
Esencia

Technologies Inc.
www.esenciatech.com

PLP v2 and SmGen
Rising the level of abstraction in Verilog design

6/11/2010

© Esencia Technologies Inc. 2

Agenda

• Motivation

• PLP v2 (PerL Preprocessor)

• A language agnostic pre-processor that uses

Perl to generate output code

• SmGen (State Machine generator)

• Behavioral style Verilog conversion to

synthesizable FSM

• A combined example

• Licensing

• Support

© Esencia Technologies Inc. 3

Motivation

• Verilog design is still low level compared to
languages like C++

• Synthesis tools constraint coding to a set of
synthesizable templates

• Some of them addressed by SystemVerilog but still
can be improved

• People is not willing to embrace improvements
because of the risk of back-end tools choking with
the flow later on in the project

© Esencia Technologies Inc. 4

Examples of limitations

• Events need to appear at the beginning of always blocks:

E.g.

always @(posedge clk or negedge rst_n) begin

 // event free sequential block

end

always @(a or b or c) begin

 // event free combinational block

end

© Esencia Technologies Inc. 5

Examples of limitations

 • Many times a more natural alternative to a FSM is to
write code sequentially as in the original algorithm

mul1 <= 'habc;

mul2 <= 1234;

do_mul <= 1;

@(posedge clk);

div1 < mul_res;

div2 <= 5678;

@(posedge clk);

res <= div_res;

But this is still cumbersome...

© Esencia Technologies Inc. 6

Examples of limitations

 • Ideally one would write code as in the original
algorithm and insert clock events as needed to
distribute the load across clock cycles

Mul('habc, 1234, mul_res);

Div(mul_res, 5678, div_res);

• But “time consuming tasks” are not synthesizable

by standard tools. Currently this needs to be

implemented as a Finite State Machine (FSM)

© Esencia Technologies Inc. 7

Examples of limitations

 • Other Verilog limitations are easily addressed by a
preprocessor:

• Generating multiple instantiations of a block based on a parameter

• Extra constant / compile time functions

• log2(x) for number of bits required to hold x

• Stringify a parameter to make it readable on a waveform viewer

• sin(x)/cos(x)/sqrt(x)... over constant values for table generation

• min/max(x,y[,..])

• Macro expansion:

 WiggleWire(a,1,0,1)

© Esencia Technologies Inc. 8

PLP – a simple perl based preprocessor

• Why Perl ?

• Powerful / ubiquitous in ASIC design environments

• Excellent text processing capabilities

• Most designers familiar with it

© Esencia Technologies Inc. 9

PLP – The basic idea

• Phase 1: The input file is converted into a Intermediate

Perl Script (or IPS in what follows)

• By default if a line contains:

 aaa bb cc

• The generated code just prints it as is:

 print “aaa bb cc\n”;

• Perl special characters are automatically quoted:

 input: $display($time, “ reset on\n”);

IPS: print “\$display(\$time, \” reset on\\n\”);

© Esencia Technologies Inc. 10

PLP – inserting Perl code

• Lines starring with % (PLP's Perl scape character –
re-definable with -ps option) are emitted to IPS as
is:

 input: %for $i (1..3) {

 hi

 %}

 IPS: for $i (1..3) {

 print “hi\n”;

 }

Redefining Perl escape character may be interesting for

other applications (e.g. // Pragma to expand pragmas

given in comments). Defined by a regular expression.

© Esencia Technologies Inc. 11

PLP – output generation

• Phase 2: IPS is executed by the Perl interpreter
and its output generates the output file

 perl IPS > output

 output: hi

 hi

 hi

• If IPS contains errors, it can be easily debugged as
it is visible by the user:

 By inspection for simple syntax errors

 With Perl debugger (perl -d IPS) or with ddd

© Esencia Technologies Inc. 12

PLP – value interpolation

• Perl variable values can be inserted in regular text
by using ${varname} syntax. E.g.

 input: %for $i (1..3) {

 hi $i is ${i}

 %}

 IPS: for $i (1..3) {

 print “hi \$i is ${i}\n”;

 }

 output: hi $i is 1

 hi $i is 2

 hi $i is 3

© Esencia Technologies Inc. 13

PLP – expression interpolation

• A Perl function call or expression can also be called
directly in regular text. Use $((expr)) syntax; the
return value of the expression is interpolated in the
output text. Ex.

 input: %$max=256;

 %for $i (1..3) {

 input [$((log2($max)-1)) : 0] x${i};

 %}

 output: input [7 : 0] x0;

 input [7 : 0] x1;

 input [7 : 0] x2;

© Esencia Technologies Inc. 14

PLP – including raw Perl code

• A set of Perl subroutines can be included for later use
as follows

 input: %include(“util.pl”);

• Note that include() is just a built-in Perl sub contained
in PLP itself that evals the code in util.pl

© Esencia Technologies Inc. 15

PLP – invocation

• If the extension of the filename is .plp, by default
the output filename is constructed from the input
one by dropping the .plp extension

 > plp fifo.v.plp (generates fifo.v)

• You can also explicitly define output filename with

 -o option

 > plp pre_fifo.v -o fifo.v

© Esencia Technologies Inc. 16

PLP – invocation (2)

• To pass a parameter for generation from the shell,
invoke plp with -p param=val as many times as
required

 > plp -p width=32 -p depth=4 pre_fifo.v -o fifo_w32_d4.v

 Prepends: $width=32;

 $depth=4;

To IPS to be used in the pre_fifo.v code so that the

code can be generated according to those parameters

© Esencia Technologies Inc. 17

PLP – invocation (3)

• Sometimes a parametric file may want to generate
the output filename programmatically within the
body of the input file. E.g. parameters are width and
depth and filename must have width and total_bits
as part of the filename.

• Use embedded PLP_FILENAME directive

 > plp -p width=32 -p depth=4 pre_fifo.v

 % $bits = $width * $depth

 // PLP_FILENAME=”fifo_w${width}_bits${bits}.v”

Would generate fifo_w32_bits128.v

© Esencia Technologies Inc. 18

PLP – 2 passes

• Pass 1 the pure Perl generation we have
mentioned so far (with 2 phases)

• Pass 2 is Verilog specific so it is disabled by default
(-2 to enable it). It runs the code through emacs in
batch mode for /*AUTO...*/ directive expansion by
using emacs Verilog mode. See

 http://www.veripool.org/wiki/verilog-mode

 For details on Verilog mode AUTO directives

© Esencia Technologies Inc. 19

PLP – command line options

Perl Based Preprocessor

 USAGE: plp [options] filename.ext ...

 -h : Display this message

 -q : Quiet mode

 -n : No comment. Remove initial comment on

 generated file

 -ips f : Use f as filename for Intermediate

 Perl Script (def plp_tmp*.pl)

 -c : Compile only (don't execute fileTmp)

 -[no]1 : Perl preprocessor step (def yes)

 -[no]2 : auto/emacs pass (def no)

© Esencia Technologies Inc. 20

PLP – command line options (2)

-pp str : Perl parameters. Will add "parameters" to 1st line

 of macrop_tmp*.pl (e.g -w for #!/usr/bin/perl -w)

-o f : Output filename (requires only one input file name

 given) when multiple files are given the filename

 is expected to have .plp extension which is removed

 to generate the output filename

-d dir : Destination directory for resulting file (def .)

-cs str : Specify comment start sequence (def '//')

-ce str : Specify comment end sequence (def '')

-ps str : Specify escape character for perl (def '%')

-ms str : Specify start escape char for phase 1 calls (def '@')

-ts str : Specify escape character for phase 2 calls (def '')

-es str : Specify start escape char for Perl eval (def '$((')

-ee str : Specify end escape char for Perl eval (def '))')

© Esencia Technologies Inc. 21

PLP – command line options (3)

-p var=value : pass a parameter to file to process

 (e.g. -p WIDTH=32) multiple can be given with

 several -p parameters

 An Intermediate Perl Script (fileTmp) will be created.

 The execution of that file generates the post-processed file on stdout.

 It can be used to debug the code embedded in the pre-preprocessed file

 if the string PLP_FILENAME="filename" is found in the generated output

 after a comment (as per -cs option) then the output filename is overridden

 by this value (this allows to compute the filename within the body of the

 file based on command line parameters)

© Esencia Technologies Inc. 22

PLP – includes

• Sometimes is convenient to 'execute' a Perl
function while PLP parses your input file in phase 1,
instead of just emitting its code to IPS. For example
to include a plp file to be processed

 @plp_include(my_plp_lib_file)

Will process &plp_include(“my_plp_lib_file”) function

during the IPS generation (phase 1). plp_include is a

built-in function but the same would happen with user

defined Perl sub's

NOTE that this includes plp code (not Perl code)

© Esencia Technologies Inc. 23

PLP – start-up

• You may want to preload a set of PLP files for a
given file type.

• PLP automatically evals (and makes available to
phase 1) the following Perl files in this order

 plp_path/plp_begin.pl

 plp_path/{file_type}/plp_begin.pl

Where file_type is derived as follows:
 If (plp_path/file_extension exists) { file_type = file_extension }

 else if (file_type in c/h } {file_type = c }

 else if (file_type in c/cc/cxx/cpp/hpp/C/H } {file_type = cpp }

 else if (file_type in v/vh } {file_type = v }

 else { file_type = file_extension }

© Esencia Technologies Inc. 24

PLP – start-up (2)

• You may want to preload a set of PLP files for a
given file type and make the available to phase 2

• PLP automatically includes (copies verbatim to IPS)
the following Perl files in this order

 plp_path/plp_lib.pl

 plp_path/{file_type}/plp_lib.pl

 For instance functions like log2/sign_extend etc. are
interesting under v/plp_lib.pl so that they become
code generators for all Verilog files

© Esencia Technologies Inc. 25

PLP – finishing-up

• PLP automatically evals the following Perl files in
this order

 plp_path/{file_type}/plp_end.pl

 plp_path/plp_end.pl

• This allows you to emit code you may have
captured in variables and purposely delayed
towards the end of the processing

© Esencia Technologies Inc. 26

PLP – advanced features

• Inserting @func(param1, param2) causes PLP to
invoke &func(“param1”, “param2”) during IPS
generation (phase 1) and emits to IPS whatever
&func returns. This can be used to emit complex
Perl sequences to IPS on the fly (like generating
a subroutine declaration with a specific template)

• &func must have been defined in Perl elsewhere

 (for instance in one of the plp_begin.pl
automatically included)

© Esencia Technologies Inc. 27

PLP – advanced features (2)
• For example see MacroDef / MacroEnd

implementation in plp_begin.pl (auto-loaded on start-
up for Perl code) :

sub MacroDef {

 my ($name, @pars) = @_;

 local $"=",\$";

 my $res = "sub $name {\n";

 if ($#pars >= 0) {

 $res .= "my (\$@pars) = \@_;\n";

 }

 return $res;

}

sub MacroEnd {

 return "}\n";

}

© Esencia Technologies Inc. 28

PLP – advanced features (3)

• ... make the following two definitions equivalent:
%sub macro_min1 {

% my ($x1, $x2, $res) = @_;

 if (${x1} < ${x2})

 ${res} = ${x1};

 else

 ${res} = ${x2};

%}

@MacroDef(macro_min1, x1, x2, res);

 if (${x1} < ${x2})

 ${res} = ${x1};

 else

 ${res} = ${x2};

@MacroEnd;

© Esencia Technologies Inc. 29

PLP – advanced features (4)

• In order to clean-up the syntax, PLP allows
function calls of the type

 % &func(“par1”, “par2”, ..., “parn”);

• To be entered as

 [\s*] [ts] func(par1, par2, ..., parn) [;]

 Where ts is an optional start symbol (empty by

 default, see –ts option)
 E.g. ProcCall(t1, a1, a2);

© Esencia Technologies Inc. 30

• For example:
 %sub outReg {

 % my ($name, $w) = @_;

 % if (defined($w) && $w != 0) {

 output [${w} – 1: 0] ${name} ;

 reg [${w} – 1: 0] ${name} ;

 % }else {

 output ${name} ;

 reg ${name} ;

 % }

 %}

• Allows you to do anywhere in the code:

 input go;

 outReg(done); // generates output and reg decl

 outReg sum, 10 // parenthesis / ; are optional

© Esencia Technologies Inc. 31

PLP – summary

• Brings all the text processing capabilities of Perl
to your design cycle

• Encourages reuse and brevity in the code. Per
language libraries being developed

 plp/c/*

 plp/v/*

• Targets clean syntax so code can look close to
the original language

• The intent is to allow you to easily augment your
original language in a simple way

• Check-out examples included in the distribution
of further use

 plp/examples/*

© Esencia Technologies Inc. 32

SmGen – State Machine Generation

• Translates sequential code into FSM's

• Complex FSMs are still required when full pipelining
is an overkill in many designs

• Typical Flow:

• Write behavioral code within Smg.. blocks

• Pre-process with PLP if needed (assumed here)

• Generate output through smgen choosing

• Behavioral output (basically same as input but
with thin wrapper code)

• FSM 1-block style (synthesizable)

• FMS 2-block style (synthesizable)

• Process with PLP one last time as smgen may
generate directives that need PLP (auto expansion)

© Esencia Technologies Inc. 33

SmGen – input structure

 SmgBegin

 flop_declaration (flop_declaration)*

 [SmgCombo

 combo_declaration (combo_declaration)*]

 SmgForever

 ...

 SmgEnd

 flop_declaration := [local] [reg] [width_declaration] var_name [<= reset_value] ;

 combo_declaration := [local] [reg] [width_declaration] var_name [= init_value] ;

 width_declaration := <empty> | [integer_expr : integer_expr]

© Esencia Technologies Inc. 34

SmGen – example

SmgBegin

 reg [31:0] x <= 1’b1;

 reg [7:0] cnt <= 4'b0;

SmgForever

 while (cnt != 4'b1111) begin // wait a number of clocks

 cnt <= cnt + 1'b1;

 `tick;

 end

 `tick;

 while (~ack) `tick; // wait for ack to arrive

 x <= 0; // drive a signal

 while (cnt != 4'b0000) begin // wait some more clocks

 cnt <= cnt + -1'b1;

 `tick;

 end

 `tick;

 while (~ack) `tick; // wait for another ack

 x <= 1;

SmgEnd

© Esencia Technologies Inc. 35

SmGen – example notes

• Flop declaration section defines reset value and
which entities have its output registered

• Clock name/polarity, reset name/polarity are
command line options to SmGen

• `tick represents a clock event but allows
abstracting clock name/polarity at this level. It also
implies “go back to the reset condition if reset is
asserted”

• SmgForever block can use sequential code. This
statement inserts an infinite loop around your code:

while(1) begin

 `tick

 .. code between SmgForever/SmgEnd here...

end

© Esencia Technologies Inc. 36

SmGen – invocation

• Behavioral output

 > smgen sample.vb -beh > sample.v

• 1-block FSM style (use this one by default)

 > smgen sample.vb > sample.v

• 2-block FSM style (more flexible control)

 > smgen sample.vb -sep > sample.v

• We'll use .vb in the examples for code containing
this type of Behavioral Verilog

© Esencia Technologies Inc. 37

SmGen – invocation
State Machine generator

Usage: smgen [options] input_file > output_file

 Where options is any combination of the following:

 -[no]sync Specifies sync reset vs. asynchronous (default async)

 -[no]high Specifies active high reset (default low)

 -[no]fall Specifies falling edge clk as active (def rising)

 -beh Output is behavioral (default is RTL 1-block FSM)

 -sep if !beh, Output is RTL 2-block FSM style

 -help Display this message

© Esencia Technologies Inc. 38

SmGen – command line options (2)

 Following options require an extra parameter

 (s=string, n=integer number)

 -prefix s Prefix for state names (def ST)

 -clk s Clock name (def clk)

 -rst s Reset name (def rst_n)

 -name s Used to derive generated block name etc. (def behav)

 -state s Name of state variable generated (def state)

 -dbg n Set debug level (def 0)

© Esencia Technologies Inc. 39

SmGen – Example of invocation

• 1-block FSM output, synchronous reset active high

 > smgen sample.vb –high –sync > sample.v

• 2-block FSM with explicit reset/clock names

 > smgen sample.vb -sep –clk clock –reset resetN >
sample.v

© Esencia Technologies Inc. 40

SmGen – Example - Arbiter

See http://www.asic-world.com/tidbits/verilog_fsm.html

for full blown FSM verilog code and more thorough
description. This is the SmGen version:

 1: //==

 2: // This is FSM generation demo using SmGen

 3: // File Name : arb.vb.plp

 4: //===

 5: module fsm_using_smgen (/*AUTOARG*/);

 6:

 7: //=============Input Ports=============================

 8: input clock,reset,req_0,req_1;

 9: //=============Output Ports===========================

 10: output gnt_0,gnt_1;

 11:

 12: @MacroDef(expect, expr);

 13: `tick; while (! (${expr})) `tick;

 14: @MacroEnd;

http://www.asic-world.com/tidbits/verilog_fsm.html

© Esencia Technologies Inc. 41

SmGen – Example - Arbiter

 15: SmgBegin
 16: reg gnt_0 <= 0;

 17: reg gnt_1 <= 0;

 18: SmgForever

 19: if (req_0 == 1'b1) begin

 20: gnt_0 <= 1;

 21: expect(req_0 == 1'b0);

 22: gnt_0 <= 0;

 23: end else if (req_1 == 1'b1) begin

 24: gnt_1 <= 1;

 25: expect(req_1 == 1'b0);

 26: gnt_1 <= 0;

 27: end

 28: SmgEnd

 29:

 30: endmodule // End of Module arbiter

© Esencia Technologies Inc. 42

SmGen – Example2 – Motor controller

• See
http://www.cse.nd.edu/courses/cse20221/www/handouts/L17_FS

M%20Design%20Example%20with%20Verilog.pdf

for a detailed description of the problem and full blown

FSM Verilog code solution

 NAME TYPE FUNCTION
activate input starts the door to go up/down or stops the motion

up_limit input indicates maximum upward travel

dn_limit input indicates maximum downward travel

motor_up output Causes motor to run in direction to raise the door

motor_dn output Causes motor to run in direction to lower door

reset input Force the controller to enter into the initial state

http://www.cse.nd.edu/courses/cse20221/www/handouts/L17_FS

© Esencia Technologies Inc. 43

SmGen – Example2 – Motor controller
SmGen version:

 1: module DoorOpener(/*AUTOARG*/);

 2: input clk, activate, up_limint, dn_limit, reset;

 3: output motor_up, motor_dn;

 4:

 5: @MacroDef(expect, expr);

 6: `tick; while (!(${expr})) `tick;

 7: @MacroEnd;

 8:

 9: SmgBegin

 10: reg motor_up <= 0;

 11: reg motor_dn <= 0;

 12: SmgForever

 13: if (up_limit) begin

 14: expect(activate);

 15: motor_dn <= 1;

 16: expect(dn_limit);

 17: motor_dn <= 0;

 18: end

 19: else begin

 20: expect(acivate);

 21: motor_up <= 1;

 22: expect(up_limit);

 23: motor_up <= 0;

 24: end

 25: SmgEnd

 26: endmodule

© Esencia Technologies Inc. 44

SmGen – Example2 – Motor controller

• Note expect() PLP macro is so usual that
deserves a place in v/plp_lib.pl to be automatically
available

• Code is much more concise (26 vs. 73 lines)

• Complex FSM's become a piece of cake!

© Esencia Technologies Inc. 45

SmGen – Summary

• FSMs are too low level and error prone

• More code means more chances for bugs

• SmGen code is much more concise (2.5-3x)

• More readable and natural once you get used to
this type of representation.

• Closer to the original algorithm and less error prone

• Check-out more eamples under:

 smgen/examples/*

© Esencia Technologies Inc. 46

Licensing and support

 LGPL licensing

 Your HW is yours

 Your SW is yours

 Your extension libraries are yours, but we
encourage you to share

 If you change the tools themselves, changes
should be made available to others

 estool@esenciatech.com for questions/bugs

