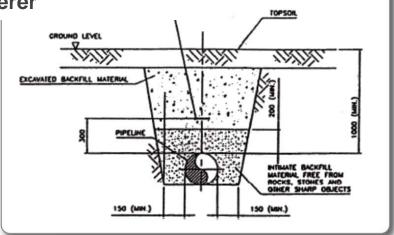


Pipelines as Preferential Pathways:
Use of Materials for Construction Which Can
Seal or Treat Potential Leaks or Voids

www.aquablok.com

Presentation Outline

- Problem Statement Preferential Pathways
- Introduction to AquaBlok / AquaGate
- Overview of applications
- Summary/Questions/Discussion

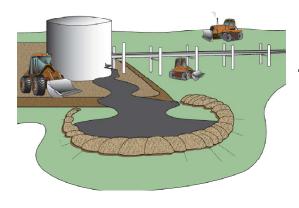


Problem – Preferential Pathways

PREFERENTIAL PATHWAYS; UNDERGROUND PIPES AND UTILITY LINES CAN BE CONDUITS FOR THE MIGRATION OF CONTAMINANTS

Written by Stephen R. Henshaw, P.G., President & CEO, EnviroForensics As seen in the March 2013 issue of Cleaner & Launderer

Typical Pipeline Construction



Preferential Flow Pathways: Conduits for Groundwater Contamination by Lisa Weatherford Tuesday, February 18th, 2014

"New research by the U.S. Geological Survey USGS) concerning the vulnerability of our nation's underground drinking water supplies offers a better understanding of how contamination can occur and what we can do to stop it. Yesterday we reviewed three basic measures for drinking water analysis and today we will look at the importance of preferential flow pathways contribute to groundwater contamination."

Problem – Preferential Pathways

Spill Prevention, Control, and Countermeasure (SPCC)

SPCC rules are intended to prevent a discharge of oil into navigable waters or adjoining shorelines.

Low-Permeability Materials for Flood Control

AquaBlok Technology Platform

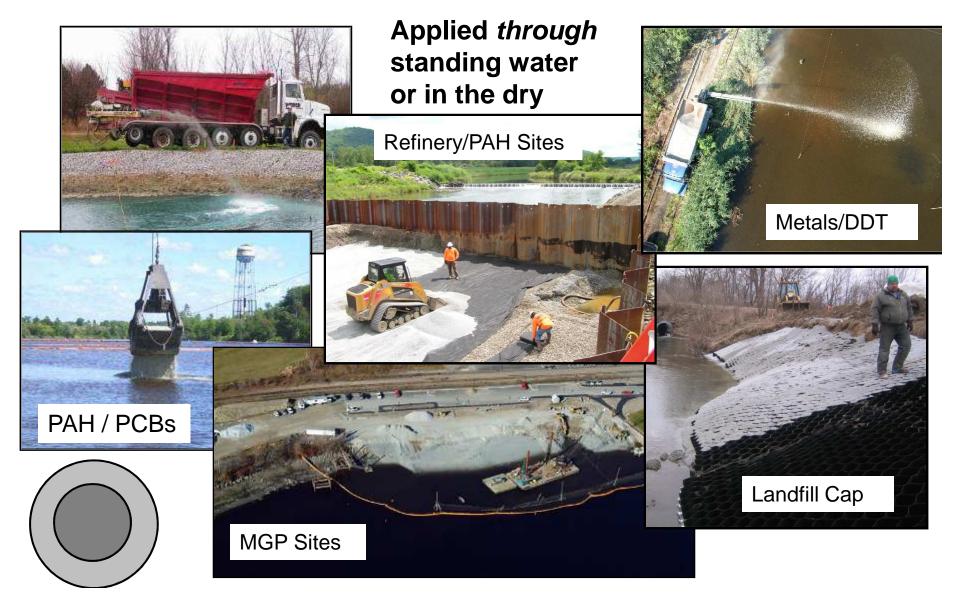
Composite Particle Coating Approach:

A Delivery Method for Uniform Placement of Small

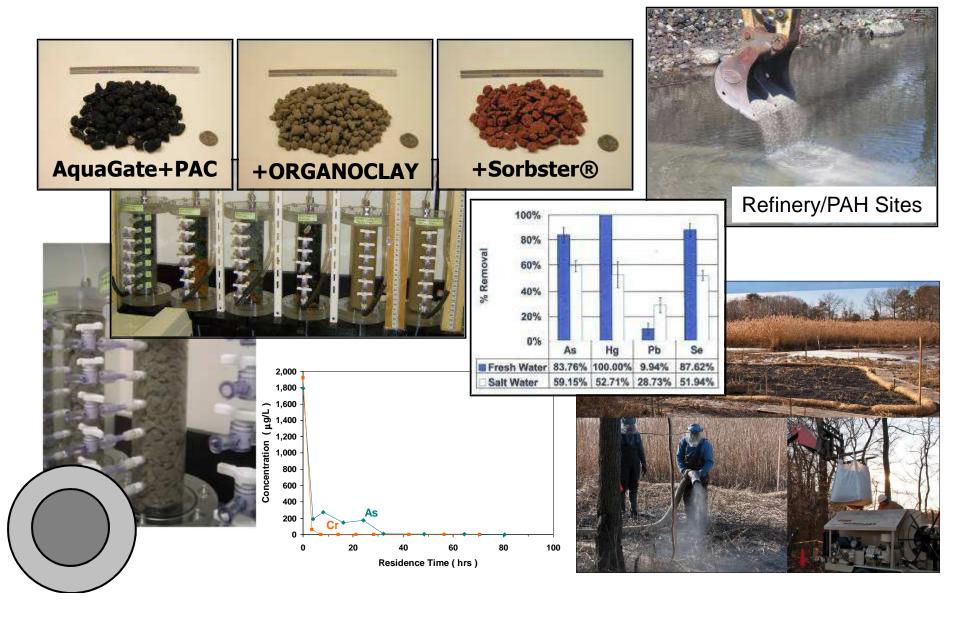
Quantities of High-Value Materials

- Uniform Distribution
- Flexible/Rapid Installation (Low Cost)
- Custom Blends for Targeted Designs
- Can Vary/Control Permeability
- Placement through Deep Water
- Marine & Freshwater Blends

powder coating


aggregate core

AquaGate+ "composite particle"



Low-Permeability for Sealing and Chemical Isolation Barriers

Aquagate Permeable Materials for In-Situ Treatment & Remediation Applications

Adsorptive Material – Petroleum Based Contaminants

Aquagate, organoclayTM

REMEDIATION TECHNOLOGIES
Technical Data

Aggregate: Nominal AASHTO #8 (1/4-3/8") or customsized to meet project-specific need * Limestone or noncalcareous substitute, as deemed project-appropriate

Binder: Cellulosic polymer

Permeability: 1×10^{-2} to 1×10^{-5} cm/sec

Dry Bulk Density: 65 – 85 lbs/ft³

Moisture: 10 – 20% (maximum)

ORGANOCLAY® P ORGANIC ADSORPTION MEDIA (POWDER GRADE)

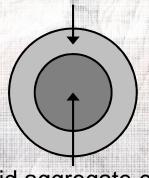
Product Description:

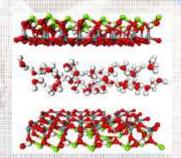
Organoclay P is a proprietary powder adsorption media effective in removing oils, greases other non-aqueous phase liquids (NAPL) and other dissolved high molecular weight/low solubility organic contaminants.

Characteristics:

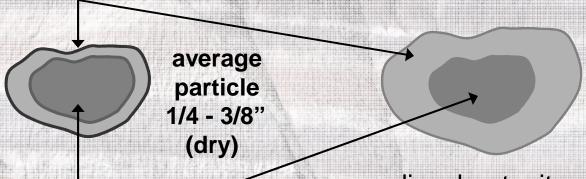
- Hydrophobic; will not absorb water or swell when wetted
- Non-toxic to marine and benthic organisms
- High adsorption capacity of oils, greases and other NAPL
- Demonstrates noncompetitive sorption—can sorb multiple contaminants

Properties:


Property	Value	Test Method
Particle Size	70% Min. passing 200 mesh sieve	CETCO Test Method
Bulk Density	50-54 lbs/ft ³	CETCO Test Method
Oil Adsorption Capacity	0.5 lb/lb Min.	CETCO Test Method
Quaternary Amine Content	25% Min.	CETCO Test Method


BENTONITE: 101

Swell + Compaction = Low Permeability


powdered bentonite coating

- Naturally Occurring
- High Swell

solid aggregate core

sodium bentonite and binder expands when hydrated

1 min post hydration

time

AquaBlok

24 hr post hydration

Extreme low-permeability (5x10⁻⁸ cm/sec) result of consistent swell <u>and</u> self-compaction

Values & Technical Advantages

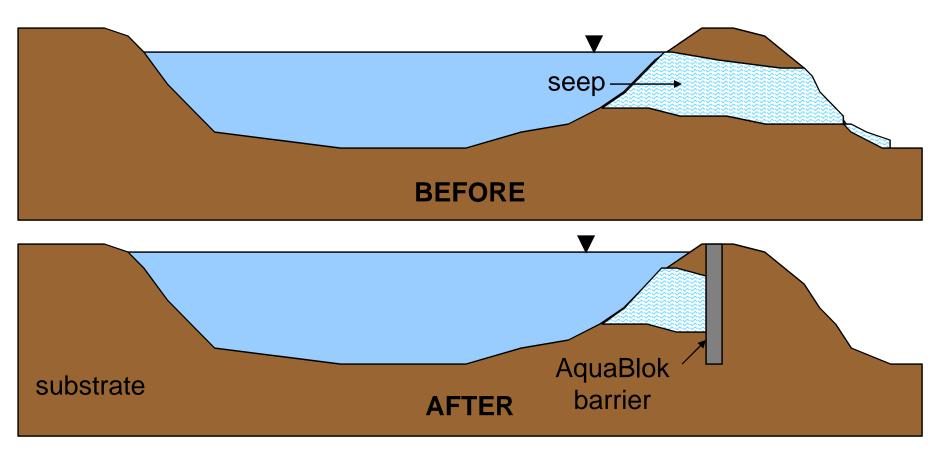
- Offers Targeted Placement can be placed through or directly into flowing water - will not drift or dissipate, minimal dusting
- Easy to Handle/Install like stone aggregate
 - install using standard construction equipment
 - no field blending/mixing required
 - no mechanical compaction the material required
- Durable
 - Self-healing (even through drying and re-hydration)
 - Compressive strength (due to internal aggregate core)
- Safety no trench boxes needed

Examples of Applications: Ponds, Basins & Liner Repair

AquaBlok

Dams, Berms & Levees

Vertical Barrier Trench Construction

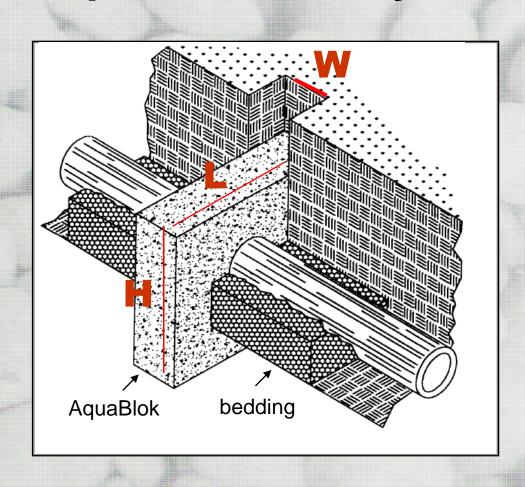

Application Example

Fort Smith, AR - Water Treatment Detention Basin

Application Example

Vertical Barrier Trench

Application Examples

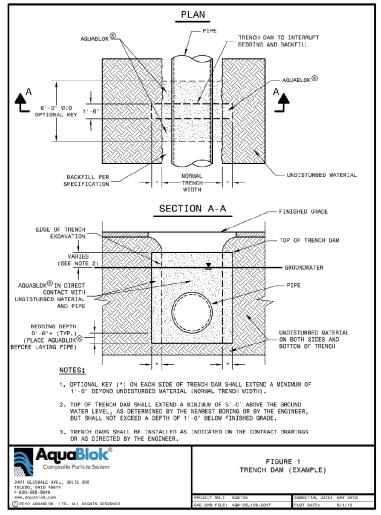

Preferential Pathway - Flow Along Pipes

Anti-Seep Collar – Flowing Water

Application Examples

Pipeline & Utility-related Applications

Trench Dams/Anti-Seep Collars

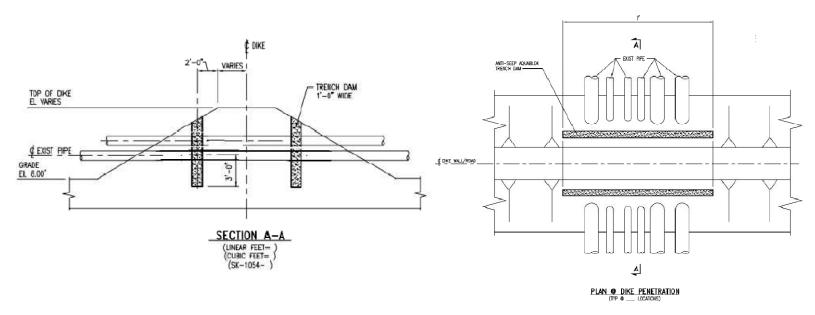

Design/Installation of Anti-Seep Collar

Elimination of Pipe Bedding as Preferential Pathway

Installation: Anti-Seep Collar/Berm Stability

Location: West Norriton, Pennsylvania Setting: Retention/Detention Basin

Right: AquaBlok placement from a bulk bag by excavator — note discharge snout directing product into trench cut perpendicular to the overflow discharge pipe.



Left: Mini excavator used (narrow bucket) to create trench for AquaBlok placement. Right: Completed antiseep collar around pipe.

Trench Dam Construction Considerations -

- **1. Width of Dam** 6-inch thickness will provide hydraulic conductivity of approximately 5x10⁻⁸ in hydrated state.
- 2. **Bedding Depth / Distance Under Pipes** Typically recommended to be a minimum of 6-inch.
- 3. Trench Width Where collars are keyed into surrounding soils, it is recommended that AquaBlok extend a minimum of 1-ft beyond undisturbed material.

Application Examples

Preferential Pathway - Flow Along Pipes

Setting / Purpose: Pipeline cap and Anti-Seep Collar. Objective was to cut off site contaminant pathways during excavation and installation of natural gas pipeline.

Installation Notes:

- Coffer Dam approach used to isolate pipe trench from surrounding soil
- Continuous measurement of AquaBlok performed to insure design thickness of cap
- AquaBlok placed in lifts with each layer hydrated to insure hydraulic conductivity
- No additional anti-seep collars were placed along pipeline

Application Examples

Berms, Banks & Slope Stability

Cellular Confinement/Slope Protection

Dike Wall / Berm Repairs – Alternative Construction Approach

Handling/Installation Factors

Handling / Installation Advantages:

- Place directly through water column
- Self-compacts on bottom hydration fills voids to create stable erosion resistant cap layer
- Conventional construction equipment used for placement
- Easy to confirm uniformity of installation (core samples)
- Handles like sand or gravel
- Can be manufactured on-site for significant cost savings

better Bentonite

www.aquablok.com