1: A set of eight points that determine few distinct distances, with every three points
determining three distinct distances.

138
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For example, φ(n, 3, 3) is the minimum number of distinct distances that are
determined by a set of n points that do not span any isosceles triangles (including
equilateral triangles and degenerate triangles with three collinear vertices). Let P be
a point set that does not span any isosceles triangles and let p ∈ P . Since there are
no isosceles triangles, p cannot be at the same distance from two points of P \ {p}.
This immediately implies φ(n, 3, 3) ≥ n − 1. Behrend [10] proved that there exists
a set A of positive integers a1 < a2 < · · · < an such that no three elements of A
determine an arithmetic progression and an < n2O(

√
logn). Since no three points form

an arithmetic progression, the point set P1 = {(a1, 0), (a2, 0), . . . , (an, 0)} does not
span any isosceles triangles (see Figure 12.1 for an illustration). Since P1 ⊂ P2 =
{(1, 0), (2, 0), . . . , (an, 0)} and D(P2) < n2O(

√
logn), we get that D(P1) < n2O(

√
logn).

That is, φ(n, 3, 3) < n2O(
√
logn). Closing the remaining gap between this bound and

φ(n, 3, 3) = Ω(n) is an open problem.
For a constant k ≥ 4, consider the case of φ

(
n, k,

(
k
2

)
− k + 3

)
. Let P be a set

of n points in R2 such that every k points of P span at least
(
k
2

)
− k + 3 distinct

distances. Let p ∈ P and assume that there exists a distance δ such that p is at
distance δ from at least k − 1 points of P \ {p}. Let P ′ ⊂ P be a set of k − 1 points
that are at a distance of δ from p. Then P ′ ∪ {p} is a set of k points that determine
at most

(
k
2

)
− k + 2 distinct distances. This contradicts the assumption on P , so p

can span any given distance with at most k − 2 points of P . Since k is a constant,
this immediately implies that

φ

(
n, k,

(
k

2

)
− k + 3

)
≥ n

k − 2
= Ω(n).

We now derive a stronger bound, which is a variant of a result by Fox, Pach, and
Suk [43].

Theorem 12.1. For any k ≥ 6 and ε > 0,

φ

(
n, k,

(
k

2

)
− k + 5

)
= Ωk,ε

(
n8/7−ε) .

Proof. Let P be a set of n points in R2 such that every k points of P span at least(
k
2

)
− k + 5 distinct distances. For points a, p ∈ R2, we denote by |ap| the distance

between a and p. Let

Q =
{

(a, p, b, q) ∈ P4 : |ap| = |bq| > 0
}
.

The quadruples are ordered, so (a, p, b, q) and (p, a, b, q) are in Q as distinct quadru-
ples.
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Let x denote the number of distinct distances that are determined by P , and
denote these distances as δ1, . . . , δx. For 1 ≤ j ≤ x, let Ej = {(a, b) ∈ P2 : |ab| = δj}.
Since every ordered pair of P2 appears in exactly one Ej, we have

∑x
j=1 |Ej| = n2.

Note that the number of quadruples in Q that satisfy |ap| = |bq| = δj is exactly |Ej|2.
By the Cauchy–Schwarz inequality, we have

|Q| =
x∑
j=1

|Ej|2 ≥

(∑x
j=1 |Ej|

)2
x

=
n4

x
. (12.1)

Defining Q and using Cauchy–Schwarz to obtain a lower bound for |Q| is a stan-
dard approach for distinct distances problems and other related problems (see Chap-
ters 8 and 10). To complete the proof, it remains to derive an upper bound for |Q|.
We do this by presenting a reduction to an incidence problem.

For two points a, b ∈ P we define the point va,b = (ax, ay, bx, by) ∈ R4, and consider
the set of points

P4 = {va,b : a, b ∈ P and a 6= b} ⊂ R4.

For two points p, q ∈ P we define the variety

Sp,q = V
(
(x1 − px)2 + (x2 − py)2 − (x3 − qx)2 − (x4 − qy)2

)
⊂ R4.

Finally, we consider the set of varieties

V = {Sp,q : p, q ∈ P and p 6= q}.

Note that a point va,b is incident to a variety Sp,q if and only if |ap| = |pq|. This
gives a bijection between the incidences of P4 ×V and the quadruples of Q. That is,
to derive an upper bound on |Q| it suffices to obtain an upper bound for I(P4,V).

Assume that there is a copy of K2,k−4 in the incidence graph of P4 × V . This
means that there is a set of k points {a1, b1, a2, b2, p1, q1, . . . , p(k−4)/2, q(k−4)/2} ⊂ P
such that |ajp`| = |bjq`| for every 1 ≤ j ≤ 2 and 1 ≤ ` ≤ (k − 4)/2. This is a set
of k points that determines at most

(
k
2

)
− k + 4 distinct distances, which contradicts

the assumption on P . This contradiction implies that the incidence graph of P4 × V
contains no copy of K2,k−4.

Note that |P4| = Θ(n2) and that |V| = Θ(n2). By applying Theorem 11.2 on P4

and V with d = 4, s = 2, and t = k − 4, we obtain

I(P4,V) = Ok,ε

(
(n2)6/7+ε(n2)4/7 + n2

)
= Ok,ε

(
n20/7+ε

)
.

Combining this with (12.1) gives x = Ω
(
n8/7−ε), which completes the proof.
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12.2 Additive energy on a hypersphere

As stated in the beginning of the chapter, our next application comes from a dis-
crete Fourier restriction problem in Harmonic Analysis. In particular, it is taken
from a work of Bourgain and Demeter [15]. Since restriction problems are outside
the scope of this book, here we remove the analytical context and only present the
underlying combinatorial result. We present the problem in R4, which is the lowest
dimensional space in which the following approach holds (a lower dimensional variant
of the problem is mentioned in Section 12.4).

Given a finite set P ⊂ Rd, the additive energy of P is

E(P) =
∣∣{(a, b, p, q) ∈ P4 : a+ b = p+ q

}∣∣ .
The additive energy of a set is a main object in Additive Combinatorics. It is strongly
related to the additive structure of P , and in particular to the sum set P+P = {a+b :
a, b ∈ P}. We will study additive energy in more detail in Section 13.5 (see also [99]).

We denote the coordinates of R4 as (x1, x2, x3, x4) and for a point p ∈ R4 write
p = (p1, p2, p3, p4). For a positive integer n, we consider the hypersphere

Sn = V
(
x21 + x22 + x23 + x24 − n2

)
⊂ R4.

In other words, Sn is a hypersphere centered at the origin and of radius n. We are
interested in sets of points of Sn that have only integer coordinates.

Theorem 12.2. Let P ⊂ Sn ∩ Z4. Then for every ε > 0 we have

E(P) = O
(
|P|7/3nε

)
.

To prove Theorem 12.2, we first need to know how large can Sn ∩ Z4 be. This is
equivalent to asking how many representations n2 has as a sum of four squares. Such
number theoretic problems are mostly solved, as the following result states (see for
example [46]. For part (d) see [84]).

Theorem 12.3. There exists a constant c such that the following hold for any posi-
tive integer n and for every ε > 0.
(a) Any circle in R2 of radius n and center in Z2 contains O(nc/ log logn) points of Z2.
(b) Any sphere in R3 of radius n and center in Z3 contains O(n1+ε) points of Z3.
(c) For d ≥ 4, any hypersphere in Rd of radius n and center in Zd contains O(nd−2)
points of Zd.
(d) Let γ be a circle in R4 that is the intersection of two hyperplanes with the hy-
persphere centered at the origin and of radius n. The hyperplanes are defined by
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linear equations with integer coefficients whose absolute values have size O(n). Then
γ contains O(nc/ log logn) points of Z4.

We will also need a variant of Theorem 11.2 that shows the exact dependency of
the bound in t. Proving this variant requires only minor changes to the proof that is
presented in Section 11.3 (Problem 11.4 asks to prove this).

Theorem 12.4. Let P be a set of m points and let V be a set of n varieties of degree
at most k, both in Rd. Assume that the incidences graph of P × V does not contain
a copy of Ks,t. Then for every ε > 0, we have

I(P ,V) = Ok,s,d,ε

(
m

(d−1)s
ds−1

+εn
d(s−1)
ds−1 t

d−1
ds−1 +mt+ n

)
.

We are now ready to prove Theorem 12.2. In the proof of Theorem 12.1 from the
preceding section, the reduction to an incidence problem was relatively simple. In
the following proof we have to work harder to get to an incidence problem.

Proof of Theorem 12.2. Set m = |P|. For every v ∈ R4 let mv denote the number of
pairs (p, q) ∈ P2 such that v = p + q. Given a fixed v ∈ R4, for every p ∈ P there
is at most one q ∈ P such that p + q = v, so mv ≤ m (the bound is m rather than
m/2 since the order of the pair (p, q) matters). Note that the number of quadruples
(a, b, p, q) that satisfy a + b = p + q = v is exactly m2

v. For an integer j ≥ 1, let
kj = |{v ∈ R4 : mv ≥ j}|. That is, kj is the number of points in R4 that can be
written as a sum of two points of P in at least j distinct ways. A dyadic pigeonholing
argument gives1

E(P) =
∑
v∈R4

m2
v =

1+logm∑
j=1

∑
v∈R4

2j−1≤mv<2j

m2
v <

1+logm∑
j=1

22jk2j−1 . (12.2)

To derive an upper bound on E(P), it remains to derive an upper bound on kj.
Since there are m2 ordered pairs (p, q) ∈ P2 and each contributes to mv for exactly
one v ∈ R4, we have that

∑
v∈R4 mv ≤ m2. Since every v that contributes to kj has

at least j corresponding pairs in P2, we get the bound

kj ≤
m2

j
. (12.3)

Denote the origin of R4 as o. The number of pairs (p, q) ∈ P that satisfy p+q = o
is at most m, these pairs contribute to E(P) at most m2 quadruples. We may thus
assume that v 6= o for the remainder of the proof.

1All of the logarithms in this proof are with base 2.
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p

q

v

o

Figure 12.2: The quadrilateral vpqo is a rhombus.

Consider p, q ∈ P and let v = p + q. Note that v is in the two-dimensional plane
spanned by p, q, and o. Since p, q ∈ Sn we have that |op| = |oq| = n, which in turn
implies that the quadrilateral vpqo is a rhombus of side length n. Figure 12.2 depicts
such a configuration.

Let Sv be the hypersphere in R4 centered at v and of radius n. By the previous
paragraph, points p, q ∈ P that satisfy p + q = v are incident to Sv. That is, every
two points p, q ∈ P that satisfy p + q = v must be contained in the two-dimensional
sphere Sn ∩ Sv centered at v/2 (in the degenerate case of p = q, the intersection
Sn ∩ Sv is a single point). Let Hv be the unique hyperplane in R4 that contains the
sphere Sn ∩ Sv. By the above, if two points p, q ∈ P satisfy p + q = v then p and q
are incident to Hv. This implies that mv ≤ |P ∩Hv|.

By the conclusion of the previous paragraph, to obtain an upper bound for kj it
suffices to bound the number of hyperplanes in R4 that contain at least j points of P .
This allows us to use incidences to complete the proof. We already used incidences
to study a similar problem in Lemma 1.15.

An incidence argument. The sphere Sn ∩ Sv is also the set of points that are
at a distance of n from both o and v. Thus, the containing hyperplane Hv is the
perpendicular bisector of o and v (that is, the set of points in R4 that are at the same
distance from o and from v). In particular, Hv is incident to the point v/2 and is
orthogonal to v. That is,

Hv = V(v1(2x1 − v1) + v2(2x2 − v2) + v3(2x3 − v3) + v4(2x4 − v4)).
Given distinct u, v ∈ R4 \ {0}, the intersection Hv ∩Hu ∩ Sn is either a circle or

a set of at most two points. Moreover, if the absolute value of any coordinate of v is
larger than 2n then mv = 0 (and symmetrically for u). We may thus apply Theorem
12.3(d), to obtain that Hv ∩Hu ∩ Sn contains O(nc/ log logn) points of Z4. We will use
the weaker bound O(nε

′
) rather than O(nc/ log logn), where ε′ = ε/100.

Note that no plane Hv is incident to the origin, since Hv is the perpendicular
bisector of the origin and v. Consider an integer j = Ωε′(1). Let Πj be the set of
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hyperplanes in R4 that contain at least j points of P and are not incident to the
origin. By the above, kj ≤ |Πj|. We will derive an upper bound for |Πj| by using a
point-hyperplane incidence bound in R4. By the preceding paragraph, the incidence
graph of P × Πj contains no copy of Kt,2 where t = O(nε

′
).

To replace the “no Kt,2” condition with “no K2,t”, we move to a dual space as
follows (see the proof of Lemma 13.1 for a similar argument). For a point p ∈ R4 we
define the dual hyperplane as p∗ = V(p1x1 + p2x2 + p3x3 + p4x4 − 1) ⊂ R4. Consider
a hyperplane H ∈ Πj, and recall that H is not incident to the origin. Thus, we can
write H = V(a1x1 + a2x2 + a3x3 + a4x4 − 1) for some a1, a2, a3, a4 ∈ R. We define
the dual point of H as H∗ = (a1, a2, a3, a4) ∈ R4.

Consider the set of planes

P∗ = {p∗ : p ∈ P} ,

and the set of points

Π∗j = {H∗ : H ∈ Πj} .
Let p ∈ P and H ∈ Πj. We have that p ∈ H if and only if H∗ ∈ p∗, since both are

equivalent to a1p1 + a2p2 + a3p3 + a4p4 = 1. This implies that I(P ,Πj) = I(Π∗j ,P∗).
In addition, since the incidence graph of P ×Πj does not contain Kt,2, the incidence
graph of Π∗j ×P∗ does not contain a copy of K2,t. Applying Theorem 12.4 on Π∗j and

P∗ with t = O(nε
′
) implies

I(Π∗j ,P∗) = Oε′

(
|Πj|6/7+ε

′
m4/7nε

′
+ |Πj|nε

′
+m

)
.

Since each hyperplane of Πj is incident to at least j points of P , we have that

I(Π∗j ,P∗) = I(P ,Πj) ≥ j|Πj|.

Combining the two above bounds for I(Π∗j ,P∗) leads to

j|Πj| = Oε′

(
|Πj|6/7+ε

′
m4/7nε

′
+ |Πj|nε

′
+m

)
. (12.4)

Since j = Ωε′(1), the right-hand side of (12.4) cannot be dominated by the term
|Πj|nε′ . Removing the term |Πj|nε′ from (12.4) and rearranging gives

kj ≤ |Πj| = Oε′

(
m

4
1−7ε′ n

7ε′
1−7ε′

j
7

1−7ε′
+
m

j

)
= Oε′

(
m

4
1−7ε′ n

7ε′
1−7ε′

j7
+
m

j

)
.
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The statement of the theorem is trivial when ε ≥ 1. We may thus assume that
ε < 1, which implies ε′ < 1/100. For such ε′ we have 1

1−7ε′ ≤ (1 + 10ε′), so

kj = Oε′

(
m4+40ε′n8ε′

j7
+
m

j

)
. (12.5)

Completing the proof. We now use (12.3) and (12.5) to bound the elements k2j−1

in (12.2). In particular, when j ≤ logm1/3 we apply (12.2) and for larger values of j
we apply (12.5). This gives

E(P) = Oε′

logm1/3∑
j=1

2jm2 +

1+logm∑
j=1+logm1/3

(
m4+40ε′n8ε′

25j
+ 2jm

) .

= Oε′

(
m7/3 +m7/3+40ε′n8ε′ +m2

)
= Oε′

(
m7/3+40ε′n8ε′

)
.

Recall that m = P ⊂ Sn ∩ Z4. By Theorem 12.3(c), we have that m = O(n2).
This implies that m40ε′n8ε′ = O(n88ε′) = O(nε). We get that E(P) = Oε

(
m7/3nε

)
, as

asserted.

12.3 Exercises

Problem 12.1. Find the exact asymptotic value of φ
(
n, k,

(
k
2

)
− bk/2c+ 2

)
for every

k ≥ 4.

Problem 12.2. Prove that φ
(
n, k,

(
k
2

)
− b2k/3c+ 3

)
= Ω(n3/2) for every k ≥ 6.

One way to do this is to assume that there exists a distance δ that is spanned by
Ω(n1/2) pairs of points (why are we allowed to assume that?). Then consider the
subset of points that are at distance δ from at least one other point.

Problem 12.3. Let S be a sphere in R3 centered at the origin. Prove that for any
finite point set P ⊂ S and ε > 0, we have that E(P) = O(|P|20/9+ε) (note that the
points of ε are not required to have integer coordinates).

Hint: Theorem 3.9 with s = 3 gives a point-circle incidence bound in R2. Why is
this bound still valid in R3?

12.4 Open problems

Both of the problems that were studied in this chapter are still open. Section 12.1
introduced a family of problems concerning distinct distances for point sets with local
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properties. In other words, studying the asymptotic value of φ(n, k, `) for various
values of k and `. The following seem to be considered as the main open cases.

Open Problem 12.1.
(a) Find the asymptotic size of φ(n, 4, 5).
(b) Find the asymptotic size of φ(n, 5, 9).

No non-trivial bounds is known for either part of Open Problem 12.1. Specifically,
in both cases we have the trivial upper bound O(n2) and a lower bound of Ω(n).

The more general problem that was studied in Theorem 12.1 is also wide open.
While the theorem provides a lower bound of Ω

(
n8/7−ε), this is still far from the

upper bound O(n2) (no non-trivial upper bound is known).

Open Problem 12.2. Find the asymptotic size of φ
(
n, k,

(
k
2

)
− k + c

)
where k is

sufficiently large and c is constant.

More information about this family of distinct distances problems can be found
in [85].

We now move to the energy problem that was presented in Section 12.2. For
any finite set P ⊂ R4 we have the trivial lower bound E(P) = Ω(|P|2), obtained
from quadruples (a, b, p, q) ∈ P4 with a = p and b = q. This bound is much smaller
than the bound E(P) = O

(
|P|7/3nε

)
of Theorem 12.2. Curiously, Bourgain and

Demeter [15] showed that when replacing the sphere Sn with a truncated paraboloid
V(x21 + x22 + x23 − x4), there are point sets P that satisfy E(P) = Ω(|P|7/3).
Open Problem 12.3. Let P ⊂ Sn ∩ Z4. Find the maximum asymptotic size that
E(P) can have.

Another interesting variant of the problem is in R3.

Open Problem 12.4. Let S be a sphere in R3 centered at the origin and let P ⊂ S
be a finite set (not necessarily in Z3). Find the maximum asymptotic size that E(P)
can have.

Problem 12.3 gives the current best bound for the three-dimensional problem.
When replacing the sphere with a paraboloid, Demeter derived the bound E(P) =
O(|P|2+ε) (for any ε > 0). More information about this family of problems can be
found in [25].



Chapter 13

Incidences in Spaces Over Finite
Fields

In Chapter 6 we started the study of incidence-related problems in spaces over finite
fields. In this chapter, we continue this study, focusing on point–line incidences in
finite planes. As we will see, much less is known in finite fields and most incidence
problems seem to become more difficult to study. Unlike the case of Rd, we do not
have one main technique that leads to most of the current best bounds. Instead, each
bound that we derive in this chapter requires a rather different set of tools.

13.1 Preliminaries

As we saw in Chapter 7, the Szemerédi–Trotter theorem can be generalized to C2.
Other works generalize this theorem for semi-algebraic sets, for definable curves and
points in o-minimal structures, and more (for example, see [6, 21, 42]). As illustrated
by the following example, in F2

q the situation is more involved. Let P be the set of
all q2 points of F2

q, and let L be the set of all lines in F2
q. Each line in F2

q is defined
by an equation either of the form y ≡ ax + b or of the form x ≡ b, where a, b ∈ Fq.
Thus, we have |L| = q2 + q. Each point of P is incident to q + 1 lines of L (a line for
each possible slope), so

I(P ,L) = Θ(q3) = Θ(|P|3/4|L|3/4).

The above example shows that there is no hope for obtaining the Szemerédi–
Trotter bound I(P ,L) = O(|P|2/3|L|2/3 + |P| + |L|). We can use a combinatorial
argument to get the following weaker bound.

147
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Lemma 13.1. Let P be a set of m points and let L be a set of n lines, both in F2
q.

Then I(P ,L) = O(m3/4n3/4 +m+ n).

Proof. Let Lx be the set of lines of L that are defined by an equation of the form
x ≡ b for some b ∈ Fq. That is, Lx is the subset of lines of L that are parallel to
the x-axis. Since each point of F2

q is incident to at most one line of Lx, we have
I(P ,Lx) ≤ m. We may thus remove the lines of Lx from L, and assume that no line
of L is parallel to the x-axis.

We note that two lines in F2
q intersect in at most one point. Indeed, a point on

two lines satisfies two equations of the form y ≡ ax + b, and such a system has at
most one solution. That is, the incidence graph of P ×L contains no K2,2. Applying
Lemma 7.1 gives

I(P ,L) = O(m
√
n+ n). (13.1)

We perform the following point-line duality. The dual of a point p = (a, b) ∈ F2
q is

the line p∗ defined by y ≡ ax− b. Similarly, the dual of a line ` defined by y ≡ cx− d
is the point p∗ = (c, d) ∈ F2

q (recall that we assume that no line of L is of the form
x ≡ b). Note that a point p is incident to a line ` if and only if the point `∗ is incident
to the line p∗, since both hold if and only if d ≡ ac − b. Consider the point set
L∗ = {`∗ : ` ∈ L} and the set of lines P∗ = {p∗ : p ∈ P}. By the observation above,
we have I(P ,L) = I(L∗,P∗). Thus, by applying Lemma 7.1 on L∗ and P∗ we get

I(P ,L) = I(L∗,P∗) = O(n
√
m+m). (13.2)

By multiplying (13.1) and (13.2) we have

I(P ,L) · I(P ,L) = O
(
(m
√
n+ n)(n

√
m+m)

)
= O

(
m3/2n3/2 +m2n1/2 +m1/2n2 +mn

)
. (13.3)

If m = Ω(n2) then (13.2) implies I(P ,L) = m. We may thus assume that
m = O(n2), which in turn implies m2n1/2 = O(m3/2n3/2). A symmetric argument
yields m1/2n2 = O(m3/2n3/2). Also, note that mn = O(m2 + n2). Combining these
observations with (13.3) gives

I(P ,L)2 = O
(
m3/2n3/2 +m2 + n2

)
.

Taking the square root of both sides yields the assertion of the lemma.

The idea of moving to a dual space is very useful when studying incidences. We
already encountered a variant of it in Problem 3.13. We will see two other variants
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in Section 13.4 below, another in Problem 13.1, and more examples throughout the
following chapters.

The point-line example before Lemma 13.1 shows that the bound of this lemma is
tight. This is an extreme example in the sense that it uses all of the points and lines
in F2

q. As the number of points and lines becomes smaller than q2, better incidence
bounds can be obtained. The following result studies the other extreme, where m
and n are unusually small compared to q.

Theorem 13.2 (Grosu [47]). Let p be a prime number. Let P be a set of n points
and let L be a set of n lines, both in F2

p. If n = O(log log log p) then I(P ,L) = O(n4/3).

To see that the bound of Theorem 13.2 is tight, note that we can use Elekes’
construction from Claim 1.3. Indeed, in that construction the points have integer
coordinates and the lines are defined by equations with integer coordinates. Thus,
the same construction exists in F2

q as long as q is sufficiently large with respect to m
and n.

The above results might have left you confused regarding how a tight point-line
incidence bound in F2

p should look like. Indeed, for most ranges of m and n this is an
open problem. In Sections 13.3 and 13.6 we will study the current best bounds for
this problem.

13.2 A brief introduction to the projective plane

Intuitively, the projective plane is an extension of the plane obtained by adding
an extra line at infinity. This extension leads to several nice properties, such as
that every two lines intersect in a point. While projective planes can be considered
with arbitrary fields, we introduce these specifically for the case of finite fields. The
projective plane over R is defined in the same way. When reading the explanations
below, one might get additional geometric intuition by also thinking about the case
of R. A nice introduction of real projective spaces can be found for example in [23,
Chapter 8].

We define the projective plane PF2
q as follows. The set PF2

q consists of the points
of F3

q \{0}, but with two points u, v ∈ PF2
q considered equivalent if there exists c ∈ Fq

such that u ≡ cv. That is, a projective point is an equivalence class of points in
F3
q \ {0}. Such an equivalence class is a line incident to the origin in F3

q (without
the origin itself). Note that the q2 points of the form (1, a, b) with a, b ∈ Fq are all
distinct. In addition to these points, PF2

q also contains the q distinct points of the
form (0, 1, b) with b ∈ Fq and the point (0, 0, 1). It can be easily verified that there
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are no other points in PF2
q, so |PF2

q| = q2 + q+1. We refer to the non-projective plane
F2
q as the affine plane.

Denote the coordinates of PF2
q as x, y, and z. When working in PF2

q, we cannot
define a variety using an arbitrary set of polynomials. For example, the “line” that is
defined by x + y − 3 ≡ 0 contains the point (2, 1, 1) but not the point (4, 2, 2). This
is impossible, since these are two representations of the same point. To overcome
this issue, in PF2

q we define varieties only with homogeneous polynomials.1 For every
homogeneous polynomial f ∈ Fq[x, y, z] of degree k, point u ∈ F3

q, and number c ∈ Fq,
we have f(c · u) ≡ ckf(u). That is, f(c · u) ≡ 0 if and only if f(u) ≡ 0, so varieties
defined with homogeneous polynomials are consistently defined.

We can move from the affine plane F2
q to the corresponding projective plane PF2

q

by taking a point (x, y) ∈ F2
q to the point (x, y, 1) ∈ PF2

q. To move varieties from F2
q to

PF2
q, we homogenize them as follows. Given a polynomial f ∈ Fq[x, y] of degree k, we

give every monomial of f degree k by multiplying it with some power of z (multiplying
a monomial of degree k′ by zk−k

′
). We denote the homogenization of f ∈ Fq[x, y] as

f ∗ ∈ Fq[x, y, z]. Note that f vanishes on a point (px, py) ∈ F2
q if and only if f ∗ vanishes

on (px, py, 1), so the transition from F2
q to PF2

q maintains point-variety incidences.
We now consider a more geometric interpretation of PF2

q. The process of moving
from F2

q to PF2
q can be thought of as taking the affine plane F2

q and placing it in F3
q as

the plane defined by z ≡ 0. Then, a point u ∈ PF2
q becomes the line that is incident

to the origin and to u. This process covers all of the points in F3
q that have a nonzero

z-coordinate. The points with a zero z-coordinate are also lines that pass through the
origin, but they do not intersect the plane defined by z ≡ 1 and do not correspond
to points of F2

q. These points are on an extra projective line that is defined by z ≡ 0.
We think of this line as being at infinity, for reasons explained below.

Let ` be a line in F2
q defined by ax + by + c ≡ 0, and let `∗ be the corresponding

projective line in PF2
q. That is, `∗ is defined by ax+ by+ cz ≡ 0. As explained above,

every point of F2
q that is incident to ` corresponds to a point of PF2

q that is incident
to `∗. However, `∗ also contains the extra point (1,−b−1a, 0) on the projective line
at infinity (if b ≡ 0, then the extra point is instead (1, 0, 0)). This extra point is
defined by the slope of `∗, so parallel projective lines intersect in a point at infinity.
For example, every projective line with slope 1 can be defined as y ≡ x+ zc for some
c ∈ Fq, so all of these lines intersect in (1, 1, 0). In general, any two projective lines
in PF2

q intersect in exactly one point. One reason for saying that the line z ≡ 0 is
at infinity, is that in painting and photography parallel lines seem as if they meet at
infinity (see Figure 13.1).

1Recall that a polynomial is homogeneous if all of its monomials are of the same degree.
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Figure 13.1: Parallel lines meet at infinity.

In affine planes, we work with transformations that take lines to lines, such as
translations, rotations, and scalings. Similarly, projective transformations are bijec-
tions between PF2

q and itself that take lines to lines. We can define such a transfor-
mation from (x, y, z) to (x′, y′, z′) asx′y′

z′

 =

a1,1 a1,2 a1,3
a1,2 a2,2 a2,3
a1,3 a2,3 a3,3

xy
z

 , (13.4)

where aj,k ∈ Fq and the 3× 3 matrix is invertible.
Recall the geometric interpretation of PF2

q as the intersection of the plane z ≡ 1
with lines through the origin. From this perspective, a projective transformation
corresponds to moving the plane, and thus changing where every line intersects it.

We rely on properties of the projective plane in Sections 13.3 and 13.6. We
conclude this section with an observation that will be useful to us below. Consider a
point u ∈ PF2

q with a nonzero z-coordinate and let L be a set of projective lines that
are incident to u. Let τ be a projective transformation that takes u to the line at
infinity (that is, to a point with a zero z-coordinate). Since τ takes the intersection
point of the lines of L to infinity, all of these lines become parallel.

13.3 Incidences between large sets of points and

lines

We now return to studying incidences between m point and n lines in F2
q. In Section

13.1 we mentioned that when m and n are tiny with respect to q, the standard
Szemerédi–Trotter bound O(m2/3n2/3 +m+ n) holds and is tight (at least when q is
a prime and m ≈ n). We also saw that this bound is false when we take all of the
points and all of the lines of F2

q. There is a large gap between these two cases, and
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we currently do not know what the correct bound is for most of it. In this section
we derive another incidence bound, which is asymptotically tight when mn = Ω(q3).
This bound is equivalent to the Szemerédi–Trotter bound when both m and n are
Θ(q3/2).

Theorem 13.3. Let P be a set of m points and let L be a set of n lines, both in F2
q.

Then

I(P ,L) = O

(
mn

q
+
√
mnq

)
.

When mn = Ω(q3), we have the bound I(P ,L) = Θ(mn/q) for every such point-line
configuration in F2

q.

Theorem 13.3 has several rather different proofs. There are proofs that rely on
the Fourier transform and on basic Additive Combinatorics. Here we present a proof
of Vinh [103] that is based on Spectral Graph Theory. Before presenting this proof,
we briefly introduce a few concepts from Spectral Graph Theory. A nice introduction
to this topic can be found in [105, Section 8.6].

The adjacency matrix M of a graph G = (V,E) is a |V | × |V | matrix that is
defined as follows. Let N = |V | and write V = {v1, . . . , vN}. Then the cell Mij

contains the number of edges in E between vi and vj. When there are no parallel
edges in G, the matrix of M consists only of ones and zeros.

The cell M2
ij (where M2 = M ·M) contains the number of paths of length two in

G between vi and vj. When there are no loops2 in G, the number of paths of length
two between a vertex to itself is the degree of the vertex, so Mii = deg vi. To have
this property hold also when there are loops in G, we have every loop contribute only
one to the degree of the corresponding vertex. That is, the degree of a vertex v is
defined as the number of distinct edges that are adjacent to v. If the eigenvalues of
M are λ1, λ2, . . . , λN then the eigenvalues of M2 are λ21, λ

2
2, . . . , λ

2
N .

The eigenvalues of a graph G are the eigenvalues of the adjacency matrix of G.
A graph G is k-regular if every vertex of G is of degree k. The largest eigenvalue of
a k-regular graph is k. We will rely on the following result concerning eigenvalues of
regular graphs (for example, see [2, Corollary 9.2.5]).

Lemma 13.4. Let G = (V,E) be a k-regular graph with eigenvalues |λ1| ≥ |λ2| ≥
· · · ≥ |λ|V ||. Let B,C ⊂ V be (not necessarily disjoint) subsets of vertices of G, and
let e(B,C) denote the number of edges in E that have one endpoint in B and the

2Recall that a loop is an edge with the same vertex at both of its endpoints.
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other endpoint in C. Then∣∣∣∣e(B,C)− k

n
|B||C|

∣∣∣∣ ≤ λ2
√
|B||C|.

Consider a random graph G that is generated by starting with a vertex set V
and inserting each of the |V |2 potential edges (including loops) with probability k/n.
When taking two arbitrary vertex subsets B,C ⊂ V , the expected number of edges
with one endpoint in B and the other endpoint in C is k

n
|B||C|. Intuitively, Lemma

13.4 states that a regular graph with only one large eigenvalue is behaves like a
random graph in this sense.

Proof of Theorem 13.3. We consider the projective plane PF2
q, as defined in Section

13.2. Recall that the number of points in PF2
q is q2 + q + 1. We construct the graph

Gq = (PF2
q, E) as follows. The graph contains a vertex for every point of PF2

q, and
(u, v) ∈ E for vertices u = (u1, u2, u3) and v = (v1, v2, v3) if and only if

u1v1 + u2v2 + u3v3 ≡ 0. (13.5)

We can think of this condition as asking the point (v1, v2, v3) to be incident to the
projective line defined by u1x+u2y+u3z ≡ 0. Note that replacing u with an equivalent
representation cu (where c ∈ Fq \ {0}) does not change the condition (13.5), and
similarly for v. That is, (13.5) is well defined with respect to the equivalence relation.

Consider the number of solutions to u1x + u2y + u3z ≡ 0 where (u1, u2, u3) and
(x, y, z) are in PF2

q (and x, y, z are variables). Recall that an equation of the form
ax ≡ b has the unique solution x ≡ a−1b, unless a 6≡ 0. Without loss of generality,
we assume that u1 6≡ 0. Then for any choice of y, z ∈ Fq there is a unique x ∈ Fq
that solves u1x+ u2y+ u3z ≡ 0. There are q2− 1 choices for y and z where not both
are zero, and each can be completed to a solution in a unique way. Since there are
q2− 1 solutions and each solution has q− 1 equivalent representations, we have q+ 1
distinct solutions in this case. This implies that Gq is a (q + 1)-regular graph (recall
that a loop increases the degree of the corresponding vertex by one).

For two distinct points (u1, u2, u3), (u
′
1, u
′
2, u
′
3) ∈ PF2

q, the system of equations
u1x + u2y + u3z ≡ 0 and u′1x + u′2y + u′3z ≡ 0 has a unique solution in PF2

q (that is,
it has q − 1 equivalent solutions). That is, any two vertices of Gq have exactly one
path of length two between them.

Let M be the adjacency matrix of Gq, and consider M2. Recall that M2
ij is the

number of paths of length two between the vertices vi and vj. Thus, by the preceding
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paragraph every cell of M2 that is not on the main diagonal contains 1. Since Gq is
(q + 1)-regular, the values on the main diagonal of M are all q + 1. That is,

M2
ij =

{
1, i 6= j,

q + 1, i = j.
(13.6)

An all 1’s matrix of size N × N has the eigenvalue N with multiplicity one
and the eigenvalue 0 with multiplicity N − 1. Indeed, the eigenvalue N has the
eigenvector (1, 1, . . . , 1), and the eigenvalue 0 has the eigenvectors (1,−1, 0, . . . , 0),
(1, 0,−1, 0, . . . , 0), and so on. Increasing every element on the main diagonal of a
matrix by c shifts all of the eigenvalues of that matrix by c. Combining these two
properties with (13.6) implies that M2 has the eigenvalue (q2 + q + 1) + q = (q + 1)2

with multiplicity 1 and the eigenvalue q with multiplicity q2 + q. This in turn implies
that the absolute value of one eigenvalue of M is q+ 1 and the absolute values of the
other eigenvalues are

√
q.

We consider every point a = (ax, ay) ∈ P as the point (ax, ay, 1) ∈ PF2
q, and note

that no two points of P are equivalent after this change. We consider a line ` ∈ L
defined by byy+ bxx+ b1 ≡ 0 as the point (bx, by, b1) ∈ PF2

q. Once again, two distinct
lines of L cannot go to equivalent points of PF2

q. Note that the point a is incident to
the line ` if and only if axbx + ayby + b1 ≡ 0, which is equivalent to Gq containing an
edge between the vertex of a and the vertex of `. Thus, I(P ,L) = e(P ,L). We apply
Lemma 13.4 with B = P , C = L, and |λ2| = √q, to obtain

∣∣∣∣I(P ,L)− q + 1

q2 + q + 1
mn

∣∣∣∣ =

∣∣∣∣e(P ,L)− q + 1

q2 + q + 1
mn

∣∣∣∣ ≤ √qmn.
The above equation immediately implies the asserted bound I(P ,L) = O(mn/q+√
qmn). When mn = Ω(q3) we have that q+1

q2+q+1
mn = Ω(

√
qmn), and thus I(P ,L) =

Θ(mn/q). That is, not only we get that the incidence bound is tight in this range —
we get that every configuration of m points and n lines has Θ(mn/q) incidences.

Theorem 13.3 provides a tight bound when mn = Ω(q3), and implies the Sze-
merédi–Trotter bound when both m and n are Θ(q3/2). However, the case of smaller
m and n remains wide open. In Section 13.6, we will study the current best bounds
in this range.
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13.4 Incidences with planes in F3
q

In this section we study a bound of Rudnev [81] for point–plane incidences in F3
q.

In some sense, Rudnev’s bound is currently our strongest tool for handling problems
with sets that are not very large. The current best bounds for many finite fields
problems, such as the sum-product problem and point–line incidences in the plane,
are all obtained via reductions to Rudnev’s bound.

When considering incidences in Fdq where d ≥ 3, we have the same issue as in
Rd: By placing the points on a line ` and taking planes that contain `, we get that
every plane is incident to every point. That is, the problem is trivial. In this section,
we avoid the above issue by assuming that the no line in F3

q contains k points. We
begin by deriving a weak bound for the problem, relying on a standard combinatorial
argument.

Lemma 13.5. Let P be a set of m points and let Π be a set of n planes, both in F3
q.

If no line in F3
q contains k points of P, then

I(P ,Π) = O(n
√
km+m).

Proof sketch. By the assumption involving k, the incidence graph of P × Π contains
no Kk,2. By noting that the proof of Lemma 3.4 remains valid also for point-plane
incidences in F3

q with no Ks,t in the incidence graph. By revising this proof to include

the exact dependency in s and t, we obtain the bound I(P ,Π) = O(mt1/sn1−1/s+sn).
We perform a point-plane duality, imitating the point-line duality from the proof

of Lemma 13.1. This leads to a set of n points and a set of m lines in F3
q, with no Kt,s

in the incidence graph. Applying the above bound after the duality argument gives
I(P ,Π) = O(ns1/tm1−1/t + tm). To complete the proof we set s = k and t = 2.

Rudnev [81] derived the following bound for the point–plane incidence problem.

Theorem 13.6. Let q = pr for some prime p and positive integer r. Let P be a set
of m points and let Π be a set of n planes, both in F3

q, such that n ≥ m. Assume that
m = O(p2) and that no line of F3

q contains k points of P. Then

I(P ,Π) = O(n
√
m+ kn).

At first, Theorem 13.6 might not look very impressive. This theorem improves
upon Lemma 13.5 only by having a better dependency on k, while also adding two
new restrictions. However, this improved dependency on k turned out to be the main
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tool for deriving the current best bounds for many problems. We will see impressive
uses of Rudnev’s theorem in Sections 13.5 and 13.6.

We present a simplified proof of Theorem 13.6, by de Zeeuw [110]. When working
in Fdq , it is sometimes easier to prove an argument in the algebraic closure of Fq. In
our proof of Theorem 13.6, we are going to move to the algebraic closure. We do
not go over the full details of how this step works, to avoid many technicalities. The
algebraic closure will be used in the following proof when studying properties of ruled
surfaces, when performing a generic rotation of the space, and when bounding the
number of lines in the intersection of two surfaces.

In R3 or C3, we can derive point–plane incidence bounds by using polynomial
partitioning. Unfortunately, this tool is not available to us when working in F3

q.
Rudnev cleverly avoided this issue by reducing the problem to bounding the number
of intersecting pairs in a set of lines in F3

q. Recall that the distinct distances problem
was reduced to a line-intersection problem (see Chapter 8). In Chapter 9 we solved
this line intersection problem by using polynomial partitioning. However, the original
proof of Guth and Katz [51] was based on different ideas, which extend more easily
to F3

q.
To describe Rudnev’s reduction, we first need some notation. We use the coordi-

nates (x, y, z) ∈ F3
q, and denote the x-coordinate of a point p ∈ F3

q as px. We require
the following objects for the reduction.

� H1: the plane defined by x ≡ 1.
� `z: the z-axis of F3

q. That is, the line defined by x ≡ 0 and y ≡ 0.
� L: the set of lines in F3

q that intersect both `z and H1.
� D: The set of points and planes in F3

q defined as follows. A point p ∈ F3
q is in

D if it satisfies px 6≡ 0. A plane H ⊂ F3
q is in D if H intersects both H1 and `z

but does not contain `z

For example, note that `z /∈ L since it does not intersect H1. Similarly, note that
no line of L is contained in H1.

Lemma 13.7. There exists a map φ that takes every element of P∪Π to a line in F3
q,

such that p ∈ P is incident to H ∈ Π if and only if the lines φ(p) and φ(H) intersect.

Proof. For every line ` ∈ L, there exist a, b, c ∈ Fq such that ` ∩ `z = (0, 0, a) ∈ F3
z

and ` ∩ H1 = (1, b, c) ∈ F3
q. We define the dual of ` as the point `∗ = (a, b, c) ∈ F3

z.
For a plane H ∈ Π, we set

φ(H) = {`∗ : ` ∈ L and ` ⊂ H}.
If H intersects `z at (0, 0, zH), then the x-coordinate of every element of φ(H) is

zH . Since H ∩ H1 is a line, we can write H ∩ H1 = {(1, t, uHt + vH) : t ∈ Fq} for
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some uH , vH ∈ F3
q. Every line of L in H intersects H1 in a point of this line. This

implies that φ(H) is the line {(zH , t, uHt+ vH) : t ∈ Fq}.
For p ∈ P we set

φ(p) = {`∗ : ` ∈ L and p ∈ `}.
All of the lines that are incident to p and intersect `z have the same projection on

the xy-plane. This implies that all of these lines intersect H1 at points with the same
y-coordinate. Thus, the y-coordinates of all the points of φ(p) are the same. Denote
this y-coordinate as yp.

Let ` be a line that is incident to p and intersects `z at (0, 0, t). The projection of
` on the xz-plane is linearly determined by t. For example, the slope of the projected
line is (pz − t)/(px − 0). Thus, there exist up, vp ∈ F3

q such that ` intersect H1 at
(1, yp, upt+ vp). We conclude that φ(p) is the line {(t, yp, upt+ vp) : t ∈ Fq}.

Now that we have a well defined map φ(·), it remains to prove the incidence
property of the lemma. Consider a point p ∈ P and a plane H ∈ Π. Note that p ∈ H
if and only if there exists a line ` ∈ L that is incident to p and contained in H. A line
` ∈ L satisfies the above properties if and only if `∗ ∈ φ(p) ∩ φ(H). That is, p ∈ H if
and only if φ(p) ∩ φ(H) 6= ∅.

The above reduction is somewhat surprising, since it is unclear where it came
from. Rudnev’s original reduction took each line to a point on the Klein quadric and
studied properties of this object. De Zeeuw simplified the proof, partly by removing
any statements involving the Klein quadric. This led to the unusual formulation
above.

Ruled surfaces. Up to a few technicalities, Lemma 13.7 provides a reduction from
the point-plane incidence problem to a line intersection problem. To solve this line
intersection problem, we require some properties of ruled surfaces.

As with other fields, for a polynomial f ∈ Fq[x1, x2, x3], we define

V(f) = {(a1, a2, a3) ∈ F3
q : f(a1, a2, a3) ≡ 0}.

Since we are working in a three-dimensional space and with a single polynomial, we
refer to V(f) as a surface. The degree of a surface S is the minimum degree of a
polynomial f ∈ Fq[x1, x2, x3] such that V(f) = S.

An irreducible surface S in F3
q (or in any other three-dimensional space, such as R3)

is ruled if for every point p ∈ S there exists a line that is contained in S and incident
to p. Some examples of ruled surfaces are planes, cylinders, and conical surfaces. A
surface S is said to be doubly-ruled if for every point p ∈ S there exist two lines that
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are contained in S and incident to p. Similarly, a plane is said to be infinitely-ruled,
and ruled surfaces that are not doubly-ruled are said to be singly-ruled.

We now state some properties of ruled surfaces in F3
q without proofs. In Chapter

??? we will discuss ruled surfaces in R3 and provide proofs for some of these properties.
For the case of finite fields, see for example [59, 81]. Recall that this is one of the
places where we rely on working in the algebraic closure of Fq.

Lemma 13.8. For q = pr, let S ⊂ F3
q be an irreducible surface of degree D and let

p 6= 2.
(a) If for every point p ∈ S there exist at least three lines that are contained in S and
incident to p, then S is a plane.
(b) If S is doubly-ruled but not a plane, then the lines that are contained in S can
be partitioned into two sets R1, R2 that satisfy the following properties. The lines of
each Rj are a ruling of S. That is ∪`∈Rj

` = S, for j ∈ {1, 2}. Two lines that are
contained in S intersect if and only if they are in different rulings of S.
(c) If S is singly-ruled then it contains at most two special lines that intersect an
infinite number of other lines contained in S. Every non-special line in S intersects
at most D non-special lines contained in S.
(d) If S is not ruled then it contains O(D2) lines.

We will require the following variant of Lemma 6.3.

Lemma 13.9. Let L be a set of n lines in F3
q, where n ≤ (q − 1)2/6. Then there

exists a surface S ( F3
q of degree at most

√
6n ≤ q − 1 that contains every line of L.

Proof. Our approach is similar to the one we used in the proof of Lemma 5.4. Consider
a polynomial f ∈ Fq[x1, x2, x3] of degree at most

√
6n, and denote the coefficients of

the monomials of f as c1, . . . , ck. The number of distinct monomials in Fq[x1, x2, x3]
of degree at most

√
6n is

(√
6n+3
3

)
, so k =

(√
6n+3
3

)
. Write f =

∑√6n
j=0 fj, where fj is a

homogeneous polynomial of degree j.
We can write a line ` ∈ L as {(a1t + b1, a2t + b2, a3t + b3) : t ∈ Fq}, for some

parameters a1, a2, a3, b1, b2, b3 ∈ Fq. Since the degree of f is at most
√

6n ≤ q − 1,
by the Schwartz–Zippel lemma (Lemma 6.2) we have that ` ⊂ V(f) if and only if
f(a1t + b1, a2t + b2, a3t + b3) ≡ 0. That is, if and only if for every 0 ≤ j ≤

√
6n, the

coefficient of tj in f(a1t+ b1, a2t+ b2, a3t+ b3) is 0. This is a system of
√

6n+ 1 linear
homogeneous equations in the coefficients cj.

Asking V(f) to contain all n lines of L yields a system of n(
√

6n + 1) linear

homogeneous equations in
(√

6n+3
3

)
variables. Since

(√
6n+3
3

)
> n(

√
6n+1), we get that

this system has a nontrivial solution (it is not difficult to verify that this argument
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still holds when working over finite fields). That is, there exists a nonzero polynomial
f of degree at most

√
6n such that V(f) contains all of the lines of L. By the

Schwartz–Zippel lemma, f does not vanish on all of F3
q.

We will also require the following result by Kollár [59, Corollary 40].

Lemma 13.10. Let q = pr and let L be a set of n lines in F3
q, such that n = O(p2).

If every surface of degree one or two contains O(
√
n) lines of L, then the number of

points in F3
q that are incident to at least two lines of L is O(n3/2).

We are finally ready to prove the main result of this section.

Proof of Theorem 13.6. If p = 2 then by an assumption of the theorem the number
of points is bounded by some constant. This case is easily handled by taking the
constant in the O(·)-notation of the incidence bound to be sufficiently large. We may
thus assume that p 6= 2, which allows us to rely on Lemma 13.8. The rest of the proof
consists of two parts: reducing the problem to a line intersection problem, and then
solving the line intersection problem.

Reducing the problem. We would like to use the reduction from Lemma 13.7,
with L = {φ(p) : p ∈ P} and L′ = {φ(H) : H ∈ Π}. Recall that this lemma only
holds for points with a nonzero x-coordinate and for planes that intersect H1 and `z.
This issue can be easily resolved by permuting the three coordinates x, y, z and then
performing a translation in the new x-direction. However, we would also like to argue
that no two lines of L intersect, and that no two lines of L′ intersect. To obtain all
of the above properties simultaneously, we perform a generic rotation of F3

q. More
precisely, we perform this generic rotation in the three-dimensional space over the
algebraic closure of Fq.

After performing the generic rotation, we can apply the reduction from Lemma
13.7 with P and Π. Note that |L| = m and |L′| = n. By Lemma 13.7, the number of
incidences I(P ,Π) is equal to the number of pairs of intersecting lines in L × L′.
Bounding the number of intersecting lines. To complete the proof, it remains
to show that the number of intersecting pairs of lines in L × L′ is O(n

√
m + kn).

We would like to apply Lemma 13.9, to obtain a surface S ( F3
q of degree O(

√
m)

that contains all of the lines of L. This is immediate if m ≤ (q − 1)2/6. However, we
only have the slightly weaker restriction m ≤ cq2 for some constant c. We keep the
(q − 1)2/6 lines of L that maximize the number of intersections with lines of L′, and
discard the other lines of L. This decreases the number of pairs of intersecting lines
by a factor of Oc(1), and allows us to apply Lemma 13.9.
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We decompose S into irreducible components S1, . . . , Sk (that is, we factor a
minimum degree polynomial that defines f into irreducible factors and consider the
zero set of each). We first consider intersecting pairs of lines from L × L′ such that
there exists a component Sj that contains exactly one of these two lines. We refer to
such an intersection as a type (i) intersection. Consider a line ` ∈ L and let S` be the
surface S after removing every component that contains `. Since degS` ≤ degS =
O(
√
m), by applying the Schwartz–Zippel lemma (Lemma 6.2) inside of ` we obtain

|` ∩ S`| = O(
√
m). Since the lines of L′ are pairwise disjoint, each intersection of

` with S` corresponds to at most one type (i) intersection. A symmetric argument
applies when ` is a line of L′. By summing the above over every line of L ∪ L′, we
conclude that the number of type (i) intersections is O((m+ n)

√
m) = O(n

√
m).

It remains consider intersecting pairs of lines from L×L′ such that the two lines
are contained in the same set of components of S. We refer to such an intersection
as a type (ii) intersection. For every line ` ∈ L∪L′, we assign ` to the component Sj
with the smallest index j among the irreducible components of S that contain `. Let
Lj be the set of lines of L that are assigned to Sj, and let L′j be the set of lines of L′
that are assigned to Sj. Note that if a pair of lines form a type (ii) intersection then
both lines are assigned to the same component. Thus, it suffices to bound the number
of intersecting pairs of lines in Lj ×L′j for every 1 ≤ j ≤ k. Note that

∑k
j=1 |Lj| = m

and
∑k

j=1 |L′j| ≤ n. Let Ij denote the number pairs of intersecting lines in L × L′
such that both lines are assigned to Sj.

Consider the case where Sj is a plane. Since the lines of Lj are pairwise disjoint
they must all be parallel, and similarly for the lines of L′j. If the lines of Lj and L′j
are all parallel then Ij = 0, so we assume that they are not. In this case, every line
of Lj intersects every line of L′j. By the assumption that no line of F3

q contains k
points of P , either |Lj| < k or |L′j| < 2. Thus, we have Ij ≤ |Lj| + (k − 1)|L′j|. By
summing this bound over every irreducible component of S that is a plane, we get
O(m+ kn) = O(kn) intersecting pairs.

Next, consider the case where Sj is doubly-ruled, and denote the two rulings of
Sj as R1 and R2. Recall from Lemma 13.8 that two lines of Sj intersect if and only if
they are in different rulings of Sj. Since the lines of L do not intersect, either R1 or
R2 contain no lines of Lj. Without loss of generality, assume that R2 contains no lines
of Lj. Since no line of F3

q contains k points of P , either R1 contains at most k lines of
Lj or R2 contains at most one line of L′j. Thus, we again have Ij ≤ |Lj|+ (k− 1)|L′j|.
By summing this bound over every irreducible component of S that is doubly-ruled,
we get O(m+ kn) = O(kn) intersecting pairs.

We move to consider the case where Sj is singly-ruled. By Lemma 13.8, Sj contains
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at most two special lines that intersect an infinite number of other lines contained in
Sj. Every non-special line in Sj intersects at most degSj non-special lines contained
in Sj. The two special lines participate in O(|Lj|+ |L′j) intersections with other lines
in Sj. Any other line of Lj intersects at most degSj non-special lines of L′j, with a
total of O(degSj|Lj|) such intersections. That is, Ij = O(|L′j| + |Lj| degSj). Since∑

j degSj = O(
√
m), summing the above bound over every irreducible component of

S that is singly-ruled, we get O(m+ n+m3/2) = O(n
√
m) intersecting pairs.

It remains to consider the case where Sj is not ruled. Let L∗j = Lj ∪ L′j. By
Lemma 13.8, we have |L∗j | = O(degS2

j ). We now verify that the conditions of Lemma
13.10 hold for L∗j . We add generic lines to L∗j , to obtain |L∗j | = Θ(d2j). Since degSj ≤
degS = O(

√
m) and by the assumption that m = O(p2), we indeed have |L∗j | = O(p2).

As in Problem 4.2, if two surfaces of degrees D and E in F3
q have no common factors,

their intersection contains at most DE lines.3 Thus, any surface of degree one or two
contains O(degSj) lines of Lj ∪L′j. By definition no such surface contains more than
a few of the additional generic lines. We may thus apply Lemma 13.10, and obtain
that O(degS3

j ) points of F3
q are incident to more than one line of L∗j . Since the lines

of Lj and disjoint and also the lines of L′j, every such point corresponds to at most
one intersecting pair of Lj ∪ L′j. That is, Ij = O(degS3

j ). By summing this bound
over every irreducible component of S that is not ruled, we get

∑
j

O(degS3
j ) = O

(∑
j

degSj

)3
 = O(m3/2) = O(n

√
m)

intersecting pairs.
There is one small issue that we ignored in the previous paragraph — if Sj is of

degree two then might violate the condition of Lemma 13.10 concerning surfaces of
degree two. To avoid this issue, note that in this case |Lj ∪ L′j| = O(1) so we still
have O(d3j) = O(1) pairs of intersecting lines.

By Lemma 13.8, the above cases cover all of the irreducible components of S.
In conclusion, by summing all of the above cases we have O(n

√
m + nk) pairs of

intersecting lines in L × L′. This completes the proof of the theorem.

3To formally prove this we need to rely on the fact that a variant of Bézout’s theorem still holds
in the algebraic closure of F2

q.
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13.5 The sum-product problem in finite fields

As our first application of Theorem 13.6, we study the sum-product problem in Fq.
This problem was already discussed over R in Section 1.8. Briefly, the problem
conjectures that every finite set A satisfies that max{|A + A|, |AA|} is large with
respect to |A|. Similarly to the case of incidences in finite fields, surprising results
are obtained when A ⊂ Fq is large with respect to q. In particular, when A = Fq we
have |A| = |A + A| = |AA| = q. The problem becomes more interesting when |A| is
much smaller than q. The following recent bound is by Roche-Newton, Rudnev, and
Shkredov [78].

Theorem 13.11. Let q = pr and let A ⊂ Fq satisfy |A| ≤ p5/8. Then

max{|A+ A|, |AA|} = Ω
(
n6/5

)
.

The current best bound of Ω(n39/32) was obtained in [20] specifically for prime
fields. As with the point-line incidences, these bounds are significantly weaker than
current bound Ω(n4/3+ε) over R.

Most of the applications of Theorem 13.6 reduce a problem to point–plane inci-
dences by using the concept of energy. We thus begin by studying this object (already
briefly mentioned in Section 12.2).

Given a finite set A ⊂ R, the additive energy of A is

E(A) =
∣∣{(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4

}∣∣ .
Note that this is somewhat similar to the set of quadruples from the distinct distances
problem. One might refer to that set of quadruples as the distance energy of a point
set.

Note that |A|2 ≤ E(A), since this is the number of solutions with a1 = a3 and
a2 = a4. Similarly, E(A) ≤ |A|3 holds since for any choice of a1, a2, and a3 there is
at most one valid choice for a4.

For x ∈ A + A, set rA(x) = |{(a1, a2) ∈ A2 : a1 + a2 = x}|. Since every pair of
A2 contributes to exactly one rA(x), we have that

∑
x∈A+A rA(x) = |A|2. By the

Cauchy-Schwarz inequality, we have

E(A) =
∑

x∈A+A

rA(x)2 ≥ (
∑

x rA(x))2

|A+ A| =
|A|4
|A+ A| . (13.7)

At first it might seem that the smaller |A + A| is, the larger E(A) is. A few
examples to illustrate this:
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� If A is a arithmetic progression then |A+ A| = 2|A| − 1 and E(A) = Θ(|A|3).
� If A is a random set, then we expect |A+ A| = Θ(|A|2) and E(A) = Θ(|A|2).
� Let 0 < α < 1. Set A = H + R with H being an arithmetic progression of size

Θ(|A|α) and R being a random set of size Θ(|A|1−α). Then |A+A| = Θ(|A|2−α)
and E(A) = Θ(|A|2+α).

By (13.7), a small value of |A+A| always implies a large value of E(A). However,
the other direction does not always hold. For example, take A = P ∪R where P is a
arithmetic progression of size |A|/2 and R is a random set of size |A|/2. In this case
we have |A+ A| = Θ(|A|2) and E(A) = Θ(|A|3).

Before proving our sum-product bound, we first repeat the statement of this result.

Theorem 13.11. Let q be an odd prime power and let A ⊂ Fq satisfy |A| ≤ p5/8.
Then

max{|A+ A|, |AA|} = Ω
(
|A|6/5

)
.

Proof. If 0 ∈ A, we remove zero from A. This does not change the asymptotic size of
A. Set A−1 = {1/a : a ∈ A}. We rewrite

E(A) = |A|−2 |{a1 + a2a3/a3 = a4 + a5a6/a6 : a1, . . . , a6 ∈ A}|

≤ |A|−2
∣∣∣{(a1, b1, c1, a2, b2, c2) ∈

(
A× AA× A−1

)2
: a1 + b1c1 = a2 + b2c2

}∣∣∣ .
(13.8)

With the above in mind, we define the energy variant

E ′(A) =
∣∣∣{(a1, b1, c1, a2, b2, c2) ∈

(
A× AA× A−1

)2
: a1 + b1c1 = a2 + b2c2

}∣∣∣ .
We study E ′(A) with a three-dimensional variant of Elekes’s sum-product argu-

ment (see Section 1.8). Consider the point set

P = {(a1, b2, c1) ∈ A× AA× A−1},

and the set of planes

Π = {x+ b1z − c2y = a2 : (a2, b1, c2) ∈ A× AA× A−1}.

A 6-tuple (a1, b1, c1, a2, b2, c2) contributes toE ′(A) if and only if the point (a1, b2, c1)
is incident to the plane defined by (a2, b1, c2). That is, E ′(A) = I(P ,Π). We wish to
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bound the number of incidences using Theorem 13.6, and first check the conditions
of this theorem hold.

We have m = |P| = |Π| = |A|2|AA|. The maximum number of collinear points
in P is |AA|, since this is the size of the longest side of the cartesian product A ×
AA × A−1. We may assume that |AA| = O(|A|6/5), since otherwise we are done.
Combining this with |A| = O(p5/8) implies that m = |A|2|AA| = O(p2). We can thus
apply Theorem 13.6 on P and Π with k = |AA|, obtaining

E ′(A) = I(P ,Π) = O
(
m3/2 +mk

)
= O

(
|A|3|AA|3/2 + |A|2|AA|2

)
= O

(
|A|3|AA|3/2

)
.

Combining the above with (13.8) gives

E(A) ≤ |A|−2E ′(A) = O
(
|A||AA|3/2

)
= O

(
|A||AA|3/2

)
= O

(
|A|14/5

)
.

Recalling (13.7) leads to |A+ A| = Ω(|A|6/5), which completes the proof.

With some more work, one can improve the value of k in the proof of Theorem
13.11. Surprisingly, a better bound on k does not improve the theorem in any way.

13.6 Incidences between medium-sized sets of points

and lines

In this section we study the current best bound for point-line incidences in F2
q for the

case where the number of points and lines is not very large and not extremely small.
The following result is by Stevens and de Zeeuw [93].

Theorem 13.12. For q = pr, let P be a set of m points and L be a set of n lines,
both in F2

q, such that m7/8 < n < m8/7 and n13/m2 = O(p15). Then

I(P ,L) = O(m11/15n11/15).

This is another example for how little we currently know about incidences in
spaces over finite fields. Note that the bound O(m11/15n11/15) is relatively close to
the elementary upper bound from Lemma 13.1. Specifically, 3/4 − 11/15 = 1/60
while 3/4− 2/3 = 1/12. Moreover, when m = o(n7/8) or n = o(m7/8) the elementary
bounds (13.1) and (13.2) are stronger. This seems to be part of a general phenomena,
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where such combinatorial problems are significantly more difficult when working over
a finite field.

The proof of Theorem 13.12 is based on the observation that it is easier to bound
the number of incidences when the point set is a lattice. Indeed, in this case we can
use an energy argument similar to the one in the proof of Theorem 13.11.

Theorem 13.13. For q = pr, let L be a set of n lines in F2
q. Let A,B ⊂ Fq such that

a = |A|, b = |B|, a ≤ b, ab2 = O(n3) and an = O(p2). Then

I(A×B,L) = O(a3/4b1/2n3/4 + n).

To put this result in context, note that when a = b =
√
m Theorem 13.13 gives

the bound O(P ,L) = O(m5/8n3/4 + n). This improves the bound of Lemma 13.1
by a factor of m1/8 (in the special case where the point set is a lattice), which is a
significant improvement for an incidence bound.

Proof of Theorem 13.13. We begin with two steps of pruning the set of lines L. In the
first step, we remove all of the vertical and horizontal lines from L (lines defined by
x ≡ c for some c ∈ Fq). Since every point of A×B is incident to at most one vertical
line and to at most one horizontal line, this decreases the number of incidences by
at most ab. The assumption ab2 = O(n3) is equivalent to a1/4b1/2 = O(n3/4), which
implies ab = O(a3/4b1/2n3/4). Thus, removing the vertical and horizontal lines does
not affect our incidence bound. Note that every non-horizontal line contains at most
a points of A × B, so we now have I(A × B,L) ≤ an. If an = O(a3/4b1/2n3/4) then
we are done. We may thus assume that an = Ω(a3/4b1/2n3/4), which implies that
b = O(

√
an).

In our second pruning step, we check whether L contains a subset of more than√
an lines that are all parallel or concurrent. If such a subset exists, then we remove

all of its lines from L and repeat this process. Let nj be the number of lines that were
removed during the j’th iteration of this process. Excluding the point of concurrency,
every point of A × B is incident to at most one line that was removed in the j’th
iteration. That is, the number of incidences that are removed in the j’th iteration
is at most nj + ab. Since the number of iterations is smaller than n/

√
an =

√
n/a,

the number of incidences that are removed during the second pruning step is smaller
than

∑
j(nj + ab) = n +

√
n/a · ab = n + b

√
na. Since b = O(

√
an), the number of

removed incidences is O(n+ b1/2a3/4n3/4).
We consider the dual set

L∗ = {(s, t) : L contains a line defined by y = sx+ t}.
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Since L does not contain vertical lines, every line of L has a dual point in L∗. For
β ∈ B, we set

rβ = |{(α, s, t) ∈ A× L∗ : β = αs+ t}|.

Intuitively, rβ is the number of incidences that occur on the line defined by y ≡ β.
We thus have that I(A×B,L) =

∑
β∈B rβ. We also set the energy variant

E =
∣∣{(α, s, t, α′, s′, t′) ∈ (A× L∗)2 : αs+ t = α′s′ + t′

}∣∣ .
We complete the proof by double counting E. The Cauchy–Schwarz inequality

implies

E =
∑
β∈B

r2β ≥

(∑
β∈B rβ

)2
b

=
I(A×B,L)2

b
. (13.9)

We refer to the coordinates of F3
q as x, y, z. We reduce the problem of deriving an

upper bound for E to a point-plane incidence problem in F3
q, as follows. We define

the point set

Q = {(α, s′, t′) ∈ A× L∗},

and the set of planes

Π = {xs+ t = α′y + z : (s, t) ∈ L∗ and α′ ∈ A}.

Note that E = I(Q,Π). To apply Theorem 13.6 with Q and Π, we check that
the conditions of this theorem are satisfied. We indeed have |Q| = a|L| = |Π| and
|Q| = a|L| = O(p2). It remains to obtain an upper bound for the number of points
of Q that can be on a common line. If a set of points from L∗ ⊂ F2

q are on a common
line defined by y = cx + d, then the corresponding lines of L intersect in the point
(−c, d) ∈ F2

q. By the second pruning step of L, no line in F2
q contains

√
an points of

L∗. Thus, any line in F3
q that is not parallel to the x-axis contains fewer than

√
an

points of Q. A line that is parallel to the x-axis contains at most a points of Q, and
by an assumptions of this theorem a = O(

√
an). We conclude that every line in F3

q

contains O(
√
an) points of Q.

By the above, we may apply Theorem 13.6 on Q and Π, with k = O(
√
an). This

implies

E = I(Q,Π) = O(|Π|
√
|Q|+ k|Π|) = O(a3/2n3/2).

Combining this with (13.9) immediately implies the assertion of the theorem.
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As in the proof of Theorem 13.11, establishing an improved bound on k in the
above proof does not lead to new results.

Our next goal is to rely on the above bound for incidences with a lattice to obtain
a bound for the general incidence problem. The following lemma shows that when
there are many point-line incidences in F2

q, a large portion of the point set behaves
like a lattice.

Below we prove Theorem 13.12 by induction. As discussed in Chapter 7, using
O(·)-notation in such proofs can be problematic. We thus avoid using O(·)-notation
starting now.

Lemma 13.14. The following holds for any real constants 0 < c1 < c2. Let P be a
set of m points and let L be a set of n lines, both in F2

q. Let

r ≥ max
{

4n/c1m, 4/c1, (2
5n2/c31m)1/3

}
satisfy that every point of P is incident to at least c1r lines of L and to at most c2r
such lines. Then there exist distinct points u, v ∈ F2

q, a subset P ′ ⊂ P, and line sets
Lu,Lv ⊂ L, with the following properties. The set P ′ contains no points that are on

the line incident to both u and v, and |P ′| ≥ m
c41r

4

27n2 . Every point of P ′ is incident to
a line of Lu and to a line of Lv, and each of these sets contains at most c2r lines.

To see why the set P ′ from Lemma 13.14 behaves like a lattice, consider this set in
the projective plane PF3

q by giving each point a z-coordinate of 1 (see Section 13.2).
As will be explained in the proof of Theorem 13.12 below, there exists a projective
transformation that takes the lines of Lu to lines parallel to the x-axis and the lines of
Lv to lines parallel to the y-axis. These two sets of lines define a (c2r)× (c2r) lattice
that contains P ′.

Proof of Lemma 13.14. Set x = I(P ,L), and let L+ be the set of lines of L that are
incident to at least x/2n points of P . We have

I(P ,L+) = I(P ,L)− I(P ,L \ L+) ≥ x− n x
2n

= x/2. (13.10)

If every point of P is incident to fewer than x/2m lines of L+ then I(P ,L+) <
m x

2m
= x/2. Since this contradicts (13.10), there exists a point u ∈ P that is incident

to at least x/2m lines of L+. Since every point of P is incident to at least c1r lines
of L, we have x ≥ mc1r. That is, u is incident to at least c1r/2 lines of L+. We set

P̂ = {v ∈ P \ {u} : u, v ∈ ` for some ` ∈ L},
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and m̂ = |P̂|. Every line of L+ is incident to at least x/2n ≥ mc1r/2n points of P .
Combining this with the assumption r ≥ 4n/c1m leads to

m̂ ≥ c1r

2

(mc1r
2n
− 1
)
≥ mc21r

2

8n
. (13.11)

We now repeat the above analysis for the points of P̂ . Set x̂ = I(P̂ ,L), and let
L̂+ be the set of lines of L that are incident to at least x̂/2n points of P̂ . We have

I(P̂ , L̂+) = I(P̂ ,L)− I(P̂ ,L \ L̂+) ≥ x̂− n x̂
2n

= x̂/2. (13.12)

If every point of P̂ is incident to fewer than x̂/2m̂ lines of L̂+ then I(P̂ , L̂+) <
m′ x̂

2m̂
= x̂/2. Since this contradicts (13.12), there exists a point v ∈ P̂ that is incident

to at least x̂/2m̂ lines of L̂+. Since every point of P̂ is incident to at least c1r lines
of L, we have x̂ ≥ m̂c1r. That is, u is incident to at least c1r/2 lines of L̂+. Let `uv
be the line incident to u and v. We set

P ′ = {w ∈ P̂ \ `uv : w, v ∈ ˆ̀ for some ˆ̀∈ L̂}.

Every line of L̂+ is incident to at least x̂/2n ≥ m̂c1r/2n points of P . Combining
this with (13.11) and with the assumption r ≥ max

{
4/c1, (2

5n2/c31m)1/3
}

leads to

|P ′| ≥
(c1r

2
− 1
)(m̂c1r

2n
− 1

)
≥ mc41r

4

27n
.

Let Lu be the lines of L \ {`uv} that are incident to u, and similarly for Lv. By
the assumption involving c2, we have that |Lu| ≤ c2r and |Lv| ≤ c2r. By definition,
every point of P ′ is incident to a line of Lv. Since every point of P̂ is incident to a
line of Lu, so is every point of P ′ ⊂ P̂ .

We combine Theorem 13.13 and Lemma 13.14 to obtain a general point-line inci-
dence bound.

Proof of Theorem 13.12. In the following we assume that m7/8 < n < m8/7 and
n13/m2 = O(p15), as assumed in the theorem. We will prove that there exists a
sufficiently large constant c such that for any set P of m and a set L of n lines, both
in F2

q,

I(P ,L) < cm11/15n11/15. (13.13)

For small values of n, we get that (13.13) holds by taking c to be sufficiently large.
We may thus assume that n is larger than some constant (say, n ≥ 100). For any
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such fixed value of n, we prove (13.13) by induction on m. For the induction basis,
note that (13.1) implies (13.13) when n4/11 ≤ m ≤ n7/8 and c is sufficiently large.

To prove the induction step, we consider m > n7/8 and assume that (13.13)
holds for any smaller m that satisfies m ≥ n4/11. We assume for contradiction
that there exists a set of m points P and a set of n lines L, both in F2

q, such

that I(P ,L) ≥ cm11/15n11/15. If I(P ,L) > 2cm11/15n11/15 then we can decrease
the number of incidences by moving some points of P , to obtain cm11/15n11/15 ≤
I(P ,L) ≤ 2cm11/15n11/15. We may thus assume that I(P ,L) ≤ 2cm11/15n11/15. Let
r = I(P ,L)/m, and consider the sets

Ppoor = {p ∈ P : p is incident to at most 2−2r lines of L},
Prich = {p ∈ P : p is incident to at least 23r lines of L},
Pmid = P \ (Ppoor ∪ Prich) .

Note that I(Ppoor) ≤ m · 2−2r = 2−2I(P ,L). We also observe that |Prich| ≤
I(P ,L)/(23r) = 2−3m. If we also have that |Prich| ≥ n4/11, then by the induction
hypothesis I(Prich,L) < 2−2I(P ,L). If |Prich| < n4/11, then (13.1) and a sufficiently
large c imply I(Prich,L) = O(n) < 2−2I(P ,L).

If |Pmid| ≤ 2−3m then by applying the induction hypothesis to Pmid and L we
get I(Pmid,L) < 2−2I(P ,L) (as in the previous paragraph, if |Pmid| < n4/11 then
we use (13.1) instead of the hypothesis). This leads to the contradiction I(P ,L) =
I(Ppoor,L) + I(Prich,L) + I(Pmid,L) < 3I(P ,L)/4, so we may assume that |Pmid| >
2−3m. We set P1 = Pmid, m1 = |P1|, c1 = 2−2, and c2 = 23. To be able to apply
Lemma 13.14, we claim that

I(P ,L)

m
= r ≥ max

{
4n

c1m1

,
4

c1
,

(
25n2

c31m1

)1/3
}
. (13.14)

It is not difficult to verify that (13.14) holds for sufficiently large c, since I(P ,L) ≥
cm11/15n1/15, m1 ≥ 2−3m, and m7/8 < n < m8/7.

By (13.14) and the definition of Pmid, we can apply Lemma 13.14 on P1 and L,
with the above values for c1, c2, r. We obtain points u1, v1 ∈ P1, a set P ′1 ⊂ P1,
and sets of lines Lu,1,Lv,1 ⊂ L, that satisfy the assertions of Lemma 13.14. We set
P2 = P1 \ P ′1. We repeat the above process as follows. At the j’th iteration we
apply Lemma 13.14 on Pj and L with the above values for c1, c2, and r. We obtain
points uj, vj ∈ Pmid, a set P ′j ⊂ Pmid, and sets of lines Lu,j,Lv,j ⊂ L. We then
set Pj+1 = Pj \ P ′j. The process stops once get that |Pj+1| ≤ 2−3m. As long as
|Pj+1| > 2−3m, the conditions of (13.14) remain valid and we may keep applying
Lemma 13.14.
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Let s be the number of times we applied Lemma 13.14 in the above process. By
that lemma, for every 1 ≤ j ≤ s we have

|P ′j| ≥ |Pj|
c41r

4

27n2
≥ 2−3m

c41r
4

27n2
≥ 2−18m

r4

n2
.

We can thus bound the number of iterations by

s ≤ m

2−18mr4/n2
=
n2218

r4
. (13.15)

We now consider I(Pj,L) for some 1 ≤ j ≤ s. By Lemma 13.14, every point of
Pj is incident to a line of Lu,j and to a line of Lv,j. We move from the affine plane
F2
q to the projective plane PF2

q, as explained in Section 13.2. We then perform a
projective transformation τj that takes uj to (1, 0, 0) and vj to (0, 1, 0). By inspecting
the definition in (13.4), we observe that such a transformation always exists.4 As
explained in Section 13.2, τj takes every line of Lu,j to a line that is parallel to the
y-axis, and every line of Lv,j to a line parallel to the x-axis. This in turn implies that
τj takes Pj to a subset of an (c2r) × (c2r) lattice Gj. We then return to the affine
plane F2

q by taking the intersection of PF3
q with the plane defined by z ≡ 1. By the

statement of Lemma 13.14, no point of Pj is on the line incident to both uj and vj,
so τj does not take any point of Pj to the line at infinity. Thus, when returning to
the affine plane F2

q we do not lose any incidences between Pj and L.
Let α be the constant hidden in the O(·)-notation in the bound of Theorem 13.13.

We now verify that the condition of Theorem 13.13 hold for Gj and a set of n lines
in F2

q. By assuming that n is sufficiently large, we indeed have that (c2r)
3 = O(n).

Combining I(P ,L) ≤ 2cm11/15n11/15 with n13/m2 = O(p15) implies that c2rn =
O(p2). Since projective transformations preserve incidences, Theorem 13.13 yields

I(Pj,L) = I(τj(Pj), τj(L)) ≤ I(Gj, τj(L)) ≤ α
(
(c2r)

3/4(c2r)
1/2n3/4 + n

)
.

Combining this with (13.15) and assuming that c is sufficiently large gives

s∑
j=1

I(Pj,L) ≤ n2218

r4
· α
(
(c2r)

5/4n3/4 + n
)
< α

(
222n

11/4

r11/4
+
n3218

r4

)

= α

(
222 n

11/4m11/4

I(P ,L)11/4
+
n3m4218

I(P ,L)4

)
< 2−2I(P ,L).

4For some intuition, note that in R2 we can take any pair of points to (1, 0) and (0, 1) by scaling,
translating, and rotating the plane.
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Since |Ps+1| ≤ 2−3m, by the induction hypothesis I(Ps+1,L) < 2−2I(P ,L) (as
before, if |Ps+1| < n4/11 then we use (13.1) instead of the hypothesis). Combining all
of the above cases gives

I(P ,L) = I(Ppoor,L) + I(Prich,L) +
s+1∑
j=1

I(Pj,L) < I(P ,L).

This contradiction completes the induction step, and thus the proof of the theorem.

13.7 Exercises

Problem 13.1. Let P be a set of m points in R3. Let V be a set of n sphere in
R3, all of radius one and centered in points with a zero z-coordinate. Use duality to
prove that I(P ,V) = O(n3/5m4/5 +m+ n).

Problem 13.2. Prove derive the sum-product bound in Theorem 13.11 by using the
point–line incidence bound of Theorem 13.12 (rather than the point–plane incidence
bound of Theorem 13.6).

Problem 13.3. For f(x, y) = x2+xy and A ⊂ Fq, set f(A,A) = {f(a, b) : a, b ∈ A}.
Show that when |A| = O(p2/3) we have |f(A,A)| = Ω(|A|4/5). (Hint: Use energy.)

Problem 13.4. Let A ⊂ Fq with |A| = O(|A|2/3). Let A+AA = {a+bc : a, b, c ∈ A}.
Adapt the use of E in the proof of Theorem 13.13 to show that |A+AA| = Ω(|A|3/2).
(This is one case where we have similar results over and over Fq.)

13.8 Open problems

Let P be a set of m lines and let L be a set of n lines, both in F3
q. In this chapter

we saw that the Szemerédi–Trotter bound I(P ,L) = O(|P|2/3|L|2/3 + |P|+ |L|) does
not hold when mn is asymptotically larger than q3. We saw that this bound does
hold when mn = Θ(q3), and also in some cases where m and n are tiny compared to
q (about log log log q). There is a huge gap between these two extreme cases, and we
are far from understanding what happens in it. The current best bound, stated in
Theorem 13.12, might be very far from begin tight.

Recall that the o(·)-notation means “asymptotically smaller than”.
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Open Problem 13.1. Let P be a set of m points and let L be a set of n lines, both
in F3

q, such that mn = o(q3). Find a tight upper bound for I(P ,L).

The bound of Theorem 13.6 is sharp when k = Ω(
√
m). When k = o(

√
m), it

seems plausible that a better bound holds. Such a bound does exist in R3.

Open Problem 13.2. Let q = pr for some prime p and positive integer r. Let P be
a set of m points and let Π be a set of n planes, both in F3

q, such that n ≥ m. Assume
that m = O(p2) and that no line of F3

q contains k points of P , for some k = o(r).
Find a tight upper bound for I(P ,Π).
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