Plastic Product Design with NX

Plastic Product Design with NX

- 1. Introduction to plastic
- 2. Plastics Materials An Overview
 - Classification
 - Thermoplastics
 - Thermosets Crystalline
 - Amorphous, and Liquid
 - Crystalline Polymers
 - Copolymers
 - Alloys
 - Elastomers
 - Additives
 - Reinforcements and Fillers
- 3. Physical, Mechanical, Thermal, Electrical properties
- 4. Environmental Considerations
- 5. Structural Analysis

- 6. Design Considerations for Injection-Molded Parts
 - Injection Molding Process
 - Design Strategy
 - Efficient and Functional Design
 - Material Selection
 - Nominal Wall Thickness
 - Normal Ranges of Wall Thickness
 - Structural Requirements of the Nominal Wall
 - Insulation Characteristics of the Nominal Wall
 - Impact Response of the Nominal Wall
 - Draft
 - Structural Reinforcement
 - Ribs
 - Other Geometric Reinforcement
 - Bosses
 - Coring
 - Fillets and Radii
 - Undercuts
- 7. Checking different problems in tooling and solutions
- 8. Basic Tooling considerations: Lifters-Undercut & Draft analysis
- 9. Sharp edges on tools & parts

PRODUCT DESIGN WITH NX:

- 1. Feasibility study of surface with environment
- 2. 'A' surface analysis
 - Visual Analysis
 - Visually Analysis
 - Joint & tangency Analysis
 - Draft Analysis/Slope Analysis
 - Curvature Analysis (Radius Analysis)
 - Develop length & feasibility checking
 - Section study
 - Thickness mapping
- 3. Visible Surface Design procedure
- 4. Non visible surface design procedure (B-Surface)
- 5. Tooling Surface Design
- 6. Sample product study

Injection Mould Design with NX

- 1. Introduction to plastic
- 2. Plastics Materials An Overview
 - Classification,
 - Thermoplastics
 - Thermosets Crystalline
 - Amorphous and Liquid
 - Crystalline Polymers
 - Copolymers, Alloys, Elastomers, Additives, Reinforcements, and Fillers.
- 3. Physical, Mechanical, Thermal, Electrical properties
- 4. Injection Molding process
- 5. Basic understanding of Core, Cavity, Runner, gate, sprue, Shot capacity, Plasticizing capacity, Injection velocity, Injection pressure, purging, Daylight.
- 6. Calculation of No. of cavities

- 7. Shrinkage
- 8. Feed System:
 - Sprue Design
 - Runner design & different runner layouts
 - Type of Gates
- 9. Mold Layout explanation
- 10. Ejection systems & different types of ejectors
- 11. Undercut molding
- 12. Design concept of Two Plate Mold
- 13. Design concept of Split Mold & actuation techniques
- 14. Design concept of Side core Side cavity mold & actuation techniques
- 15. Design concept of under feed & Runner less Mold
- 16. Design concept of three plate Mold & actuation techniques

17. Design concept of Unscrewing Mold & actuation techniques

Implementation in NX

- 1. Component Analysis
- 2. Molded part Validation
- 3. Project Initialization
- 4. Mold part shrinkage
- 5. Cavity lay-out
- 6. Work piece & Core cavity extraction
- 7. Mold Parting
 - Region Analysis
 - Patching
 - How to define core & cavity region
 - Design parting surface
 - Edit parting surface

•	Core	&	Cavity	/ Def	inition
---	------	---	--------	-------	---------

8. Mold Tools For pat	tching
-----------------------	--------

- 9. Mold Base selection.
- 10. Standard part including Register ring, sprue bush, ejector pins, retaining pins, Guide pillar & guide bush. Etc
- 11. Slider & lifter design
- 12. Gate & runner Tools
- 13. Cooling systems
- 14. Electrode creation
- 15. Bill of Material
- 16. Project work