

Pile Design to BS EN 1997-1:2004 (EC7) and the National Annex

Chris Raison BEng MSc CEng MICE MASCE Raison Foster Associates

 •Tel: 024 7641 0338
 •Mob: 07974 005990
 •E-Mail: chris@raisonfoster.co.uk
 •Address: 7 Riverford Croft Coventry CV4 7HB
 •Web Site: www.raisonfosterassociates.co.uk

UNIVERSITY^{OF} BIRMINGHAM

Geotechnical Design to EC7 13 January 2017

What am I going to talk about?

- Concentrate on Practical Applications
- Brief Review of theTraditional Design Approach
- What is Different in EC7?
- EC7 Geotechnical Design: Part 1: Chapter 7 Piles
- UK National Annex: Model Factor
- EC7 Design Method and Partial Factors

What am I going to talk about?

- Other Aspects of Pile Design
 - Negative Shaft Friction
 - Horizontal Load
 - Structural Design
- Worked Example for a Site In Suffolk
- Conclusions

Some History & Background

1974-1975:

First proposal to develop international codes

1990:

CEN (European Committee for Standardisation) set up

2004:

BS EN 1997-1 (Eurocode 7, Part 1) and its UK National Annex were published

Some History & Background

 Other Eurocodes important for piling: BS EN 1997-1 – Geotechnical Design BS EN 1990 – Basis of Structural Design BS EN 1991-1-1 – Actions on Structures BS EN 1992-1-1 – Design of Concrete Structures Plus Execution Codes

Some History & Background

• April 2010:

Most geotechnical standards and Codes of Practice were withdrawn

Eurocodes became the current standards

The use of Eurocodes mandatory on public sector work

• October 2013:

Part A of Building Regulations updated to refer to Eurocodes (England)

Some History & Background

- June 2015:

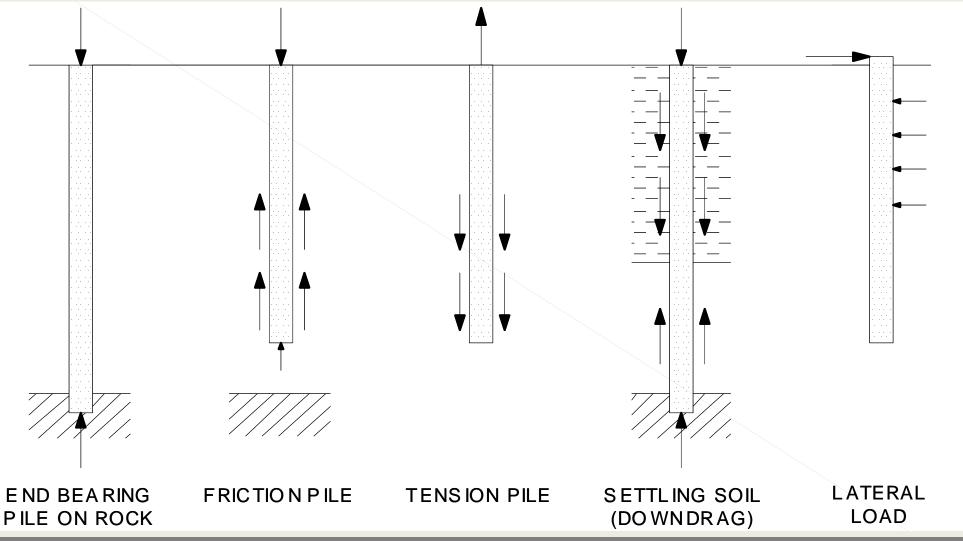
British Standards re-issued:
BS8004 – Foundations
BS8002 – Retaining Structures
BS8081 – Grouted Anchors
Now fully compliant with Eurocodes
[It was not originally intended to re-write these standards!]

Some History & Background

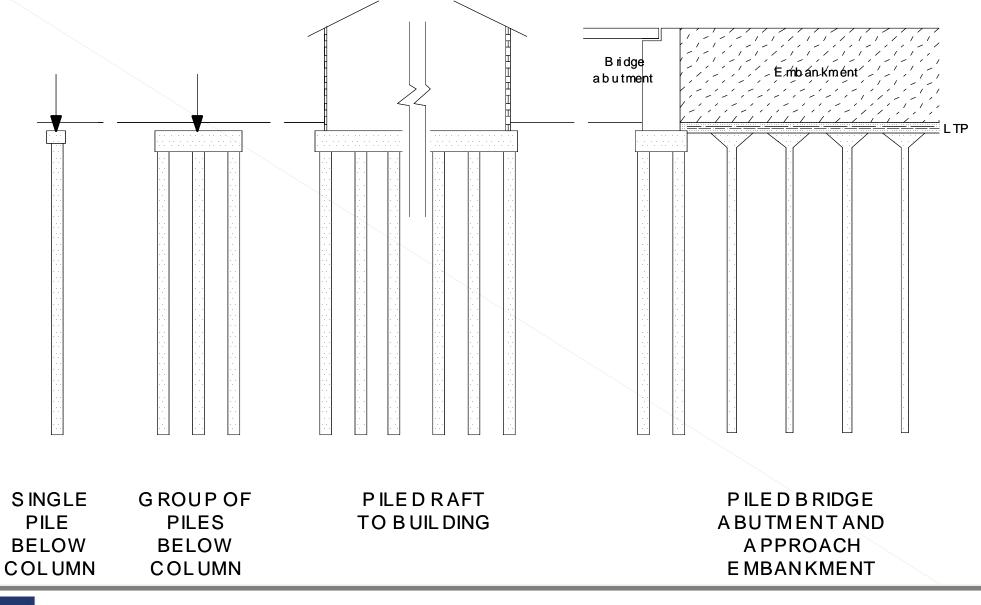
• Today:

All public sector and most private sector construction schemes are designed to Eurocodes

The UK piling industry has taken on board the use of Eurocodes but with some reluctance



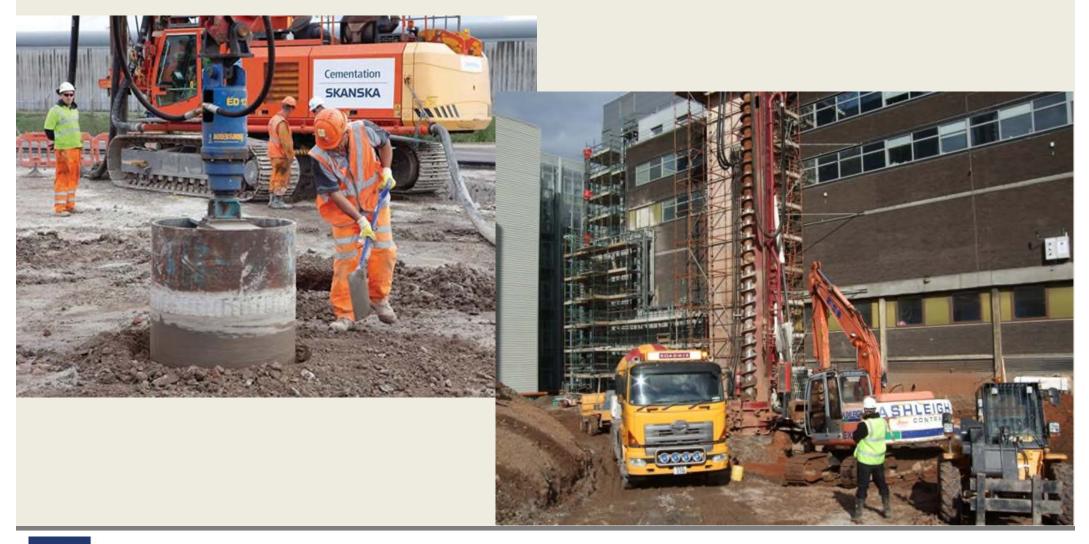
Behaviour of Piles



UNIVERSITY^{OF} BIRMINGHAM

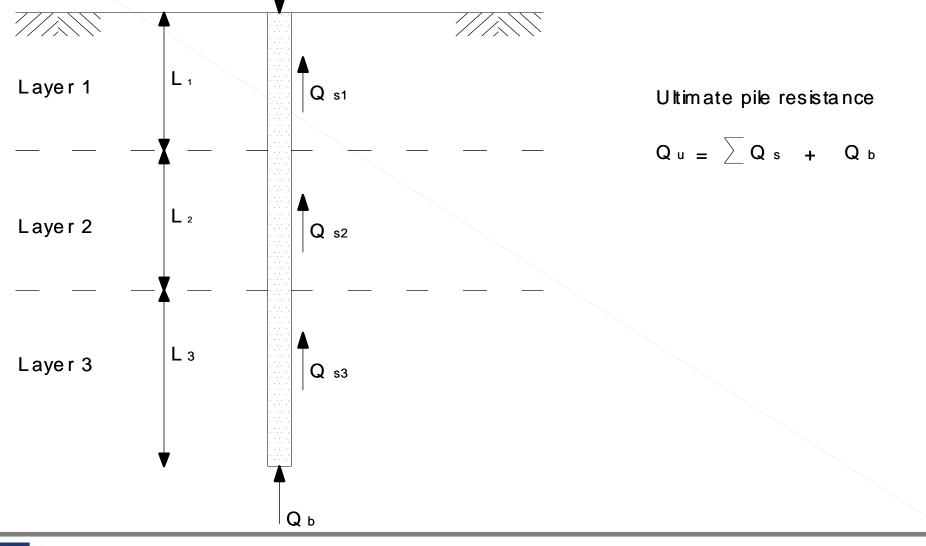
Geotechnical Design to EC7 13 January 2017

Piling Methods – Driven



Piling Methods – Rotary Bored or CFA

- In the past, piles were driven to a refusal
- Self-evident that the pile resistance is proportional to the drive energy
- Every driven pile has some sort of test drive blows
- But this does not work for bored or drilled piles as there is no feedback from installation


- Static load testing is very attractive for design
- But testing can be uneconomic and time consuming:
 - Complex variable ground conditions
 - Variable loading
 - Difficult to deal with NSF
 - Difficult to deal with changes to vertical stress
- Pile designers therefore looked at calculation based on theoretical soil mechanics

- The usual approach is to divide the ground into layers and assign ground parameters to each layer
- For bearing capacity, this is just φ', c', Cu and UCS
- From these we get Nc, Nγ and Nq for bearing capacity

Traditional Pile Design to BS 8004

Basic calculation method:

Ultimate Capacity $Q_{ult} = Q_s + Q_b$

Shaft Capacity $Q_s = q_s A_s$

Base Capacity $Q_b = q_b A_b$

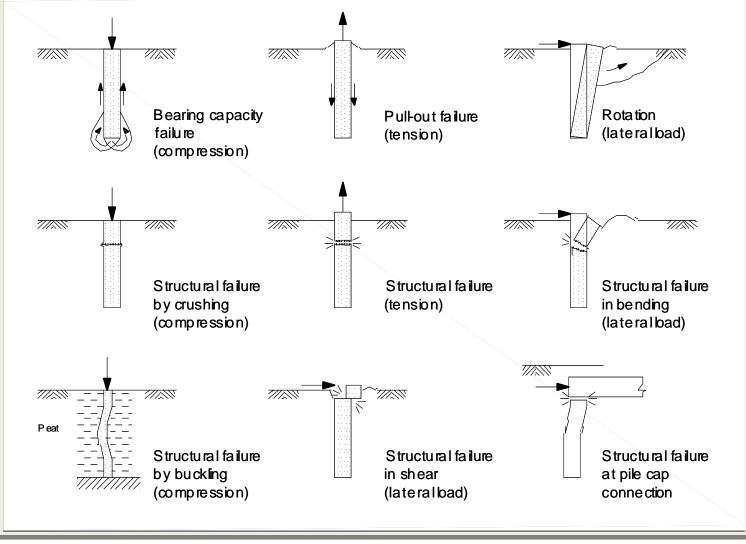
Traditional Pile Design to BS 8004

- Factor of Safety varied between 2.0 and 3.0 for compression loads and ≥ 3.0 for tension
- Actual FoS dependent on quality of GI, prior knowledge of ground conditions and whether preliminary non-working load tests or contract proof load tests were carried out

Applied Load $\leq \frac{\text{Ultimate Capacity}}{\text{FoS}}$

Pile Design to EC7

- So what is different?
- EC7 method is a Limit State Design method:
 - Ultimate Limit State (ULS)
 - States associated with collapse, structural failure, excessive deformation or loss of stability of the whole of the structure or any part of it
 - Serviceability Limit State (SLS)
 - States that correspond to conditions beyond which specified service requirements are no longer met



Some Ultimate Limit States for Piles

UNIVERSITY^{OF} BIRMINGHAM

Geotechnical Design to EC7 13 January 2017

Some Serviceability Limit States

- Settlement
- Tilting
- Cracking
- Uneven floor settlement

EC7 Limit States

- EC7 Adopts five distinct ultimate limit states:
 - EQU Loss of equilibrium (tilt or rotation)
 - STR Internal failure or excessive deformation [Strength of structural material is significant]
 - GEO Failure or excessive deformation of the ground [Strength of soil or rock is significant]
 - UPL Uplift or buoyancy
 - HYD Hydraulic heave, erosion or piping
- STR and GEO most important for pile design

EC7 Design Approach

- Separation of ULS and SLS condition
- Permanent and variable actions
- Favourable and unfavourable actions
- Use of characteristic ground properties
- Use of several partial factors
- Partial factors avoid failure but not necessarily movement

EC7 Design Approach

- Basic inequality to be checked:

 $E_d \leq R_d$

- E_d is the design value of the effect of all the actions
- R_d is the design value of the corresponding resistance of the ground or structure
- For pile design, this inequality compares the design action F_d (usually load) against the design resistance R_d

 $F_d \leq R_d$

EC7 Design Approach

- Design values of Ed, Rd are obtained by applying sets of partial factors to their characteristic values, Ek, Rk
- EC7 allows three design approaches which use different partial factor sets
- Each country specifies its design approach in its NA
 - DA1: UK, Portugal
 - DA2: France, Germany, Poland, Spain
 - DA3: Denmark & Netherlands
- Some countries allow more than one approach (Ireland, Italy)

UK National Annex

- UK has adopted Design Approach 1 DA1
- This requires two calculations:
 - A1 + R1 + M1 Combination 1
 - R4 + A2 + M1/M2 Combination 2

(Use M1 for calculating resistances and M2 for unfavourable actions such as NSF)

- For Combination 1, partial factors > 1.0 are applied to the actions only - this does not usually control pile length
- For Combination 2, partial factors > 1.0 are applied to resistances with smaller factors applied to variable actions

Design Actions F_d

• F_d is the design action

 $F_d = \gamma_F F_{rep}$

F_{rep} is the representative action (usually load)

$$F_{\rm rep} = G_k + \psi Q_k + A_k$$

 $\psi~=~1.0$ for leading action or $~=~\psi_0,\psi_1$ or ψ_2

- G_k is the characteristic permanent action
- Q_k is the characteristic variable action
- A_k is the characteristic accidental action
- ψ is the factor for combination of variable actions

UNIVERSITY^{OF} BIRMINGHAM

Geotechnical Design to EC7 13 January 2017

Effect of Actions E_d

• E_d is the design value of the effect of all the actions:

$$E_{d} = E \left\{ \gamma_{F} F_{rep} \quad \frac{X_{k}}{\gamma_{m}} \quad a_{d} \right\}$$

- F_{rep} is the representative action (usually load)
- X_k is the characteristic value of the material property
- a_d is the design value of a geometrical property
- γ_F and γ_m are relevant partial factors

Effect of Actions E_d

Design values:

$$F_d = \gamma_F F_{rep}$$
 $X_d = \frac{X_k}{\gamma_m}$ $a_d = a_{nom} \mp \Delta a$

- F_{rep} is the representative action (usually load)
- X_k is the characteristic value of the material property
- a_d is the design value of a geometrical property
- γ_F and γ_m are relevant partial factors

UK National Annex

- Local requirements specified in the UK National Annex
- In the UK this involves two separate calculations with different combinations of partial factors:
 - Combination 1: Partial factors applied to actions; Ground strengths and resistances are not factored
 - Combination 2: Partial factors applied to ground strengths, resistances and variable actions; Permanent actions are unfactored
- <u>NOTE</u> for pile design, we factor ground resistances and not ground strengths

Partial Factors on Actions

Action		UK NA Factor Set		EC7 Factor Set	
		A1	A2	A1	A2
Permanent	Unfavourable	1.35	1.0	1.35	1.0
	Favourable	1.0	1.0	1.0	1.0
Variable	Unfavourable	1.5	1.3	1.5	1.3
	Favourable	0	0	0	0

Notes:

- 1. Factors can be applied to Actions or the Effect of Actions.
- 2. Factors given above are for buildings which remain unchanged from EC7 values
- 3. Combination factors for actions that can exist simultaneously are given in the UK NA to BS EN 1990.
- 4. There are a wider range of factors for bridges.

Pile Design to EC7

- Static load tests
- Ground tests (using direct correlations), e.g. CPT or PMT
- Dynamic impact tests, e.g. CAPWAP
- Statistical corrections required to account for number of test results (correlation factor)
- EC7 concentrates on pile design by testing.
- There is little reference to design by calculation the normal UK approach!

Pile Design Methods Covered by EC7

Design method	Information used	Constraints			
Testing	Static load tests	Validity must be demonstrated by calculation or other means			
	Ground test results				
Dynamic load tests		Validity must be demonstrated by static load tests in comparable			
Calculation	Empirical or analytical calculation methods	situations			
Observation	Observed performance of comparable piled foundations	Must be supported by the results of site investigation and ground testing			

Pile Design to EC7

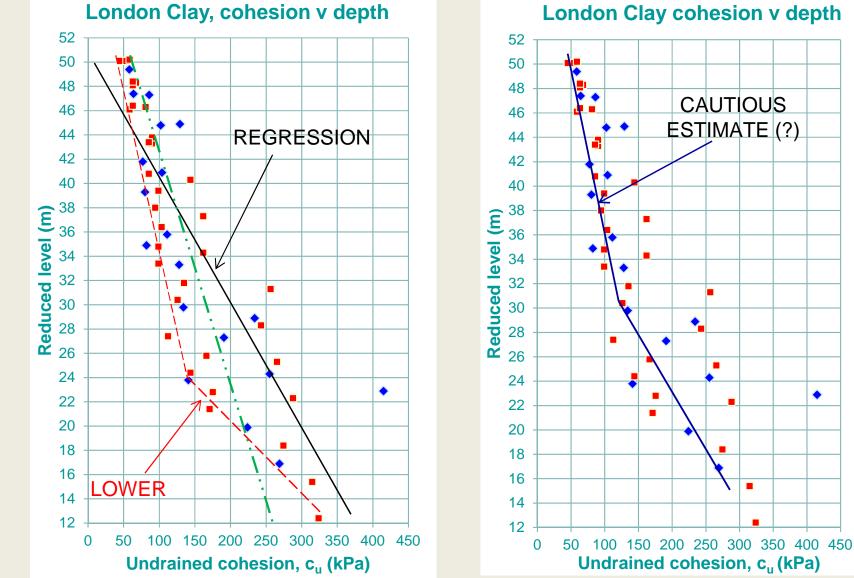
- The most common method for design method in the UK is design by calculation
- Pile load testing is used mostly for verification of the design
- Ground tests are used to select soil properties

Calculation Based on Soil Parameters

- Design can be based on measured φ', c', Cu and UCS usually from laboratory testing of undisturbed samples
- More common to use empirical relationships between insitu CPT, SPT, PMT and other measurements to estimate these parameters
- We can measure G, Eu and E' in the laboratory, but again it is more common to use empirical relationships

Ground Characterisation

- EC7 says a lot about determining characteristic or representative soil properties
- Cautious estimate affecting the occurrence of the limit state
 - Similar to BS 8002 and CIRIA 104
 - Most engineers already adopt cautious estimates
 - Engineering judgement required
 - Statistics can be applied, but is difficult because of the usual limited number of samples and test data
 - For pile design, not a great deal of difference between soil parameters for EC7 design compared to BS 8004 design



٠

London Clay cohesion v depth

Raison Foster Associates Geotechnical Design and Consulting

Calculation Based on Soil Parameters

- Design is based on fundamental geotechnical ground parameters such as c', φ', G, E', but could also include Cu, UCS and Eu for clays and rocks
- These extend into derived parameters such as Nc, Nγ and Nq for bearing capacity, Kq and Kc factors for horizontal loads on piles or Ka, Kac, Kp and Kpc for ground retention
- But we also need some empirical factors such as Ks for granular, α for clay, β for Chalk

So how do we estimate pile shaft friction and end bearing from ground parameters?

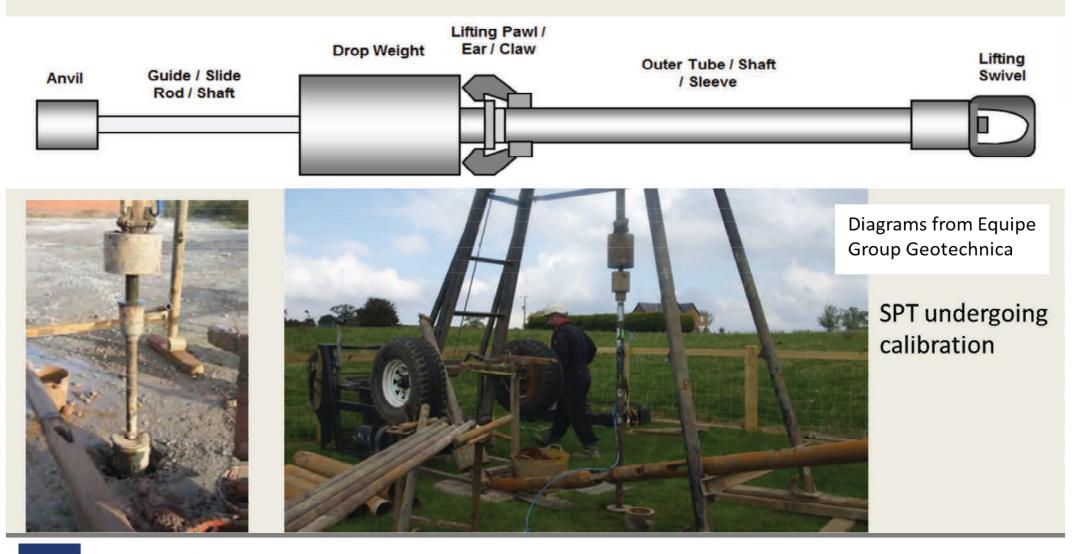
Effective Stress Approach

Granular Soils

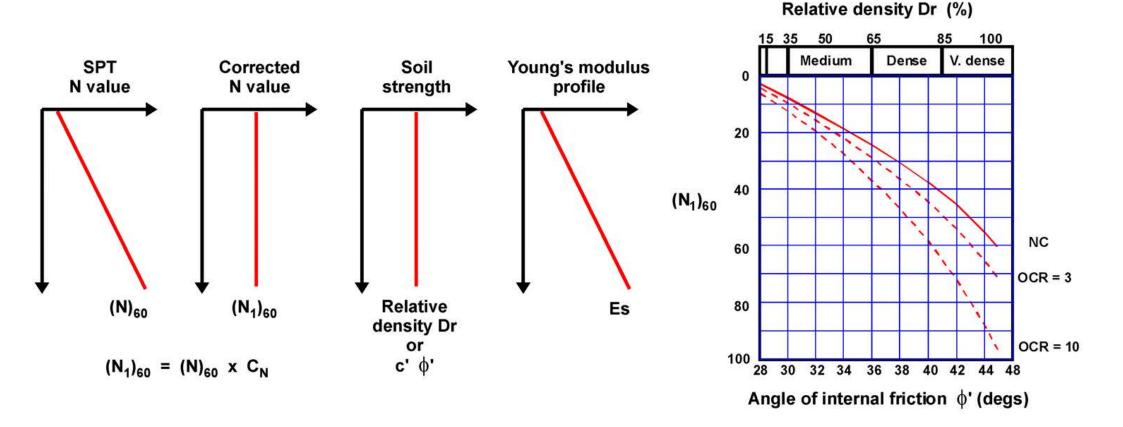
 $q_s = \ \sigma'_v \ k_s \ tan \, \delta$

 Total Stress Approach Cohesive or Rock (Weak Mudstone)

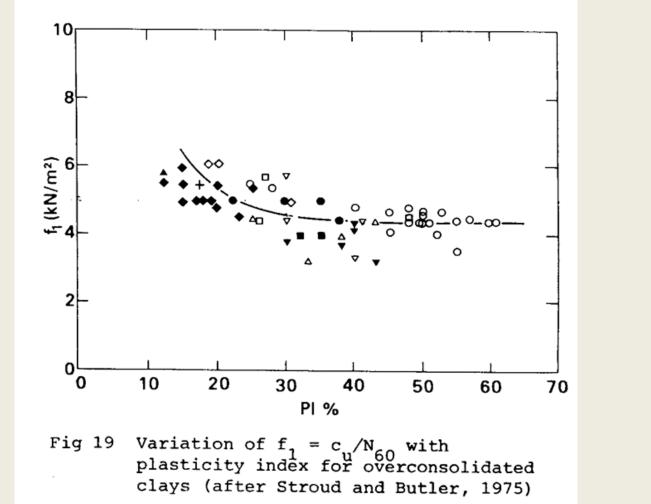
 $q_s = \alpha c_u$



Standard Penetration Test – Granular Soils



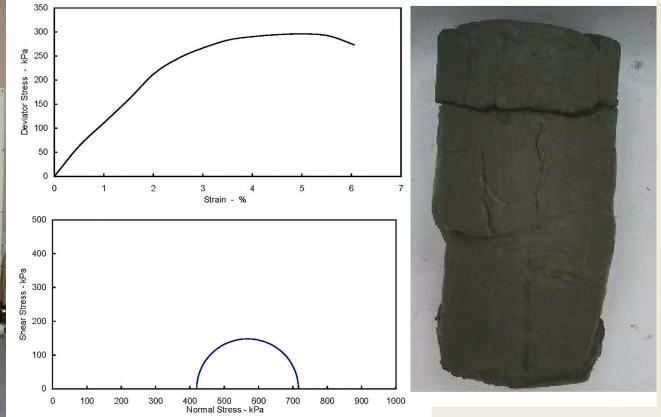
Standard Penetration Test – Granular Soils



Standard Penetration Test – Clay Soils

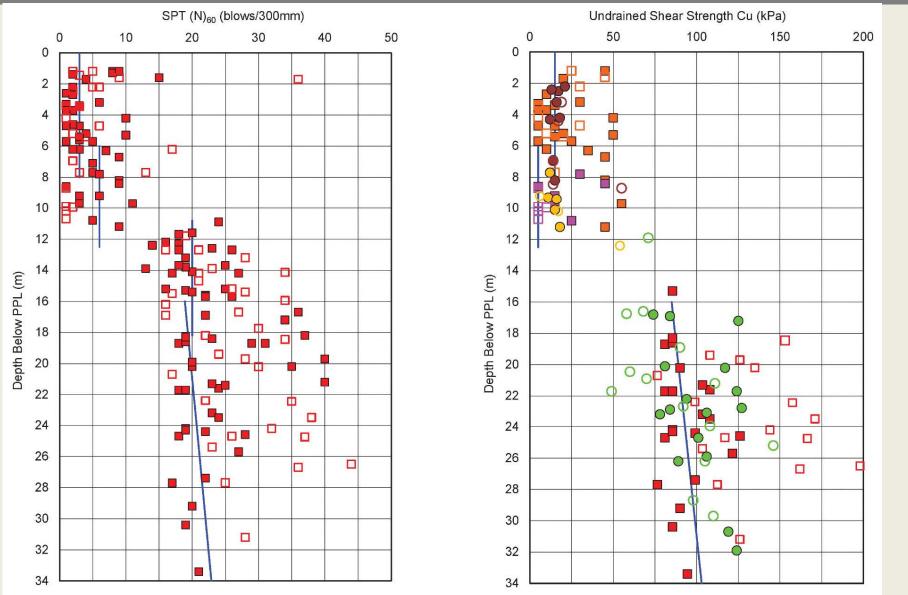
$$C_u = f_1 \times (N)60$$

 $f_1 = 4.0$ to 6.0



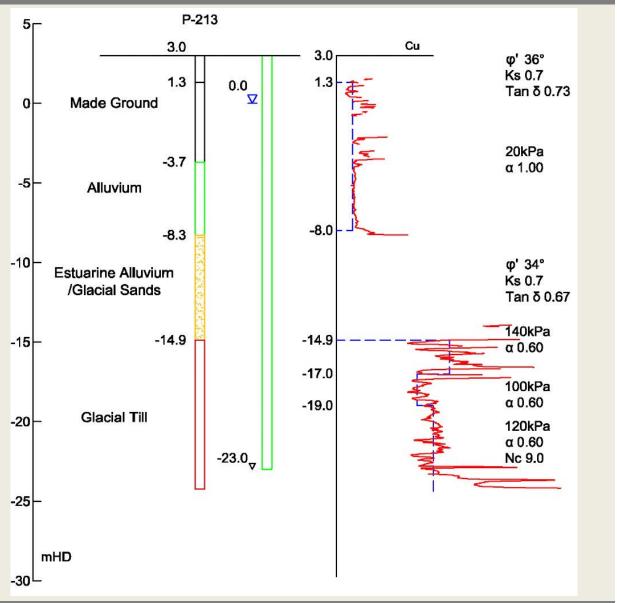
Laboratory – Undrained Shear Strength

Triaxial Testing



Insitu Testing – CPT

Cu in clays Φ' in granular soils



GI Using CPT

 $C_u = q_c / N_k$ $N_k = 15 \text{ to } 30$

 $N_k = 20$ taken for Glacial Till in this example

Pile Shaft Friction

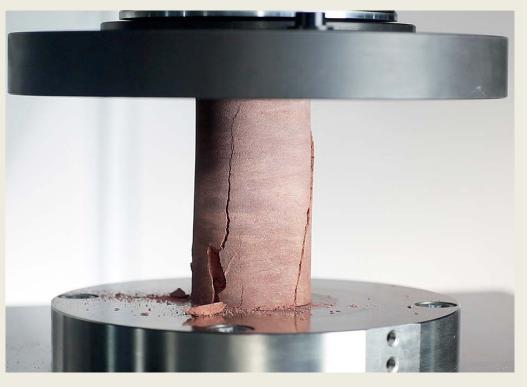
Beta Method

Soft Soils or Chalk

 $q_s = \ \sigma'_v \ \beta \ = \ k_s \ tan \, \delta \ \ \beta \ = \ 0.45 \ to \ 0.80 \ for \ Chalk$

UCS Method

Sandstone, Limestone or Strong Mudstone $q_s = a UCS^b$ $a = 200 \rightarrow 450$ $b = 0.4 \rightarrow 0.6$



Rock Testing

Point Load Testing

Uniaxial Compression Test

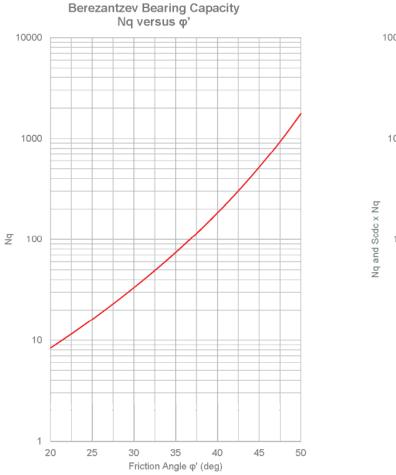
Pile End Bearing

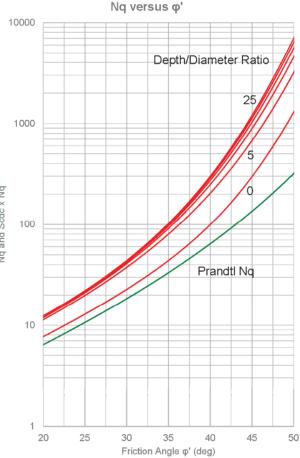
 Effective Stress Approach Granular

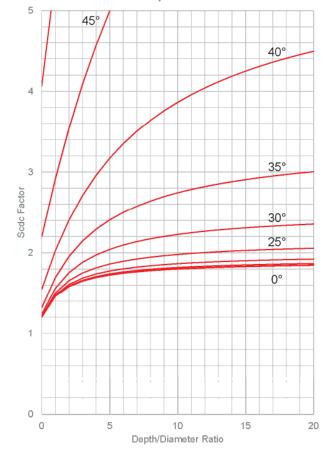
 $q_b = \sigma'_v N_q$

 Total Stress Approach Cohesive or Rock (Weak Mudstone)

 $q_{\rm b} = c_{\rm u} N_{\rm c}$






Pile End Bearing

Brinch Hansen Bearing Capacity

Brinch Hansen Bearing Capacity Scdc versus Depth/Diameter Ratio

Pile End Bearing

- SPT Method Chalk
 - $q_b = 200 \text{ to } 300 \text{ x SPT N}$
- UCS Method

Sandstone, Limestone or Strong Mudstone

$$q_{\rm b} = \frac{\rm UCS}{2} N_{\rm c}$$

Design Soil Parameters

- Design values obtained by dividing the characteristic or representative property by a partial factor $X_d = \frac{X_k}{\gamma_m}$
- Usual properties to be factored are strength [but stiffness may need to be factored for horizontal load design]
- Either effective stress strength, c' and ϕ ', or undrained shear strength c_u , or unconfined compressive strength UCS for rocks
- For pile design to the UK National Annex, factored design soil parameters are not used except for negative shaft friction

Partial Factors on Soil Parameters

Soil Property	UK NA F	actor Set	EC7 Factor Set		
Soil Property	M1	M2	M1	M2	
Friction Angle tan φ'	1.0	1.25	1.0	1.25	
Effective Cohesion c'	1.0	1.25	1.0	1.25	
Undrained Shear Strength Cu	1.0	1.4	1.0	1.4	
Unconfined Strength UCS	1.0	1.4	1.0	1.4	
Unit Weight γ			1.0	1.0	

UK NA gives no factor for unit weight so presume 1.0; other factors remain unchanged.

For pile design to the UK National Annex, factored design soil parameters are not used except for negative shaft friction

Pile Design to EC7 Based on Resistances

- For pile design, it is necessary to compare the design action F_d (usually load) against the design resistance R_d $F_d \leq R_d$
- But note that this is now in terms of compression or tension load and compression or tension resistance:

$$F_{c;d} \le R_{c;d}$$
 $F_{t;d} \le R_{t;d}$

 As is usual, the design resistance R_{c;d} can be assumed to be the sum of the end bearing and shaft design resistances:

 $R_{c;d} = R_{b;d} + R_{s;d}$

Pile Design to EC7 Based on Resistances

 The design resistances R_{c;d} or R_{t;d} are obtained from the characteristic end bearing and shaft friction by using partial resistance factors

$$R_{c;d} = \left[\frac{R_{b;k}}{\gamma_b} + \frac{R_{s;k}}{\gamma_s}\right] \text{ or } \left[\frac{R_{c;k}}{\gamma_t}\right] \qquad R_{c;k} = R_{b;k} + R_{s;k}$$

Pile Design to EC7 Based on Resistances

- The characteristic end bearing and shaft friction can be computed using existing and recognisable methods either by:
 - Calculation
 - Static load testing
 - Dynamic load testing
 - Correlation with CPT or other insitu ground testing
 - Design charts based on experience (e.g. EA-Pfähle used in Germany)

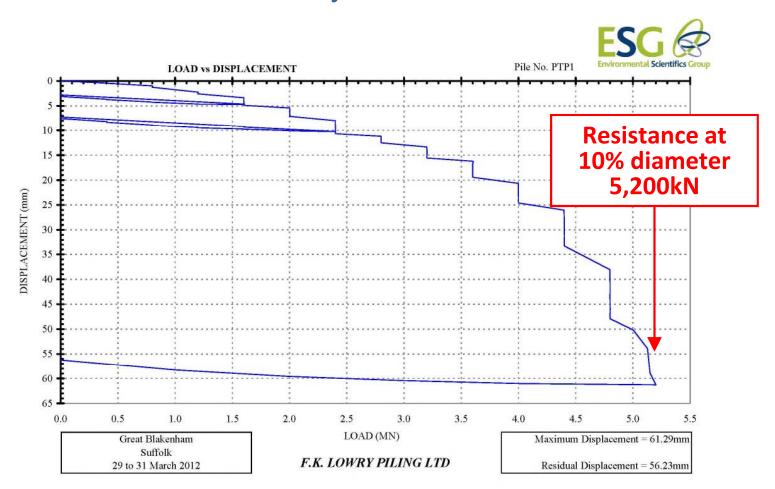
Pile Design by Calculation

 The characteristic base resistance and shaft resistance can be calculated from the characteristic end bearing and shaft friction stresses as follows:

$$R_{b;k} = \frac{A_b q_{b;k}}{\gamma_{Rd}} \qquad \qquad R_{s;k} = \frac{\sum A_{s;i} q_{s;i;k}}{\gamma_{Rd}}$$

- These are similar to the approach used for BS 8004 but include an additional model factor γ_{Rd} to 'correct' the partial resistance factors (applied to the characteristic resistances to obtain the design resistance $R_{c;d}$)

Pile Load Testing



Pile Load Tests – Preliminary – To ULS

- Load test to ULS allows a lower model factor γ_{Rd} to be used

Pile Shaft Friction

- Effective Stress Approach Granular $q_s = \sigma'_v k_s \tan \delta$
- Total Stress Approach Cohesive or Rock (Weak Mudstone) $q_s = \ \alpha \ c_u$
- Beta Method Soft Soils or Chalk
 - $q_s = \ \sigma'_v \ \beta \ = \ k_s \ tan \, \delta \ \ \beta \ = \ 0.45 \ to \ 0.80 \ for \ Chalk$
- UCS Method Sandstone, Limestone or Strong Mudstone

$$q_s = a UCS^b$$
 $a = 200 \rightarrow 450$ $b = 0.4 \rightarrow 0.6$

Pile End Bearing

- Effective Stress Approach Granular $q_b = \sigma'_v N_q$
- Total Stress Approach Cohesive or Rock (Weak Mudstone) $q_b = c_u N_c$
- SPT Method Chalk

 $q_b = 200 \text{ to } 300 \text{ x SPT N}$

UCS Method – Sandstone, Limestone or Strong Mudstone

 $q_b = \frac{0.00}{2} N_c$

Partial Resistance Factors

 The design resistance R_d is obtained from the characteristic end bearing and shaft friction by using partial resistance factors

$$R_{c;d} = \left[\frac{R_{b;k}}{\gamma_b} + \frac{R_{s;k}}{\gamma_s}\right] \text{ or } \left[\frac{R_{c;k}}{\gamma_t}\right]$$

 The partial resistance factors in the UK National Annex have been modified to take account of the type of pile and whether the serviceability behaviour is to be determined either by load test or a rigorous and reliable calculation

Partial Resistance Factors for Driven Piles

Component	UK	NA Factor S	Set	EC7 Factor Set					
	R1	R4 (No SLS)	R4 (SLS)	R1	R2	R3	R4		
Base	1.0	1.7	1.5	1.0	1.1	1.0	1.3		
Shaft	1.0	1.5	1.3	1.0	1.1	1.0	1.3		
Total	1.0	1.7	1.5	1.0	1.1	1.0	1.3		
Tension	1.0	2.0	1.7	1.25	1.15	1.1	1.6		

Main differences for resistance factors relate to:

- 1. Factor set R4 where different values depend on whether SLS behaviour is verified or not (test or calculation).
- 2. Model factor to be applied to ground properties to derive characteristic values or directly to the calculated shaft or end bearing capacities.
- 3. Model factor 1.4, but can be reduced to 1.2 if a load test is completed to calculated unfactored ultimate resistance (ULS check).

Partial Resistance Factors for Bored Piles

Component	UK	NA Factor S	Set	EC7 Factor Set				
	R1	R4 (No SLS)	R4 (SLS)		R1	R2	R3	R4
Base	1.0	2.0	1.7		1.25	1.1	1.0	1.6
Shaft	1.0	1.6	1.4		1.0	1.1	1.0	1.3
Total	1.0	2.0	1.7		1.15	1.1	1.0	1.5
Tension	1.0	2.0	1.7		1.25	1.15	1.1	1.6

Main differences for resistance factors relate to:

- 1. Factor set R4 where different values depend on whether SLS behaviour is verified or not (test or calculation).
- 2. Model factor to be applied to ground properties to derive characteristic values or directly to the calculated shaft or end bearing capacities.
- 3. Model factor 1.4, but can be reduced to 1.2 if a load test is completed to calculated unfactored ultimate resistance (ULS check).

Partial Resistance Factors for CFA Piles

Component	UK	NA Factor S	Set	EC7 Factor Set				
	R1	R4 (No SLS)	R4 (SLS)	R1	R2	R3	R4	
Base	1.0	2.0	1.7	1.1	1.1	1.0	1.45	
Shaft	1.0	1.6	1.4	1.0	1.1	1.0	1.3	
Total	1.0	2.0	1.7	1.1	1.1	1.0	1.4	
Tension	1.0	2.0	1.7	1.25	1.15	1.1	1.6	

Main differences for resistance factors relate to:

- 1. Factor set R4 where different values depend on whether SLS behaviour is verified or not (test or calculation).
- 2. Model factor to be applied to ground properties to derive characteristic values or directly to the calculated shaft or end bearing capacities.
- 3. Model factor 1.4, but can be reduced to 1.2 if a load test is completed to calculated unfactored ultimate resistance (ULS check).

Equivalent Lumped FoS

Pile Type		Actions	Resistanc	e Factors	Model	Lumpe	Lumped	
		A2	R4 (No SLS)	R4 (SLS)	Factor	FoS		
Driven		1.1	1.7	1.5	1.4	2.6/2	.3	
End Bearing		1.1	1.7	1.5	1.2	2.2/2	.0	
Driven End & Shaft	-	1.1	1.7/1.5	1.5/1.3	1.4	2.5/2	.0	
					1.2	2.1/1	.9	
Bored Shaft Friction		1.1	1.6	1.4	1.4	2.5/2	.2	
				1.4	1.2	2.1/1	.9	

1. Partial factor on actions assumes 70% permanent and 30% variable.

- 2. British Standard BS 8004 lumped FoS ranged from 2.0 to 3.0.
- 3. Model factor 1.2 requires load test to be completed to unfactored ultimate resistance.
- 4. Lower value for resistance factors dependent on SLS behaviour being verified (by load test or reliable calculation).

Pile Design From Static Load Tests

- The design resistance $R_{c;d}$ can also be obtained directly from static load testing by applying correlation factors ξ and the same partial resistance factors γ given above

$$R_{c;d} = \left[\frac{R_{c;k}}{\gamma_t}\right]$$

 The characteristic resistance is obtained from the static load test data using the following

$$R_{c;k} = Min \left[\frac{Mean R_{c;m}}{\xi_1}\right] or \left[\frac{Minimum R_{c;m}}{\xi_2}\right]$$

Pile Design From Static Load Tests

- Values for ξ_1 and ξ_2 depend on the number of static load tests with values decreasing as the number of load tests increases

Static Pile Load Tests (n = number of tested piles)										
ξ for n =	orn= 1 2 3 4 ≥5									
ξ1	1.55	1.47	1.42	1.38	1.35					
ξ2	ξ ₂ 1.55 1.35 1.23 1.15 1.08									

For stiff & strong structures use $\frac{\xi}{1.1} \neq 1.0$ for redistribution

Pile Design From Dynamic Impact Tests

 The characteristic resistance can also be obtained from dynamic impact test data using the following similar relationship:

$$R_{c;k} = Min \left[\frac{Mean R_{c;m}}{\xi_5}\right] or \left[\frac{Minimum R_{c;m}}{\xi_6}\right]$$

- An additional model factor γ_{Rd} is also required:
 - 0.85 when using signal matching (CAPWAP)
 - 1.10 when the test includes pile head displacement
 - 1.20 if no measurement of pile head displacement

Pile Design From Dynamic Impact Tests

- Values for ξ_5 and ξ_6 depend on the number of dynamic impact tests with values decreasing as the number of tests increases

Dynamic Impact Tests (n = number of tested piles)										
ξ for n =	$\geq 2 \qquad \geq 5 \qquad \geq 10 \qquad \geq 15 \qquad \geq 20$									
ξ ₅	1.94	1.85	1.83	1.82	1.81					
ξ ₆	ξ_6 1.90 1.76 1.70 1.67 1.66									

An additional model factor γ_{Rd} is also required:

- 0.85 when using signal matching (CAPWAP)
- 1.10 when the test includes pile head displacement
- 1.20 if no measurement of pile head displacement

Pile Design From Ground Test Results

 The characteristic resistance can also be obtained from empirical relationships with ground test results (such as CPT) using the following similar relationship:

$$R_{c;k} = Min \left[\frac{Mean R_{c;cal}}{\xi_3}\right] or \left[\frac{Minimum R_{c;cal}}{\xi_4}\right]$$

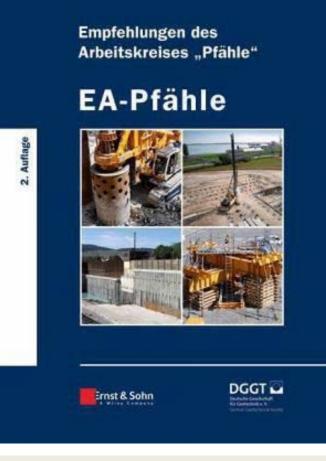
 Values for ξ₃ and ξ₄ depend on the number of ground test results with values decreasing as the number of profiles increases

Correlation Factors for Ground Tests

Ground Test Results (n = number of profiles)							
ξ for n =	1	2	3	4	5	7	10
ξ ₃	1.55	1.47	1.42	1.38	1.36	1.33	1.30
ξ ₄	1.55	1.39	1.33	1.29	1.26	1.20	1.15

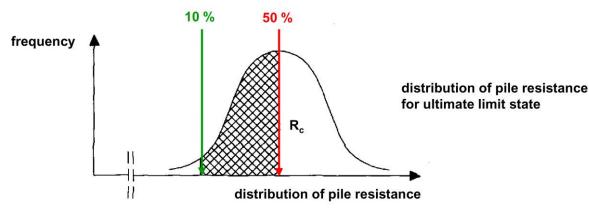
For stiff & strong structures use $\frac{\xi}{1.1} \neq 1.0$ for redistribution

- EC7 requires that the method used to determine the pile characteristic resistance from ground test results should be established from pile load tests and comparable experience
- These correlation factors were intended to be used with CPT profiles or pressuremeter data
- However, EC7 includes the 'alternative procedure' or calculation method within section 7.6.2.3 covering ground test results



Pile Design From Design Charts [Experience]

- The characteristic resistance can also be obtained from published design charts (such as those given in EA-Pfähle used in Germany)
- Design charts based on a statistical analysis of static pile load tests



Pile Design From Design Charts [Experience]

- Tables give characteristic shaft friction and end bearing for different pile types and ground conditions correlated to CPT cone resistance or undrained shear strength
- Charts give 10% or 50% percentiles. EA-Pfähle recommends using the 10% value

Geotechnical Design to EC7 13 January 2017

Pile Design From Design Charts [Experience]

in non-cohesive soils

settlement of pile head	ultimate base resistance q _b [kN/m ²]				
	for a mean tip resistance q _c of a CPT [MN/m²]				
s/D _s bzw. s/D _b	7.5		25		
0,02	550 - 800	1,050 – <mark>1,400</mark>	1,750 – <mark>2,300</mark>		
0,03	700 – 1,050	1,350 – <mark>1,800</mark>	2,250 – <mark>2,950</mark>		
0.10 (= s _g)	1,600 – <mark>2,300</mark>	3,000 - 4,000	4,000 – <mark>5,300</mark>		
Intermediary value	es can be interpol	ated linearly.			
For bored piles wi	th foot enlargeme	nt values to be re	duced to 75 %.		

in cohesive soils

ultimate base resistance q _b [kN/m ²]				
undrained shear strength c _{u.k} [kN/m ²]				
100	150	250		
350 - 450	600 - 750	950 – 1, <mark>200</mark>		
450 – <mark>550</mark>	700 – 900	1,200 – <mark>1,450</mark>		
800 – 1,000	1,200 - 1,500	1,600 – <mark>2,000</mark>		
	undrain 100 350 – 450 450 – 550	undrained shear strength 100 150 350 – 450 600 – 750 450 – 550 700 – 900		

For bored piles with foot enlargement values to be reduced to 75 %.

in non-cohesive soils

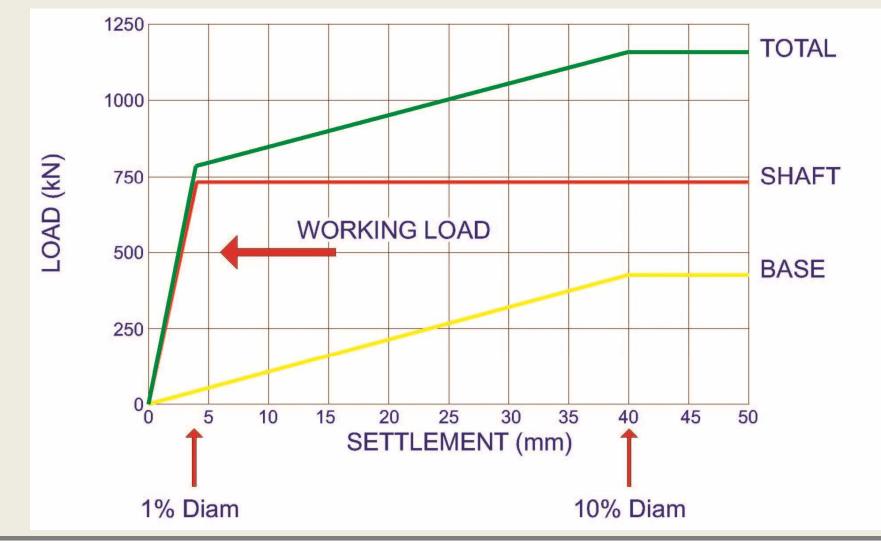
mean tip resistance q _c of a CPT [MN/m²]	ultimate skin friction q _{s1,k} [kN/m²]
7,5	55 – <mark>80</mark>
15	105 – <mark>140</mark>
≥ 25	130 – <mark>170</mark>
Intermediary values can be inter	oolated linearly.

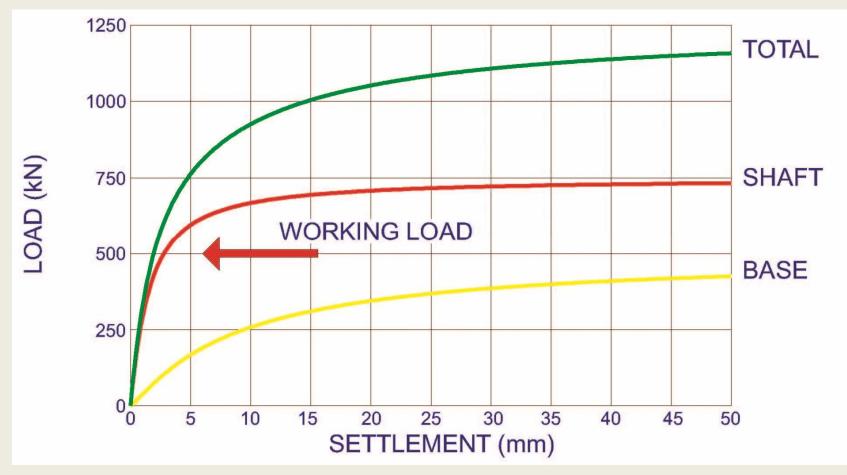
in cohesive soils

undrained shear strength c _{u,k} [kN/m²]	ultimate skin friction q _{s1,k} [kN/m²]
60	<u> 30 – 40</u>
150	50 – <mark>65</mark>
≥ 250	65 – <mark>85</mark>
Intermediary values can be interp	oolated linearly.

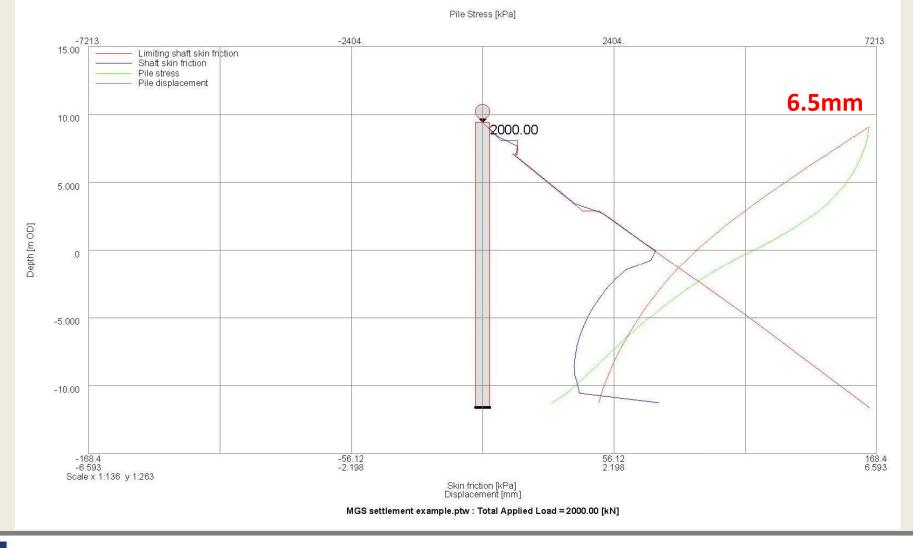
Tables 5.12 to 5.15 for Bored Piles – Recommended 10% percentiles given in green

- EC7 has been written with much more emphasis on SLS behaviour regarding pile settlement and horizontal movement
- EC7 adopts lower partial factors but on the understanding that movements are considered
- The partial resistance factors in the UK National Annex have therefore been modified to take account of the type of pile and whether the serviceability behaviour is to be determined either by load test or a rigorous and reliable calculation

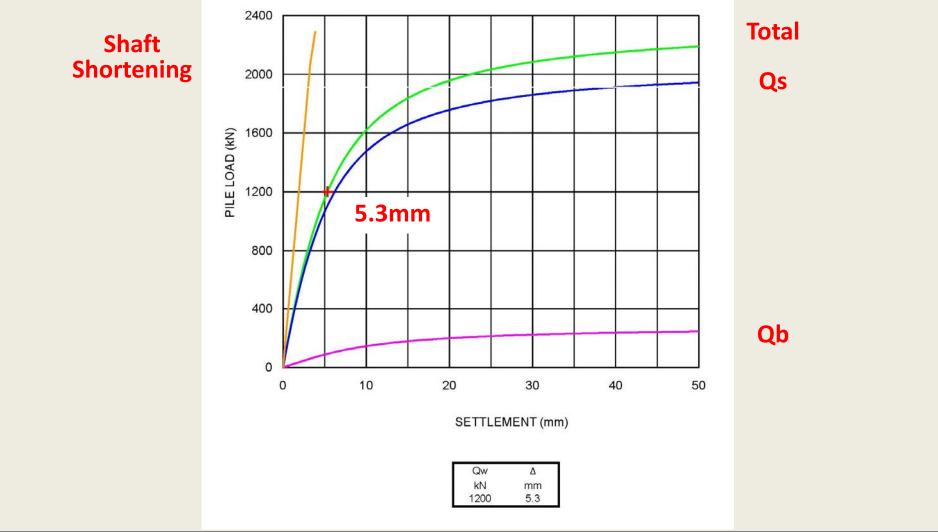

- Empirical method: Pile settlements are dependent on the stiffness properties of the founding soil or rock, the pile geometry, and the mechanism of load transfer to the ground.
- Typically:
 - Shaft friction is mobilised at a movement equal to about 1% of the pile diameter
 - End bearing is mobilised at a movement equal to about 10% of the pile diameter
- Good for understanding behaviour but not rigorous



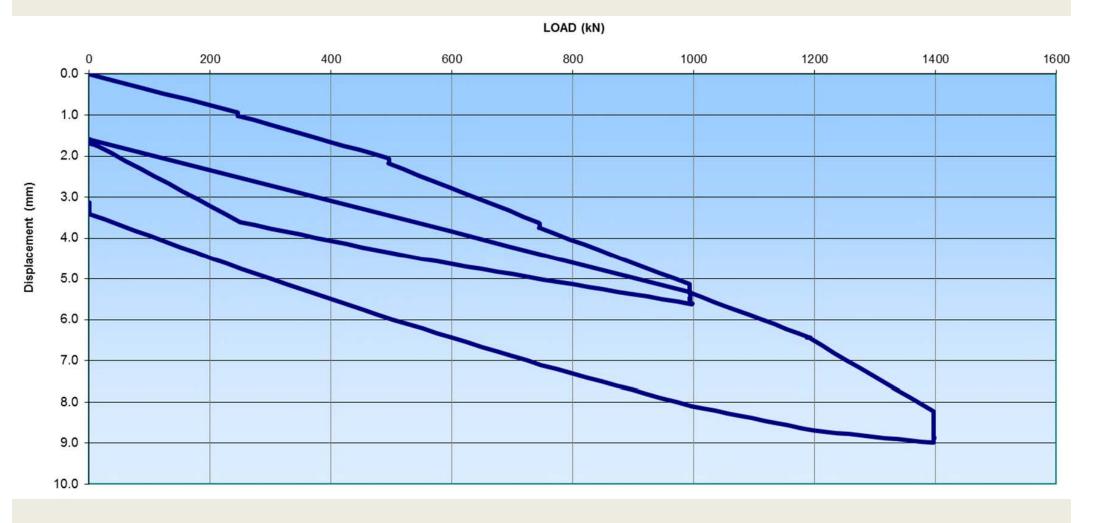
- Computational approaches for assessing pile settlements are now available for use in the commercial design office in the form of computer programs:
 - PIGLET Closed form elastic continuum equations Randolph (1980)
 - CEMSET Simplified hyperbolic functions for the pile base and shaft Fleming (1992)
 - PILSET Iterative approach based on Mindlin equations Poulos & Davis (1980) - Oasys Limited
 - REPUTE Based on boundary elements



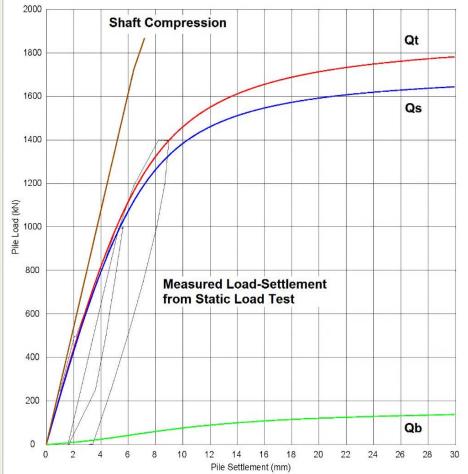
Example PILE Settlement Calculation


RFA Raison Foster Associates Geotechnical Design and Consulting

Example CEMSET Settlement Calculation



Pile Load Test – Working to DVL + 50%

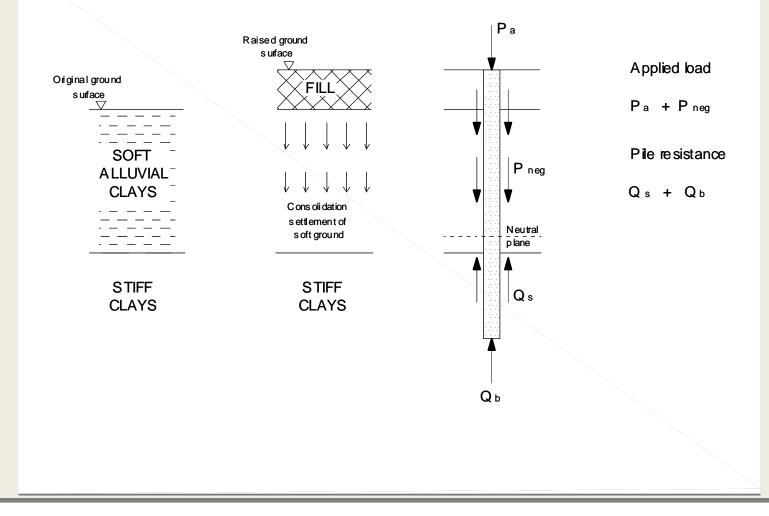

Load Test Back Analysis

Bearing capacity calculation based on soil parameters and CEMSET settlement calculation used to back analyse load test

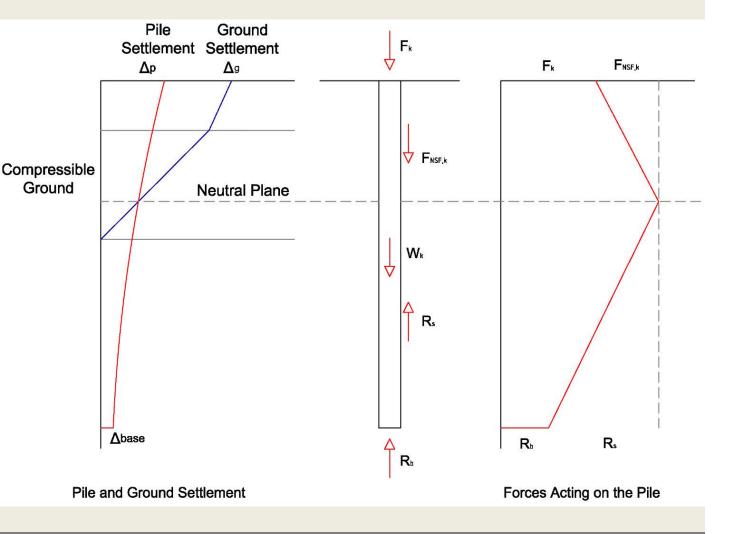
Very good match

Design program to compute pile settlement behaviour. Program based on: A new method for single pile settlement prediction and analysis. W.G.K.Fleming, (1992). Géotechnique 42, No. 3, 411-425.

Pile System	Cfa bored	Friction free length	11.00 m
Equivalent shaft diameter	450 mm	Shaft friction length	15.00 m
Equivalent base diameter	450 mm	Shaft flexibility factor	0.0025
Ultimate shaft capacity	1724 kN	End bearing Young's modulus	40000 kPa
Ultimate base capacity	172 kN	Pile Shaft Young's modulus	30000000 kPa
Overall pile length	26.00 m	Effective column length factor	0.45



Negative Shaft Friction



Negative Shaft Friction

NSF occurs when ground settlement exceeds pile settlement at any point

Complex problem that cannot be designed by load test

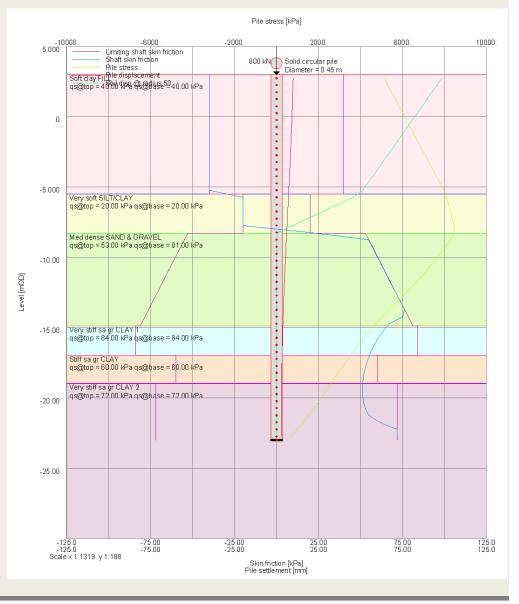
Need soil-structure interaction software

Negative Shaft Friction

- EC7 has little to say about NSF
- No consensus between Designers
- Two possible approaches:
- An SLS problem
 - Analyse the effect of ground settlement on the pile and estimate pile settlements and stresses
 - Complex analysis
 - Requires suitable software
 - Time consuming

Negative Shaft Friction

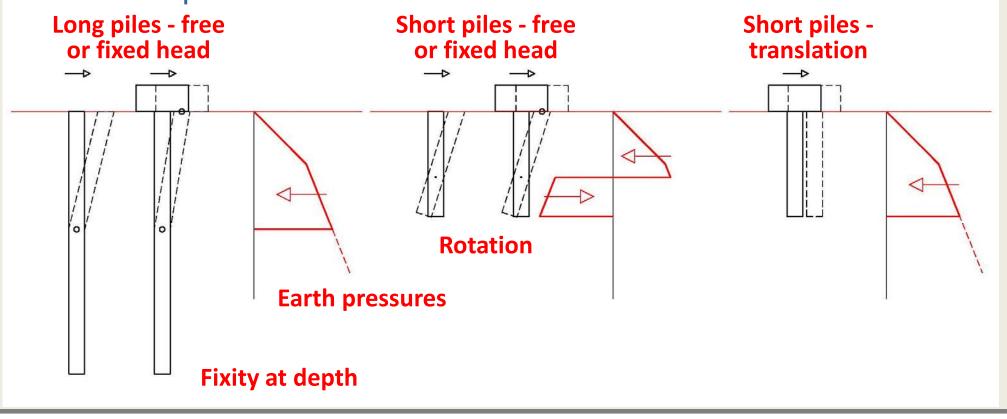
- A ULS problem
 - Estimate the potential additional load due to the settling soil
 - Treat as an extra permanent load
 - Simple calculation but not really correct
 - Most common method
- Does it comply with EC7?



Negative Shaft Friction

Typical software output for SLS analysis:

100mm ground settlement 10mm pile settlement

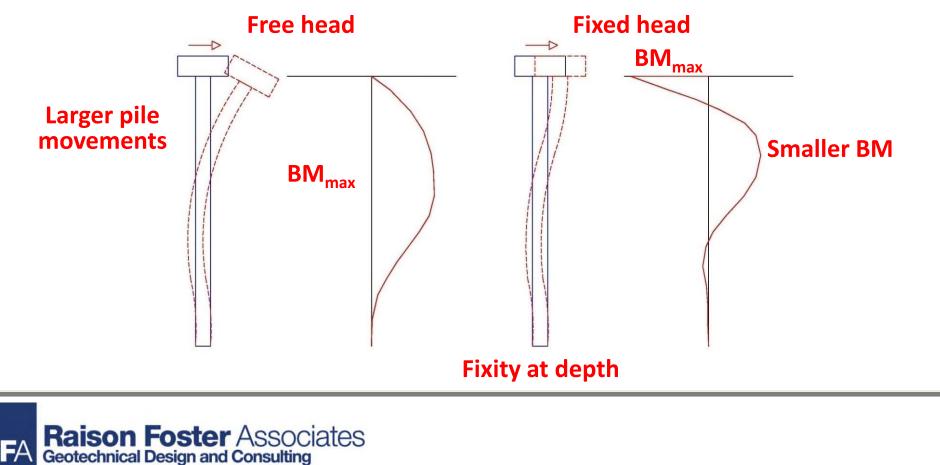


Horizontal Loading

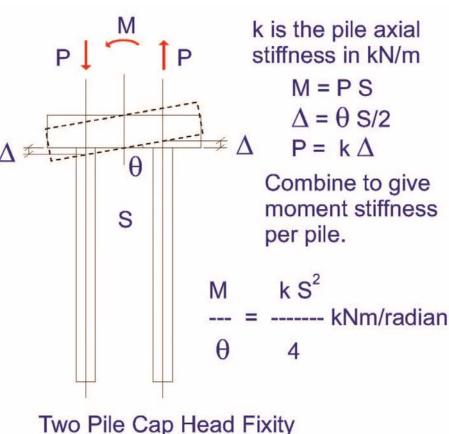
 It is possible to carry out ULS horizontal load analyses but these depend on the assumed mechanism of behaviour

Geotechnical Design to EC7 13 January 2017

- Resistance to horizontal load:
 - Short piles: Lateral resistance of ground
 - Longer piles: Combination of ground strength & stiffness, pile stiffness and restraint conditions
- EC7 gives only general guidance:
 - Check inequality:
 - Ed is the horizontal load action effect
 - Rd is the resistance to horizontal load
- Not much practical help

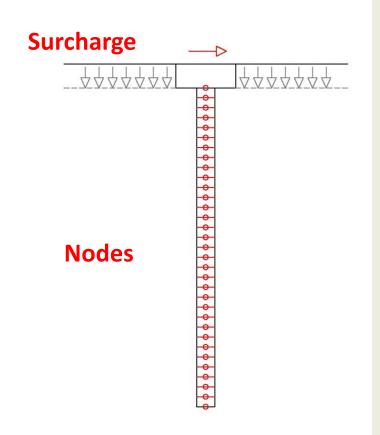

- For horizontal load design, STR limit state usually governs the capacity of the pile section to carry bending moments
- Many Designers use equilibrium methods (Broms)
- Recent BS8004 (2015) promotes this approach but this is a poor model of the behaviour of most piles and it ignores SLS
- Soil-structure interaction software (e.g. ALP or WALLAP)
- Traditional approach: SLS analysis (unfactored)
- Apply partial factor to moments and shear forces, typically 1.4 to 1.5 and compare with structural strength

- Note that real piles have flexural stiffness (EI)
- Horizontal behaviour is controlled by head fixity at the cap



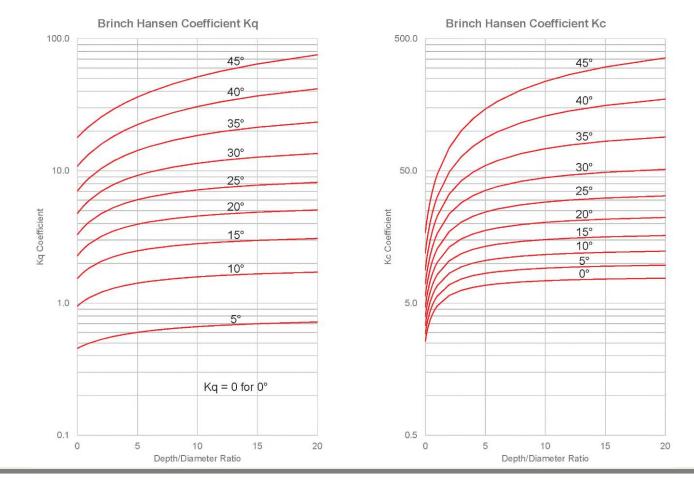
Horizontal Loading – Head Fixity

- Head fixity can be modelled as shown
- Larger pile groups have much larger fixity
- Bending moment is usually maximum at the connection to the pile cap



Geotechnical Design to EC7 13 January 2017

- EC7 allows soil-structure interaction software to be used:
 - Options in UK are ALP or WALLAP
 - Pile is modelled as beam elements
 - Ground is modelled as springs
 - Analysis can be based on factored horizontal actions or factored soil strength (and stiffness)
 - Best to analyses without factors
 - Apply partial factors to BM & SF

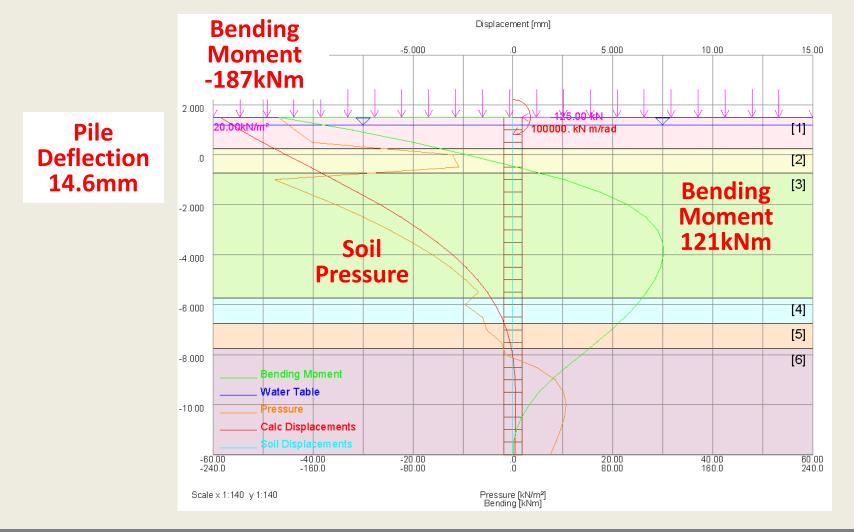


Geotechnical Design to EC7 13 January 2017

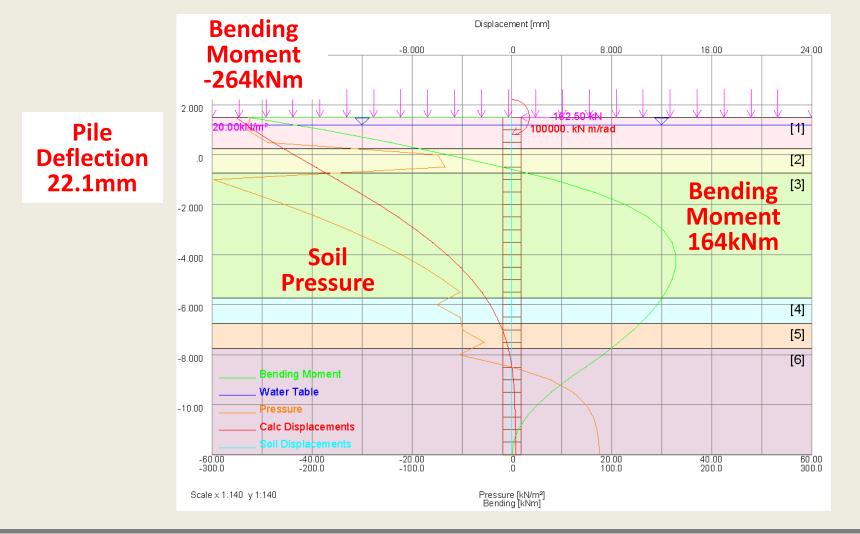
Horizontal Loading

ALP uses Brinch Hansen k_a and k_c coefficients

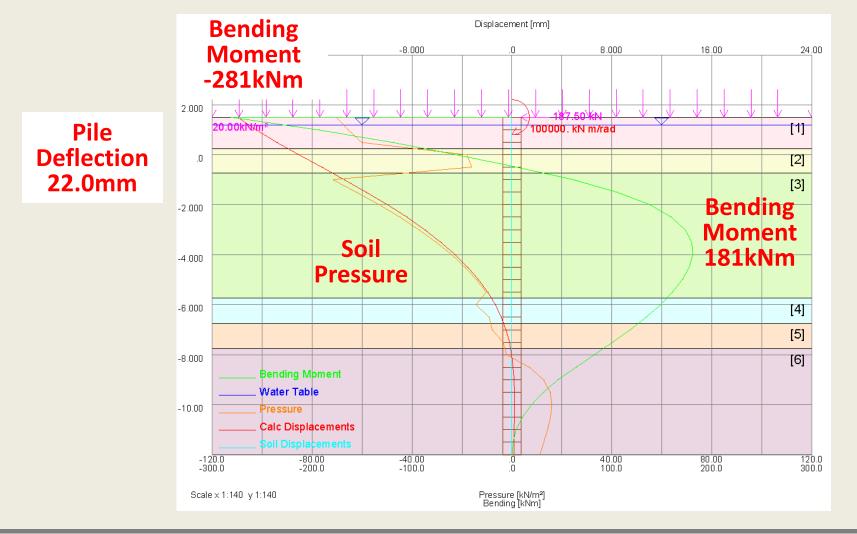
Geotechnical Design to EC7 13 January 2017


- How do we apply EC7 to these types of analysis?
- Strictly, to comply with EC7, three analyses are required:
 - ULS combinations 1 & 2 calculate design bending moments and shear forces
 - SLS consider pile deflection
- ULS combination 2 requires factored soil strength
- How do we deal with soil stiffness when using factored soil strength?
- Risk of large number of analyses

Example ALP Horizontal Load Analysis


SLS - Unfactored

Example ALP Horizontal Load Analysis


ULS – A2/M2 Factor Sets

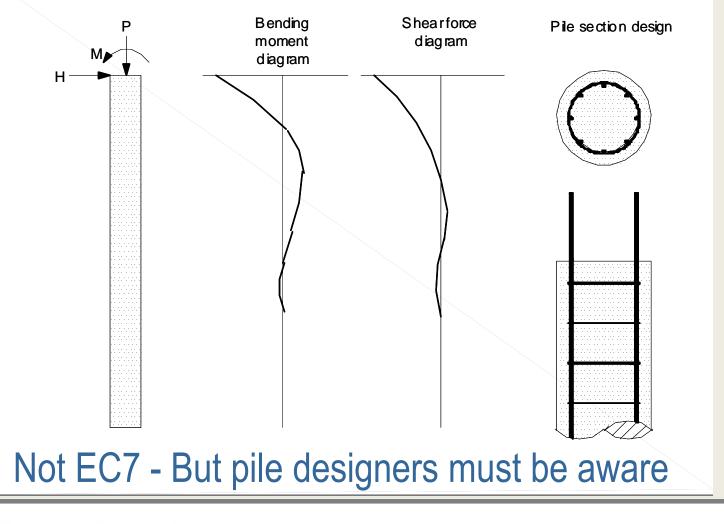
Example ALP Horizontal Load Analysis

ULS – A1/M1 Factor Sets

Example ALP Horizontal Load Analysis

	SLS No factors	ULS A2/M2	ULS A1/M1	ULS A1/M1*	
Material Factor γ_m		1.25	1.0	1.0	
Horizontal G _k	0	0	0	0	kN
Horizontal Q _k	125	125	125	125	kN
Partial Factor γ_G		1.0	1.35	1.0	
Partial Factor γ_0		1.3	1.5	1.0	
Horizontal G _d	0	0	0	0	kN
Horizontal Q _d	125.0	162.5	187.5	125.0	kN
At Pile Head					<u> </u>
Calculated Moment M	-187	-264	-281	-187	kNm
Partial Factor y		1.0	1.0	1.5	
Design Moment M _d		-264	-281	-281	kNm
Peak at Depth					
Calculated Moment M	121	164	181	121	kNm
Partial Factor y		1.0	1.0	1.5	
Design Moment M _d		164	181	182	kNm

ULS A1/M1* - Partial factors applied to effect of actions


ULS – A1/M1 Factor Sets

- Based on BS EN 1992-1-1 (EC2 Part 1.1.)
- Use the calculated design compression and tension loads combined with design bending moments and shear forces
- Compression loads are sometimes 'favourable'
- Cast in-situ piles treated as circular columns
- Precast piles generally square columns
- In most cases the piles are fully restrained and will not fail by buckling even in soft or loose ground

- EC2 contains clauses which are specific to cast in-situ piles:
 - Partial factor on concrete strength increased by 10%
 - Design pile diameter 95% of nominal pile diameter
- These clauses were not required by BS 8110 EC 2 is more conservative!
- Shear calculation differs significantly from BS 8110
- In some cases more longitudinal steel is needed due to shear.

- EC2 requirements for maximum bar spacing conflict with piling execution codes
- In some cases small diameter piles are not buildable
- Minimum 6 bars
- Not general UK practice for axially loaded piles
- Steel lap lengths can be excessive

Design Example

- 600mm CFA bored preliminary test pile
- Installed from a reduced level dig (3.5m below original level)
- Pile bored to 20.6m depth
- Founded in very weak Chalk
- Maximum test load 5,200kN at 61.3mm (Approx 10% D)
- Example design based on:
 - Calculation
 - Static load test

Design Actions F_d for Design Example

Example calculation

Permanent Load $G_k = 1400$ kN

Variable Load $Q_k = 600$ kN

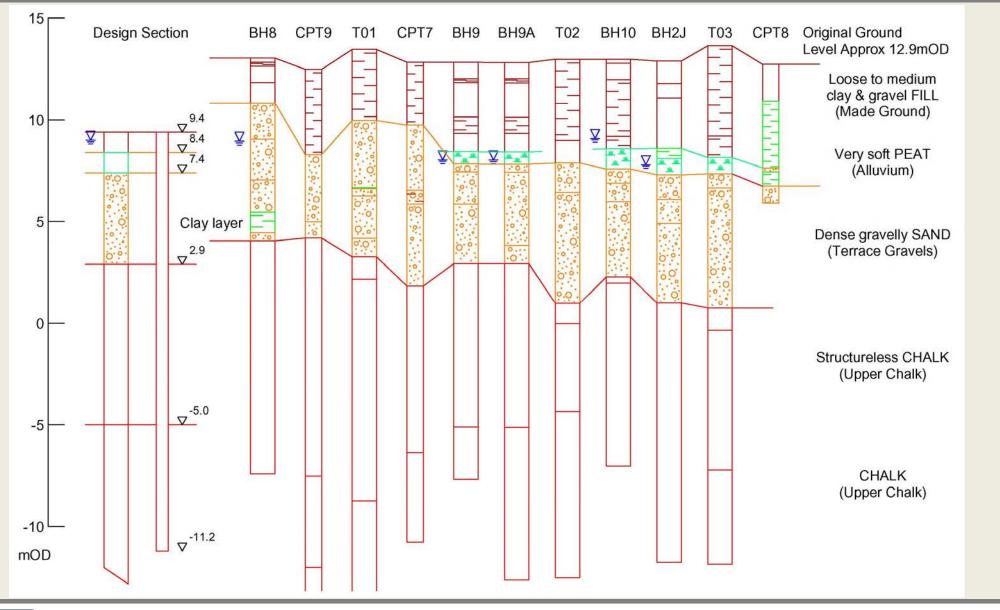
Factor Set A1

EC7 Design Action $F_d = 1400 \times 1.35 + 600 \times 1.5$

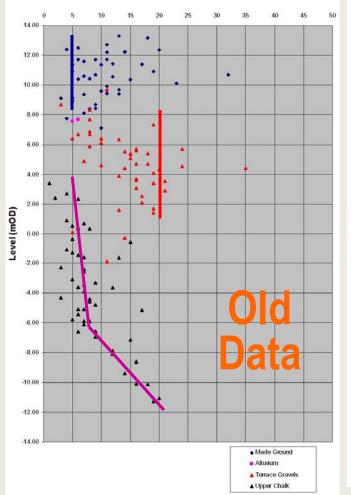
EC7 Design Action $F_d = 2790$ kN

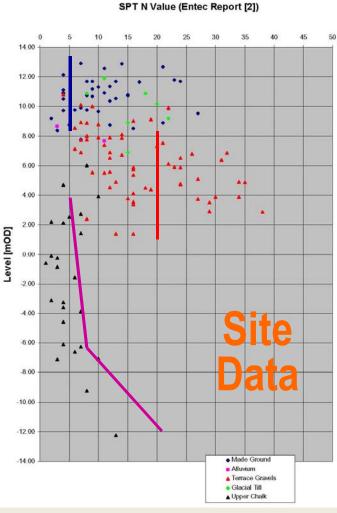
Factor Set A2

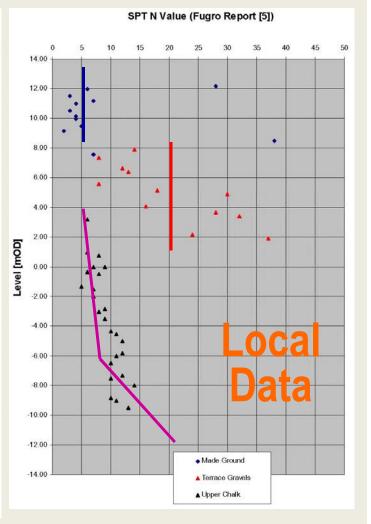
EC7 Design Action $F_d = 1400 \times 1.0 + 600 \times 1.3$


EC7 Design Action $F_d = 2180$ kN

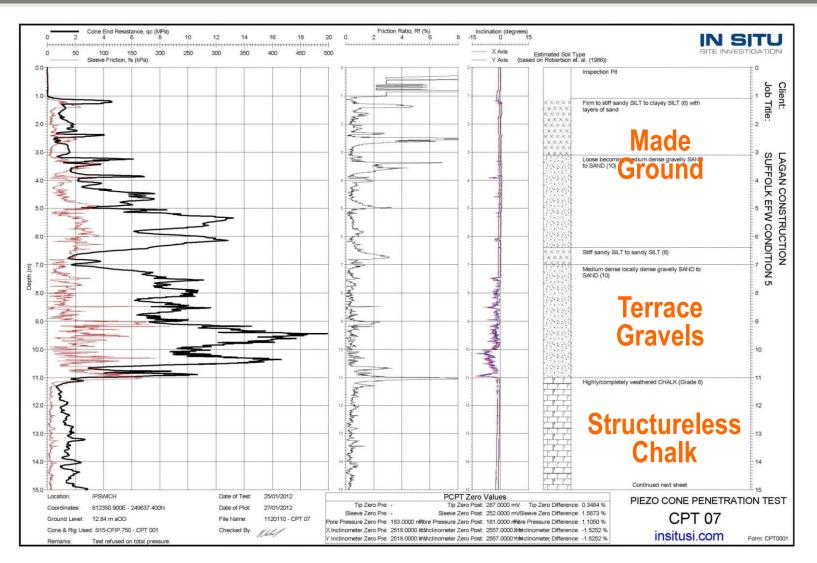
Geotechnical Design to EC7 13 January 2017


Geological Section



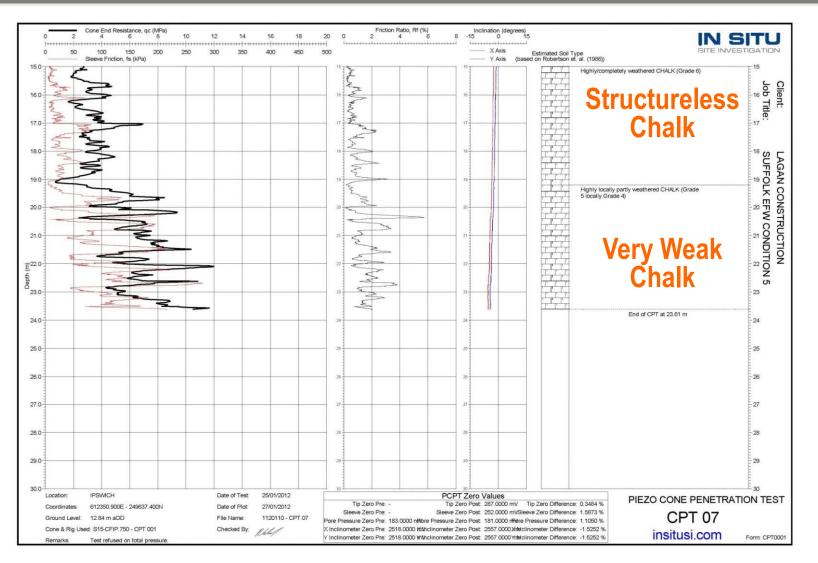


SPT N Value (Jacobs Report [1])



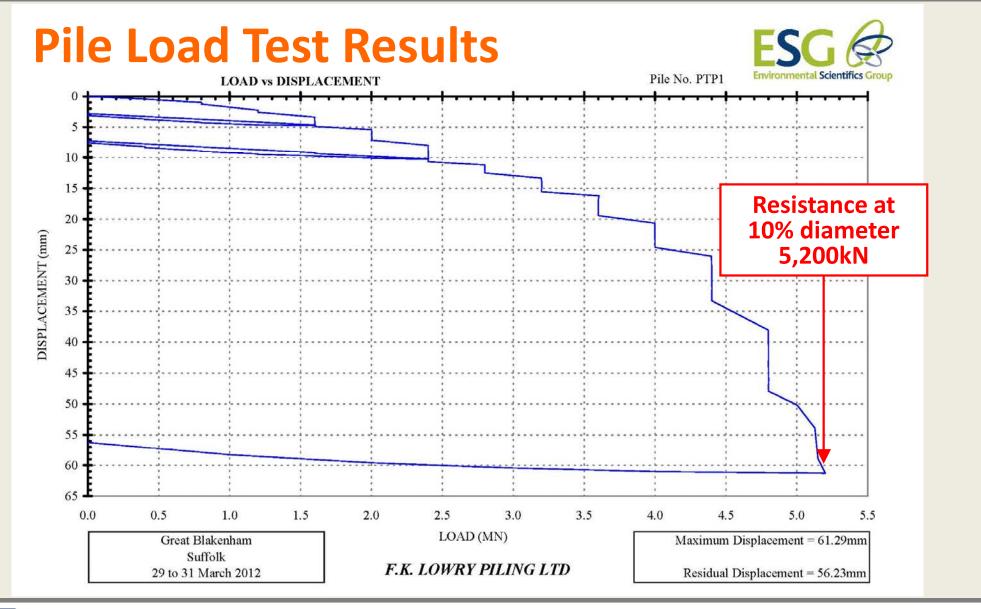
Insitu SPT Data

Geotechnical Design to EC7 13 January 2017



Insitu CPT Data

Geotechnical Design to EC7 13 January 2017



Insitu CPT Data

Design Parameters for Design Example

Soil Description	Top Level mOD	Soil Properties	Design Parameters			
Granular BACKFILL	9.4	φ' = 35°	$\tan \delta = 0.7 \ k_{s} = 1.0$			
Very soft PEAT	8.4	c _u = 25	α = 0.6			
Dense gravelly SAND	7.4	φ' = 35°	$\tan \delta = 0.7 \ k_{s} = 1.0$			
Structureless CHALK	2.9	N = 5 bl/300mm	$q_s = \sigma_v' \beta \beta = 0.8$			
Weak Chalk	-5.0	N = 15 bl/300mm	$q_s = \sigma_v' \beta \beta = 0.8 q_b = 200 \text{ N}$			

Enhanced base	N = 40 bl/300mm	q _b = 8,000kPa
---------------	-----------------	---------------------------

RFA

UNIVERSITY^{OF} BIRMINGHAM

Raison Foster Associates Geotechnical Design and Consulting

Geotechnical Design to EC7 13 January 2017

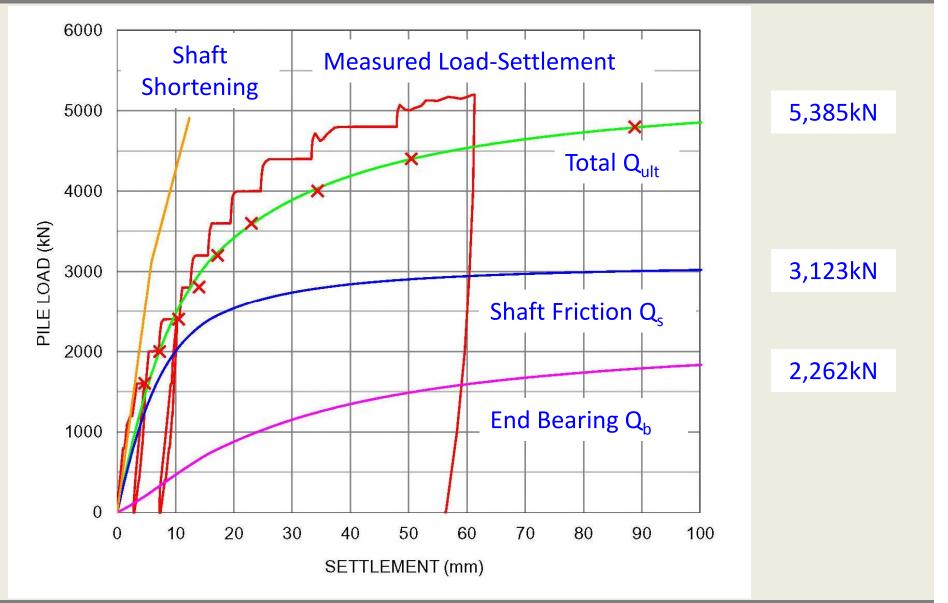
Pile System Cfa	bored		Diameter	5 600 m	m	
Soil Description	Top Level (mOD)	Soil Type	Shaft S Top (kPa)	Base	Shaft Friction (kN)	
Granular BACKFILL Very soft PEAT Dense gravelly SAND Structureless CHALK Very weak CHALK	9.40 8.40 7.40 2.90 -5.00	Drained Undrained Drained Chalk Chalk	0 15 11 50 114	6 15 44 114 165	6 28 234 1223 1632	
Pile Toe Level Base stress		kPa END	SHAFT BEARING	FRICTION CAPACITY CAPACITY CAPACITY	3123 kN 848 kN	cf 5,200kN measured Calculation sti
Maintained load test to	ultimate	capacity	EC7 Mode	el Factor	1.2	on low side
Ch	aracterist	teristic Shaf ic End Bearin cteristic Pil	ng Resist	ance Rbk		
Settlement verified by .	load test	En	Shaf nd Bearir	e Factors St Factor Ng Factor Nn Factor	1.4 1.7	
UK National Annex to EC7 Factor Set R4	EC7	EC7 DESIG DESIGN TENSIC		ANCE Rtd	2275 kN 1531 kN 20.60 m	

Bearing Capacity – β 0.80 ₁₁₅

Geotechnical Design to EC7 13 January 2017

	PILE BEARING CAPACITY Pile System Cfa bored			Diameter 600 mm				
	Soil Description	Top Level (mOD)		oil ype	Shaft S Top (kPa)	Stress Base (kPa)	Shaft Friction (kN)	BC calculation down to here is the same as we have always carried out
	Granular BACKFILL Very soft PEAT Dense gravelly SAND Structureless CHALK Very weak CHALK	9.40 8.40 7.40 2.90 -5.00		lk	0 15 11 50 114	6 15 44 114 165	6 28 234 1223 1632	
Step 1 Model Factor	Pile Toe Level Base stress	-11.20 8000	mOD N kPa	END	SHAFT BEARING	FRICTION CAPACITY CAPACITY CAPACITY	3123 kN 2262 kN	No change for EC7
	Maintained load test to Ch	Charact aracterist	teristi ic End	ic Shaf Bearin	t Resist g Resist	al Factor ance Rsk ance Rbk ance Rk	2603 kN	EC7 model and
Step 2 sistance actors	Settlement verified by	load test		En	Shaf d Bearin	e Factors It Factor ng Factor on Factor	1.4 1.7	resistance factors applied
	UK National Annex to EC7 Factor Set R4	EC7 I				CANCE Rcd CANCE Rtd CNGTH		R _{c;d} 2,968kN

Enhanced Base


RFA

UNIVERSITY^{OF} BIRMINGHAM

Raison Foster Associates Geotechnical Design and Consulting

Geotechnical Design to EC7 13 January 2017

CEMSET Fit to Test Results₁₁₇

Design Based on Calculation

Calculated design resistance R_{c:d}

$$R_{b;k} = \frac{2,262}{1.2} = 1,885kN$$
 $R_{s;k} = \frac{3,123}{1.2} = 2,603kN$

$$R_{c;d} = \left[\frac{1,885}{1.7} + \frac{2,603}{1.4}\right] = 2,968$$
kN

 Based on calculation with the best CEMSET fit to the measured load-settlement behaviour

Design Based on Static Load Tests

Design resistance R_{c;d}

$$R_{c;k} = Min \left[\frac{Mean 5,200kN}{1.55}\right] \text{ or } \left[\frac{Minimum 5,200kN}{1.55}\right]$$
$$R_{c;k} = 3,355kN$$
$$R_{c;d} = \left[\frac{3,355}{1.7}\right] = 1,974kN$$

 Note that this method is based on the measured resistance at 10% of the pile diameter rather than the extrapolated ultimate capacity (about 5,400kN based on CEMSET)

Design Based on Static Load Tests

- Assuming say 3 pile load tests and a stiff/strong structure would allow a reduced correlation factor of 1.29 to be used giving $R_{c:d} = 2,371$ kN

Comparison Between Design Methods

- Nominal pile load
- EC7 Design Action
- Design Resistance:
 - Based on Calculation
 - Based on Static Load Test

2,000kN 2,180kN

2,275kN to 2,968kN 1,974kN to 2,371kN

Conclusions – 1

- EC7 does not tell the Designer how to design piles but does give rules and procedures to be followed
- EC7 has complicated pile design with the introduction of numerous partial factors; load factors, combination factors, material factors, resistance factors, model factors and correlation factors

Conclusions – 2

- More design effort is required to design to EC7
- In some respects EC7 is more conservative
- There are some problem areas which must be resolved
- BUT EC7 does provides a more logical design framework
- Engineering judgement must not be suspended

Conclusions – The Future

- Discussions are taking place on future revisions to Eurocode 7 and its UK National Annex
- So far, EC7 has failed to provide a 'harmonized technical specification' – three design approaches are permitted
- Can this be resolved?
- EC7 does not specify a value for the model factor γ_{Rd}
- Are the UK values too conservative?
- The shortcomings and inconsistencies are being addressed
- Next version in 2020

Thanks for Your Attention

