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C O N C E P T S  I N  C O N T E X T  
The high-speed and high-acceleration thrills of a roller coaster are made

possible by the force of gravity. We will see that gravity does work on the

roller-coaster car while it descends, increasing its kinetic energy.

To see how energy considerations provide powerful approaches for

understanding and predicting motion, we will ask:

? What is the work done by gravity when the roller-coaster car

descends along an incline? (Example 3, page 209)

? As a roller-coaster car travels up to a peak, over it, and then down

again, does gravity do work? Does the normal force? (Checkup 7.1,

question 1, page 210)

? For a complex, curving descent, how can the final speed be deter-

mined in a simple way? (Example 8, page 222; and Checkup 7.4,

question 1, page 224)

Work and Energy7

7.1 Work

7.2 Work for a Variable Force

7.3 Kinetic Energy

7.4 Gravitational Potential
Energy
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7.1 Work 205

Conservation laws play an important role in physics. Such laws assert that some

quantity is conserved, which means that the quantity remains constant even when

particles or bodies suffer drastic changes involving motions, collisions, and reactions.

One familiar example of a conservation law is the conservation of mass. Expressed in

its simplest form, this law asserts that the mass of a given particle remains constant,

regardless of how the particle moves and interacts with other particles or other bodies.

In the preceding two chapters we took this conservation law for granted, and we treated

the particle mass appearing in Newton’s Second Law (ma � F) as a constant, time-

independent quantity. More generally, the sum of all the masses of the particles or

bodies in a system remains constant, even when the bodies suffer transformations and

reactions. In everyday life and in commercial and industrial operations, we always rely

implicitly on the conservation of mass. For instance, in the chemical plants that reprocess

the uranium fuel for nuclear reactors, the batches of uranium compounds are carefully

weighed at several checkpoints during the reprocessing operation to ensure that none

of the uranium is diverted for nefarious purposes.This procedure would make no sense

if mass were not conserved, if the net mass of a batch could increase or decrease

spontaneously.

This chapter and the next deal with the conservation of energy. This conservation

law is one of the most fundamental laws of nature. Although we will derive this law from

Newton’s laws, it is actually much more general than Newton’s laws, and it remains

valid even when we step outside of the realm of Newtonian physics and enter the realm

of relativistic physics or atomic physics, where Newton’s laws fail. No violation of the

law of conservation of energy has ever been discovered.

In mechanics, we can use the conservation law for energy to deduce some features of the

motion of a particle or of a system of particles when it is undesirable or too difficult to cal-

culate the full details of the motion from Newton’s Second Law. This is especially

helpful in those cases where the forces are not known exactly; we will see some exam-

ples of this kind in Chapter 11.

But before we can deal with energy and its conservation, we must introduce the con-

cept of work. Energy and work are closely related. We will see that the work done by

the net force on a body is equal to the change of the kinetic energy (the energy of

motion) of the body.

7.1 WORK

To introduce the definition of work done by a force, we begin with the simple case of

motion along a straight line, with the force along the line of motion, and then we will

generalize to the case of motion along some arbitrary curved path, with the force in some

arbitrary direction at each point. Consider a particle moving along such a straight line,

say, the x axis, and suppose that a constant force Fx, directed along the same straight

line, acts on the particle.Then the work done by the force Fx on the particle as it moves

some given distance is defined as the product of the force and the displacement �x:

(7.1)

This rigorous definition of work is consistent with our intuitive notion of what

constitutes “work.” For example, the particle might be a stalled automobile that you are

pushing along a road (see Fig. 7.1). Then the work that you perform is proportional

to the magnitude of the force you have to exert, and it is also proportional to the

distance you move the automobile.

W � Fx �x work done by one constant force

9
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Note that in Eq. (7.1), Fx is reckoned as positive if the force is in the positive x

direction and negative if in the negative x direction.The subscript x on the force helps

us to remember that Fx has a magnitude and a sign; in fact, Fx is the x component of

the force, and this x component can be positive or negative. According to Eq. (7.1), the

work is positive if the force and the displacement are in the same direction (both positive, or

both negative), and the work is negative if they are in opposite directions (one positive,

the other negative). When pushing the automobile, you do positive work on the auto-

mobile if you push in the direction of the motion, so your push tends to accelerate the

automobile (Fig. 7.2a); but you do negative work on the automobile (it does work on

you) if you push in the direction opposite to the motion, so your push tends to decel-

erate the automobile (Fig. 7.2b).

Equation (7.1) gives the work done by one of the forces acting on the particle. If

several forces act, then Eq. (7.1) can be used to calculate the work done by each force.

If we add the amounts of work done by all the forces acting on the particle, we obtain

the net amount of work done by all these forces together. This net amount of work

can be directly calculated from the net force:

W � Fnet,x �x

In the SI system, the unit of work is the joule ( J), which is the work done by a force

of 1 N during a displacement of 1 m. Thus,

Suppose you push your stalled automobile along a straight road

(see Fig. 7.1). If the force required to overcome friction and to

keep the automobile moving at constant speed is 500 N, how much work must

you do to push the automobile 30 m?

EXAMPLE 1

1 joule � 1 J � 1 N�m

206 CHAPTER 7 Work and Energy

FF

x

This force F has only
an x component, Fx.

For work to be done
by a force, there must
be a displacement.

FIGURE 7.1 You do work while pushing an automobile along a

road with a horizontal force F.

F

F

F

F

motion

x

x

(a)

 positive work 

motion

(b)

negative work 

Force parallel to 
the motion does
positive work.

Force antiparallel
to the motion does
negative work.

FIGURE 7.2 (a) The work you do on the automobile is positive if

you push in the direction of motion. (b) The work you do on the auto-

mobile is negative if you push in the direction opposite to the motion.

            



7.1 Work 207

SOLUTION: With Fx � 500 N and �x � 30 m, Eq. (7.1) gives 

W � Fx �x � 500 N � 30 m � 15 000 J (7.2)

A 1000-kg elevator cage descends 400 m within a skyscraper.

(a) What is the work done by gravity on the elevator cage during

this displacement? (b) Assuming that the elevator cage descends at constant veloc-

ity, what is the work done by the tension of the suspension cable?

SOLUTION: (a) With the x axis arranged vertically upward (see Fig. 7.3), the dis-

placement is negative, �x � �400 m; and the x component of the weight is also

negative, wx � �mg � �1000 kg � 9.81 m�s2 � �9810 N. Hence by the defi-

nition (7.1), the work done by the weight is

W � wx �x � (�9810 N) � (�400 m) � 3.92 � 106 J (7.3)

(b) For motion at constant velocity, the tension force must exactly balance the

weight, so the net force Fnet,x is zero. Therefore, the tension force of the cable has

the same magnitude as the weight, but the opposite direction:

Tx � �mg � 9810 N

The work done by this force is then

W � Tx �x � 9810 N � (�400 m) � �3.92 � 106 J (7.4)

This work is negative because the tension force and the displacement are in oppo-

site directions. Gravity does work on the elevator cage, and the elevator cage does

work on the cable.

COMMENTS: (a) Note that the work done by gravity is

completely independent of the details of the motion; the

work depends on the total vertical displacement and on

the weight, but not on the velocity or the acceleration of

the motion. (b) Note that the work done by the tension

is exactly the negative of the work done by gravity, and

thus the net work done by both forces together is zero

(we can also see this by examining the work done by the

net force; since the net force Fnet,x � wx � Tx is zero, the

net work W � Fnet,x �x is zero). However, the result

(7.4) for the work done by the tension depends implic-

itly on the assumptions made about the motion. Only

for unaccelerated motion does the tension force remain

constant at 9810 N. For instance, if the elevator cage

were allowed to fall freely with the acceleration of grav-

ity, then the tension would be zero; the work done by

the tension would then also be zero, whereas the work

done by gravity would still be 3.92 � 106 J.

Although the rigorous definition of work given in Eq.

(7.1) agrees to some extent with our intuitive notion of what

constitutes “work,” the rigorous definition clashes with our

EXAMPLE 2

JAMES PRESCOTT JOULE
(1818–1889) English physicist. He estab-

lished experimentally that heat is a form of

mechanical energy, and he made the first direct

measurement of the mechanical equivalent of

heat. By a series of meticulous mechanical,

thermal, and electrical experiments, Joule

provided empirical proof of the general law of

conservation of energy.

x

T

w

x = –400 m 

O

Tension is

antiparallel…

…and weight is

parallel to this

displacement.

FIGURE 7.3 Gravity does

work on a descending eleva-

tor. Since the positive x axis

is directed upward, the dis-

placement of the elevator is

negative, �x � �400 m.

            



intuition in some instances. For example, consider a man holding a bowling ball in a

fixed position in his outstretched hand (see Fig. 7.4). Our intuition suggests that the

man does work—yet Eq. (7.1) indicates that no work is done on the ball, since the

ball does not move and the displacement �x is zero. The resolution of this conflict

hinges on the observation that, although the man does no work on the ball, he does

work within his own muscles and, consequently, grows tired of holding the ball. A con-

tracted muscle is never in a state of complete rest; within it, atoms, cells, and muscle

fibers engage in complicated chemical and mechanical processes that involve motion

and work. This means that work is done, and wasted, internally within the muscle,

while no work is done externally on the bone to which the muscle is attached or on the

bowling ball supported by the bone.

Another conflict between our intuition and the rigorous definition of work arises

when we consider a body in motion. Suppose that the man with the bowling ball in his

hand rides in an elevator moving upward at constant velocity (Fig. 7.5). In this case,

the displacement is not zero, and the force (push) exerted by the hand on the ball does

work—the displacement and the force are in the same direction, and consequently the

man continuously does positive work on the ball. Nevertheless, to the man the ball

feels no different when riding in the elevator than when standing on the ground. This

example illustrates that the amount of work done on a body depends on the reference frame.

In the reference frame of the ground, the ball is moving upward and work is done on

it; in the reference frame of the elevator, the ball is at rest, and no work is done on it.

The lesson we learn from this is that before proceeding with a calculation of work, we

must be careful to specify the reference frame.

If the motion of the particle and the force are not along the same line, then the

simple definition of work given in Eq. (7.1) must be generalized. Consider a particle

moving along some arbitrary curved path, and suppose that the force that acts on the

particle is constant (we will consider forces that are not constant in the next section).

The force can then be represented by a vector F (see Fig. 7.6a) that is constant in mag-

nitude and direction. The work done by this constant force during a (vector) displacement

s is defined as

(7.5)

where F is the magnitude of the force, s is the length of the displacement, and � is the

angle between the direction of the force and the direction of the displacement. Both

F and s in Eq. (7.5) are positive; the correct sign for the work is provided by the factor

cos �. The work done by the force F is positive if the angle between the force and the

displacement is less than 90�, and it is negative if this angle is more than 90�.

As shown in Fig. 7.6b, the expression (7.5) can be regarded as the magnitude of the

displacement (s) multiplied by the component of the force along the direction of the

displacement (F cos �). If the force is parallel to the direction of the displacement

(� � 0 and cos � � 1), then the work is simply Fs; this coincides with the case of motion

along a straight line [see Eq. (7.1)]. If the force is perpendicular to the direction of the

displacement (� � 90� and cos � � 0), then the work vanishes. For instance, if a woman

holding a bowling ball walks along a level road at constant speed, she does not do any

work on the ball, since the force she exerts on the ball is perpendicular to the direction

of motion (Fig. 7.7a). However, if the woman climbs up some stairs while holding the

ball, then she does work on the ball, since now the force she exerts has a component

along the direction of motion (Fig. 7.7b).

For two arbitrary vectors A and B, the product of their magnitudes and the cosine

of the angle between them is called the dot product (or scalar product) of the vec-

W � Fs cos �

FIGURE 7.4 Man holding a ball. The dis-

placement of the ball is zero; hence the work

done on the ball is zero.

FIGURE 7.5 The man holding the ball

rides in an elevator. The work done depends

on the reference frame.

208 CHAPTER 7 Work and Energy

F

No work is done on
a stationary ball.

motion

F

x

In reference frame of
the Earth, ball moves,
so force F does work.

In reference frame of the
elevator, ball is stationary,
so force F does no work.

            



7.1 Work 209

tors (see Section 3.4). The standard notation for the dot product consists of the two

vector symbols separated by a dot:

(7.6)

Accordingly, the expression (7.5) for the work can be written as the dot product of the

force vector F and displacement vector s,

(7.7)

In Section 3.4, we found that the dot product is also equal to the sum of the products

of the corresponding components of the two vectors, or

(7.8)

If the components of F are Fx , Fy , and Fz and those of s are �x, �y, and �z, then the

second version of the dot product means that the work can be written

W � Fx �x � Fy �y � Fz �z (7.9)

Note that although this equation expresses the work as a sum of contributions from the

x, y, and z components of the force and the displacement, the work does not have sep-

arate components.The three terms on the right are merely three terms in a sum. Work

is a single-component, scalar quantity, not a vector quantity.

A roller-coaster car of mass m glides down to the bottom of a

straight section of inclined track from a height h. (a) What is

the work done by gravity on the car? (b) What is the work done by the normal

force? Treat the motion as particle motion.

EXAMPLE 3

A � B � Ax 
Bx � Ay 

By � Az 
Bz

W � F # s

A�B � AB cos �

FIGURE 7.6 (a) A constant force F acts during

a displacement s. The force makes an angle � with

the displacement. (b) The component of the force

along the direction of the displacement is F cos �.

(b)

q

F

s

F cos q

q

F

s

(a)

Work done by F is positive
when q   90°, so F has
a component parallel to 
displacement s.

90°
F

s

q
F

s

(a) (b)Zero work is done
when q = 90°.

Positive work is
done for q    90°.

FIGURE 7.7 (a) The force exerted by the woman is perpendicular to the

displacement. (b) The force exerted by the woman is now not perpendicular

to the displacement.

dot product (scalar product)
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SOLUTION: (a) Figure 7.8a shows the inclined track.The roller-coaster car moves

down the full length of this track. By inspection of the right triangle formed by the

incline and the ground, we see that the displacement of the car has a magnitude

(7.10)

[Here we use the label � (Greek phi) for the angle of the incline to distinguish it

from the angle � appearing in Eq. (7.5).] Figure 7.8b shows a “free-body” diagram

for the car; the forces acting on it are the normal force N and the weight w. The

weight makes an angle � � 90� �� with the displacement. According to Eq. (7.5),

we then find that the work W done by the weight w is

Since cos(90� � �) � sin �, the work is

(7.11)

Alternatively, we can use components to calculate the work. For example, if we

choose the x axis horizontal and the y axis vertical, the motion is two-dimensional,

and we need to consider x and y components. The components of the weight are

wx � 0 and wy � �mg. According to Eq. (7.9), the work done by the weight is

then

W � wx �x � wy �y � 0 � �x � (�mg) � �y � 0 � (�mg) � (�h) � mgh

Of course, this alternative calculation agrees with Eq. (7.11).

(b) The work done by the normal force is zero, since this force makes an angle

of 90� with the displacement.

COMMENTS: (a) Note that the result (7.11) for the work done by the weight is inde-

pendent of the angle of the incline—it depends only on the change of height, not

on the angle or the length of the inclined plane. (b) Note that the result of zero

work for the normal force is quite general. The normal force N acting on any body

rolling or sliding on any kind of fixed surface never does work on the body, since

this force is always perpendicular to the displacement.

Checkup 7.1

QUESTION 1: Consider a frictionless roller-coaster car traveling up to, over, and down

from a peak.The forces on the car are its weight and the normal force of the tracks. Does

the normal force of the tracks perform work on the car? Does the weight?

QUESTION 2: While cutting a log with a saw, you push the saw forward, then pull

backward, etc. Do you do positive or negative work on the saw while pushing it

forward? While pulling it backward?

QUESTION 3: While walking her large dog on a leash, a woman holds the dog back to

a steady pace. Does the dog’s pull do positive or negative work on the woman? Does

the woman’s pull do positive or negative work on the dog?

✔

W � mg �
h

sin f
� sin f � mgh

W � ws  cos u � mg �
h

sin f
� cos(90� � f)

s �
h

sin f

FIGURE 7.8 (a) A roller-coaster car

undergoing a displacement along an

inclined plane. (b) “Free-body” diagram

showing the weight, the normal force, and

the displacement of the car.
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�

(a)

N

w

�

90° –  �
s

(b)

s

h

Displacement is s.

Angle between weight 
and displacement is
� = 90 – �.

From triangle, we see
that sin � = h /s.

            



7.2 Work for a Variable Force 211

QUESTION 4: You are trying to stop a moving cart by pushing against its front end. Do

you do positive or negative work on the cart? What if you pull on the rear end?

QUESTION 5: You are whirling a stone tied to a string around a circle. Does the ten-

sion of the string do any work on the stone?

QUESTION 6: Figure 7.9 shows several equal-magnitude forces F and displacements s.

For which of these is the work positive? Negative? Zero? For which of these is the

work largest?

QUESTION 7: To calculate the work performed by a known constant force F acting

on a particle, which two of the following do you need to know? (1) The mass of the

particle; (2) the acceleration; (3) the speed; (4) the displacement; (5) the angle between

the force and the displacement.

(A) 1 and 2 (B) 1 and 5 (C) 2 and 3

(D) 3 and 5 (E) 4 and 5

7.2 WORK FOR A VARIABLE FORCE

The definition of work in the preceding section assumed that the force was constant

(in magnitude and in direction). But many forces are not constant, and we need to

refine our definition of work so we can deal with such forces. For example, suppose

that you push a stalled automobile along a straight road, and suppose that the force

you exert is not constant—as you move along the road, you sometimes push harder

and sometimes less hard. Figure 7.10 shows how the force might vary with position.

(The reason why you sometimes push harder is irrelevant—maybe the automobile

passes through a muddy portion of the road and requires more of a push, or maybe

you get impatient and want to hurry the automobile along; all that is relevant for

the calculation of the work is the value of the force at different positions, as shown

in the plot.)

Such a variable force can be expressed as a function of position:

Fx � Fx(x)

(here the subscript indicates the x component of the force, and the x in parentheses

indicates that this component is a function of x; that is, it varies with x, as shown in

the diagram). To evaluate the work done by this variable force on the automobile, or

on a particle, during a displacement from x � a to x � b, we divide the total displace-

ment into a large number of small intervals, each of length �x (see Fig. 7.11). The

beginnings and ends of these intervals are located at x0, x1, x2, . . . , xn, where the first

location x0 coincides with a and the last location xn coincides with b. Within each of

the small intervals, the force can be regarded as approximately constant—within the

interval xi�1 to xi (where i � 1, or 2, or 3, . . . , or n), the force is approximately Fx(xi).

This approximation is at its best if we select �x to be very small.The work done by this

force as the particle moves from xi�1 to xi is then

Wi � Fx(xi)�x (7.12)

and the total work done as the particle moves from a to b is simply the sum of all the

small amounts of work associated with the small intervals:

(7.13)W � a
n

i�1

Wi � a
n

i�1

Fx(xi  

) ¢x

FIGURE 7.9 Several equal-magnitude

forces and displacements.

F

(a) (b)

(c) (d)

s

F

s

F
s F

s

FIGURE 7.10 Plot of Fx vs. x for a force

that varies with position.

Fx

x
ba

A variable force has

different values at

different positions.
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Note that each of the terms Fx(xi) �x in the sum is the area of a rectangle of height Fx(xi)

and width �x, highlighted in color in Fig. 7.11. Thus, Eq. (7.13) gives the sum of all

the rectangular areas shown in Fig. 7.11.

Equation (7.13) is only an approximation for the work. In order to improve this

approximation, we must use a smaller interval �x. In the limiting case �x S 0 (and

n S 	), the width of each rectangle approaches zero and the number of rectangles

approaches infinity, so we obtain an exact expression for the work. Thus, the exact

definition for the work done by a variable force is 

This expression is called the integral of the function Fx(x) between the limits a and

b. The usual notation for this integral is

(7.14)

where the symbol � is called the integral sign and the function Fx(x) is called the inte-

grand. The quantity (7.14) is equal to the area bounded by the curve representing Fx(x),

the x axis, and the vertical lines x � a and x � b in Fig. 7.12. More generally, for a curve

that has some portions above the x axis and some portions below, the quantity (7.14)

is the net area bounded by the curve above and below the x axis, with areas above the

x axis being reckoned as positive and areas below the x axis as negative.

We will also need to consider arbitrarily small contributions to the work. From

Eq. (7.12), the infinitesimal work dW done by the force Fx(x) when acting over an

infinitesimal displacement dx is

dW � Fx(x) dx (7.15)

We will see later that the form (7.15) is useful for calculations of particular quantities,

such as power or torque.

Finally, if the force is variable and the motion is in more than one dimension, the

work can be obtained by generalizing Eq. (7.7):

(7.16)

To evaluate Eq. (7.16), it is often easiest to express the integral as the sum of three

integrals, similar to the form of Eq. (7.9). For now, we consider the use of Eq. (7.14)

to determine the total work done by a variable force as it acts over some distance in

one dimension.

 

A spring exerts a restoring force Fx(x) � �kx on a particle

attached to it (compare Section 6.2). What is the work done by

the spring on the particle when it moves from x � a to x � b?

SOLUTION: By Eq. (7.14), the work is the integral

W � �
b

a

 Fx(x) dx � �
b

a

(�kx) dx

EXAMPLE 4

W � �  F # ds

W � �
b

a

 Fx (x) dx

W � lim
¢xS 0 a

n

i�1

Fx 
(xi 

) ¢x

FIGURE 7.12 The integral Fx (x)dx is

the area (colored) under the curve represent-

ing Fx (x) between x � a and x � b.

�b
a

212 CHAPTER 7 Work and Energy

Fx

x
ba

This area is work done
by Fx during motion
from x = a to x = b.

work done by a variable force

FIGURE 7.11 The curved plot of Fx

vs. x has been approximated by a series of

horizontal and vertical steps. This is a good

approximation if �x is very small.

Fx

x
bxi–1   xia

x

Fx

A contribution to the work:
the product Fx         x , which
is this rectangle’s area.

x is the width
of each interval.

            



7.2 Work for a Variable Force 213

To evaluate this integral, we rely on a result from calculus (see the Math Help box

on integrals) which states that the integral between a and b of the function x is the

difference between the values of x2 at x � b and x � a:

where the vertical line ƒ means that we evaluate the preceding function at the

upper limit and then subtract its value at the lower limit. Since the constant �k

is just a multiplicative factor, we may pull it outside the integral and obtain for

the work

(7.17)

This result can also be obtained by calculating the area in a plot of force vs.

position. Figure 7.13 shows the force F(x) � �kx as a function of x.The area of the

quadrilateral aQPb that represents the work W is the difference between the areas

of the two triangles OPb and OQa. The triangular area above the Fx(x) curve

between the origin and x � b is [base] � [height] � b � kb � kb2. Likewise,

the triangular area between the origin and x � a is ka2. The difference between

these areas is k(b2 � a2). Taking into account that areas below the x axis must be

reckoned as negative, we see that the work W is W � � k (b2 � a2), in agreement

with Eq. (7.17).

1
2

1
2

1
2

1
2

1
2

1
2

W � �
b

a

(�kx) dx � �k�
b

a

x dx � �1
2k (b2 � a2)

�
b

a
x dx � 1

2 x2 ` b
a

� 1
2 (b2 � a2)

1
2

MATH HELP INTEGRALS

The following are some theorems for integrals that we will

frequently use.

The integral of a constant times a function is the con-

stant times the integral of the function:

The integral of the sum of two functions is the sum of

the integrals:

The integral of the function xn (for n Z �1) is

In tables of integrals, this is usually written in the compact

notation

�  xn dx �
xn�1

n � 1
    (for n 
 �1)

�
b

a

xn dx �
1

n � 1
 xn�1 `

b

a

�
1

n � 1
 (bn�1 � an�1)

�
b

a

3 f (x) � g(x) 4  dx � �
b

a

f (x) dx � �
b

a

g(x) dx

�
b

a

cf (x) dx � c�
b

a

f (x) dx

where it is understood that the right side is to be evaluated

at the upper and at the lower limits of integration and then

subtracted.

In a similar compact notation, here are a few more inte-

grals of widely used functions (the quantity k is any constant):

Appendix 4 gives more information on integrals.

�  cos (kx) dx �
1

k
 sin (kx)

�sin (kx) dx � �
1

k
 cos (kx)

�  e
k x

 dx �
1

k
 e

k x

�  
1

x
 dx � ln x

FIGURE 7.13 The plot of the force 

F ��kx is a straight line. The work done by

the force as the particle moves from a to b

equals the (colored) quadrilateral area aQPb

under this plot.

Fx

x
O

ba

Q

P

This area is reckoned as
negative, since a negative
Fx does negative work
during motion from a to b.

            



Checkup 7.2

QUESTION 1: Figure 7.14 shows two plots of variable forces acting on two particles.

Which of these forces will perform more work during a displacement from a to b?

QUESTION 2: Suppose that a spring exerts a force Fx(x) � �kx on a particle. What is

the work done by the spring as the particle moves from x � �b to x � �b?

QUESTION 3: What is the work that you must do to pull the end of the spring described

in Example 4 from x � a to x � b?

QUESTION 4: An amount of work W is performed to stretch a spring by a distance d from

equilibrium. How much work is performed to further stretch the spring from d to 2d ?

(A) (B)W (C) 2W (D) 3W (E) 4W

7.3 K INET IC ENERGY

In everyday language, energy means a capacity for vigorous activities and hard work.

Likewise, in the language of physics, energy is a capacity for performing work. Energy

is “stored” work, or latent work, which can be converted into actual work under suitable

conditions. A body in motion has energy of motion, or kinetic energy. For instance, a speed-

ing arrow has kinetic energy that will be converted into work when the arrow strikes

a target, such as a the trunk of a tree. The tip of the arrow then performs work on the

wood, prying apart and cutting the wood fibers.The arrow continues to perform work

and to penetrate the wood for a few centimeters, until all of its kinetic energy has been

exhausted. A high-speed arrow has a deeper penetration and delivers a larger amount

of work to the target than a low-speed arrow.Thus, we see that the kinetic energy of the

arrow, or the kinetic energy of any kind of particle, must be larger if the speed is larger.

We now examine how work performed by or on a particle is related to changes of

the speed of the particle. For clarity, we consider the work done on a particle by the

net external force Fnet acting on it (rather than the work done by the particle). When

the force Fnet acts on the particle, it accelerates the particle; if the acceleration has a com-

ponent along the direction of motion of the particle, it will result in a change of the speed

of the particle. The force does work on the particle and “stores” this work in the par-

ticle; or, if this force decelerates the particle, it does negative work on the particle and

removes “stored” work.

We can establish an important identity between the work done by the net force

and the change of speed it produces. Let us do this for the simple case of a particle

moving along a straight line (see Fig. 7.15). If this straight line coincides with the x axis,

then the work done by the net force Fnet,x during a displacement from x1 to x2 is 

(7.18)

By Newton’s Second Law, the net force equals the mass m times the acceleration 

a � dv/dt, and therefore the integral equals

(7.19)

The velocity v is a function of time; but in the integral (7.19) it is better to regard the

velocity as a function of x, and to rewrite the integrand as follows:

�
x2

x1

 Fnet,x dx � �
x2

x1

 ma dx � m �
x2

x1

 
dv

dt
 dx

W � �
x2

x1

 Fnet,x dx

1
2W

✔

FIGURE 7.14 Two examples of plots of

variable forces.
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FIGURE 7.15 A particle moves on a

straight line from x1 to x2 while a force F

acts on it.

For net force F, 
F = ma at each point.

F

x
x2x1O

m

Fx

x
ba

Fx

x
ba

            



kinetic energy

work–energy theorem
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(7.20)

Consequently, the work becomes

(7.21)

or

(7.22)

This shows that the change in the square of the speed is proportional to the work done

by the force.

Although we have here obtained the result (7.22) for the simple case of motion

along a straight line, it can be shown that the same result is valid for motion along a

curve, in three dimensions.

According to Eq. (7.22), whenever we perform positive work on the particle, we

increase the “amount of mv2” in the particle; and whenever we perform negative

work on the particle (that is, when we let the particle perform work on us), we decrease

the “amount of mv2” in the particle. Thus, the quantity mv2 is the amount of work

stored in the particle, or the kinetic energy of the particle. We represent the kinetic energy

by the symbol K:

(7.23)

With this notation, Eq. (7.22) states that the change of kinetic energy equals the net work

done on the particle; that is,

K2 � K1 � W (7.24)

or

(7.25)

This result is called the work–energy theorem. Keep in mind that the work in Eqs.

(7.22), (7.24), and (7.25) must be evaluated with the net force; that is, all the forces

that do work on the particle must be included in the calculation.

When a force does positive work on a particle initially at rest, the kinetic

energy of the particle increases. The particle then has a capacity to do work:

if the moving particle subsequently is allowed to push against some obstacle, then

this obstacle does negative work on the particle and simultaneously the particle does

positive work on the obstacle. When the particle does work, its kinetic energy decreases.

The total amount of work the particle can deliver to the obstacle is equal to its kinetic

energy. Thus, the kinetic energy represents the capacity of a particle to do work by virtue of

its speed.

The acquisition of kinetic energy through work and the subsequent production of

work by this kinetic energy are neatly illustrated in the operation of a waterwheel

driven by falling water. In a flour mill of an old Spanish Colonial design, the water

runs down from a reservoir in a steep, open channel (see Fig. 7.16). The motion of the

water particles is essentially that of particles sliding down an inclined plane. If we

�K � W

K � 1
2 
mv2

1
2

1
2

1
2

W � 1
2 
mv2

2 � 1
2 
mv2

1

 � 1
2 
mv2

2 � 1
2 
mv2

1

 m �
x2

x1

 
dv

dt
 dx � m �

x2

x1

 v 
dv

dx
 dx � m �

v2

v1

 v dv � m 12 v
2 `

v2

v1

dv

dt
�

dv

dx
 
dx

dt
�

dv

dx
 v � v 

dv

dx

Water has a small 
kinetic energy.

Gravity does work
on water…

…which gains a
large kinetic energy.

Water does work
on wheel, losing
kinetic energy.FIGURE 7.16

Water pushing on a

horizontal waterwheel.

            



ignore friction, then the only force that does work on the water particles is gravity.

This work is positive, so the kinetic energy of the water increases and it attains a

maximum value at the lower end of the channel (where its speed is greatest). The

stream of water emerges from this channel with high kinetic energy and hits the

blades of the waterwheel. The water pushes on the wheel, turns it, and gives up its

kinetic energy while doing work—and the wheel runs the millstones and does useful

work on them. Thus, the work that gravity does on the descending water is ulti-

mately converted into useful work, with the kinetic energy playing an intermediate

role in this process.

The unit of kinetic energy is the joule, the same as the unit of work. Table 7.1 lists

some typical kinetic energies.

During a baseball game, the pitcher throws the ball with a speed

of 30 m/s (Fig. 7.17). The mass of the ball is 0.15 kg. What is

the kinetic energy of the ball when it leaves his hand? How much work did his

hand do on the ball during the throw?

SOLUTION: The final speed of the ball, when it leave the hand at the end of the

throwing motion, is v2 � 30 m/s. The final kinetic energy of the ball is

(7.26)

According to the work–energy theorem [Eq. (7.25)], the work done by the hand

on the ball equals the change of kinetic energy. Since the initial kinetic energy at

the beginning of the throwing motion is zero (v1 � 0), the change of kinetic energy

equals the final kinetic energy, and the work is 

Note that for this calculation of the work we did not need to know the (compli-

cated) details of how the force varies during the throwing motion.The work–energy

theorem gives us the answer directly.

W � K2 � K1 � 68 J � 0 � 68 J

K2 � 1
2 
mv2

2 � 1
2 � 0.15 kg � (30 m�s)2 � 68 J

EXAMPLE 5

216 CHAPTER 7 Work and Energy

SOME KINETIC ENERGIES

Orbital motion of Earth 2.6 � 1033 J

Ship Queen Elizabeth (at cruising speed) 9 � 109 J

Jet airliner (Boeing 747 at maximum speed) 7 � 109 J

Automobile (at 90 km/h) 5 � 105 J

Rifle bullet 4 � 103 J

Person walking 60 J

Falling raindrop 4 � 10�5 J

Proton from large accelerator (Fermilab) 1.6 � 10�7 J

Electron in atom (hydrogen) 2.2 � 10�18 J

Air molecule (at room temperature) 6.2 � 10�21 J

TABLE 7.1

FIGURE 7.17 Pitcher throwing a ball.

The ball leaves his hand with a speed of 

30 m/s.

            



7.3 Kinetic Energy 217

While trying to stop his automobile on a flat street, a drunk

driver steps too hard on the brake pedal and begins to skid. He

skids for 30 m with all wheels locked, leaving skid marks on the pavement, before

he releases the brake pedal and permits the wheels to resume rolling (see Fig. 7.18).

How much kinetic energy does the automobile lose to friction during this skid?

If you find skid marks of 30 m on the pavement, what can you conclude about the

initial speed of the automobile? The mass of the automobile is 1100 kg, and the coef-

ficient of sliding friction between the wheels and the street is �k � 0.90.

SOLUTION: The magnitude of the sliding friction force is f k � �k N � �kmg.

With the x axis along the direction of motion, the x component of this friction

force is negative:

Fx � ��kmg

Since the force is constant, the work done by this force is

According to the work–energy theorem, this work equals the change of kinetic

energy:

Since the kinetic energy of the automobile decreases by 2.9 � 105 J, its initial kinetic

energy must have been at least 2.9 � 105 J. Hence its initial speed must have been

at least large enough to provide this kinetic energy; that is,

and so

Checkup 7.3

QUESTION 1: Two automobiles of equal masses travel in opposite directions. Can they

have equal kinetic energies?

✔

v1 � B
2 � 2.9 � 105 J

m
� B

2 � 2.9 � 105 J

1100 kg
� 23 m>s � 83 km>h

1
2 mv2

1 � 2.9 � 105 J

¢K � W � �2.9 � 105 J

  � �0.90 � 1100 kg � 9.81 m�s2 � 30 m � �2.9 � 105 J

 W � Fx ¢x � �mk 
mg � ¢x

EXAMPLE 6

O
30 m

F
x

Skid
ends.

During skid, friction
force opposes motion.

Skid
begins.

FIGURE 7.18 Automobile skidding on a street.

            



7.4 GRAVITAT IONAL POTENTIAL  ENERGY

As we saw in the preceding section, the kinetic energy represents the capacity of a par-

ticle to do work by virtue of its speed. We will now become acquainted with another

form of energy that represents the capacity of the particle to do work by virtue of its

position in space. This is the potential energy. In this section, we will examine the

special case of gravitational potential energy for a particle moving under the influence

of the constant gravitational force near the surface of the Earth, and we will formulate

a law of conservation of energy for such a particle. In the next chapter we will exam-

ine other cases of potential energy and formulate the General Law of Conservation

of Energy.

The gravitational potential energy represents the capacity of the particle to do work by

virtue of its height above the surface of the Earth. When we lift a particle to some height

above the surface, we have to do work against gravity, and we thereby store work in

218 CHAPTER 7 Work and Energy

QUESTION 2: A car is traveling at 80 km/h on a highway, and a truck is traveling at 40

km/h. Can these vehicles have the same kinetic energy? If so, what must be the ratio

of their masses?

QUESTION 3: Consider a golf ball launched into the air.The ball rises from the ground

to a highest point, and then falls back to the ground. At what point is the kinetic

energy largest? Smallest? Is the kinetic energy ever zero?

QUESTION 4: A horse is dragging a sled at steady speed along a rough surface, with fric-

tion. The horse does work on the sled, but the kinetic energy of the sled does not

increase. Does this contradict the work–energy theorem?

QUESTION 5: If you increase the speed of your car by a factor of 3, from 20 km/h to

60 km/h, by what factor do you change the kinetic energy?

(A) (B) (C) 1 (D) 3 (E) 91
3 

1
9 

PROBLEM-SOLVING TECHNIQUES CALCULATION OF WORK

In calculations of the work done by a force acting on a body,

keep in mind that

• A force that has a component in the direction of the dis-

placement does positive work; a force that has a compo-

nent in the direction opposite to the displacement does

negative work.

• A force perpendicular to the displacement does no work

[examples: the normal force acting on a body sliding on

a surface, the centripetal force acting on a body in circu-

lar motion (uniform or not)].

• For a constant force, the work can be calculated either

from Eq. (7.5) or from Eq. (7.9); use the former if you

know the magnitude of the force and the angle, and use

the latter if you know the components.

• For a variable force, the calculation of the work involves

integration along the path [Eq. (7.14)]; also, Eq. (7.15) can

be used for the work during an infinitesimal displacement.

• The work–energy theorem is valid only if the work is

calculated with the net force. When two of the three

quantities (work done, initial kinetic energy, and final

kinetic energy) are known, the theorem can be applied to

determine the third: W � K2 – K1.

9
Online

Concept
Tutorial
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7.4 Gravitational Potential Energy 219

the particle.Thus, a particle high above the surface is endowed with a large amount of

latent work, which can be exploited and converted into actual work by allowing the

particle to push against some obstacle as it descends. A good example of such an

exploitation of gravitational potential energy is found in a grandfather clock, where a

weight hanging on a cord drives the wheel of the clock (Fig. 7.19). The weight does

work on the wheel, and gradually converts all of its gravitational potential energy into

work as it descends (in a typical grandfather clock, the weight takes about a week to

sink down from the top to the bottom, and you must then rewind the clock, by lifting

the weight).

To obtain a general expression for the gravitational potential energy of a particle

moving on a straight or a curving path, we first consider a particle moving on an

inclined plane. According to Eq. (7.11), when a particle of mass m descends a distance

h along an inclined plane, the work done by gravity is

W � mgh (7.27)

As already remarked on in Example 3, this result is independent of the angle of

inclination of the plane—it depends only on the change of height. More generally, for

a curved path, the result is independent of the shape of the path that the particle fol-

lows from its starting point to its endpoint. For instance, the curved path and the

straight sloping path in Fig. 7.20a lead to exactly the same result (7.27) for the work

done by gravity. To recognize this, we simply approximate the curved path by small

straight segments (see Fig. 7.20b). Each such small segment can be regarded as a small

inclined plane, and therefore the work is mg times the small change of height.The net

amount of work for all the small segments taken together is then mg times the net

change of height, in agreement with Eq. (7.27).

If the vertical coordinate of the starting point is y1 and the vertical coordinate of

the endpoint is y2 (see Fig. 7.20), then h � y1 � y2 and Eq. (7.27) becomes

W � mg ( y1 � y2) or W � �(mgy2 � mgy1) (7.28)

According to Eq. (7.28), whenever gravity performs positive work on the particle

( y1 
 y2, a descending particle), the “amount of mgy” of the particle decreases; and

y

x

y1

y2

O O

P1

P2

(a)
y

x

y1

y2

P1

P2

(b)

For each small segment,

work done is mg times

change in height.

Work done by gravity

is same for curved

and straight paths.

Points 1 and 2 are

at different heights

above the Earth.

FIGURE 7.20 (a) A curved path (red) and a straight path (blue) from point P1 to point P2.

(b) The curved path can be approximated by short straight segments.

FIGURE 7.19 The descending weights of

the grandfather clock pull on the cords and

do work on the wheel of the clock.

            



whenever gravity performs negative work on the particle ( y1 � y2, an ascending par-

ticle), the “amount of mgy” increases. Thus, the quantity mgy represents the amount of

stored, or latent, gravitational work; that is, it represents the gravitational potential energy.

We will adopt the notation U for the gravitational potential energy:

U � mgy (7.29)

This potential energy is directly proportional to the height y, and it has been chosen

to be zero at y � 0 (see Fig. 7.21).

220 CHAPTER 7 Work and Energy

y

39.2

29.4

19.6

9.8

0
0 1 2 3 4 m

U

Gravitational
potential energy 
increases linearly
with height.

For a 1-kg
mass, U =
1 kg     g     y.

U = 0 is chosen
here to occur
at y = 0.

FIGURE 7.21 Plot of the gravitational potential energy

of a mass of 1 kg as a function of height y.

In terms of the gravitational potential energy, Eq. (7.28) for the work done by

gravity becomes

W � �U2 � U1 (7.30)

Since �U � U2 � U1 is the change in potential energy, Eq. (7.30) says that the work

equals the negative of the change in potential energy,

W � ��U (7.31)

What is the kinetic energy and what is the gravitational potential

energy (relative to the ground) of a jet airliner of mass 73000 kg

cruising at 240 m/s at an altitude of 9000 m?

SOLUTION: The kinetic energy is 

The gravitational potential energy is U � mgy. If we measure the y coordinate

from the ground level, then y � 9000 m for our airliner, and

We see that the airliner has about three times more potential energy than kinetic

energy.

U � mg y � 7.3 � 104 kg � 9.81 m�s2 � 9.0 � 103 m � 6.4 � 109 J

K � 1
2mv2 � 1

2 � 7.3 � 104 kg � (240 m�s)2 � 2.1 � 109 J

EXAMPLE 7

gravitational potential energy

            



If we let the particle push or pull on some obstacle (such as the wheel of the grand-

father clock) during its descent from y1 to y2, then the total amount of work that we

can extract during this descent is equal to the work done by gravity; that is, it is equal

to �U2 � U1 � �(U2 � U1) � ��U, or the negative of the change of potential energy.

Of course, the work extracted in this way really arises from the Earth’s gravity—the par-

ticle can do work on the obstacle because gravity is doing work on the particle. Hence

the gravitational potential energy is really a joint property of the particle and the Earth; it

is a property of the configuration of the particle–Earth system.

If the only force acting on the particle is gravity, then by combining Eqs. (7.24)

and (7.30) we can obtain a relation between potential energy and kinetic energy.

According to Eq. (7.24), the change in kinetic energy equals the work, or K2 � K1 � W ;

and according to Eq. (7.30), the negative of the change in potential energy also equals

the work: W � �U2 � U1. Hence the change in kinetic energy must equal the nega-

tive of the change in potential energy:

We can rewrite this as follows:

(7.32)

This equality indicates that the quantity K � U is a constant of the motion; that

is, it has the same value at the endpoint as it had at the starting point. We can express

this as

(7.33)

The sum of the kinetic and potential energies is called the mechanical energy of the

particle. It is usually designated by the symbol E :

(7.34)

This energy represents the total capacity of the particle to do work by virtue of both

its speed and its position.

Equation (7.33) shows that if the only force acting on the particle is gravity, then

the mechanical energy remains constant:

(7.35)

This is the Law of Conservation of Mechanical Energy.

Since the sum of the potential and kinetic energies must remain constant during

the motion, an increase in one must be compensated by a decrease in the other; this

means that during the motion, kinetic energy is converted into potential energy and vice

versa. For instance, if we throw a baseball straight upward from ground level (y � 0),

the initial kinetic energy is large and the initial potential energy is zero. As the base-

ball rises, its potential energy increases and, correspondingly, its kinetic energy decreases,

so as to keep the sum of the kinetic and potential energies constant. When the base-

ball reaches its maximum height, its potential energy has the largest value, and the

kinetic energy is (instantaneously) zero. As the baseball falls, its potential energy

decreases, and its kinetic energy increases (see Fig. 7.22).

Apart from its practical significance in terms of work, the mechanical energy is

very helpful in the study of the motion of a particle. If we make use of the formulas for

K and U, Eq. (7.35) becomes

(7.36)E � 1
2mv2 � mg  y � [constant]

E � K � U � [constant]

E � K � U

K � U � [constant]

K2 � U2 � K1 � U1

K2 � K1 � �U2 � U1

7.4 Gravitational Potential Energy 221

CHRISTIAAN HUYGENS (1629–1695)
Dutch mathematician and physicist. He invented

the pendulum clock, made improvements in the

manufacture of telescope lenses, and discovered

the rings of Saturn. Huygens investigated the

theory of collisions of elastic bodies and the theory

of oscillations of the pendulum, and he stated the

Law of Conservation of Mechanical Energy for

motion under the influence of gravity.

mechanical energy

Law of Conservation of 
Mechanical Energy

            



This shows explicitly how the baseball, or any other particle moving under

the influence of gravity, trades speed for height during the motion: whenever

y increases, v must decrease (and conversely) so as to keep the sum of the

two terms on the left side of Eq. (7.36) constant.

If we consider the vertical positions (y1 and y2) and speeds (v1 and v2) at

two different times, we can equate the total mechanical energy at those two

times:

Rearranging, we immediately obtain

(7.37)

where �y � y2�y1. We recognize Eq. (7.37) as the same form that we obtained

when studying the equations of motion [see Eq. (2.29)]. Here, however, the

result follows directly from conservation of mechanical energy; we did not

need to determine the detailed time dependence of the motion.

An important aspect of Eq. (7.36) is that it is valid not only for a par-

ticle in free fall (a projectile), but also for a particle sliding on a surface or

a track of arbitrary shape, provided that there is no friction. Of course, under

these conditions, besides the gravitational force there also acts the normal force; but

this force does no work, and hence does not affect Eq. (7.28), or any of the equations

following after it. The next example illustrates how these results can be applied to

simplify the study of fairly complicated motions, which would be extremely difficult

to investigate by direct calculation with Newton’s Second Law. This example gives

us a glimpse of the elegance and power of the Law of Conservation of Mechanical

Energy.

A roller-coaster car descends 38 m from its highest point to its

lowest. Suppose that the car, initially at rest at the highest point,

rolls down this track without friction. What speed will the car attain at the lowest

point? Treat the motion as particle motion.

SOLUTION: The coordinates of the highest and the lowest points are y1 � 38 m

and y2 � 0, respectively (see Fig. 7.23). According to Eq. (7.36), the energy at the

start of the motion for a car initially at rest is

(7.38)

and the energy at the end of the motion is

(7.39)

The conservation of energy implies that the right sides of Eqs. (7.38) and (7.39)

are equal:

(7.40)

Solving this for v2, we find

(7.41)v2 � 22g y1 

1
2 
mv 

2
2 � mg y1

E � 1
2 
mv2

2 � mg y2 � 1
2 
mv2

2 � 0

E � 1
2 
mv 

2
1 � mg y1 � 0 � mgy1

EXAMPLE 8

�g ¢y � 1
2 
(v2

2 � v2
1)

1
2 
mv 

2
1 � mg y1 � 1

2 
mv2

2 � mg y2
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Energy

E

U

K

t
0

During rise, U
increases and
K decreases.

During fall, U
decreases and
K increases.

Throughout, total mechanical energy
E = K + U  remains constant.

FIGURE 7.22 Kinetic energy K, potential

energy U, and mechanical energy E � K � U

as functions of time during the upward and

downward motions of a baseball.

Concepts
in

Context

            



which gives

Note that according to Eq. (7.41) the final velocity is independent of the mass of

the car; since both the kinetic energy and the gravitational potential energy are

proportional to mass, the mass cancels in this calculation.

COMMENT: This example illustrates how energy conservation can be exploited

to answer a question about motion. To obtain the final speed by direct computa-

tion of forces and accelerations would have been extremely difficult—it would have

required detailed knowledge of the shape of the path down the hill. With the Law

of Conservation of Energy we can bypass these complications.

v2 � 22 � 9.81 m/s2 � 38 m � 27m/s
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O

(b)

P1

P2

x

y

y1

Initially, energy
is all potential.

At the bottom,
energy is all kinetic.

FIGURE 7.23 (a) A roller coaster. (b) Profile

of a roller coaster. The roller-coaster car descends

from P1 to P2.

PROBLEM-SOLVING TECHNIQUES
ENERGY CONSERVATION IN ANALYSIS
OF MOTION

As illustrated by the preceding example, the use of energy con-

servation in a problem of motion typically involves three steps:

1 First write an expression for the energy at one point of

the motion [Eq. (7.38)].

2 Then write an expression for the energy at another point

[Eq. (7.39)].

3 And then rely on energy conservation to equate the two

expressions [Eq. (7.40)].This yields one equation, which

can be solved for the unknown final speed or the unknown

final position (if the final speed is known).

Note that the value of the gravitational potential energy

U � mgy depends on the level from which you measure the

y coordinate. However, the change in the potential energy

does not depend on the choice of this level, and therefore any

choice will lead to the same result for the change of kinetic

energy. Thus, you can make any choice of zero level, but

you must continue to use this choice throughout the entire

calculation. You will usually find it convenient to place the

zero level for the y coordinate either at the final position of

the particle (as in the preceding example), or at the initial

position, or at some other distinctive height, such as the

bottom of a hill or the ground floor of a building. And always

remember that the formula U � mgy for the gravitational

potential energy assumes that the y axis is directed verti-

cally upward.

(a)
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Checkup 7.4

QUESTION 1: Figure 7.24 shows two roller coasters in profile. Cars are released at the

top of each, from rest. Which, if either, of these roller coasters gives the car a larger

speed at the bottom? Neglect friction.

QUESTION 2: A piano is being moved from the second floor of one house to the second

floor of another, nearby house. Describe the changes in the gravitational potential

energy of the piano during this move.

QUESTION 3: A skidding truck slides down a mountain road, at constant speed. Is the

mechanical energy E � K � U conserved?

QUESTION 4: At an amusement park, a girl jumps off a high tower and lands in a pool.

Meanwhile, a boy slides down a (frictionless) water slide that also takes him from the

tower into the pool. Who reaches the pool with the higher speed? Who reaches the pool

first?

QUESTION 5: A bicyclist rolls down a hill without braking, starting at the top, from rest.

A second bicyclist rolls down the same hill, starting at one-half the height, from rest.

By what factor will the speed of the first bicyclist be larger than that of the second, at

the bottom? Ignore friction.

(A) (B) 2 (C) (D) 4222 22 

✔
y

x
O

y

x
O

FIGURE 7.24 Two roller-coaster profiles.

The two plots have the same vertical scale.

SUMMARY

SI UNIT OF WORK (Unit of energy)

PROBLEM-SOLVING TECHNIQUES Energy Conservation in Analysis of Motion

WORK DONE BY A CONSTANT FORCE 

joule � J � N�m

Parallel to a displacement �x W � Fx ¢x

Not parallel to a displacement s W � F s cos  u � F # s

Fx

�x

F

s

(7.1)

(7.6; 7.5)

(page 223)

PROBLEM-SOLVING TECHNIQUES Calculation of Work (page 218)

MATH HELP Integrals (page 213)
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Summary 225

WORK DONE BY A VARIABLE FORCE
In one dimension W � �

b

a

Fx(x) dx

In two or three dimensions W � �F # ds

Fx

x
ba

This area is work done
by Fx during motion
from x = a to x = b.

O

P1

x

y

y1

y2

F =   mv1
2 + mgy12

1

F =   mv2
2 + mgy22

1

WORK DONE BY A SPRING
(Moving from x � a to x � b) 

KINETIC ENERGY K � 1
2 
mv2

WORK–ENERGY THEOREM ¢K � W

GRAVITATIONAL POTENTIAL ENERGY

RELATION BETWEEN WORK AND CHANGE
IN POTENTIAL ENERGY 

U � m g y

MECHANICAL ENERGY E � K � U

W � �¢U

W � �1
2 
k (b2 � a2)

CONSERVATION OF MECHANICAL ENERGY

CONSERVATION OF MECHANICAL ENERGY
AT TWO POINTS 

E � K � U � [constant]

1
2 
mv2

1 � mg y1 � 1
2 
mv2

2 � mg y2

(7.15)

(7.16)

(7.17)

(7.23)

(7.25)

(7.29)

(7.31)

(7.34)

(7.35)

(7.37)

WORK DONE BY CONSTANT GRAVITATIONAL
FORCE (Descending from a height h) 

W � mgh (7.11)

DOT PRODUCT (OR SCALAR PRODUCT) 
OF TWO VECTORS

A � B � AB cos u � AxBx � AyBy � AzBz
(7.6; 7.8)

            



QUEST IONS FOR DISCUSSION

1. Does the work of a force on a body depend on the frame of

reference in which it is calculated? Give some examples.

2. Does your body do work (external or internal) when standing

at rest? When walking steadily along a level road?

3. Consider a pendulum swinging back and forth. During what

part of the motion does the weight do positive work? Negative

work?

4. Since v2 � vx
2 � vy

2 � vz
2, Eq.(7.23) implies K � mv2

x �

mv2
y � mv2

z. Does this mean that the kinetic

energy has x, y, and z components?

5. Consider a woman steadily climbing a flight of stairs. The

external forces on the woman are her weight and the normal

force of the stairs against her feet. During the climb, the

weight does negative work, while the normal force does no

work. Under these conditions how can the kinetic energy of

the woman remain constant? (Hint: The entire woman cannot

be regarded as a particle, since her legs are not rigid; but the

upper part of her body can be regarded as a particle, since it is

rigid. What is the force of her legs against the upper part of

her body? Does this force do work?)

6. An automobile increases its speed from 80 to 88 km/h. What

is the percentage of increase in kinetic energy? What is the

percentage of reduction of travel time for a given distance?

7. Two blocks in contact slide past one another and exert friction

forces on one another. Can the friction force increase the

kinetic energy of one block? Of both? Does there exist a refer-

ence frame in which the friction force decreases the kinetic

energy of both blocks?

8. When an automobile with rear-wheel drive is accelerating on,

say, a level road, the horizontal force of the road on the rear

wheels does not give the automobile any energy because the

point of application of this force (point of contact of wheel on

1
2

1
2

1
2

ground) is instantaneously at rest if the wheel is not slipping.

What force gives the body of the automobile energy? Where

does this energy come from? (Hint: Consider the force that

the rear axle exerts against its bearings.)

9. Why do elevators have counterweights? (See Fig. 5.40.)

10. A parachutist jumps out of an airplane, opens a parachute, and

lands safely on the ground. Is the mechanical energy for this

motion conserved?

11. If you release a tennis ball at some height above a hard floor, it

will bounce up and down several times, with a gradually

decreasing amplitude. Where does the ball suffer a loss of

mechanical energy?

12. Two ramps, one steeper than the other, lead from the floor to a

loading platform (Fig. 7.25). It takes more force to push a

(frictionless) box up the steeper ramp. Does this mean it takes

more work to raise the box from the floor to the platform?

226 CHAPTER 7 Work and Energy

PROBLEMS
7.1 Work †

1. If it takes a horizontal force of 300 N to push a stalled auto-

mobile along a level road at constant speed, how much work

must you do to push this automobile a distance of 5.0 m?

2. In an overhead lift, a champion weight lifter raises 254 kg from

the floor to a height of 1.98 m. How much work does he do?

3. Suppose that the force required to push a saw back and forth

through a piece of wood is 35 N. If you push this saw back

and forth 30 times, moving it forward 12 cm and back 12 cm

each time, how much work do you do?

4. It requires 2200 J of work to lift a 15-kg bucket of water from

the bottom of a well to the top. How deep is the well?

5. A child drags a 20-kg box across a lawn for 10 m and along a

sidewalk for 30 m; the coefficient of friction is 0.25 for the first

part of the trip and 0.55 for the second. If the child always pulls

horizontally, how much work does the child do on the box?

6. A man moves a vacuum cleaner 1.0 m forward and 1.0 m back

300 times while cleaning a floor, applying a force of 40 N

during each motion. The pushes and pulls make an angle of

60� with the horizontal. How much work does the man do on

the vacuum cleaner?

FIGURE 7.25 Two ramps of different steepness.

13. Consider the two ramps described in the preceding question.

Taking friction into account, which ramp requires less work

for raising a box from the floor to the platform?

14. A stone is tied to a string. Can you whirl this stone in a verti-

cal circle with constant speed? Can you whirl this stone with

constant energy? For each of these two cases, describe how

you must move your hand.

† For help, see Online Concept Tutorial 9 at www.wwnorton.com/physics
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FIGURE 7.26 A barge pulled by two tugboats.

y

30°

15°1.0     105 N

2.5    
  10

5  N

7. A record for stair climbing was achieved by a man who raced

up the 1600 steps of the Empire State Building to a height of

320 m in 10 min 59 s. If his average mass was 75 kg, how

much work did he do against gravity? At what average rate (in

J/s) did he do this work?

8. Suppose you push on a block sliding on a table. Your push has

a magnitude of 50 N and makes a downward angle of 60� with

the direction of motion. What is the work you do on the block

while the block moves a distance of 1.6 m?

9. Consider the barge being pulled by two tugboats, as described

in Example 4 of Chapter 5. The pull of the first tugboat is 

2.5 � 105 N at 30� to the left, and the pull of the second tug-

boat is 1.0 � 105 N at 15� to the right (see Fig. 7.26). What is

the work done by each tugboat on the barge while the barge

moves 100 m forward (in the direction of the x axis in Fig. 7.26)?

What is the total work done by both tugboats on the barge?

15. A constant force of 25 N is applied to a body while it moves

along a straight path for 12 m. The force does 175 J of work

on the body. What is the angle between the force and the

path of the body?

*16. A strong, steady wind provides a force of 150 N in a direction

30� east of north on a pedestrian. If the pedestrian walks first

100 m north and then 200 m east, what is the total work done

by the wind?

*17. A man pulls a cart along a level road by means of a short rope

stretched over his shoulder and attached to the front end of

the cart. The friction force that opposes the motion of the cart

is 250 N.

(a) If the rope is attached to the cart at shoulder height, how

much work must the man do to pull the cart 50 m at con-

stant speed? 

(b) If the rope is attached to the cart below shoulder height

so it makes an angle of 30� with the horizontal, what is

the tension in the rope? How much work must the man

now do to pull the cart 50 m? Assume that enough mass

was added so the friction force is unchanged.

*18. A particle moves in the x�y plane from the origin x � 0,

y � 0 to the point x � 2, y � �1 while under the influence of

a force F � 3i � 2j. How much work does this force do on the

particle during this motion? The distances are measured in

meters and the force in newtons.

*19. An elevator consists of an elevator cage and a counterweight

attached to the ends of a cable that runs over a pulley (Fig.

7.27). The mass of the cage (with its load) is 1200 kg, and the

mass of the counterweight is 1000 kg. The elevator is driven

by an electric motor attached to the

pulley. Suppose that the elevator is

initially at rest on the first floor of

the building and the motor makes

the elevator accelerate upward at the

rate of 1.5 m/s2.

(a) What is the tension in the part

of the cable attached to  the ele-

vator cage? What is the tension

in the part of the cable attached

to the counterweight?

(b) The acceleration lasts exactly

1.0 s. How much work has the

electric motor done in this

interval? Ignore friction forces

and ignore the mass of the

pulley.

(c) After the acceleration interval

of 1.0 s, the motor pulls the

elevator upward at constant

speed until it reaches the third

floor, exactly 10.0 m above the

first floor. What is the total

amount of work that the motor

has done up to this point?

10. A 2.0-kg stone thrown upward reaches a height of 4.0 m at a

horizontal distance of 6.0 m from the point of launch. What is

the work done by gravity during this displacement?

*11. A man pushes a heavy box up an inclined ramp making an angle

of 30� with the horizontal.The mass of the box is 60 kg, and the

coefficient of kinetic friction between the box and the ramp is

0.45. How much work must the man do to push the box to a

height of 2.5 m at constant speed? Assume that the man pushes

on the box in a direction parallel to the surface of the ramp.

12. The driver of a 1200-kg automobile notices that, with its gears

in neutral, it will roll downhill at a constant speed of 110

km/h on a road of slope 1:20. Draw a “free-body” diagram for

the automobile, showing the force of gravity, the normal force

(exerted by the road), and the friction force (exerted by the

road and by air resistance). What is the magnitude of the fric-

tion force on the automobile under these conditions? What is

the work done by the friction force while the automobile trav-

els 1.0 km down the road?

13. Driving an automobile down a slippery, steep hill, a driver

brakes and skids at constant speed for 10 m. If the automobile

mass is 1700 kg and the angle of slope of the hill is 25�, how

much work does gravity do on the car during the skid?  How

much work does friction do on the car?

14. The automobile in Example 6 of Chapter 6 is traveling on a

flat road. For a trip of length 250 km, what is the total work

done against air friction when traveling at 20 m/s? At 30 m/s?

1200 kg

1000 kg

FIGURE 7.27
Elevator cage and

counterweight.

            



25. When an ideal, horizontal spring is at equilibrium, a mass

attached to its end is at x � 0. If the spring constant is 440

N/m, how much work does the spring do on the mass if the

mass moves from x � �0.20 m to x � �0.40 m?

26. The spring on one kind of mousetrap has a spring constant of

4500 N/m. How much work is done to set the trap, by

stretching the spring 2.7 cm from equilibrium?

*27. To stretch a spring a distance d from equilibrium takes an

amount W0 of work. How much work does it take to stretch

the spring from d to 2d from equilibrium? From Nd to

(N � 1)d from equilibrium?

*28. A particular spring is not ideal; for a distance x from equi-

librium, the spring exerts a force Fx � �6x � 2x3, where x is

in meters and Fx is in newtons. Compared with an ideal

spring with a spring constant k � 6.0 N/m, by what factor

does the work done by the nonideal spring exceed that done

by the ideal spring when moving from x � 0 to x � 0.50 m?

From x � 1.0 m to x � 1.5 m? From x � 2.0 m to x � 2.5 m?

*29. The ends of a relaxed spring of length l and force constant k are

attached to two points on two walls separated by a distance l.

(a) How much work must you do to push the midpoint of the

spring up or down a distance y (see Fig. 7.30)?

(b) How much force must you exert to hold the spring in this

configuration?

*30. A particle moves along the x axis from x � 0 to x � 2.0 m. A

force Fx(x) � 2x2 � 8x acts on the particle (the distance x is

measured in meters, and the force in newtons). Calculate the

work done by the force Fx(x) during this motion.

*20. By means of a towrope, a girl pulls a sled loaded with firewood

along a level, icy road.The coefficient of friction between the sled

and the road is �k � 0.10, and the mass of the sled plus its load is

150 kg.The towrope is attached to the front end of the sled and

makes an angle of 30� with the horizontal. How much work

must the girl do on the sled to pull it 1.0 km at constant speed?

*21. During a storm, a sailboat is anchored in a 10-m-deep harbor.

The wind pushes against the boat with a steady horizontal

force of 7000 N.

(a) The anchor rope that holds the boat in place is 50 m long

and is stretched straight between the anchor and the boat

(Fig. 7.28a). What is the tension in the rope?

(b) How much work must the crew of the sailboat do to pull

in 30 m of the anchor rope, bringing the boat nearer to

the anchor (Fig. 7.28b)? What is the tension in the rope

when the boat is in this new position?
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20 m

50 m
10 m

10 m

(a)

(b)

FIGURE 7.28 A sailboat at anchor.

y

l

FIGURE 7.30 The midpoint of the

spring has been pushed down a distance y.

When the spring is relaxed, its length

matches the distance l between the walls.

Fx

x

0 8 m642

–1

–2

2 N

1

FIGURE 7.29 Position-dependent force.

7.2 Work for  a  Var iab le  Force †

22. The spring used in the front suspension of a Triumph sports

car has a spring constant k � 3.5 � 104 N/m. How much work

must you do to compress this spring by 0.10 m from its

relaxed condition? How much more work must you do to

compress the spring a further 0.10 m?

23. A particle moving along the x axis is subjected to a force Fx

that depends on position as shown in the plot in Fig. 7.29.

From this plot, find the work done by the force as the particle

moves from x � 0 to x � 8.0 m.

24. A 250-g object is hung from a vertical spring, stretching it 18

cm below its original equilibrium position. How much work

was done by gravity on the object? By the spring?

† For help, see Online Concept Tutorial 9 at www.wwnorton.com/physics

            



*31. Suppose that the force acting on a particle is a function of

position; the force has components Fx � 4x2 � 1, Fy � 2x,

Fz � 0, where the force is measured in newtons and distance

in meters. What is the work done by the force if the particle

moves on a straight line from x � 0, y � 0, z � 0 to x � 2.0 m,

y � 2.0 m, z � 0?

*32. A horse pulls a sled along a snow-covered curved ramp. Seen

from the side, the surface of the ramp follows an arc of a

circle of radius R (Fig. 7.31). The pull of the horse is always

parallel to this surface. The mass of the sled is m, and the

coefficient of sliding friction between the sled and the sur-

face is �k. How much work must the horse do on the sled to

pull it to a height (1� /2)R, corresponding to an angle

of 45� along the circle (Fig. 7.31)? How does this compare

with the amount of work required to pull the sled from the

same starting point to the same height along a straight ramp

inclined at 22.5�?

22 

36. The electron in a hydrogen atom has a speed of 2.2 � 106 m/s.

What is the kinetic energy of this electron?

37. The fastest skier is Graham Wilkie, who attained 212.52 km/h

on a steep slope at Les Arcs, France. The fastest runner is

Robert Hayes, who briefly attained 44.88 km/h on a level

track. Assume that the skier and the runner each have a mass

of 75 kg. What is the kinetic energy of each? By what factor is

the kinetic energy of the skier larger than that of the runner?

38. The Skylab satellite disintegrated when it reentered the

atmosphere. Among the pieces that crashed down on the surface

of the Earth, one of the heaviest was a lead-lined film vault of

1770 kg that had an estimated impact speed of 120 m/s on the

surface. What was its kinetic energy? How many kilograms of

TNT would we have to explode to release the same amount of

energy? (One kilogram of TNT releases 4.6 � 106 J.)

39. An automobile of mass 1600 kg is traveling along a straight

road at 80 km/h.

(a) What is the kinetic energy of this automobile in the refer-

ence frame of the ground?

(b) What is the kinetic energy in the reference frame of a

motorcycle traveling in the same direction at 60 km/h?

(c) What is the kinetic energy in the reference frame of a

truck traveling in the opposite direction at 60 km/h?

40. According to statistical data, the probability that an occupant

of an automobile suffers lethal injury when involved in a crash

is proportional to the square of the speed of the automobile. At

a speed of 80 km/h, the probability is approximately 3%. What

are the probabilities at 95 km/h, 110 km/h, and 125 km/h?

41. For the projectile described in Problem 47 of Chapter 2, cal-

culate the initial kinetic energy (t � 0) and calculate the final

kinetic energy (t � 3.0 s). How much energy does the projec-

tile lose to friction in 3.0 s?

42. Compare the kinetic energy of a 15-g bullet fired at 630 m/s

with that of a 15-kg bowling ball released at 6.3 m/s.

43. Compare the kinetic energy of a golf ball (m � 45 g) falling

at a terminal velocity of 45 m/s with that of a person (75 kg)

walking at 1.0 m/s.

44. A child’s toy horizontally launches a 20-g ball using a spring

that was originally compressed 8.0 cm. The spring constant is

30 N/m. What is the work done by the spring moving the ball

from its compressed point to its relaxed position, where the

ball is released? What is the kinetic energy of the ball at

launch? What is the speed of the ball?

45. A mass of 150 g is held by a horizontal spring of spring

constant 20 N/m. It is displaced from its equilibrium position

and released from rest. As it passes through equilibrium, its

speed is 5.0 m/s. For the motion from the release position to

the equilibrium position, what is the work done by the spring?

What was the initial displacement?

46. A 60-kg hockey player gets moving by pushing on the rink

wall with a force of 500 N. The force is in effect while the

skater extends his arms 0.50 m. What is the player’s kinetic

energy after the push? The player’s speed?
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FIGURE 7.31 A horse pulling a sled

along a curved ramp.

**33. The force between two inert gas atoms is often described by a

function of the form

where A and B are positive constants and x is the distance

between the atoms. Answer in terms of A and B.

(a) What is the equilibrium separation?

(b) What is the work done if the atoms are moved from their

equilibrium separation to a very large distance apart?

7.3 K ine t i c  Energy

34. In a serve, a champion tennis player sends the ball flying at

160 km/h. The mass of the ball is 60 g. What is the kinetic

energy of the ball?

35. Calculate the kinetic energy that the Earth has owing to its

motion around the Sun.

Fx � Ax�13 � Bx�7

            



47. A 1300-kg communication satellite has a speed of 3.1 km/s.

What is its kinetic energy?

48. Suppose you throw a stone straight up so it reaches a maxi-

mum height h. At what height does the stone have one-half its

initial kinetic energy?

49. The velocity of small bullets can be roughly measured with

ballistic putty. When the bullet strikes a slab of putty, it pene-

trates a distance that is roughly proportional to the kinetic

energy. Suppose that a bullet of velocity 160 m/s penetrates

0.80 cm into the putty and a second, identical bullet fired

from a more powerful gun penetrates 1.2 cm. What is the

velocity of the second bullet?

50. A particle moving along the x axis is subject to a force 

Fx � �ax � bx3

where a and b are constants.

(a) How much work does this force do as the particle moves

from x1 to x2?

(b) If this is the only force acting on the particle, what is the

change of kinetic energy during this motion?

*51. In the “tapping mode” used in atomic-force microscopes, a tip

on a cantilever taps against the atoms of a surface to be studied.

The cantilever acts as a spring of spring constant 2.5 � 10�2

N/m. The tip is initially displaced away from equilibrium by

3.0 � 10 �8 m; it accelerates toward the surface, passes through

the relaxed spring position, begins to slow down, and strikes

the surface as the displacement approaches 2.5 � 10�8 m. What

kinetic energy does the tip have just before striking the surface?

*52. With the brakes fully applied, a 1500-kg automobile deceler-

ates at the rate of 8.0 m/s2.

(a) What is the braking force acting on the automobile?

(b) If the initial speed is 90 km/h, what is the stopping distance?

(c) What is the work done by the braking force in bringing

the automobile to a stop from 90 km/h?

(d) What is the change in the kinetic energy of the automobile?

*53. A box of mass 40 kg is initially at rest on a flat floor. The

coefficient of kinetic friction between the box and the floor is

�k � 0.60. A woman pushes horizontally against the box with

a force of 250 N until the box attains a speed of 2.0 m/s.

(a) What is the change of kinetic energy of the box?

(b) What is the work done by the friction force on the box?

(c) What is the work done by the woman on the box?

7.4 Grav i ta t iona l  Po ten t ia l  Energy †

54. It has been reported that at Cherbourg, France, waves smashing

on the coast lifted a boulder of 3200 kg over a 6.0-m wall. What

minimum energy must the waves have given to the boulder?

55. A 75-kg man walks up the stairs from the first to the third

floor of a building, a height of 10 m. How much work does he

do against gravity? Compare your answer with the food energy

he acquires by eating an apple (see Table 8.1).

56. What is the kinetic energy and what is the gravitational

potential energy (relative to the ground) of a goose of mass

6.0 kg soaring at 30 km/h at a height of 90 m?

57. Surplus energy from an electric power plant can be temporar-

ily stored as gravitational energy by using this surplus energy

to pump water from a river into a reservoir at some altitude

above the level of the river. If the reservoir is 250 m above the

level of the river, how much water (in cubic meters) must we

pump in order to store 2.0 � 1013 J?

58. The track of a cable car on Telegraph Hill in San Francisco

rises more than 60 m from its lowest point. Suppose that a car

is ascending at 13 km/h along the track when it breaks away

from its cable at a height of exactly 60 m. It will then coast up

the hill some extra distance, stop, and begin to race down the

hill. What speed does the car attain at the lowest point of the

track? Ignore friction.

59. In pole vaulting, the jumper achieves great height by converting

her kinetic energy of running into gravitational potential energy

(Fig. 7.32). The pole plays an intermediate role in this process.

When the jumper leaves the ground, part of her translational

kinetic energy  has been converted into kinetic energy of rota-

tion (with the foot of the pole as the center of rotation) and part

has been converted into elastic potential energy of deformation

of the pole. When the jumper reaches her highest point, all of

this energy has been converted into gravitational potential

energy. Suppose that a jumper runs at a speed of 10 m/s. If the

jumper converts all of the corresponding kinetic energy into

gravitational potential energy, how high will her center of mass

rise? The actual height reached by pole vaulters is 5.7 m (meas-

ured from the ground). Is this consistent with your calculation?
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FIGURE 7.32 A pole vaulter.

60. Because of brake failure, a bicycle with its rider careens down a

steep hill 45 m high. If the bicycle starts from rest and there is no

friction, what is the final speed attained at the bottom of the hill?

61. Under suitable conditions, an avalanche can reach extremely

great speeds because the snow rides down the mountain on a

cushion of trapped air that makes the sliding motion nearly

frictionless. Suppose that a mass of 2.0 � 107 kg of snow

breaks loose from a mountain and slides down into a valley

500 m below the starting point. What is the speed of the snow

when it hits the valley? What is its kinetic energy? The explo-

† For help, see Online Concept Tutorial 9 at www.wwnorton.com/physics

            



sion of 1 short ton (2000 lb) of TNT releases 4.2 � 109 J. How

many tons of TNT release the same energy as the avalanche?

62. A parachutist of mass 60 kg jumps out of an airplane at an

altitude of 800 m. Her parachute opens and she lands on the

ground with a speed of 5.0 m/s. How much energy has been

lost to air friction in this jump?

63. A block released from rest slides down to the bottom of a plane

of incline 15� from a height of 1.5 m; the block attains a speed of

3.5 m/s at the bottom. By considering the work done by gravity

and the frictional force, determine the coefficient of friction.

64. A bobsled run leading down a hill at Lake Placid, New York,

descends 148 m from its highest to its lowest point. Suppose

that a bobsled slides down this hill without friction. What

speed will the bobsled attain at the lowest point?

65. A 2.5-g Ping-Pong ball is dropped from a window and strikes

the ground 20 m below with a speed of 9.0 m/s. What fraction

of its initial potential energy was lost to air friction?

66. A roller coaster begins at rest from a first peak, descends a ver-

tical distance of 45 m, and then ascends a second peak, crest-

ing the peak with a speed of 15 m/s. How high is the second

peak?  Ignore friction.

67. A skateboarder starts from rest and descends a ramp through a

vertical distance of 5.5 m; he then ascends a hill through a ver-

tical distance of 2.5 m and subsequently coasts on a level sur-

face. What is his coasting speed?  Ignore friction.

*68. In some barge canals built in the nineteenth century, barges

were slowly lifted from a low level of the canal to a higher

level by means of wheeled carriages. In a French canal, barges

of 70 metric tons were placed on a carriage of 35 tons that was

pulled, by a wire rope, to a height of 12 m along an inclined

track 500 m long.

(a) What was the tension in the wire rope?

(b) How much work was done to lift the barge and carriage?

(c) If the cable had broken just as the carriage reached the

top, what would have been the final speed of the carriage

when it crashed at the bottom?

*69. A wrecking ball of mass 600 kg hangs from a crane by a cable

of length 10 m. If this wrecking ball is released from an angle

of 35�, what will be its kinetic energy when it swings through

the lowest point of its arc?

*70. Consider a stone thrown vertically upward. If we take air fric-

tion into account, we see that mv2 � mgy must decrease as a

function of time. From this, prove that the stone will take

longer for the downward motion than for the upward motion.

*71. A stone of mass 0.90 kg attached to a string swings around a

vertical circle of radius 0.92 m. Assume that during this motion

the energy (kinetic plus potential) of the stone is constant. If, at

the top of the circle, the tension in the string is (just about) zero,

what is the tension in the string at the bottom of the circle?

*72. A center fielder throws a baseball of mass 0.17 kg with an ini-

tial speed of 28 m/s and an elevation angle of 30�. What is

the kinetic energy and what is the potential energy of the

1
2

**75. A stone is tied to a string of length R. A man whirls this stone

in a vertical circle. Assume that the energy of the stone

remains constant as it moves around the circle. Show that if

the string is to remain taut at the top of the circle, the speed of

the stone at the bottom of circle must be at least 

**76. In a loop coaster at an amusement park, cars roll along a track

that is bent in a full vertical loop (Fig. 7.34). If the upper por-

tion of the track is an arc of a circle of radius R � 10 m, what

is the minimum speed that a car must have at the top of the

loop if it is not to fall off ? If the highest point of the loop has

a height h � 40 m, what is the minimum speed with which the

car must enter the loop at its bottom? Ignore friction.

25gR .
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baseball when it reaches the highest point of its trajectory?

Ignore friction.

*73. A jet aircraft looping the loop (see Problem 70 in Chapter 4)

flies along a vertical circle of diameter 1000 m with a speed of

620 km/h at the bottom of the circle and a speed of 350 km/h

at the top of the circle. The change of speed is due mainly to

the downward pull of gravity. For the given speed at the

bottom of the circle, what speed would you expect at the top

of the circle if the thrust of the aircraft’s engine exactly bal-

ances the friction force of air (as in the case for level flight)?

*74. A pendulum consists of a mass hanging from a string of

length 1.0 m attached to the ceiling. Suppose that this pendu-

lum is initially held at an angle of 30� with the vertical (see

Fig. 7.33) and then released. What is the speed with which

the mass swings through its lowest point? At what angle will

the mass have one-half of this speed?

1.0 m 30°

FIGURE 7.33 A pendulum.

FIGURE 7.34 A roller

coaster with a full loop.

            



**77. You are to design a roller coaster in which cars start from rest

at a height h � 30 m, roll down into a valley, and then up a

mountain (Fig. 7.35).

(a) What is the speed of the cars at the bottom of the valley?

(b) If the passengers are to feel 8g at the bottom of the

valley, what must be the radius R of the arc of the circle

that fits the bottom of the valley?

(c) The top of the next mountain is an arc of a circle of the

same radius R. If the passengers are to feel 0g at the top of

this mountain, what must be its height h�?
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FIGURE 7.35 Profile of a roller coaster.

qR

FIGURE 7.36 Particle sliding down a sphere.

REVIEW PROBLEMS
80. An apple falls down 35 m from the fifth floor of an apartment

building to the street. The mass of the apple is 0.20 kg. How

much work does gravity do on the apple during this fall?

81. A woman pulls a sled by a rope. The rope makes an upward

angle of 45� with the ground, and the woman exerts a pull of

150 N on the rope. How much work does the woman do if she

pulls this sled 20 m?

82. A man pushes a crate along a flat concrete floor.The mass of the

crate is 120 kg, and the coefficient of friction between the crate

and the floor is �k � 0.50. How much work does the man do if,

pushing horizontally, he moves the crate 15 m at constant speed?

83. A 1500-kg automobile is traveling at 20 m/s on a level road.

How much work must be done on the automobile to acceler-

ate it from 20 m/s to 25 m/s? From 25 m/s to 30 m/s?

84. A woman slowly lifts a 20-kg package of books from the floor

to a height of 1.8 m, and then slowly returns it to the floor.

How much work does she do on the package while lifting?

How much work does she do on the package while lowering?

What is the total work she does on the package? For the

information given, can you tell how much work she expends

internally in her muscles, that is, how many calories she expends?

85. An automobile of 1200 kg is traveling at 25 m/s when the

driver suddenly applies the brakes so as to lock the wheels and

cause the automobile to skid to a stop. The coefficient of

sliding friction between the tires and the road is 0.90.

(a) What is the deceleration of the automobile, and what is

the stopping distance?

(b) What is the friction force of the road on the wheels, and

what is the amount of work that this friction force does

during the stopping process?

*86. A golf ball of mass 50 g released from a a height of 1.5 m

above a concrete floor bounces back to a height of 1.0 m.

(a) What is the kinetic energy of the ball just before contact

with the floor begins? Ignore air friction.

(b) What is the kinetic energy of the ball just after contact

with the floor ends?

(c) What is the loss of energy during contact with the floor?

87. A small aircraft of mass 1200 kg is cruising at 250 km/h at an

altitude of 2000 m.

(a) What is the gravitational potential energy (relative to the

ground), and what is the kinetic energy of the aircraft?

(b) If the pilot puts the aircraft into a dive, what will be the

gravitational potential energy, what will be the kinetic

energy, and what will be the speed when the aircraft

reaches an altitude of 1500 m? Assume that the engine of

the aircraft compensates the friction force of air, so the

aircraft is effectively in free fall.

88. In a roller coaster, a car starts from rest on the top of a 30-m-

high mountain. It rolls down into a valley, and then up a 20-

m-high mountain. What is the speed of the car at the bottom

of the valley, at ground level? What is the speed of the car at

the top of the second mountain?

**78. One portion of the track of a toy roller coaster is bent into a

full vertical circle of radius R. A small cart rolling on the

track enters the bottom of the circle with a speed . Show

that this cart will fall off the track before it reaches the top of

the circle, and find the (angular) position at which the cart

loses contact with the track.

**79. A particle initially sits on top of a large, smooth sphere of

radius R (Fig. 7.36). The particle begins to slide down the

sphere, without friction. At what angular position � will the

particle lose contact with the surface of the sphere? Where

will the particle land on the ground?

22gR

h
R h'

R

            



*89. In a compound bow (see Fig. 7.37), the pull of the limbs of

the bow is communicated to the arrow by an arrangement of

strings and pulleys that ensures that the force of the string

against the arrow remains roughly constant while you pull the

arrow back in preparation for letting it fly (in an ordinary bow,

the force of the string increases as you pull back, which makes

it difficult to continue pulling). A typical compound bow pro-

vides a steady force of 300 N. Suppose you pull an arrow of

0.020 kg back 0.50 m against this force.

(a) What is the work you do?

(b) When you release the arrow, what is the kinetic energy

with which it leaves the bow?

(c) What is the speed of the arrow?

(d) How far will this arrow fly when launched with an eleva-

tion angle of 45�? Ignore friction and assume that the

heights of the launch and impact points are the same.

(e) With what speed will it hit the target?

a luger of 95 kg, including the sled starts from rest and reaches

the finish at 130 km/h. How much energy has been lost to

friction against the ice and the air?

*92. A pendulum consists of a mass m tied to one end of a string of

length l. The other end of the string is attached to a fixed

point on the ceiling. Suppose that the pendulum is initially

held at an angle of 90� with the vertical. If the pendulum is

released from this point, what will be the speed of the pendu-

lum at the instant it passes through its lowest point? What

will be the tension in the string at this instant?

*93. A roller coaster near St. Louis is 34 m high at its highest point.

(a) What is the maximum speed that the car can attain by

rolling down from the highest point if initially at rest?

Ignore friction.

(b) Some people claim that cars reach a maximum speed of

100 km/h. If this is true, what must be the initial speed of

the car at the highest point?

*94. At a swimming pool, a water slide starts at a height of 6.0 m

and ends at a height of 1.0 m above the water level with a

short horizontal segment (see Fig. 7.38). A girl slides down

the water slide.

(a) What is her speed at the bottom of the slide?

(b) How far from the slide does she land in the water?
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6.0 m

1.0 m

FIGURE 7.38 A water slide.

FIGURE 7.37 A compound bow.

*90. A large stone-throwing engine designed by Archimedes could

throw a 77-kg stone over a range of 180 m. Assume that the

stone is thrown at an initial angle of 45� with the horizontal.

(a) Calculate the initial kinetic energy of this stone.

(b) Calculate the kinetic energy of the stone at the highest

point of its trajectory.

*91. The luge track at Lillehammer, the site of the 1994 Olympics,

starts at a height of 350 m and finishes at 240 m. Suppose that

Answers  to  Checkups

Checkup 7.1

1. The normal force, which is perpendicular to the motion, does

no work. The weight of the roller-coaster car does negative

work as the car travels upward, and positive work as the car

moves downward, since it has a component against or along

the motion, respectively. At the peak, the work done by the

weight is zero, since the weight is then perpendicular to the

displacement.

2 . For both the pushing and the pulling, the force is in the same

direction as the displacement (you push when the saw moves

forward and pull when the saw moves backward); thus, the

work is positive in both cases.

3. The dog’s pull is in the same direction as the displacement,

and thus does positive work on the woman. The woman’s pull

is in the opposite direction to the displacement, and thus does

negative work on the dog.

            



4. In each case, the force is opposite to the displacement

(whether pushing against the front or pulling on the rear, the

force is rearward), and so negative work is done on the cart in

both cases.

5. No.The tension provides a centripetal acceleration, which is per-

pendicular to the (tangential) motion, and thus does no work.

6. The work is positive in (b) and (c), where the angle between

the force and displacement is less than 90�; the work is nega-

tive in (a), where the angle is greater than 90�. The work is

zero in (d), where the force is perpendicular to the displace-

ment. The work is largest when the force is most nearly paral-

lel to the displacement; for force vectors (and displacement

vectors) of equal magnitude, this occurs in (c).

7. (E) 4 and 5. To calculate the work done by a constant force, W

� Fs cos �, you do not need to know the mass, acceleration, or

speed. You do need to know the force, the displacement, and

the angle between the two.

Checkup 7.2

1. The work done by a variable force is equal to the area under the

F(x) vs. x curve. Assuming the two plots are drawn to the same

vertical scale, for a displacement from a to b, the upper plot

clearly has a greater area between the F(x) curve and the x axis.

2. If we consider a plot such as Fig. 7.13 and imagine extending

the curve to the left to x � �b [where F(x) � �kb], then we

see that positive work is done on the particle as it moves from

x � �b to x � 0 [where the area between the F(x) curve and

the x axis is above the x axis]. Negative work is done on the

particle as it moves from x � 0 to x � �b [where the area

between the F (x) curve and the x axis is below the origin].

Thus the net work is zero.

3. The work you must do on the spring is the opposite of what

the spring does on you, since the forces involved are an

action–reaction pair. Thus the work you do is the negative of

the result of Example 4, or W � � k(b2 � a2).

4. (D) 3W.The work to stretch from equilibrium is kx2, so the first

stretch requires W � kd 2.The second stretch requires work

Checkup 7.3

1. Yes—the kinetic energy, K � mv2, depends only on the

square of the speed, and not on the direction of the velocity.

Thus if the two equal masses have the same speed, they have

the same kinetic energy.

2. Yes, the kinetic energies can be equal. Since the kinetic energy is

proportional to mass and proportional to the square of the speed

(K � mv2), if the car has twice the speed of the truck (a factor

of 4 contribution to the kinetic energy), then the kinetic energies

can be equal if the truck has 4 times the mass of the car.

1
2

1
2

W � � 1
2 
kx 

2
 ` 2d

d � 1
2 
k (2d) 

2 � 1
2 
kd 

2 � 4W � W � 3W.

1
2

1
2

1
2

3. The kinetic energy of the golf ball is largest at the beginning

(and end, if we neglect air resistance) of the trajectory; at

higher points, the force of gravity has slowed the ball down.

The kinetic energy is smallest at the top of the trajectory,

where there is only a horizontal contribution to the speed

The kinetic energy is not zero while the

ball is in the air (unless the ball was accidentally launched ver-

tically; in that case, the kinetic energy would be zero at the top

of the trajectory).

4. No. For the work–energy theorem to apply, one must con-

sider the net external force on the sled. If traveling at con-

stant velocity (zero acceleration), the total force must be zero

(the horse’s pull does positive work and is canceled by the

friction force, which does negative work), and so the total

work done on the sled is zero. Thus there is no change in

kinetic energy.

5. (E) 9. The kinetic energy, K � mv2, is proportional to the

square of the speed; thus increasing the speed by a factor of 3

increases the kinetic energy by a factor of 9.

Checkup 7.4

1. As in Example 8, the velocity at the bottom depends only on

the height of release (the cars do not even have to have the

same mass!); thus, the upper roller coaster will provide the

larger speed at the bottom, since �y is greater.

2. The gravitational potential energy U decreases as the piano is

brought to street level from the first house; U remains con-

stant during the trip to the nearby house (assuming travel

over flat ground); then, the gravitational potential energy

increases back to its original value as the piano is brought up

to the second floor of the second house (assuming similar

houses).

3. No. At constant speed, K is constant; since U decreases as the

truck moves down, E � K � U decreases also, and so is not

conserved.

4. Since both the girl and the boy change height by the same

amount, they both reach the pool with the same speed (at any

vertical height, they have the same speed, but the boy’s velocity

has a horizontal component, so his vertical velocity is slower

than that of the girl). Since the girl’s velocity is all vertical, a

larger vertical velocity implies that she reaches the pool first.

5. (A) As in Example 8, the speed at the bottom (starting

from rest) is proportional to the square root of the initial

height. Thus, for twice the height, the speed of the first bicy-

clist will be times as large at the bottom.22 

22. 

1
2

(v � 2v2
x � v2

y  ).

234 CHAPTER 7 Work and Energy

            



C O N C E P T S  I N  C O N T E X T
The two orange areas in the middle of this satellite image are the reservoirs

of the hydroelectric pumped-storage plant on Brown Mountain in New

York State. When full, the upper reservoir (at right) holds 19 million cubic

meters of water. This reservoir is linked to the lower reservoir at the base,

part of the Schoharie Creek, by a 320-m vertical shaft bored through the

mountain. The water flowing out of this shaft drives four large turbines

that generate electric power. During periods of low demand, the turbines

are operated in reverse, so they pump water back into the upper reservoir.

With the concepts developed in this chapter we can address questions

such as:

? How do pumped-storage power plants complement other power

plants? (Physics in Practice: Hydroelectric Pumped Storage, page 242)

? What is the speed of water spurting out of the shaft at the bottom?

(Example 3, page 242)

Conservation
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? How much gravitational potential energy is stored in the upper reservoir, and

how much available electric energy does this represent? (Example 5, page 249)

? When generating power at its maximum capacity, at what rate does the power

plant remove water from the upper reservoir? How many hours can it run?

(Example 10, page 257)

In the preceding chapter we found how to formulate a law of conservation of mechan-

ical energy for a particle moving under the influence of the Earth’s gravity. Now we

will seek to formulate the law of conservation of mechanical energy when other forces

act on the particle—such as the force exerted by a spring—and we will state the general

law of conservation of energy. As in the case of motion under the influence of gravity, the

conservation law permits us to deduce some features of the motion without having to

deal with Newton’s Second Law.

8.1 POTENTIAL  ENERGY OF 
A CONSERVATIVE FORCE

To formulate the law of conservation of energy for a particle moving under the influ-

ence of gravity, we began with the work–energy theorem [see Eq. (7.24)],

(8.1)

We then expressed the work W as a difference of two potential energies [see Eq. (7.30)],

(8.2)

This gave us

from which we immediately found the conservation law for the sum of the kinetic and

potential energies, K2 � U2 � K1 � U1, or

(8.3)

As an illustration of this general procedure for the construction of the conserva-

tion law for mechanical energy, let us deal with the case of a particle moving under

the influence of the elastic force exerted by a spring attached to the particle. If the par-

ticle moves along the x axis and the spring lies along this axis, the force has only an

x component Fx, which is a function of position:

(8.4)

Here, as in Section 6.2, the displacement x is measured from the relaxed position of

the spring.The crucial step in the construction of the conservation law is to express the

work W as a difference of two potential energies. For this purpose, we take advantage

of the result established in Section 7.2 [see Eq. (7.17)], according to which the work

done by the spring force during a displacement from x1 to x2 is

(8.5)

This shows that if we identify the elastic potential energy of the spring as

(8.6)U � 1
2 kx2

W � 1
2 kx2

1 � 1
2kx2

2

Fx (x) � �kx

E � K � U � [constant]

K2 � K1 � �U2 � U1

W � �U2 � U1

K2�K1 � W
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potential energy of spring

JOSEPH LOUIS, COMTE LAGRANGE
(1736–1813) French mathematician and

theoretical astronomer. In his elegant mathe-

matical treatise Analytical Mechanics,

Lagrange formulated Newtonian mechanics in

the language of advanced mathematics and

introduced the general definition of the

potential-energy function. Lagrange is also

known for his calculations of the motion of

planets and for his influential role in securing

the adoption of the metric system of units.
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then the work is, indeed, the difference between two potential energies

and . According to Eq. (8.6), the potential energy

of the spring is proportional to the square of the displacement. Figure 8.1

gives a plot of this elastic potential energy.

The potential energy of the spring represents the capacity of the

spring to do work by virtue of its deformation. When we compress a

spring, we store latent work in it, which we can recover at a later time by

letting the spring push against something. An old-fashioned watch,

operated by a wound spring, illustrates this storage of energy in a spring

(however, the springs in watches are not coil springs, but spiral springs,

which are compressed by turning the knob of the watch).

As in the case of the particle moving under the influence of gravity,

we conclude that for the particle moving under the influence of the spring

force, the sum of the kinetic and elastic potential energies is constant,

(8.7)

This equation gives us some information about the general features of the motion;

it shows how the particle trades speed for an increase in the distance from the relaxed

position of the spring. For instance, an increase of the magnitude of x requires a decrease

of the speed v so as to keep the sum constant.

A child’s toy gun shoots a dart by means of a compressed spring.

The constant of the spring is k � 320 N/m, and the mass of

the dart is 8.0 g. Before shooting, the spring is compressed by 6.0 cm, and the dart

is placed in contact with the spring (see Fig. 8.2).The spring is then released. What

will be the speed of the dart when the spring reaches its relaxed position?

SOLUTION: The dart can be regarded as a particle moving under the influence

of a force Fx � �kx, with a potential energy U � . Taking the positive x axis

along the direction of motion, the initial value of x is negative (x1 � �6.0 cm);

also, the initial speed is zero. According to Eq. (8.7), the initial energy is

(8.8)

When the spring reaches its relaxed position (x2 � 0), the energy will be

(8.9)

Conservation of energy demands that the right sides of Eqs. (8.8) and (8.9)

be equal:

(8.10)

If we cancel the factors of  in this equation, divide both sides by m, and take

the square root of both sides, we find that the speed of the dart as it leaves the

spring at x2�0 is

(8.11)

 � B
320 N/m

0.0080 kg
� (�0.060 m)2 � 12 m/s

 v2 � B
k

m
 x2

1

1
2

1
2mv2

2 � 1
2kx2

1

E � 1
2mv2

2 � 1
2kx2

2 � 1
2mv2

2 � 0

E � 1
2mv2

1 � 1
2kx2

1 � 0 � 1
2kx2

1

1
2 kx2

EXAMPLE 1

1
2 mv2 � 1

2 kx2

E � K � U � 1
2mv2 � 1

2kx2 � [constant]

U2 � 1
2 kx2

2U1 � 1
2 kx2

1

1

2

3

J
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U (x)

4 

x

Plot of the elastic

potential energy

U = 
2 

kx2 is a 

parabola.

1

FIGURE 8.1 Plot of the potential energy of

a spring as a function of the displacement x.

In this plot, the spring constant is k � 1 N/m.

6.0 cm

dart position
when spring
is relaxed

Compressed spring
stores energy.

FIGURE 8.2 A toy gun. The spring

is initially compressed 6.0 cm.
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PROBLEM-SOLVING TECHNIQUES ENERGY CONSERVATION

To obtain an expression for the total mechanical energy, you

must include terms for the different kinds of energy that are

present:

1 Begin with an expression for the energy at one point

[Eq. (8.8)].

2 And an expression for the energy at another point 

[Eq. (8.9)].

3 Then use energy conservation to equate these expres-

sions [Eq. (8.10)].

With the appropriate expression for the mechanical

energy, you can apply energy conservation to solve some prob-

lems of motion. As illustrated in the preceding example, this

involves the three steps outlined in Section 7.4 and 8.1.

CONTRIBUTIONS TO THE MECHANICAL ENERGY

KIND OF CONTRIBUTION TO TOTAL
ENERGY APPLICABLE IF MECHANICAL ENERGY

Kinetic energy Particle is in K � mv 2

motion

Gravitational Particle is moving
potential up or down near U � mgy
energy the Earth’s surface

Elastic Particle is U � kx2

potential subject to a
energy spring force

1
2

1
2

To formulate the law of conservation of mechanical energy for a particle moving

under the influence of some other force, we want to imitate the above construction. We

will be able to do this if, and only if, the work performed by this force can be expressed

as a difference between two potential energies, that is,

(8.12)

If the force meets this requirement (and therefore permits the construction of a con-

servation law), the force is called conservative. Thus, the force of gravity and the force

of a spring are conservative forces. Note that for any such force, the work done when

the particle starts at the point x1 and returns to the same point is necessarily zero, since,

with x2 � x1, Eq. (8.12) implies

(8.13)

This simply means that for a round trip that starts and ends at x1, the work the force

does during the outward portion of the trip is exactly the negative of the work the

force does during the return portion of the trip, and therefore the net work for the

round trip is zero (see Fig. 8.3). Thus, the energy supplied by the force is recoverable:

the energy supplied by the force during motion in one direction is restored during the

return motion in the opposite direction. For instance, when a particle moves down-

ward from some starting point, gravity performs positive work; and when the particle

moves upward, returning to its starting point, gravity performs negative work of a

magnitude exactly equal to that of the positive work.

The requirement of zero work for a round trip can be used to discriminate between

conservative and nonconservative forces. Friction is an example of a nonconservative force.

If we slide a metal block through some distance along a table and then slide the block

back to its starting point, the net work is not zero. The work performed by the friction

force during the outward portion of the motion is negative, and the work performed

by the friction force during the return portion of the trip is also negative—the friction

W � �U1 � U1 � 0

W � �U2 � U1

y

x

x1

O

Work is done during
outward trip.

Opposite work is done
during inward trip.

FIGURE 8.3 A particle starts at a point x1

and returns to the point x1 after completing

some round trip. If the force is conservative,

the work done is zero, because the work for

the outward portion of the trip is opposite

to that for the inward portion.

             



force always opposes the motion, and the work done by the friction force is always neg-

ative. Thus, the work done by the friction force cannot be expressed as a difference

between two potential energies, and we cannot formulate a law of conservation of

mechanical energy if friction forces are acting. However, as we will see in Section 8.3,

we can formulate a more general law of conservation of energy, involving kinds of energy

other than mechanical, which remains valid even when there is friction.

In the case of one-dimensional motion, a force is conservative whenever it can be

expressed as an explicit function of position, Fx � Fx(x). (Note that the friction force

does not fit this criterion; the sign of the friction force depends on the direction of

motion, and therefore the friction force is not uniquely determined by the position x.)

For any such force Fx (x), we can construct the potential energy function by integra-

tion. We take a point x0 as reference point at which the potential energy is zero. The

potential energy at any other point x is constructed by evaluating an integral  (in the

following equations, the integration variables are indicated by primes to distinguish

them from the upper limits of integration):

To check that this construction agrees with Eq. (8.12), we examine U1 � U2:

By one of the basic rules for integrals (see Appendix 4), the integral changes sign when

we reverse the limits of integration. Hence

And by another basic rule, the sum of an integral from x1 to x0 and an integral from

x0 to x2 is equal to a single integral from x1 to x2. Thus

(8.15)

Here the right side is exactly the work done by the force as the particle moves from x1

to x2, in agreement with Eq. (8.12). This confirms that our construction of the poten-

tial energy is correct.

In the special case of the spring force Fx(x) � �kx, our general construction (8.14)

of the potential energy immediately yields the result (8.6), provided we take x0 � 0.

For a particle moving under the influence of any conservative force, the total

mechanical energy is the sum of the kinetic energy and the potential energy; as before,

this total mechanical energy is conserved:

(8.16)

or

(8.17)E � 1
2mv2 � U � [constant]

E � K � U � [constant]

U1�U2 ��
x2

x1

Fx (x�) dx�

U1�U2 � �
x0

x1

Fx (x�) dx� � �
x2

x0

Fx (x�) dx�

U1�U2 � U (x1) � U (x2) � ��
x1

x0

Fx (x�) dx� � �
x2

x0

Fx (x�) dx�
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(8.14)U (x) � ��
x

x0

Fx (x�) dx� potential energy as integral of force 

conservation of mechanical energy

             



SOLUTION: According to Eq. (8.14),

In the compact notation of tables of integrals, Hence 

It is usually convenient to take x0 � � as the reference point, with U0 � 0 at 

x � �. With this choice,

(8.19)

COMMENT: Note that for a repulsive force (A � 0), the potential energy decreases

with x (see Fig. 8.5a), and for an attractive force (A 	 0), the potential energy

increases with x (the potential energy is large and negative near x � 0, and it increases

toward zero as x increases; see Fig. 8.5b).

U (x) �
A

x

U (x) � � B� 

A

x�
R 2

x

x

0

� �
 
B� 

A

x
� a� 

A

x0

bR �
A

x
�

A

x0

�(1/x�2) dx� � �1/x�.

U (x) � ��
x

x0

A

x�2
 dx�

As we will see in later chapters, the inverse-square force plays

a large role in physics—gravitational forces are inverse square,

and electric forces are inverse square. If we consider a particle that can move in

only one dimension along the positive x axis, this force has the form

(8.18)

where A is a constant. The point x � 0 is called the center of force. If A is pos-

itive, the force is repulsive (Fx is positive, and the force therefore pushes a par-

ticle on the positive x axis away from the center of force); if A is negative, the

force is attractive (Fx is negative, and the force pulls the particle toward the

center of force). The magnitude of the force is very large near x � 0, and it

decreases as the distance from this point increases (Figs. 8.4a and b). What is

the potential energy for this force?

Fx (x) �
A

x 
2

EXAMPLE 2
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(a) 

Fx

x
0 1 2 3 4 m

1N

2
1

4
1

4
3 Force is positive

(away from origin;
repulsive).

FIGURE 8.4 The inverse-square force A/x2 as a function of x, (a) for a

positive value of A (repulsive force; A � 1 N
m2) and (b) for a negative value

of A (attractive force; A � �1 N.m2 ).

(b) 

Fx

1 2 3 4 m

–1

0

– 4
3

2
1–

4
1–   N

Force is negative
(toward origin;
attractive).
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FIGURE 8.5 The potential A/x as a function of x, (a) for a positive value

of A and (b) for a negative value of A.

For both the spring force and the inverse-square force, the force can be expressed

in terms of the potential energy as Fx(x) � �dU/dx; that is, the force is the negative

of the derivative of the potential energy.This relationship holds generally, for any kind

of conservative force. We can see this by examining the change in potential energy

produced by a small displacement dx. From Eq. (8.12) we see that if the points x1 and

x2 are separated by a small distance dx � x2 � x1, then [see also Eq. (7.15)]

(8.20)

and if we divide this by dx, we obtain

(8.21)

This relation gives us a quick way to calculate the force if the potential energy is known.

From Eq. (8.21) we see that the force Fx is positive wherever the potential is a

decreasing function of x, that is, wherever the derivative dU/dx is negative. Conversely,

the force Fx is negative wherever the potential is an increasing function of x, that is,

wherever the derivative dU/dx is positive.This is in agreement with the result we found

for repulsive and attractive forces in Example 2.

Although in this section we have focused on one-dimensional motion, the crite-

rion of zero work for a round trip is also valid for conservative forces in two or three

dimensions. In one dimension, the path for a round trip is necessarily back and forth

along a straight line; in two or three dimensions, the path can be of any shape, provided

it forms a closed loop that starts and ends at the same point.

Furthermore, the law of conservation of mechanical energy is valid not only for

the motion of a single particle, but also for the motion of more general systems, such

as systems consisting of solids, liquids, or gases. When applying the conservation law

to the kinetic and potential energies of such bodies, it may be necessary to take into

account other forms of energy, such as the heat produced by friction and stored in the

bodies (see Section 8.3). However, if such other forms of energy stored in the bodies

are constant, then we can ignore them in our examination of the motion, as illustrated

in the following example of the motion of water in a pipe.

Fx � � 

dU

dx

dU � U2 � U1 � �dW � �Fx dx

force as derivative of potential

U

(a) 

x
0 1 2 3 4 m

1 J

2
1

4
1

4
3

For repulsive force,
dU/dx is negative.

x

(b) 

U
0 1 2 3 4 m

–1

– 4
3

2
1–

4
1–    J

For attractive force,
dU/dx is positive.
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PHYSICS IN PRACTICE HYDROELECTRIC PUMPED STORAGE

The demand for electric energy by industrial and

commercial users is high during working hours,

but low during nights and on weekends. For max-

imum efficiency, electric power companies prefer

to run their large nuclear or coal-fired power plants at a steady,

full output for 24 hours a day, 7 days a week. Thus electric

power companies often have a surplus of electric energy avail-

able at night and on weekends, and they often have a deficit

of energy during peak-demand times, which requires them to

purchase energy from neighboring power companies.

Hydroelectric pumped-storage plants help to deal with this

mismatch between a fluctuating demand and a steady supply.

A hydroelectric pumped-storage plant is similar to an ordi-

nary hydroelectric power plant. It consists of an upper water

reservoir and a lower water reservoir, typically separated by a few

hundred meters in height. Large pipes (penstocks) connect the

upper reservoir to turbines placed at the level of the lower reser-

voir. The water spurting out of the pipes drives the turbines,

which drive electric generators. However, in contrast to an

ordinary hydroelectric plant, the pumped-storage plant can be

operated in reverse.The electric generators then act as electric

motors which drive the turbines in reverse, and thereby pump

water from the lower reservoir into the upper reservoir. At

peak-demand times the hydroelectric storage plant is used for

the generation of electric energy—it converts the gravitational

potential energy of the water into electric energy. At low-

demand times, the hydroelectric storage plant is used to absorb

electric energy—it converts surplus electric energy into grav-

itational potential energy of the water.This gravitational poten-

tial energy can then be held in storage until needed.

The chapter photo shows the reservoirs of a large hydro-

electric pumped-storage plant on Brown Mountain in New

York State.The upper reservoir on top of the mountain is linked

to the lower reservoir at the base by a vertical shaft of more

than 320 m bored through the mountain. Each of the four

reversible pump/turbines (see Fig. 8.17) and motor/generators

in the powerhouse at the base (see Fig. 1) is capable of gener-

ating 260 MW of electric power. The upper reservoir holds

1.9 � 107 m3 of water, which is enough to run the generators

at full power for about half a day.

At the Brown Mountain hydroelectric storage plant, water

from the upper reservoir flows down a pipe in a long vertical

shaft (Fig. 8.6). The pipe ends 330 m below the water level of the (full) upper

reservoir. Calculate the speed with which the water emerges from the bottom of

the pipe. Consider two cases: (a) the bottom of the pipe is wide open, so the pipe

does not impede the downward motion of the water; and (b) the bottom of the pipe

is closed except for a small hole through which water spurts out. Ignore frictional

losses in the motion of the water.

SOLUTION: (a) If the pipe is wide open at the bottom, any parcel of water simply

falls freely along the full length of the pipe.Thus, the pipe plays no role at all in the

motion of the water, and the speed attained by the water is the same as for a reser-

voir suspended in midair with water spilling out and falling freely through a height

h � 330 m. For such free-fall motion, the final speed v can be obtained either from

the equations for uniformly accelerated motion [from Eq. (2.29)] or from energy

conservation [see Eq. (7.41)]. The result is

EXAMPLE 3

FIGURE 1 Powerhouse at the lower reservoir of the Brown

Mountain hydroelectric pumped-storage plant.

Concepts
in

Context

Concepts
in

Context

             



(b) For a closed pipe with a small hole, the motion of a parcel

of water from the top of the upper reservoir to the hole at the bottom

of the pipe is complicated and unknown. However, we can find the

final speed of the water by relying on the law of energy conservation

as applied to the system consisting of the entire volume of water

in the reservoir and the pipe. For this purpose, we must examine the

kinetic and the potential energy of the water.The water spurting out

at the bottom has a large kinetic energy but a low potential energy.

In contrast, the water at the top of the upper reservoir has a high

potential energy, but next to no kinetic energy (while the water

spurts out at the bottom, the water level in the reservoir gradually

decreases; but the speed of this downward motion of the water level

is very small if the reservoir is large, and this speed can be ignored

compared with the large speed of the spurting water).

Consider, then, the energy changes that occur when a mass m of water, say,

1 kg of water, spurts out at the bottom of the pipe while, simultaneously, the water

level of the upper reservoir decreases slightly. As concerns the energy balance, this

effectively amounts to the removal of the potential energy of 1 kg from the top of

the reservoir and the addition of the kinetic energy of 1 kg at the bottom of the pipe.

All the water at intermediate locations, in the pipe and the reservoir, has the same

energy it had before. Thus, energy conservation demands that the kinetic energy

of the mass m of water emerging at the bottom be equal to the potential energy

of a mass m at the top:

This again gives

that is, the same result as in part (a).

COMMENT: Note that the way the water acquires the final speed of 80 m/s in the

cases (a) and (b) is quite different. In case (a), the water accelerates down the pipe

with the uniform free-fall acceleration g. In case (b), the water flows down the pipe

at a slow and nearly constant speed, and accelerates (strongly) only at the last

moment, as it approaches the hole at the bottom. However, energy conservation

demands that the result for the final speed of the emerging water be the same in

both cases.

Checkup 8.1

QUESTION 1: The potential energy corresponding to the spring force F � �kx is

Suppose that some new kind of force has a potential energy .

How does this new kind of force differ from the spring force?

QUESTION 2: A particle moves along the positive x axis under the influence of a con-

servative force. Suppose that the potential energy of this force is as shown in Fig. 8.5a.

Is the force directed along the positive x direction or the negative x direction?

U � �1
2 kx2U � 1

2 kx2.

✔

v � 32gh � 80 m/s

1
2mv2 � mgh

v � 32gh �32 � 9.81 m/s2 � 330 m � 80 m/s
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power plant chamber

intake

reservoir

discharge

FIGURE 8.6 Cross-sectional view of hydroelectric

pumped-storage power plant.

             



QUESTION 3: Suppose that the force acting on a particle is given by the function

Fx � ax3 � bx2, where a and b are constants. How do we know that the work done by

this force during a round trip from, say, x � 1 back to x � 1 is zero?

QUESTION 4: Is the equation W � U1�U2 valid for the work done by every kind of

force? Is the equation W � K2 � K1 valid for the work done by each individual force

acting on a particle?

(A) Yes; yes (B) Yes; no (C) No; yes (D) No; no

8.2 THE CURVE OF POTENTIAL  ENERGY

If a particle of some given energy is moving in one dimension under the influence of

a conservative force, then Eq. (8.17) permits us to calculate the speed of the particle

as a function of position. Suppose that the potential energy is some known function

U � U (x); then Eq. (8.17) states

(8.22)

or, rearranging,

(8.23)

Since the left side of this equation is never negative, we can immediately conclude that

the particle must always remain within a range of values of x for which U (x) � E.

If U (x) is increasing and the particle reaches a point at which U (x) � E, then v � 0; that

is, the particle will stop at this point, and its motion will reverse. Such a point is called

a turning point of the motion.

According to Eq. (8.23), v2 is directly proportional to E � U (x); thus, v2 is large

wherever the difference between E and U (x) is large. We can therefore gain some

insights into the qualitative features of the motion by drawing a graph of potential

energy as a function of x on which it is possible to display the difference

between E and U (x). Such a graph of U (x) vs. x is called the curve of

potential energy. For example, Fig. 8.7 shows the curve of potential energy

for an atom in a diatomic molecule. Treating the atom as a particle, we can

indicate the value of the energy of the particle by a horizontal line in the

graph (the red line in Fig. 8.7). We call this horizontal line the energy level

of the particle. At any point x, we can then see the difference between E and

U (x) at a glance; according to Eq. (8.23), this tells us v2. For instance, sup-

pose that a particle has an energy E � E1. Figure 8.7 shows this energy

level. The particle has maximum speed at the point x � x0, where the sep-

aration between the energy level and the potential-energy curve is maximum.

The speed gradually decreases as the particle moves, say, toward the right.

The potential-energy curve intersects the energy level at x � a; at this point

the speed of the particle will reach zero, so this point is a turning point of

the motion. The particle then moves toward the left, again attaining the

same greatest speed at x � x0. The speed gradually decreases as the parti-

cle continues to move toward the left, and the speed reaches zero at x � a�,

the second turning point of the motion. Here the particle begins to move

toward the right, and so on. Thus the particle continues to move back and

forth between the two turning points—the particle is confined between

the two turning points.The regions x � a and x 	 a� are forbidden regions;

v2 �
2
m [E � U (x)]

E � 1
2mv2 � U (x)
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U

x
0

E = E1

–U0

a'
x0

a

Forbidden regions,
where E < U.

Motion is confined
to this region between
the turning points.

For any x, this
difference E – U(x) is
the kinetic energy.

Throughout the
motion, the particle
has this total energy.

FIGURE 8.7 Potential-energy curve for an atom in a

diatomic molecule. The horizontal line (red) is the energy

level. The turning points are at x � a and at x � a�.

             



only the region a� � x � a is permitted. The particle is said to be in a bound

orbit. The motion is periodic, that is, repeats again and again whenever the par-

ticle returns to its starting point.

The location of the turning points depends on the energy. For a particle

with a lower energy level, the turning points are closer together. The lowest

possible energy level intersects the potential-energy curve at its minimum

(see E � �U0 in Fig. 8.8); the two turning points then merge into the single

point x � x0. A particle with this lowest possible energy cannot move at all—

it remains stationary at x � x0. Note that the potential-energy curve has zero

slope at x � x0; this corresponds to zero force, Fx � �dU/dx � 0. A point

such as x � x0, where the force is zero, is called an equilibrium point. The

point x � x0 in Fig. 8.8 is a stable equilibrium point, since, after a small dis-

placement, the force pushes the particle back toward that point. In contrast,

at an unstable equilibrium point, after a small displacement, the force pushes

the particle away from the point (see the point x1 for the potential-energy

curve shown in Fig. 8.9); and at a neutral equilibrium point no force acts

nearby (see the point x2 in Fig. 8.9). Equivalently, since the force is zero at an

equilibrium point, the stable, unstable, and neutral equilibrium points corre-

spond to negative, positive, or zero changes in the force with increasing x,

that is, to negative, positive, or zero values of dFx �dx. But dFx �dx � �d2U�dx2, so the

stable and unstable equilibrium points respectively correspond to positive and nega-

tive second derivatives of the function U (x); in the former case the plot of U (x) curves

upward, and in the latter, downward (see Fig. 8.9).

In Fig. 8.7, the right side of the potential-energy curve never rises above U � 0.

Consequently, if the energy level is above this value (for instance, E � E2; see Fig. 8.10),

then there is only one single turning point on the left, and no turning point on the

right. A particle with energy E2 will continue to move toward the right forever; it is not

confined. Such a particle is said to be in an unbound orbit.

The above qualitative analysis based on the curve of potential energy cannot tell

us the details of the motion such as, say, the travel time from one point to another. But

the qualitative analysis is useful because it gives us a quick survey of the types of motion

that are possible for different values of the energy.
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U

x
0

lowest possible
energy level

stable
equilibrium
point

E = –U0

x0

–U0

Particle remains
stationary (K = 0)
when E = –U0.

FIGURE 8.8 The energy level (red) coincides with

the minimum of the potential-energy curve.

xx0 x2x1

U

Stable 
equilibrium
point

Unstable 
equilibrium
point

Neutral
equilibrium
point

FIGURE 8.9 Types of equilibrium points. At

the stable, unstable, and neutral equilibrium

points, respectively, the potential-energy curve

has a minimum, has a maximum, or is flat.

U

x
0

–U0

a' x 0

E = E2

Since E2 > U, particle
will keep moving
to the right forever.

FIGURE 8.10 The energy level (red) is above the

maximum height the potential-energy curve attains

at its right. There is only one turning point, at x � a�.

             



Some fanatics, in search of dangerous thrills, jump off high

bridges or towers with bungee cords (long rubber cords) tied

to their ankles (Fig. 8.11). Consider a jumper of mass 70 kg, with a 9.0-m cord

tied to his ankles. When stretched, this cord may be treated as a spring, of spring

constant 150 N/m. Plot the potential-energy curve for the jumper, and from this

curve estimate the turning point of the motion, that is, the point at which the

stretched cord stops the downward motion of the jumper.

SOLUTION: It is convenient to arrange the x axis vertically upward, with the origin

at the point where the rubber cord becomes taut, that is, 9.0 m below the jump-off

point (see Fig. 8.12a). The potential-energy function then consists of two pieces.

For x � 0, the rubber cord is slack, and the potential energy is purely gravitational:

U � mgx for x � 0

For x 	 0, the rubber cord is stretched, and the potential energy is a sum of gravi-

tational and elastic potential energies:

With the numbers specified for this problem,

� 687x for x � 0 (8.24)

and

� 687x � 75x2 for x 	 0 (8.25)

where x is in meters and U in joules. Figure 8.12b gives the plot of the curve of

potential energy, according to Eqs. (8.24) and (8.25).

At the jump-off point x � �9.0 m, the potential energy is U � 687x � 687 �

9.0 J � 6180 J.The red line in Fig. 8.12b indicates this energy level.The left inter-

section of the red line with the curve indicates the turning point at the lower end

of the motion. By inspection of the plot, we see that this turning point is at x �
�15 m.Thus, the jumper falls a total distance of 9.0 m � 15 m � 24 m before his

downward motion is arrested.

We can accurately calculate the position of the lower turning point (x 	 0)

by equating the potential energy at that point with the initial potential energy:

This provides a quadratic equation of the form ax2 � bx � c � 0:

75x2 � 687x � 6180 � 0

This has the standard solution or

� �14.7 m � �15 m

in agreement with our graphical result. Here we have chosen the negative solu-

tion, since we are solving for x at the lower turning point using the form (8.25), which

is valid only for x 	 0.

x �
�687; 3 (687)2 � 4 � 75 � 6180

2 � 75

x � (�b ;2b2 � 4ac )�2a,

687x � 75x2 � 6180  J

U � 70 kg � 9.81 m/s2 � x � 1
2 � 150 N/m � x2

 U � 70 kg � 9.81 m/s2 � x

U � mgx � 1
2kx2  for x 	 0

EXAMPLE 4
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FIGURE 8.11 Bungee jumping.

             



COMMENTS: If there were no friction, the motion would reverse, and the jumper

would ascend to the bridge and bang against it. However, like a bouncing ball, the

rubber cord has some energy loss due to friction within the material, and the jumper

will not bounce back as high as the starting point.

Bungee jumping is a dangerous stunt. The human body has poor tolerance to

deceleration in the head-down position.The pooling of blood in the head can lead

to loss of consciousness (“redout”), rupture of blood vessels, eye damage, and tem-

porary blindness. And in several instances, jumpers were killed by smashing their

heads into the ground or by becoming entangled in their cords during the fall.

Checkup 8.2

QUESTION 1: A particle moving in one dimension under the influence of a given con-

servative force has either no turning point, one turning point, or two turning points,

depending on the energy. Does the number of turning points increase or decrease

with the energy? Is there any conceivable value of the energy that will result in three

turning points?

QUESTION 2: By examining the curve of potential energy in Fig. 8.12, estimate at what

points the bungee jumper attains his maximum downward speed and his maximum

acceleration.

QUESTION 3: A particle moving under the influence of the spring force has a positive

energy E � 50 J. How many turning points are there for this particle?

(A) 1 (B) 2 (C) 3 (D) 0

✔
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0

(a) (b)

x = 9.0 m

x    0

jump-off
point

turning
point

taut cord
point

U(x)

x

0 10–10–20

5 000

10 000 J

20 m

E

x1 x0

For x     0, the
cord is slack,
so U = mgx.

For x    0, the
cord is taut, so
U = mgx +   kx 2. 1

 2

FIGURE 8.12 (a) The origin for the x

coordinate is at the point where the rubber

cord becomes taut. The jump-off point is at

x � 9.0 m, and the turning point is at some

negative value of x. (b) Curve of potential

energy for the bungee jumper. The red line

indicates the energy level. This line intersects

the curve at approximately x � �15 m. This

is the turning point for the jumper.

             



8.3 OTHER FORMS OF ENERGY

If the forces acting on a particle are conservative, then the mechanical energy of the par-

ticle is conserved. But if some of the forces acting on the particle are not conservative,

then the mechanical energy of the particle—consisting of the sum of the kinetic energy

and the net potential energy of all the conservative forces acting on the particle—will

not remain constant. For instance, if friction forces are acting, they do negative work

and thereby decrease the mechanical energy of the particle.

However, it is a remarkable fact about our physical universe that whenever mechan-

ical energy is lost by a particle or some other body, this energy never disappears—it is merely

changed into other forms of energy. Thus, in the case of friction, the mechanical energy

lost by the body is transformed into kinetic and potential energy of the atoms in the

body and in the surface against which it is rubbing. The energy that the atoms acquire

in the rubbing process is disorderly kinetic and potential energy—it is spread out

among the atoms in an irregular, random fashion. At the macroscopic level, we per-

ceive the increase of the disorderly kinetic and potential energy of the rubbed sur-

faces as an increase of temperature. Thus, friction produces heat or thermal energy.

(You can easily convince yourself of this by vigorously rubbing your hands against

each other.)

Heat is a form of energy, but whether it is to be regarded as a new form of energy

or not depends on what point of view we adopt. Taking a macroscopic point of view,

we ignore the atomic motions; then heat is to be regarded as distinct from mechani-

cal energy.Taking a microscopic point of view, we recognize heat as kinetic and poten-

tial energy of the atoms; then heat is to be regarded as mechanical energy. (We will

further discuss heat in Chapter 20.)

Chemical energy and nuclear energy are two other forms of energy. The former is

kinetic and potential energy of the electrons within the atoms; the latter is kinetic and

potential energy of the protons and neutrons within the nuclei of atoms. As in the case

of heat, whether these are to be regarded as new forms of energy depends on the point

of view.

Electric and magnetic energy are forms of energy associated with electric charges

and with light and radio waves. (We will examine these forms of energy in Chapters 25

and 31.)

Table 8.1 lists some examples of different forms of energy. All the energies in

Table 8.1 are expressed in joules, the SI unit of energy. However, for reasons of tradi-

tion and convenience, some other energy units are often used in specialized areas of

physics and engineering.

The energy of atomic and subatomic particles is usually measured in electron-

volts (eV), where

1 electron-volt � 1 eV � 1.60 � 10�19  J (8.26)

Electrons in atoms typically have kinetic and potential energies of a few eV.

The energy supplied by electric power plants is usually measured in kilowatt-hours

(kW
h), where

1 kilowatt-hour � 1 kW
h � 3.60 � 106  J (8.27)

The electric energy used by appliances such as vacuum cleaners, hair dryers, or toast-

ers during one hour of operation is typically 1 kilowatt-hour.

And the thermal energy supplied by the combustion of fuels is often expressed in

kilocalories (kcal):
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(1821–1894) Prussian surgeon, biologist,
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and physics of vision and hearing to the mea-

surement of the speed of light and studies in

theoretical mechanics. Helmholtz formulated

the general Law of Conservation of Energy,

treating it as a consequence of the basic laws of

mechanics and electricity.
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1 kilocalorie � 1 kcal � 4.187 � 103  J (8.28)

or in British thermal units (Btu):

1 Btu � 1.055 � 103 J (8.29)

We will learn more about these units in later chapters.

All these forms of energy can be transformed into one another. For example, in an

internal combustion engine, chemical energy of the fuel is transformed into heat and

kinetic energy; in a hydroelectric power station, gravitational potential energy of the

water is transformed into electric energy; in a nuclear reactor, nuclear energy is trans-

formed into heat, light, kinetic energy, etc. However, in any such transformation process,

the sum of all the energies of all the pieces of matter involved in the process remains

constant: the form of the energy changes, but the total amount of energy does not change.

This is the general Law of Conservation of Energy.

At the Brown Mountain hydroelectric pumped-storage plant,

the average height of the water in the upper reservoir is 320 m

above the lower reservoir, and the upper reservoir holds 1.9 � 107 m3 of water.

Expressed in kW
h, what is the gravitational potential energy available for con-

version into electric energy?

SOLUTION: A cubic meter of water has a mass of 1000 kg. Hence the total mass

of water is 1.9 � 1010 kg, and the gravitational potential energy is

U � mgh � 1.9 � 1010  kg � 9.81 m/s2 � 320 m � 6.0 � 1013 J

EXAMPLE 5
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Nuclear fuel in the Sun 1 � 1045 J

Explosion of a supernova 1 � 1044 J

Fossil fuel available on Earth 2.0 � 1023 J

Yearly energy expenditure of the United States (a) 8 � 1019 J

Volcanic explosion (Krakatoa) 6 � 1018 J

Annihilation of 1 kg of matter–antimatter 9.0 � 1016 J

Explosion of thermonuclear bomb (1 megaton) 4.2 � 1015 J

Gravitational potential energy of airliner (Boeing 747 at 10000 m) 2 � 1010 J

Combustion of 1 gal of gasoline (b) 1.3 � 108 J

Daily food intake of man (3000 kcal) 1.3 � 107 J

Explosion of 1 kg of TNT 4.6 � 106 J

Metabolization of one apple (110 kcal) 4.6 � 105 J

One push-up (c) 3 � 102 J

Fission of one uranium nucleus 3.2 � 10�11 J

Energy of ionization of hydrogen atom 2.2 � 10�18 J

TABLE 8.1 SOME ENERGIES

(a)

(b)

(c)

Concepts
in

Context

law of conservation of energy

             



Expressed in kW
h , this amounts to

(The actual electric energy that can be generated is about 30% less than that,

because of frictional losses during the conversion from one form of energy to the

other. These frictional losses result in the generation of heat.)

The “calorie” used by dietitians to express the energy equivalents

of different foods is actually a kilocalorie, or a “large” calorie.To

measure the energy equivalent of some kind of food—for instance, sugar—a sample

is placed in a bomb calorimeter, a closed vessel filled with oxygen at high pressure

(see Fig. 8.13).The sample is ignited and burned completely (complete oxidation).

The number of calories released in this chemical reaction—for instance, 4.1 kcal for

1.0 g of sugar—tells us the maximum amount of energy that can be extracted from

this food. The human body does not necessarily “burn” food quite as completely,

and the muscles do not convert all of the available chemical energy into mechan-

ical energy. However, energy conservation tells us that from one gram of sugar the

body cannot produce more than 4.1 kcal of mechanical work.

If you eat one spoonful (4.0 g) of sugar, what is the maximum height to which

this permits you to climb stairs? Assume your mass is 70 kg.

SOLUTION: Since 1.0 g of sugar releases 4.1 kcal of energy, the energy equiva-

lent of 4.0 g of sugar is

4.0 � 4.1 kcal � 16.4 kcal � 16.4 kcal � 4.18 � 103 J/kcal � 6.9 � 104  J

When you climb the stairs to a height y, this energy becomes gravitational poten-

tial energy:

mgy � 6.9 � 104 J

from which

In practice, because of the limited efficiency of your body, only about 20% of

the chemical energy of food is converted into mechanical energy; thus, the actual

height you can climb is only about 20 m. (Because of the strong musculature of

the human leg, stair climbing is one of your most efficient activities; other physi-

cal activities are considerably less efficient in converting chemical energy into

mechanical energy.)

Checkup 8.3

QUESTION 1: A parachutist descends at uniform speed. Is the mechanical energy con-

served? What happens to the lost mechanical energy?

✔

y �
6.9 � 104 J

mg
�

6.9 � 104 J

70 kg � 9.81 m/s2
� 100 m

EXAMPLE 6

6.0 � 1013   J �
1 kW.h

3.6 � 106  J
� 1.7 � 107  kW
h
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FIGURE 8.13 A bomb calorimeter.

The sample is ignited electrically, by

a glowing wire.

             



QUESTION 2: You fire a bullet from a rifle. The increase of kinetic energy of the bullet

upon firing must be accompanied by a decrease of some other kind of energy. What

energy decreases?

QUESTION 3: A truck travels at constant speed down a road leading from a mountain

peak to a valley. What happens to the gravitational potential energy of the truck? How

is it dissipated?

QUESTION 4: When you apply the brakes and stop a moving automobile, what hap-

pens to the kinetic energy?

(A) Kinetic energy is converted to gravitational potential energy.

(B) Kinetic energy is converted to elastic potential energy.

(C) Kinetic energy is converted to heat due to frictional forces.

(D) Kinetic energy is converted to chemical energy.

8.4 MASS AND ENERGY

One of the great discoveries made by Albert Einstein early in the twentieth century is

that energy can be transformed into mass, and mass can be transformed into energy.

Thus, mass is a form of energy. The amount of energy contained in an amount m of

mass is given by Einstein’s famous formula

(8.30)

where c is the speed of light, c � 3.00 � 108 m/s. This formula is a consequence of

Einstein’s relativistic physics. It cannot be obtained from Newton’s physics, and its

theoretical justification will have to wait until we study the theory of relativity in

Chapter 36.

The most spectacular demonstration of Einstein’s mass–energy formula is found

in the annihilation of matter and antimatter (as we will see in Chapter 41, particles of

antimatter are similar to the particles of ordinary matter, except that they have opposite

electric charge). If a proton collides with an antiproton, or an electron with an anti-

electron, the two colliding particles react violently, and they annihilate each other in

an explosion that generates an intense flash of very energetic light. According to Eq.

(8.30), the annihilation of just 1000 kg of matter and antimatter (500 kg of each)

would release an amount of energy

E � mc2 � 1000 kg � (3.00 � 108 m/s)2 � 9.0 � 1019 J (8.31)

This is enough energy to satisfy the requirements of the United States for a full year.

Unfortunately, antimatter is not readily available in large amounts. On Earth, antipar-

ticles can be obtained only from reactions induced by the impact of beams of high-

energy particles on a target. These collisions occasionally result in the creation of a

particle–antiparticle pair. Such pair creation is the reverse of pair annihilation. The

creation process transforms some of the kinetic energy of the collision into mass, and

a subsequent annihilation merely gives back the original energy.

But the relationship between energy and mass in Eq. (8.30) also has another aspect.

Energy has mass. Whenever the energy of a body is changed, its mass (and weight) are

changed. The change in mass that accompanies a given change of energy is

E � mc2

8.4 Mass and Energy 251
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For instance, if the kinetic energy of a body increases, its mass (and weight) increase.

At speeds small compared with the speed of light, the mass increment is not notice-

able. But when a body approaches the speed of light, the mass increase becomes very

large.The high-energy electrons produced at the Stanford Linear Accelerator provide

an extreme example of this effect: these electrons have a speed of 99.99999997% of the

speed of light, and their mass is 44000 times the mass of electrons at rest!

The fact that energy has mass indicates that energy is a form of mass. Conversely,

as we have seen above, mass is a form of energy. Hence mass and energy must be

regarded as two aspects of the same thing. The laws of conservation of mass and con-

servation of energy are therefore not two independent laws—each implies the other.

For example, consider the fission reaction of uranium inside the reactor vessel of a

nuclear power plant. The complete fission of 1.0 kg of uranium yields an energy of

8.2 � 1013 J.The reaction conserves energy—it merely transforms nuclear energy into

heat, light, and kinetic energy, but does not change the total amount of energy. The

reaction also conserves mass—if the reactor vessel is hermetically sealed and thermally

insulated from its environment, then the reaction does not change the mass of the

contents of the vessel. However, if we open the vessel during or after the reaction and

let some of the heat and light escape, then the mass of the residue will not match the

mass of the original amount of uranium. The mass of the residues will be about 0.1%

smaller than the original mass of the uranium.This mass defect represents the mass car-

ried away by the energy that escapes. Thus, the nuclear fission reactions merely trans-

form energy into new forms of energy and mass into new forms of mass. In this regard,

a nuclear reaction is not fundamentally different from a chemical reaction. The mass

of the residues in a chemical reaction that releases heat (exothermic reaction) is slightly

less than the original mass. The heat released in such a chemical reaction carries away

some mass, but, in contrast to a nuclear reaction, this amount of mass is so small as to

be quite immeasurable.

As an example of the small mass loss in a chemical reaction,

consider the binding energy of the electron in the hydrogen

atom (one proton and one electron), which is 13.6 eV. What is the fractional

mass loss when an electron is captured by a proton and the binding energy is

allowed to escape?

SOLUTION: In joules, the binding energy is 13.6 eV � 1.60 � 10�19 J�eV �

2.18 � 10�18 J. The mass loss corresponding to this binding energy is

Since the mass of a proton and electron together is 1.67 � 10�27 kg (see Table 5.2),

the fractional mass loss is

This is about a millionth of one percent.

¢m

m
�

2.42 � 10�35 kg

1.67 � 10�27 kg
� 1.45 � 10�8

¢m �
¢E

c 
2

�
2.18 � 10�18  J

(3.00 � 108 m/s )2
� 2.42 � 10�35 kg

EXAMPLE 7
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mass–energy relation ¢m �
¢E

c 
2 (8.32)

             



Checkup 8.4

QUESTION 1: The Sun radiates heat and light. Does the Sun consequently suffer a

loss of mass?

QUEST ION 2: In the annihilation of matter and antimatter, a particle and an

antiparticle—such as a proton and an antiproton, or an electron and an antielectron—

disappear explosively upon contact, giving rise to an intense flash of light. Is energy

conserved in this reaction? Is mass conserved?

QUESTION 3: You heat a potful of water to the boiling point. If the pot is sealed so

no water molecules can escape, then, compared with the cold water, the mass of the boil-

ing water will:

(A) Increase (B) Decrease (C) Remain the same

8.5 POWER

When we use an automobile engine to move a car up a hill or when we use an electric

motor to lift an elevator cage, the important characteristic of the engine is not how

much force it can exert, but rather how much work it can perform in a given amount

of time. The force is only of secondary importance, because by shifting to a low gear

we can make sure that even a “weak” engine exerts enough force on the wheels to

propel the automobile uphill. But the work performed in a given amount of time, or

the rate of work, is crucial, since it determines how fast the engine can propel the car

up the hill. While the car moves uphill, the gravitational force takes energy from the

car; that is, it performs negative work on the car. To keep the car moving, the engine

must perform an equal amount of positive work. If the engine is able to perform this

work at a fast rate, it can propel the car uphill at a fast speed.

The rate at which a force does work on a body is called the power delivered by the

force. If the force does an amount of work W in an interval of time 
t, then the

average power is the ratio of W and 
t :

The instantaneous power is defined by a procedure analogous to that involved in the

definition of the instantaneous velocity. We consider the small amount of work dW

done in the small interval of time dt and take the ratio of these small quantities:

According to these definitions, the engine of your automobile delivers high power

if it performs a large amount of work on the wheels (or, rather, the driveshaft) in a

short time. The maximum power delivered by the engine determines the maximum

speed of which this automobile is capable, since at high speed the automobile loses

energy to air resistance at a prodigious rate, and this loss has to be made good by the

engine. You might also expect that the power of the engine determines the maximum

acceleration of which the automobile is capable. But the acceleration is determined

✔
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(8.34)

P �
W

¢t
(8.33) average power 

instantaneous powerP �
dW

dt
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by the maximum force exerted by the engine on the wheels, and this is not directly

related to the power as defined above.

The SI unit of power is the watt (W), which is the rate of work of one joule per

second:

1 watt � 1 W � 1  J�s

In engineering practice, power is often measured in horsepower (hp) units, where

1 horsepower � 1 hp � 746 W (8.35)

This is roughly the rate at which a (very strong) horse can do work.

Note that multiplication of a unit of power by a unit of time gives a unit of energy.

An example of this is the kilowatt-hour (kW
h), already mentioned in Section 8.3:

1 kilowatt-hour � 1 kW
h � 1 kW � 1 h � 1000 W � 3600s
(8.36)

� 3.6 � 106 J 

This unit is commonly used to measure the electric energy delivered to homes and

factories.

For a constant (or average) power P delivered to a body during a time 
t, the work


W delivered is the rate times the time [see Eq. (8.33)]:

W � P 
t (8.37)

If the rate of doing work P varies with time, then the total work W done between a

time t1 and another time t2 is the sum of the infinitesimal P 
t contributions; that is,

the work done is the integral of the power over time:

(8.38)

An elevator cage has a mass of 1000 kg. How many horse-

power must the motor deliver to the elevator if it is to raise

the elevator cage at the rate of 2.0 m/s? The elevator has no counterweight

(see Fig. 8.14).

SOLUTION: The weight of the elevator is w � mg � 1000 kg � 9.81 m/s2 �
9800 N. By means of the elevator cable, the motor must exert an upward force

equal to the weight to raise the elevator at a steady speed. If the elevator moves

up a distance 
y, the work done by the force is 

W � F 
y (8.39)

To obtain the power, or the rate of work, we must divide this by the time interval 
t :

(8.40)

where v � 
y/
t is the speed of the elevator. With F � 9800 N and v � 2.0 m/s,

we find

P � Fv � 9800 N � 2.0 m/s � 2.0 � 104 W

Since 1 hp � 746 W [see Eq. (8.35)], this equals

P � 2.0 � 104  W �
1 hp

746 W
� 27 hp

P �
¢W

¢t
�

F ¢y

¢t
� F  

¢y

¢t
� Fv

EXAMPLE 8

W ��dW ��
t2

t1

P dt
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JAMES WATT (1736–1819) Scottish

inventor and engineer. He modified and

improved an earlier steam engine and founded

the first factory constructing steam engines.

Watt introduced the horsepower as a unit of

mechanical power.

motor

1000 kg

Elevator ascends with
constant velocity.

Motor steadily
does work.

FIGURE 8.14 Elevator cage and motor.

             



Equation (8.40) is a special instance of a simple formula, which expresses the

instantaneous power as the scalar product of force and velocity. To see this, consider

that when a body suffers a small displacement ds, the force F acting on the body will

perform an amount of work

dW � F�ds (8.41)

or

dW � F ds cos�

where � is the angle between the direction of the force and the direction of the dis-

placement (see Fig. 8.15). The instantaneous power delivered by this force is then

(8.42)

Since ds �dt is the speed v, this expression for the power equals

P � Fv cos � (8.43)

or

A horse pulls a sled up a steep snow-covered street of slope 1:7

(see Fig. 8.16a). The sled has a mass of 300 kg, and the coeffi-

cient of sliding friction between the sled and the snow is 0.12. If the horse pulls par-

allel to the surface of the street and delivers a power of 1.0 hp, what is the maximum

(constant) speed with which the horse can pull the sled uphill? What fraction of

the horse’s power is expended against gravity? What fraction against friction?

SOLUTION: Figure 8.16b is a “free-body” diagram for the sled, showing the weight

(w � mg), the normal force (N � mg cos �), the friction force ( fk � �kN ), and

the pull of the horse (T ). With the x axis along the street and the y axis at right angles

to the street, the components of these forces are

wx � �mg sin � wy � �mg cos �

Nx � 0 Ny � mg cos �

fk,x � ��kmg cos � fk,y � 0

Tx � T Ty � 0

Since the acceleration along the street is zero (constant speed), the sum of the

x components of these forces must be zero:

�mg sin � � 0 � �kmg cos � � T � 0 (8.45)

We can solve this equation for the pull of the horse:

T � mg sin � � �kmg cos � (8.46)

This simply says that the pull of the horse must balance the component of the

weight along the street plus the friction force. The direction of this pull is parallel

to the direction of motion of the sled. Hence, in Eq. (8.43), � � 0, and the power

delivered by the horse is

P � T v � (mg sin � � �kmg cos �)v (8.47)

Solving this equation for v, we find

EXAMPLE 9

P �
dW

dt
� F  

ds

dt
 cos u
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F

q
ds ds is a small displacement

in the direction of motion.

FIGURE 8.15 The force F makes an angle

� with the displacement ds.

(8.44) power delivered by a forceP � F�v

             



(8.48)

For a slope of 1:7, the tangent of the angle of inclination is tan � � 1/7, and, using

a calculator, the inverse tangent of 1/7 gives � � 8.1�. Hence

� 0.98 m/s

The weight of the sled makes an angle of 90.0� � 8.1� � 98.1� with the direction

of motion (see Fig. 8.16b).The power exerted by the weight of the sled is given by

Eq. (8.43), with F � mg and cos � � cos 98.1�:

Pweight � mgv cos 98.1� � 300 kg � 9.81 m/s2 � 0.98 m/s � cos 98.1�

� �406 W � �0.54 hp

Since the total power is 1.0 hp, this says that 54% of the horse’s power is

expended against gravity and, consequently, the remaining 46% against friction.

The friction portion can also be calculated directly.The friction force acts opposite

to the velocity (cos � � �1), and so the power exerted is negative:

Pfriction � �fkv � ��k mg cos � v � �0.12 � 300 kg � 9.81 m/s2 � cos 8.1� � 0.98 m/s

� �343 W � �0.46 hp

v �
746 W

300 kg � 9.81 m/s2 � (sin 8.1� � 0.12 cos 8.1�)

v �
P

mg sin f � mkmg cos f
�

P

mg (sin f � mk cos f)
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Horse’s pull
is parallel to
inclined surface.

x axis is chosen
parallel to inclined
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For constant velocity,
net Fx and net Fy
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Components of 
weight perpendicular 
and parallel to street.

FIGURE 8.16 (a) Horse

dragging a sled up a street.

(b) “Free-body” diagram for

the sled. (c) Components of

the forces.
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Light and heat emitted by the Sun 3.9 � 1026 W

Mechanical power generated by hurricane (a) 2 � 1013 W

Total power used in United States (average) 2 � 1012 W

Large electric power plant �109 W

Jet airliner engines (Boeing 747) (b) 2.1 � 108 W

Automobile engine 1.5 � 105 W

Solar light and heat per square meter at Earth 1.4 � 103 W

Electricity used by toaster 1 � 103 W

Work output of man (athlete at maximum) 2 � 102 W

Electricity used by light bulb 1 � 102 W

Basal metabolic rate for man (average) 88 W

Heat and work output of  bumblebee (in flight) (c) 2 � 10�2 W

Atom radiating light �10�10 W

TABLE 8.2 SOME POWERS

(b)(a) (c)

In the previous example, part of the horse’s work was converted into heat by the

friction between the sled and the snow, and part was converted into gravitational poten-

tial energy. In the following example, gravitational potential energy is converted into

electric energy.

Each of the four generators (Fig. 8.17) of the Brown Mountain

hydroelectric plant generates 260 MW of electric power.

When generating this power, at what rate does the power plant take water from the

upper reservoir? How long does a full reservoir last? See the data in Example 5.

SOLUTION: We will assume that all of the potential energy of the water in the

upper reservoir, at a height of 320 m, is converted into electric energy. The electric

EXAMPLE 10

The above equations all refer to mechanical power. In general, power is the rate at

which energy is transferred from one form of energy to another or the rate at which energy

is transported from one place to another. For instance, an automobile engine converts

chemical energy of fuel into mechanical energy and thermal energy. A nuclear power

plant converts nuclear energy into electric energy and thermal energy. And a high-

voltage power line transports electric energy from one place to another.Table 8.2 gives

some examples of different kinds of power.

Concepts
in

Context

             



power P � 4 � 260 � 106 W � 1.0 � 109 W must then equal the negative of the

rate of change of the potential energy (see Eq. 7.31):

from which we obtain the rate of change of mass,

Expressed as a volume of water, this amounts to an outflow of 330 m3 per

second. At this rate, the 1.9 � 107 m3 of water in the reservoir will last for 

As mentioned in Example 5, there are also some frictional losses. As a result, the

reservoir will actually be depleted about 30% faster than this, that is, in a bit less

than half a day.

Checkup 8.5

QUESTION 1: (a) You trot along a flat road carrying a backpack. Do you deliver power

to the pack? (b) You trot uphill. Do you deliver power to the pack? (c) You trot down-

hill. Do you deliver power to the pack? Does the pack deliver power to you?

QUESTION 2: To reach a mountaintop, you have a choice between a short, steep road

or a longer, less steep road. Apart from frictional losses, is the energy you have to

expend in walking up these two roads the same? Why does the steeper road require more

of an effort?

QUESTION 3: In order to keep a 26-m motor yacht moving at 88 km/h, its engines

must supply about 5000 hp. What happens to this power?

QUESTION 4: Two cars are traveling up a sloping road, each at a constant speed. The

second car has twice the mass and twice the speed of the first car. What is the ratio of

the power delivered by the second car engine to that delivered by the first? Ignore fric-

tion and other losses.

(A) 1 (B) 2 (C) 4 (D) 8 (E) 16

✔

1.9 � 107m3

330 m3/s
� 5.7 � 104 s � 16 h 

dm

dt
� � 

P

gh
� �

1.0 � 109 W

9.81 m/s2 � 320 m
� �3.3 � 105 kg/s

P � � 

dU

dt
� � 

dm

dt
  gh
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FIGURE 8.17 Turbine generator at

Brown Mountain hydroelectric plant,

shown during installation.
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SUMMARY

CONSERVATIVE FORCE The work done by the

force is zero for any round trip.

PHYSICS IN PRACTICE Hydroelectric Pumped Storage

WORK DONE BY A CONSERVATIVE FORCE

POTENTIAL ENERGY OF A SPRING

CONTRIBUTIONS TO THE MECHANICAL ENERGY

Kinetic energy K � 1
2 mv 

2 (for motion)

Gravitational potential energy U � mgy (near Earth’s surface)

Elastic potential energy U � 1
2kx 

2 (for a spring)

W � �U2 � U1 � �¢U

U � 1
2k x 

2

POTENTIAL ENERGY AS INTEGRAL OF FORCE

FORCE AS DERIVATIVE OF POTENTIAL ENERGY

U (x) � ��
x

x0

Fx (x�) dx�

Fx � � 

dU

dx

If F (x) �
A

x2 
  then U (x) �

A

x
POTENTIAL OF INVERSE-SQUARE FORCE

(for x � 0; attractive for A 	 0, repulsive for A � 0.)

CONSERVATION OF MECHANICAL ENERGY E � 1
2mv 

2 � U � [constant] (8.17)

(8.19)

(8.21)

(8.14)

(8.6)

(8.2)

(page 242)

PROBLEM-SOLVING TECHNIQUES Energy Conservation (page 238)

E � mc2MASS IS A FORM OF ENERGY (8.30)

¢m �
¢E

c 2
ENERGY HAS MASS (8.32)

U (x)

x

U
x

x

U
For repulsive
force, dU/dx

is negative.

For attractive
force, dU/dx

is positive.

U

x
0

E

Energy level

Turning points
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10. Since mass is a form of energy, why don’t we measure mass in

the same units as energy? How could we do this?

11. In order to travel at 130 km/h, an automobile of average size

needs an engine delivering about 40 hp to overcome the

effects of air friction, road friction, and internal friction (in the

transmission and drive train). Why do most drivers think they

need an engine of 150 or 200 hp?

QUEST IONS FOR DISCUSSION

1. A body slides on a smooth horizontal plane. Is the normal

force of the plane on the body a conservative force? Can we

define a potential energy for this force according to the recipe

in Section 8.1?

2. If you stretch a spring so far that it suffers a permanent defor-

mation, is the force exerted by the spring during this operation

conservative?

3. Is there any frictional dissipation of mechanical energy in the

motion of the planets of the Solar System or in the motion of

their satellites? (Hint: Consider the tides.)

4. What happens to the kinetic energy of an automobile during

braking without skidding? With skidding?

5. An automobile travels down a road leading from a mountain

peak to a valley. What happens to the gravitational potential

energy of the automobile? How is it dissipated?

6. Suppose you wind up a watch and then place it into a beaker

full of nitric acid and let it dissolve. What happens to the

potential energy stored in the spring of the watch?

7. News reporters commonly speak of “energy consumption.” Is

it accurate to say that energy is consumed ? Would it be more

accurate to say that energy is dissipated ?

8. The explosive yield of thermonuclear bombs (Fig. 8.18) is

usually reported in kilotons or megatons of TNT. Would the

explosion of a 1-megaton hydrogen bomb really produce 

the same effects as the explosion of 1 megaton of TNT 

(a mountain of TNT more than a hundred meters high)?

9. When you heat a potful of water, does its mass increase? FIGURE 8.18 A thermonuclear explosion.

1 watt � 1 W � 1 J/sSI UNIT OF POWER

P �
¢W

¢t

AVERAGE POWER

P �
dW

dt
INSTANTANEOUS POWER

MECHANICAL POWER DELIVERED BY A FORCE P � F�v � Fv cos �

WORK DONE AT CONSTANT POWER W � P ¢t

WORK DONE WITH TIME-DEPENDENT POWER
W ��

t2

t1

P dt

(8.33)

(8.34)

(8.43; 8.44)

(8.37)

(8.38)
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PROBLEMS

8.1 Poten t ia l  Energy of  a
Conser vat ive Force †

1. The spring used in the front suspension of a Triumph sports

car has a spring constant k � 3.5 � 104 N/m. How far must

we compress this spring to store a potential energy of 100 J?

2. A particle moves along the x axis under the influence of a vari-

able force Fx � 2x3 � 1 (where force is measured in newtons and

distance in meters). Show that this force is conservative; that is,

show that for any back-and-forth motion that starts and ends at

the same place (round trip), the work done by the force is zero.

3. Consider a force that is a function of the velocity of the parti-

cle (and is not perpendicular to the velocity). Show that the

work for a round trip along a closed path can then be different

from zero.

4. The force acting on a particle moving along the x axis is given

by the formula Fx � K/x4, where K is a constant. Find the cor-

responding potential-energy function. Assume that U (x) � 0

for x � �.

5. A 50-g particle moving along the x axis experiences a force 

Fx � �Ax3, where A � 50 N/m3. Find the corresponding

potential-energy function. If the particle is released from rest

at x � 0.50 m, what is its speed as it passes the origin?

6. The force on a particle confined to move along the positive x

axis is constant, Fx � �F0, where F0 � 25 N. Find the corre-

sponding potential-energy function. Assume U (x) � 0 at 

x � 0.

7. A particular spring is not ideal; for a distance x from equilib-

rium, the spring exerts a force Fx � �2x � x3, where x is in

meters and Fx is in newtons. What is the potential-energy

function for this spring?  How much energy is stored in the

spring when it is stretched 1.0 m?  2.0 m? 3.0 m?

8. The force on a particle moving along the x axis is given by

F0 x � �a

Fx � f 0 �a 	 x 	 a

�F0 x � a

where F0 is a constant. What is the potential-energy function

for this force? Assume U (x) � 0 for x � 0.

9. Consider a particle moving in a region where the potential

energy is given by U � 2x2 � x4, where U is in joules and x is in

meters. What is the position-dependent force on this particle?

10. The force on an electron in a particular region of space is

given by F � F0 sin (ax) i, where F0 and a are constants (this

force is achieved with two oppositely directed laser beams).

What is the corresponding potential-energy function?

*11. A bow may be regarded mathematically as a spring. The

archer stretches this “spring” and then suddenly releases it so

that the bowstring pushes against the arrow. Suppose that

when the archer stretches the “spring” 0.52 m, he must exert a

force of 160 N to hold the arrow in this position. If he now

releases the arrow, what will be the speed of the arrow when

the “spring” reaches its equilibrium position? The mass of the

arrow is 0.020 kg. Pretend that the “spring” is massless.

*12. A mass m hangs on a vertical spring of a spring constant k.

(a) How far will this hanging mass have stretched the spring

from its relaxed length?

(b) If you now push up on the mass and lift it until the spring

reaches its relaxed length, how much work will you have

done against gravity? Against the spring?

*13. A particle moving in the x–y plane experiences a conservative

force

F � byi � bx j

where b is a constant.

(a) What is the work done by this force as the particle moves

from x1 � 0, y1 � 0 to x2 � x, y2 � y? 

(Hint: Use a path from the origin to the point x2, y2 con-

sisting of a segment parallel to the x axis and a segment

parallel to the y axis.)

(b) What is the potential energy associated with this force?

Assume that the potential energy is zero when the particle

is at the origin.

*14. The four wheels of an automobile of mass 1200 kg are sus-

pended below the body by vertical springs of constant 

k � 7.0 � 104 N/m. If the forces on all wheels are the same,

what will be the maximum instantaneous deformation of the

springs if the automobile is lifted by a crane and dropped on

the street from a height of 0.80 m?

*15. A rope can be regarded as a long spring; when under tension,

it stretches and stores elastic potential energy. Consider a

nylon rope similar to that which snapped during a giant 

tug-of-war at a school in Harrisburg, Pennsylvania (see

Problem 23 of Chapter 5). Under a tension of 58000 N

(applied at its ends), the rope of initial length 300 m stretches

to 390 m. What is the elastic energy stored in the rope at this

tension? What happens to this energy when the rope breaks?

*16. Among the safety features on elevator cages are spring-loaded

brake pads which grip the guide rail if the elevator cable

should break. Suppose that an elevator cage of 2000 kg has

two such brake pads, arranged to press against opposite sides

of the guide rail, each with a force of 1.0 � 105 N. The friction

coefficient for the brake pads sliding on the guide rail is 0.15.

Assume that the elevator cage is falling freely with an initial

speed of 10 m/s when the brake pads come into action. How

long will the elevator cage take to stop? How far will it travel?

How much energy is dissipated by friction?

† For help, see Online Concept Tutorial 10 at www.ww norton.com/physics
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21. The potential energy of a particle moving in the x–y plane is

U � a/(x2 � y2)1/2, where a is a constant. What is the force on

the particle? Draw a diagram showing the particle at the posi-

tion x, y and the force vector.

22. The potential energy of a particle moving along the x axis is

U (x) � K/x2, where K is a constant. What is the correspon-

ding force acting on the particle?

23. According to theoretical calculations, the potential energy

of two quarks (see the Prelude) separated by a distance r is

U ��r, where � � 1.18 � 1024 eV/m. What is the force

between the two quarks? Express your answer in newtons.

8.2 The Cur ve of  Po ten t ia l  Energy

24. The potential energy of a particle moving along the x axis is 

U (x) � 2x4 � x2, where x is measured in meters and the

energy is measured in joules.

(a) Plot the potential energy as a function of x.

(b) Where are the possible equilibrium points?

(c) Suppose that E � �0.050 J. What are the turning points

of the motion?

(d) Suppose that E � 1.0 J. What are the turning points of

the motion?

25. In Example 4, we determined the turning point for a bungee

jump graphically and numerically. Use the data given in this

example for the following calculations.

(a) At what point does the jumper attain maximum speed?

Calculate this maximum speed.

(b) At what point does the jumper attain maximum accelera-

tion? Calculate this maximum acceleration.

26. The potential energy of one of the atoms in the hydrogen

molecule is

U (x) � U0 [e �2(x�x0)/b � 2e�(x�x0)/b]

with U0 � 2.36 eV, x0 � 0.037 nm, and b � 0.034 nm.2 Under

the influence of the force corresponding to this potential, the

atom moves back and forth along the x axis within certain

limits. If the energy of the atom is E � �1.15 eV, what will be

the turning points of the motion; i.e., at what positions x will

the kinetic energy be zero? [Hint: Solve this problem graphi-

cally by making a careful plot of U (x); from your plot find the

values of x that yield U (x) � �1.15 eV.]

27. Suppose that the potential energy of a particle moving along

the x axis is

where b and c are positive constants.

(a) Plot U (x) as a function of x ; assume b � c � 1 for this

purpose. Where is the equilibrium point?

(b) Suppose the energy of the particle is . Find

the turning points of the motion.

(c) Suppose that the energy of the particle is .

Find the turning points of the motion. How many turning

points are there in this case?

E � 1
2 c2/b

E � �1
2 c2/b

U (x) �
b

x 
2
 � 

2c

x

FIGURE 8.19
Package dropped on

a conveyor belt

2 These values of U0, x0, and b are half as large as those usually quoted,

because we are looking at the motion of one atom relative to the center

of the molecule.

*17. The force between two inert-gas atoms is often described by a

function of the form

Fx � Ax�13 � Bx�7

where A and B are positive constants and x is the distance

between the atoms. What is the corresponding potential-

energy function, called the Lennard–Jones potential?

*18. A particle moving in three dimensions is confined by a force

F � �k (xi � y j � zk), where k is a constant. What is the work

required to move the particle from the origin to a point r � xi �

y j � zk?  What is the potential-energy function?

**19. Mountain climbers use nylon safety rope whose elasticity plays

an important role in cushioning the sharp jerk if a climber falls

and is suddenly stopped by the rope.

(a) Suppose that a climber of 80 kg attached to a 10-m rope

falls freely from a height of 10 m above to a height of 10

m below the point at which the rope is anchored to a

vertical wall of rock. Treating the rope as a spring with k

� 4.9 � 103 N/m (which is the appropriate value for a

braided nylon rope of 9.2 mm diameter), calculate the

maximum force that the rope exerts on the climber during

stopping.

(b) Repeat the calculations for a rope of 5.0 m and an initial

height of 5.0 m. Assume that this second rope is made of

the same material as the first, and remember to take into

account the change in the spring constant due to the

change in length. Compare your results for (a) and (b) and

comment on the advantages and disadvantages of long

ropes vs. short ropes.

**20. A package is dropped on a horizontal conveyor belt (Fig. 8.19).

The mass of the package is m, the speed of the conveyor belt is

v, and the coefficient of kinetic friction for the package on the

belt is �k. For what length of time will the package slide on

the belt? How far will it move in this time? How much energy

is dissipated by friction? How much energy does the belt

supply to the package (including the energy dissipated by

friction)?
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28. A particle moves along the x axis under the influence of a con-

servative force with a potential energy U (x). Figure 8.20

shows the plot of U (x) vs. x. Figure 8.20 shows several 

alternative energy levels for the particle: E � E1, E � E2, and

E � E3. Assume that the particle is initially at x � 1 m. For

each of the three alternative energies, describe the motion

qualitatively, answering the following questions:

(a) Roughly, where are the turning points (right and left)?

(b) Where is the speed of the particle maximum? Where is

the speed minimum?

(c) Is the orbit bound or unbound?

29. A particle moving along the x axis experiences a potential of

the form U (x)� A�x�, where  A is a constant. A particle of

mass m has speed v at the origin. Where are the turning

points of its motion?

30. A particle initially at the origin moves in a potential of the

form U (x) � �U0 cos (ax), where U0 and a are constants.

What is the lowest energy the particle may have? If the

energy of the particle is E � 0 and the particle is initially at

x � 0, what are the turning points of the motion?  For what

energies is the particle motion unbound?

31. The potential energy of a particle moving along the x axis is

U (x) � �U0�[1 � (x/a)2], where U0 � 2.0 J and a � 1.0 m.

Sketch this function for �3 m � x � 3 m. What are the turn-

ing points for a particle with energy E � �1.0 J? For what

energies is the particle unbound?

*32. Consider a particle moving in a region where the potential

energy is given by U � 2x2 � x4, where U is in joules and x is

in meters. Where are the turning points for a particle with

total mechanical energy E � 1.0 J? with E � 2.0 J?

*33. The potential-energy function (Lennard–Jones potential) for

two argon atoms as a function of their separation x is given by

U (x) � Cx�12 � Dx�6, where C � 1.59 � 10�24 J
(nm)12 and

D � 1.03 � 10�21 J.(nm)6. (Recall that 1 nm � 10�9 m.)

(a) What is their equilibrium separation in nanometers (nm)?

(b) What is the lowest possible energy?

(c) What are the turning points for a particle with energy E

� �2.0 � 10�21 J?

8.3 Other  Forms of  Energy †

34. Express the last two entries in Table 8.1 in electron-volts.

35. The chemical formula for TNT is CH3C5H2(NO2)3. The

explosion of 1 kg of TNT releases 4.6 � 106 J. Calculate the

energy released per molecule of TNT. Express your answer in

electron-volts.

36. Using the data of Table 8.1, calculate the amount of gasoline

that would be required if all the energy requirements of the

United States were to be met by the consumption of gasoline.

How many gallons per day would have to be consumed?

37. The following table lists the fuel consumption and the passen-

ger capacity of several vehicles. Assume that the energy con-

tent of the fuel is that of gasoline (see Table 8.1). Calculate the

amount of energy used by each vehicle per passenger per mile.

Which is the most energy-efficient vehicle? The least energy-

efficient?

PASSENGER FUEL
VEHICLE CAPACITY CONSUMPTION

Motorcycle 1 60 mi/gal

Snowmobile 1 12

Automobile 4 12

Intercity bus 45 5

Concorde SST 110 0.12

Jetliner 360 0.1

38. The energy released by the metabolization of fat is about

9000 kcal per kg of fat. While jogging on a level road, you use

750 kcal/h. How long do you need to jog to eliminate 1.0 kg

of fat?

39. A 12-ounce can of soda typically contains 150 kcal of food

energy (150 food “calories”). If your body uses one-fifth of this

to climb stairs, how high does one soda enable you to climb?

40. A large household may use as much as 3000 kilowatt-hours of

energy during a hot summer month. Express this amount of

energy in joules.

41. On food labels in Europe, energy content is typically listed in

kilojoules (kJ) instead of kcal  (food “calories”). Express a

daily intake of 2500 kcal in kJ.

*42. When a humpback whale breaches, or jumps out of the water

(see Fig. 8.21), it typically leaves the water at an angle of about

70� at high speed and sometimes attains a height of 3 m,

  

  

  

U

x
0

1 2 3 4 m

E = E1

E = E2

E = E3

FIGURE 8.20 Plot of U (x) vs. x.

† For help, see Online Concept Tutorial 10 at www.ww norton.com/physics
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FIGURE 8.21 A whale breaching.

measured from the water surface to the center of the whale.

For a rough estimate of the energy requirements for such a

breach, we can treat the translational motion of the whale as

that of a particle moving from the surface of the water upward

to a height of 3.0 m (for a more accurate calculation, we would

have to take into account the buoyancy of the whale, which

assists it in getting out of the water, but let us ignore this).

What is the initial speed of the whale when it emerges from

the water? What is the initial kinetic energy of a whale of 33

metric tons? Express the energy in kilocalories.

*43. The following table gives the rate of energy dissipation by a

man engaged in diverse activities; the energies are given per

kilogram of body mass:

RATE OF ENERGY DISSIPATION OF A MAN 
(PER kg OF BODY MASS)

Standing 1.3 kcal/(kg.h)

Walking (5 km/h) 3.3

Running (8 km/h) 8.2

Running (16 km/h) 15.2

Suppose the man wants to travel a distance of 2.5 km in one-

half hour. He can walk this distance in exactly half an hour, or

run slow and then stand still until the half hour is up, or run

fast and then stand still until the half hour is up. What is the

energy per kg of body mass dissipated in each case? Which

program uses the most energy? Which the least?

8.4 Mass  and Energy

44. The atomic bomb dropped on Hiroshima had an explosive

energy equivalent to that of 20000 tons of TNT, or 8.4 �

1013 J. How many kilograms of mass must have been converted

into energy in this explosion?

45. How much energy is released by the annihilation of one

proton and one antiproton (both initially at rest)? Express

your answer in electron-volts.

46. How much energy is released by the annihilation of one elec-

tron and one antielectron (both initially at rest)? Express your

answer in electron-volts.

47. The mass of the Sun is 2 � 1030 kg. The thermal energy in the

Sun is about 2 � 1041 J. How much does the thermal energy

contribute to the mass of the Sun?

48. The masses of the proton, electron, and neutron are 1.672623 �

10� 27 kg, 9.11 � 10�31 kg, and 1.674929 � 10�27 kg, respec-

tively. If a neutron decays into a proton and an electron, how

much energy is released (other than the energy of the mass of

the proton and electron)? Compare this extra energy with the

energy of the mass of the electron.

49. Express the mass energy of the electron in keV. Express the

mass energy of the proton in MeV.

50. A typical household may use approximately 1000 kilowatt-hours

of energy per month. What is the equivalent amount of rest mass?

51. Combustion of one gallon of gasoline releases 1.3 � 108 J of

energy. How much mass is converted to energy? Compare this

with 2.8 kg, the mass of one gallon of gasoline.

52. A small silicon particle of diameter 0.20 micrometers has a

mass of 9.8 � 10�18 kg. What is the mass energy of such a

“nanoparticle” (in J)?

*53. In a high-speed collision between an electron and an antielec-

tron, the two particles can annihilate and create a proton and

an antiproton. The reaction

converts the mass energy and kinetic energy of the electron

and antielectron into the mass energy of the proton and the

antiproton. Assume that the electron and the antielectron

collide head-on with opposite velocities of equal magnitudes

and that the proton and the antiproton are at rest immediately

after the reaction. Calculate the kinetic energy of the electron

required for this reaction; express your answer in electron-volts.

8.5 Power †

54. For an automobile traveling at a steady speed of 65 km/h, the

friction of the air and the rolling friction of the ground on the

wheels provide a total external friction force of 500 N. What

power must the engine supply to keep the automobile moving?

At what rate does the friction force remove momentum from

the automobile?

55. In 1979, B. Allen flew a very lightweight propeller airplane

across the English Channel. His legs, pushing bicycle pedals,

supplied the power to turn the propeller. To keep the airplane

flying, he had to supply about 0.30 hp. How much energy did

he supply for the full flight lasting 2 h 49 min? Express your

answer in kilocalories.

e � e S   p � p�

† For help, see Online Concept Tutorial 10 at www.ww norton.com/physics
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56. The ancient Egyptians and Romans relied on slaves as a

source of mechanical power. One slave, working desperately by

turning a crank, could deliver about 200 W of mechanical

power (at this power the slave would not last long). How many

slaves would be needed to match the output of a modern auto-

mobile engine (150 hp)? How many slaves would an ancient

Egyptian have to own in order to command the same amount

of power as the average per capita power used by residents of

the United States (14 kW)?

57. An electric clock uses 2.0 W of electric power. How much

electric energy (in kilowatt-hours) does this clock use in 1 year?

What happens to this electric energy?

58. While an automobile is cruising at a steady speed of 65 km/h,

its engine delivers a mechanical power of 20 hp. How much

energy does the engine deliver per hour?

59. A large windmill delivers 10 kW of mechanical power. How

much energy does the windmill deliver in a working day of 8

hours?

60. The heating unit of a medium-sized house produces 

170000 Btu/h. Is this larger or smaller than the power

produced by a typical automobile engine of 150 hp?

61. The heart of a resting person delivers a mechanical power of

about 1.1 W for pumping blood. Express this power in hp.

How much work does the heart do on the blood per day?

Express this work in kcal.

62. The lasers to be used for controlled fusion experiments at

the National Ignition Facility at the Lawrence Livermore

Laboratory will deliver a power of 2.0 � 1015 W, a thousand

times the output of all the power stations in the United States,

in a brief pulse lasting 1.0 � 10�9 s. What is the energy in this

laser pulse? How does it compare with the energy output of all

the power stations in the United States in one day?

63. During the seven months of the cold season in the Northeastern

United States, a medium-sized house requires about 1.0 � 108

Btu of heat to keep warm. A typical furnace delivers 1.3 � 105

Btu of heat per gallon of fuel oil.

(a) How many gallons of fuel oil does the house consume

during the cold season?

(b) What is the average power delivered by the furnace?

64. Experiments on animal muscle tissue indicate that it can pro-

duce up to 100 watts of power per kilogram. A 600-kg horse

has about 180 kg of muscle tissue attached to the legs in such

a way that it contributes to the external work the horse per-

forms while pulling a load. Accordingly, what is the theoretical

prediction for the maximum power delivered by a horse? In

trials, the actual maximum power that a horse can deliver in a

short spurt was found to be about 12 hp. How does this com-

pare with the theoretical prediction?

65. If a 60-W light bulb is left on for 24 hours each day, how

many kilowatt-hours of electric power does it use in one year?

If the electric energy costs you 15 cents per kilowatt-hour,

what is your cost for one year?

66. Nineteenth-century English engineers reckoned that a laborer

turning a crank can do steady work at the rate of 5000

ft.lbf/min. Suppose that four laborers working a manual crane

attempt to lift a load of 9.0 short tons (1 short ton � 2000 lb).

If there is no friction, what is the rate at which they can lift

this load? How long will it take them to lift the load 15 ft?

67. The driver of an automobile traveling on a straight road at 

80 km/h pushes forward with his hands on the steering wheel

with a force of 50 N. What is the rate at which his hands do

work on the steering wheel in the reference frame of the

ground? In the reference frame of the automobile?

68. An automobile with a 100-hp engine has a top speed of 

160 km/h. When at this top speed, what is the friction force

(from air and road) acting on the automobile?

69. A horse walks along the bank of a canal and pulls a barge by

means of a long horizontal towrope making an angle of 35�

with the bank. The horse walks at the rate of 5.0 km/h, and

the tension in the rope is 400 N. What horsepower does the

horse deliver?

70. A 900-kg automobile accelerates from 0 to 80 km/h in 7.6 s.

What are the initial and the final translational kinetic energies

of the automobile? What is the average power delivered by the

engine in this time interval? Express your answer in horsepower.

71. A six-cylinder internal combustion engine, such as used in an

automobile, delivers an average power of 150 hp while running

at 3000 rev/min. Each of the cylinders fires once every two

revolutions. How much energy does each cylinder deliver each

time it fires?

72. In Chapter 6, we saw that an automobile must overcome the

force of air resistance, fair � �CAv 2. For the automobile of

Example 6 of Chapter 6 (C � 0.30, A � 2.8 m2, and � �

1.3 kg/m3), calculate the power dissipation due to air resist-

ance when traveling at 30 km/h and when traveling at

90 km/h. What is the difference in the total energy supplied

to overcome air friction for a 300-km trip at 30km/h?  For a

300-km trip at 90 km/h?

73. A constant force of 40 N is applied to a body as the body

moves uniformly at a speed of 3.5 m/s. The force does work

on the body at a rate of 90 W. What is the angle between the

force and the direction of motion of the body?

74. An electric motor takes 1.0 s to get up to speed; during this

time, the power supplied by the motor varies with time

according to P � P1 � (P0 � P1)(t � 1)2, where t is in

seconds, P0 � 1.50 kW, and P1 � 0.75 kW. What is the total

energy supplied for the time period 0 � t � 1 s?

75. A constant force F � (6.0 N)i � (8.0 N)j acts on a particle.

At what instantaneous rate is this force doing work on a parti-

cle with velocity v � (3.0 m/s)i � (2.5 m/s)j?

76. An automobile engine typically has an efficiency of about

25%; i.e., it converts about 25% of the chemical energy avail-

able in gasoline into mechanical energy. Suppose that an auto-

mobile engine has a mechanical output of 110 hp. At what

1
2
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rate (in gallons per hour) will this engine consume gasoline?

See Table 8.1 for the energy content in gasoline.

77. The takeoff speed of a DC-3 airplane is 100 km/h. Starting

from rest, the airplane takes 10 s to reach this speed. The mass

of the (loaded) airplane is 11000 kg. What is the average

power delivered by the engines to the airplane during takeoff ?

78. The Sun emits energy in the form of radiant heat and light at

the rate of 3.9 � 1026 W. At what rate does this energy carry

away mass from the Sun? How much mass does this amount

to in 1 year?

79. The energy of sunlight arriving at the surface of the Earth

amounts to about 1.0 kW per square meter of surface (facing

the Sun). If all of the energy incident on a collector of sunlight

could be converted into useful energy, how many square

meters of collector area would we need to satisfy all of the

energy demands in the United States? See Table 8.1 for the

energy expenditure of the United States.

80. Equations (2.11) and (2.16) give the velocity and the acceler-

ation of an accelerating Maserati sports car as a function of

time. The mass of this automobile is 1770 kg. What is the

instantaneous power delivered by the engine to the automo-

bile? Plot the instantaneous power as a function of time in

the time interval from 0 to 10 s. At what time is the power

maximum?

81. The ship Globtik Tokyo, a supertanker, has a mass of 650000

metric tons when fully loaded.

(a) What is the kinetic energy of the ship when her speed is

26 km/h?

(b) The engines of the ship deliver a power of 44000 hp.

According to the energy requirements, how long a time

does it take the ship to reach a speed of 26 km/h, starting

from rest? Make the assumption that 50% of the engine

power goes into friction or into stirring up the water and

50% remains available for the translational motion of the

ship.

(c) How long a time does it take the ship to stop from an ini-

tial speed of 26 km/h if her engines are put in reverse?

Estimate roughly how far the ship will travel during this

time.

82. At Niagara Falls, 6200 m3 per second of water falls down a

height of 49 m.

(a) What is the rate (in watts) at which gravitational potential

energy is dissipated by the falling water?

(b) What is the amount of energy (in kilowatt-hours) wasted

in 1 year?

(c) Power companies get paid about 5 cents per kilowatt-hour

of electric energy. If all the gravitational potential energy

wasted in Niagara Falls could be converted into electric

energy, how much money would this be worth?

83. The movement of a grandfather clock is driven by a 5.0-kg

weight which drops a distance of 1.5 m in the course of a week.

What is the power delivered by the weight to the movement?

84. A 27000-kg truck has a 550-hp engine. What is the maxi-

mum speed with which this truck can move up a 10� slope?

*85. Consider a “windmill ship,” which extracts mechanical energy

from the wind by means of a large windmill mounted on the

deck (see Fig. 8.22). The windmill generates electric power,

which is fed into a large electric motor, which propels the ship.

The mechanical efficiency of the windmill is 70% (that is, it

removes 70% of the kinetic energy of the wind and transforms

it into rotational energy of its blades). The efficiency of the

electric generator attached to the windmill is 90%, and the

efficiency of the electric motor connected to the generator is

also 90%. We want the electric motor to deliver 20000 hp in a

(relative) wind of 40 km/h. What size windmill do we need?

The density of air is 1.29 kg/m3.

FIGURE 8.22
A “windmill ship.”

*86. An electric water pump is rated at 15 hp. If this water pump is

to lift water to a height of 30 m, how many kilograms of water

can it lift per second? How many liters? Neglect the kinetic

energy of the water.

*87. The engines of the Sikorski Blackhawk helicopter generate

3080 hp of mechanical power, and the maximum takeoff mass

of this helicopter is 7400 kg. Suppose that this helicopter is

climbing vertically at a steady rate of 5.0 m/s.

(a) What is the power that the engines deliver to the body of

the helicopter?

(b) What is the power that the engines deliver to the air (by

friction and by the work that the rotors of the helicopter

perform on the air)?

*88. In order to overcome air friction and other mechanical fric-

tion, an automobile of mass 1500 kg requires a power of 20 hp

from its engine to travel at 64 km/h on a level road. Assuming

the friction remains the same, what power does the same auto-

mobile require to travel uphill on an incline of slope 1:10 at

the same speed? Downhill on the same incline at the same

speed?

*89. With the gears in neutral, an  automobile rolling down a long

incline of slope 1:10 reaches a terminal speed of 95 km/h. At

this speed the rate of decrease of the gravitational potential

energy matches the power required to overcome air friction

and other mechanical friction. What power (in horsepower)

must the engine of this automobile deliver to drive it at 95 km/h

on a level road? The mass of the automobile is 1500 kg.
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*90. The power supplied to an electric circuit decreases exponen-

tially with time according to P � P0 e�t/�, where P0 �

2.0 W and � � 5.0 s are constants. What is the total energy

supplied to the circuit during the time interval 0 � t � 5.0 s?

During 0 � t � �?

*91. Each of the two Wright Cyclone engines on a DC-3 airplane

generates a power of 850 hp. The mass of the loaded plane is

10900 kg. The plane can climb at the rate of 260 m/min.

When the plane is climbing at this rate, what percentage of

the engine power is used to do work against gravity?

*92. A fountain shoots a stream of water 10 m up in the air. The

base of the stream is 10 cm across. What power is expended to

send the water to this height?

*93. The record of 203.1 km/h for speed skiing set by Franz Weber

at Velocity Peak in Colorado was achieved on a mountain slope

inclined downward at 51�. At this speed, the force of friction

(air and sliding friction) balances the pull of gravity along the

slope, so the motion proceeds at constant velocity.

(a) What is the rate at which gravity does work on the skier?

Assume that the mass of the skier is 75 kg.

(b) What is the rate at which sliding friction does work?

Assume that the coefficient of friction is �k � 0.03.

(c) What is the rate at which air friction does work?

*94. A windmill for the generation of electric power has a propeller

of diameter 1.8 m. In a wind of 40 km/h, this windmill delivers

200 W of electric power.

(a) At this wind speed, what is the rate at which the air car-

ries kinetic energy through the circular area swept out by

the propeller? The density of air is 1.29 kg/m3.

(b) What percentage of the kinetic energy of the air passing

through this area is converted into electric energy?

*95. A small electric kitchen fan blows 8.5 m3/min of air at a speed

of 5.0 m/s out of the kitchen. The density of air is 1.3 kg/m3.

What electric power must the fan consume to give the ejected

air the required kinetic energy?

*96. The final portion of the Tennessee River has a downward

slope of 0.074 m per kilometer. The rate of flow of water in

the river is 280 m3/s. Assume that the speed of the water is

constant along the river. How much power is dissipated by

friction of the water against the riverbed per kilometer?

*97. Off the coast of Florida, the Gulf Stream has a speed of 

4.6 km/h and a rate of flow of 2.2 � 103 km3/day. At what 

rate is kinetic energy flowing past the coast? If all this kinetic

energy could be converted into electric power, how many

kilowatts would it amount to?

*98. Figure 8.23 shows an overshot waterwheel, in which water

flowing onto the top of the wheel fills buckets whose weight

causes the wheel to turn. The water descends in the buckets to

the bottom, and there it is spilled out, so the ascending buck-

ets are always empty. If in a waterwheel of diameter 10 m the

amount of water carried down by the wheel is 20 liters per

second (or 20 kg per second), what is the mechanical power

that the descending water delivers to the wheel? Assume that

the water flowing onto the top of the wheel has roughly the

same speed as the wheel and exerts no horizontal push on the

wheel. [Hint: The kinetic energy of the water is the same

when the water enters the bucket and when it spills out (since

the speed of the bucket is constant); hence the kinetic energy

of the water does not affect the answer.]

*99. Suppose that in the undershot waterwheel shown in Fig.

8.24, the stream of water against the blades of the wheel has a

speed of 15 m/s, and the amount of water is 30 liters per

second (or 30 kg per second). If the water gives all of its

kinetic energy to the blades (and then drips away with zero

horizontal speed), how much mechanical power does the

water deliver to the wheel?

*100. (a) With its engines switched off, a small two-engine airplane

of mass 1100 kg glides downward at an angle of 13� at a

speed of 90 knots. Under these conditions, the weight of

the plane, the lift force (perpendicular to the direction of

motion) generated by air flowing over the wings, and the

frictional force (opposite to the direction of motion)

exerted by the air are in balance. Draw a “free-body” dia-

gram for these forces, and calculate their magnitudes.

(b) Suppose that with its engine switched on, the plane

climbs at an upward angle of 13� at a speed of 90 knots.

Draw a “free-body” diagram for the forces acting on the

FIGURE 8.23 An overshot waterwheel.

FIGURE 8.24 An undershot waterwheel.
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(The reaction involves several intermediate steps, but this need

not concern us now.) The mass of the hydrogen (H) atom is

1.00813 u, and that of the helium (He) atom is 4.00388 u.

(a) How much energy is released in the reaction of four

hydrogen atoms (by the conversion of mass into

energy)?

(b) How much energy is released in the reaction of 1.0 kg of

hydrogen atoms?

(c) The Sun releases energy at the rate of 3.9 � 1026 W. At

what rate (in kg/s) does the Sun consume hydrogen?

(d) The Sun contains about 1.5 � 1030 kg of hydrogen. If it

continues to consume hydrogen at the same rate, how

long will the hydrogen last?

II

I

P
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x
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FIGURE 8.25 Outward and return

paths of a particle.

airplane under these conditions; include the push that the

air exerts on the propeller. Calculate the magnitudes of all

the forces.

(c) Calculate the power that the engine must deliver to com-

pensate for the rate of increase of the potential energy of

the plane and the power lost to friction. For a typical small

plane of 1100 kg, the actual engine power required for

such a climb of 13� is about 400 hp. Explain the discrep-

ancy between your result and the actual engine power.

(Hint: What does the propeller do to the air?)

*101. The reaction that supplies the Sun with energy is

H � H � H � H S He � [energy]

FIGURE 8.26 Block released from a spring.

REVIEW PROBLEMS

102. A particle moves along the x axis under the influence of a vari-

able force Fx � 5x2 � 3x (where force is measured in newtons

and distance in meters).

(a) What is the potential energy associated with this force?

Assume that U (x) � 0 at x � 0.

(b) How much work does the force do on a particle that

moves from x � 0 to x � 2.0 m?

*103. A particle is subjected to a force that depends on position as

follows:

F � 4i � 2x j

where the force is measured in newtons and the distance in

meters.

(a) Calculate the work done by this force as the particle moves

from the origin to the point x � 1.0 m, y � 1.0 m along the

straight path I shown in Fig. 8.25.

(b) Calculate the work done by this force if the particle returns

from the point x � 1.0 m, y � 1.0 m to the origin along the

path II consisting of a horizontal and a vertical segment (see

Fig. 8.25). Is the force conservative?

*104. A 3.0-kg block sliding on a horizontal surface is accelerated by

a compressed spring. At first, the block slides without friction.

But after leaving the spring, the block travels over a new por-

tion of the surface, with a coefficient of friction 0.20, for a dis-

tance of 8.0 m before coming to rest (see Fig. 8.26). The force

constant of the spring is 120 N/m.

(a) What was the maximum kinetic energy of the block?

(b) How far was the spring compressed before being

released?

105. The ancient Egyptians moved large stones by dragging them

across the sand in sleds (Fig. 8.27). Suppose that 6000

Egyptians are dragging a sled with a coefficient of sliding fric-

tion �k � 0.30 along a level surface of sand. Each Egyptian

can exert a force of 360 N, and each can deliver a mechanical

power of 0.20 hp.

(a) What is the maximum weight they can move at constant

speed?

(b) What is the maximum speed with which they can move

this weight?
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106. In a braking test, a 990-kg automobile takes 2.1 s to come to a

full stop from an initial speed of 60 km/h. What is the amount

of energy dissipated in the brakes? What is the average power

dissipated in the brakes? Ignore external friction in your calcu-

lation and express the power in horsepower.

107. In a waterfall on the Alto Paraná river (between Brazil and

Paraguay), the height of fall is 33 m and the average rate of

flow is 13000 m3 of water per second. What is the power dis-

sipated by this waterfall?

108. When jogging at 12 km/h on a level road, a 70-kg man uses

750 kcal/h. How many kilocalories per hour does he require

when jogging up a 1:10 incline at the same speed? Assume that

the frictional losses are independent of the value of the slope.

109. Consider a projectile traveling horizontally and slowing down

under the influence of air resistance, as described in Problems

47 and 48 of Chapter 2. The mass of this projectile is

45.36 kg, and the speed as a function of time is 

where speed is in m/s and time in seconds.

(a) What is the instantaneous power removed from the pro-

jectile by air resistance?

(b) What is the kinetic energy at time t � 0? At time t � 3.00 s?

(c) What is the average power for the time interval from 0

to 3.00 s?

v � 655.9 � 61.1t � 3.26t 2

110. A woman exercising on a rowing machine pulls the oars back

once per second. During such a pull, each hand moves 0.50 m

while exerting an average force of 100 N.

(a) What is the work the woman does during each stroke

(with both hands)?

(b) What is the average power the woman delivers to the oars?

111. The world’s tallest staircase, of 2570 steps, is located in the

CN tower in Toronto. It reaches a height of 457 m. Estimate

how long it would take an athlete to climb this staircase. The

athlete has a mass of 75 kg, and his leg muscle can deliver a

power of 200 W.

112. A pump placed on the shore of a pond takes in 0.80 kg of

water per second and squirts it out of a nozzle at 50 m/s.

What mechanical power does this pump supply to the water?

113. The hydroelectric pumped-storage plant in Northfield,

Massachusetts, has a reservoir holding 2.2 � 107 m33 of water

on top of a mountain. The water flows 270 m vertically down

the mountain in pipes and drives turbines connected to elec-

tric generators.

(a) How much electric energy, in kW.h, can this storage plant

generate with the water available in the reservoir?

(b) In order to generate 1000 MW of electric energy, at what

rate, in m3/s, must this storage plant withdraw water from

the reservoir?

114. A 50-kg circus clown is launched vertically from a spring-

loaded cannon using a spring with spring constant 3500 N/m.

The clown attains a height of 4.0 m above the initial position

(when the spring was compressed).

(a) How far was the spring compressed before launch? 

(b) What was the maximum acceleration of the clown during

launch?

(c) What was the maximum speed of the clown?

Answers  to  Checkups

Checkup 8.1

1. The force can be obtained from Fx � �dU/dx � �kx. Thus,

the force is positive for positive x and negative for negative x;

that is, the new force is repulsive (it pushes a particle away

from x � 0), whereas the spring force is attractive.

2. The potential energy shown in Fig. 8.5a has a negative slope

as a function of x. By Eq. (8.21), the force is the negative of

the slope of the potential; the negative of a negative is positive,

and so the force is directed along the positive x direction.

3. A force is always conservative if the force is an explicit func-

tion of position x. In that case, a potential-energy function can

always be constructed by integration of the force according to

Eq. (8.14).

4. (D) No; no. The work done is equal to the negative of the

change in potential energy only for conservative forces. The

work done is equal to the change in kinetic energy only for the

net force acting on a particle.

FIGURE 8.27 Ancient Egyptian wall mural from 1900 B.C.
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Checkup 8.2

1. The number of turning points must decrease with increasing

energy [we do not consider a stationary point of stable

equilibrium (Fig. 8.8), since the particle is moving]. Consider

the potential of Fig. 8.7: for small energies, the particle will

move back and forth (two turning points); for somewhat

higher energy, the particle will move back from the left end

but escape from the right end (one turning point). Unless U �

�, for sufficiently high energy the particle could escape from

the left end also (no turning point). In one dimension, there

cannot be more than two turning points, although the two

turning points will of course be different for different 

energies.

2. The maximum speed corresponds to the deepest part of the

curve (maximum kinetic energy, K � E � U ); from the figure,

this occurs at x � �6 m. The maximum acceleration and force

(F � �dU/dx) occurs where the slope is largest; for the

bungee jumper, this is at x � �15 m.

3. (B) 2. The potential-energy curve of the spring force is a

simple parabola (Fig. 8.1), so there are two turning points for

any positive energy.

Checkup 8.3

1. No. Gravitational potential energy is lost as the parachutist

descends (at uniform speed, there is no change in kinetic

energy). From a macroscopic viewpoint, the energy lost due to

friction with the air is converted into heat.

2. The energy comes from a decrease in the chemical energy of

the exploding gunpowder; microscopically, such chemical

energy comes from changes in the kinetic and potential energy

of electrons in the atoms and bonds of the elements involved.

3. The energy is converted to heat due to frictional forces; these

may include friction in the engine, brakes, tires, and road, as

well as air friction.

4. (C) The kinetic energy is converted into heat due to frictional

forces, mostly in the brakes (brake pads rub against drums or

disks), partly where the tires contact the road, and some from

air friction. All the heat is eventually transferred to the air as

the brakes, tires, and road cool.

Checkup 8.4

1. Yes; the Sun continually loses mass in the form of heat and

light, as well as by emitting particles with mass.

2. Energy and mass are both conserved; the original rest mass is

converted to the energy of the light (electromagnetic radia-

tion), and this light carries away mass as well as energy.

3. (A) Increase. The mass of the water will increase by the usual


m � 
E/c2, where 
E is the increase in thermal energy of

the water.

Checkup 8.5

1. (a) No; there is no force parallel to the motion, so there is no

work done and no power expended. (b) Trotting uphill, you

deliver power at a rate P � Fv � mg sin � v, where m is the

mass of the pack, � is the angle of the incline, and v is the

speed along the incline. (c) Trotting downhill, the component

of F along v is negative, so you do negative work on the back-

pack; that is, the backpack delivers power to you.

2. Yes, the energy you have to expend is mgh, whichever slope of

road you take. The steeper road requires more of an effort,

since, for example, for the same walking speed, the force is

more nearly parallel to the velocity, and so the power

expended, P � F . v, is greater.

3. Some of the power is lost as heat, due to the friction force

between the boat and the water; some of the energy is con-

verted into a more macroscopic kinetic energy of the water, by

the generation of water waves.

4. (C) 4. The power is equal to the force times the speed. At the

same speed, a car with twice the mass will require twice the

power to move against gravity; if that car is also traveling at

twice the speed, it will then require four times as much power

(ignoring other losses).

             



C O N C E P T S  I N  C O N T E X T  
Hundreds of artificial satellites have been placed in orbit around the Earth,

such as this Syncom communications satellite shown just after launch

from the Space Shuttle.

With the concepts we will develop in this chapter, we can answer

various questions about artificial satellites:

? Communications satellites and weather satellites are placed in high-

altitude “geosynchronous” orbits that permit them to keep in step

with the rotation of the Earth, so the satellite always remains at a

fixed point above the equator. What is the radius of such a geosyn-

chronous orbit? (Example 6, page 279; and Physics in Practice:

Communications Satellites and Weather Satellites, page 281)

? Surveillance satellites and spacecraft such as the Space Shuttle usually

operate in low-altitude orbits, just above the Earth’s atmosphere. How

quickly does such a satellite circle the Earth? (Example 7, page 280)

Gravitation 9

9.1 Newton’s Law of Universal
Gravitation

9.2 The Measurement of G

9.3 Circular Orbits

9.4 Elliptical Orbits; Kepler’s Laws

9.5 Energy in Orbital Motion
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? The Syncom satellite was carried by the Space Shuttle to a low-altitude orbit, and

then it used its own booster rocket to lift itself to the high-altitude geosynchronous

orbit. What is the increase of mechanical energy (kinetic and gravitational) of the

satellite during this transfer from one orbit to another? (Example 9, page 290)

W ithin the Solar System, planets orbit around the Sun, and satellites orbit around

the planets.These circular, or nearly circular, motions require a centripetal force

pulling the planets toward the Sun and the satellites toward the planets. It was Newton’s

great discovery that this interplanetary force holding the celestial bodies in their orbits

is of the same kind as the force of gravity that causes apples, and other things, to fall down-

ward near the surface of the Earth. Newton found that a single formula, his Law of

Universal Gravitation, encompasses both the gravitational forces acting between celes-

tial bodies and the gravitational force acting on bodies near the surface of the Earth.

By the nineteenth century, Newton’s theory of gravitation had proved itself so trust-

worthy that when astronomers noticed an irregularity in the motion of Uranus, they

could not bring themselves to believe that the theory was at fault. Instead, they suspected

that a new, unknown planet caused these irregularities by its gravitational pull on Uranus.

The astronomers J. C. Adams and U. J. J. Leverrier proceeded to calculate the expected

position of this hypothetical planet—and the new planet was immediately found at just

about the expected position. This discovery of a new planet, later named Neptune, was

a spectacular success of Newton’s theory of gravitation. Newton’s theory remains one of

the most accurate and successful theories in all of physics, and in all of science.

In this chapter, we will examine Newton’s Law of Universal Gravitation; we will

see how it includes the familiar gravitational force near the Earth’s surface. We will

also examine circular and elliptical orbits of planets and satellites, and we will become

familiar with Kepler’s laws describing these orbits. Finally, we will discuss gravitational

potential energy and apply energy conservation to orbital motion.

9.1 NEWTON’S LAW OF 
UNIVERSAL GRAVITAT ION
Newton proposed that just as the Earth gravitationally attracts bodies placed near its

surface and causes them to fall downward, the Earth also attracts more distant bodies,

such as the Moon, or the Sun, or other planets. In turn, the Earth is gravitationally

attracted by all these bodies. More generally, every body in the Universe attracts every

other body with a gravitational force that depends on their masses and on their distances.

The gravitational force that two bodies exert on each other is large if their masses are

large, and small if their masses are small.The gravitational force decreases if we increase

the distance between the bodies. The Law of Universal Gravitation formulated by

Newton can be stated most easily for the case of particles:

Every particle attracts every other particle with a force directly proportional to the

product of their masses and inversely proportional to the square of the distance

between them.

Expressed mathematically, the magnitude of the gravitational force that two par-

ticles of masses M and m separated by a distance r exert on each other is 

(9.1)

where G is a universal constant of proportionality, the same for all pairs of particles.

F �
GMm

r 
2
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The direction of the force on each particle is directly toward the other particle.

Figure 9.1 shows the directions of the forces on each particle. Note that the two forces

are of equal magnitudes and opposite directions; they form an action–reaction pair, as

required by Newton’s Third Law.

The constant G is known as the gravitational constant. In SI units its value is

approximately given by

(9.2)

The gravitational force of Eq. (9.1) is an inverse-square force: it decreases by a

factor of 4 when the distance increases by a factor of 2, it decreases by a factor of 9

when the distance increases by a factor of 3, and so on. Figure 9.2 is a plot of the mag-

nitude of the gravitational force as a function of the distance. Although the force

decreases with distance, it never quite reaches zero. Thus, every particle in the uni-

verse continually attracts every other particle at least a little bit, even if the distance

between the particles is very, very large.
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gravitational constant

M

m

r

The force on each
particle is directed
toward the other 
particle.

FIGURE 9.1 Two particles attract each

other gravitationally. The forces are of equal

magnitudes and of opposite directions.

FIGURE 9.2 Magnitude of the gravitational force exerted

by a particle of mass 1 kg on another particle of mass 1 kg.

What is the gravitational force between a 70-kg man and a

70-kg woman separated by a distance of 10 m? Treat both masses

as particles.

SOLUTION: From Eq. (9.1),

This is a very small force, but as we will see in the next section, the measurement

of such small forces is not beyond the reach of sensitive instruments.

 � 3.3 � 10�9  N

 �
6.67 � 10�11  N�m2/kg2 � 70  kg � 70  kg

(10  m)2

 F �
GMm

r2

EXAMPLE 1

� 6.67 � 10–11

6.67 � 10–11 N

� 6.67 � 10–11

� 6.67 � 10–11

1 2 3 4 m
r

F

4
3

4
1

2
1 Inverse-square force:

at twice the distance, the
force is four times weaker.

G � 6.67 � 10�11 N�m2/kg2

              



FIGURE 9.3 The gravitational force

exerted by the Earth on a particle is directed

toward the center of the Earth.

The gravitational force does not require any contact between the interacting par-

ticles. In reaching from one remote particle to another, the gravitational force some-

how bridges the empty space between the particles.This is called action-at-a-distance.

It is also quite remarkable that the gravitational force between two particles is

unaffected by the presence of intervening masses. For example, a particle in Washington

attracts a particle in Beijing with exactly the force given by Eq. (9.1), even though all

of the bulk of the Earth lies between Washington and Beijing. This means that it is

impossible to shield a particle from the gravitational attraction of another particle.

Since the gravitational attraction between two particles is completely independent

of the presence of other particles, it follows that the net gravitational force between

two bodies (e.g., the Earth and the Moon or the Earth and an apple) is merely the

vector sum of the individual forces between all the particles making up the bodies—

that is, the gravitational force obeys the principle of linear superposition of forces (see

Section 5.3). As a consequence of this simple vector summation of the gravitational forces

of the individual particles in a body, it can be shown that the net gravitational force

between two spherical bodies acts just as though each body were concentrated at the center of

its respective sphere. This result is known as Newton’s theorem. The proof of Newton’s

theorem involves a somewhat tedious summation. Later, in the context of electrostatic

force, we provide a much simpler derivation of Newton’s theorem using Gauss’ Law (see

Chapter 24). Since the Sun, the planets, and most of their satellites are almost exactly

spherical, this important theorem permits us to treat all these celestial bodies as point-

like particles in all calculations concerning their gravitational attractions. For instance,

since the Earth is (nearly) spherical, the gravitational force exerted by the Earth on a

particle above its surface is as though the mass of the Earth were concentrated at its

center; thus, this force has a magnitude

(9.3)

where m is the mass of the particle, ME is the mass of the Earth, and r is the distance

from the center of the Earth (see Fig. 9.3).

If the particle is at the surface of the Earth, at a radius r � RE, then Eq. (9.3) gives

a force

(9.4)

The corresponding acceleration of the mass m is

(9.5)

But this acceleration is what we usually call the acceleration of free fall; and usually

designate by g. Thus, g is related to the mass and the radius of the Earth,

(9.6)

This equation establishes the connection between the ordinary force of gravity we

experience at the surface of the Earth and Newton’s Law of Universal Gravitation.

Notice that g is only approximately constant. Small changes in height near the Earth’s

surface have little effect on the value given by Eq. (9.6), since RE ≈ 6.4 � 106 m is so

large. But for a large altitude h above the Earth’s surface, we must replace RE with

RE � h in Eq. (9.6), and appreciable changes in g can occur.

Note that an equation analogous to Eq. (9.6) relates the acceleration of free fall at

the surface of any (spherical) celestial body to the mass and the radius of that body.

g �
GME

R 
2
E

a �
F

m
�

GME

R2
E

F �
GME 

m

R2
E

F �
GME 

m

r2
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For example, we can calculate the acceleration of free fall on the surface of the Moon

from its mass and radius.

The mass of the Moon is 7.35 � 1022 kg, and its radius is

1.74 � 106 m. Calculate the acceleration of free fall on the Moon

and compare with acceleration of free fall on the Earth.

SOLUTION: For the Moon, the formula analogous to Eq. (9.6) is

This is about 1/6 the acceleration of free fall on the surface of the Earth ( g �

9.81 m/s2). If you can jump upward to a height of one-half meter on the Earth, then

this same jump will take you to a height of 3 meters on the Moon!

The masses of the Sun, Earth, and Moon are 1.99 � 1030 kg,

5.98 � 1024 kg, and 7.35 � 1022 kg, respectively. Assume that

the location of the Moon is such that the angle subtended by the lines from the

Moon to the Sun and from the Moon to the Earth is 45.0�, as shown in Fig. 9.4a.

What is the net force on the Moon due to the gravitational forces of the Sun and

Earth? The Moon is 1.50 � 1011 m from the Sun and 3.84 � 108 m from the Earth.

SOLUTION: Before finding the resultant force, we first find the magnitudes of

the individual forces. The magnitude of the force due to the Sun on the Moon is 

 � 4.34 � 1020 N

 �
6.67 � 10�11 N�m2/kg2 � 1.99 � 1030 kg � 7.35 � 1022 kg

(1.50 � 1011 m)2

FSM �
GMS MM

R2
S M

EXAMPLE 3

� 1.62 m /s2

gMoon �
GMMoon

R2
Moon

�
6.67 � 10�11N�m2 / kg2 � 7.35 � 1022 kg

(1.74 � 106 m)2

EXAMPLE 2
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FIGURE 9.4 (a) Each of the gravitational forces on the Moon is directed toward the body

producing the force. (b) Vector addition of the two forces.

We resolve FEM

into components

to find Fnet .

0

(a)

y

(b)

Sun (S)

45.0°

Earth (E)

Moon (M)

FEM

FSM

Fnet

FSM

FEM

FEM cos 45.0°

FEM sin 45.0°

x
u 45.0°

Moon is at a point 

in  its orbit where 

FEM points 45.0° 

from  FSM .

              



The magnitude of the force due to the Earth on the Moon is

The direction of each force on the Moon is toward the body producing that force,

as indicated in Fig. 9.4a. We choose the x axis along the Moon–Sun direction and

add the two forces vectorially as shown in Fig. 9.4b. By resolving FEM into com-

ponents, we see that the resultant force Fnet has x component

and y component

Thus the resultant force has magnitude

The direction of Fnet is given by tan � �

With a calculator, we find that the inverse tangent of 0.238 is

� � 13.8�

Checkup 9.1

QUESTION 1: Neptune is about 30 times as far away from the Sun as the Earth.

Compare the gravitational force that the Sun exerts on a 1-kg piece of Neptune with

the force it exerts on a 1-kg piece of the Earth. By what factor do these forces differ?

QUESTION 2: Saturn is about 10 times as far away from the Sun as the Earth, and its

mass is about 100 times as large as the mass of the Earth. Is the force that the Sun

exerts on Saturn larger, smaller, or about equal to the force it exerts on the Earth? Is

the acceleration of Saturn toward the Sun larger, smaller, or about equal to the accel-

eration of the Earth?

QUESTION 3: Equation (9.6) gives the gravitational acceleration at the surface of the

Earth, that is, at a radial distance of r �RE from the center. What is the gravitational

acceleration at a radial distance of r �2RE? At r �3RE?

QUESTION 4: Uranus has a larger mass than the Earth, but a smaller gravitational

acceleration at its surface. How could this be possible?

QUESTION 5: Consider a particle located at the exact center of the Earth. What is the

gravitational force that the Earth exerts on this particle?

QUESTION 6: If the radius of the Earth were twice as large as it is but the mass remained

unchanged, what would be the gravitational acceleration at its surface?

(A) (B) (C) g (D) 4g (E) 8g1
4 g

1
8 g

✔

Fnet,y

Fnet,x

�
1.41 � 1020 N

5.75 � 1020 N
� 0.245.

 � 2(5.75 � 1020 N)2 � (1.41 � 1020 N)2 � 5.92 � 1020 N

 Fnet � 2F 2
net,x � F 2

net,y

Fnet,y � FEM  sin 45.0� � 1.99 � 1020 N � sin 45.0� � 1.41 � 1020 N

 � 4.34 � 1020 N � 1.99 � 1020 N � cos 45.0� � 5.75 � 1020 N

 Fnet,x � FSM � FEM cos 45.0�

 � 1.99 � 1020 N

 �
6.67 � 10�11 N�m2/kg2 � 5.98 � 1024 kg � 7.35 � 1022 kg

(3.84 � 108 m )2

FEM �
GME MM

R2
EM
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HENRY CAVENDISH (1731–1810)
English experimental physicist and chemist.

His torsion balance for the absolute measure-

ment of the gravitational force was based on

an earlier design used by Coulomb for the

measurement of the electric force.

9.2 THE MEASUREMENT OF G

The gravitational constant G is rather difficult to measure with precision. The trouble

is that gravitational forces between masses of laboratory size are extremely small, and

thus a very delicate apparatus is needed to detect these forces. Measurements of G are

usually done with a Cavendish torsion balance (see Fig. 9.5).Two equal, small spher-

ical masses m and m� are attached to a lightweight horizontal beam which is suspended

at its middle by a thin vertical fiber. When the beam is left undisturbed, it will settle

into an equilibrium position such that the fiber is completely untwisted. If two equal,

large masses M and M� are brought near the small masses, the gravitational attraction

between each small mass and the neighboring large mass tends to rotate the beam

clockwise (as seen from above).The twist of the fiber opposes this rotation, and the net

result is that the beam settles into a new equilibrium position in which the force on the

beam generated by the gravitational attraction between the masses is exactly balanced

by the force exerted by the twisted fiber. The gravitational constant can then be cal-

culated from the measured values of the angular displacement between the two equi-

librium positions, the values of the masses, their distances, and the characteristics of

the fiber.

Note that the mass of the Earth can be calculated from Eq. (9.6) using the known

values of G, RE , and g :

This calculation would seem to be a rather roundabout way to arrive at the mass of

the Earth, but there is no direct route, since we cannot place the Earth on a balance.

Because the calculation requires a prior measurement of the value of G, the Cavendish

experiment has often been described figuratively as “weighing the Earth.”

 � 5.98 � 1024 kg

 ME �
R2

E  
g

G
�

(6.38 � 106 m)2 � 9.81 m/s2

6.67 � 10�11 N�m2/kg2
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FIGURE 9.5 Model of large torsion

balance used by Cavendish. The small

masses m, m� hang from the ends of a

horizontal beam which is suspended at

its middle by a thin vertical fiber.

m M

M'
m'

              



Checkup 9.2

QUESTION 1: Why don’t we determine G by measuring the (fairly large) force between

the Earth and a mass of, say, 1 kg?

QUESTION 2: Large mountains produce a (small) deflection of a plumb bob suspended

nearby. Could we use this effect to determine G?

(A) Yes (B) No

9.3 CIRCULAR ORBITS

The gravitational force is responsible for holding the Solar System together; it makes

the planets orbit around the Sun, and it makes the satellites orbit around the planets.

Although the mutual gravitational forces of the Sun on a planet and of the planet on the

Sun are of equal magnitudes, the mass of the Sun is more than a thousand times as

large as the mass of even the largest planet, and hence its acceleration is much smaller.

It is therefore an excellent approximation to regard the Sun as fixed and immovable,

and it then only remains to investigate the motion of the planet. If we designate the

masses of the Sun and the planet by MS and m, respectively, and their center-to-center

separation by r, then the magnitude of the gravitational force on the planet is

(9.7)

This force points toward the center of the Sun; that is, the center of the Sun is the

center of force (see Fig. 9.6). For a particle moving under the influence of such a cen-

tral force, the simplest orbital motion is uniform circular motion, with the gravita-

tional force acting as centripetal force. The motion of the planets in our Solar System

is somewhat more complicated than that—as we will see in the next section, the plan-

ets move along ellipses, instead of circles. However, none of these planetary ellipses

deviates very much from a circle, and as a first approximation we can pretend that the

planetary orbits are circles.

By combining the expression (9.7) for the centripetal force with Newton’s Second

Law we can find a relation between the radius of the circular orbit and the speed. If the

speed of the planet is v, then the centripetal acceleration is v2/r [see Eq. (4.49)], and

the equation of motion, ma � F, becomes

(9.8)

Consequently,

(9.9)

We can cancel a factor of m and a factor of 1/r, in this equation, and we obtain 

or

(9.10)v � B
GMS

r

v2 �
GMS

r

mv2

r
�

GMS 
m

r 
2

mv2

r
� F

F �
GMS m

r2

✔
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FIGURE 9.6 Circular orbit of a planet

around the Sun.
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NICHOLAS COPERNICUS (1473–1543)
Polish astronomer. In his book De Revolutionibus

Orbium Coelestium he formulated the helio-

centric system for the description of the motion 

of the planets, according to which the Sun is

immovable and the planets orbit around it.

The mass of the Sun is 1.99 � 1030 kg, and the radius of

the Earth’s orbit around the Sun is 1.5 � 1011 m. From this,

calculate the orbital speed of the Earth.

SOLUTION: According to Eq. (9.10), the orbital speed is

The time a planet takes to travel once around the Sun, or the time for one revolution, is

called the period of the planet. We will designate the period by T. The speed of the

planet is equal to the circumference 2	r of the orbit divided by the time T :

(9.11)

With this expression for the speed, the square of Eq. (9.10) becomes

(9.12)

which can be rearranged to read

(9.13)

This says that the square of the period is proportional to the cube of the radius of the orbit,

with a constant of proportionality depending on the mass of the central body.

Both Venus and the Earth have approximately circular orbits

around the Sun. The period of the orbital motion of Venus is

0.615 year, and the period of the Earth is 1 year. According to Eq. (9.13), by what

factor do the sizes of the two orbits differ?

SOLUTION: If we take the cube root of both sides of Eq. (9.13), we see that the

orbital radius is proportional to the 2/3 power of the period. Hence we can set up

the following proportion for the orbital radii of the Earth and Venus:

(9.14)

An equation analogous to Eq. (9.13) also applies to the circular motion of a moon

or artificial satellite around a planet. In this case, the planet plays the role of the cen-

tral body and, in Eq. (9.13), its mass replaces the mass of the Sun.

A communications satellite is in a circular orbit around the

Earth, in the equatorial plane. The period of the orbit of such

a satellite is exactly 1 day, so that the satellite always hovers in a fixed position rel-

ative to the rotating Earth. What must be the radius of such a “geosynchronous,”

or “geostationary,” orbit?

EXAMPLE 6

 �
(1 year)2/3

(0.615 year)2/3
� 1.38

 
rE

rV

�
T 

2/3
E

T 
2/3
V

EXAMPLE 5

T 2 �
4p2

GMS
 r

3

4p2r2

T  

2
�

GMS

r

v �
2pr

T

 � 3.0 � 104 m/s � 30 km/s

 v � B
GMS

r
 �D

6.67 � 10�11 N�m2/ kg2 � 1.99 � 1030 kg

1.5 � 1011 m

EXAMPLE 4
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SOLUTION: Since the central body is the Earth, the equation analogous to Eq.

(9.13) is

(9.15)

or

(9.16)

Taking the cube root of both sides of this equation, we find

(9.17)

The orbit is shown in Fig. 9.7, which is drawn to scale. The radius of the orbit is

about 6.6 times the radius of the Earth.

Surveillance satellites and spacecraft such as the Space Shuttle

(Fig. 9.8) often operate in low-altitude orbits quite near the

Earth, just above the atmosphere. Such orbits can have a radius as small as rlow �

6.6 � 106 m; this is less than one-sixth of the geostationary orbit radius rgeo � 4.23

� 107m. Calculate how often the low-altitude satellites and spacecraft circle the

Earth.

SOLUTION: Taking the square root of both sides of Eq. (9.13), we see that the

period is proportional to the 3/2 power of the orbital radius. Hence we can set up

the following proportion for the orbital periods:

or, since the geostationary period Tgeo is one day, or 24 h,

Thus such “fly-bys” occur quite frequently: 16 times per day.

Checkup 9.3

QUESTION 1: The orbit of the geostationary satellite illustrated in Fig. 9.7 is in the

equatorial plane, and the satellite is stationary above a point on the Earth’s equator.

Why can’t we keep a satellite stationary above a point that is not on the equator, say,

above San Francisco?

✔

Tlow � 0.062 � 24 h � 1.5 h

� 0.062

Tlow

Tgeo

� arlow

rgeo

b 3/2

� a 6.6 � 106   m

4.23 � 107 m
b 3/2

EXAMPLE 7

� 4.23 � 107 m

� a 6.67 � 10�11 N�m2/kg2 � 5.98 � 1024 kg � (24 � 60 � 60 s)2

4p2
b 1/3

r � aGMET 2

4p2
b 1/3

r3 �
GMET 2

4p2

T 2 �
4p2

GME
 r

3

280 CHAPTER 9 Gravitation

FIGURE 9.7 Orbit of a “geostationary”

satellite around the Earth.

r

Radius of this geosynchronous
orbit is almost seven times RE.

Orbit with period
of one day.

FIGURE 9.8 The Space Shuttle in orbit

with its cargo bay open.
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PHYSICS IN PRACTICE
COMMUNICATIONS SATELL ITES 
AND WEATHER SATELL ITES

Figure 1 shows a recent model of the INTELSAT series

of communications satellites. This satellite has a length of

5.2 m, a diameter of 3.6 m, and a mass of 2240 kg. It is pow-

ered by solar panels that convert the energy of sunlight into

electricity, delivering 2300 watts of power. It contains 50

transponders and is capable of handling 40 000 telephone

circuits simultaneously.

For intercontinental communications, three groups of

INTELSAT satellites are deployed at geostationary positions

over the Atlantic, Pacific, and Indian Oceans. But communi-

cations satellites are also cost-effective for communications

over shorter ranges, when there is a shortage of telephone cables.

Many countries have launched communications satellites to

handle telephone traffic within their borders. Communications

satellites also relay TV transmissions. A small dish antenna

connected to an amplifier permits home television sets to pick

up a multitude of TV channels from these satellites.

More than a hundred communications and weather

satellites have been placed in geostationary orbits.

The communications satellites use radio signals to

relay telephone and TV signals from one point on

the Earth to another. The weather satellites capture pictures

of the cloud patterns and measure the heights of clouds, wind

speeds, atmospheric and ground temperatures, and moisture

in the atmosphere. These observations are especially useful

for monitoring weather conditions over the oceans, where

there are few observation stations at ground level. Data col-

lected by weather satellites permit early detection of danger-

ous tropical storms (hurricanes, typhoons) and forecasting of

the tracks and the strengths of these storms.

The launch vehicle for these satellites usually consists of

a two-stage rocket, which carries the satellite to a low-altitude

orbit. A small rocket motor attached to the satellite is then

used to lift the satellite from the low-altitude orbit to the

high-altitude geostationary orbit. Alternatively, the satellite

can be ferried to the low-altitude orbit by the Space Shuttle.

At the high altitude of the geostationary orbit there is no

atmospheric drag, and a satellite placed in such an orbit will

continue to orbit the Earth indefinitely. However, the orbital

motion of the satellite is disturbed by the Moon and the Sun,

and it is also affected by the nonspherical shape of the Earth,

which produces deviations from the ideal uniform centripetal

force. These disturbances cause the satellite to drift from its

geostationary position.This requires an adjustment of the orbit

every few weeks, which is done with small control nozzles on

the satellite. Typically, a satellite carries enough propellant to

operate its control nozzles for 10 years, by which time other

components in the satellite will also have worn out, or will have

been superseded by new technology, so it becomes desirable

to switch the satellite off, and replace it by a new model.

Communications satellites contain a radio receiver and a

transmitter connected to dish antennas aimed at radio sta-

tions on the ground. The signal received from one station on

the ground is amplified by the satellite, and then this ampli-

fied signal is retransmitted to the other station (the satellite

acts as a transponder).

FIGURE 1 Astronauts handle an INTELSAT communications

satellite.

QUESTION 2: The period of the orbital motion of the Moon around the Earth is 27

days. If the orbit of the Moon were twice as large as it is, what would be the period of

its motion?

QUESTION 3: The mass of a planet can be determined by observing the period of a

moon in a circular orbit around the planet. For such a mass determination, which of
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FIGURE 9.9 Orbit of a planet around the Sun. The orbit

is an ellipse, with the Sun at one focus.
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aphelionperihelion
semimajor
axis

Sun

Planet is
closest to Sun.

Planet is farthest
from Sun.

Kepler’s First Law

Kepler’s Second Law

the following do we need: the period, the radius of the moon’s orbit, the mass of the

moon, the radius of the planet?

QUESTION 4: The radius of the orbit of Saturn around the Sun is about 10 times the

radius of the orbit of the Earth. Accordingly, what must be the approximate period of

its orbital motion?

(A) 1000 yr (B) 100 yr (C) 30 yr (D) 10 yr (E) 3 yr

9.4 ELL IPT ICAL ORBITS ;  KEPLER’S  LAWS

Although the orbits of the planets around the Sun are approximately circular, none of

these orbits are exactly circular. We will not attempt the general solution of the equa-

tion of motion for such noncircular orbits. A complete calculation shows that with

the inverse-square force of Eq. (9.1), the planetary orbits are ellipses. This is Kepler’s

First Law:

The orbits of the planets are ellipses with the Sun at one focus.

Figure 9.9 shows an elliptical planetary orbit (for the sake of clarity, the elongation

of this ellipse has been exaggerated; actual planetary orbits have only very small

elongations). The point closest to the Sun is called the perihelion; the point farthest

from the Sun is called the aphelion. The sum of the perihelion and the aphelion

distances is the major axis of the ellipse. The distance from the center of the ellipse

to the perihelion (or aphelion) is the semimajor axis; this distance equals the average

of the perihelion and aphelion distances.    

Kepler originally discovered his First Law and his other two laws (see below) early

in the seventeenth century, by direct analysis of the available observational data on

planetary motions. Hence, Kepler’s laws were originally purely phenomenological

statements; that is, they described the phenomenon of planetary motion but did not

explain its causes. The explanation came only later, when Newton laid down his laws

of motion and his Law of Universal Gravitation and deduced the features of plane-

tary motion from these fundamental laws.

Kepler’s Second Law describes the variation in the speed of the motion:

The radial line segment from the Sun to the planet sweeps out equal areas

in equal times.
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FIGURE 9.10 For equal time intervals, the

areas SQQ� and SPP� are equal. The distance

QQ� is larger than the distance PP�.
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MATH HELP ELL IPSES

An ellipse is defined geometrically by the condition that the

sum of the distance from one focus of the ellipse and the dis-

tance from the other focus is the same for all points on the

ellipse. This geometrical condition leads to a simple method

for the construction of an ellipse: Stick pins into the two foci

and tie a length of string to these points. Stretch the string taut

to the tip of a pencil, and move this pencil around the foci

while keeping the string taut (see Fig. 1a).

An ellipse can also be constructed by slicing a cone

obliquely (see Fig. 1b). Because of this, an ellipse is said to

be a conic section.

The largest diameter of the ellipse is called the major axis,

and the smallest diameter is called the minor axis.The semimajor

axis and the semiminor axis are one-half of these diameters,

respectively (see Fig. 1c).

If the semimajor axis of length a is along the x axis and the

semiminor axis of length b is along the y axis, then the x and

y coordinates of an ellipse centered on the origin satisfy

The foci are on the major axis at a distance f from the origin

given by

The separation between a planet and the Sun is a � f

at perihelion and is a � f at aphelion.

f � 2a2 � b2

x2

a2
�

y2

b2
� 1

focus focus

b

af

(c)(b)(a)

semiminor
axis

semimajor
axis

Sun

FIGURE 1 (a) Constructing an ellipse. (b) Ellipse as a conic section. (c) Focal distance f, semimajor axis a, and semiminor axis b of an ellipse.

Figure 9.10 illustrates this law. The two colored areas are equal, and the planet takes

equal times to move from P to P� and from Q to Q�. According to Fig. 9.10, the speed

of the planet is larger when it is near the Sun (at Q) than when it is far from the Sun

(at P).

Kepler’s Second Law, also called the law of areas, is a direct consequence of the

central direction of the gravitational force. We can prove this law by a simple geo-

metrical argument. Consider three successive positions P, P�, P��on the orbit, sepa-

rated by a relatively small distance. Suppose that the time intervals between P, P� and

between P�, P�� are equal—say, each of the two intervals is one second. Figure 9.11

shows the positions P, P�, P��. Between these positions the curved orbit can be approx-

imated by straight line segments PP� and P�P��. Since the time intervals are one unit

of time (1 second), the lengths of the segments PP� and P�P�� are in proportion to the

S

P'

P

Q

Q'

Radial line sweeps out
equal areas in equal times.

              



average velocities in the two time intervals. The velocities

differ because the gravitational force causes an acceleration.

However, since the direction of the force is toward the center,

parallel to the radius, the component of the velocity per-

pendicular to the radius cannot change. The component of

the velocity perpendicular to the radius is represented by

the line segment PA for the first time interval, and it is rep-

resented by BP �� for the second time interval. These line

segments perpendicular to the radius are, respectively, the

heights of the triangles SPP� and SP�P �� (see Fig. 9.11).

Since these heights are equal and since both triangles have

the same base SP�, their areas must be equal.Thus, the areas

swept out by the radial line in the two time intervals must

be equal, as asserted by Kepler’s Second Law. Note that this

geometrical argument depends only on the fact that the

force is directed toward a center; it does not depend on the

magnitude of the force. This means that Kepler’s Second

Law is valid not only for planetary motion, but also for

motion with any kind of central force.

Let us explore what Kepler’s Second Law has to say

about the speeds of a planet at aphelion and at perihelion. Figure 9.12 shows the tri-

angular area SPP� swept out by the radial line in a time 
t at, or near, aphelion. The

height PP� of this triangle equals the speed v1 at aphelion times the time 
t ; hence the

area of the triangle is . Likewise, the triangular area SQQ� swept out by the

radial line in an equal time 
t at, or near, perihelion is r2v2 
t. By Kepler’s Second Law

these two areas must be equal; if we cancel the common factors of and 
t, we obtain

(9.18)at aphelion at perihelion

According to this equation, the ratio of the aphelion and perihelion distances is the

inverse of the ratio of the speeds.

The perihelion and aphelion distances for Mercury are 

45.9 � 109 m and 69.8 � 109 m, respectively. The speed of

Mercury at aphelion is 3.88 � 104 m/s. What is the speed at perihelion?

SOLUTION: From Eq. (9.18),

In Chapter 13 we will become acquainted with the angular momentum L, which,

for a planet at aphelion or perihelion, is equal to the product rmv. By multiplying both

sides of Eq. (9.18) by the mass of the planet m, we see that r1mv1 � r2mv2; that is, the

angular momentum at aphelion equals the angular momentum at perihelion. Thus,

Kepler’s Second Law can be regarded as a consequence of a conservation law for angu-

lar momentum. We will see that angular momentum is conserved when a particle is

under the influence of any central force.

� 5.90 � 104 m/s

 v2 �
r1

r2

v1 �
69.8 � 109 m

45.9 � 109 m
� 3.88 � 104 m/s 

EXAMPLE 8

r1v1 � r2v2

1
2

1
2

1
2r1v1 ¢t
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S (Sun)

P"

P'

B

P

A

Triangles SPP' and SP'P"
have the same base SP'
and equal heights, and
so have equal areas.

For a central force,
the heights BP" and
AP are equal.

FIGURE 9.11 In one second the

planet travels from P to P�, and in the

next second it travels from P� to P �.

The radial line segment sweeps out the

triangular area SPP� in the first second

and the triangular area SP�P � in the

next second.

FIGURE 9.12 Triangular area SPP� swept

out in one interval 
t after aphelion, and tri-

angular area SQQ� swept out in an identical

interval 
t after perihelion.

r1

r2

S

P
P

Q'

Q

Since areas are the same
for equal times, the speed
varies inversely with aphelion
or perihelion distance.
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Kepler’s Third Law

Kepler’s Third Law relates the period of the orbit to the size of the orbit:

The square of the period is proportional to the cube of the semimajor axis of the

planetary orbit.

This Third Law, or law of periods, is nothing but a generalization of Eq. (9.13) to

elliptical orbits.

Table 9.1 lists the orbital data for the planets of the Solar System. The mean

distance listed in this table is defined as the average of the perihelion and aphelion

distances; that is, it is the semimajor axis of the ellipse. The difference between the

perihelion and aphelion distances gives an indication of the elongation of the ellipse.

TABLE 9.1

MEAN DISTANCE
FROM SUN PERIHELION APHELION

PLANET (a) MASS (SEMIMAJOR AXIS) DISTANCE DISTANCE PERIOD

Mercury 3.30 � 1023 kg 57.9 � 106 km 45.9 � 106 km 69.8 � 106 km 0.241 yr

Venus 4.87 � 1024 108 107 109 0.615

Earth 5.98 � 1024 150 147 152 1.00

Mars 6.42 � 1023 228 207 249 1.88

Jupiter 1.90 � 1027 778 740 816 11.9

Saturn 5.67 � 1026 1430 1350 1510 29.5

Uranus 8.70 � 1025 2870 2730 3010 84.0

Neptune 1.03 � 1026 4500 4460 4540 165

Pluto 1.50 � 1022 5890 4410 7360 248

THE PLANETS

JOHANNES KEPLER (1571–1630) German astronomer

and mathematician. Kepler relied on the theoretical framework

of the Copernican system, and he extracted his three laws by a

meticulous analysis of the observational data on planetary

motions collected by the great Danish astronomer Tycho Brahe.

(a) A photomontage of the planets in sequence from

Mercury (top left, partly hidden) to Pluto (bottom left).

              



FIGURE 9.14 Orbits of the

first artificial Earth satellites.

See Table 9.3 for more data.

286 CHAPTER 9 Gravitation

FIGURE 9.15 Sputnik I, the first

artificial Earth satellite. This satellite

had a mass of 83 kg.

FIGURE 9.13 (a) Orbits of Mercury,

Venus, Earth, and Mars. Elliptical orbits can

appear quite circular, even when the focus is

noticeably off-center, as with Mercury and

Mars. The colored dots indicate the posi-

tions of these planets on January 1, 2000.

The tick marks indicate the positions at

intervals of 10 days. (b) Orbits of Jupiter,

Saturn, Uranus, and Neptune, and a portion

of the orbit of Pluto. The tick marks for

Jupiter and Saturn indicate the positions at

intervals of 1 year.

Figure 9.13a shows the orbits of the planets Mercury, Venus, Earth, and Mars on scale

diagrams. The orbits of Saturn, Jupiter, Uranus, and Neptune and part of the orbit of

Pluto are shown in Fig. 9.13b. Inspection of these diagrams reveals that the orbits of

Mercury, Mars, and Pluto are noticeably different from circles.1

Kepler’s three laws apply not only to planets, but also to satellites and to comets.

For example, Fig. 9.14 shows the orbits of a few of the many artificial Earth satellites.

All these orbits are ellipses. For Earth orbits, the point closest to the Earth is called

perigee; the point farthest from Earth is called apogee.The early artificial satellites were

quite small, with masses below 100 kg (see Fig. 9.15). Nowadays, satellites with masses
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1 Pluto has recently been reclassified by the International Astronomical Union as a dwarf planet, in the

same category as Ceres and 2003 UB313 (X ena).

              



FIGURE 9.16 Orbit of an intercontinen-

tal ballistic missile (ICBM). The elongation

of the ellipse and the height of the orbit are

exaggerated.

9.4 Elliptical Orbits; Kepler’s Laws 287

1 Gedankenexperiment is German for “thought experiment.”This word is used by physicists for an imaginary

experiment that can be done in principle, but that has never been done in practice, and whose outcome can

be discovered by thought.

O
x

curved surface
of Earth

y

Projectile path is a 
portion of an ellipse.

At short distance, ellipse
coincides with parabola.

For a long-range projectile
(here about 1000 km),
deviation from parabola
is evident.

FIGURE 9.17 The parabola (blue curve) approximates the ellipse (red curve) for short distances.

FIGURE 9.18 This drawing from

Newton’s Principia illustrates an imaginary

experiment with a cannonball fired from a

gun on a high mountain. For a sufficiently

large muzzle velocity, the trajectory of the

cannonball is a circular orbit.

For sufficient speed,
projectile will orbit.

Projectiles are fired
horizontally with
different speeds.

of several tons are not unusual. All of the early artificial satellites burned up in the

atmosphere after a few months or a few years because they were not sufficiently far

from the Earth to avoid the effects of residual atmospheric friction.

Kepler’s laws also apply to the motion of a projectile near the Earth. For instance,

Fig. 9.16 shows the trajectory of an intercontinental ballistic missile (ICBM). During

most of its trajectory, the only force acting on the missile is the gravity of the Earth;

the thrust of the engines and the friction of the atmosphere act only during the rela-

tively short initial and final segments of the trajectory (on the scale of Fig. 9.16, these

initial and final segments of the trajectory are too small to be noticed). The trajectory

is a portion of an elliptical orbit cut short by the impact on the Earth. Likewise, the

motion of an ordinary low-altitude projectile, such as a cannonball, is also a portion of

an elliptical orbit (if we ignore atmospheric friction). In Chapter 4 we made the near-

Earth approximation that gravity was constant in magnitude and direction; with these

approximations we found that the orbit of a projectile was a parabola. Although the exact

orbit of a projectile is an ellipse, the parabola approximates this ellipse quite well over

the relatively short distance involved in ordinary projectile motion; deviations do

become noticeable for long-range trajectories (see Fig. 9.17).

The connection between projectile motion and orbital motion was neatly illus-

trated by Newton by means of an imaginary experiment, or what today we would

call a Gedankenexperiment.1 Newton proposed to fire a cannonball horizontally from

a gun emplaced on a high mountain (see Fig. 9.18). If the muzzle velocity is fairly

low, the cannonball will arc toward the Earth and strike near the base of the moun-

tain. The trajectory is a segment of a parabola, or, more precisely, a segment of an

ellipse. If we increase the muzzle velocity, the cannonball will describe larger and

larger arcs. Finally, if the muzzle velocity is just large enough, the rate at which the

trajectory curves downward is precisely matched by the curvature of the surface of

the Earth—the cannonball never hits the Earth and keeps on falling forever while

moving in a circular orbit. This example makes it very clear that orbital motion is

free-fall motion.

ImpactLaunch

Path of missile is a
portion of an ellipse.
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Finally, we note that in our mathematical description of planetary motion we have

neglected the gravitational forces that the planets exert on one another. These forces

are much smaller than the force exerted by the Sun, but in a precise calculation the

vector sum of all the forces must be taken into account.The net force on any planet then

depends on the positions of all the other planets. This means that the motions of all

the planets are coupled together, and the calculation of the motion of one planet requires

the simultaneous calculation of the motions of all the other planets.This makes the pre-

cise mathematical treatment of planetary motion extremely complicated. Kepler’s

simple laws neglect the complications introduced by the interplanetary forces; these laws

therefore do not provide an exact description of planetary motions, but only a very

good first approximation.

Checkup 9.4

QUESTION 1: Suppose that the gravitational force were an inverse-cube force, instead

of an inverse-square force. Would Kepler’s Second Law remain valid? Would Kepler’s

Third Law remain valid?

QUESTION 2: A comet has an aphelion distance twice as large as its perihelion dis-

tance. If the speed of the comet is 40 km/s at perihelion, what is its speed at aphelion? 

QUESTION 3: A comet has an elliptical orbit of semimajor axis equal to the Earth–Sun

distance. What is the period of such a comet?

QUESTION 4: If you want to place an artificial satellite in an elliptical orbit of period

8 years around the Sun, what must be the semimajor axis of this ellipse? (Answer in units

of the Earth–Sun distance.)

(A) 64 (B) (C) 8 (D) 4 (E) 2

9.5 ENERGY IN ORBITAL  MOTION

The gravitational force is a conservative force; that is, the work done by this force on

a particle moving from some point P1 to some other point P2 can be expressed as a

difference between two potential energies, and the work done on any round trip start-

ing and ending at some given point is zero. To construct the potential energy, we pro-

ceed as in Section 8.1: we calculate the work done by the gravitational force as the

particle moves from point P1 to point P2, and we seek to express this work as a differ-

ence of two terms. In Fig. 9.19, the points P1 and P2 are at distances r1 and r2, respec-

tively, from the central mass. To calculate the work, we must take into account that

the force is a function of the distance; that is, the force is variable. From Section 7.2,

we know that for such a variable force, the work is the integral of the force over the dis-

tance. If we place the x axis along the line connecting P1 and P2 (see Fig. 9.19), then

the force can be expressed as 

and the work is

W � �
P2

P1

 

Fx 
(x) dx � �

r2

r1

a� 

GMm

x 2
b dx

Fx � � 

GMm

x 2

1622

✔

FIGURE 9.19 Two points P1 and P2 at

distances r1 and r2 from the central mass.

r1

Ffixed
mass M

P1

P2

r2

As the particle of mass
m moves from r1 to r2,
it experiences a varying
gravitational force.
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We already have evaluated this kind of integral in Example 2 of Chapter 8 (in the case

of the gravitational force, the constant A in that example is A � �GMm). The result

of the integration is

(9.19)

As expected, this result shows that the work is the difference between two potential ener-

gies. Accordingly, we can identify the gravitational potential energy as

(9.20)

Note that in this calculation of the gravitational potential energy we assumed that

the points P1 and P2 lie on the same radius (see Fig. 9.19). However, Eq. (9.19) is

valid in general, even if P1 and P2 do not lie on the same radial line. We can see this

by introducing an intermediate point Q, which is on the radial line of P1 but at the

radial distance of P2 (see Fig. 9.20). To move the particle from P1 to P2, we first move

it from P1 to Q along the radial line; this takes the amount of work given by Eq. (9.19).

We then move the particle from Q to P2, along the circular arc of radius r2; this costs

no work, since such a displacement is perpendicular to the force. Any more general

path can be constructed from small radial segments and small arcs of circles, and so

Eq. (9.19) is true in general.

The potential energy (9.20) is always negative, and its magnitude is inversely pro-

portional to r. Figure 9.21 gives a plot of this potential energy as a function of distance.

If the distance r is small, the potential energy is low (the potential energy is much below

zero); if the distance r is large, the potential energy is higher (the potential energy is

still negative, but not so much below zero). Thus, the potential energy increases with

distance; it increases from a large negative value to a smaller negative value or to zero.

Such an increase of potential energy with distance is characteristic of an attractive force.

For instance, if we want to lift a communications satellite from a low initial orbit (just

above the Earth’s atmosphere) into a high final orbit (such as the geostationary orbit

described in Example 6), we must do work on this satellite (by means of a rocket

engine). The work we do while lifting the satellite increases the gravitational poten-

tial energy from a large negative value (much below zero) to a smaller negative value

(not so much below zero).

W �
GMm

x
`
r1

r2

�
GMm

r2

�
GMm

r1

FIGURE 9.20 Two points P1 and P2 at

distances r1 and r2 in different directions.

The particle moves from P1 to Q and then

from Q to P2.

r1 r2

F

P1

P2

Q

Motion along circular arc
requires no work, since
the force is perpendicular
to the displacement.

U(r)

r

–    � 6.67 � 10–11

–    � 6.67 � 10–11  

–    � 6.67 � 10–11

–1 � 6.67 � 10–11

1 2 3 4 m

4
1

2
1

4
3

Potential energy
increases with distance
(force is attractive).

Potential energy is
inversely proportional
to distance.

FIGURE 9.21 Gravitational potential energy

for a particle of mass 1 kg gravitationally attracted

by another particle of mass 1 kg.

gravitational potential energyU � � 

GMm

r
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The total mechanical energy is the sum of the potential energy and the kinetic energy.

Since we are assuming that the mass M is stationary, the kinetic energy is entirely due to

the motion of the mass m, and the Law of Conservation of Energy takes the form

(9.21)

If the only force acting on the body is the gravitational force (no rocket engine or

other external force!), then this total energy remains constant during the motion. For

instance, the energy (9.21) is constant for a planet orbiting the Sun, and for a satellite or

a spacecraft (with rocket engines shut off ) orbiting the Earth. As we saw in Chapter 8,

examination of the energy reveals some general features of the motion. Equation (9.21)

shows how the orbiting body trades distance (“height”) for speed; it implies that if r

decreases, v must increase, so that the sum of the two terms and �GMm/r

remains constant. Conversely, if r increases, v must decrease.

Let us now investigate the possible orbits around, say, the Sun from the point of

view of their energy. For a circular orbit, we saw in Eq. (9.10) that the orbital speed is

(9.22)

and so the kinetic energy is

(9.23)

Hence the total energy is

or

(9.24)

Consequently, the total energy for a circular orbit is negative and is exactly one-half of

the potential energy.

The 1300-kg Syncom communications satellite was placed in

its high-altitude geosynchronous orbit of radius 4.23 � 107 m

in two steps. First the satellite was carried by the Space Shuttle to a low-altitude

circular orbit of radius 6.65 � 106 m; there it was released from the cargo bay of

the Space Shuttle, and it used its own booster rocket to lift itself to the high-

altitude circular orbit. What is the increase of the total mechanical energy during

this change of orbit?

SOLUTION: The total mechanical energy is exactly one-half of the potential energy

[Eq. (9.24)]. For an Earth orbit, we replace MS in Eq. (9.24) by ME . For the low-

altitude circular orbit of radius r1, the total energy is E1 � �GMEm�2r1, and for

the high-altitude circular orbit of radius r2, the total energy is E2 � �GMEm�2r2.

So the change of the energy is

 E2 � E1 � �  

GME m

2
 ¢ 1

r2

�
1

r1

≤

EXAMPLE 9

E � �
GMS m

2r

E � K � U � 1
2 mv2 �

GMSm

r
�

GMS m

2r
�

GMS m

r

K � 1
2 mv2 �

GMS m

2r

v � B
GMS

r

1
2 mv2

Law of Conservation of Energy E � K � U � 1
2  

mv2 �
GMm

r
� [constant]

Concepts
in

Context

              



FIGURE 9.25 Orbit of positive energy—

a hyperbola.

FIGURE 9.24 Orbit of zero energy—

a parabola.

FIGURE 9.22 Orbits of the same total

energy. All these orbits have the same semi-

major axis.

This energy was supplied by the booster rocket of the satellite.

For an elliptical orbit, the total energy is also negative. It can be demonstrated that

the energy can still be written in the form of Eq. (9.24), but the quantity r must be

taken equal to the semimajor axis of the ellipse. The total energy of the orbit does not

depend on the shape of the ellipse, but only on its larger overall dimension. Figure

9.22 shows several orbits of different shapes but with exactly the same total energy.

From Eq. (9.24) we see that if the energy is nearly zero, then the size of the orbit

is very large (note that E S 0 as r S �). Such orbits are characteristic of comets, many

of which have elliptical orbits that extend far beyond the edge of the Solar System

(see Fig. 9.23). If the energy is exactly zero, then the “ellipse” extends all the way to

infinity and never closes; such an “open ellipse” is actually a parabola (see Fig. 9.24).

 � 3.29 � 1010 J

� ¢ 1

4.23 � 107 m
�

1

6.65 � 106 m
≤ � �  

6.67 � 10�11  N�m2/kg2 � 5.98 � 1024 kg � 1300 kg

2
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Halley

 orbit of 
Saturn

Faye

Biela

Encke
Winnecke

Orbits of negative total energy 
near zero are large ellipses.

FIGURE 9.23 Orbits of some periodic comets.

Equation (9.21) indicates that if the energy is zero, the comet will reach infinite dis-

tance with zero velocity (if r � �, then v � 0). By considering the reverse of this

motion, we see that a comet of zero energy, initially at very large distance from the

Sun, will fall along this type of parabolic orbit.

If the energy is positive, then the orbit again extends all the way to infinity and again

fails to close; such an open orbit is a hyperbola.The comet will then reach infinite distance

with some nonzero velocity and continue moving along a straight line (see Fig. 9.25).

A meteoroid (a chunk of rock) is initially at rest in inter-

planetary space at a large distance from the Sun. Under

the influence of gravity, the meteoroid begins to fall toward the Sun along a straight

radial line. With what speed does it strike the Sun? The radius of the Sun is 

6.96 � 108 m.

SOLUTION: The energy of the meteoroid is

(9.25)E � K � U � 1
2 
mv2 �

GMS m

r
� [constant]

EXAMPLE 10

Total energy does not depend on
the shape of the ellipse, only on
the length of the semimajor axis.

For a zero-energy

orbit, v      0 as

r     �.

For a positive-energy
orbit, comet continues
with nonzero v as r     �.

              



impact speed and escape velocity

FIGURE 9.26 Different orbits with the

same starting point and initial speed. All

these orbits are segments of parabolas.
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Initially, both the kinetic and potential energies are zero (v � 0 and r � �). Hence

at any later time

or

(9.26)

If we cancel a factor of m and multiply by 2 on both sides of this equation, take

the square root of both sides, and substitute r � RS for the impact on the Sun’s

surface, we find the speed at the moment of impact:

(9.27)

With MS � 1.99 � 1030 kg (see Example 4) and RS � 6.96 � 108 m, we obtain

The quantity given by Eq. (9.27) is called the Sun’s escape velocity because it is the

minimum initial velocity with which a body must be launched upward from the surface

of the Sun if it is to escape and never fall back. We can recognize this by looking at the

motion of the meteoroid in Example 10 in reverse: it starts with a velocity of 618 km/s

at the surface of the Sun and gradually slows as it rises, but never quite stops until it

reaches a very large distance (r � �).

The escape velocity for a body launched from the surface of the Earth can be

calculated from a formula analogous to Eq. (9.27), provided that we ignore atmo-

spheric friction and the pull of the Sun on the body. Atmospheric friction will be

absent if we launch the body from just above the atmosphere. The pull of the Sun has

only a small effect on the velocity of escape from the Earth if we contemplate a body

that “escapes” to a distance of, say, r � 100RE or 200RE rather than r � �, where

we would also have to consider escape from the Sun. For such a motion, the dis-

placement relative to the Sun can be neglected, and the escape velocity v is approx-

imately 

Note that the direction in which the escaping body is launched is immaterial—the

body will succeed in its escape whenever the direction of launch is above the horizon. Of

course, the path that the body takes will depend on the direction of launch (see Fig. 9.26).

Checkup 9.5

QUESTION 1: An artificial satellite is initially in a circular orbit of fairly low altitude

around the Earth. Because of friction with the residual atmosphere, the satellite loses

some energy and enters a circular orbit of smaller radius.The speed of the satellite will

then be larger in the new orbit. How can friction result in an increase of kinetic energy?

QUESTION 2: Does Kepler’s Second Law apply to parabolic and hyperbolic orbits?

✔

12GME >RE � 11.2  km/ s.

� 6.18 � 105 m/s � 618 km/s

v � B
2 � 6.67 � 10�11 N�m2/kg2 � 1.99 � 1030 kg

6.96 � 108 m

v � A
2GMS

RS

1
2 
mv2 �

GMS m

r

1
2 
mv2 �

GMS m

r
� 0

At escape velocity, parabolic
shape varies with launch direction.

              



QUESTION 3: Suppose that we launch a body horizontally from the surface of the

Earth, with a velocity exactly equal to the escape velocity of 11.2 km/s. What kind of

orbit will this body have? Ignore atmospheric friction.

QUESTION 4: Uranus has a smaller gravitational acceleration at its surface than the

Earth. Can you conclude that the escape velocity from its surface is smaller than from

the Earth’s surface?

QUESTION 5: Suppose that three comets, I, II, and III, approach the Sun. At the

instant they cross the Earth’s orbit, comet I has a speed of 42 km/s, comet II has a

larger speed, and comet III a smaller speed. Given that the orbit of comet I is parabolic,

what are the kinds of orbit for comets II and III, respectively?

(A) Elliptical; hyperbolic (B) Elliptical; parabolic (C) Hyperbolic; elliptical

(D) Hyperbolic; parabolic (E) Parabolic; elliptical 

Summary 293

g �
GME

R2
E

ACCELERATION OF FREE FALL ON EARTH 

v � B
GMS

r

T 2 �
4p2

GMS
 r

3

SPEED FOR CIRCULAR ORBIT AROUND SUN 

PERIOD OF ORBIT AROUND SUN 

KEPLER’S SECOND LAW The radial line segment

from the Sun to a planet sweeps out equal areas in

equal times.

KEPLER’S THIRD LAW The square of the period is

proportional to the cube of the semimajor axis of a

planetary orbit.

KEPLER’S FIRST LAW The orbits of the planets are

ellipses with the Sun at one focus.

G � 6.67 � 10�11 N�m2/kg2GRAVITATIONAL CONSTANT 

PHYSICS IN PRACTICE Communication Satellites

and Weather Satellites

MATH HELP Ellipses

SUMMARY

LAW OF UNIVERSAL GRAVITATION 

F �
GMm

r2
Magnitude:

Direction: The force on each mass is directed

toward the other mass.

(9.1)

(9.2)

(page 281)

(page 283)

(9.6)

(9.10)

M

m

r

The force on each
particle is directed
toward the other 
particle.

S

Radial line sweeps out
equal areas in equal times.
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GRAVITATIONAL POTENTIAL ENERGY 

CONSERVATION OF ENERGY 

ENERGY FOR A CIRCULAR ORBIT AROUND
THE SUN (Also the energy for an elliptical

orbit with semimajor axis r.) 

ESCAPE VELOCITY FROM EARTH 

SHAPES OF ORBITS For total 

mechanical energy E,

U � � 
GMm

r

E � K � U � 1
2 
mv2 �

GMm

r
� [constant]

v � B
2GME

RE

E � �
GMSm

2r

E 
 0 elliptical orbit

E � 0 parabolic trajectory

E � 0 hyperbolic trajectory

QUEST IONS FOR DISCUSSION

1. Can you directly feel the gravitational pull of the Earth with

your sense organs? (Hint: Would you feel anything if you were

in free fall?)

2. According to a tale told by Professor R. Lichtenstein, some

apple trees growing in the mountains of Tibet produce apples

of negative mass. In what direction would such an apple fall if

it fell off its tree? How would such an apple hang on the tree?

3. Eclipses of the Moon can occur only at full Moon. Eclipses of

the Sun can occur only at new Moon. Why?

4. Explain why the sidereal day (the time of rotation of the Earth

relative to the stars, or 23 h 56 min 4 s) is shorter than the

mean solar day (the time between successive passages of the

Sun over a given meridian, or 24 h). (Hint: The rotation of the

Earth around its axis and the revolution of the Earth around

the Sun are in the same direction.)

5. Suppose that an airplane flies around the Earth along the

equator. If this airplane flew very fast, it would not need wings

to support itself. Why not?

6. The mass of Pluto was not known until 1978 when a moon of

Pluto was finally discovered. How did the discovery of this

moon help?

7. It is easier to launch an Earth satellite into an eastward orbit

than into a westward orbit. Why?

8. Would it be advantageous to launch rockets into space from a

pad at very high altitude on a mountain? Why has this not

been done?

9. Describe how you would play squash on a small, round aster-

oid (with no enclosing wall). What rules of the game would

you want to lay down?

10. According to an NBC news report of April 5, 1983, a commu-

nications satellite launched from the Space Shuttle went into

an orbit as shown in Fig. 9.27. Is this believable?

FIGURE 9.27 Proposed orbit for

a communications satellite.

(9.20)

(9.21)

(9.24)

(9.27)

E > 0; hyperbola

E = 0; parabola

E < 0; ellipse
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11. Does the radial line from the Sun to Mars sweep out area

at the same rate as the radial line from the Sun to the

Earth?

12. Why were the Apollo astronauts able to jump much higher on

the Moon than on the Earth (Fig. 9.28)? If they had landed

on a small asteroid, could they have launched themselves into

a parabolic or hyperbolic orbit by a jump?

13. The Earth reaches perihelion on January 3 and aphelion on

July 6. Why is it not warmer in January than in July?

14. When the Apollo astronauts were orbiting around the Moon

at low altitude, they detected several mass concentrations

(“mascons”) below the lunar surface. What is the effect of a

mascon on the orbital motion?

15. An astronaut in a circular orbit above the Earth wants to take

his spacecraft into a new circular orbit of larger radius. Give

him instructions on how to do this.

FIGURE 9.28 The jump of the astronaut.

16. A Russian and an American astronaut are in two separate space-

craft in the same circular orbit around the Earth.The Russian is

slightly behind the American, and he wants to overtake him.The

Russian fires his thrusters in the forward direction, braking for a

brief instant.This changes his orbit into an ellipse. One orbital

period later, the astronauts return to the vicinity of their initial

positions, but the Russian is now ahead of the American. He

then fires his thrusters in the backward direction.This restores

his orbit to the original circle. Carefully explain the steps of this

maneuver, drawing diagrams of the orbits.

17. The gravitational force that a hollow spherical shell of uni-

formly distributed mass exerts on a particle in its interior is

zero. Does this mean that such a shell acts as a gravity shield?

18. Consider an astronaut launched in a rocket from the surface of

the Earth and then placed in a circular orbit around the Earth.

Describe the astronaut’s weight (measured in an inertial refer-

ence frame) at different times during this trip. Describe the

astronaut’s apparent weight (measured in his own reference

frame) at different times.

19. Several of our astronauts suffered severe motion sickness while

under conditions of apparent weightlessness. Since the astro-

nauts were not being tossed about (as in an airplane or a ship

in a storm), what caused this motion sickness? What other

difficulties does an astronaut face in daily life under conditions

of weightlessness?

20. An astronaut on the International Space Station lights a

candle. Will the candle burn like a candle on Earth?

21. Astrology is an ancient superstition according to which the

planets influence phenomena on the Earth. The only force that

can reach over the large distances between the planets and act

on pieces of matter on the Earth is gravitation (planets do not

have electric charge, and they therefore do not exert electric

forces; some planets do have magnetism, but their magnetic

forces are too weak to reach the Earth). Given that the Earth is

in free fall under the action of the net gravitational force of the

planets and the Sun, is there any way that the gravitational

forces of the planets can affect what happens on the Earth?

balances that of the Moon. At what distance from the Earth is

this point?

4. Calculate the value of the acceleration of gravity at the surface

of Venus, Mercury, and Mars. Use the data on planetary masses

and radii given in the table printed inside the book cover.

5. What is the magnitude of the gravitational force that the Sun

exerts on you? What is the magnitude of the gravitational

force that the Moon exerts on you? The masses of the Sun and

the Moon and their distances are given inside the book cover;

assume that your mass is 70 kg. Compare these forces with

PROBLEMS

9.1 Newton’s Law of Universal Gravitation
9.2 The Measurement of G†

1. Two supertankers, each with a mass of 700 000 metric tons, are

separated by a distance of 2.0 km. What is the gravitational

force that each exerts on the other? Treat them as particles.

2. What is the gravitational force between two protons separated

by a distance equal to their diameter, 2.0 � 10�15 m?

3. Somewhere between the Earth and the Moon there is a point

where the gravitational pull of the Earth on a particle exactly

† For help see Online Concept Tutorial 11 at www wwnorton com/physics
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Moon

Earth

Sun

FIGURE 9.29 Earth, Moon, and Sun.

*19. Mimas, a small moon of Saturn, has a mass of 3.8 � 1019 kg

and a diameter of 500 km. What is the maximum equatorial

velocity with which we can make this moon rotate about its

axis if pieces of loose rock sitting on its surface at its equator

are not to fly off?

9.3 C i rcu lar  Orb i t s †

20. The Midas II spy satellite was launched into a circular orbit at

a height of 500 km above the surface of the Earth. Calculate

the orbital period and the orbital speed of this satellite.

21. Consider the communications satellite described in Example 6.

What is the speed of this satellite?

22. Calculate the orbital speed of Venus from the data given in

Example 5.

23. The Sun is moving in a circular orbit around the center of our

Galaxy. The radius of this orbit is 3 � 104 light-years.

Calculate the period of the orbital motion and calculate the

orbital speed of the Sun. The mass of our Galaxy is 4 �

1041 kg, and all of this mass can be regarded as concentrated 

at the center of the Galaxy.

24. Table 9.2 lists some of the moons of Saturn. Their orbits are

circular.

(a) From the information given, calculate the periods and

orbital speeds of all these moons.

(b) Calculate the mass of Saturn.

the near and far surfaces of Io (due to Jupiter) with the

difference in accelerations on the near and far side of 

the Earth (due to the Moon), both as absolute accelera-

tions and as a fraction of the surface g. Io has a mass of

8.9 � 1022 kg and a radius of 1820 km, and is 422 � 103

km from the center of Jupiter.

*18. Suppose that the Earth, Sun, and Moon are located at the ver-

tices of a right triangle, with the Moon located at the right

angle (at first or last quarter moon; see Fig. 9.29). Find the

magnitude and direction of the sum of the gravitational forces

exerted by the Earth and the Sun on the Moon.

your weight. Why don’t you feel these forces? (Hint: You and

the Earth are in free fall toward the Sun and the Moon.)

6. Calculate the gravitational force between our Galaxy and the

Andromeda galaxy. Their masses are 2.0 � 1011 and 3.0 � 1011

times the mass of the Sun, respectively, and their separation is

2.2 � 106 light-years. Treat both galaxies as point masses.

7. The nearest star is Alpha Centauri, at a distance of 4.4 light-

years from us. The mass of this star is 2.0 � 1030 kg. Compare

the gravitational force exerted by Alpha Centauri on the Sun

with the gravitational force that the Earth exerts on the Sun.

Which force is stronger?

8. What is the magnitude of the gravitational attraction the Sun

exerts on the Moon? What is the magnitude of the gravitational

attraction the Earth exerts on the Moon? Suppose that the

three bodies are aligned, with the Earth between the Sun and

the Moon (at full moon). What is the direction of the net force

acting on the Moon? Suppose that the three bodies are aligned

with the Moon between the Earth and the Sun (at new moon).

What is the direction of the net force acting on the Moon?

9. Calculate the value of the acceleration due to gravity at the

surfaces of Jupiter, Saturn, and Uranus. Use the values of the

planetary masses and radii given in the table printed inside the

book cover.

10. Somewhere between the Earth and the Sun is a point where

the gravitational attraction of the Earth exactly balances that

of the Sun. At what fraction of the Earth–Sun distance does

this occur?

11. Compare the weight of a 1-kg mass at the Earth’s surface with

the gravitational force between our Sun and another star of

the same mass located at the far end of our galaxy, about 

5 � 1020 m away.

12. Each of two adjacent 1.5-kg spheres hangs from a ceiling

by a string. The center-to-center distance of the spheres is

8.0 cm. What (small) angle does each string make with the

vertical?

13. A 7.0-kg mass is on the x axis at x � 3.0 m, and a 4.0-kg mass

is on the y axis at y � 2.0 m. What is the resultant gravita-

tional force (magnitude and direction) due to these two

masses on a third mass of 3.0 kg located at the origin?

14. Three equal masses m are located at the vertices of an equilat-

eral triangle of side a. What is the magnitude of the net gravi-

tational force on each mass due to the other two?

15. Find the acceleration of the Moon due to the pull of the

Earth. Express your result in units of the standard g.

16. If a “tower to the sky” of height 2000 km above the Earth’s

surface could be built, what would be your weight when

standing at the top? Assume the tower is located at the

South Pole. Express your answer in terms of your weight at

the Earth’s surface.

17. It has been suggested that strong tidal forces on Io, a

moon of Jupiter, could be responsible for the dramatic

volcanic activity observed there by Voyager spacecraft.

Compare the difference in gravitational accelerations on

† For help see Online Concept Tutorial 11 at www wwnorton com/physics
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25. Before clocks with long-term accuracy were constructed, it

was proposed that navigators at sea should use the motion of

the moons of Jupiter as a clock. The moons Io, Europa, and

Ganymede have orbital radii of 422 � 103, 671 � 103, and

1070 � 103 km, respectively. What are the periods of the

orbits of these moons? The mass of Jupiter is 1.90 � 1027 kg.

26. A satellite is to be put into an equatorial orbit with an orbital

period of 12 hours. What is the radius of the orbit? What is

the orbital speed? How many times a day will the satellite be

over the same point on the equator if the satellite orbits in the

same direction as the Earth’s rotation? If it orbits in the oppo-

site direction?

27. An asteroid is in a circular orbit at a distance of two solar

diameters from the center of the Sun. What is its orbital

period in days?

28. The Sun rotates approximately every 26 days. What is the

radius of a “heliosynchronous” orbit, that is, an orbit that stays

over the same spot of the Sun?

29. The Apollo command module orbited the Moon while the

lunar excursion module visited the surface. If the orbit had a

radius of 2.0 � 106 m, how many times per (Earth) day did

the command module fly over the excursion module?

30. A Jupiter-sized planet orbits the star 55 Cancri with an orbital

radius of 8.2 � 1011 m (see Fig. 9.31). The orbital period of

this planet is 13 yr. What is the mass of the star 55 Cancri?

How does this compare with the mass of the Sun?

*31. The Discoverer II satellite had an approximately circular orbit

passing over both poles of the Earth. The radius of the orbit

was about 6.67 � 103 km. Taking the rotation of the Earth

into account, if the satellite passed over New York City at one

instant, over what point of the United States would it pass

after completing one more orbit?

*32. The binary star system PSR 1913�16 consists of two neutron

stars orbiting with a period of 7.75 h about their center of

mass, which is at the midpoint between the stars. Assume

that the stars have equal masses and that their orbits are

circular with a radius of 8.67 � 108 m.

(a) What are the masses of the stars?

(b) What are their speeds?

*33. Figure 9.32 shows two stars orbiting about their common

center of mass in the binary system Krüger 60. The center of

mass is at a point between the stars such that the distances of

the stars from this point are in the inverse ratio of their

masses. Measure the sizes of their orbits and determine the

ratio of their masses.

Jupiter
Earth

MOON DISTANCE FROM SATURN PERIOD ORBITAL SPEED

Tethys (Fig. 9.30) 2.95 � 105 km 1.89 days —

Dione 3.77 — —

Rhea 5.27 — —

Titan 12.22 — —

Iapetus 35.60 — —

TABLE 9.2 SOME MOONS OF SATURN

FIGURE 9.30 Tethys, one of the

moons of Saturn.

FIGURE 9.31 (a) The Solar System and (b) the 55 Cancri system.

FIGURE 9.32 The

orbits of the two stars

in the binary system

Krüger 60. Each

ellipse has its focus at

the center of mass.

(a)

(b)

Center
of mass
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* *34. A binary star system consists of two stars of masses m1 and m2

orbiting about each other. Suppose that the orbits of the stars

are circles of radii r1 and r2 centered on the center of mass

(Fig. 9.33). The center of mass is a point between the stars

such that the radii r1 and r2 are in the ratio r1/r2 � m2/m1.

Show that the period of the orbital motion is given by 

T 2 �
4p2

G (m1 � m2)
 (r1 � r2)

3

westward speed must the satellite be given if it is to travel

along the same orbit in the opposite direction? For the pur-

pose of this problem, pretend that “low altitude” means

essentially “zero altitude.”

(b) Suppose that the satellite has a mass of 14.0 kg. What

kinetic energy must the launch vehicle give to the satellite

for an eastward orbit? For a westward orbit?

9.4 E l l ip t i ca l  Orb i t s ;  Kep ler ’s  Laws †

38. Halley’s comet (Fig. 9.36) orbits the Sun in an elliptical orbit

(the comet reached perihelion in 1986). When the comet is at

perihelion, its distance from the Sun is 8.78 � 1010 m, and its

speed is 5.45 � 104 m/s. When the comet is at aphelion, its

distance is 5.28 � 1012 m. What is the speed at aphelion?

FIGURE 9.33 A binary

star system. The orbits are

circles about the center of

mass.

*35. The binary system Cygnus X-1 consists of two stars orbiting

about their center of mass under the influence of their mutual

gravitational forces. The orbital period of the motion is 5.6 days.

One of the stars is a supergiant with a mass 25 times the mass

of the Sun. The other star is believed to be a black hole with a

mass about 10 times the mass of the Sun. From the information

given, determine the distance between the stars; assume that the

orbits of both stars are circular. (Hint: See Problem 34.)

**36. A hypothetical triple star system consists of three stars orbit-

ing about each other. For the sake of simplicity, assume that

all three stars have equal masses and that they move along a

common circular orbit maintaining an angular separation of

120� (Fig. 9.34). In terms of the mass M of each star and the

orbital radius R, what is the period of the motion?

28°

Cape Canaveral

FIGURE 9.35 Orbit of

a satellite launched from

Cape Canaveral.

120°

120°120°

FIGURE 9.34 Three

identical stars orbiting

about their center of mass.
39. Explorer I, the first American artificial satellite, had an elliptical

orbit around the Earth with a perigee distance of 6.74 � 106 m

and an apogee distance of 8.91 � 106 m. The speed of this

satellite was 6.21 � 103 m/s at apogee. Calculate the speed at

perigee.

40. The Explorer X satellite had an orbit with perigee 175 km and

apogee 181,200 km above the surface of the Earth. What was

the period of this satellite?

FIGURE 9.36 Halley’s comet photographed in 1986.

**37. Take into account the rotation of the Earth in the following

problem:

(a) Cape Canaveral is at a latitude of 28� north. What eastward

speed (relative to the ground) must a satellite be given if it

is to achieve a low-altitude circular orbit (Fig. 9.35)? What

† For help see Online Concept Tutorial 12 at www wwnorton com/physics

m2

r2

r1

m1
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9.5 Energy in  Orbi ta l  Mot ion 

45. The Voskhod I satellite, which carried Yuri Gagarin into space

in 1961, had a mass of 4.7 � 103 kg. The radius of the orbit

was (approximately) 6.6 � 103 km. What were the orbital

speed and the orbital energy of this satellite?

46. What is the kinetic energy and what is the gravitational

potential energy for the orbital motion of the Earth around

the Sun? What is the total energy?

47. Compare the escape velocity given by Eq. (9.27) with the

velocity required for a circular orbit of radius RS, according to

Eq. (9.10). By what factor is the escape velocity larger than the

velocity for the circular orbit?

48. In July of 1994, fragments of the comet Shoemaker–Levy

struck Jupiter.

(a) What is the impact speed (equal to the escape speed) for a

fragment falling on the surface of Jupiter?

(b) What is the kinetic energy at impact for a fragment of 

1.0 � 1010 kg? Express this energy as an equivalent number

of short tons of TNT (the explosion of 1 short ton, or

2000 lb, of TNT releases 4.2 � 109 J).

49. A 1.0-kg mass is in the same orbit around the Earth as the

Moon (but far from the Moon). What is the kinetic energy for

this orbit? The gravitational potential energy? The total energy?

50. The boosters on a satellite in geosynchronous orbit acciden-

tally fire for a prolonged period. At the instant this “burn”

ends, the velocity is parallel to the original tangential direc-

tion, but the satellite has been slowed to one-half of its origi-

nal speed. The satellite is thus at apogee of its new orbit.

What is the perigee distance for such an orbit? What happens

to the satellite?

51. A black hole is so dense that even light cannot escape its grav-

itational pull. Assume that all of the mass of the Earth is com-

pressed in a sphere of radius R. How small must R be so the

escape speed is the speed of light?

41. Calculate the orbital periods of Sputnik I and Explorer I from

their apogee and perigee distances in Table 9.3.

42. The aphelion distance for Saturn is 1510 � 106 km; its perihelion

distance is 1350 � 106 km. By Kepler’s First Law, the Sun is at

one focus of this ellipse. How far from the Sun is the other focus?

How does this compare with the orbital radius of Mercury?

43. The comet Hale–Bopp was spectacularly visible in the spring

of 1997 (see Fig. 9.37) and may be the most viewed comet in

history. Its perihelion distance was 137 � 106 km, and its orbital

period is 2380 yr. What is its aphelion distance? How does this

compare with the mean distance of Pluto from the Sun?

MEAN DISTANCE
FROM CENTER OF EARTH PERIGEE APOGEE

SATELLITE MASS (SEMIMAJOR AXIS) DISTANCE DISTANCE PERIOD

Sputnik I 83 kg 6.97 � 103 km 6.60 � 103 km 7.33 � 103 km 96.2 min

Sputnik II 3000 7.33 6.61 8.05 104

Explorer I 14 7.83 6.74 8.91 115

Vanguard I 1.5 8.68 7.02 10.3 134

Explorer III 14 7.91 6.65 9.17 116

Sputnik III 1320 7.42 6.59 8.25 106

TABLE 9.3 THE FIRST ARTIFICIAL EARTH SATELLITES

44. The orbit of the Earth deviates slightly from circular: at

aphelion, the Earth–Sun distance is 1.52 � 108 km, and

at perihelion it is 1.47 � 108 km. By what factor is the

speed of the Earth at perihelion greater than the speed

at aphelion?

FIGURE 9.37 Comet Hale–Bopp photographed in 1997.

              



300 CHAPTER 9 Gravitation

melt the material of the satellite? To vaporize it? The heats

of fusion and of vaporization of aluminum are given in

Table 20.4.

*57. According to one theory, glassy meteorites (tektites) found on

the surface of the Earth originate in volcanic eruptions on the

Moon. With what minimum speed must a volcano on the

Moon eject a stone if it is to reach the Earth? With what

speed will this stone strike the surface of the Earth? In this

problem ignore the orbital motion of the Moon around the

Earth; use the data for the Earth–Moon system listed in the

tables printed inside the book cover. (Hint: When the rock

reaches the intermediate point where the gravitational pulls of

the Moon and the Earth cancel out, it must have zero velocity.)

*58. A spacecraft is launched with some initial velocity toward the

Moon from 300 km above the surface of the Earth.

(a) What is the minimum initial speed required if the space-

craft is to coast all the way to the Moon without using its

rocket motors? For this problem pretend that the Moon

does not move relative to the Earth. The masses and

radii of the Earth and the Moon and their distance are

listed in the tables printed inside the book cover. (Hint:

When the spacecraft reaches the point in space where the

gravitational pulls of the Earth and the Moon cancel, it

must have zero velocity.)

(b) With what speed will the spacecraft strike the Moon?

59. The Pons–Brooks comet had a speed of 47.30 km/s when it

reached its perihelion point, 1.160 � 108 km from the Sun. Is

the orbit of this comet elliptical, parabolic, or hyperbolic?

*60. At a radial distance of 2.00 � 107 m from the center of the

Earth, three artificial satellites (I, II, III) are ejected from a

rocket. The three satellites I, II, III are given initial speeds of

5.47 km/s, 4.47 km/s, and 3.47 km/s, respectively; the initial

velocities are all in the tangential direction.

(a) Which of the satellites I, II, III will have a circular orbit?

Which will have elliptical orbits? Explain your answer.

(b) Draw the circular orbit. Also, superimposed on the same

diagram, draw the elliptical orbits of the other satellites;

label the orbits with the names of the satellites. (Note:

You need not calculate the exact sizes of the ellipses, but

your diagram should show where the ellipses are larger or

smaller than the circle.)

*61. (a) Since the Moon (our Moon) has no atmosphere, it is possi-

ble to place an artificial satellite in a circular orbit that skims

along the surface of the Moon (provided that the satellite

does not hit any mountains!). Suppose that such a satellite

is to be launched from the surface of the Moon by means of

a gun that shoots the satellite in a horizontal direction.

With what velocity must the satellite be shot out from the

gun? How long does the satellite take to go once around the

Moon?

(b) Suppose that a satellite is shot from the gun with a hori-

zontal velocity of 2.00 km/s. Make a rough sketch show-

ing the Moon and the shape of the satellite’s orbit; indicate

the position of the gun on your sketch.

52. The spectacular comet Hale–Bopp (Fig. 9.37), most visible in

1997, entered the Solar System in an elliptical orbit with

period 4206 yr. However, after a close encounter with Jupiter

on its inbound path, it continues on a new elliptical orbit with

a period of 2380 yr. By what fraction did the encounter with

Jupiter change the energy of Hale–Bopp’s orbit?

53. The typical speed of nitrogen molecules at a temperature of

117�C, the temperature of the Moon’s surface at “noon,” is

600 m/s; some molecules move slower, others faster. What

fraction of the escape velocity from the Moon is this? Can

you guess why the Moon has not retained an atmosphere?

*54. The Andromeda galaxy is at a distance of 2.1 � 1022 m from

our Galaxy. The mass of the Andromeda is 6.0 � 1041 kg, and

the mass of our Galaxy is 4.0 � 1041 kg.

(a) Gravity accelerates the galaxies toward each other. As reck-

oned in an inertial reference frame, what is the acceleration

of the Andromeda galaxy? What is the acceleration of our

Galaxy? Treat both galaxies as point particles.

(b) The speed of the Andromeda galaxy relative to our Galaxy

is 266 km/s. What is the speed of the Andromeda and

what is the speed of our Galaxy relative to the center of

mass of the two galaxies? The center of mass is at a point

between the galaxies such that the distances of the galax-

ies from this point are in the inverse ratios of their masses.

(c) What is the kinetic energy of each galaxy relative to the

center of mass? What is the total energy (kinetic and

potential) of the system of the two galaxies? Will the two

galaxies eventually escape from each other?

*55. Neglect the gravity of the Moon, neglect atmospheric friction,

and neglect the rotational velocity of the Earth in the follow-

ing problem. A long time ago, Jules Verne, in his book From

Earth to the Moon (1865), suggested sending an expedition to

the Moon by means of a projectile fired from a gigantic gun.

(a) With what muzzle speed must a projectile be fired verti-

cally from a gun on the surface of the Earth if it is to

(barely) reach the distance of the Moon?

(b) Suppose that the projectile has a mass of 2000 kg. What

energy must the gun deliver to the projectile? The explo-

sion of 1 short ton (2000 lb) of TNT releases 4.2 � 109 J.

How many tons of TNT are required for firing this gun?

(c) If the gun barrel is 500 m long, what must be the average

acceleration of the projectile during firing?

*56. An artificial satellite of 1300 kg made of aluminum is in a cir-

cular orbit at a height of 100 km above the surface of the

Earth. Atmospheric friction removes energy from the satellite

and causes it to spiral downward so that it ultimately crashes

into the ground.

(a) What is the initial orbital energy (gravitational plus

kinetic) of the satellite? What is the final energy when

the satellite comes to rest on the ground? What is the

energy change?

(b) Suppose that all of this energy is absorbed in the form of

heat by the material of the satellite. Is this enough heat to
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(c) Suppose that a satellite is shot from the gun with a hori-

zontal velocity of 3.00 km/s. Make a rough sketch show-

ing the Moon and the shape of the satellite’s orbit. Is this

a closed orbit?

*62. According to an estimate, a large crater on Wilkes Land,

Antarctica, was produced by the impact of a 1.2 � 1013–kg

meteoroid incident on the surface of the Earth at 70 000 km/h.

What was the speed of this meteoroid relative to the Earth

when it was at a “large” distance from the Earth?

*63. An experienced baseball player can throw a ball with a speed

of 140 km/h. Suppose that an astronaut standing on Mimas,

a small moon of Saturn of mass 3.76 � 1019 kg and radius 

195 km, throws a ball with this speed.

(a) If the astronaut throws the ball horizontally, will it orbit

around Mimas?

(b) If the astronaut throws the ball vertically, how high will 

it rise?

*64. An electromagnetic launcher, or rail gun, accelerates a projectile

by means of magnetic fields. According to some calculations,

it may be possible to attain muzzle speeds as large as 

15 km/s with such a device. Suppose that a projectile is

launched upward from the surface of the Earth with this

speed; ignore air resistance.

(a) Will the projectile escape permanently from the Earth?

(b) Can the projectile escape permanently from the Solar

System? (Hint: Take into account the speed of 30 km/s 

of the Earth around the Sun.)

*65. Sputnik I, the first Russian satellite (1957), had a mass of

83.5 kg; its orbit reached perigee at a height of 225 km and

apogee at 959 km. Explorer I, the first American satellite

(1958), had a mass of 14.1 kg; its orbit reached perigee at a

height of 368 km and apogee at 2540 km. What was the

orbital energy of these satellites?

*66. The orbits of most meteoroids around the Sun are nearly par-

abolic.

(a) With what speed will a meteoroid reach a distance from

the Sun equal to the distance of the Earth from the Sun?

(Hint: In a parabolic orbit the speed at any radius equals

the escape velocity at the radius. Why?)

(b) Taking into account the Earth’s orbital speed, what will be

the speed of the meteoroid relative to the Earth in a head-

on collision with the Earth? In an overtaking collision?

Ignore the effect of the gravitational pull of the Earth on

the meteoroid.

*67. Calculate the perihelion and the aphelion speeds of Encke’s

comet. The perihelion and aphelion distances of this comet are

5.06 � 107 km and 61.25 � 107 km. (Hint: Consider the total

energy of the orbit.)

*68. The Explorer XII satellite was given a tangential velocity of

10.39 km/s when at perigee at a height of 457 km above the

Earth. Calculate the height of the apogee. (Hint: Consider the

total energy of the orbit.)

* *69. Prove that the orbital energy of a planet or a comet in an ellip-

tical orbit around the Sun can be expressed as

where r1 and r2 are, respectively, the perihelion and aphelion

distances. [Hint: Use the conservation of energy and the

conservation of angular momentum (r1v1 � r2v2) at perihe-

lion and at aphelion to solve for v1
2 and v2

2 in terms of r1

and r2.]

*70. Suppose that a comet is originally at rest at a distance r1 from

the Sun. Under the influence of the gravitational pull, the

comet falls radially toward the Sun. Show that the time it

takes to reach a radius r2 is

*71. Suppose that a projectile is fired horizontally from the surface

of the Moon with an initial speed of 2.0 km/s. Roughly sketch

the orbit of the projectile. What maximum height will this

projectile reach? What will be its speed when it reaches maxi-

mum height?

**72. The Earth has an orbit of radius 1.50 � 108 km around the

Sun; Mars has an orbit of radius 2.28 � 108 km. In order to

send a spacecraft from the Earth to Mars, it is convenient to

launch the spacecraft into an elliptical orbit whose perihelion

coincides with the orbit of the Earth and whose aphelion

coincides with the orbit of Mars (Fig. 9.38); this orbit requires

the least amount of energy for a trip to Mars.

(a) To achieve such an orbit, with what speed (relative to the

Earth) must the spacecraft be launched? Ignore the pull of

the gravity of the Earth and Mars on the spacecraft.

(b) With what speed (relative to Mars) does the spacecraft

approach Mars at the aphelion point? Assume that Mars

actually is at the aphelion point when the spacecraft

arrives.

(c) How long does the trip from Earth to Mars take?

(d) Where must Mars be (in relation to the Earth) at the

instant the spacecraft is launched? Where will the Earth

be when the spacecraft arrives at its destination? Draw a

diagram showing the relative positions of Earth and Mars

at these two times.

t � ��
r2

r1

dr

22GMS /r � 2GMS /r1

E � � 

GMS 
m

r1 � r2

FIGURE 9.38
Orbit for a spacecraft

on a trip to Mars.

Mars

Sun

Earth
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* *73. Repeat the calculations of Problem 72 for the case of a space-

craft launched on a trip to Venus. The orbit of Venus has a

radius of 1.08 � 108 km.

**74. If a spacecraft, or some other body, approaches a moving

planet on a hyperbolic orbit, it can gain some energy from the

motion of the planet and emerge with a larger speed than it

had initially. This slingshot effect has been used to boost the

speeds of the two Voyager spacecraft as they passed near

Jupiter. Suppose that the line of approach of the satellite

makes an angle � with the line of motion of the planet and the

line of recession of the spacecraft is parallel to the line of

motion of the planet (Fig. 9.39; the planet can be regarded as

moving on a straight line during the time interval in question).

The speed of the planet is u, and the initial speed of the space-

craft is v (in the reference frame of the Sun).

(a) Show that the final speed of the spacecraft is

vœ � u � 2v 
2 � u 

2 � 2uv cos u

REVIEW PROBLEMS

76. Calculate the gravitational force that the Earth exerts on an

astronaut of mass 75 kg in a space capsule at a height of 100

km above the surface of the Earth. Compare with the gravita-

tional force that this astronaut would experience if on the sur-

face of the Earth.

77. The masses used in the Cavendish experiment typically are a few

kilograms for the large masses and a few tens of grams for the

small masses. Suppose that a “large” spherical mass of 8.0 kg is at

a center-to-center distance of 10 cm from a “small” spherical

mass of 30 g. What is the magnitude of the gravitational force?

78. The asteroid Ceres has a diameter of 1100 km and a mass of

(approximately) 7 � 1020 kg. What is the value of the acceler-

ation of gravity at its surface? On the surface of this asteroid,

what would be the weight (in lbf ) of a man whose weight on

the surface of the Earth is 170 lbf?

79. The asteroid belt of the Solar System consists of chunks of

rock orbiting around the Sun in approximately circular orbits.

FIGURE 9.39 Trajectory of a spacecraft passing by a planet. FIGURE 9.40 A rotating space station.

(b) Show that the spacecraft will not gain any speed in this

encounter if � � 0, and show that the spacecraft will gain

maximum speed if � � 180�.

(c) If a spacecraft with v � 3.0 km/s approaches Jupiter at an

angle of � � 20�, what will be its final speed?

75. According to one design studied by NASA, a large space

colony in orbit around the Earth would consist of a torus of

diameter 1.8 km, looking somewhat like a gigantic wheel (see

Fig. 9.40). In order to generate artificial gravity of 1g, how fast

must this space colony rotate about its axis?

The mean distance of the asteroid belt from the Sun is about

2.9 times the distance of the Earth. What is the mean period

of the orbital motion of the asteroids?

80. Imagine that somewhere in interstellar space a small pebble is

in a circular orbit around a spherical asteroid of mass 1000 kg.

If the radius of the circular orbit is 1.0 km, what is the period

of the motion?

81. Europa (Fig. 9.41) is a moon of Jupiter. Astronomical obser-

vations show that this moon is in a circular orbit of radius

6.71 � 108 m with a period of 3.55 days. From these data

deduce the mass of Jupiter.

82. Observations with the Hubble Space Telescope have revealed

that at the center of the galaxy M87, gas orbits around a very

massive compact object, believed to be a black hole. The

measurements show that gas clouds in a circular orbit of radius

250 light-years have an orbital speed of 530 km/s. From this

information, deduce the mass of the black hole.

planet

satellite

v

u
u
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83. Consider a space station in a circular orbit at an altitude of

400 km around the Earth and a piece of debris, left over from,

say, the disintegration of a rocket, in an orbit of the same

radius but of opposite direction.

(a) What is the speed of the debris relative to the space sta-

tion when they pass?

(b) If the debris hit the spacecraft, it would penetrate the

space station with catastrophic consequences for the crew.

Penetration depends on the kinetic energy of the debris.

What must be the mass of a piece of debris if it is to have

an impact energy of 4.6 � 105 J, which corresponds to the

explosion of 100 g of TNT?

84. Vanguard I, the second American artificial satellite (Fig. 9.42),

moved in an elliptical orbit around the Earth with a perigee

distance of 7.02 � 106 m and an apogee distance of 10.3 �

106 m. At perigee, the speed of this satellite was 8.22 � 103

m/s. What was the speed at apogee?

*85. The motor of a Scout rocket uses up all its fuel and stops

when the rocket is at an altitude of 200 km above the sur-

face of the Earth and is moving vertically at 8.50 km/s.

How high will this rocket rise? Neglect any residual atmo-

spheric friction.

*86. An astronaut in a spacecraft in a circular orbit around the Earth

wants to get rid of a defective solar panel that he has detached

from the spacecraft. He hits the panel with a blast from the

steering rocket of the spacecraft, giving it an increment of veloc-

ity. This sends the solar panel into an elliptical orbit.

(a) Sketch the circular orbit of the spacecraft and the elliptical

orbit of the solar panel if the velocity increment is parallel

to the velocity of the spacecraft and if it is antiparallel.

(b) If the ratio of the semimajor axis of the ellipse to the

radius of the circle has a special value, it is possible for the

panel to meet with the spacecraft again after several orbits.

What are these special values of the ratio?

*87. A communications satellite of mass 700 kg is placed in a cir-

cular orbit of radius 4.23 � 107 m around the Earth.

(a) What is the total orbital energy of this satellite?

(b) How much extra energy would we have to give this satel-

lite to put it into a parabolic orbit that permits it to escape

to infinite distance from the Earth?

88. What is the escape velocity for a projectile launched from the

surface of our Moon?

FIGURE 9.41 Europa, one of the moons of Jupiter.

FIGURE 9.42 The Vanguard I satellite.

Answers  to  Checkups

Checkup 9.1

1. The gravitational force varies inversely with the square of the

distance, so the force will be (30)2� 900 times weaker for a 

1-kg piece of Neptune than for a 1-kg piece of the Earth.

2. The gravitational force varies in proportion to the mass and in

inverse proportion to the square of the distance, so the 100-

times-larger mass for Saturn cancels the 10-times-larger

distance; thus, the gravitational force that the Sun exerts on

Saturn is about equal to that on the Earth. The acceleration is

a � F/m, and so is about 100 times smaller for Saturn.

3. The acceleration varies inversely with the square of the distance,

and so is at r � 2RE, and is at r � 3RE.1
9 g

1
4 g
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4. Since the acceleration at a planet’s surface is a � GM/R2, a

larger mass M and a smaller gravitational acceleration a are

possible only because the radius R of Uranus is sufficiently

larger than that of the Earth.

5. At the exact center of the Earth, a particle would be equally

attracted in all directions, and so would experience zero net

force.

6. (B) The acceleration at the surface is a � GME �R2
E, so a

doubled radius would result in an acceleration one-fourth as

large, or g.

Checkup 9.2

1. To determine G by measuring the force between the Earth

and some known mass, we would also have to know the mass

of the Earth; we have no independent way of determining the

mass of the Earth.

2. (A) Yes. If we knew the mass of the mountain (and the spatial

distribution of such mass), then we could determine the gravi-

tational force from the plumb bob’s deflection, and thus G.

Checkup 9.3

1. An orbit that is a circle at the latitude of San Francisco is

impossible, since the center of every orbit must coincide with

the center of the Earth.

2. The period is proportional to the 3/2 power of the radius of

the orbit, so for a doubled radius, the period of the Moon

would become 23/2 � 27 days � 76 days.

3. As in Eq. (9.13), we need only know the period and radius of

the moon’s orbit to determine the mass of the planet.

4. (C) 30 yr. The period is proportional to the 3/2 power of the
radius of the orbit, so the period of Saturn’s motion is
103/2 � 1 yr � 30 yr.

Checkup 9.4

1. Kepler’s Second Law would remain valid, since it depends only

on the central nature of the force, and otherwise not on any par-

ticular form of the force. Kepler’s Third Law, however, like the

law of periods, Eq. (9.13), depends on the inverse-square nature

of the force. If we were to perform a similar derivation to that

preceding Eq. (9.13) for an inverse-cube force, we would find

that the period was proportional to the square of the radius.

2. As in Eq. (9.18), the speeds vary inversely with the distances,

so for an aphelion distance twice as large as the perihelion dis-

tance, the speed at aphelion will be half as large as the speed at

perihelion, or will be 20 km/s.

1
4

1
4 g.

3. According to Kepler’s Third Law, the period must be exactly

one year. This is so because both the Earth’s orbit (nearly cir-

cular; the semimajor axis of a circle is its radius) and the

comet’s orbit have the same semimajor axis, and both orbit the

same central body, the Sun.

4. (D) 4. Kepler’s Third Law states that the square of the period

is proportional to the cube of the semimajor axis of the orbit,

so to make the period 8 times as large as the Earth’s period

would make the cube of the semimajor axis 64 times as large;

thus the semimajor axis would be 641/3 � 4 times as large as

the Earth–Sun distance.

Checkup 9.5

1. For a circular orbit, we found that the magnitude of the (nega-

tive) potential energy is twice the size of the kinetic energy.

Thus the potential energy decreases so much for the lower

orbit (it becomes more negative) that the kinetic energy can

increase and energy can be lost to friction.

2. Yes—our derivation of the law depended only on the central

nature of the force, not on any particular type of orbit (or even

any particular form of the central force).

3. If we ignore air friction (and the body does not encounter any

obstacles), then the body will escape the Earth’s influence in a

parabolic “orbit,” since the escape velocity provides for zero

net energy. The orbit would be similarly parabolic if we

launched the body at any angle (except straight up, although

that resulting linear path can be considered a special case of

the parabola). Ultimately, far from the Earth’s influence, the

path would be modified by the Sun.

4. No. The gravitational acceleration is g � GM/R2, whereas the

escape velocity depends on the gravitational potential energy,

which is proportional to M/R. For example, a body with twice

the mass and twice the radius of the Earth would have half the

gravitational acceleration at the surface, but would have the

same escape velocity.

5. (C) Hyperbolic; elliptical. Recall that a parabolic orbit is a

zero-energy orbit, where the comet can just barely escape to

infinity. The energy of comet II must be positive, since it has

a larger speed (a greater kinetic energy, but the same potential

energy as it crosses the Earth’s orbit); we found that a posi-

tive-energy orbit is a hyperbola. Similarly, the energy of

comet III must be negative, since it has a smaller speed; nega-

tive-energy orbits are ellipses, with a semimajor axis given by

Eq. (9.24).

              



C O N C E P T S  I N  C O N T E X T
While this high jumper is passing over the bar, he bends backward and

keeps his extremities below the level of the bar. This means that the aver-

age height of his body parts is less than if he were to keep his body straight,

and he requires less energy to pass over the bar.

The concepts introduced in this chapter permit us to examine in detail

several aspects of the motion of the jumper:

? The body of the jumper is a system of particles. Where is the average

position of the mass of this system of particles when the body is in a

straight configuration? How does this change when the jumper

reconfigures his extremities? (Example 8, part (a), page 322)

? What is the gravitational potential energy of a system of particles, and

how much does the jumper reduce his potential energy by bending his

body? (Page 321 in Section 10.2 and Example 8, part (b), page 322)

Systems of Particles 10

10.1 Momentum 

10.2 Center of Mass

10.3 The Motion of the Center 
of Mass

10.4 Energy of a System 
of Particles

C H A P T E R
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? What is equation of motion of a system of particles, and to what extent does

the translational motion of a jumper resemble projectile motion? (Page 324 in

Section 10.3)

So far we have dealt almost exclusively with the motion of a single particle. Now we

will begin to study systems of particles interacting with each other via some forces.

This means we must examine, and solve, the equations of motion of all these particles

simultaneously.

Since chunks of ordinary matter are made of particles—electrons, protons, and

neutrons—all the macroscopic bodies that we encounter in our everyday environment

are in fact many-particle systems containing a very large number of particles. However,

for most practical purposes, it is not desirable to adopt such an extreme microscopic

point of view, and in the preceding chapters we treated the motion of a macroscopic

body, such as an automobile, as motion of a particle. Likewise, in dealing with a system

consisting of several macroscopic bodies, we will often find it convenient to treat each of

these bodies as a particle and ignore the internal structure of the bodies. For example,

when investigating a collision between two automobiles, we may find it convenient to

pretend that each of the automobiles is a particle—we then regard the colliding auto-

mobiles as a system of two particles which exert forces on each other when in contact.

And when investigating the Solar System, we may find it convenient to pretend that

each planet and each satellite is a particle—we then regard the Solar System as a system

of such planet and satellite particles loosely held together by gravitation and orbiting

around the Sun and around each other.

The equations of motion of a system of several particles are often hard, and some-

times impossible, to solve. It is therefore necessary to make the most of any informa-

tion that can be extracted from the general conservation laws. In the following sections

we will become familiar with the momentum vector, and we will see how the laws of con-

servation of momentum and of energy apply to a system of particles.

10.1 MOMENTUM

Newton’s laws can be expressed very neatly in terms of momentum, a vector quantity

of great importance in physics. The momentum of a single particle is defined as the prod-

uct of the mass and the velocity of the particle:1

(10.1)

Thus, the momentum p is a vector that has the same direction as the velocity vector,

but a magnitude that is m times the magnitude of the velocity.The SI unit of momen-

tum is kg�m/s; this is the momentum of a mass of 1 kg when moving at 1 m/s.

The mathematical definition of momentum is consistent with our intuitive, every-

day notion of “momentum.” If two cars have equal masses but one has twice the veloc-

ity of the other, it has twice the momentum. And if a truck has three times the mass

of a car and the same velocity, it has three times the momentum. During the nine-

teenth century physicists argued whether momentum or kinetic energy was the best

measure of the “amount of motion” in a body. They finally decided that the answer

p � mv
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1 The momentum p � mv is sometimes referred to as linear momentum to distinguish it from angular momen-

tum, discussed in Chapter 13.

momentum of a particle

              



depends on the context—as we will see in the examples in this chapter and the next,

sometimes momentum is the most relevant quantity, sometimes energy is, and some-

times both are relevant.

Newton’s First Law states that, in the absence of external forces, the velocity of a

particle remains constant. Expressed in terms of momentum, the First Law therefore

states that the momentum remains constant:

(no external forces) (10.2)

Thus, we can say that the momentum of the particle is conserved. Of course, we could

equally well say that the velocity of this particle is conserved; but the deeper signifi-

cance of momentum will emerge when we study the motion of a system of several par-

ticles exerting forces on one another. We will find that the total momentum of such a

system is conserved—any momentum lost by one particle is compensated by a momen-

tum gain of some other particle or particles.

To express the Second Law in terms of momentum, we note that since the mass

is constant, the time derivative of Eq. (10.1) is

or

But, according to Newton’s Second Law, ma equals the force; hence, the rate of change

of the momentum with respect to time equals the force:

(10.3)

This equation gives the Second Law a concise and elegant form.

A tennis player smashes a ball of mass 0.060 kg at a vertical

wall. The ball hits the wall perpendicularly with a speed of

40 m/s and bounces straight back with the same speed. What is the change of

momentum of the ball during the impact?

SOLUTION: Take the positive x axis along the direction of the initial motion of

the ball (see Fig. 10.1a). The momentum of the ball before impact is then in the

positive direction, and the x component of the momentum is

px � mvx � 0.060 kg � 40 m/s � 2.4 kg�m/s

The momentum of the ball after impact has the same magnitude but the oppo-

site direction:

p�x � �2.4 kg�m/s

(Throughout this chapter, the primes on mathematical quantities indicate that

these quantities are evaluated after the collision.) The change of momentum is

�px � p�x � px � �2.4 kg�m/s � 2.4 kg�m/s � �4.8 kg�m/s

EXAMPLE 1

d p

dt
� F

d p

dt
� ma

d p

dt
� m  

d  v

dt

p � [constant]
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This change of momentum is produced by the (large) force that acts on the ball

during impact on the wall (see Fig. 10.1b). The change of momentum is negative

because the force is negative (the force is in the negative x direction, opposite to the

direction of the initial motion).

We can also express Newton’s Third Law in terms of momentum. Since the action

force is exactly opposite to the reaction force, the rate of change of momentum gen-

erated by the action force on one body is exactly opposite to the rate of change of

momentum generated by the reaction force on the other body. Hence, we can state

the Third Law as follows:

Whenever two bodies exert forces on each other, the resulting changes of momen-

tum are of equal magnitudes and of opposite directions.

This balance in the changes of momentum leads us to a general law of conservation of

the total momentum for a system of particles.

The total momentum of a system of n particles is simply the (vector) sum of all

the individual momenta of all the particles. Thus, if p1 � m1v1, p2 � m2v2, . . . , and

pn � mnvn are the individual momenta of the particles, then the total momentum is

(10.4)

The simplest of all many-particle systems consists of just two particles exerting

some mutual forces on one another (see Fig. 10.2). Let us assume that the two parti-

cles are isolated from the rest of the Universe so that, apart from their mutual forces,

they experience no extra forces of any kind. According to the above formulation of the

Third Law, the rates of change of p1 and p2 are then exactly opposite:

The rate of change of the sum p1� p2 is therefore zero, since the rate of change of the

first term in this sum is canceled by the rate of change of the second term:

d (p1 �
 
p2 

)

dt
 �  0

dp1

dt
 � �

dp2

dt

P � p1 � p2 � � � �� pn
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Third Law in terms of momentum

momentum of a system of particles

FIGURE 10.2 Two particles exerting

mutual forces on each other. The net change

of momentum of the isolated particle pair

is zero.

FIGURE 10.1 (a) A tennis ball bounces off a wall. (b) At the instant of impact,

the wall exerts a large force on the ball.

(a) (b)

y

x

before

after

Speed is same before and after,
but the momentum has changed 
because direction of velocity has
reversed.

F

Force from wall changes
the momentum.

m1

m2

F

–F

The action force on
each particle is equal
and opposite to the
reaction force it exerts
on the other particle.

              



This means that the sum p1� p2 is a constant of the motion:

(10.5)

This is the Law of Conservation of Momentum. Note that Newton’s Third Law is an

essential ingredient for establishing the conservation of momentum: the total momen-

tum is constant because the equality of action and reaction keeps the momentum changes

of the two particles exactly equal in magnitude but opposite in direction—the particles

merely exchange some momentum by means of their mutual forces. Thus, for our par-

ticles, the total momentum P at some instant equals the total momentum P� at some

other instant, so

P � P�

Conservation of momentum is a powerful tool which permits us to calculate some

general features of the motion even when we are ignorant of the detailed properties of

the interparticle forces.The following examples illustrate how we can use conservation

of momentum to solve some problems of motion.

A gun used onboard an eighteenth-century warship is mounted

on a carriage which allows the gun to roll back each time it is

fired (Fig. 10.3). The mass of the gun, including the carriage, is 2200 kg. The gun

fires a 6.0-kg shot horizontally with a velocity of 500 m/s. What is the recoil veloc-

ity of the gun?

SOLUTION: The total momentum of the shot plus the gun must be the same before

the firing and just after the firing. Before, the total momentum is zero (Fig. 10.3a):

P � 0

After, the (horizontal) velocity of the shot is v�1, and the velocity of the gun is v�2 (as

above, the primes on mathematical quantities indicate that these are evaluated after

the firing); hence the total momentum is

P� � m1v�1 � m2v�2

where m1 � 6.0 kg is the mass of the shot and m2 � 2200 kg is the mass of the gun

(including the carriage). Thus, momentum conservation tells us

0 � m1v�1 � m2v�2

or

The negative sign indicates that v�2, the recoil velocity of the gun, is opposite to

the velocity of the shot and has a magnitude

COMMENTS: Note that the final velocities are in the inverse ratio of the masses:

the shot emerges with a large velocity, and the gun rolls back with a low velocity.

  �
6.0  kg

2200  kg
� 500  m/s � 1.4   m/s

   v�2 �
m1
m2

 v�1

v�2 � �
m1
m2

  v�1

EXAMPLE 2

p1 � p2 � [constant]
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momentum conservation for two particles

FIGURE 10.3 (a) Initially, the gun and

the shot are at rest. (b) After the firing, the

gun recoils toward the left (the velocity v�2 of

the gun is negative).

m1 m2

x

(a)

v'1
m2

x

(b)

v'2 m1

Gun recoils
horizontally.

Shot is fired
horizontally.

              



This is a direct consequence of the equality of the magnitudes of the action and reac-

tion forces that act on the shot and the gun during the firing. The force gives the

shot (of small mass) a large acceleration, and the reaction force gives the gun

(of large mass) a small acceleration.

In this calculation we neglected the mass and momentum of the gases released

in the explosion of the gunpowder.This extra momentum increases the recoil veloc-

ity somewhat.

An automobile of mass 1500 kg traveling at 24 m/s crashes

into a similar parked automobile. The two automobiles remain

joined together after the collision. What is the velocity of the wreck immediately

after the collision? Neglect friction against the road, since this force is insignifi-

cant compared with the large mutual forces that the automobiles exert on each

other.

SOLUTION: Under the assumptions of the problem, the only horizontal forces

are the mutual forces of one automobile on the other.Thus, momentum conservation

applies to the horizontal component of the momentum: the value of this compo-

nent must be the same before and after the collision. Before the collision, the

(horizontal) velocity of the moving automobile is v1 � 24 m/s and that of the other

is v2 � 0. With the x axis along the direction of motion (see Fig. 10.4), the total

momentum is therefore

Px � m1v1 � m2v2 � m1v1

After the collision, both automobiles have the same velocity (see Fig. 10.4b). We

will designate the velocities of the automobiles after the collision by v�1 and v�2,

respectively. We can write v�1 � v�2 � v� (the automobiles have a common v�, since

they remain joined), so the total momentum is

P �x � m1v�1 � m2v�2 � (m1 � m2)v�

EXAMPLE 3

310 CHAPTER 10 Systems of Particles

Note that the solution of these examples involves three steps

similar to those we used in examples of energy conservation:

1 First write an expression for the total momentum P before

the firing of the gun or the collision of the automobiles.

2 Then write an expression for the total momentum P�

after the firing or the collision.

3 And then use momentum conservation to equate these

expressions.

However, in contrast to energy conservation, you must keep

in mind that momentum conservation applies to the compo-

nents of the momentum—the x, y, and z components of the

momentum are conserved separately. Thus, before writing the

expressions for the momentum, you need to select coordinate

axes and decide which components of the momentum you

want to examine. If the motion is one-dimensional, place one

axis along the direction of motion, such as the x axis in the

above examples. It then suffices to examine the x component

of the momentum. However, sometimes it is necessary to exam-

ine two components of the momentum (or, rarely, three); then

two (or three) equations result. When writing the components

of the momentum, pay attention to the signs; the component

is positive if the motion is along the direction of the axis, neg-

ative if the motion is opposite to the direction of the axis.

PROBLEM-SOLVING TECHNIQUES CONSERVATION OF MOMENTUM 
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By momentum conservation, the momenta Px and P�x before and after the collision

must be equal:

m1v1 � (m1 � m2)v� (10.6)

When we solve this for the velocity of the wreck v�, we find

(10.7)

The forces acting during the firing of the gun or the collision of the automobiles

are quite complicated, but momentum conservation permits us to bypass these com-

plications and directly obtain the answer for the final velocities. Incidentally: It is easy

to check that kinetic energy is not conserved in these examples. During the firing of

the gun, kinetic energy is supplied to the shot and the gun by the explosive combus-

tion of the gunpowder, and during the collision of the automobiles, some kinetic energy

is used up to produce changes in the shapes of the automobiles.

The conservation law for momentum depends on the absence of “extra” forces. If

the particles are not isolated from the rest of the Universe, then besides the mutual

forces exerted by one particle on the other, there are also forces exerted by other bodies

not belonging to the particle system.The former forces are called internal forces of the

system and the latter external forces. For instance, for the colliding automobiles of

Example 3 the gravity of the Earth, the normal force of the road, and the friction of

the road are external forces. In Example 3 we ignored these external forces, because

gravity and the normal force cancel each other, and the friction force can be neglected

in comparison with the much larger impact force that the automobiles exert on each

other. But if the external forces are significant, we must take them into account, and

we must modify Eq. (10.5). If the internal force on particle 1 is F1,int and the external

force is F1,ext , then the total force on particle 1 is F1,int � F1,ext and its equation of

motion will be

(10.8)
dp1

dt
� F1,int � F1,ext

 �
1500 kg � 24 m	s

1500 kg � 1500 kg
� 12 m	s

   v� �   

m1v1

m1 � m2

x

x

m1 m2

m1 m2

v1

v' 

(a)

(b)

v2 = 0.

Cars locked together,
so v'1  = v'2  = v' .

FIGURE 10.4 (a) Initially, the red automobile has a speed of 24 m/s, and the blue automobile is at rest.

(b) After the collision, both automobiles are in motion with velocity v�.

internal forces and external forces

              



Likewise

(10.9)

If we add the left sides of these equations and the right sides, the contributions from

the internal forces cancel (that is, F1,int � F2,int � 0), since they are action–reaction

pairs. What remains is

(10.10)

The sum of the rates of change of the momenta is the same as the rate of change

of the sum of the momenta; hence,

(10.11)

The sum P � p1 � p2 is the total momentum, and the sum F1,ext � F2,ext is the

total external force on the particle system. Thus, Eq. (10.11) states that the rate of

change of the total momentum of the two-particle system equals the total external

force.

For a system containing more than two particles, we can obtain similar results. If

the system is isolated so that there are no external forces, then the mutual interparti-

cle forces acting between pairs of particles merely transfer momentum from one par-

ticle of the pair to the other, just as in the case of two particles. Since all the internal

forces necessarily arise from such forces between pairs of particles, these internal forces

cannot change the total momentum. For example, Fig. 10.5 shows three isolated par-

ticles exerting forces on one another. Consider particle 1; the mutual forces between

particles 1 and 2 exchange momentum between these two, while the mutual forces

between particles 1 and 3 exhange momentum between those two. But none of these

momentum transfers will change the total momentum. The same holds for particles

2 and 3. Consequently, the total momentum is constant. More generally, for an isolated

system of n particles, the total momentum P � p1 � p2 � � � � � pn obeys the con-

servation law

(no external forces) (10.12)

If, besides the internal forces, there are external forces, then the latter will change

the momentum.The rate of change can be calculated in essentially the same way as for

the two-particle system, and again, the rate of change of the total momentum is equal

to the total external force. We can write this as

(10.13) 

where Fext � F1,ext � F2,ext� � � � � Fn,ext is the total external force acting on the system.

Equations (10.12) and (10.13) have exactly the same mathematical form as Eqs.

(10.2) and (10.3), and they may be regarded as the generalizations for a system of par-

ticles of Newton’s First and Second Laws. As we will see in Section 10.3, Eq. (10.13)

is an equation of motion for the system of particles—it determines the overall trans-

lational motion of the system.

d P

dt
� Fext

P � [constant]

d (p1 � p2)

dt
� F1,ext � F2,ext

dp1

dt
�

dp2

dt
� F1,ext � F2,ext

dp2

dt
� F2,int � F2,ext
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FIGURE 10.5 Three particles exerting

forces on each other. As in the case of two

particles, the mutual forces between pairs of

particles merely exchange momentum

between them.

momentum conservation for a
system of particles

Second Law for a system of particles

m1

m3

m2

For any number of
particles, the mutual
forces of each pair are
equal and opposite.

              



Checkup 10.1

QUESTION 1: An automobile and a truck have equal momenta. Which has the larger

speed? Which has the larger kinetic energy?

QUESTION 2: An automobile and a truck are traveling along a street in opposite direc-

tions. Can they have the same momentum? The same kinetic energy?

QUESTION 3: A rubber ball, dropped on a concrete floor, bounces up with reversed

velocity. Is the momentum before the impact the same as after the impact?

QUESTION 4: Is the net momentum of the Sun and all the planets and moons of the

Solar System constant? Is the net kinetic energy constant?

QUESTION 5: Consider two automobiles of equal masses m and equal speeds v. (a) If

both automobiles are moving southward on a street, what are the total kinetic energy

and the total momentum of this system of two automobiles? (b) If one automobile is

moving southward and one northward? (c) If one automobile is moving southward

and one eastward?

QUESTION 6: An automobile and a truck have equal kinetic energies. Which has the

larger speed? Which has the larger momentum? Assume that the truck has the larger

mass.

(A) Truck; truck (B) Truck; automobile

(C) Automobile; truck (D) Automobile; automobile

10.2 CENTER OF MASS

In our study of kinematics and dynamics in the preceding chapters we always ignored

the size of the bodies; even when analyzing the motion of a large body—an automo-

bile or a ship—we pretended that the motion could be treated as particle motion, posi-

tion being described by means of some reference point marked on the body. In reality,

large bodies are systems of particles, and their motion obeys Eq. (10.13) for a system

of particles. This equation can be converted into an equation of motion containing

just one acceleration rather than the rate of change of momentum of the entire system,

by taking as reference point the center of mass of the body.The equation that describes

the motion of this special point has the same mathematical form as the equation of

motion of a particle; that is, the motion of the center of mass mimics particle motion

(see, for example, Fig. 10.6).

✔
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FIGURE 10.6 A wrench moving freely in

the absence of external forces. The center of

mass, marked with a dot, moves with uni-

form velocity, along a straight line (you can

check this by laying a ruler along the dots).

center of mass

Strobe light records
images at equal
time intervals.

Although wrench spins,
the center of mass
moves uniformly.

              



The position of the center of mass is merely the average position of the mass of the system.

For instance, if the system consists of two particles, each of mass 1 kg, then the center

of mass is halfway between them (see Fig. 10.7). In any system consisting of n parti-

cles of equal masses—such as a piece of pure metal with atoms of only one kind—the

x coordinate of the center of mass is simply the sum of the x coordinates of all the par-

ticles divided by the number of particles,

(for equal-mass particles) (10.14)

Similar equations apply to the y and the z coordinates, if the particles of the system are

distributed over a three-dimensional region. The three coordinate equations can be

expressed concisely in terms of position vectors:

(for equal-mass particles) (10.15)

If the system consists of particles of unequal mass, then the position of the center

of mass can be calculated by first subdividing the particles into fragments of equal mass.

For instance, if the system consists of two particles, the first of mass 2 kg and the second

of 1 kg, then we can pretend that we have three particles of equal masses 1 kg, two of

which are located at the same position. The coordinate of the center of mass is then

We can also write this in the equivalent form

(10.16)

where m1 � 2 kg and m2 � 1 kg. The formula (10.16) is actually valid for any values of

the masses m1 and m2. The formula simply asserts that in the average position, the

position of particle 1 is included m1 times and the position of particle 2 is included

m2 times—that is, the number of times each particle is included in the average is

directly proportional to its mass.

A 50-kg woman and an 80-kg man sit on the two ends of a

seesaw of length 3.00 m (see Fig. 10.8). Treating them as

particles, and ignoring the mass of the seesaw, find the center of mass of this

system.

SOLUTION: In Fig. 10.8, the origin of coordinates is at the center of the seesaw;

hence the woman has a negative x coordinate (x � �1.50 m) and the man a pos-

itive x coordinate (x � �1.50 m). According to Eq. (10.16), the coordinate of the

center of mass is 

COMMENT: Note that the distance of the woman from the center of mass is 1.50 m

� 0.35 m � 1.85 m, and the distance of the man from the center of mass is 1.50 m

 � 0.35m

 xCM �
m1x1 � m2x2

m1 � m2

�
50kg � (� 1.50m) � 80kg � 1.50m

50kg � 80kg

EXAMPLE 4

xCM �
m1x1 � m2x2

m1 � m2

xCM �
x1 � x1 � x2

3

rCM �
r1 � r2 � � � � � rn

n

xCM �
x1 � x2 � �

 

�
 

� � xn

n
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FIGURE 10.7 Two particles of equal

masses, and their center of mass.

1 kg 1 kgCM

For equal-mass particles,
the center of mass is at 
the average position.

              



� 0.35 m � 1.15 m. The ratio of these distances is 1.6, which coincides with the

inverse of the ratio of the masses, 50/80 � 1/1.6. This “lever rule” is quite general:

the position of the center of mass of two particles divides the line segment connecting

them in the ratio m1:m2, with the smaller length segment nearer to the larger mass.

If the system consists of n particles of different masses m1, m2, . . . , mn, then we

apply the same prescription: the number of times each particle is included in the aver-

age is in direct proportion to its mass; the exact factor by which each particle’s coor-

dinate is multiplied is that particle’s fraction of the total mass.This gives the following

general expression for the coordinate of the center of mass:

(10.17)

or

(10.18)

where M is the total mass of the system, M � m1 � m2 � . . . � mn. Similar formulas

apply to the y and the z coordinates, if the particles of the system are distributed over

a three-dimensional region:

(10.19)

(10.20)

By introducing the standard notation for a summation of n terms, we can express

these formulas more concisely as

g

 zCM �
m1z1 � m2z2 � �  �  � � mnzn

M

 yCM �
m1  y1 � m2  

y2 � �  �  � � mn  
yn

M

xCM �
m1x1 � m2x2 � �  �  � � mnxn

M

xCM �
m1x1 � m2x2 � � � � �mnxn

m1 � m2 � �
 
�

 
� � mn
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FIGURE 10.8 A woman and a man on a seesaw.

3.00 m

y

CM

O
x

The “lever rule”: the distances
to the center of mass are in inverse
proportion to the masses.

Woman is at x1 = –1.50 m,
man is at x2 = +1.50 m.

              



(10.21)

(10.22)

(10.23)

The position of the center of mass of a solid body can, in principle, be calculated

from Eqs. (10.21)–(10.23), since a solid body is a collection of atoms, each of which

can be regarded as a particle. However, it would be awkward to deal with the 1023 or

so atoms that make up a chunk of matter the size of, say, a coin. It is more convenient

to pretend that matter in bulk has a smooth and continuous distribution of mass over

its entire volume. The mass in some small volume element at position xi in the body

is then �mi (see Fig. 10.9), and the x position of the center of mass is

(10.24)

In the limiting case of �mi S 0 (and n S 
), this sum becomes an integral:

(10.25)

Similar expressions are valid for the y and z positions of the center of mass:

(10.26)

(10.27)

Thus, the position of the center of mass is the average position of all the mass ele-

ments making up the body.

For a body of uniform density, the amount of mass dm in any given volume element

dV is directly proportional to the amount of volume. For a uniform-density body, the

position of the center of mass is simply the average position of all the volume elements of the

body (in mathematics, this is called the centroid of the volume). If the body has a sym-

metric shape, this average position will often be obvious by inspection. For instance,

a sphere of uniform density, or a ring, or a circular plate, or a cylinder, or a parallelepiped

will have its center of mass at the geometrical center (see Fig. 10.10). But for a less

symmetric body, the center of mass must often be calculated, either by considering

parts of the body (as in the next example) or by integrating over the entire body (as in

the two subsequent examples).

A meterstick of aluminum is bent at its midpoint so that the

two halves are at right angles (see Fig. 10.11). Where is the

center of mass of this bent stick?

SOLUTION: We can regard the bent stick as consisting of two straight pieces, each

of 0.500 m. The centers of mass of these straight pieces are at their midpoints,

EXAMPLE 5

 zCM �
1

M �z dm

 yCM �
1

M �y dm

xCM �
1

M �x dm

xCM �
1

Ma
n

i�1

xi¢mi

zCM �
1

Ma
n

i�1

mi zi

yCM �
1

Ma
n

i�1

mi  
yi

xCM �
1

Ma
n

i�1

mi xi
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coordinates of center of mass

FIGURE 10.9 A small volume element of

the body at position xi has a mass �mi.

FIGURE 10.10 Several bodies for which

the center of mass coincides with the geo-

metrical center.

y

yi

�mi

xi
x

O

For a solid body, we weight
the position xi by the mass
�mi  of a volume element.

ring

sphere

circular plate

parallelepiped

The center of mass of a

symmetric body is obvious

by inspection.

              



0.250 m from their ends (see Fig. 10.12). The center of mass of the entire stick is

the average position of the centers of mass of the two halves. With the coordinate

axes arranged as in Fig. 10.12, the x coordinate of the center of mass is, according

to Eq. (10.14),

(10.28)

Likewise, the y coordinate is

Note that the center of mass of this bent stick is outside the stick; that is, it is not

in the volume of the stick (see Fig. 10.12).

Figure 10.13 shows a mobile by Alexander Calder,

which contains a uniform sheet of steel, in the shape

of a triangle, suspended at its center of mass. Where is the center of

mass of a right triangle of perpendicular sides a and b?

SOLUTION: Figure 10.14 shows the triangle positioned with a vertex

at the origin and its right angle at a distance b along the x axis. To cal-

culate the x coordinate of the center of mass, we need to sum mass con-

tributions dm at each value of x ; one such contribution is the vertical

strip in Fig. 10.14, which has a height y � (a/b)x and a width dx. Since

the sheet is uniform, the strip has a fraction of the total mass M equal

to the strip’s area y dx � (a/b)x dx divided by the total area 

or

dm � M  

2x

b2
 dx

dm

M
�

(a/b)x dx
1
2 ab

1
2 ab:

EXAMPLE 6

yCM �
0.250 m � 0

2
� 0.125 m

xCM �
0.250 m � 0

2
� 0.125 m
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FIGURE 10.12 The center of mass of

the bent meterstick is at the midpoint of

the line connecting the centers of the

halves. The coordinates xCM and yCM of

this midpoint are one-half of the distances

to the centers of mass of the horizontal

and vertical sides—that is, 0.125 m each.

FIGURE 10.11 A meterstick, bent

through 90� at its midpoint.

FIGURE 10.13 This mobile by Alexander Calder

contains a triangle suspended above its center of mass.

y

x

25 cm

75 cm50 cm

y

x

For halves of equal
mass, the center of
mass of the entire stick
is this midpoint.

The center of mass
of each half is at its
midpoint.

              



We integrate this in Eq. (10.25) for xCM and sum the contributions from x � 0 

to x � b:

So the center of mass is two-thirds of the distance toward the right angle.

Performing a similar calculation for yCM yields . Thus each of xCM and

yCM is a distance away from the right angle equal to one-third of the length of the

corresponding side (see Fig. 10.14b).

The Great Pyramid at Giza (see Fig. 10.15) has a height of

147 m and a square base. Assuming that the entire volume is

completely filled with stone of uniform density, find its center of mass.

SOLUTION: Because of symmetry, the center of mass must be on the vertical line

through the apex. For convenience, we place the y axis along this line, and we

arrange this axis downward, with origin at the apex. We must

then find where the center of mass is on this y axis. Figure

10.16a shows a cross section through the pyramid, looking par-

allel to two sides. The half-angle at the apex is �. By examina-

tion of the colored triangle, we see that at a height y (measured

from the apex) the half-width is x � y tan � and the full width

is 2x � 2y tan �. A horizontal slice through the pyramid at this

height is a square measuring 2x � 2x (see Fig. 10.16b). The

volume of a horizontal slab of thickness dy at this height y is

therefore dV � (2x)2dy � (2y tan �)2dy. If we represent the uni-

form density of the stone by � (the Greek letter rho), the pro-

portionality between mass and volume can be written

dm � �dV

EXAMPLE 7

yCM � 1
3 
a

  �
2

b2
 
1

3
(b3 � 0) �

2

3
b

  �
2

b2 �
b

0

x2 dx �
2

b2
 
1

3
x3 ` b

0

  xCM �
1

M �x dm �
1

M
�

b

0

xM
2x

b2
dx
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FIGURE 10.15 The Great Pyramid.

FIGURE 10.14 (a) A right triangle, with mass element dm of height y and width dx. (b) The center of mass is

one-third of the distance from the right angle along sides a and b.
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dm
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This fraction of the total
mass, dm/M, is the same
as this fraction of the total
area, y dx/(     ab).1
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y
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x
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Thus the mass of the slab of thickness dy at this height y is

dm � �dV � �(2y tan�)2dy � 4�(tan2�)y2dy

Equation (10.26) then gives us the y coordinate of the center of mass:

(10.29)

The total mass is

(10.30)

When we substitute Eq. (10.30) into Eq. (10.29), the common factor 4� tan2�

cancels, leaving

(10.31)

As we sum the square slabs of thickness dy in both of these integrals, the integra-

tion runs from y � 0 at the top of the pyramid to y � h at the bottom, where h is

the height of the pyramid. Evaluation of these integrals yields

The y coordinate of the center of mass is therefore

This means that the center of mass is 3/4 � 147 m below the apex; that is, it is 1/4

� 147 m � 37 m above the ground.

yCM �
h4/4

h3/3
�

3

4
 h

 �
h

0

y2
 dy �

y3

3
` h
0

�
h3

3

 �
h

0

y3
 dy �

y4

4
` h
0

�
h4

4

yCM �
�y3

 dy

�y2 dy

M � �dm � �4r(tan2
 f )y2

 dy

 yCM �
1

M �y dm �
1

M 
 �4r(tan2

 f)y3 dy
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x

y

x

y

O

� Here y is the distance
below the vertex.

The large triangle is a
vertical cross section
through the pyramid.

x

y

2x

O

We sum slabs of
thickness dy and
area (2x)2.

FIGURE 10.16 (a) Cross section through the pyramid. The triangle in blue shows that

at a height y measured from the apex, the half-width of the pyramid is x � y tan �. (b) The

thin horizontal slab indicated in red is a square measuring 2x � 2x with a thickness dy.

(b)(a)
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Calculations of the position of the center of mass of a body

can often be simplified by exploiting the shape or the sym-

metry of the body.

• Sometimes it is profitable to treat the body as consisting

of several parts and to begin by calculating the positions

of the centers of mass of these parts (as in the example of

the bent meterstick). Each part can then be treated as a

particle located at its center of mass, and the center of

mass of the entire body is then the center of mass of this

system of particles, which can be calculated by the sums,

Eqs. (10.18)–(10.20).

• If the body or some part of it has symmetry, the position

of the center of mass will often be obvious by inspection.

For instance, in the example of the bent meterstick, it is

obvious that the center of mass of each half is at its center.

• Geometrical arguments can sometimes replace algebraic

calculations of the coordinates of the center of mass. For

instance, in the example of the bent meterstick, instead

of the algebraic calculations of the coordinates [such as

for xCM in Eq. (10.28)], the coordinates can be obtained

by regarding the stick as consisting of two straight pieces

with known centers of mass; then the coordinates of the

overall center of mass can be found from the geometry

of a diagram, such as Fig. 10.12.

PROBLEM-SOLVING TECHNIQUES CENTER OF MASS

PHYSICS IN PRACTICE CENTER OF MASS AND STABIL ITY

In the design of ships, engineers need to ensure that the posi-

tion of the center of mass is low in the ship, to enhance the

stability. If the center of mass is high, the ship is top-heavy and

liable to tip over. Ships often carry ballast at the bottom of

the hull to lower the center of mass. Many ships have been lost

because of insufficient ballast or because of an unexpected

shifting of the ballast. For instance, in 1628, the Swedish ship

Vasa (see Fig. 1), the pride and joy of the Swedish navy and

King Gustavus II Adolphus, capsized and sank on its maiden

voyage when struck by a gust of wind, just barely out of harbor.

It carried an excessive number of heavy guns on its upper

decks, which made it top-heavy; and it should have carried

more ballast to lower its center of mass.

The position of the center of mass is also crucial in the

design of automobiles. A top-heavy automobile, such as an

SUV, will tend to roll over when speeding around a sharp

curve. High-performance automobiles, such as the Maserati

shown in Fig. 2, have a very low profile, with the engine and

transmission slung low in the body, so the center of mass is as

low as possible and the automobile hugs the ground.

FIG. 2 A Maserati sports car.FIG. 1 The Swedish ship Vasa.

              



The position of the center of mass enters into the calculation of the gravitational

potential energy of an extended body located near the surface of the Earth. According

to Eq. (7.29), the potential energy of a single particle of mass m at a height y above

the ground is mgy. For a system of particles, the total gravitational potential energy is

then

U � m1gy1 � m2gy2 � . . . � mng yn
(10.32)

� (m1y1 � m2y2 � . . . � mn yn) g

Comparison with Eq. (10.19) shows that the quantity in parentheses is MyCM. Hence,

Eq. (10.32) becomes

(10.33)

This expression for the gravitational potential energy of a system near the Earth’s sur-

face has the same mathematical form as for a single particle—it is as though the entire

mass of the system were located at the center of mass.

For a human body standing upright, the position of the center of mass is in the

middle of the trunk, at about the height of the navel.This is therefore the height to be

used in the calculation of the gravitational potential energy of the body. However, if the

body adopts any bent position, the center of mass shifts.

U � MgyCM
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FIGURE 10.17 (a) Centers of mass of the

body segments of an average male of mass

M and height L standing upright. The num-

bers give the heights of the centers of mass

of the body segments from the floor and (in

parentheses) the masses of the body seg-

ments; right and left limbs are shown com-

bined. (b) Hinge points of the body. The

numbers give the heights of the joints from

the floor.

potential energy in terms of height 
of center of mass

Figure 10.17a gives the centers of mass of the body segments of a man of average

proportions standing upright. Figure 10.17b shows the hinge points at which these

body segments are joined. From the data in this figure, we can calcu-

late the location of the center of mass when the body adopts any other

position, and we can calculate the work done against gravity to change

the position of any segment. For instance, if the body is bent in a tight

backward arc, the center of mass shifts to a location just outside the

body, about 10 cm below the middle of the trunk. Olympic jumpers (see

Fig. 10.18) take advantage of this shift of the center of mass to make

the most of the gravitational potential energy they can supply for a

high jump. By adopting a bent position as they pass over the bar, they

raise their trunk above the center of mass, so the trunk passes over the

bar while the center of mass can pass below the bar. By this trick,

the jumper raises the center of her trunk by about 10 cm relative to

the center of mass, and she gains extra height without expending extra

energy. FIGURE 10.18 High jumper passing over the bar.

Concepts
in

Context

0.717L (0.066M)

0.935L (0.069M)

0.711L (0.461M)

0.425L (0.215M)

0.182L (0.096M)

0.018L (0.034M)

0.553L (0.042M)

0.431L (0.017M)

(a)

0.912L

0.812L

0.521L 

0.285L

0.040L

0.672L

0.462L

(b)

              



Suppose a man of average proportions performs a high jump,while

arching his back (see the chapter opening photo). At the peak of

his jump, his torso is approximately horizontal; his thighs, arms, and head make an

angle of 45� with the horizontal; and his lower legs are vertical, as shown in Fig. 10.19b.

(a) How much is his center of mass shifted downward compared with a man who goes

over the pole horizontally (Fig. 10.19a)? (b) How much is his potential energy reduced?

Assume the mass of the jumper is M � 73 kg and his height L � 1.75 m.

SOLUTION: (a) In Fig. 10.19a, the center of mass of the horizontal body is at

y � 0, since each segment is essentially at y � 0. In Fig. 10.20, we have used the

relative locations of the hinge points and centers of mass from Fig. 10.17 to deter-

mine the vertical position of each body segment in the arched-back position. For

example, the center of mass of the thigh is at a distance 0.521L � 0.425L � 0.096L

from the hip joint, and so is at a vertical distance 0.096L � sin 45� � 0.068L below

y � 0. Similarly, we can determine that the centers of mass of the lower legs, the

feet, the head, the upper arms, the forearms, and the hands are at y � �0.270L,

�0.434L, �0.016L, �0.067L, �0.183L, and �0.269L, respectively. From Fig.

10.17, the masses of all seven segments are 0.215M, 0.096M, 0.034M, 0.069M,

0.066M, 0.042M, and 0.017M, respectively. The torso, of mass 0.461M, is again

at y � 0. Thus, using Eq. (10.19) or (10.22), the arched-back center of mass is at

Thus a height advantage of 13 cm is gained in this arched position.

(b) According to Eq. (10.33), the potential energy is changed by

�U � Mg �yCM

� 73 kg � 9.81 m 	s2 � (�0.13 m) (10.34)

� �93 J

� � 0.073L � �0.073 � 1.75 m � �0.13 m

� 0 � 0.461)ML

� 0.016 � 0.066 � 0.067 � 0.042 � 0.183 � 0.017 � 0.269

� �
1

M
 (0.215 � 0.068 � 0.096 � 0.270 � 0.034 � 0.434 � 0.069

 yCM �
1

Ma
n

i�1

mi yi
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y = 0 y = 0

45°45°

(b)(a) Thighs, neck, and arms bend
45° at respective hinge points; 
lower legs are vertical.

Center of mass
is at y = 0.

Center of mass can
be calculated from
data of Fig. 10.17.

FIGURE 10.19 (a) Horizontal position. (b) High jumper in arched-back position.

Concepts
in
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Checkup 10.2

QUESTION 1: Roughly where is the center of mass of the snake shown in Fig. 10.21a?

QUEST ION 2 : Roughly where is the center of mass of the horseshoe shown in 

Fig. 10.21b?

QUESTION 3: Is it possible for the center of mass of a body to be above the highest

part of the body?

QUESTION 4: A sailboat has a keel with a heavy lead bulb at the bottom. If the bulb

falls off, the center of mass of the sailboat:

(A) Remains at the same position (B) Shifts downward 

(C) Shifts upward

10.3 THE MOTION OF THE CENTER OF MASS

When the particles in a system move, often so does the center of mass. We will now

obtain an equation for the motion of the center of mass, an equation which relates the

acceleration of the center of mass to the external force. This equation will permit us to

calculate the overall translational motion of a system of particles.

According to Eq. (10.18), if the x components of positions of the respective parti-

cles change by dx1, dx2, . . . , dxn, then the position of the center of mass changes by

(10.35)

Dividing this by the time dt taken for these changes of position, we obtain

(10.36)

The left side of this equation is the x component of the velocity of the center of mass,

and the rates of change on the right side are the x components of the velocities of the

individual particles; thus

dxCM

dt
�

1

M
 am1 

dx1

dt
� m2 

dx2

dt
� �  �  � � mn 

dxn

dt
  b

dxCM �
1

M (m1dx1 � m2dx2 � � 
 

�
 

 � � mn dxn )

✔
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0.434L

0.270L

0.068L

0.269L
0.183L

0.067L
0.016L45°45°5°45° y = 0

These distances follow
directly from the centers
of mass and hinge points
in Fig. 10.17.

FIGURE 10.20 The vertical positions of the centers of

mass of the body segments. These are determined from

the locations of the hinge joints and centers of mass in

Fig. 10.17 and the geometry of the arched-back position.

FIGURE 10.21
(a) A snake. (b) A horseshoe.

(a)

(b)

              



Note that this equation has the same mathematical form as Eq. (10.18); that is, the

velocity of the center of mass is an average over the particle velocities, and the number

of times each particle velocity is included is directly proportional to its mass.

Since similar equations apply to the y and z components of the velocity, we can

write a vector equation for the velocity of the center of mass:

(10.37)

The quantity in the numerator is simply the total momentum [compare Eq. (10.1)];

hence Eq. (10.37) says

(10.38)

or

(10.39)

This equation expresses the total momentum of a system of particles as the product of

the total mass and the velocity of the center of mass. Obviously, this equation is anal-

ogous to the familiar equation p � mv for the momentum of a single particle.

We know, from Eq. (10.13), that the rate of change of the total momentum equals

the net external force on the system,

If we substitute P � MvCM and take into account that the mass is constant, we find

and consequently

(10.40)

This equation for a system of particles is the analog of Newton’s equation for

motion for a single particle. The equation asserts that the center of mass moves as

though it were a particle of mass M under the influence of a force Fext.

This result justifies some of the approximations we made in previous chapters. For

instance, in Example 9 of Chapter 2 we treated a diver falling from a cliff as a parti-

cle. Equation (10.40) shows that this treatment is legitimate: the center of mass of the

diver, under the influence of the external force (gravity), moves with a downward accel-

eration g, just as though it were a freely falling particle. Likewise, after a high jumper

leaves the ground, his center of mass moves along a parabolic trajectory, as though it

were a projectile, and the shape and height of this parabolic trajectory is unaffected

by any contortions the high jumper might perform while in flight. From Chapter 4,

we know that the initial vertical velocity vy determines the maximum height h of the

center of mass; that is, . The contortions of the jumper enable his body to

pass over a bar roughly 10 cm above the maximum height of the center of mass.

vy � 12gh

MaCM � Fext

d P

dt
�

d

dt
(M vCM) � M 

dvCM

dt
 � MaCM

d P

dt
� Fext

P � M  v
CM

vCM �
P

M

vCM �
m1v1 � m2v2 � �

 

�
 

�� mnvn

M

vx, CM �
m1vx,1 � m2vx,2 � �  

 

�  
 

� � mnvx,n

M
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velocity of the center of mass

momentum in terms of velocity of CM

motion of center of mass
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If the net external force vanishes, then the acceleration of the center of mass

vanishes; hence the center of mass remains at rest or it moves with uniform velocity.

During a “space walk,” an astronaut floats in space 

8.0 m from his spacecraft orbiting the Earth. He is teth-

ered to the spacecraft by a long umbilical cord (see Fig. 10.22); to return,

he pulls himself in by this cord. How far does the spacecraft move toward

him? The mass of the spacecraft is 3500 kg, and the mass of the astronaut,

including his space suit, is 110 kg.

SOLUTION: In the reference frame of the orbiting (freely falling) astronaut

and spacecraft, each is effectively weightless; that is, the external force on

the system is effectively zero. The only forces in the system are the forces

exerted when the astronaut pulls on the cord; these forces are internal.The

forces exerted by the cord on the spacecraft and on the astronaut during the

pulling in are of equal magnitudes and opposite directions; the astronaut

is pulled toward the spacecraft, and the spacecraft is pulled toward the astronaut.

In the absence of external forces, the center of mass of the astronaut–spacecraft

system remains at rest. Thus, the spacecraft and the astronaut both move toward

the center of mass, and there they meet.

With the x axis as in Fig. 10.23, the x coordinate of the center of mass is

(10.41)

where m1 � 3500 kg is the mass of the spacecraft and m2 � 110 kg is the mass of

the astronaut. Strictly, the coordinates x1 and x2 of the spacecraft and of the astro-

naut should correspond to the centers of mass of these bodies, but, for the sake of

simplicity, we neglect their size and treat both as particles. The initial values of the

coordinates are x1 � 0 and x2 � 8.0 m; hence

During the pulling in, the spacecraft will move from x1 � 0 to x1 � 0.24 m;

simultaneously, the astronaut will move from x2 � 8.0 m to x2 � 0.24 m.

xCM �
0 � 110 kg � 8.0 m

3500 kg � 110 kg
� 0.24 m

xCM �
m1x1 � m2x2

m1 � m2

EXAMPLE 9

FIGURE 10.22 Astronaut on a “space

walk” during the Gemini 4 mission.

FIGURE 10.23 (a) Initial position of the astronaut and the spacecraft. The center of mass is between them.

(b) Final position of the astronaut and the spacecraft. They are both at the center of mass.

(a)

y

(b)

y

x = 8.0 m

x x

CM
CM

OO

Distances to the center of 
mass are in inverse proportion 
to the masses.

Position of the
center of mass
remains fixed.

              



COMMENT: The distances moved by the astronaut and by the spacecraft are in

the inverse ratio of their masses. The astronaut (of small mass) moves a large dis-

tance, and the spacecraft (of large mass) moves a smaller distance.This is the result

of the accelerations that the pull of the cord gives to these bodies: with forces of equal

magnitudes, the accelerations of the astronaut and spacecraft are in the inverse

ratio of their masses. However, our method of calculation based on the fixed posi-

tion of the center of mass gives us the final positions directly, without any need to

examine accelerations.

A projectile is launched at some angle � with respect to the

horizontal, 0� � � � 90�. Just as it reaches its peak, it explodes

into two pieces.The explosion causes a first, rear piece to come to a momentary stop,

and it simply drops, striking the ground directly below the peak position.The explo-

sion also causes the speed of the second piece to increase, and it hits the ground a

distance five times further from the launch point than the first piece (see Fig. 10.24).

If the original projectile had a mass of 12.0 kg, what are the masses of the pieces?

SOLUTION: Because the explosion does not produce external forces, the center

of mass continues on its original path, a parabolic trajectory which strikes the

ground at the range xmax, given by Eq. (4.43). The peak of the parabolic trajectory

occurs at half this distance; thus the first piece, of some mass m1, hits the ground

a distance xmax from the launch point. We are also told that the second piece, of

mass m2, hits the ground a distance from the launch point. The two

pieces will reach the ground at the same instant, since this explosion affected only

each piece’s horizontal momentum. If we take our origin at the launch point, the

x component of the center of mass is thus

We can divide both sides of this equation by xmax and rearrange to obtain

Since we know the total mass is m1 � m2 � 12.0 kg, or 4m2 � 12.0 kg, we obtain

m1 � 9.0 kg          and         m2 � 3.0 kg

m1 � 3m2

xCM � xmax �
m1x1 � m2 

x2

m1 � m2

�
m1xmax   

>2 � 5m2 

xmax >2
m1 � m2

5 � 1
2x max

1
2

EXAMPLE 10
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xmax

�

original projectile range

Fragments are at the
same height.

FIGURE 10.24 A projectile explodes at its apex. The rear fragment simply drops, and the forward

piece lands five times further from the launch point.

              



COMMENT: Note that to relate both points of impact to the center of mass, we had

to know that the impacts occurred at the same instant; we must always use the

coordinates of a system of particles at a particular instant when calculating the

center of mass.

Checkup 10.3

QUESTION 1: When you crawl from the rear end of a canoe to the front end, the boat

moves backward relative to the water. Explain.

QUESTION 2: You are locked inside a boxcar placed on frictionless wheels on railroad

tracks. If you walk from the rear end of the boxcar to the front end, the boxcar rolls back-

ward. Is it possible for you to make the boxcar roll a distance longer than its length?

QUESTION 3: You drop a handful of marbles on a smooth floor, and they bang into

each other and roll away in all directions. What can you say about the motion of the

center of mass of the marbles after the impact on the floor?

QUESTION 4: An automobile is traveling north at 25 m/s. A truck with twice the mass

of the automobile is heading south at 20 m/s. What is the velocity of the center of

mass of the two vehicles?

(A) 0 (B) 5 m/s south (C) 5 m/s north

(D) 10 m/s south (E) 10 m/s north

10.4 ENERGY OF A SYSTEM OF PARTICLES

The total kinetic energy of a system of particles is simply the sum of the individual

kinetic energies of all the particles,

(10.42)

Since Eq. (10.39) for the momentum of a system of particles resembles the expres-

sion for the momentum of a single particle, we might be tempted to guess that the

equation for the kinetic energy for a system of particles also can be expressed in the form

of the translational kinetic energy of the center of mass  Mv2
CM, resembling the kinetic

energy of a single particle. But this is wrong! The total kinetic energy of a system of par-

ticles is usually larger than Mv2
CM. We can see this in the following simple example:

Consider two automobiles of equal masses moving toward each other at equal speeds.The

velocity of the center of mass is then zero, and consequently Mv2
CM � 0. However, since

each automobile has a positive kinetic energy, the total kinetic energy is not zero.

If the internal and external forces acting on a system of particles are conservative,

then the system will have a potential energy. We saw above that for the specific exam-

ple of the gravitational potential energy near the Earth’s surface, the potential energy

of the system took the same form as for a single particle, U � MgyCM [see Eq. (10.33)].

But this form is a result of the particular force (uniform and proportional to mass); in

general, the potential energy for a system does not have the same form as for a single

particle. Unless we specify all of the forces, we cannot write down an explicit formula

for the potential energy; but in any case, this potential energy will be some function of

the positions of all the particles. The total mechanical energy is the sum of the total

1
2

1
2

1
2

K � 1
2 m1v2

1 � 1
2 m2v2

2 �� � �� 1
2 mnv2

n

✔
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kinetic energy of a system of particles

              



kinetic energy [Eq. (10.42)] and the total potential energy. This total energy will be

conserved during the motion of the system of particles. Note that in reckoning the

total potential energy of the system, we must include the potential energy of both the

external forces and the internal forces. We know that the internal forces do not con-

tribute to the changes of total momentum of the system, but these internal forces, and

their potential energies, contribute to the total energy. For instance, if two particles

are falling toward each other under the influence of their mutual gravitational attrac-

tion, the momentum gained by one particle is balanced by momentum lost by the

other, but the kinetic energy gained by one particle is not balanced by kinetic energy

lost by the other—both particles gain kinetic energy. In this example the gravitational

attraction plays the role of an internal force in the system, and the gain of kinetic energy

is due to a loss of mutual gravitational potential energy.

Checkup 10.4

QUESTION 1: Consider a system consisting of two automobiles of equal mass. Initially,

the automobiles have velocities of equal magnitudes in opposite directions. Suppose the

automobiles collide head-on. Is the kinetic energy conserved?

QUESTION 2: The Solar System consists of the Sun, nine planets, and their moons. Is

the total energy of this system conserved? Is the kinetic energy conserved? Is the poten-

tial energy conserved?

QUESTION 3: Two equal masses on a frictionless horizontal surface are connected by

a spring. Each is given a brief push in a different direction. During the subsequent

motion, which of the following remain(s) constant? (P � total momentum; K � total

kinetic energy; U � total potential energy.)

(A) P only (B) P and K (C) P and U

(D) K and U (E) P, K, and U

✔
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SUMMARY

PROBLEM-SOLVING TECHNIQUES Conservation of Momentum (page 310)

PROBLEM-SOLVING TECHNIQUES Center of Mass (page 320)

PHYSICS IN PRACTICE Center of Mass and Stability (page 320)

MOMENTUM OF A PARTICLE (10.1)p � mv

MOMENTUM OF A SYSTEM OF PARTICLES (10.4)P � p1 � p2 � �
 
�

 
� � pn

RATE OF CHANGE OF MOMENTUM
(10.13)

dP

dt
� Fext

CONSERVATION OF MOMENTUM
(in the absence of external forces) 

P � [constant] (10.12)
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CENTER OF MASS
(Using M � m1 � m2����� mn)

(10.18)

(10.19)

(10.20)zCM �
1

M
(m1z1 � m2z2 � � � � � mnzn)

yCM �
1

M
(m1 y1 � m2 y2 � � � � � mn yn)

xCM �
1

M
(m1x1 � m2x2 � � � � � mnxn)

CENTER OF MASS OF CONTINUOUS 
DISTRIBUTION OF MASS (10.25)

(10.26)

(10.27)

where dm � �dV (� is density and dV is a

volume element).

y

CM
O

x

sphere
circular plate

parallelepipedring

VELOCITY OF THE CENTER OF MASS
(10.37)vCM �

m1v1 � m2v2 � �
  

�
 
� � mnvn

M

MOMENTUM OF A SYSTEM OF PARTICLES (10.39)P � MvCM

(10.40)MaCM � Fext
MOTION OF THE CENTER OF MASS

GRAVITATIONAL POTENTIAL ENERGY OF A  
SYSTEM OF PARTICLES (near the Earth’s surface)

(10.33)U � MgyCM

KINETIC ENERGY OF A SYSTEM OF PARTICLES (10.42)K � 1
2 m1v2

1 � 1
2 m2v2

2 � � � � � 1
2 mnv2

n

QUEST IONS FOR DISCUSSION

1. When the nozzle of a fire hose discharges a large amount of

water at high speed, several strong firefighters are needed to

hold the nozzle steady. Explain.

2. When firing a shotgun, a hunter always presses it tightly

against his shoulder. Why?

3. As described in Example 2, guns onboard eighteenth-century

warships were often mounted on carriages (see Fig. 10.3).

What was the advantage of this arrangement?

4. Hollywood movies often show a man being knocked over 

by the impact of a bullet while the man who shot the 

bullet remains standing, quite undisturbed. Is this reasonable?

5. Where is the center of mass of this book when it is closed?

Mark the center of mass with a cross.

6. Roughly, where is the center of mass of this book when it is

open, as it is at this moment?

xCM �
1

M
� x dm

yCM �
1

M �y dm

zCM �
1

M �z dm

              



7. A fountain shoots a stream of water up into the air (Fig. 10.25).

Roughly, where is the center of mass of the water that is in the

air at one instant? Is the center of mass higher or lower than

the middle height?
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FIGURE 10.25 Stream of water from a fountain.

FIGURE 10.26 Juggler on a balance.

15. Suppose you fill a rubber balloon with air and then release it

so that the air spurts out of the nozzle. The balloon will fly

across the room. Explain.

16. The combustion chamber of a rocket engine is closed at the

front and at the sides, but it is open at the rear (Fig. 10.27).

Explain how the pressure of the gas on the walls of this com-

bustion chamber gives a net forward force that propels the

rocket.

FIGURE 10.27 Combustion chamber of a rocket engine.

8. Consider the moving wrench shown in Fig. 10.6. If the center

of mass on this wrench had not been marked, how could you

have found it by inspection of this photograph?

9. Is it possible to propel a sailboat by mounting a fan on the

deck and blowing air on the sail? Is it better to mount the fan

on the stern and blow air toward the rear?

10. Cyrano de Bergerac’s sixth method for propelling himself to

the Moon was as follows: “Seated on an iron plate, to hurl a

magnet in the air—the iron follows—I catch the magnet—

throw again—and so proceed indefinitely.” What is wrong

with this method (other than the magnet’s insufficient pull)?

11. Within the Mexican jumping bean, a small insect larva jumps

up and down. How does this lift the bean off the table?

12. Answer the following question, sent by a reader to the New

York Times:

A state trooper pulls a truck driver into the weigh station to see if

he’s overloaded. As the vehicle rolls onto the scales, the driver jumps

out and starts beating on the truck box with a club. A bystander

asks what he’s doing.The trucker says: “I’ve got five tons of canaries

in here. I know I’m overloaded. But if I can keep them flying I’ll be

OK.” If the canaries are flying in that enclosed box, will the truck

really weigh any less than if they’re on the perch?

PROBLEMS

10.1 Momentum 

1. What is the momentum of a rifle bullet of mass 15 g and

speed 600 m/s? An arrow of mass 40 g and speed 80 m/s?

2. What is the momentum of an automobile of mass 900 kg

moving at 65 km/h? If a truck of mass 7200 kg is to have the

same momentum as the automobile, what must be its speed?

13. An elephant jumps off a cliff. Does the Earth move upward

while the elephant falls?

14. A juggler stands on a balance, juggling five balls (Fig. 10.26).

On the average, will the balance register the weight of the jug-

gler plus the weight of the five balls? More than that? Less?

3. Using the entries listed in Tables 1.7 and 2.1, find the magni-

tude of the momentum for each of the following: Earth moving

around the Sun, jet airliner at maximum airspeed, automobile

at 55 mi/h, man walking, electron moving around a nucleus.

4. The push that a bullet exerts during impact on a target

depends on the momentum of the bullet. A Remington .244

throat nozzlecombustion
chamber

              



rifle, used for hunting deer, fires a bullet of 90 grains (1 grain

is lb) with a speed of 975 m/s. A Remington .35 rifle fires

a bullet of 200 grains with a speed of 674 m/s. What is the

momentum of each bullet?

5. An electron, of mass 9.1 � 10�31 kg, is moving in the x–y

plane; its speed is 2.0 � 105 m/s, and its direction of motion

makes an angle of 25� with the x axis. What are the compo-

nents of the momentum of the electron?

6. A skydiver of mass 75 kg is in free fall. What is the rate of

change of his momentum? Ignore friction.

7. A soccer player kicks a ball and sends it flying with an initial

speed of 26 m/s at an upward angle of 30�. The mass of the

ball is 0.43 kg. Ignore friction.

(a) What is the initial momentum of the ball?

(b) What is the momentum when the ball reaches maximum

height on its trajectory?

(c) What is the momentum when the ball returns to the

ground? Is this final momentum the same as the initial

momentum?

8. The Earth moves around the Sun in a circle of radius 1.5 �

1011 m at a speed of 3.0 � 104 m/s. The mass of the Earth is

6.0 � 1024 kg. Calculate the magnitude of the rate of change

of the momentum of the Earth from these data. (Hint: The

magnitude of the momentum does not change, but the direc-

tion does.)

9. A 1.0-kg mass is released from rest and falls freely. How much

momentum does it acquire after one second? After ten seconds?

10. A 55-kg woman in a 20-kg rowboat throws a 3.0-kg life pre-

server with a horizontal velocity of 5.0 m/s. What is the recoil

velocity of the woman and rowboat?

11. A 90-kg man dives from a 20-kg boat with an initial horizon-

tal velocity of 2.0 m/s (relative to the water). What is the ini-

tial recoil velocity of the boat? (Neglect water friction.)

12. A hydrogen atom (mass 1.67 � 10�27 kg) at rest can emit a

photon (a particle of light) with maximum momentum 7.25 �

10�27 kg�m/s. What is the maximum recoil velocity of the

hydrogen atom?

13. Calculate the change of the kinetic energy in the collision

between the two automobiles described in Example 3.

14. A rifle of 10 kg lying on a smooth table discharges acciden-

tally and fires a bullet of mass 15 g with a muzzle speed of 650

m/s. What is the recoil velocity of the rifle? What is the

kinetic energy of the bullet, and what is the recoil kinetic

energy of the rifle?

15. A typical warship built around 1800 (such as the USS

Constitution) carried 15 long guns on each side. The guns fired

a shot of 11 kg with a muzzle speed of about 490 m/s. The

mass of the ship was about 4000 metric tons. Suppose that all

of the 15 guns on one side of the ship are fired (almost) simul-

taneously in a horizontal direction at right angle to the ship.

What is the recoil velocity of the ship? Ignore the resistance

offered by the water.

1
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16. Two automobiles, moving at 65 km/h in opposite directions,

collide head-on. One automobile has a mass of 700 kg; the

other, a mass of 1500 kg. After the collision, both remain

joined together. What is the velocity of the wreck? What is

the change of the velocity of each automobile during the

collision?

17. The nucleus of an atom of radium (mass 3.77 � 10�25 kg)

suddenly ejects an alpha particle (mass 6.68 � 10�27 kg) of

an energy of 7.26 � 10�16 J. What is the velocity of the

recoil of the nucleus? What is the kinetic energy of the

recoil?

18. A lion of mass 120 kg leaps at a hunter with a horizontal

velocity of 12 m/s. The hunter has an automatic rifle firing

bullets of mass 15 g with a muzzle speed of 630 m/s, and he

attempts to stop the lion in midair. How many bullets would

the hunter have to fire into the lion to stop its horizontal

motion? Assume the bullets stick inside the lion.

*19. Find the recoil velocity for the gun described in Example 2 if

the gun is fired with an elevation angle of 20�.

*20. Consider the collision between the moving and the initially

stationary automobiles described in Example 3. In this exam-

ple we neglected effects of the friction force exerted by the

road during the collision. Suppose that the collision lasts for

0.020 s, and suppose that during this time interval the joined

automobiles are sliding with locked wheels on the pavement

with a coefficient of friction �k � 0.90. What change of

momentum and what change of speed does the friction force

produce in the joined automobiles in the interval of 0.020 s? Is

this change of speed significant?

*21. A Maxim machine gun fires 450 bullets per minute. Each

bullet has a mass of 14 g and a velocity of 630 m/s.

(a) What is the average force that the impact of these bullets

exerts on a target? Assume that the bullets penetrate the

target and remain embedded in it.

(b) What is the average rate at which the bullets deliver their

energy to the target?

*22. An owl flies parallel to the ground and grabs a stationary

mouse with its talons. The mass of the owl is 250 g, and that

of the mouse is 50 g. If the owl’s speed was 4.0 m/s before

grabbing the mouse, what is its speed just after the capture?

*23. A particle moves along the x axis under the influence of a

time-dependent force of the form Fx � 2.0t � 3.0t2, where Fx

is in newtons and t is in seconds. What is the change in

momentum of the particle between t � 0 and t � 5.0 s? 

[Hint: Rewrite Eq. (10.3) as dpx � Fx dt and integrate.]

*24. A vase falls off a table and hits a smooth floor, shattering into

three fragments of equal mass which move away horizontally

along the floor. Two of the fragments leave the point of impact

with velocities of equal magnitudes v at right angles. What are

the magnitude and direction of the horizontal velocity of the

third fragment? (Hint: The x and y components of the

momentum are conserved separately.)
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*25. The nucleus of an atom of radioactive copper undergoing beta

decay simultaneously emits an electron and a neutrino. The

momentum of the electron is 2.64 � 10�22 kg�m/s, that of the

neutrino is 1.97 �10�22 kg�m/s, and the angle between their

directions of motion is 30.0�. The mass of the residual nucleus

is 63.9 u. What is the recoil velocity of the nucleus? (Hint:

The x and y components of the momentum are conserved

separately.)

*26. The solar wind sweeping past the Earth consists of a stream of

particles, mainly hydrogen ions of mass 1.7 � 10�27 kg. There

are about 1.0 � 107 ions per cubic meter, and their speed is

4.0 � 105 m/s. What force does the impact of the solar wind

exert on an artificial Earth satellite that has an area of 1.0 m2

facing the wind? Assume that upon impact the ions at first

stick to the surface of the satellite.

*27. The record for the heaviest rainfall is held by Unionville,

Maryland, where 3.12 cm of rain (1.23 in.) fell in an interval of

1.0 min. Assuming that the impact velocity of the raindrops on

the ground was 10 m/s, what must have been the average impact

force on each square meter of ground during this rainfall?

*28. An automobile is traveling at a speed of 80 km/h through heavy

rain. The raindrops are falling vertically at 10 m/s, and there are

7.0 � 10�4 kg of raindrops in each cubic meter of air. For the

following calculation assume that the automobile has the shape

of a rectangular box 2.0 m wide, 1.5 m high, and 4.0 m long.

(a) At what rate (in kg/s) do the raindrops strike the front

and top of the automobile?

(b) Assume that when a raindrop hits, it initially sticks to the

automobile, although it falls off later. At what rate does

the automobile give momentum to the raindrops? What is

the horizontal drag force that the impact of the raindrops

exerts on the automobile?

*29. A spaceship of frontal area 25 m2 passes through a cloud of

interstellar dust at a speed of 1.0 � 106 m/s. The density of

dust is 2.0 � 10�18 kg/m3. If all the particles of dust that

impact on the spaceship stick to it, find the average decelerat-

ing force that the impact of the dust exerts on the spaceship.

**30. A basketball player jumps straight up to launch a long jump

shot at an angle of 45� with the horizontal and a speed of 15

m/s. The 75-kg player is momentarily at rest at the top of his

jump just before the shot is released, with his feet 0.80 m

above the floor. (a) What is the player’s velocity immediately

after the shot is released? (b) How far from his original posi-

tion does he land? Treat the player as a point particle. The

mass of a basketball is 0.62 kg.

**31. A gun mounted on a cart fires bullets of mass m in the back-

ward direction with a horizontal muzzle velocity u. The initial

mass of the cart, including the mass of the gun and the mass

of the ammunition, is M, and the initial velocity of the cart is

zero. What is the velocity of the cart after firing n bullets?

Assume that the cart moves without friction, and ignore the

mass of the gunpowder.

10.2 Center  o f  Mass  

32. A penny coin lies on a table at a distance of 20 cm from a

stack of three penny coins. Where is the center of mass of the

system of four coins?

33. A 59-kg woman and a 73-kg man sit on a seesaw, 3.5 m long.

Where is their center of mass? Neglect the mass of the seesaw.

34. Consider the system Earth–Moon; use the data in the table

printed inside the book cover. How far from the center of the

Earth is the center of mass of this system?

35. Consider the Sun and the planet Jupiter as a two-particle

system. How far from the center of the Sun is the center of

mass of this system?  Express your result as a multiple of the

radius of the Sun. (Use the data inside the cover of this book.)

36. Two bricks are adjacent, and a third brick is positioned sym-

metrically above them, as shown in Fig. 10.28. Where is the

center of mass of the three bricks?
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FIGURE 10.28 Three bricks.

*37. Where is the center of mass of a uniform sheet in the shape of

an isosceles triangle?  Assume that the height of the triangle is

h when the unequal side is the base.

*38. Consider a pyramid with height h and a triangular base.

Where is its center of mass?

*39. In order to balance the wheel of an automobile, a mechanic

attaches a piece of lead alloy to the rim of the wheel. The

mechanic finds that if he attaches a piece of 40 g at a distance of

20 cm from the center of the wheel of 30 kg, the wheel is per-

fectly balanced; that is, the center of the wheel coincides with

the center of mass. How far from the center of the wheel was

the center of mass before the mechanic balanced the wheel?

*40. The distance between the oxygen and each of the hydrogen

atoms in a water (H2O) molecule is 0.0958 nm; the angle

between the two oxygen–hydrogen bonds is 105� (Fig. 10.29).

Treating the atoms as particles, find the center of mass.

FIGURE 10.29 Atoms in a water molecule.
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*41. Figure 10.30 shows the shape of a nitric acid (HNO3) mole-

cule and its dimensions. Treating the atoms as particles, find

the center of mass of this molecule.

*45. Three uniform square pieces of sheet metal are joined along their

edges so as to form three of the sides of a cube (Fig. 10.32).The

dimensions of the squares are L � L. Where is the center of

mass of the joined squares?
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x

FIGURE 10.31 A rod bent in a semicircle.

FIGURE 10.32 Three square pieces of sheet

metal joined together at their edges.

*42. Figure 9.13a shows the positions of the three inner planets

(Mercury, Venus, and Earth) on January 1, 2000. Measure

angles and distances off this figure and find the center of mass

of the system of these planets (ignore the Sun). The masses of

the planets are listed in Table 9.1.

*43. The Local Group of galaxies consists of our Galaxy and its

nearest neighbors. The masses of the most important members

of the Local Group are as follows (in multiples of the mass of

the Sun): our Galaxy, 2 � 1011; the Andromeda galaxy, 3 �

1011; the Large Magellanic Cloud, 2.5 � 1010; and NGC598,

8 � 109. The x, y, z coordinates of these galaxies are, respec-

tively, as follows (in thousands of light-years): (0, 0, 0); (1640,

290, 1440), (8.5, 56.7, –149), and (1830, 766, 1170). Find the

coordinates of the center of mass of the Local Group. Treat all

the galaxies as point masses.

*44. A thin, uniform rod is bent in the shape of a semicircle of radius

R (see Fig. 10.31). Where is the center of mass of this rod?     L

L

 
1

  4

FIGURE 10.33 Iron cube with a hole.

*46. A box made of plywood has the shape of a cube measuring 

L � L � L. The top of the box is missing. Where is the

center of mass of the open box?

*47. A cube of iron has dimensions L � L � L. A hole of radius

has been drilled all the way through the cube so that one side

of the hole is tangent to the middle of one face along its entire

length (Fig. 10.33). Where is the center of mass of the drilled

cube?

1
4L

O

y

xH N 130°

0.100 nm

0.141 nm

0.141 nm

O

O

FIGURE 10.30 Atoms in a nitric acid molecule.

*48. A semicircle of uniform sheet metal has radius R (Fig. 10.34).

Find the center of mass.

R R

FIGURE 10.34 Semicircle of sheet metal.
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*49. Mount Fuji has approximately the shape of a cone. The half-

angle at the apex of this cone is 65�, and the height of the apex

is 3800 m. At what height is the center of mass? Assume that

the material in Mount Fuji has uniform density.

*50. Show that the center of mass of a uniform flat triangular plate

is at the point of intersection of the lines drawn from the ver-

tices to the midpoints of the opposite sides.

*51. Consider a man of mass 80 kg and height 1.70 m with the

mass distribution described in Fig. 10.17. How much work

does this man do to raise his arms from a hanging position to

a horizontal position? To a vertically raised position?

*52. Suppose that a man of mass 75 kg and height 1.75 m runs in

place, raising his legs high, as in Fig. 10.35. If he runs at the

rate of 80 steps per minutes for each leg (160 total per

minute), what power does he expend in raising his legs?

From this, deduce that the time-average height of a projectile

released from the ground and returning to the ground is of

its maximum height. (This theorem is useful in the calculation

of the average air pressure and air resistance encountered by a

projectile.)

10.3 The Mot ion of  the  Center  o f  Mass  

57. A proton of kinetic energy 1.6 � 10�13 J is moving toward a

proton at rest. What is the velocity of the center of mass of the

system?

58. In a molecule, the atoms usually execute a rapid vibrational

motion about their equilibrium position. Suppose that in an

isolated potassium bromide (KBr) molecule the speed of the

potassium atom is 5.0 � 103 m/s at one instant (relative to the

center of mass). What is the speed of the bromine atom at the

same instant?

59. A fisherman in a boat catches a great white shark with a har-

poon. The shark struggles for a while and then becomes limp

when at a distance of 300 m from the boat. The fisherman

pulls the shark by the rope attached to the harpoon. During

this operation, the boat (initially at rest) moves 45 m in the

direction of the shark. The mass of the boat is 5400 kg. What

is the mass of the shark? Pretend that the water exerts no

friction.

60. A 75-kg man climbs the stairs from the ground floor to the

fourth floor of a building, a height of 15 m. How far does the

Earth recoil in the opposite direction as the man climbs?

61. A 6000-kg truck stands on the deck of an 80000-kg ferry-

boat. Initially the ferry is at rest and the truck is located at its

front end. If the truck now drives 15 m along the deck toward

the rear of the ferry, how far will the ferry move forward rela-

tive to the water? Pretend that the water has no effect on the

motion.

62. While moving horizontally at 5.0 � 103 m/s at an altitude of

2.5 � 104 m, a ballistic missile explodes and breaks apart into

2
3
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FIGURE 10.35 Man with raised leg.

FIGURE 10.36 A hemispherical shell used as a gong.

*53. A lock on the Champlain Canal is 73 m long and 9.2 m wide;

the lock has a lift of 3.7 m—that is, the difference between the

water levels of the canal on one side of the lock and on the

other side is 3.7 m. How much gravitational potential energy

is wasted each time the lock goes through one cycle (involving

the filling of the lock with water from the high level and then

the spilling of this water to the low level)?

*54. The Great Pyramid at Giza has a mass of 6.6 � 106 metric

tons and a height of 147 m (see Example 7). Assume that the

mass is uniformly distributed over the volume of the pyramid.

(a) How much work must the ancient Egyptian laborers have

done against gravity to pile up the stones in the pyramid?

(b) If each laborer delivered work at an average rate of 4.0 �

105 J/h, how many person-hours of work have been stored

in this pyramid?

**55. A thin hemispherical shell of uniform thickness is suspended

from a point above its center of mass as shown in Fig. 10.36.

Where is that center of mass?

**56. Suppose that water drops are released from a point at the edge

of a roof with a constant time interval �t between one water

drop and the next. The drops fall a distance l to the ground. If

�t is very short (so the number of drops falling though the air

at any given instant is very large), show that the center of mass

of the falling drops is at a height of above the ground.2
3 l

0.521L

0.418L

0.254L 

              



two fragments of equal mass which fall freely. One of the frag-

ments has zero speed immediately after the explosion and lands

on the ground directly below the point of the explosion. Where

does the other fragment land? Ignore the friction of air.

63. A 15-g bullet moving at 260 m/s is fired at a 2.5-kg block of

wood. What is the velocity of the center of mass of the

bullet–block system?

64. A 60-kg woman and a 90-kg man walk toward each other,

each moving with speed v relative to the ground. What is the

velocity of their center of mass?

65. A projectile of mass M reaches the peak of its motion a hori-

zontal distance D from the launch point. At its peak, it

explodes into three equal fragments. One fragment returns

directly to the launch point, and one lands a distance 2D from

the launch point, at a point in the same plane as the initial

motion. Where does the third fragment land?

*66. A projectile is launched with speed v0 at an angle of � with

respect to the horizontal. At the peak of its motion, it explodes

into two pieces of equal mass, which continue to move in the

original plane of motion. One piece strikes the ground a hori-

zontal distance D further from the launch point than the point

directly below the explosion at a time t � v0 sin�/g after the

explosion. How high does the other piece go? Where does the

other piece land? Answer in terms of v0, �, D, and t.

**67. Figure 9.13a shows the positions of the three inner planets

(Mercury, Venus, Earth) on January 1, 2000. Measuring angles

off this figure and using the data on masses, orbital radii, and

periods given in Table 9.1, find the velocity of the center of

mass of this system of three planets.

10.4 Energy of  a  Sys tem of  Par t i c les

68. Two automobiles, each of mass 1500 kg, travel in the same

direction along a straight road. The speed of one automobile is

25 m/s, and the speed of the other automobile is 15 m/s. If we

regard these automobiles as a system of two particles, what is

the translational kinetic energy of the center of mass? What is

the total kinetic energy? 

69. Repeat the calculation of Problem 68 if the two automobiles

travel in opposite directions.

70. A projectile of 45 kg fired from a gun has a speed of 640 m/s.

The projectile explodes in flight, breaking apart into a frag-

ment of 32 kg and a fragment of 13 kg (we assume that no

mass is dispersed in the explosion). Both fragments move

along the original direction of motion. The speed of the first

fragment is 450 m/s and that of the second is 1050 m/s.

(a) Calculate the translational kinetic energy of the center of

mass motion before the explosion.

(b) Calculate the translational kinetic energy of the center of

mass motion after the explosion. Calculate the total

kinetic energy. Where does the extra kinetic energy come

from? 

71. Consider the automobile collision described in Problem 16.

What is the translational kinetic energy of the center of mass

motion before the collision? What is the total kinetic energy

before and after the collision?

72. Two isolated point masses m1 and m2 are connected by a

spring. The masses attain their maximum speeds at the same

instant. A short time later both masses are stationary. The

maximum speed of the first mass is v1. What is the maximum

speed of the second mass?  When the masses are stationary,

what is the energy stored in the spring?

73. The typical speed of a helium atom in helium gas at room

temperature is 1.4 km/s; that of an oxygen molecule (O2) in

oxygen gas is close to 500 m/s. Find the total kinetic energy of

one mole of helium atoms and that of one mole of oxygen

molecules.

*74. Two automobiles, each of mass M/2 and speed v, drive

around a one-lane traffic circle. What is the total kinetic

energy of the two-car system? What is the quantity Mv2
CM

if the automobiles are (a) on opposite sides of the traffic

circle, (b) one-quarter of the circle apart, and (c) locked

together?

*75. Consider the Sun and Jupiter to be a two-particle system,

orbiting around the center of mass. Find the ratio of the

kinetic energy of the Sun to that of Jupiter. (Use the data

inside the book cover.)

*76. The typical speed of the vibrational motion of the iron atoms

in a piece of iron at room temperature is 360 m/s. What is the

total kinetic energy of a 1.0-kg chunk of iron?

1
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77. A hunter on skates on a smooth sheet of ice shoots 10 bullets

at a target at the shore. Each bullet has a mass of 15 g and a

speed of 600 m/s. The hunter has a mass of 80 kg. What recoil

speed does he acquire?

78. Grain is being loaded into an almost full railroad car from an

overhead chute (see Fig. 10.37). If 500 kg per second falls

freely from a height of 4.0 m to the top of the car, what down-

ward push does the impact of the grain exert on the car?

              



79. A boy and a girl are engaged in a tug-of-war on smooth, fric-

tionless ice. The mass of the boy is 40 kg, and that of the girl is

30 kg; their separation is initially 4.0 m. Each pulls with a

force of 200 N on the rope. What is the acceleration of each?

If they keep pulling, where will they meet?

80. An automobile of 1200 kg and an automobile of 1500 kg are

traveling in the same direction on a straight road.The speeds of

the two automobiles are 60 km/h and 80 km/h, respectively.

What is the velocity of the center of mass of the two-automobile

system?

81. An automobile traveling 40 km/h collides head-on with a truck

which has 5 times the mass of the automobile.The wreck remains

at rest after the collision. Deduce the speed of the truck.

82. The nozzle of a fire hose ejects 800 liters of water per minute

at a speed of 26 m/s. Estimate the recoil force on the nozzle.

By yourself, can you hold this nozzle steady in your hands?

83. The distance between the centers of the atoms of potassium

and bromine in the potassium bromide (KBr) molecule is

0.282 nm (Fig. 10.38). Treating the atoms as particles, find

the center of mass.

336 CHAPTER 10 Systems of Particles

FIGURE 10.38 Atoms in a potassium bromide molecule.

FIGURE 10.39 Two square pieces of sheet metal joined along

one edge.

84. A tugboat of mass 400 metric tons and a ship of 28000 metric

tons are joined by a long towrope of 400 m. Both vessels are ini-

tially at rest in the water. If the tugboat reels in 200 m of towrope,

how far does the ship move relative to the water? The tugboat?

Ignore the resistance that the water offers to the motion.

85. A cat stands on a plank of balsa wood floating in water. The

mass of the cat is 3.5 kg, and the mass of the balsa is 5.0 kg. If

the cat walks 1.0 m along the plank, how far does she move in

relation to the water?

86. Three firefighters of equal masses are climbing a long ladder.

When the first firefighter is 20 m up the ladder, the second is

15 m up, and the third is 5 m up. Where is the center of mass

of the three firefighters?

87. Four identical books are arranged on the vertices of an equilat-

eral triangle of side 1.0 m. Two of the books are together at

one vertex of the triangle, and the other two are at the other

two vertices. Where is the center of mass of this arrangement?

88. Three identical metersticks are arranged to form the letter U.

Where is the center of mass of this system?

89. Two uniform squares of sheet metal of dimensions L � L are

joined at right angles along one edge (see Fig. 10.39). One of

the squares has twice the mass of the other. Find the center of

mass of the combined squares.

*90. Find the center of mass of a uniform solid hemisphere of

radius R.

FIGURE 10.37 Grain from a chute

falls into a railroad car.

4.0 m

y

x
m1 m2

0.282 nm
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Answers  to  Checkups

Checkup 10.1

1. We assume the usual case that the truck has a larger mass than

the automobile. Then the equality of their momenta (mv)

implies that the automobile has a larger speed (the ratio of the

velocities will be the inverse of the ratio of the masses). Since

the kinetic energy is and the momenta

(mv) are equal, then the vehicle with the larger speed, the

automobile, will also have the larger kinetic energy.

2. They cannot have the same momentum, since the signs of

their momenta will be opposite. They can have the same

kinetic energy, since that depends only on the speed:

.

3. No—the momentum, like the velocity, is also reversed, and it

has the opposite sign after the impact.

4. Yes—for practical purposes, the Solar System is essentially an

isolated system, and so the net momentum is constant. The

net kinetic energy is not constant, since during motion, kinetic

energy is converted to potential energy and vice versa.

5. (a) For any directions, the total kinetic energy is mv2 � mv2 �

mv2. For parallel motion (both southward), the total momen-

tum is mv � mv � 2mv southward. (b) The total kinetic energy

is again mv2, while for antiparallel motion, the total momentum

is mv�mv � 0 (no direction). (c) The total kinetic energy is

again mv2, while for perpendicular motion, the total momen-

tum has magnitude and is

directed 45� south of east.

6. (C) Automobile; truck. The truck has a larger mass M than the

automobile mass m. Let the truck speed be V and the automo-

bile speed be v. The equal kinetic energies 

then imply that the automobile will have the larger speed 

v � (M/m)1/2V. If we substitute one power of this v into the

kinetic energy equality and cancel a factor of , we find 

MV � (M/m)1/2mv ; thus, the truck momentum is larger.

Checkup 10.2

1. Consider the average position of the mass distribution. For the

curved snake shown in the figure, the center of mass is at a

point in the space below the top arc, perhaps slightly below

center (because of the two bottom arcs) and slightly to the

right of center (because of the head).

2. Consider the average position of the mass distribution. For the

horseshoe, the center of mass is below center in the space in

the middle of the arc, along the vertical line of symmetry, at a

point well away from the open end.

1
2V

(1
2 MV 2 � 1

2  mv2)

2(mv)2 � (mv)2 � 22mv

1
2

1
2

K � 1
2mv2

1
2mv2 � 1

2 � mv � v

3. No. The center of mass is a weighted average of position; such

an average can never be greater than all of the positions

averaged.

4. (C) Shifts upward. If the heavy mass at the bottom falls off,

the center of mass is higher. When the center of mass of the

sailboat is too high, it is top-heavy, and prone to tip over.

Checkup 10.3

1. For the (isolated) system of person plus canoe, with no initial

motion, the center of mass stays at the same fixed position as

you begin and continue your crawl. Thus as your mass moves

from the rear to the front, the boat moves backward a suffi-

cient distance to keep the center of mass of the combined

system fixed.

2. No. In the extreme case where the boxcar has zero mass, you

remain fixed relative to the ground, and the boxcar rolls a dis-

tance equal to its length as you walk from the rear to the front.

If the boxcar has appreciable mass, you will move toward your

common center of mass, which will be a distance less than the

length of the boxcar.

3 . If the marbles were dropped vertically, then the center of mass

remains fixed at the point of impact with the floor, even

though the marbles scatter in all directions.

4. (B) 5 m/s south. Using Eq. (10.37) with positive velocity

northward,

Checkup 10.4

1 . No. The initial kinetic energy is large, and the final kinetic

energy is small or zero; the energy is transformed into other

forms: elastic energy (deformation of automobile parts),

friction, sound, and heat.

2 . The total energy is conserved, if we consider only gravitational

potential energy and kinetic energy (in actuality, some other

energy is lost, for example, as the Sun’s light is radiated away

into space). Neither kinetic nor potential energy is separately

conserved; these two are traded back and forth, for example, as

the planets move in their elliptical orbits.

3 . (A) P only. Since there is no net external force, the total

momentum of such an isolated system is always simply con-

served. However, the spring will stretch and compress during

the motion, trading kinetic for potential energy, so K and U

will not remain constant.

� (�15 m/s)/3 � �5 m/s.

vCM � (M � 25 m/s � 2M � 20m/s) / (3M ) 
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C O N C E P T S  I N  C O N T E X T
In this crash test, the automobile was towed at a speed of 56 km/h (35 mi/h)

and then crashed into a rigid concrete barrier. Anthropomorphic dummies

that simulate human bodies are used for evaluation of injuries that would be sustained

by driver and passengers. Accelerometers installed on the body of the automobile and

the bodies of the dummies permit calculation of impact forces.

With the concepts of this chapter we can answer questions such as:

? What is the average force on the front of an automobile during impact?

(Example 1, page 341)

? What is force on the head of a dummy during a collision with the windshield or the

steering wheel? (Example 2, page 341)

? How do seat belts and air bags protect occupants of an automobile in a crash?

(Physics in Practice: Automobile Collisions, page 343)

? How does the stiffness of the front end of an automobile affect the safety of its

occupants in a collision? (Checkup 11.1, question 1, page 344)

Collisions11

11.1 Impulsive Forces

11.2 Elastic Collisions in One
Dimension

11.3 Inelastic Collisions in One
Dimension

11.4 Collisions in Two and Three
Dimensions

C H A P T E R

338
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11.1 Impulsive Forces 339

? In a two-car collision, how are the initial velocities related to the final direction

of motion? (Example 7, page 351)

The collision between two bodies—an automobile and a solid wall, a ship and an ice-

berg, a molecule of oxygen and a molecule of nitrogen—involves a violent change of

the motion, a change brought about by very strong forces that begin to act suddenly

when the bodies come into contact, last a short time, and then cease just as suddenly

when the bodies separate. The forces that act during a collision are usually rather com-

plicated, so their complete theoretical description is impossible (e.g., in an automobile col-

lision) or at least very difficult (e.g., in a collision between subatomic particles). However,

even without exact knowledge of the details of the forces, we can make some predictions

about the collision by taking advantage of the general laws of conservation of momen-

tum and energy we studied in the preceding chapters. In the following sections we will

see what constraints these laws impose on the motion of the colliding bodies.

The study of collisions is an important tool in engineering and physics. In auto-

mobile collision and safety studies, engineers routinely subject vehicles to crash tests.

Collisions are also essential for the experimental investigation of atoms, nuclei, and

elementary particles. All subatomic bodies are too small to be made visible with any

kind of microscope. Just as you might use a stick to feel your way around a dark cave,

a physicist who cannot see the interior of an atom uses probes to “feel” for subatomic

structures. The probe used by physicists in the exploration of subatomic structures is

simply a stream of fast-moving particles—electrons, protons, alpha particles (helium

nuclei), or others. These projectiles are aimed at a target containing a sample of the

atoms, nuclei, or elementary particles under investigation. From the manner in which

the projectiles collide and react with the target, physicists can deduce some of the prop-

erties of the subatomic structures in the target. Similarly, materials scientists, chemists,

and engineers deduce the structure and composition of solids and liquids by bom-

barding such materials with particles and examining the results of such collisions.

11.1 IMPULSIVE FORCES

The force that two colliding bodies exert on one another acts for only a short time,

giving a brief but strong push. Such a force that acts for only a short time is called an

impulsive force. During the collision, the impulsive force is much stronger than any other

forces that may be present; consequently the impulsive force produces a large change in

the motion while the other forces produce only small and insignificant changes. For

instance, during the automobile collision shown in Fig. 11.1, the only important force

on the automobile is the push of the wall on its front end; the effects produced by grav-

ity and by the friction force of the road during the collision are insignificant.

Suppose the collision lasts some short time �t, say, from t � 0 to t � �t, and that

during this time an impulsive force F acts on one of the colliding bodies. This force is

zero before t � 0 and it is zero after t � �t, but it is large between these times. For

example, Fig. 11.2 shows a plot of the force experienced by an automobile in a collision

with a solid wall lasting 0.120 s.The force is zero before t � 0 and after t � 0.120 s, and

varies in a complicated way between these times.

The impulse delivered by such a force to the body is defined as the integral of the force

over time:

13
Online

Concept
Tutorial

impulseI � �
¢t

0

F dt (11.1)
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According to this equation, the x component of the impulse for the force plotted in Fig.

11.2 is the area between the curve Fx(t) and the t axis.

The SI units of impulse are N�s, or kg�m�s; these units are the same as those for

momentum.

By means of the equation of motion, F � dp�dt, we can transform Eq. (11.1) into

(11.2)

where p is the momentum of the body before the collision (at time 0) and p� is the

momentum after the collision (at time t � �t). Thus, the impulse of a force is simply

equal to the momentum change produced by this force. This equality of impulse and

momentum change is sometimes referred to as the impulse–momentum relation. However,

since the force acting during a collision is usually not known in detail, Eq. (11.2) is

not very helpful for calculating momentum changes. It is often best to apply Eq. (11.2)

in reverse, for calculating the time-average force from the known momentum change.

This time-average force is defined by

(11.3)

In a plot of force vs. time, such as shown in Fig. 11.2, the time-average force simply

represents the mean height of the function above the t axis; this mean height is shown

F �
1

¢t �
¢t

0
 

F dt

I ��
¢t

0

F dt ��
¢t

0

 
dp

dt
 dt ��dp � p�� p
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FIGURE 11.2 Force on the automobile as a function of time during the impact

shown in Fig. 11.1. The colored horizontal line indicates the time-average force.

(Calculated from data supplied by Mercedes–Benz of North America, Inc.)

0

Fx

t

N

–2�105

–4�105

–6�105

20

-
e

time-average
force

40 60 80 100 120�10–3 s

Force varies as the 
front end of the
automobile crumples.

Force is zero 
after 0.120 s.

FIGURE 11.1 Crash test of a Mercedes–Benz automobile.

The photographs show an impact at 49 km�h into a rigid barrier.

The first photograph was taken 5 � 10�3 s after the initial contact;

the others were taken at intervals of 20 � 10�3 s. The automobile

remains in contact with the barrier for 0.120 s; it then recoils from

the barrier with a speed of 4.7 km�h. The checkered bar on the

ground has a length of 2 m.
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average force in collision

by the red horizontal line in Fig. 11.2. According to Eq. (11.2), we can write the time-

average force as

(11.4)

This relation gives a quick estimate of the average magnitude of the impulsive force

acting on the body if the duration of the collision and the momentum change are known.

The collision between the automobile and the barrier shown in

Fig. 11.1 lasts 0.120 s. The mass of the automobile is 1700 kg,

and the initial and final velocities in the horizontal direction are vx � 13.6 m�s and

v�x � �1.3 m�s, respectively (the final velocity is negative because the automobile

recoils, or bounces back from the barrier). From these data, evaluate the average force

that acts on the automobile during the collision. Evaluate the average force that

acts on the barrier.

SOLUTION: With the x axis along the direction of the initial motion, the change

of momentum is

p�x � px � mv�x�mvx

� 1700 kg � (�1.3 m�s) � 1700 kg � 13.6 m�s

� �2.53 � 104 kg�m�s

According to Eq. (11.4), the average force is then

(11.5)

Since the mutual forces on two bodies engaged in a collision are an action–reaction

pair, the forces on the automobile and on the barrier are of equal magnitudes and of

opposite directions. Thus, the average force on the barrier is Fx � 	2.11 � 105 N.

This is quite a large force—it equals the weight of about 2 � 104 kg, or 20 tons.

When an automobile collides with an obstacle and suddenly

stops, a passenger not restrained by a seat belt will not stop

simultaneously with the automobile, but instead will continue traveling at nearly

constant speed until he or she hits the dashboard and the windshield.The collision

of the passenger’s head with the windshield often results in severe or fatal injuries.

In crash tests, dummies with masses, shapes, and joints simulating human bodies

are used to determine likely injuries. Consider a dummy  head striking a wind-

shield at 15 m�s (54 km�h) and stopping in a time of 0.015 s (this time is consid-

erably shorter than the time of about 0.12 s for stopping the automobile because

the front end of the automobile crumples gradually and cushions the collision to

some extent; there is no such cushioning for the head striking the windshield).

What is the average force on the head during impact on the windshield? What is

the average deceleration? Treat the head as a body of mass 5.0 kg, moving inde-

pendently of the neck and trunk.

EXAMPLE 2

 �
�2.53 � 104  kg�m �s

0.120 s
� �2.11 � 105 N

Fx �
p �x    

�
  

px

¢t

EXAMPLE 1

F �
1

¢t
 I �

1

¢t
 (p�� p)
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SOLUTION: The initial momentum of the head is

px �mvx �5.0 kg � 15 m�s �75 kg�m �s

When the head stops, the final momentum is zero. Hence the average force is

The average acceleration is

which is about 100 standard g’s!

Often it is not possible to calculate the motion of the colliding bodies by direct

solution of Newton’s equation of motion because the impulsive forces that act during

the collision are not known in sufficient detail. We must then glean whatever information

we can from the general laws of conservation of momentum and energy, which do not

depend on the details of these forces. In some simple instances, these general laws

permit the deduction of the motion after the collision from what is known about the

motion before the collision.

In all collisions between two or more particles, the total momentum of the system is con-

served. Whether or not the mechanical energy is conserved depends on the character

of the forces that act between the particles. A collision in which the total kinetic energy

before and after the collision is the same is called elastic. (This usage of the word elastic is

consistent with the usage we encountered previously when discussing the restoring

force of a deformable body in Section 6.2. For example, if the colliding bodies exert a

force on each other by means of a massless elastic spring placed between them, then

the kinetic energy before and after the collision will indeed be the same—that is, the

collision will be elastic.) Collisions between macroscopic bodies are usually not elas-

tic—during the collision some of the kinetic energy is transformed into heat by the

internal friction forces and some is used up in doing work to change the internal con-

figuration of the bodies. For example, the automobile collision shown in Fig. 11.1 is

highly inelastic; almost the entire initial kinetic energy is used up in doing work on

the automobile parts, changing their shape. On the other hand, the collision of a “Super

Ball” and a hard wall or the collision of two billiard balls comes pretty close to being

elastic—that is, the kinetic energies before and after the collision are almost the same.

Collisions between “elementary” particles—such as electrons, protons, and

neutrons—are often elastic.These particles have no internal friction forces which could

dissipate kinetic energy. A collision between such particles can be inelastic only if it

involves the creation of new particles; such new particles may arise either by conver-

sion of some of the available kinetic energy into mass or else by transmutation of the

old particles by means of a change of their internal structure.

A Super Ball, made of a rubberlike plastic, is thrown against a

hard, smooth wall.The ball strikes the wall from a perpendicular

direction with speed v. Assuming that the collision is elastic, find the speed of the

ball after the collision.

EXAMPLE 3

ax �
Fx

m
� �

5.0 � 103  N

5.0 kg
� �1.0 � 103 m �s2

� �
75 kg� m �s

0.015 s
� �5.0 � 103 N

Fx �
p�x � px

¢t
� �

px

¢t
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11.1 Impulsive Forces 343

PHYSICS IN PRACTICE AUTOMOBILE COLLISIONS

We can fully appreciate the effects of the second-

ary impact on the human body if we compare the

impact speeds of a human body on the dashboard

or the windshield with the speed attained by a

body in free fall from some height.The impact of the head on

the windshield at 15 m �s is equivalent to falling four floors

down from an apartment building and landing headfirst on a

hard surface. Our intuition tells us that this is likely to be fatal.

Since our intuition about the dangers of heights is much better

than our intuition about the dangers of speeds, it is often

instructive to compare impact speeds with equivalent heights

of fall. The table lists impact speeds and equivalent heights,

expressed as the number of floors the body has to fall down to

acquire the same speed.

The number of fatalities in automobile collisions has been

reduced by the use of air bags.The air bag helps by cushioning

the impact over a longer time, reducing the time-average force.

To be effective, the air bag must inflate quickly, before the pas-

senger reaches it, typically in about 10 milliseconds. Because of

this, a passenger, especially a child, too near an air bag prior to

inflation can be injured or killed by the impulse from the infla-

tion. But for a properly seated adult passenger, the inflated air

bag cushions the passenger, reducing the severity of injuries.

However, the impact can still be fatal—you wouldn’t expect to

survive a jump from an 11-floor building onto an air mattress.

For maximum protection, a seat belt should always be worn

even in vehicles equipped with air bags. In lateral collisions, in

repeated collisions (such as in car pileups), and in rollovers, an

air bag is of little help, and a seat belt is essential. The effec-

tiveness of seat belts is well demonstrated by the experiences of

race car drivers. Race car drivers wear lap belts and crossed

shoulder belts. Even in spectacular crashes at very high speeds

(see the figure), the drivers rarely suffer severe injuries.

COMPARISON OF IMPACT SPEEDS AND 
HEIGHTS OF FALL

EQUIVALENT HEIGHT
SPEED SPEED (NUMBER OF FLOORS)a

15 km �h 9 mi�h

30 19 1

45 28 3

60 37 5

75 47 8

90 56 11

105 65 15

aEach floor is 2.9 m.

1
3

SOLUTION: The only horizontal force on the ball is the normal force exerted

by the wall; this force reverses the motion of the ball (see Fig. 11.3). Since the wall

is very massive, the reaction force of the ball on the wall will not give the wall any

appreciable velocity. Hence the kinetic energy of the system, both before and

after the collision, is merely the kinetic energy of the ball. Conservation of this

In a race at the California Speedway in October 2000, a car flips

over and breaks in half after a crash, but the driver, Luis Diaz, walks

away from the wreck.
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kinetic energy then requires that the ball rebound with a speed v equal to the

incident speed.

Note that although the kinetic energy of the ball is the same before and after the

collision, the momentum is not the same before and after (see also Example 1 of

Chapter 10). If the x axis is in the direction of the initial motion, then the momen-

tum of the ball before the collision is px � mv, and after the collision it is 

p�x � �mv. Hence the change of momentum is p�x � px � �2mv. The wall suffers

an equal and opposite momentum change of 	2mv, so that the total momentum

of the system is conserved.The wall can acquire the momentum 2mv without acquir-

ing any appreciable velocity because its mass is large and it is attached to a build-

ing of even larger mass.

Checkup 11.1

QUESTION 1: In order to protect the occupants of an automobile in a collision, is it

better to make the front end of the automobile very hard (a solid block of steel) or

fairly soft and crushable?

QUESTION 2: If a golf ball and a steel ball of the same mass strike a concrete floor with

equal speeds, which will exert the larger average force on the floor?

QUESTION 3: You drop a Super Ball on a hard, smooth floor from a height of 1 m. If

the collision is elastic, how high will the ball bounce up?

QUESTION 4: A child throws a wad of chewing gum against a wall, and it sticks. Is

this an elastic collision?

QUESTION 5: A 3000-kg truck collides with a 1000-kg car. During this collision the

average force exerted by the truck on the car is 3 � 106 N in an eastward direction.

What is the magnitude of the average force exerted by the car on the truck?

(A) 0 (B) 1 � 106 N (C) 3 � 106 N (D) 9 � 106 N

11.2 ELAST IC COLL IS IONS 
IN ONE DIMENSION

The collision of two boxcars on a railroad track is an example of a collision on a straight

line. More generally, the collision of any two bodies that approach head-on and recoil

along their original line of motion is a collision along a straight line. Such collisions will

occur only under exceptional circumstances; nevertheless, we find it instructive to study

such collisons because they display in a simple way some of the broad features of more

complicated collisions.

In an elastic collision of two particles moving along a straight line, the laws of conservation

of momentum and energy completely determine the final velocities in terms of the initial

velocities. In the following calculations, we will assume that one particle (the “projec-

tile”) is initially in motion and the other (the “target”) is initially at rest.

Figure 11.4a shows the particles before the collision, and Fig. 11.4b shows them

after; the x axis is along the direction of motion. We will designate the x components

of the velocity of particle 1 and particle 2 before the collision by v1 and v2, respectively.

We will designate the x components of these velocities after the collision by v�1 and v�2.

✔

344 CHAPTER 11 Collisions

FIGURE 11.3 The initial momentum px

of the ball is positive; the final momentum

p'x is negative.
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For an elastic collision,
both px and p'x have the
same magnitude.
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FIGURE 11.4 (a) Before the collision,

particle 2 is at rest, and particle 1 has veloc-

ity v1. (b) After the collision, particle 1 has

velocity v'1, and particle 2 has velocity v'2.

Particle 2 is the target, initially at rest, so v2 � 0. Particle 1 is the projectile. The

initial momentum is therefore simply the momentum m1v1 of particle 1. The final

momentum, after the collision, is m1v�1 	 m2v�2. Conservation of momentum then tells

us that

m1v1 � m1v�1 	 m2v�2 (11.6)

The initial kinetic energy is m1v2
1, and the final kinetic energy is .

Since this collision is elastic, conservation of kinetic energy1 tell us that

(11.7)

In these equations, we can regard the initial velocities v1 and v2 as known, and the

final velocities v�1 and v�2 as unknown. We therefore want to solve these equations for

the unknown quantities. For this purpose, it is convenient to rearrange the two equa-

tions somewhat. If we subtract m1v�1 from both sides of Eq. (11.6), we obtain

(11.8)

If we multiply both sides of Eq. (11.7) by 2 and subtract m1v�1
2 from both sides, we

obtain

(11.9)

With the identity v1
2 � v�1

2 � (v1 � v�1) (v1 	 v�1), this becomes 

(11.10)

Now divide Eq. (11.10) by Eq. (11.8)—that is, divide the left side of Eq. (11.10) by the

left side of Eq. (11.8) and the right side of Eq. (11.10) by the right side of Eq. (11.8).

The result is 

v1 	 v�1 � v�2 (11.11)

This trick gets rid of the bothersome squares in Eq. (11.7) and leaves us with two

equations—Eqs. (11.8) and (11.11)—without squares. To complete the solution for

our unknowns, we take the value v�2 � v1 	 v�1 given by Eq. (11.11) and substitute it

into the right side of Eq. (11.8):

m1(v1 � v�1) � m2(v1 	 v�1) (11.12)

We can solve this immediately for the unknown v�1, with the result

(11.13)

Finally, we substitute this value of v�1 into the expression from Eq. (11.11),

v�2 � v1 	 v�1, and we find

v�2 � v1 	
m1 � m2

m1 	 m2

 v1 �
(m1 	 m2)v1 	 (m1 � m2)v1

m1 	 m2

 

v�1 �
m1 � m2

m1 	 m2

 v1

m1(v1 � v�1) (v1 	 v�1) � m2v�2
2

m1(v
2
1 � v�2

1 ) � m2v�2
2

m1(v1 � v�1) � m2v�2

1
2 m1v2

1 � 1
2 m1v�1

2 	 1
2 m2v�2

2

1
2 m1v�1

2 	 1
2 m2v�2

2
1
2

1 In the context of elastic collisions, “conservation of kinetic energy” is taken to mean that the kinetic energy

is the same before and after the collision; duing the collision, when the particles are interacting, what is con-

served is not the kinetic energy itself, but the sum of kinetic and potential energies.

m1 m2

x

x

v1

m1 m2

v'1 v'2

(a)

(b)

Particle 1 is the
moving projectile. Particle 2 is a

stationary target.

Target moves in
+x direction.

final projectile velocity in 
elastic collision

              



FIGURE 11.5 (a) Initially, boxcar 1 is moving toward the right, and boxcar 2 is stationary.

(b) After the collision, boxcar 1 is moving toward the left, and boxcar 2 is moving toward

the right.

or

(11.14)

Equations (11.13) and (11.14) give us the final velocities v�1 and v�2 in terms of the

initial velocity v1.

An empty boxcar of mass m1 � 20 metric tons rolling on a

straight track at 5.0 m�s collides with a loaded stationary boxcar

of mass m2 � 65 metric tons (see Fig. 11.5). Assuming that the cars bounce off

each other elastically, find the velocities after the collision.

SOLUTION: With m1 � 20 tons and m2 � 65 tons, Eqs. (11.13) and (11.14) yield 

Thus, boxcar 2 acquires a speed of 2.4 m�s, and boxcar 1 recoils with a speed of

2.6 m�s (note the negative sign of v�1).

v�2 �
2 � 20 tons

20 tons 	 65 tons
� 5.0 m�s �  2.4 m�s

v�1 �
20 tons � 65 tons

20 tons 	 65 tons
� 5.0 m �s � �2.6 m �s

EXAMPLE 4

v�2 �
2m1

m1 	 m2

 v1
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final target velocity in elastic collision

(b)

x

v'1 v'2

21

(a)

x

v1

1 2

Here, boxcar 1
recoils backward.

Boxcar 1 is
moving “projectile.”

Boxcar 2 is
stationary “target.”

Note that if the mass of the target is much larger than the mass of the projectile,

then m1 can be neglected compared with m2. Equation (11.13) then becomes

(11.15)v�1 � �
m2

m2

  v1 � �v1

              



and Eq. (11.14) becomes

(11.16)

This means the projectile bounces off the target with a reversed velocity and the target

remains nearly stationary (as in the case of the Super Ball bouncing off the wall; see

Example 3).

Conversely, if the mass of the projectile is much larger than the mass of the target,

then m2 can be neglected compared with m1, and Eqs. (11.13) and (11.14) become

(11.17)

and

(11.18)

This means that the projectile plows along with unchanged velocity and the target

bounces off with twice the speed of the incident projectile. For example, when a (heavy)

golf club strikes a golf ball, the ball bounces away at twice the speed of the club 

(see Fig. 11.6).

Also, if the two masses are equal, Eqs. (11.13) and (11.14) give 

v�1 � 0 and v�2 � v1

Thus, the projectile stops and the target moves off with the projectile’s initial speed.

This is common in a head-on collision in billiards, and is also realized in certain pen-

dulum toys (see Discussion Question 9 at the end of the chapter).

Finally, if both particles involved in a one-dimensional elastic collision are initially

moving (v1 
 0 and v2 
 0), conservation of the total momentum and the total kinetic

energy can again be applied to uniquely determine the final velocities. The results are

more complicated, but they are obtained in the same manner as in the stationary target

case above.

Checkup 11.2

In the following questions assume that a projectile traveling in the direction of the

positive x axis strikes a stationary target head-on and the collision is elastic.

QUESTION 1: Under what conditions will the velocity of the projectile be positive after

the collision? Negative?

QUESTION 2: Can the speed of recoil of the target ever exceed twice the speed of the

incident projectile?

QUESTION 3: For an elastic collision, the kinetic energies before and after the collision

are the same. Is the kinetic energy during the collision also the same?

QUESTION 4: A marble with velocity v1 strikes a stationary, identical marble elasti-

cally and head-on. The final velocities of the shot and struck marbles are, respectively:

(A)  v1; v1 (B) v1; 2v1 (C) �v1; 0

(D) �v1; 2v1 (E) 0; v1

1
2

1
2

✔

v�2 �
2m1

m1

 v1 � 2v1

v�1 �
m1

m1

  v1 � v1

v�2 �
2m1

m2

  v1 � 0
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FIGURE 11.6 Impact of club on golf ball.

By inspection of this multiple-exposure

photograph, we see that the speed of the ball

is larger than the initial speed of the club.

Exposures are at 
equal time intervals.

When struck by a larger
mass, the smaller mass
moves off at higher speed.

              



11.3 INELAST IC COLL IS IONS 
IN ONE DIMENSION

If the collision is inelastic, kinetic energy is not conserved, and then the only conser-

vation law that is applicable is the conservation of momentum.This, by itself, is insuf-

ficient to calculate the velocities of both particles after the collision. Thus, for most

inelastic collisions, one of the final velocities must be measured in order for momen-

tum conservation to provide the other. Alternatively, we must have some independent

knowledge of the amount of kinetic energy lost. However, if the collision is totally

inelastic, so a maximum amount of kinetic energy is lost, then the common velocity of both

particles after the collision can be calculated.

In a totally inelastic collision, the particles do not bounce off each other at all; instead,

the particles stick together, like two automobiles that form a single mass of interlocking

wreckage after a collision, or two railroad boxcars that couple together. Under these

conditions, the velocities of both particles must coincide with the velocity of the center

of mass. But the velocity of the center of mass after the collision is the same as the

velocity of the center of mass before the collision, because there are no external forces

and the acceleration of the center of mass is zero [see Eq. (10.40)]. We again consider

a stationary target, so that before the collision the velocity of the target particle is zero

(v2 � 0) and the general equation [Eq. (10.37)] for the velocity of the center of mass

yields 

(11.19)

This must then be the final velocity of both particles after a totally inelastic collision:

(11.20)

We have already come across an instance of this formula in Example 3 of Chapter 10.

Suppose that the two boxcars of Example 4 couple during the

collision and remain locked together (see Fig. 11.7). What is

the velocity of the combination after the collision? How much kinetic energy is

dissipated during the collision?

SOLUTION: Since the boxcars remain locked together, this is a totally inelastic

collision. With m1 � 20 tons, m2 � 65 tons, and v1 � 5.0 m�s, Eq. (11.19) gives us

the velocity of the center of mass:

and this must be the velocity of the coupled cars after the collision.

The kinetic energy before the collision is that of the moving boxcar,

and the kinetic energy after the collision is that of the two coupled boxcars,

1
2m1v2

1 � 1
2 � 20 000 kg � (5.0 m �s)2 � 2.5 � 105 J

vCM �
m1v1

m1 	 m2

�
20 tons � 5.0 m �s

20 tons 	 65 tons
� 1.2 m �s

EXAMPLE 5

v'1 � v'2 � vCM �
m1v1

m1 	 m2

vCM �
m1v1

m1 	 m2
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totally inelastic collision

final velocities in totally inelastic 
collision with stationary target

13
Online

Concept
Tutorial

14
Online

Concept
Tutorial
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Thus, the loss of kinetic energy is

(11.21)

This energy is absorbed by friction in the bumpers during the coupling of the

boxcars.

 

Figure 11.8a shows a ballistic pendulum, a device once com-

monly used to measure the speeds of bullets. The pendulum

consists of a large block of wood of mass m2 suspended from thin wires. Initially,

the pendulum is at rest. The bullet, of mass m1, strikes the block horizontally and

remains stuck in it. The impact of the bullet puts the block in motion, causing it

to swing upward to a height h (see Fig. 11.8b), where it momentarily stops. In a test

of a Springfield rifle firing a bullet of 9.7 g, a ballistic pendulum of 4.0 kg swings

up to a height of 19 cm. What was the speed of the bullet before impact?

SOLUTION: The collision of the bullet with the wood is totally inelastic. Hence,

immediately after the collision, bullet and block move horizontally with the veloc-

ity of the center of mass:

(11.22) vCM �
m1v1

m1 	 m2

EXAMPLE 6

2.5 � 105 J � 0.61 � 105 J � 1.9 � 105 J

� 1
2(20 000 kg 	 65 000 kg) � (1.2 m �s)2 � 0.61 � 105 J

1
2 m1v2

CM 	 1
2 m2v2

CM � 1
2 (m1 	 m2)v

2
CM
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FIGURE 11.7 (a) Initially, boxcar 1 is moving toward the right, and boxcar 2 is stationary,

as in Fig. 11.5. (b) After the collision, the boxcars remain locked together. Their common

velocity must be the velocity of the center of mass.

(b)

x

vCM

21

(a)

x

v1

1 2

In a totally inelastic 
collision, target and 
projectile lock together.

Boxcar 1 is
moving “projectile.”

Boxcar 2 is
stationary “target.”

              



After the collision is over, during the subsequent swinging motion of the pendu-

lum, the total mechanical energy (kinetic plus potential) is conserved. At the bottom

of the swing, the energy is kinetic, (m1 	 m2)v
2
CM; and at the top of the swing at

height h, it is potential, (m1 	 m2)gh. Hence, conservation of the total mechanical

energy tells us that

(11.23)

If we divide this by (m1 	 m2) and take the square root of both sides, we find

(11.24)

Substitution of this into Eq. (11.22) yields

(11.25)

which we can solve for v1, with the result

(11.26)

COMMENT: Note that during the collision, momentum is conserved but not

kinetic energy (the collision is totally inelastic); and that during the swinging

motion, the total mechanical energy is conserved, but not momentum 

(the swinging motion proceeds under the influence of the “external” forces of gravity

and the tensions in the wires).

Checkup 11.3

QUESTION 1: In a totally inelastic collision, do both particles lose kinetic energy?

QUESTION 2: Consider a collision between two particles of equal masses and of opposite

velocities. What is the velocity after this collision if the collision is totally inelastic? If

the collision is elastic?

QUESTION 3: Under what conditions is the velocity of the particles after a totally

inelastic collision equal to one-half the velocity of the incident projectile? (Assume a

stationary target.)

QUESTION 4: Does the length of the suspension wires affect the operation of the bal-

listic pendulum described in Example 6?

QUESTION 5: A particle is traveling in the positive x direction with speed v. A second

particle with one-half the mass of the first is traveling in the opposite direction with the

same speed. The two experience a totally inelastic collision. The final x component of

the velocity is:

(A) 0 (B) v (C) v (D) v (F) v2
3

1
2

1
3

✔

� 800 m �s

�
0.0097 kg 	 4.0 kg

0.0097 kg
 22 � 9.81 m �s2 � 0.19 m

v1 �
m1 	 m2

m1

   22gh

22gh �
m1v1

m1 	 m2

vCM � 22gh

1
2(m1 	 m2)v

2
CM � (m1 	 m2)gh

1
2
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FIGURE 11.8 (a) Before the bullet strikes,

the block of wood is at rest. (b) After the

bullet strikes, the block, with the embedded

bullet, moves toward the right and swings

upward to a height h.

(a)

(b)

m2

h

m1

Momentum is conserved
as bullet becomes stuck
in block.

Mechanical energy is
conserved as block
swings upward.

              



11.4 COLL IS IONS IN TWO 
AND THREE DIMENSIONS

In the previous sections, we have focused on collisions on a straight line, in one dimen-

sion. Collisions in two or three dimensions are more difficult to analyze, because the

conservation laws for momentum and energy do not provide sufficient information to

determine the final velocities completely in terms of the initial velocities. Momentum

is always conserved during a collision, and this conservation provides one equation for

each of the x, y, and z directions. If it is known that the collision is totally elastic, then

conservation of the total kinetic energy provides another equation. However, these are

not enough to determine the three final velocity components for each and every particle.

Some information concerning the final velocities must also be known or measured.

The case of totally inelastic collisions is an exception: in this case, the conserva-

tion of momentum determines the outcome completely, even in two or three dimen-

sions. The particles stick together, and their final velocities coincide with the velocity

of the center of mass, as illustrated by the following example. The subsequent exam-

ple explores a case where the solution exploits some knowledge of the final velocities.

A red automobile of mass 1100 kg and a green automobile of

mass 1300 kg collide at an intersection. Just before this collision,

the red automobile was traveling due east at 34 m �s, and the green automobile was

traveling due north at 15 m �s (see Fig. 11.9). After the collision, the wrecked auto-

mobiles remain joined together, and they skid on the pavement with locked wheels.

What is the direction of the skid?

SOLUTION: The final velocity of the wreck coincides with the final velocity of

the center of mass, which is the same as the initial velocity of the center of mass.

According to Eq. (10.37), this velocity is

(11.27)

With the x axis eastward and the y axis northward, the initial velocity v1 of the red

automobile has an x component but no y component, and the initial velocity v2 of

the green automobile has a y component but no x component. Hence the x com-

ponent of vCM is

and the y component of vCM is

The angle between the direction of this velocity and the x axis is 

given by 

from which 

Since the x axis is eastward, this is 27� north of east.

u � 27�

tanu �
vCM, y

vCM, x

�
8.1 m �s

16 m �s
� 0.51

vCM, y �
m2v2

m1 	 m2

�
1300 kg � 15 m �s

1100 kg 	 1300 kg
� 8.1 m �s

vCM,x �
m1v1

m1 	 m2

�
1100 kg � 34 m �s

1100 kg 	 1300 kg
� 16 m �s

vCM �
m1v1 	 m2v2

m1 	 m2

EXAMPLE 7
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Concepts
in

Context

v1

y

x

v2

vCM

O

q

Before collision,
vehicle velocities
are perpendicular.

Wrecked vehicles lock
together and move off
at this angle q.

FIGURE 11.9 An automobile collision.

Before the collision, the velocities of the

automobiles were v1 and v2. After the colli-

sion, both velocities are vCM.

final velocity in totally 
inelastic collision

              



In an atomic collision experiment, or “scattering” experiment,

a helium ion of mass m1 � 4.0 u with speed v1 � 1200 m�s

strikes an oxygen (O2) molecule of mass m2 � 32 u which is initially at rest (see

Fig. 11.10a). The helium ion exits the collision at 90� from its incident direction

with one-fourth of its original kinetic energy. What is the recoil speed of the oxygen

molecule? What fraction of the total kinetic energy is lost during the collision?

[This energy is lost to the internal (vibrational and rotational) motions of the

oxygen molecule.]

SOLUTION: In the absence of external forces, momentum is always conserved. If

we choose the direction of incident motion along the x axis, then for 90� scatter-

ing, we can choose the direction in which the helium ion exits (the direction of v'1)

to be along the y axis (see Fig. 11.10b). Conservation of momentum in the two

directions then requires 

for x direction: m1v1 � m2v'2x

for y direction: 0 � m1v'1 	 m2v'2y

Since the helium ion exits with one-fourth of its initial kinetic energy,

or 

Substituting this v'1 and the given m2 � 8m1 into the x and y components of the

momentum gives for the velocity of the oxygen molecule:

The speed of recoil of the oxygen molecule is thus

v'2 � 2v' 2
2x 	 v' 2

2y � 2(150 m �s)2 	 (�75 m �s)2 � 170 m �s

v'2y � �
m1

m2

v'1 � �
1

8
�

1

2
v1 � �

1

16
� 1200 m/s � �75 m/s

v'2x �
m1

m2

v1 �
1

8
 v1 �

1

8
� 1200 m �s � 150 m �s

v'1 � 1
2v1

1
2 m1v' 2

1 � 1
4 � 1

2 m1v2
1

EXAMPLE 8
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(a) (b)

x

y

x
v1

v'2 

v'1

v'2 x

v'2 y

OOHe+

Helium ion
exits at 90°.

Helium ion is
a projectile. Oxygen molecule is

a stationary target.

To conserve momentum,
velocity of the oxygen
molecule must have +x
and –y components.

FIGURE 11.10 (a) A helium ion with velocity v1 � v1x i is moving toward a stationary oxygen molecule.

(b) After the collision, the helium ion exits perpendicular to its incident direction with velocity v'1, while the oxygen

molecule acquires a velocity v'2 � v'2x i 	 v'2y j.

              



The fraction of kinetic energy lost is the amount of kinetic energy lost divided by

the original kinetic energy:

� 0.59

Thus, about 59% of the helium ion’s initial kinetic energy is lost to internal

motions of the oxygen molecule during the collision.

Checkup 11.4

QUESTION 1: A car traveling south collides with and becomes entangled with a car

of the same mass and speed heading west. In what direction does the wreckage emerge

from the collision?

QUESTION 2: An object at rest explodes into three pieces; one travels due west and

another due north. In which quadrant of directions does the third piece travel?

(A) Northeast (B) Southeast (C) Southwest (D) Northwest

✔

� 1 �
1

4
�

m2

m1

 
v' 2

2

v2
1

�
3

4
�

32

4.0
�

(170 m �s)2

(1200 m �s)2

[fraction lost] �
K � K'

K
�

1
2m1v2

1 � a 1
4 � 1

2m1v2
1 	 1

2m2v' 2
2 b

1
2m1v2

1
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PROBLEM-SOLVING TECHNIQUES
CONSERVATION OF ENERGY AND
MOMENTUM IN COLLISIONS

For solving problems involving collisions, it is essential to know what conservation laws are applicable. The following table

summarizes the conservation laws applicable for different collisions:

TYPE OF CONSERVATION CONSERVATION

COLLISION OF KINETIC ENERGY OF MOMENTUM COMMENTS

Elastic Yes Yes For a one-dimensional collision, energy and momentum
conservation determine the final velocities in terms of the initial
velocities. For a 2- or 3-dimensional collision, there is not enough
information in the initial velocities alone to determine the final
velocities uniquely.

Totally No Yes The two colliding bodies stick together, and momentum conservation
inelastic determines the final velocities (in 1, 2, and 3 dimensions).

Inelastic No Yes If the collision is not totally inelastic, there is not enough
information in the initial velocities alone to determine the final
velocities. Some information about the energy loss and final
velocities must also be known.

              



354 CHAPTER 11 Collisions

(11.1)

(11.4)

(11.6)

(11.7)

 v'1 �
m1 � m2

m1 	 m2

v1    

 v1 
 0,  v2 � 0

PHYSICS IN PRACTICE Automobile Collisions (page 343)

x

vCM

21

x

v1

1 2

Before:

After: (11.27)v'1 � v'2 � vCM �
m1v1 	 m2v2

m1 	 m2

v1 and v2

VELOCITIES IN TOTALLY INELASTIC COLLISION
(1, 2, or 3 dimensions).

SUMMARY 

     v'2 �
2m1

m1 	 m2

v1

x

v'1 v'2

21

x

v1

1 2

Before:

After: (11.13)

(11.14)

PROBLEM-SOLVING TECHNIQUES (page 353)

Conservation of Energy and Momentum in Collisions

IMPULSE

AVERAGE FORCE IN COLLISION

ALL COLLISIONS
The total momentum is conserved.

ELASTIC COLLISION
The total kinetic energy is conserved.

INELASTIC COLLISION
Kinetic energy is not conserved.

TOTALLY INELASTIC COLLISION
The colliding particles stick together.

VELOCITIES IN ONE-DIMENSIONAL ELASTIC
COLLISION WITH STATIONARY TARGET

F �
p� � p

¢t

m1v1 	 m2v2 	 � � � � m1v'1 	 m2v'2 	 � � �

1
2m1v2

1 	 1
2m2v2

2 	 � � � � 1
2m1v' 21 	 1

2m2v' 22 	 � � �

I � �
¢t

0

Fdt � p� � p

              



Problems 355

QUEST IONS FOR DISCUSSION

1. According to the data given in Example 1, what percentage of

the initial kinetic energy does the automobile have after the

collision?

2. A (foolish) stuntman wants to jump out of an airplane at high

altitude without a parachute. He plans to jump while tightly

encased in a strong safe which can withstand the impact on

the ground. How would you convince the stuntman to aban-

don this project?

3. In the crash test shown in the photographs of Fig. 11.1,

anthropomorphic dummies were riding in the automobile.

These dummies were (partially) restrained by seat belts, which

limited their motion relative to the automobile. How would

the motion of the dummies have differed from that shown in

these photographs if they had not been restrained by seat belts?

4. For the sake of safety, would it be desirable to design automo-

biles so that their collisions are elastic or inelastic?

5. Two automobiles have collided at a north–south east–west inter-

section.The skid marks their tires made after the collision point

roughly northwest. One driver claims he was traveling west; the

other driver claims he was traveling south. Who is lying?

6. Statistics show that, on the average, the occupants of a heavy

(“full-size”) automobile are more likely to survive a crash than

those of a light (“compact”) automobile. Why would you

expect this to be true?

7. In Joseph Conrad’s tale “Gaspar Ruiz”, the hero ties a cannon to

his back and, hugging the ground on all fours, fires several shots

at the gate of a fort. How does the momentum absorbed by Ruiz

compare with that absorbed by the gate? How does the energy

absorbed by Ruiz compare with that absorbed by the gate?

8. Give an example of a collision between two bodies in which

all of the kinetic energy is lost to inelastic processes.

9. Explain the operation of the five-pendulum toy, called

Newton’s cradle, shown in Fig. 11.11.

10. In order to split a log with a small ax, you need a greater

impact speed than you would need with a large ax. Why? If

the energy required to split the log is the same in both cases,

why is it more tiring to use the small ax? (Hint: Think about

the kinetic energy of your arms.)

11. If you throw an (elastic) baseball at an approaching train, the

ball will bounce back at you with an increased speed. Explain.

12. You are investigating the collision of two automobiles at an

intersection. The automobiles remained joined together after

this collision, and their wheels made measurable skid marks

on the pavement before they came to rest. Assume that during

skidding all the wheels remained locked so that the decelera-

tion was entirely due to sliding friction. You know the direc-

tion of motion of the automobiles before the collision (drivers

are likely to be honest about this), but you do not know the

speeds (drivers are likely to be dishonest about this). What do

you have to measure at the scene of the accident to calculate

the speeds of both the automobiles before the collision?

13. You are sitting in your car, stopped at an intersection. You

notice another car approaching from behind, and you notice

this car is not slowing down and is going to ram you. Because

the time to impact is short, you have only two choices: push

hard on your brake, or take your foot off the brake and give

your car freedom to roll. Which of these tactics will minimize

damage to yourself ? Which will minimize damage to your

car? Which will minimize damage to the other car?

FIGURE 11.11 Newton’s cradle.

2. A large ship of 7.0 � 105 metric tons steaming at 20 km �h

runs aground on a reef, which brings it to a halt in 5.0 s. What

is the impulse delivered to the ship? What is the average force

on the ship? What is the average deceleration?

PROBLEMS

11.1 Impuls ive  Forces †

1. A stuntman of mass 77 kg “belly-flops” on a shallow pool of

water from a height of 11 m. When he hits the pool, he comes

to rest in about 0.050 s. What is the impulse that the water

and the bottom of the pool deliver to his body during this

time interval? What is the time-average force? † For help, see Online Concept Tutorial 13 at www.wwnorton.com/physics 
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3. The photographs in Fig. 11.1 show the impact of an automo-

bile on a rigid wall.

(a) Measure the positions of the automobile on these photo-

graphs and calculate the average velocity for each of the 

20 � 10�3-s intervals between one photograph and the

next; calculate the average acceleration for each time interval

from the change between one average velocity and the next.

(b) The mass of this automobile is 1700 kg. Calculate the

average force for each time interval.

(c) Make a plot of this force as a function of time and find the

impulse by estimating the area under this curve.

4. The “land divers” of Pentecost Island (Vanuatu) jump from

platforms 21 m high. Long liana vines tied to their ankles jerk

them to a halt just short of the ground. If the pull of the liana

takes 0.020 s to halt the diver, what is the average acceleration

of the diver during this time interval? If the mass of the diver is

64 kg, what is the corresponding average force on his ankles?

5. A shotgun fires a slug of lead of mass 28 g with a muzzle velocity

of 450 m �s.The slug acquires this velocity while it accelerates

along the barrel of the shotgun, which is 70 cm long.

(a) What is the impulse the shotgun gives the slug?

(b) Estimate the average impulsive force; assume constant

acceleration of the slug along the barrel.

6. A rule of thumb for automobile collisions against a rigid bar-

rier is that the collision lasts about 0.11 s, for any initial speed

and for any model of automobile (for instance, the collision

illustrated in Fig. 11.1 lasted 0.120 s, in rough agreement with

this rule of thumb). Accordingly, the deceleration experienced

by an automobile during a collision is directly proportional to

the change of velocity �v (with a constant factor of propor-

tionality), and therefore �v can be regarded as a measure of

the severity of the collision.

(a) If the collision lasts 0.11 s, what is the average decelera-

tion experienced by an automobile in an impact on a rigid

barrier at 55 km �h? 65 km �h? 75 km �h?

(b) For each of these speeds, what is the crush distance of the

front end of the automobile? Assume constant decelera-

tion for this calculation.

(c) For each of these speeds, what is the average force the seat

belt must exert to hold a driver of 75 kg in his seat during

the impact?

7. Suppose that a seat-belted mother riding in an automobile

holds a 10-kg baby in her arms. The automobile crashes and

decelerates from 50 km �h to 0 in 0.10 s. What average force

would the mother have to exert on the baby to hold it? Do you

think she can do this?

8. In a test, an air force volunteer belted in a chair placed on a

rocket sled was decelerated from 143 km �h to 0 in a distance

of 5.5 m. Assume that the mass of the volunteer was 75 kg,

and assume that the deceleration was uniform. What was the

deceleration? What impulse did the seat belt deliver to the

volunteer? What time-average force did the seat belt exert?

9. Assume that the Super Ball of Example 3 has a mass of 60 g

and is initially traveling with speed 15 m�s. For simplicity,

assume that the acceleration is constant while the ball is in

contact with the wall. After touching the wall, the center of

mass of the Super Ball moves 0.50 cm toward the wall, and

then moves the same distance away to complete the bounce.

What is the impulse delivered by the wall? What is the time-

average force?

10. A 0.50-kg hammerhead moving at 2.0 m �s strikes a board and

stops in 0.020 s. What is the impulse delivered to the board?

What is the time-average force?

11. A soccer player applies an average force of 180 N during a

kick. The kick accelerates a 0.45-kg soccer ball from rest to a

speed of 18 m �s. What is the impulse imparted to the ball?

What is the collision time?

12. When an egg (m � 50 g) strikes a hard surface, the collision

lasts about 0.020 s. The egg will break when the average force

during impact exceeds 3.0 N. From what minimum height

will a dropped egg break?

*13. The net force on a body varies with time according to Fx �

3.0t 	 0.5t2, where Fx is in newtons and t is in seconds. What

is the impulse imparted to the body during the time interval

0 � t � 3.0 s?

*14. Suppose that in a baseball game, the batter succeeds in hitting

the baseball thrown toward him by the pitcher. Suppose that

just before the bat hits, the ball is moving toward the batter

horizontally with a speed of 35 m �s; and that after the bat has

hit, the ball is moving away from the batter and upward at an

angle of 50� and finally lands on the ground 110 m away. The

mass of the ball is 0.15 kg. From this information, calculate

the magnitude and direction of the impulse the ball receives in

the collision with the bat. Neglect air friction and neglect the

initial height of the ball above the ground.

*15. Bobsleds racing down a bobsled run often suffer glancing col-

lisions with the vertical walls enclosing the run. Suppose that a

bobsled of 600 kg traveling at 120 km �h approaches a wall at

an angle of 3.0� and bounces off at the same angle. Subsequent

inspection of the wall shows that the side of the bobsled made

a scratch mark of length 2.5 m along the wall. From these

data, calculate the time interval the bobsled was in contact

with the wall, and calculate the average magnitude of the force

that acted on the side of the bobsled during the collision.

11.2 Elast ic  Col l is ions in One Dimension†

16. A particle moving at 10 m �s along the x axis collides elastically

with another particle moving at 5.0 m �s in the same direction

along the x axis. The particles have equal masses. What are

their speeds after this collision?

17. In a lecture demonstration, two masses collide elastically on a

a frictionless air track. The moving mass (projectile) is 60 g,

† For help, see Online Concept Tutorial 13 and 14 at

www.wwnorton.com/physics

              



and the initially stationary mass (target) is 120 g. The initial

velocity of the projectile is 0.80 m�s.

(a) What is the velocity of each mass after the collision?

(b) What is the kinetic energy of each mass before the colli-

sion? After the collision?

18. A target sometimes used for target shooting with small bullets

consists of a steel disk hanging on a rod which is free to swing

on a pivot (in essence, a pendulum). The collision of the bullet

with the steel disk is not elastic and not totally inelastic, but

somewhere between these extremes. Suppose that a .22-caliber

bullet of 15 g and initial speed 600 m �s strikes such a target of

mass 40 g. With what velocity would this bullet bounce back

(ricochet) if the collision were elastic? Assume that the disk

acts like a free particle during the collision.

19. The impact of the head of a golf club on a golf ball can be

approximately regarded as an elastic collision. The mass of the

head of the golf club is 0.15 kg, and that of the ball is

0.045 kg. If the ball is to acquire a speed of 60 m�s in the

collision, what must be the speed of the club before impact?

20. Suppose that a neutron in a nuclear reactor initially has an

energy of 4.8 � 10�13 J. How many head-on collisions with

carbon nuclei at rest must this neutron make before its energy

is reduced to 1.6 � 10�19 J? The collisions are elastic.

21. The impact of a hammer on a nail can be regarded as an elas-

tic collision between the head of the hammer and the nail.

Suppose that the mass of the head of the hammer is 0.50 kg and

it strikes a nail of mass 12 g with an impact speed of 5.0 m �s.

How much energy does the nail acquire in this collision?

22. Consider two coins: a quarter of mass 5.6 g and a dime of

mass 2.3 g. If one is sliding at 2.0 m �s on a frictionless surface

and hits the other head-on, find the final velocities when

either (a) the quarter or (b) the dime is the stationary target.

Assume the collision is elastic.

23. Using a straw, a child shoots a series of small balls of mass 1.0 g

with speed v at a block of mass 40 g on a frictionless surface.

If the small balls elastically collide head-on with the block,

how fast will the block be moving after five strikes?

24. A projectile of unknown mass and speed strikes a ball of mass

m � 0.15 kg initially at rest. The collision is head-on and

elastic. The ball moves off at 1.50 m �s, and the projectile

continues in its original direction at 0.50 m �s. What is the

mass of the projectile? What was its original speed?

25. A marble of unknown mass m is shot at a larger marble of

known mass M, initially at rest in the center of a circle. The

collision is head-on and elastic. The smaller marble bounces

backward and exits the circle in one-third of the time that it

takes the larger marble to do so. What is the mass of the

smaller marble? Neglect any rolling motion.

26. In materials science, Rutherford backscattering is used to

determine the composition of materials. In such an experiment,

alpha particles (helium nuclei, mass 4.0 u) of typical kinetic

energy 1.6 � 10�13 J strike target nuclei at rest. The collisions

*30. Repeat Problem 29 but assume that the middle ball has twice

the mass of each of the others.

*31. Two small balls are suspended side by side from two strings of

length l so that they touch when in their equilibrium position

(see Fig. 11.13). Their masses are m and 2m, respectively. If

the left ball (of mass m) is pulled aside and released from a

height h, it will swing down and collide with the right ball (of

mass 2m) at the lowest point. Assume the collision is elastic.

(a) How high will each ball swing after the collision?

(b) Both balls again swing down, and they collide once more

at the lowest point. How high will each swing after this

second collision?
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are elastic and head-on. What is the recoil kinetic energy of the

alpha particle when the target is (a) silicon (m � 28 u) and

(b) copper (m � 63 u)?

*27. An automobile traveling at 60 km �h bumps into the rear of

another automobile traveling at 55 km�h in the same direction.

The mass of the first automobile is 1200 kg, and the mass of the

second automobile is 1000 kg. If the collision is elastic, find the

velocities of both automobiles immediately after this collision.

(Hint: Solve this problem in a reference frame moving with a

velocity equal to the initial velocity of one of the automobiles.)

*28. A projectile of 45 kg has a muzzle speed of 656.6 m�s when

fired horizontally from a gun held in a rigid support (no recoil).

What will be the muzzle speed (relative to the ground) of the

same projectile when fired from a gun that is free to recoil? The

mass of the gun is 6.6 � 103 kg. (Hint: The kinetic energy of

the gun–projectile system is the same in both cases.)

*29. On a smooth, frictionless table, a billiard ball of velocity v is

moving toward two other aligned billiard balls in contact 

(Fig. 11.12). What will be the velocity of each ball after

impact? Assume that all balls have the same mass and that the

collisions are elastic. Ignore any rotation of the balls. (Hint:

Treat this as two successive collisions.)

FIGURE 11.12 Three billiard balls along a line.

FIGURE 11.13 Two balls suspended 

from strings.

l

l

m

2m
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*32. If a spacecraft, or some other body, approaches a planet at

fairly high speed at a suitable angle, it will whip around the

planet and recede in a direction almost opposite to the initial

direction of motion (Fig. 11.14). This can be regarded approx-

imately as a one-dimensional “collision” between the satellite

and the planet; the collision is elastic. In such a collision the

satellite will gain kinetic energy from the planet, provided that

it approaches the planet along a direction opposite to the

direction of the planet’s motion. This slingshot effect has been

used to boost the speed of both Voyager spacecraft as they

passed near Jupiter. Consider the head-on “collision” of a satel-

lite of initial speed 10 km�s with the planet Jupiter, which has

a speed of 13 km �s. (The speeds are measured in the reference

frame of the Sun.) What is the maximum gain of speed that

the satellite can achieve?

*34. A nuclear reactor designed and built in Canada (CANDU)

contains heavy water (D2O). In this reactor, the fast neutrons

are slowed down by elastic collisions with the deuterium

nuclei of the heavy-water molecule.

(a) By what factor will the speed of the neutron be reduced in

a head-on collision with a deuterium nucleus? The mass

of this nucleus is 2.01 u.

(b) After how many head-on collisions with deuterium nuclei

will the speed be reduced by the same factor as in a single

head-on collision with a proton?

**35. Because of brake failure, an automobile parked on a hill of

slope 1:10 rolls 12 m downhill and strikes a parked automobile.

The mass of the first automobile is 1400 kg, and the mass of

the second automobile is 800 kg. Assume that the first auto-

mobile rolls without friction and that the collision is elastic.

(a) What are the velocities of both automobiles immediately

after the collision?

(b) After the collision, the first automobile continues to roll

downhill, with acceleration, and the second automobile

skids downhill, with deceleration. Assume that the second

automobile skids with all its wheels locked, with a coeffi-

cient of sliding friction 0.90. At what time after the first

collision will the automobiles have another collision, and

how far from the initial collision?

**36. (a) Show that for an elastic one-dimensional collision the

relative velocity reverses during the collision; that is, show

that v�1 � v�2 � �v1 (for v2 � 0).

(b) For a partially inelastic collision the relative velocity after

the collision will have a smaller magnitude than the relative

velocity before the collision. We can express this mathemat-

ically as v�1 �v�2 � �ev1, where e 
 1 is called the coeffi-

cient of restitution. For some kinds of bodies, the

coefficient e is a constant, independent of v1 and v2. Show

that in this case the final kinetic energy of the motion rela-

tive to the center of mass is less than the initial kinetic

energy of this motion by a factor of e2, that is, that K� � e2K.

(c) Derive formulas analogous to Eqs. (11.13) and (11.14) for

the velocities v�1 and v�2 in terms of v1.

11.3 Ine las t i c  Co l l i s ions  in  
One Dimens ion †

37. In karate, the fighter makes the hand collide at high speed with

the target; this collision is inelastic, and a large portion of the

kinetic energy of the hand becomes available to do damage in

the target. According to a crude estimate, the energy required to

break a concrete block (28 cm � 15 cm � 1.9 cm supported

only at its short edges) is of the order of 10 J. Suppose the

fighter delivers a downward hammer-fist strike with a speed

of 12 m�s to such a concrete block. In principle, is there

enough energy to break the block? Assume that the fist has a

mass of 0.4 kg.

38. According to a tall tale told by Baron Münchhausen, on one

occasion, while cannon shots were being exchanged between a

† For help, see Online Concept Tutorial 13 and 14 at

www.wwnorton.com/physics

FIGURE 11.14 Spacecraft “colliding” with planet.

FIGURE 11.15 An undershot turbine wheel.

**33. A turbine wheel with curved blades is driven by a high-velocity

stream of water that impinges on the blades and bounces off

(Fig. 11.15). Under ideal conditions the velocity of the water

particles after the collision with the blade is exactly zero, so

that all of the kinetic energy of the water is transferred to the

turbine wheel. If the speed of the water particles is 27 m�s,

what is the ideal speed of the turbine blade? (Hint: Treat the

collision of a water particle and the blade as a one-dimensional

elastic collision.)

spacecraft

planet
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besieged city and the enemy camp, he jumped on a cannonball

as it was being fired from the city, rode the cannonball toward

the enemy camp, and then, in midair, jumped onto an enemy

cannonball and rode back to the city. The collision of Münch-

hausen and the enemy cannonball must have been inelastic,

since he held on to it. Suppose that his speed just before hit-

ting the enemy cannonball was 150 m�s southward and the

speed of the enemy cannonball was 300 m�s northward. The

mass of Münchhausen was 90 kg, and the mass of the enemy

cannonball was 20 kg. What must have been the speed just

after the collision? Do you think he made it back to the city?

39. As described in Problem 6, the change of velocity �v of an

automobile during a collision is a measure of the severity of

the collision. Suppose that an automobile moving with an ini-

tial speed of 15 m�s collides with (a) an automobile of equal

mass initially at rest, (b) an automobile of equal mass initially

moving in the opposite direction at 15 m �s, or (c) a stationary

rigid barrier. Assume that the collision is totally inelastic.

What is �v in each case?

40. A 25-kg boy on a 10-kg sled is coasting at 3.0 m �s on level ice

toward his 30-kg sister. The girl jumps vertically and lands on

her brother’s back. What is the final speed of the siblings and

sled?  Neglect friction.

41. A 75-kg woman and a 65-kg man face each other on a friction-

less ice pond. The woman holds a 5.0-kg “medicine ball.” The

woman throws the ball to the man with a horizontal velocity

of 2.5 m�s relative to the ice. What is her recoil velocity? What

is the man’s velocity after catching the ball? The man then

throws the ball horizontally to the woman at 3.0 m�s relative

to himself at the instant before release. What is his final veloc-

ity? What is the woman’s final velocity after catching it?

42. A 16-u oxygen atom traveling at 600 m �s collides head-on

with another oxygen atom at rest. The two join and form an

oxygen molecule. With what speed does the molecule move?

What fraction of the original translational kinetic energy is

transferred to internal energy of the molecule?

*43. A circus clown in a cannon is shot vertically upward with an

initial speed of 12 m�s. After ascending 3.5 m, she collides

with and grabs a performer sitting still on a trapeze. They

ascend together and then fall. What is their speed when they

reach the original launch height? The clown and trapeze artist

have the same mass.

*44. As described in Problem 6, the change in velocity �v of an

automobile during a collision is a measure of the severity of

the collision. For a collision between two automobiles of equal

masses, �v has the same magnitude for each automobile. But

for a collision between automobiles of different masses, �v is

larger for the automobile of smaller mass. Suppose that an

automobile of 800 kg moving with an initial speed of 15 m �s

collides with (a) an automobile of 1400 kg initially at rest, (b)

an automobile of 1400 kg initially moving in the opposite

direction at 15 m �s, or (c) a stationary rigid barrier. Assume

that the collision is totally inelastic. What is �v in each case

for each participating automobile?

*45. Two automobiles of 540 and 1400 kg collide head-on while

moving at 80 km�h in opposite directions. After the collision

the automobiles remain locked together.

(a) Find the velocity of the wreck immediately after the collision.

(b) Find the kinetic energy of the two-automobile system

before and after the collision.

(c) The front end of each automobile crumples by 0.60 m

during the collision. Find the acceleration (relative to the

ground) of the passenger compartment of each automobile;

make the assumption that these accelerations are constant

during the collision.

*46. A speeding automobile strikes the rear of a parked automobile.

After the impact the two automobiles remain locked together,

and they skid along the pavement with all their wheels locked.

An investigation of this accident establishes that the length of

the skid marks made by the automobiles after the impact was

18 m; the mass of the moving automobile was 2200 kg and that

of the parked automobile was 1400 kg, and the coefficient of

sliding friction between the wheels and the pavement was 0.95.

(a) What was the speed of the two automobiles immediately

after impact?

(b) What was the speed of the moving automobiles before

impact?

*47. A proton of energy 8.0 � 10�13 J collides head-on with a

proton at rest. How much energy is available for inelastic reac-

tions between these protons?

*48. According to test procedures laid down by the National

Highway Traffic Safety Administration, a stationary barrier

(of very large mass) and a towed automobile are used for tests

of front impacts (Fig. 11.16a), but a moving barrier of 1800 kg

and a stationary, unbraked automobile are used for tests of rear

impacts (Fig. 11.16b). Explain how this test with the moving

barrier and the stationary automobile could be replaced by an

equivalent test with a stationary barrier and an automobile

towed backward at some appropriate speed. If the automobile

has a mass of 1400 kg and the moving barrier has a speed of 8

km �h, what is the appropriate equivalent speed of the moving

automobile towed backward to the stationary barrier? Assume

the collision is inelastic.

FIGURE 11.16 (a) Test procedure for front impact.

(b) Test procedure for rear impact.

(a)

(b)
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*49. Regard the two automobiles described in Example 7 as a

system of two particles.

(a) What is the translational kinetic energy of the center of

mass before the collision? After the collision?

(b) What is the total kinetic energy before the collision? After

the collision?

*50. A cat crouches on the floor, at a distance of 1.2 m from a desk

chair of height 0.45 m. The cat jumps onto the chair, landing

with zero vertical velocity (this is standard procedure for cat

jumps). The desk chair has frictionless coasters and rolls away

when the cat lands. The mass of the cat is 4.5 kg, and the mass

of the chair is 12 kg. What is the speed of recoil of the chair

and cat?

*51. A crude but simple method for measuring the speed of a

bullet is to shoot the bullet horizontally into a block of wood

resting on a table. The block of wood will then slide until its

kinetic energy is expended against the friction of the surface

of the table. Suppose that a 3.0-kg block of wood slides a

distance of 6.0 cm after it is struck by a bullet of 12 g. If the

coefficient of sliding friction for the wood on the table is

0.60, what impact speed can you deduce for the bullet?

*52. Another way (not recommended) to measure the speed of

bullets with a ballistic pendulum is to shoot a steady stream of

bullets into the pendulum, which will push it aside and hold

it in a rough equilibrium position at some angle. The speed

can be calculated from this equilibrium angle. Suppose that

you shoot .22-caliber bullets of mass 15 g into a 4.0-kg ballis-

tic pendulum at the rate of 2 per second. You find that the

equilibrium angle is 24�. What is the speed of the bullets?

*53. You shoot a .22-caliber bullet through a piece of wood sitting

on a table. The piece of wood acquires a speed of 8.0 m �s, and

the bullet emerges with a reduced speed. The mass of the

bullet is 15 g, and its initial speed is 600 m �s; the mass of the

piece of wood is 300 g.

(a) What is the change of velocity of the bullet?

(b) What is the change of kinetic energy of the bullet?

(c) What is the change of kinetic energy of the wood?

(d) Account for the missing kinetic energy.

*54. An automobile traveling at 50 km �h strikes the rear of a

parked automobile. After the collision, the two automobiles

remain joined together. The parked automobile skids with all

its wheels locked, but the other automobile rolls with negligi-

ble friction. The mass of each automobile is 1300 kg, and the

coefficient of sliding friction between the locked wheels and

the pavement is 0.90. How far do the joined automobiles

move before they stop? How long do they take to stop?

*55. You can make a fairly accurate measurement of the speed of a

bullet by shooting it horizontally into a block of wood sitting

on a fence. The collision of the bullet and the block is inelas-

tic, and the block will fall off the fence and land on the ground

at some distance from the bottom of the fence. The speed of

the bullet is proportional to this distance. Suppose that a bullet

of mass 15 g fired into a block of 4.0 kg sitting on a 1.8-m

fence causes the block to land 1.4 m from the bottom of the

fence. Calculate the speed of the bullet.

11.4 Co l l i s ions  in  Two and 
Three D imens ions

56. A cheetah intercepts a gazelle on the run, and grabs it (a totally

inelastic collision). Just before this collision, the gazelle was

running due north at 20 m�s, and the cheetah was running on

an intercepting course of 45� east of north at 22 m�s. The mass

of the cheetah is 60 kg, and the mass of the gazelle is 50 kg.

What are the magnitude and the direction of the velocity of

the entangled animals at the instant after the collision?

57. Two hydrogen atoms (m � 1.0 u) with equal speeds, initially

traveling in perpendicular directions, collide and join together

to form a hydrogen molecule. If 6.1 � 10�22 J of the initial

kinetic energy is transferred to internal energy in the collision,

what was the initial speed of the atoms?

*58. Two automobiles of equal masses collide at an intersection.

One was traveling eastward and the other northward. After

the collision, they remain joined together and skid, with

locked wheels, before coming to rest. The length of the skid

marks is 18 m, and the coefficient of friction between the

locked wheels and the pavement is 0.80. Each driver claims

his speed was less than 14 m �s (50 km�h) before the collision.

Prove that at least one driver is lying.

*59. Two hockey players (see Fig. 11.17) of mass 80 kg collide

while skating at 7.0 m�s. The angle between their initial direc-

tions of motion is 130�.

(a) Suppose that the players remain entangled and that the

collision is totally inelastic. What is their velocity immedi-

ately after collision?

(b) Suppose that the collision lasts 0.080 s. What is the mag-

nitude of the average acceleration of each player during

the collision?

FIGURE 11.17 Collision of two hockey players.
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FIGURE 11.19 Two billiard balls.

FIGURE 11.20 Elastic collision between two protons.

The final velocities of the protons are perpendicular.

*60. On July 27, 1956, the ships Andrea Doria (40 000 metric tons)

and Stockholm (20 000 metric tons) collided in the fog south

of Nantucket and remained locked together (for a while).

Immediately before the collision the velocity of the Andrea Doria

was 22 knots at 15� east of south and that of the Stockholm was

19 knots at 48� east of south (1 knot � 1 nmi �h � 1.85 km �h).

(a) Calculate the velocity (magnitude and direction) of the

combined wreck immediately after the collision.

(b) Find the amount of kinetic energy that was converted into

other forms of energy by inelastic processes during the

collision.

(c) The large amount of energy absorbed by inelastic

processes accounts for the heavy damage to both ships.

How many kilograms of TNT would have to be exploded

to obtain the same amount of energy as was absorbed by

inelastic processes in the collision? The explosion of 1 kg

of TNT releases 4.6 � 106 J.

*61. Your automobile of mass m1 � 900 kg collides at a traffic circle

with another automobile of mass m2 � 1200 kg. Just before

the collision, your automobile was moving due east and the

other automobile was moving 40� south of east. After the

collision the two automobiles remain entangled while they

skid, with locked wheels, until coming to rest. Your speed

before the collision was 14 m�s. The length of the skid marks

is 17.4 m, and the coefficient of kinetic friction between the

tires and the pavement is 0.85. Calculate the speed of the

other automobile before the collision.

*62. Two billiard balls are placed in contact on a smooth, friction-

less table. A third ball moves toward this pair with velocity v

in the direction shown in Fig. 11.18. What will be the velocity

(magnitude and direction) of the three balls after the collision?

The balls are identical and the collisions are elastic.

*63. A billiard ball of mass m and radius R moving with speed v

on a smooth, frictionless table collides elastically with an

identical stationary billiard ball glued firmly to the surface of

the table.

(a) Find a formula for the angular deflection suffered by the

moving billiard ball as a function of the impact parameter b

(defined in Fig. 11.19). Assume the billiard balls are very

smooth so that the force during contact is entirely along the

center-to-center line of the balls.

(b) Find a formula for the magnitude of the momentum

change suffered by the billiard ball.

*64. A coin of mass m slides along a table with speed v and elasti-

cally collides with a second, identical coin at rest. The first

coin is deflected 60� from its original direction. What are the

speeds of each of the two coins after the collision? At what

angle does the second coin exit the collision?

*65. In a head-on elastic collision between a projectile and a sta-

tionary target of equal mass, we saw that the projectile stops.

Show that if such a collision is not head-on, then the projectile

and target final velocities are perpendicular (see Fig. 11.20).

(Hint: Square the conservation of momentum equation, using

p2 � p • p, and compare the resulting equation with the energy

conservation equation.)

*66. In an elastic collision in two dimensions, the projectile has

twice the mass of the stationary target. After the collision, the

target moves off with three times the final speed of the projec-

tile. Find the angle between the two final directions of motion.

b

FIGURE 11.18 Three billiard balls.

              



362 CHAPTER 11 Collisions

FIGURE 11.21 Meteor Crater in Arizona.

REVIEW PROBLEMS

67. High-speed photography reveals that when a golf club hits a

golf ball, the club and the ball typically remain in contact for

1.0 � 10�3 s and the ball acquires a speed of 70 m�s. The mass

of the ball is 45 g. What is the impulse the club delivers to the

ball? What is the time-average force?

68. In a remarkable incident, a 52-kg woman jumped from the

10th floor of an apartment building, fell 28 m, and landed on

her side on soft earth in a freshly dug garden. She fractured

her wrist and rib, but remained conscious and fully alert, and

recovered completely after some time in a hospital. The earth

was depressed 15 cm by her impact.

(a) What was her impact speed?

(b) Assuming constant deceleration upon contact with the

ground, what was her deceleration?

(c) What was the force of the ground on her body during

deceleration?

69. An automobile approaching an intersection at 10 km�h bumps

into the rear of another automobile standing at the intersec-

tion with its brakes off and its gears in neutral. The mass of

the moving automobile is 1200 kg, and that of the stationary

automobile is 700 kg. If the collision is elastic, find the veloci-

ties of both automobiles after the collision.

70. It has been reported (fallaciously) that the deer botfly can

attain a maximum airspeed of 1318 km�h, that is, 366 m �s.

Suppose that such a fly, buzzing along at this speed, strikes a

stationary hummingbird and remains stuck in it. What will be

the recoil velocity of the hummingbird? The mass of the fly is

2 g; the mass of the hummingbird is 50 g.

*71. A proton of energy 8.0 � 10�13 J collides head-on with a

proton of energy 4.0 � 10�13 J moving in the opposite direc-

tion. How much energy is available for inelastic reactions

between these protons?

*72. When a baseball bat strikes a ball, the impact can be approxi-

mately regarded as an elastic collision (the hands of the hitter

have little effect on the short time the bat and the ball are in

contact). Suppose that a bat of 0.85 kg moving horizontally at

30 m�s encounters a ball of 0.15 kg moving at 40 m�s in the

opposite direction. We cannot directly apply the results of

Section 11.2 to this collision, since both particles are in motion

before collision (v1 � 40 m�s and v2 � �30 m�s). However, we

can apply these results if we use a reference frame that moves

at a velocity V0 � �30 m�s in the direction of the initial

motion of the bat; in this reference frame, the initial velocity

of the bat is zero (v2�0)

(a) What is the initial velocity of the ball in this reference

frame?

(b) What are the final velocities of the ball and the bat, just

after the collision?

(c) What are these final velocities in the reference frame of

the ground?

*73. A boy throws a baseball at another baseball sitting on a 1.5-m-

high fence. The collision of the balls is elastic. The thrown ball

moves horizontally at 20 m�s just before the head-on collision.

(a) What are the velocities of the two balls just after the

collision? 

(b) Where do the two balls land on the ground?

74. An automobile of 1200 kg traveling at 45 km�h strikes a

moose of 400 kg standing on the road. Assume that the colli-

sion is totally inelastic (the moose remains draped over the

front end of the automobile). What is the speed of the auto-

mobile immediately after this collision?

75. A ship of 3.0 � 104 metric tons steaming at 40 km�h strikes

an iceberg of 8.0 �105 metric tons. If the collision is totally

inelastic, what fraction of the initial kinetic energy of the ship

is converted into inelastic energy? What fraction remains as

kinetic energy of the ship–iceberg system? Ignore the effect of

the water on the motion of the ship and iceberg.

*76. When William Tell shot the apple off his son’s head, the arrow

remained stuck in the apple, which means the collision

between the arrow and apple was totally inelastic. Suppose

that the velocity of the arrow was horizontal at 80 m�s before

it hit, the mass of the arrow was 40 g, and the mass of the

apple was 200 g. Suppose Tell’s son was 1.40 m high.

(a) Calculate the velocity of the apple and arrow immediately

after the collision.

(b) Calculate how far behind the son the apple and arrow

landed on the ground.

*77. Meteor Crater in Arizona (Fig. 11.21), a hole 180 m deep and

1300 m across, was gouged in the surface of the Earth by the

impact of a large meteorite. The mass and speed of this mete-

orite have been estimated at 2.0 � 109 kg and 10 km�s,

respectively, before impact.

(a) What recoil velocity did the Earth acquire during this

(inelastic) collision?
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Answers  to  Checkups

Checkup 11.1

1. The front end should be soft and crushable to protect automo-

bile occupants in a collision; this will spread the momentum

change over a longer time, lowering the force experienced by

the occupants.

2. The steel ball will exert a larger force, because it is less

deformable than the golf ball. Thus, although the change in

momentum (the impulse I) can be the same, the steel ball is in

contact for a shorter time �t, and so exerts a greater average

force during that time ( � I��t).F

3. Because the collision is elastic, the ball will rebound with the

same kinetic energy; as this energy gets converted to potential

energy, the ball will rise up to the same height, 1 m, from

which it was dropped before stopping.

4. No. Since the wad of gum stopped, kinetic energy was lost,

and thus the collision was not elastic. We will later refer to

such a collision (when the bodies stick together) as totally

inelastic.

5. (C) 3 � 106 N. In a collision, each vehicle exerts an equal-

magnitude, but opposite-direction, force on the other

(an action–reaction pair), so the force exerted by the car on

the truck is 3 � 106 N westward.

vertical and then let it go, it will collide elastically with the

other ball. How high will the other ball rise?

(b) Suppose that instead of steel balls we use putty balls. They

will then collide inelastically and remain stuck together.

How high will the balls rise?

*80. While in flight, a peregrine falcon spots a pigeon flying 40 m

below. The falcon closes its wings and, in free fall, dives on the

pigeon and grabs it (a totally inelastic collision). The mass of

the falcon is 1.5 kg, and the mass of the pigeon is 0.40 kg.

Suppose that the velocity of the pigeon before this collision is

horizontal, at 15 m/s, and the velocity of the falcon is vertical,

equal to the free-fall velocity. What is the velocity (magnitude

and direction) of both birds after the collision?

*81. On a freeway, a truck of 3500 kg collides with an automobile

of 1500 kg that is trying to cut diagonally across the path of

the truck. Just before the collision, the truck was traveling due

north at 70 km �h, and the automobile was traveling at 30�

west of north at 100 km�h. After the collision, the vehicles

remain joined together.

(a) What is the velocity (magnitude and direction) of the

joined vehicles immediately after the collision? 

(b) How much kinetic energy is lost during the collision?

*82. Two asteroids of 1.0 � 107 kg and 8.0 � 107 kg, respectively,

are initially at rest in interstellar space separated by a large

distance. Their mutual gravitational attraction then causes

them to fall toward each other on a straight line. Assume the

asteroids are spheres of radius 100 m and 200 m, respectively.

(a) What is the velocity of each asteroid just before they hit?

What is the kinetic energy of each? What is the total

kinetic energy?

(b) The collision is totally inelastic. What is the velocity of

the joined asteroids after they hit?

(b) How much kinetic energy was released for inelastic

processes during the collision? Express this energy in the

equivalent of tons of TNT; 1 ton of TNT releases 4.2 �

109 J upon explosion.

(c) Estimate the magnitude of the impulsive force.

*78. A black automobile smashes into the rear of a white automo-

bile stopped at a stop sign. You investigate this collision and

find that before the collision, the black automobile made skid

marks 5.0 m long; after the collision the black automobile

made skid marks 1.0 m long (in the same direction as the ini-

tial direction of motion), and the white automobile made skid

marks 2.0 m long. Both automobiles made these skid marks

with all their wheels. The mass of the black automobile is

1400 kg, and the mass of the white automobile is 800 kg. The

coefficient of sliding friction between the wheels and the

pavement is 0.90. From these data, deduce the speed of the

black automobile just before the collision, and the speed

before it started to brake.

*79. (a) Two identical small steel balls are suspended from strings

of length l so they touch when hanging straight down, in

their equilibrium position (Fig. 11.22). If we pull one of

the balls back until its string makes an angle � with the

FIGURE 11.22 Two balls suspended from strings.

l

lu

              



Checkup 11.2

1. As in the cases just discussed, and as in Eq. (11.13), where the

projectile’s final velocity is proportional to m1 � m2, the veloc-

ity of the projectile will be positive when it is more massive

than the target (m1 � m2), and it will be negative when it is

less massive than the target (m1 
 m2).

2. No. As we saw in the cases just discussed, the speed of recoil of

a massive target is very small; in the limit of a very light target,

the speed approaches twice the speed of the projectile. For any

values of m1 and m2, the final speed of the target (v�2), given by

Eq. (11.14), cannot exceed twice the projectile speed (v1).

3. No; for instance, in the collision of the Super Ball and the

wall, the ball is instantaneously at rest before it bounces back.

The kinetic energy is transformed into elastic energy momen-

tarily, and then converted back into kinetic energy.

4. (E) 0; v1. As discussed above, when the masses of the target

and projectile are identical, the speed of the projectile is zero

after the collision [since we have m1 � m2 � 0 in Eq. (11.13)].

For identical masses, the target speed is equal to the initial

speed of the projectile, v1 [since we have m1 � m2 in

Eq. (11.14)].

Checkup 11.3

1. No; for example, if the target is initially at rest, it gains kinetic

energy.

2. Two particles of equal mass and opposite velocities have zero

net momentum. Thus, in a totally inelastic collision, the com-

posite particle has zero momentum, and thus zero velocity. In

an elastic collision, the total kinetic energy is unchanged; since

the net momentum is zero, the particles must again have

opposite velocities. If we ignore the possibility that the parti-

cles might have passed through each other, then this means

that their velocities were reversed by the collision.

3. The velocity of the joined particles after a totally inelastic

collision is the velocity of the center of mass, vCM�m1v1�
(m1 	 m2); this is equal to one-half of the velocity of the

incident projectile when the masses of the target and projectile

are equal, or m1 � m2.

4. No, assuming the wires are long enough to permit the upward

motion of the pendulum to the maximum height h.

5. (B) v. Momentum is conserved, so equating the initial and

final momenta, we have mv � (m�2)v � ( m)v', which implies

v' � v.

Checkup 11.4

1. Because the cars have equal mass and speed, the total momen-

tum before and after this totally inelastic collision is directed

due southwest.

2. (B) Southeast. This explosion is like a three-particle totally

inelastic collision in reverse. Since the total momentum before

the “collision” (explosion) is zero, so must it be afterward: the

third particle must have momentum components which cancel

the northward and westward momentum contributions of the

other two particles; thus, the third particle travels in the

southeast quadrant of directions.

1
3

3
2

1
3
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C O N C E P T S  I N  C O N T E X T  
This large centrifuge at the Sandia National Laboratory is used for test-

ing the behavior of components of rockets, satellites, and reentry vehicles

when subjected to high accelerations. The components to be tested are

placed in a compartment in one arm of this centrifuge; the opposite arm

holds a counterweight.The arms rotate at up to 175 revolutions per minute,

and they generate a centripetal acceleration of up to 300g.

The concepts of this chapter permit us to answer several questions

about this centrifuge:

? How are the speed and the centripetal acceleration at the end of an

arm related to the rate of rotation? (Example 5, page 373)

? How do we determine the resistance that the centrifuge offers to

changes in its rotational motion? (Example 12, part (a), page 383)

? How is the kinetic energy of the centrifuge arms related to the rate

of rotation? (Example 12, part (b), page 383)

Rotation of a 
Rigid Body 12

12.1 Motion of a Rigid Body

12.2 Rotation about a Fixed Axis

12.3 Motion with Constant
Angular Acceleration

12.4 Motion with Time-
Dependent Angular
Acceleration

12.5 Kinetic Energy of Rotation;
Moment of Inertia

C H A P T E R

365

Concepts
in

Context

              



A body is rigid if the particles in the body do not move relative to one another. Thus, the

body has a fixed shape, and all its parts have a fixed position relative to one another.

A hammer is a rigid body, and so is a baseball bat. A baseball is not rigid—when struck

a blow by the bat, the ball suffers a substantial deformation; that is, different parts of

the ball move relative to one another. However, the baseball can be regarded as a rigid

body while it flies through the air—the air resistance is not sufficiently large to pro-

duce an appreciable deformation of the ball. This example indicates that whether a

body can be regarded as rigid depends on the circumstances. No body is absolutely

rigid; when subjected to a sufficiently large force, any body will suffer some deforma-

tion or perhaps even break into several pieces. In this chapter, we will ignore such

deformations produced by the forces acting on bodies. We will examine the motion

of bodies under the assumption that rigidity is a good approximation.

12.1 MOTION OF A R IGID BODY

A rigid body can simultaneously have two kinds of motion: it can change its position

in space, and it can change its orientation in space. Change of position is translational

motion; as we saw in Chapter 10, this motion can be conveniently described as motion

of the center of mass. Change in orientation is rotational motion; that is, it is rotation

about some axis.

As an example, consider the motion of a hammer thrown upward (see Fig. 12.1).

The orientation of the hammer changes relative to fixed coordinates attached to the

ground. Instantaneously, the hammer rotates about a horizontal axis, say, a horizontal

axis that passes through the center of mass. In Fig. 12.1, this horizontal axis sticks out

of the plane of the page and moves upward with the center of mass. The complete

motion can then be described as a rotation of the hammer about this axis and a simul-

taneous translation of the axis along a parabolic path.

In this example of the thrown hammer, the axis of rotation always remains hori-

zontal, out of the plane of the page. In the general case of motion of a rigid body, the

axis of rotation can have any direction and can also change its direction. To describe

such complicated motion, it is convenient to separate the rotation into three compo-

nents along three perpendicular axes. The three components of rotation are illustrated

by the motion of an aircraft (see Fig. 12.2): the aircraft can turn left or right (yaw), it

can tilt to the left or the right (roll), and it can tilt its nose up or down (pitch). However,

in the following sections we will usually not deal with this general case of rotation

with three components; we will mostly deal only with the simple case of rotation about

a fixed axis, such as the rotational motion of a fan, a roulette wheel, a compact disc, a

swinging door, or a merry-go-round (see Fig. 12.3).

366 CHAPTER 12 Rotation of a Rigid Body

rigid body

FIGURE 12.2 Pitch, roll, and yaw

motions of an aircraft. yaw

pitch

roll

z

y

x

Axes of rotation for the
three motions are all
mutually perpendicular.

Hammer rotates 
about its center
of mass.

FIGURE 12.1 A hammer in free fall

under the influence of gravity. The center of

mass of the hammer moves with constant

vertical acceleration g, just like a particle in

free fall.

              



Checkup 12.1

QUESTION 1: Characterize the following motions as translational, rotational, or both:

swinging motion of door, motion of wheel of train, motion of propeller of airplane

while in level flight.

QUESTION 2: Suppose that instead of selecting an axis through the center of mass of

the hammer in Fig. 12.1, we select a parallel axis through the end of the handle. Can

the motion still be described as rotation about this axis and a simultaneous translation

of the axis along some path? Is this path parabolic?

QUESTION 3: Under what conditions will the passenger compartment of an automo-

bile exhibit (limited) rolling, pitching, and turning motions?

QUESTION 4: Which of the rotating bodies in Fig. 12.3 does not rotate about an axis

through its center of mass?

(A) Fan (B) Roulette wheel (C) Compact disc

(D) Swinging door (E) Merry-go-round

12.2 ROTATION ABOUT A F IXED AXIS

Figure 12.4 shows a rigid body rotating about a fixed axis, which coincides with the z

axis. During this rotational motion, each point of the body remains at a given distance

from this axis and moves along a circle centered on the axis. To describe the orienta-

tion of the body at any instant, we select one particle in the body and use it as a refer-

ence point; any particle can serve as reference point, provided that it is not on the axis

of rotation. The circular motion of this reference particle (labeled P in Fig. 12.4) is

then representative of the rotational motion of the entire body, and the angular posi-

tion of this particle is representative of the angular orientation of the entire body.

Figure 12.5 shows the rotating rigid body as seen from along the axis of rotation.The

coordinates in Fig. 12.5 have been chosen so the z axis coincides with the axis of rota-

tion, whereas the x and y axes are in the plane of the circle traced out by the motion of the

reference particle.The angular position of the reference particle—and hence the angular

orientation of the entire rigid body—can be described by the position angle � (the Greek

✔
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FIGURE 12.3 Some examples of rotational

motion with a fixed axis (a) fan, (b) roulette

wheel, (c) compact disc, (d) swinging door,

(e) merry-go-round).

(a) (b) (c) (d)

(e)

15
Online

Concept
Tutorial
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FIGURE 12.6 A dime placed at a distance

of 320 km from the telescope. The length 

s � 1.8 cm is the diameter of the dime.

letter phi) between the radial line OP and the x axis. Conventionally, the angle � is

taken as positive when reckoned in a counterclockwise direction (as in Fig. 12.5). We

will usually measure this position angle in radians, rather than degrees. By definition,

the angle � in radians is the length s of the circular arc divided by the radius R, or

(12.1)

In Fig. 12.5, the length s is the distance traveled by the reference particle from the x

axis to the point P. Note that if the length s is the circumference of a full circle, then

and Thus, there are 2� radians in a full circle;

that is, there are 2� radians in 360�:

Accordingly, 1 radian equals 360�/2�, or 

1 radian � 57.3�

The accuracy of the guidance system of the Hubble Space

Telescope is such that if the telescope were sitting in New York,

the guidance system could aim at a dime placed on top of the Washington

Monument, at a distance of 320 km. The width of a dime is 1.8 cm. What angle

does the dime subtend when seen from New York?

SOLUTION: Figure 12.6 shows the circular arc subtended by the dime.The radius

of the circle is 320 km. For a small angle, such as in this figure, the length s of the

arc from one side of the dime to the other is approximately the same as the length

of the straight line from one side to the other, which is the width of the dime.

Hence the angle in radians is

Expressed in degrees, this becomes

 f � 5.6 � 10�8 radian �
360�

2p radians
� 3.2 � 10�6 degree

 f �
s

R
�

1.8 � 10�2 m

3.2 � 105 m
� 5.6 � 10�8 radian

EXAMPLE 1

2p radians � 360�

f � s�R � 2pR�R � 2p.s � 2pR,

f �
s

R

s ≈ 1.8 cm

R = 320 km

Washington, D.C.

New York angle subtended

Length s of a small arc
segment is approximately
equal to dime‘s diameter.

angle in radians

FIGURE 12.5 Motion of a reference particle P in

the rigid body rotating about a fixed axis. The axis is

indicated by the circled dot O. The radius of the circle

traced out by the motion of the reference particle is R.

y

x

s

P

R

O
�

Angle � = s /R
is measured
counterclockwise
from x axis.

OO y

rotating
fan

P

x

z

Circular motion of a reference 
particle P represents the angular 
orientation of the entire motion.

rotation
axis

FIGURE 12.4 The four blades

of this fan are a rigid body rotating

about a fixed axis, which coincides

with the z axis. The reference par-

ticle P in this rigid body moves

along a circle around this axis.

              



average angular velocity

instantaneous angular velocity

When a rigid body rotates, the position angle � changes in time. The body then

has an angular velocity � (the Greek letter omega).The definition of the angular veloc-

ity for rotational motion is mathematically analogous to the definition of velocity for

translational motion (see Sections 2.2 and 2.3). The average angular velocity is

defined as

(12.2)

where �� is the change in the angular position and �t the corresponding change in time.

The instantaneous angular velocity is defined as 

(12.3)

According to these definitions, the angular velocity is the rate of change of the

angle with time.The unit of angular velocity is the radian per second (1 radian/s).The

radian is the ratio of two lengths [compare Eq. (12.1)], and hence it is a pure number;

thus, 1 radian/s is the same thing as 1/s. However, to prevent confusion, it is often

useful to retain the vacuous label radian as a reminder that angular motion is involved.

Table 12.1 gives some examples of angular velocities.

If the body rotates with constant angular velocity, then we can also measure the

rate of rotation in terms of the ordinary frequency f, or the number of revolutions per

second. Since each complete revolution involves a change of � by 2� radians, the fre-

quency of revolution is smaller than the angular velocity by a factor of 2�:

(12.4)

This expresses the frequency in terms of the angular velocity. The unit of rotational

frequency is the revolution per second (1 rev/s). Like the radian, the revolution is a

pure number, and hence 1 rev/s is the same thing as 1/s. But we will keep the label rev

to prevent confusion between rev/s and radian/s.

As in the case of planetary motion, the time per revolution is called the period of

the motion. If the number of revolutions per second is f, then the time per revolution

is 1/f, that is,

(12.5)T �
1

f

f �
�

2p

� �
df

dt

� �
¢f
¢t

�
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Computer hard disk 8 � 102 radians/s Helicopter rotor 40 radians/s

Circular saw 7 � 102 radians/s Compact disc (outer track) 22 radians/s

Electric blender blades 5 � 102 radians/s Phonograph turntable 3.5 radians/s

Jet engine 4 � 102 radians/s Neutron star (pulsar) rotation 0.1 radian/s

Airplane propeller 3 � 102 radians/s Earth rotation 7.3 � 10�5 radian/s

Automobile engine 2 � 102 radians/s Earth revolution about Sun 2.0 � 10�7 radian/s

Small fan 60 radians/s

TABLE 12.1 SOME ANGULAR VELOCITIES

frequency

period of motion

              



average angular acceleration

The rotational frequency of machinery is often expressed in

revolutions per minute, or rpm. A typical ceiling fan on medium

speed rotates at 150 rpm. What is the frequency of revolution? What is the angu-

lar velocity? What is the period of the motion?

SOLUTION: Each minute is 60.0 s; hence 150 revolutions per minute amounts to

150 revolutions in 60.0 s; so

Since each revolution comprises 2� radians, the angular velocity is 

Note that here we have dropped a label rev in the third step and inserted a

label radians; as remarked above, these labels merely serve to prevent confusion,

and they can be inserted and dropped at will once they have served their purpose.

The period of the motion is 

One complete revolution takes two-fifths of a second.

If the angular velocity of a rigid body is changing, the body has an angular accel-

eration � (the Greek letter alpha). The rotational motion of a ceiling fan that is grad-

ually building up speed immediately after being turned on is an example of accelerated

rotational motion. The mathematical definition of the average angular acceleration

is, again, analogous to the definition of acceleration for translational motion. If the

angular velocity changes by �� in a time �t, then the average angular acceleration is 

(12.6)

and the instantaneous angular acceleration is 

(12.7)

Thus, the angular acceleration is the rate of change of the angular velocity. The unit

of angular acceleration is the radian per second per second, or radian per second squared

(1 radian/s2).

Since the angular velocity � is the rate of change of the angular position �

[see Eq. (12.3)], the angular acceleration given by Eq. (12.7) can also be written

(12.8)

Equations (12.3) and (12.7) give the angular velocity and acceleration of the rigid

body; that is, they give the angular velocity and acceleration of every particle in the

� �
d 2f

dt 2

� �
d�

dt

� �
¢�

¢t

T �
1

f
�

1

2.50 rev/s
� 0.400 s

� � 2p f � 2p � 2.50 rev/s � 15.7 radians/s

f �
150 rev

60.0 s
� 2.50 rev/s

EXAMPLE 2
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instantaneous angular acceleration

              



body. It is interesting to focus on one of the particles and evaluate its translational

speed and acceleration as it moves along its circular path around the axis of rotation of

the rigid body. If the particle is at a distance R from the axis of rotation (see Fig. 12.7),

then the length along the circular path of the particle is, according to the definition of

angle, Eq. (12.1),

(12.9)

Since R is a constant, the rate of change of s is entirely due to the rate of change of

�, so

(12.10)

Here ds/dt is the translational speed v with which the particle moves along its circu-

lar path, and d�/dt is the angular velocity �; hence Eq. (12.10) is equivalent to

(12.11)

This shows that the translational speed of the particle along its circular path around

the axis is directly proportional to the radius: the farther a particle in the rigid body is

from the axis, the faster it moves. We can understand this by comparing the motions

of two particles, one on a circle of large radius R1, and the other on a circle of smaller

radius R2 (see Fig. 12.8). For each revolution of the rigid body, both of these particles

complete one trip around their circles. But the particle on the larger circle has to travel

a larger distance, and hence must move with a larger speed.

For a particle at a given R, the translational speed is constant if the angular veloc-

ity is constant. This speed is the distance around the circular path (the circumference)

divided by the time for one revolution (the period), or

(12.12)

Since 2��T � 2� f � �, Eq. (12.12) can be obtained from Eq. (12.11).

If v is changing, it also follows from Eq. (12.11) that the rate of change of v is

proportional to the rate of change of �:

A rate of change of the speed along the circle implies that the particle has an acceler-

ation along the circle, called a tangential acceleration. According to the last equa-

tion, this tangential acceleration is 

(12.13)

Note that, besides this tangential acceleration directed along the circle, the parti-

cle also has a centripetal acceleration directed toward the center of the circle. From

Section 4.5, we know that the centripetal acceleration for uniform circular motion is 

(12.14)acentripetal �
v2

R

atangential � �R

dv

dt
�

d�

dt
R

v �
2pR

T
      (constant speed)

v � �R

ds

dt
�

df

dt
R

s � fR
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y

x

R

O
�

v

P

s

FIGURE 12.7 The instantaneous transla-

tional velocity of a particle in a rotating rigid

body is tangent to the circular path.

FIGURE 12.8 Several particles in a rigid

body rotating about a fixed axis and their

velocities.
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With v � �R, this becomes

(12.15)

The net translational acceleration of the particle is the vector sum of the tangen-

tial and the centripetal accelerations, which are perpendicular (see Fig. 12.9); thus, the

magnitude of the net acceleration is

(12.16)

Although we have here introduced the concept of tangential acceleration in the

context of the rotational motion of a rigid body, this concept is also applicable to the

translational motion of a particle along a circular path or any curved path. For instance,

consider an automobile (regarded as a particle) traveling around a curve. If the driver

steps on the accelerator (or on the brake), the automobile will suffer a change of speed

as it travels around the curve. It will then have both a tangential and a centripetal

acceleration.

The blade of a circular saw is initially rotating at 7000 revolu-

tions per minute.Then the motor is switched off, and the blade

coasts to a stop in 8.0 s. What is the average angular acceleration?

SOLUTION : In radians per second, 7000 rev/min corresponds to an initial angu-

lar velocity �1 � 7000 � 2� radians �min, or 

The final angular velocity is �2 � 0. Hence the average angular acceleration is 

An automobile accelerates uniformly from 0 to 80 km/h in 6.0 s.

The wheels of the automobile have a radius of 0.30 m. What is

the angular acceleration of the wheels? Assume that the wheels roll without slipping.

SOLUTION: The translational acceleration of the automobile is 

The angular acceleration of the wheel is related to this translational accel-

eration by a � �R, the same relation as Eq. (12.13). We can establish this rela-

tionship most conveniently by viewing the motion of the wheel in the reference

frame of the automobile (see Fig. 12.10). In this reference frame, the ground

is moving backward at speed v, and the bottom point of the rotating wheel is

moving backward at the tangential speed �R. Since the wheel is supposed to

 � 3.7 m/s2

 a �
v � v0

t
�

80 km/h

6.0 s
�

(80 km/h) � (1000 m/1 km) � (1 h/3600 s)

6.0 s

EXAMPLE 4

 � �91 radians/s2

 � �
¢�

¢ t
�

�2 � �1

t2 � t1

�
0 � 7.3 � 102 radians/s

8.0 s � 0

�1 �
7000 � 2p radians

60 s
� 7.3 � 102 radians/s

EXAMPLE 3

anet � 2a 
2
tangential 	 a 

2
centripetal

acentripetal � �2R
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FIGURE 12.10 Rotating wheel of the

automobile as viewed in the reference frame

of the automobile. The ground moves

toward the left at speed v.

v

R

Since wheel rolls without 
slipping, tangential speed �R 
equals the ground speed v.

�R

centripetal acceleration

FIGURE 12.9 A particle in a

rotating rigid body with an angular

acceleration has both a centripetal

acceleration acentripetal and a tangential

acceleration atangential. The net instan-

taneous translational acceleration anet

is then the vector sum of acentripetal

and atangential.
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xO

P
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Centripetal and tangential
accelerations are perpendicular.

              



move without slipping, the speed v of the ground must match the tangential

speed of the bottom point of the wheel; that is, v � �R. This proportionality

of v and � implies the same proportionality of the accelerations a and �, and

therefore establishes the relationship a � �R.

The angular acceleration of the wheel is then 

The large centrifuge shown in the chapter photo has an arm of

length 8.8 m. When rotating at 175 revolutions per minute,

what is the speed of the end of this arm, and what is the centripetal acceleration?

SOLUTION: 175 rpm amounts to 175/60 � 2.9 revolutions per second. The

corresponding angular velocity is 

According to Eq. (12.11), the speed at a radius R � 8.8 m is 

and according to Eq. (12.15), the centripetal acceleration is

This is almost 300 standard g’s!

Checkup 12.2

QUESTION 1: Consider a point P on the rim of a rotating, accelerating flywheel and

a point Q near the center. Which point has the larger instantaneous speed? The larger

instantaneous angular velocity? The larger angular acceleration? The larger tangential

acceleration? The larger centripetal acceleration?

QUESTION 2: The Earth rotates steadily around its axis once per day. Do all points

on the surface of the Earth have the same radius R for their circular motion? Do

they all have the same angular velocity �? The same speed v around the axis? The

same centripetal acceleration acentripetal? If not, which points have the largest R, �, v,

and acentripetal?

QUESTION 3: A short segment of the track of a roller coaster can be approximated by

a circle of suitable radius. If a (frictionless) roller-coaster car is passing through the

highest point of the track, is there a centripetal acceleration? A tangential accelera-

tion? What if the the roller coaster is some distance beyond the highest point?

QUESTION 4: Consider the motion of the hammer shown in Fig. 12.1. Taking into

account only the rotational motion, which end of the hammer has the larger speed v

around the axis? The larger centripetal acceleration acentripetal?

(A) Head end; head end (B) Head end; handle end 

(C) Handle end; head end (D) Handle end; handle end

✔

acentripetal � �2R � (18 radians/s)2 � 8.8 m � 2.9 � 103 m/s2

v � �R � 18 radians/s � 8.8 m � 1.6 � 102 m/s

� � 2pf � 2p � 2.9 rev/s � 18 radians/s

EXAMPLE 5

� �
a

R
�

3.7 m/s2

0.30 m
� 12 radians/s2
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12.3 MOTION WITH CONSTANT
ANGULAR ACCELERATION

We will now examine the kinematic equations describing rotational motion for the

special case of constant angular acceleration; these are mathematically analogous to the

equations describing translational motion with constant acceleration (see Section 2.5),

and they can be derived by the same methods. In the next section, we will develop an

alternative method, based on integration, for obtaining the kinematic equations describ-

ing either angular or translational motion for the general case of accelerations with

arbitrary time dependence.

If the rigid body rotates with a constant angular acceleration �, then the angular

velocity increases at a constant rate, and after a time t has elapsed, the angular veloc-

ity will attain the value

(12.17)

where �0 is the initial value of the angular velocity at t � 0.

The angular position can be calculated from this angular velocity by the arguments

used in Section 2.5 to calculate x from v [see Eqs. (2.17), (2.22), and (2.25)]. The

result is

(12.18) 

Furthermore, the arguments of Section 2.5 lead to an identity between acceleration,

position, and velocity [see Eqs. (2.20)–(2.22)]:

(12.19)

Note that all these equations have exactly the same mathematical form as the equations

of Section 2.5, with the angular position � taking the place of the position x, the angu-

lar velocity � taking the place of v, and the angular acceleration � taking the place of

a. This analogy between rotational and translational quantities can serve as a useful

mnemonic for remembering the equations for rotational motion. Table 12.2 displays

analogous equations.

�(f � f0) � 1
2 (�2 � �2

0)

f � f0 	 �0t 	 1
2 �t 2

� � �0 	 �t
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S

S

S

S

S �(f � f0) � 1
2 (�

2 � �2
0)a (x � x0) � 1

2 (v2 � v2
0)

f � f0 	 �0t 	 1
2 �t 2x � x0 	 v0t 	 1

2 at 2

� � �0 	 �tv � v0 	 at

� �
d�

dt
a �

dv

dt

� �
df

dt
v �

dx

dt

TABLE 12.2

constant angular acceleration: 
�, �, and t

constant angular acceleration: 
�, �, and �

ANALOGIES BETWEEN TRANSLATIONAL
AND ROTATIONAL QUANTITIES

constant angular acceleration: 
�, �, and t

              



The cable supporting an elevator runs over a wheel of radius

0.36 m (see Fig. 12.11). If the elevator begins from rest and

ascends with an upward acceleration of 0.60 m/s2, what is the angular accelera-

tion of the wheel? How many turns does the wheel make if this accelerated motion

lasts 5.0 s? Assume that the cable runs over the wheel without slipping.

SOLUTION: If there is no slipping, the speed of the cable must always coincide

with the tangential speed of a point on the rim of the wheel. The acceleration

a � 0.60 m/s2 of the cable must then coincide with the tangential acceleration of

a point on the rim of the wheel:

(12.20)

where R � 0.36 m is the radius of the wheel. Hence 

According to Eq. (12.18), the angular displacement in 5.0 s is 

Each revolution comprises 2� radians; thus, the number of turns the wheel makes is 

�number of turns� �
f � f0

2p
�

21 radians

2p
� 3.3 revolutions

 � 21 radians 

 � 0 	 1
2 � 1.7 radians/s2 � (5.0 s)2

f � f0 � �0t 	 1
2 
�t 

2 

� �
a

R
�

0.60 m/s2

0.36 m
� 1.7 radians/s2

a � atangential � �R

EXAMPLE 6
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FIGURE 12.11 Elevator supported by

a cable that runs over a rotating wheel.

a

0.36 m Upward acceleration
a equals tangential
acceleration of wheel.

PROBLEM-SOLVING TECHNIQUES ANGULAR MOTION

The solution of kinematic problems about angular velocity

and angular acceleration involves the same techniques as the

problems about translational velocity and translational accel-

eration in Chapter 2. You might find it useful to review the

procedures suggested on page 50.

Sometimes a problem contains a link between a rotational

motion and a translational motion, such as the link between

the rotational and translational motions of the wheels of an

automobile (see Example 4) or the link between the transla-

tional motion of the elevator cable and the rotational motion

of the wheel over which it runs (Example 6). If the body in

contact with the rim of the wheel does not slip, the translational

speed of this body equals the tangential speed of the contact

point at the rim of the wheel; that is, v � �R and a � �R.

Keep in mind that although some of the equations in this

chapter remain valid if the angular quantities are expressed

in degrees, any equation that contains both angular quanti-

ties and distances (e.g., v � �R) is valid only if the angular

quantity is expressed in radians. To prevent mistakes, it is

safest to express all angular quantities in radians; if degrees

are required in the answer, convert from radians to degrees

after completing your calculations.

Checkup 12.3

QUESTION 1: Consider a point on the rim of the wheel shown in Fig. 12.11, (instan-

taneously) at the top of the wheel. What is the direction of the centripetal acceleration

of this point? The tangential acceleration?

✔

              



angular velocity for time-dependent 
angular acceleration 

angular position for time-dependent 
angular velocity

QUESTION 2: The wheel of a bicycle rolls on a flat road. Is the angular velocity con-

stant if the translational velocity of the bicycle is constant? Is the angular acceleration

constant if the translational acceleration of the bicycle is constant?

QUESTION 3: A grinding wheel accelerates uniformly for 3 seconds after being turned

on. In the first second of motion, the wheel rotates 5 times. In the first two seconds of

motion, the total number of revolutions is:

(A) 6 (B) 10 (C) 15 (D) 20 (E) 25

12.4 MOTION WITH T IME-DEPENDENT
ANGULAR ACCELERATION

The equations of angular motion for the general case when the angular acceleration is

a function of time are analogous to the corresponding equations of translational motion

discussed in Section 2.7. Such equations are solved by integration. Integral calculus

was discussed in detail in Chapter 7, and we now revisit the technique of integration

of the equations of motion for the case of angular motion. To see how we can obtain

kinematic solutions for nonconstant accelerations, consider the angular acceleration

� � d��dt. We rearrange this relation and obtain

We can integrate this expression directly, for example, from the initial value of the angu-

lar velocity �0 at time t � 0, to some final value � at time t (the integration variables

are indicated by primes to distinguish them from the upper limits of integration):

(12.21)

This gives the angular velocity as a function of time:

(12.22)

Equation (12.22) enables us to calculate the angular velocity as a function of time for

any angular acceleration that is a known function of time.

The angular position � can be obtained in a similar manner:

(12.23) f � f0 � �
t

0

�dt


 �
f

f0

df
 � �
t

0

�dt


 df � �dt

� � �0 	 �
t

0

�
 
dt


 � � �0 � �
t

0

� dt


 �
�

�0

d�
 � �
t

0

�
 
dt


d� � � dt

376 CHAPTER 12 Rotation of a Rigid Body

              



In the special case of constant angular acceleration �, Eq. (12.22) gives us

� � �0 	 �t, which agrees with our previous result, Eq. (12.17). If we insert this into

Eq. (12.23), we obtain ∫t
0 which agrees with

our previous Eq. (12.18).

In the general case of a time-dependent angular acceleration �, we proceed in the

same way: first, use Eq. (12.22) to find � as a function of time, and then insert this

function into Eq. (12.23) to find the angular position as a function of time, as in the

following example.

When turned on, a motor rotates a circular saw wheel, begin-

ning from rest, with an angular acceleration that has an initial

value �0 � 60 radians/s2 at t � 0 and decreases to zero acceler-

ation during the interval 0 � t � 3.0 s according to

After t � 3.0 s, the motor maintains the wheel’s angular velocity at a constant

value. What is this final angular velocity? In the process of “getting up to speed,”

how many revolutions occur?

SOLUTION: The angular acceleration � is given as an explicit function of time. Since

we are beginning from rest, the initial angular velocity is �0 � 0, so Eq. (12.22) gives

� as a function of t:

(12.24)

where we have used the property that the integral of the sum is the sum of the

integrals, and that ∫tn dt � tn+1�(n 	 1). At t � 3.0 s, this angular velocity reaches

its final value of

To obtain the number of revolutions during the time of acceleration, we can cal-

culate the change in angular position and divide by 2�. To do so, we must insert

the time-dependent angular velocity obtained in Eq. (12.24) into Eq. (12.23):

 � �0 a t2

2
�

t3

18 s
b

 � �0 ¢� t

0

t
 dt
 �
1

6.0 s �
t

0

t

2
dt
 b � �0 a t
2

2
 `

t

0

�
1

6.0 s
 
t


3

3
`
t

0

b

  f � f0 � �
t

0

 � dt
 � �
t

0

�0 a t
 �
t
2

6.0 s
b dt


� � 60 radians>s2 � a3.0 s �
(3.0 s)2

6.0 s
b � 90 radians>s

 � �0 a t �
t 

2

6.0 s
b

 � �0 ¢� t

0

dt
 �
1

3.0 s �
t

0

t
dt
 b � �0 a t
 `
t

0

�
1

3.0 s
 
t


2

2
`
t

0

b

  � � �0 	 �
t

0

�
 
dt
 � 0 	 �

t

0

�0 a1 �
t


3.0 s
b  dtœ

� � �0 a1 �
t

3.0 s
b

EXAMPLE 7

(�0 	 �t)dt � �0 t 	 1
2 �t 

2,f � f0 � 
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Evaluating this expression at t � 3.0 s, we find 

Hence the number of revolutions during the acceleration is 

(12.25)

As discussed in Section 2.7, similar integration techniques can be applied to deter-

mine any component of the translational velocity and the position when the time-

dependent net force and, thus, the time-dependent translational acceleration are known.

In Section 2.7 we also examined the case when the acceleration is a known function

of the velocity; in that case, integration provides t as a function of v (and v0), which can

sometimes be inverted to find v as a function of t.

We saw in Chapters 7–9 that a conservation-of-energy approach is often the eas-

iest way to determine the motion when the forces are known as a function of position.

Now we have seen that direct integration of the equations of motion can be applied when

the translational or angular acceleration is known as a function of time or of velocity.

Checkup 12.4

QUESTION 1: Beginning from rest at t � 0, the angular velocity of a merry-go-round

increases in proportion to the square root of the time t. By what factor is the angular

position of the merry-go-round at t � 4 s greater than it was at t � 1 s?

QUESTION 2: A car on a circular roadway accelerates from rest beginning at t � 0, so

that its angular acceleration increases in proportion to the time t. With what power of

time does its centripetal acceleration increase?

(A) t (B) t2 (C) t3 (D) t4 (E) t5

12.5 KINET IC ENERGY OF ROTATION;
MOMENT OF INERT IA

A rigid body is a system of particles, and as for any system of particles, the total kinetic

energy of a rotating rigid body is simply the sum of the individual kinetic energies of

all the particles (see Section 10.4). If the particles in the rigid body have masses m1, m2,

m3, . . . and speeds v1, v2, v3, . . . , then the kinetic energy is

(12.26)

In a rigid body rotating about a given axis, all the particles move with the same angu-

lar velocity � along circular paths. By Eq. (12.11), the speeds of the particles along

their paths are proportional to their radial distances:

v1 � R1�, v2 � R2�, v3 � R3�, � � � (12.27)

and hence the total kinetic energy is

K � 1
2m1R2

1�
2 	 1

2 m2R2
2�2 	 1

2 m3R2
3�

2 	 � � �

K � 1
2m1v 

2
1 	 1

2m2v 2
2 	 1

2m3v 3
2 	 � � �

✔

[number of revolutions] �
f � f0

2p
�

180 radians

2p
� 29 revolutions

f � f0 � 60 radians>s2 � a (3.0 s)2

2
�

(3.0 s)3

18 s
b � 180 radians
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We can write this as 

(12.28)

where the quantity 

(12.29)

is called the moment of inertia of the rotating body about the given axis. The SI unit

of moment of inertia is kg�m2.

Note that Eq. (12.28) has a mathematical form reminiscent of the familiar expres-

sion for the kinetic energy of a single particle—the moment of inertia replaces

the mass, and the angular velocity replaces the translational velocity. As we will see in

the next chapter, this analogy between moment of inertia and mass is of general valid-

ity. The moment of inertia is a measure of the resistance that a body offers to changes in its rota-

tional motion, just as mass is a measure of the resistance that a body offers to changes

in its translational motion.

Equation (12.29) shows that the moment of inertia—and consequently the kinetic

energy for a given value of �—is large if most of the mass of the body is at a large dis-

tance from the axis of rotation. This is very reasonable: for a given value of �, particles

at large distance from the axis move with high speeds, and therefore have large kinetic

energies.

A 50-kg woman and an 80-kg man sit on a massless seesaw

separated by 3.00 m (see Fig. 12.12). The seesaw rotates about

a fulcrum (the point of support) placed at the center of mass of the system; the

center of mass is 1.85 m from the woman and 1.15 m from the man, as obtained

in Example 4 of Chapter 10. If the (instantaneous) angular velocity of the seesaw

is 0.40 radian/s, calculate the kinetic energy. Treat both masses as particles.

SOLUTION: The moment of inertia for particles rotating about an axis depends

only on the masses and their distances from the axis:

(12.30)

The kinetic energy for the rotational motion is

(12.31)

This kinetic energy could equally well have been obtained by first calculating the

individual speeds of the woman and the man (v1 � R1�, v2 � R2�) and then

adding the corresponding individual kinetic energies.

If we regard the mass of a solid body as continuously distributed throughout its

volume, then we can calculate the moment of inertia by the same method we used for

the calculation of the center of mass: we subdivide the body into small mass elements

and add the moments of inertia contributed by all these small amounts of mass. This

leads to an approximation for the moment of inertia,

 � 1
2 � 280 kg �m2 � (0.40  radian/s)2 � 22  J

 K � 1
2 I�2

 � 50 kg � (1.85 m)2 	 80 kg � (1.15 m)2 � 280 kg�m2

 I � m1R2
1 	 m2R2

2

EXAMPLE 8

1
2 mv2

I � m1R2
1 	 m2R2

2 	 m3R2
3 	 � � �

K � 1
2 I�2
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O

Seesaw rotates 
about fulcrum.

Woman and man are
different distances from
axis of rotation.

FIGURE 12.12 Woman and man on a

seesaw.

kinetic energy of rotation

moment of inertia

              



(12.32)

where Ri is the radial distance of the mass element �mi from the axis of rotation. In

the limit �mi S 0, this approximation becomes exact, and the sum becomes an integral:

(12.33)

In general, the calculation of the moment of inertia requires the evaluation of the

integral (12.33). However, in a few exceptionally simple cases, it is possible to find the

moment of inertia without performing this integration. For example, if the rigid body

is a thin hoop (see Fig. 12.13) or a thin cylindrical shell (see Fig. 12.14) of radius R0

rotating about its axis of symmetry, then all of the mass of the body is at the same dis-

tance from the axis of rotation—the moment of inertia is then simply the total mass

M of the hoop or shell multiplied by its radius R0 squared,

If all of the mass is not at the same distance from the axis of rotation, then we must per-

form the integration (12.33); when summing the individual contributions, we usually

write the small mass contribution as a mass per unit length times a small length, or as

a mass per unit area times a small area, as in the following examples.

Find the moment of inertia of a uniform thin rod of length l and

mass M rotating about an axis perpendicular to the rod and

through its center.

SOLUTION: Figure 12.15 shows the rod lying along the x axis; the axis of rotation

is the z axis. The rod extends from x � �l �2 to x � 	l �2. Consider a small slice

dx of the rod. The amount of mass within this slice is proportional to the length

dx, and so is equal to the mass per unit length times this length:

The square of the distance of the slice from the axis of rotation is R2 � x2, so

Eq. (12.33) becomes

(12.34)

 �
M

l
�

2(l/2)3

3
�

1

12
  M l 2

 I � �R2 dm � �
	l>2

�l>2
x2 M

l
 dx �

M

l
  a x3

3
b `

�l >2

	l >2

dm �
M

l
  dx

EXAMPLE 9

I � M R2
0

I � �R2 dm

I �a
i

R2
i   ¢mi
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z

R0

All of mass of hoop is at same
radial distance R0 from axis.

FIGURE 12.13 A thin hoop rotating

about its axis of symmetry.

FIGURE 12.14 A thin cylindrical shell

rotating about its axis of symmetry.

FIGURE 12.15 A thin rod

rotating about its center.

R0

zAll of mass of
cylindrical shell
is at same radial
distance R0 from axis.

l

x

O

dx

z

A slice of width dx
is located at distance
x from rotation axis.

Slice has a fraction dm/M
of total mass equal to its
fraction dx/l of total length.

Rod extends
from x = –l/2
to x = +l/2.

              



Repeat the calculation of the preceding example for an axis of

rotation through one end of the rod.

SOLUTION: Figure 12.16 shows the rod and the axis of rotation.The rod extends

from x � 0 to x � l. Hence, instead of Eq. (12.34) we now obtain 

(12.35)

Find the moment of inertia of a wide ring, or annulus, made

of sheet metal of inner radius R1, outer radius R2, and mass M

rotating about its axis of symmetry (see Fig. 12.17).

SOLUTION: The annulus can be regarded as made of a large number of thin con-

centric hoops fitting around one another. Figure 12.17 shows one such hoop, of

radius R and width dR. All of the mass dm of this hoop is at the same radius R

from the axis of rotation; hence the moment of inertia of the hoop is 

dI � R2dm

The area dA of the hoop is the product of its length (the perimeter 2�R) and its

width dR, so dA �2�R dR. The mass dm of the hoop equals the product of this

area and the mass per unit area of the sheet metal. Since the total area of the annu-

lus is , the mass per unit area is The mass contributed

by each hoop is the mass per unit area times its area:

(12.36)

We sum the contributions dI from R � R1 to R � R2; hence 

(12.37)

COMMENT: Note that for R1 � 0, this becomes , which is the moment

of inertia of a disk (see Table 12.3). And for R1 � R2, it becomes which

is the moment of inertia of a hoop. Note that the result (12.37) for a sheet also

applies to a thick annulus or a thick cylindrical shell (rotating about the axis of

symmetry).

Comparison of Eqs. (12.34) and (12.35) for the moment of inertia of a rod makes

it clear that the value of the moment of inertia depends on the location of the axis of

rotation. The moment of inertia is small if the axis passes through the center of mass,

and large if it passes through the end of the rod. In the latter case, more of the mass

of the rod is at a larger distance from the axis of rotation, which leads to a larger

moment of inertia.

I � MR2
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I � MR2
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FIGURE 12.16 A thin rod rotating

about its end.

FIGURE 12.17 An annulus of sheet

metal rotating about its axis of symmetry.

The annulus can be regarded as made of a

large number of concentric hoops. The

hoop shown in the figure has radius R and

width dR.

l

x

O

dx

z

Now rod extends
from x = 0 to x = l.

R1

y
O

x

z

R

dR

R2

Area of each hoop is product
of its circumference 2�R and
its width dR.

Each hoop has a fraction dm/M
of the total mass equal to its
fraction of total area �(R 22  – R 21  ).

              



It is possible to prove a theorem that relates the moment of inertia ICM about an

axis through the center of mass to the moment of inertia I about a parallel axis through

some other point. This theorem, called the parallel-axis theorem, asserts that

(12.38)

where M is the total mass of the body and d the distance between the two axes. We will

not give the proof, but merely check that the theorem is consistent with our results for

the moments of inertia of the rod rotating about an axis through the center

see Eq. (12.34)] and an axis through an end see Eq. (12.35)].

In this case, d � l/2, and the parallel-axis theorem asserts 

[I � 1
3 Ml 2;[ICM � 1

12 Ml2;

I � I CM 	 Md 2
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parallel-axis theorem

SOME MOMENTS OF INERTIA

BODY MOMENT OF INERTIA

Thin hoop about symmetry axis

Thin hoop about diameter

Disk or cylinder about symmetery axis

Cylinder about diameter through center

Thin rod about perpendicular axis through center

Thin rod about perpendicular axis through end

Sphere about diameter

Thin spherical shell about diameter 2
3MR2

2
5MR2

1
3 Ml 

2

1
12 Ml 2

1
4 MR 2 	 1

12 Ml 2

1
2 MR2

1
2 MR2

MR 2

TABLE 12.3

R

R

l

R

R

R

l

l

RR

              



(12.39)

which is identically true.

Note that it is a corollary of Eq. (12.38) that the moment of inertia about an axis

passing through the center of mass is always smaller than that about any other paral-

lel axis.

Table 12.3 lists the moments of inertia of a variety of rigid bodies about an axis

through their center of mass; all the bodies are assumed to have uniform density.

The large centrifuge shown in the chapter photo carries the

payload in a chamber in one arm and counterweights at the

end of the opposite arm. The mass distribution depends on the choice of payload

and the choice of counterweights. Figure 12.18 is a schematic diagram of the mass

distribution attained with a particular choice of payload and counterweights. The

payload arm (including the payload) has a mass of 1.8 � 103 kg uniformly distrib-

uted over a length of 8.8 m. The counterweight arm has a mass of 1.1 � 103 kg

uniformly distributed over a length of 5.5 m, and it carries a counterweight of

8.6 � 103 kg at its end. (a) What is the moment of inertia of the centrifuge for this

mass distribution? (b) What is the rotational kinetic energy when the centrifuge

is rotating at 175 revolutions per minute?

EXAMPLE 12

1

3
Ml 2 �

1

12
Ml 2 	 M a l

2
b 2
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8.8 m

1.8 � 103 kg
1.1 � 103 kg

counterweight

5 5 m

8.6 � 103 kg

FIGURE 12.18 Centrifuge mass distribution.

SOLUTION: (a) The total moment of inertia is the sum of the moments of iner-

tia of a rod of mass m1 � 1.8 � 103 kg, length l1 � 8.8 m rotating about its end; a

second rod of mass m2 � 1.1 � 103 kg, length l2 � 5.5 m also rotating about its end;

and a mass of m � 8.6 � 103 kg at a radial distance of R � 5.5 m. The moments

of inertia of the rods are given by Eq. (12.35), and the moment of inertia of the

counterweight is mR2. So the total moment of inertia is

(b) At 175 revolutions per minute, the angular velocity is � � 18 radians/s

(see Example 5), and the rotational kinetic energy is 

 � 5.2 � 107
  J

 � 1
2 � 3.2 � 105 kg �m2 � (18 radians/s)2

 K � 1
2 I�2

 � 3.2 � 105
  kg �m2

 	 8.6 � 103
  kg � (5.5 m)2

 � 1
3 � 1.8 � 103 kg � (8.8 m)2 	 1

3 � 1.1 � 103 kg � (5.5 m)2

 I � 1
3 m1l 2

1 	 1
3 m2 l 2

2 	 mR2

Concepts
in

Context

              



Checkup 12.5

QUESTION 1: What is the moment of inertia of a rod of mass M bent into an arc of a

circle of radius R when rotating about an axis through the center and perpendicular to

the circle (see Fig. 12.19a)?

QUESTION 2: Consider a rod rotating about (a) an axis along the rod, (b) an axis per-

pendicular to the rod through its center, and (c) an axis perpendicular to the rod through

its end. For which axis is the moment of inertia largest? Smallest?

QUESTION 3: What is the moment of inertia of a square plate of mass M and dimen-

sion L � L rotating about an axis along one of its edges (see Fig. 12.19b)? What is

the moment of inertia if this square plate rotates about an axis through its center par-

allel to an edge?

QUESTION 4: A dumbbell consists of two particles of mass m each attached to the

ends of a rigid, massless rod of length l (Fig. 12.19c). Assume the particles are point

particles. What is the moment of inertia of this rigid body when rotating about an

axis through the center and perpendicular to the rod? When rotating about a parallel

axis through one end? Are these moments of inertia consistent with the parallel-axis

theorem?

QUESTION 5: According to Table 12.3, the moment of inertia of a hoop about its sym-

metry axis is ICM � MR2. What is the moment of inertia if you twirl a large hoop

around your finger, so that in essence it rotates about a point on the hoop, about an

axis parallel to the symmetry axis?

(A) 5MR2 (B) 2MR2 (C) 

(D) MR2 (E) 12  MR2.

3
2 MR2.

✔
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z

SUMMARY

FIGURE 12.19 (a) A rod bent into an

arc of a circle of radius R, rotating about

its center of curvature. (b) A square plate

rotating about an axis along one edge.

(c) A dumbbell.

PROBLEM-SOLVING TECHNIQUES Angular Motion (page 375)

DEFINITION OF ANGLE (in radians)
(12.1)f �

[arc length]

[radius]
�

s

R

y

x

sR

O
�

AVERAGE ANGULAR VELOCITY

ANGLE CONVERSIONS 1 revolution � 2p  radians � 360�

(12.2)� �
¢f
¢t

INSTANTANEOUS ANGULAR VELOCITY
(12.3)� �

df

dt

(a)

(b)

(c)
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PERIOD OF MOTION

AVERAGE ANGULAR ACCELERATION

INSTANTANEOUS ANGULAR ACCELERATION

SPEED OF PARTICLE ON ROTATING BODY

FREQUENCY
(12.4)f �

�

2p

(12.5)T �
1

f
 �

2p

�

(12.6)� �
¢�

¢t

(12.7)� �
d�

dt

(12.11)v � �R

ACCELERATION OF PARTICLE ON ROTATING BODY (12.13)

(12.15)  acentripetal � �2R

atangential � �R,  

anet

y

xO

P

atan

acent

MOTION WITH CONSTANT ANGULAR 
ACCELERATION

(12.17)

(12.18)

(12.19) �(f � f0) � 1
2 (�2 � �2

0)

 f � f0 	 �0t 	 1
2 
�t 

2

 � � �0 	 �t

MOTION WITH TIME-DEPENDENT ANGULAR 
ACCELERATION

 f � f0 	 �
t

0

� dt


 � � �0 	 �
t

0

�dt
 (12.22)

(12.23)

MOMENT OF INERTIA

where Ri is the radial distance of mi from the

axis of rotation.

(12.29)I � m1R2
1 	 m2R2

2 	 m3 R3
3 	 � � �

y

x

R1

v1

v2

v3

R2

R3R3

O
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MOMENT OF INERTIA OF RIGID BODY
(see also Table 12.3) 

where R is the radial distance of the mass

element dm from the axis of rotation; for

uniformly distributed mass, dm is given by

QUEST IONS FOR DISCUSSION

1. A spinning flywheel in the shape of a disk suddenly shatters

into many small fragments. Draw the trajectories of a few of

these small fragments; assume that the fragments do not inter-

fere with each other.

2. You may have noticed that in some old movies the wheels of

moving carriages or stagecoaches seem to rotate backwards.

How does this come about?

3. Relative to an inertial reference frame, what is your angular

velocity right now about an axis passing through your center

of mass?

4. Consider the wheel of an accelerating automobile. Draw the

instantaneous acceleration vectors for a few points on the rim

of the wheel.

5. The hands of a watch are small rectangles with a common axis

passing through one end. The minute hand is long and thin;

the hour hand is short and thicker. Assume both hands have

the same mass. Which has the greater moment of inertia?

Which has the greater kinetic energy and angular momentum?

6. What configuration and what axis would you choose to give

your body the smallest possible moment of inertia? The greatest?

7. About what axis through the center of mass is the moment of

inertia of this book largest? Smallest? (Assume the book is

closed.)

8. A circular hoop made of thin wire has a radius R and mass M.

About what axis perpendicular to the plane of the hoop must

you rotate this hoop to obtain the minimum moment of inertia?

What is the value of this minimum?

9. Automobile engines and other internal combustion engines

have flywheels attached to their crankshafts. What is the

purpose of these flywheels? (Hint: Each explosive combustion

in one of the cylinders of such an engine gives a sudden push

to the crankshaft. How would the crankshaft respond to this

push if it had no flywheel?)

10. Suppose you pump a mass M of seawater into a pond on a hill

at the equator. How does this change the moment of inertia of

the Earth?

2. Quito is on the Earth’s equator; New York is at latitude 41�

north. What is the angular velocity of each city about the

Earth’s axis of rotation? What is the linear speed of each?

3. An automobile has wheels with a radius of 30 cm. What are

the angular velocity (in radians per second) and the frequency

(in revolutions per second) of the wheels when the automobile

is traveling at 88 km/h?

PROBLEMS

12.2 Rota t ion About  A F ixed Axis †

1. The minute hand of a wall clock has a length of 20 cm. What

is the angular velocity of this hand? What is the speed of the

tip of this hand? 

† For help, see Online Concept Tutorial 15 at www.wwnorton.com/physics 

 dm �
M

[length]
dx   

   dm �
M

[area]
dA ,

   dm �
M

[volume]
dV

 I � �R2dm

(12.33)

KINETIC ENERGY OF ROTATION

PARALLEL-AXIS THEOREM

where M is the total mass and d is the distance from CM axis.
(12.38)I � ICM 	 Md 2

(12.28)K � 1
2 I�2
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4. In an experiment at the Oak Ridge Laboratory, a carbon fiber

disk of 0.70 m in diameter was set spinning at 37 000 rev/min.

What was the speed at the edge of this disk?

5. The rim of a phonograph record is at a distance of 15 cm from

the center, and the rim of the paper label on the record is at a

distance of 5 cm from the center.

(a) When this record is rotating at rev/min, what is the

translational speed of a point on the rim of the record?

The translational speed of a point on the rim of the paper

label?

(b) What are the centripetal accelerations of these points?

6. An electric drill rotates at 5000 rev/min. What is the frequency

of rotation (in rev/s)? What is the time for one revolution?

What is the angular velocity (in radians/s)?

7. An audio compact disk (CD) rotates at 210 rev/min when

playing an outer track of radius 5.8 cm. What is the angular

velocity in radians/s? What is the tangential speed of a point

on the outer track? Because the CD has the same linear 

density of bits on each track, the drive maintains a constant

tangential speed. What is the angular velocity (in radians/s)

when playing an inner track of radius 2.3 cm? What is the

corresponding rotational frequency (in rev/s)?

8. An automobile travels one-fourth of the way around a traffic

circle in 4.5 s. The diameter of the traffic circle is 50 m. The

automobile travels at constant speed. What is that speed?

What is the angular velocity in radians/s?

9. When a pottery wheel motor is switched on, the wheel accel-

erates from rest to 90 rev/min in 5.0 s. What is its angular

velocity at t � 5.0 s (in radians/s)? What is the linear speed 

of a piece of clay 10 cm from the center of the wheel at 

t � 5.0 s? What is its average angular acceleration during the

acceleration?

10. A grinding wheel of radius 6.5 cm accelerates from rest to its

operating speed of 3450 rev/min in 1.6 s. When up to speed,

what is its angular velocity in radians/s? What is the linear

speed at the edge of the wheel? What is its average angular

acceleration during this 1.6 s? When turned off, it decelerates

to a stop in 35 s. What is its average angular acceleration

during this time?

11. When drilling holes, manufacturers stay close to a recom-

mended linear cutting speed in order to maintain efficiency

while avoiding overheating. The rotational speed of the drill

thus depends on the diameter of the hole. For example, rec-

ommended linear cutting speeds are typically 20 m/min for

steel and 100 m/min for aluminum. What is the corresponding

rotational rate (in rev/s) when drilling a 3.0-mm-diameter

hole in aluminum? When drilling a 2.5-cm-diameter hole 

in steel?

12. An electric blender accelerates from rest to 500 radians/s in

0.80 s. What is the average angular acceleration? What is the

corresponding average tangential acceleration for a point on

the tip of a blender blade a distance 3.0 cm from the axis? If

this point has that tangential acceleration when the blender’s

331
3

angular velocity is 50 radians/s, what is the corresponding

total acceleration of the point?

13. The angular position of a ceiling fan during the first two sec-

onds after start-up is given by � � C[t 2 � (t 3/4 s)], where

C � 20/s2 and t is in seconds. What are the angular position,

angular frequency, and angular acceleration at t � 0 s? At

t � 1.0 s? At t � 2.0 s?

*14. An aircraft passes directly over you with a speed of 900 km/h

at an altitude of 10 000 m. What is the angular velocity of the

aircraft (relative to you) when directly overhead? Three

minutes later?

*15. The outer edge of the grooved area of a long-playing record is

at a radial distance of 14.6 cm from the center; the inner edge

is at a radial distance of 6.35 cm. The record rotates at 

rev/min. The needle of the pickup arm takes 25 min to play

the record, and in that time interval it moves uniformly and

radially from the outer edge to the inner edge. What is the radial

speed of the needle? What is the speed of the outer edge relative

to the needle? What is the speed of the inner edge relative to

the needle?

*16. Consider the phonograph record described in Problem 15. What

is the total length of the groove in which the needle travels?

12.3 Mot ion wi th  Cons tant  
Angular  Acce lera t ion

17. The blade of a circular saw of diameter 20 cm accelerates uni-

formly from rest to 7000 rev/min in 1.2 s. What is the angular

acceleration? How many revolutions will the blade have made

by the time it reaches full speed?

18. A large ceiling fan has blades of radius 60 cm. When you switch

this fan on, it takes 20 s to attain its final steady speed of

1.0 rev/s. Assume a constant angular acceleration.

(a) What is the angular acceleration of the fan?

(b) How many revolutions does it make in the first 20 s?

(c) What is the distance covered by the tip of one blade in the

first 20 s?

19. When you switch on a PC computer, the disk in the disk drive

takes 5.0 s to reach its final steady speed of 7200 rev/min.

What is the average angular acceleration?

20. When you turn off the motor, a phonograph turntable initially

rotating at rev/min makes 25 revolutions before it stops.

Calculate the angular deceleration of this turntable; assume it

is constant.

21. A large merry-go-round rotates at one revolution each

9.0 seconds. When shut off, it decelerates uniformly to a stop

in 16 s. What is the angular acceleration? How many revolu-

tions does the merry-go-round make during the deceleration?

22. A cat swipes at a spool of thread, which then rolls across the

floor with an initial speed of 1.0 m/s. The spool decelerates

uniformly to a stop 3.0 m from its initial position. The spool

has a radius of 1.5 cm and rolls without slipping. What is the

331
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initial angular velocity? Through what total angle does the

spool rotate while slowing to a stop? What is the angular

acceleration during this motion?

23. If you lift the lid of a washing machine during the rapid

spin–dry cycle, the cycle stops (for safety), typically after 5.0

revolutions. If the clothes are spinning at 6.0 rev/s initially,

what is their constant angular acceleration during the slowing

motion? How long do they take to come to a stop?

24. A toy top initially spinning at 30 rev/s slows uniformly to a

stop in 25 seconds. What is the angular acceleration during

this motion? Through how many revolutions does the top turn

while slowing to a stop?

*25. The rotation of the Earth is slowing down. In 1977, the Earth

took 1.01 s longer to complete 365 rotations than in 1900.

What was the average angular deceleration of the Earth in the

time interval from 1900 to 1977?

*26. An automobile engine accelerates at a constant rate from

200 rev/min to 3000 rev/min in 7.0 s and then runs at con-

stant speed.

(a) Find the angular velocity and the angular acceleration

at t � 0 (just after acceleration begins) and at t � 7.0 s

(just before acceleration ends).

(b) A flywheel with a radius of 18 cm is attached to the shaft

of the engine. Calculate the tangential and the centripetal

acceleration of a point on the rim of the flywheel at the

times given above.

(c) What angle does the net acceleration vector make with

the radius at t � 0 and at t � 7.0 s? Draw diagrams show-

ing the wheel and the acceleration vector at these times.

12.4 Mot ion wi th  T ime-Dependent  
Angular  Acce lera t ion

27. A disk has an initial angular velocity of �0 � 8.0 radians/s. At

t � 0, it experiences a time-dependent angular acceleration

given by � � Ct2, where C � 0.25 radian/s4. What is the

instantaneous angular velocity at t � 3.0 s? What is the

change in angular position between t � 0 and t � 1.0 s? 

28. A rigid body is initially at rest. Beginning at t � 0, it begins

rotating, with an angular acceleration given by � �

�0 {1 � [t2�(4 s2)]} for 0 � t � 2.0 s and � � 0 thereafter.

The initial value is �0 � 20 radians/s2. What is the body’s

angular velocity after 1.0 s? After a long time? How many rev-

olutions have occurred after 1.0 s?

*29. A sphere is initially rotating with angular velocity �0 in a vis-

cous liquid. Friction causes an angular deceleration that is pro-

portional to the instantaneous angular velocity, � � � A�,

where A is a constant. Show that the angular velocity as a

function of time is given by 

� � �0 e�At

12.5 K ine t i c  Energy of  Rota t ion;  
Moment  o f  Iner t ia

30. Find the moment of inertia of an orange of mass 300 g and

diameter 9.0 cm. Treat the orange as a uniform sphere.

31. The original Ferris wheel built by George Ferris (see

Fig. 12.20) had a radius of 38 m and a mass of 1.9 � 106 kg.

Assume that all of the mass of the wheel was uniformly 

distributed along its rim. If the wheel was rotating at 

0.050 rev/min, what was its kinetic energy?
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FIGURE 12.20 The original Ferris wheel.

32. What is the moment of inertia of a broomstick of mass

0.50 kg, length 1.5 m, and diameter 2.5 cm about its longitu-

dinal axis? About an axis at right angles to the broomstick,

passing through its center?

33. According to spectroscopic measurements, the moment of

inertia of an oxygen molecule about an axis through the center

of mass and perpendicular to the line joining the atoms is

1.95 � 10�46 kg�m2. The mass of an oxygen atom is 2.66 �

10�26 kg. What is the distance between the atoms? Treat the

atoms as pointlike particles.

34. The moment of inertia of the Earth about its polar axis is

0.331MERE
2 , where ME is the mass and RE the equatorial

radius. Why is the moment of inertia smaller than that of a

sphere of uniform density? What would the radius of a sphere

of uniform density have to be if its mass and moment of iner-

tia are to coincide with those of the Earth?

35. Problem 41 in Chapter 10 gives the dimensions of a molecule of

nitric acid (HNO3). What is the moment of inertia of this mol-

ecule when rotating about the symmetry axis passing through

the H, O, and N atoms? Treat the atoms as pointlike particles.

              



36. The water molecule has a shape shown in Fig. 12.21.The

distance between the oxygen and the hydrogen atoms is d, and

the angle between the hydrogen atoms is �. From spectroscopic

investigations it is known that the moment of inertia of the mol-

ecule is 1.93 � 10�47 kg�m
2 for rotation about the axis AA
 and

1.14 � 10�47 kg.m2 for rotation about the axis BB
. From this

information and the known values of the masses of the atoms,

determine the values of d and �.Treat the atoms as pointlike.

*45. Suppose that a supertanker transports 4.4 � 108 kg of oil from

a storage tank in Venezuela (latitude 10� north) to a storage

tank in Holland (latitude 53� north). What is the change of

the moment of inertia of the Earth–oil system?

*46. A dumbbell consists of two uniform spheres of mass M and

radius R joined by a thin rod of mass m. The distance between

the centers of the sphers is l (Fig. 12.22). What is the moment

of inertia of this device about an axis through the center of the

rod perpendicular to the rod? About an axis along the rod?

Problems 389

lR

R

FIGURE 12.22 A dumbbell.

37. What is the moment of inertia (about the axis of symmetry) of

a bicycle wheel of mass 4.0 kg, radius 0.33 m? Neglect the

mass of the spokes.

38. An airplane propeller consists of three radial blades, each of

length 1.2 m and mass 6.0 kg. What is the kinetic energy of

this propeller when rotating at 2500 rev/min? Assume that

each blade is (approximately) a uniform rod.

39. Estimate the moment of inertia of a human body spinning rigidly

about its longitudinal axis. Treat the body as a uniform cylin-

der of mass 70 kg, length 1.7 m, and average diameter 23 cm.

40. Use the parallel-axis theorem to determine the moment of inertia

of a solid disk or cylinder of mass M and radius R rotating about

an axis parallel to its symmetry axis but tangent to its surface.

41. The moment of inertia of the Earth is approximately

0.331MERE
2 (see also Problem 34). Calculate the rotational

kinetic energy of the Earth.

42. Assume that a potter’s kickwheel is a disk of radius 60 cm and

mass 120 kg. What is its moment of inertia? What is its rota-

tional kinetic energy when revolving at 2.0 rev/s?

43. A flywheel energy-storage system designed for the International

Space Station has a maximum rotational rate of 53 000 rev/min.

The cylindrical flywheel has a mass of 75 kg and a radius of 16

cm. For simplicity, assume the cylinder is solid and uniform.

What is the moment of inertia of the flywheel? What is the

maximum rotational kinetic energy stored in the flywheel?

*44. An empty beer can has a mass of 15 g, a length of 12 cm, and

a radius of 3.3 cm. Find the moment of inertia of the can

about its axis of symmetry. Assume that the can is a perfect

cylinder of sheet metal with no ridges, indentations, or holes.

A'

B'

B

A O

O

d

d

H

H

FIGURE 12.21 Atoms in a water molecule.

*47. Suppose that the Earth consists of a spherical core of mass

0.22ME and radius 0.54RE and a surrounding mantle

(a spherical shell) of mass 0.78ME and outer radius RE.

Suppose that the core is of uniform density and the mantle is

also of uniform density. According to this simple model, what

is the moment of inertia of the Earth? Express your answer as

a multiple of MERE
2 .

*48. In order to increase her moment of inertia about a vertical

axis, a spinning figure skater stretches her arms out horizon-

tally; in order to reduce her moment of inertia, she brings her

arms down vertically along her sides. Calculate the change of

moment of inertia between these two configurations of the

arms. Assume that each arm is a thin, uniform rod of length

0.60 m and mass 2.8 kg hinged at the shoulder a distance of

0.20 m from the axis of rotation.

*49. Find the moment of inertia of a thin rod of mass M and

length L about an axis through the center inclined at an angle

� with respect to the rod.

*50. Given that the moment of inertia of a sphere about a diameter

is , show that the moment of inertia about an axis tan-

gent to the surface is .

*51. Find a formula for the moment of inertia of a uniform thin

square plate (mass m, dimension l � l ) rotating about an axis

that coincides with one of its edges.

*52. A conical shell has mass M, height h, and base radius R.

Assume it is made from a thin sheet of uniform thickness.

What is its moment of inertia about its symmetry axis?

*53. Suppose a peach of radius R and mass M consists of a spheri-

cal pit of radius 0.50R and mass 0.050M surrounded by a

spherical shell of fruit of mass 0.95M. What is the moment of

inertia of the peach?

7
5 MR 2

2
5 MR2

              



*54. Find the moment of inertia of the flywheel shown in

Fig. 12.23 rotating about its axis. The flywheel is made of

material of uniform thickness; its mass is M.

*56. A hole of radius r has been drilled in a circular, flat plate of

radius R (Fig. 12.25). The center of the hole is at a distance d

from the center of the circle. The mass of this body is M. Find

the moment of inertia for rotation about an axis through the

center of the circle, perpendicular to the plate.

*57. Derive a formula for the moment of inertia of a uniform

spherical shell of mass M, inner radius R1, outer radius R2,

rotating about a diameter.

*58. Find the moment of inertia of a flywheel of mass M made by

cutting four large holes of radius r out of a uniform disk of

radius R (Fig. 12.26). The holes are centered at a distance R/2

from the center of the flywheel.
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FIGURE 12.24 A solid cylinder

capped with two solid hemispheres.

FIGURE 12.25 Circular plate with a hole.

FIGURE 12.26 Disk with four holes.
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FIGURE 12.23 A flywheel.
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*55. A solid cylinder capped with two solid hemispheres rotates

about its axis of symmetry (Fig. 12.24). The radius of the

cylinder is R, its height is h, and the total mass (hemispheres

included) is M. What is the moment of inertia?

*59. Show that the moment of inertia of a long, very thin cone

(Fig. 12.27) about an axis through the apex and perpendicular

to the centerline is , where M is the mass and l the

height of the cone.

3
5 Ml 2

R

d

r

FIGURE 12.27 A long, thin cone

rotating about its apex.

l

z

y

x

*60. The mass distribution within the Earth can be roughly

approximated by several concentric spherical shells, each of

constant density. The following table gives the outer and the

inner radius of each shell and its mass (expressed as a fraction

of the Earth’s mass):

FRACTION 
SHELL OUTER RADIUS INNER RADIUS OF MASS

1 6400 km 5400 km 0.28

2 5400 4400 0.25

3 4400 3400 0.16

4 3400 2400 0.20

5 2400 0 0.11
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Use these data to calculate the moment of inertia of the Earth

about its axis.

61. The drilling pipe of an oil rig is 2.0 km long and 15 cm in

diameter, and it has a mass of 20 kg per meter of length.

Assume that the wall of the pipe is very thin.

(a) What is the moment of inertia of this pipe rotating about

its longitudinal axis?

(b) What is the kinetic energy when rotating at 1.0 rev/s?

62. Engineers have proposed that large flywheels be used for the

temporary storage of surplus energy generated by electric power

plants. A suitable flywheel would have a diameter of 3.6 m and

a mass of 300 metric tons and would spin at 3000 rev/min.

What is the kinetic energy of rotation of this flywheel? Give the

answer in both joules and kilowatt-hours. Assume that the

moment of inertia of the flywheel is that of a uniform disk.

63. An automobile of mass 1360 kg has wheels 76.2 cm in diameter

of mass 27.2 kg each. Taking into account the rotational kinetic

energy of the wheels about their axles, what is the total kinetic

energy of the automobile when traveling at 80.0 km/h? What

percentage of the kinetic energy belongs to the rotational

motion of the wheels about their axles? Pretend that each wheel

has a mass distribution equivalent to that of a uniform disk.

*64. The Oerlikon Electrogyro bus uses a flywheel to store energy

for propelling the bus. At each bus stop, the bus is briefly con-

nected to an electric power line, so that an electric motor on

the bus can spin up the flywheel to 3000 rev/min. If the fly-

wheel is a disk of radius 0.60 m and mass 1500 kg, and if the

bus requires an average of 40 hp for propulsion at an average

speed of 20 km/h, how far can it move with the energy stored

in the rotating flywheel?

*65. Pulsars are rotating stars made almost entirely of neutrons

closely packed together. The rate of rotation of most pulsars

gradually decreases because rotational kinetic energy is gradu-

ally converted into other forms of energy by a variety of com-

plicated “frictional” processes. Suppose that a pulsar of mass

1.5 � 1030 kg and radius 20 km is spinning at the rate of 2.1

rev/s and is slowing down at the rate of 1.0 � 10�15 rev/s2.

What is the rate (in joules per second, or watts) at which the

rotational energy is decreasing? If this rate of decrease of the

energy remains constant, how long will it take the pulsar to

come to a stop? Treat the pulsar as a sphere of uniform density.

66. For the sake of directional stability, the bullet fired from a rifle

is given a spin angular velocity about its axis by means of spiral

grooves (“rifling”) cut into the barrel. The bullet fired by a

Lee–Enfield rifle is (approximately) a uniform cylinder of

length 3.18 cm, diameter 0.790 cm, and mass 13.9 g. The

bullet emerges form the muzzle with a translational velocity of

628 m/s and a spin angular velocity of 2.47 � 103 rev/s. What

is the translational kinetic energy of the bullet? What is the

rotational kinetic energy? What fraction of the total kinetic

energy is rotational?

*67. Find a formula for the moment of inertia of a thin disk of

mass M and radius R rotating about a diameter.

z

y

x

R
r

h

*68. Derive the formula for the moment of inertia of a thin hoop of

mass M and radius R rotating about a diameter.

*69. Find a formula for the moment of inertia of a uniform thin

square plate (mass M, dimension l � l ) rotating about an axis

through the center and perpendicular to the plate.

*70. Find the moment of inertia of a uniform cube of mass M and

edge l. Assume the axis of rotation passes through the center

of the cube and is perpendicular to two of the faces.

*71. What is the moment of inertia of a thin, flat plate in the shape

of a semicircle rotating about the straight side (Fig. 12.28)?

The mass of the plate is M and the radius is R.

* *72. Find the moment of inertia of the thin disk with two semi-

circular cutouts shown in Fig. 12.29 rotating about its axis.

The disk is made of material of uniform thickness; its mass

is M.

FIGURE 12.29 Disk with

two semicircular cutouts.

FIGURE 12.28 A semicircle

rotating about its straight edge.

* *73. A cone of mass M has a height h and a base diameter R. Find

its moment of inertia about its axis of symmetry.

* *74. Derive the formula given in Table 12.3 for the moment of

inertia of a sphere.
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FIGURE 12.31 A wheel.R

R/2

REVIEW PROBLEMS

75. An automobile has wheels of diameter 0.63 m. If the automo-

bile is traveling at 80 km/h, what is the instantaneous velocity

vector (relative to the ground) of a point at the top of the

wheel? At the bottom? At the front?

76. The propeller of an airplane is turning at 2500 rev/min while the

airplane is cruising at 200 km/h.The blades of the propeller are

1.5 m long.Taking into account both the rotational motion of

the propeller and the translational motion of the aircraft, what is

the velocity (magnitude and direction) of the tip of the propeller?

77. An automobile accelerates uniformly from 0 to 80 km/h in 6.0

s.The automobile has wheels of radius 30 cm. What is the angu-

lar acceleration of the wheels? What is their final angular veloc-

ity? How many turns do they make during the 6.0-s interval?

78. The minute hand of a wall clock is a rod of mass 5.0 g and

length 15 cm rotating about one end. What is the rotational

kinetic energy of the minute hand?

79. What is the kinetic energy of rotation of a phonograph record

of mass 170 g and radius 15.2 cm rotating at revolutions

per minute? To give this phonograph record a translational

kinetic energy of the same magnitude, how fast would you

have to throw it?

80. The wheel of a wagon consists of a rim of mass 20 kg and

eight spokes in the shape of rods of length 0.50 m and mass

0.80 kg each.

(a) What is the moment of inertia of this wheel about its axle? 

(b) What is the kinetic energy of this wheel when rotating at

1.0 rev/s?

*81. A solid body consists of two uniform solid spheres of mass M

and radius R welded together where they touch (see Fig. 12.30).

What is the moment of inertia of this rigid body about the

longitudinal axis through the center of the spheres? About the

transverse axis through the point of contact?

33 1
3

form thickness, its mass is M, and its radius is R. Treat the

spokes as thin rods of length R/2 and width R/12.

*84. The total kinetic energy of a rolling body is the sum of its

translational kinetic energy and its rotational kinetic

energy . Suppose that a cylinder, a sphere, and a pipe (a

cylindrical shell) of equal masses 2.0 kg are rolling with equal

speeds of 1.0 m/s. What is the total kinetic energy of each?

*85. A uniform solid cylinder is initially at rest at the top of a ramp

of height 1.5 m. If the cylinder rolls down this ramp without

slipping, what will be its speed at the bottom? (Hint: Use

energy conservation. The kinetic energy of the cylinder at the

bottom of the ramp is the sum of its translational kinetic

energy and its rotational kinetic energy .)

**86. An airplane propeller (Fig. 12.32) is rotating at 3000 rev/min

when one of the blades breaks off at the hub. Treat the blade

as a rod, of length 1.2 m. The blade is horizontal and swinging

upward at the instant it breaks.

(a) What is the velocity (magnitude and direction) of the

motion of the center of mass of the blade immediately

after this instant? 

(b) What is the angular velocity of the rotational motion of

the blade about its own center of mass?

(c) Suppose that this happens while the aircraft is on the

ground, with the hub of the propeller 2.4 m above the

ground. How high above the ground does the center of mass

of the broken propeller blade rise? Neglect air resistance.

1
2 I
21

2Mv2

1
2I
2

1
2 Mv2

R

FIGURE 12.30 Two

connected solid spheres.

*82. A .22-caliber bullet is a solid cylinder of length 7.0 mm and

radius 2.7 mm capped at its front with a hemisphere of the

same radius. The mass of the bullet is 15 g.

(a) What is the moment of inertia of this bullet when rotat-

ing about its axis of symmetry? 

(b) What is the rotational kinetic energy of the bullet when

rotating at 1.2 � 103 rev/s? 

*83. Find the moment of inertia of the wheel shown in Fig. 12.31

rotating about its axis. The wheel is made of material of uni- FIGURE 12.32 An airplane propeller.
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Answers  to  Checkups

Checkup 12.1

1. The swinging door executes only rotational motion about its

(fixed) hinges. The motions of the wheel of a train and of the

propeller of an airplane involve both rotational and transla-

tional motion; the wheel and propeller rotate as the vehicle

moves through space.

2. Yes, the motion is describable as rotation about an axis and

simultaneous translational motion. The rotational motion is

rotation about an axis through the end of the hammer; the

translational motion, however, is not along a parabolic path,

but involves more complicated looping motion (see Fig. 12.1).

3. An automobile exhibits roll motion when driving on a banked

surface; the auto is then tilted. Pitch motion can occur during

sudden braking, when the front of the auto dives downward.

Turning motion occurs whenever the auto is being driven

around a curve (compare Fig. 12.2).

4. (D) Swinging door. The axis of rotation is through the hinges,

along the edge of the door.

Checkup 12.2

1. The point P has the larger instantaneous speed (it travels through

a greater distance per unit time). Both points have the same

instantaneous angular velocity � and the same angular accelera-

tion � (as do all points on the same rigid body). Hence the point

P has the larger tangential acceleration (atangential � �R) and also

the larger centripetal acceleration (acentripetal � �2R).

2. The radius R for circular motion is the perpendicular distance

from the axis of rotation, and so is equal to the Earth’s radius only

at the equator, and is increasingly smaller as one moves toward

the poles; at a pole, R is zero. All points have the same angular

velocity �, as for any rigid body.The velocity is not the same for

all points; since v � �R, v is largest at the equator. All points do

not have the same centripetal acceleration; since acentripetal � �2R,

the centripetal acceleration is largest at the equator.

3. There is a centripetal acceleration; at the top of the arc, this is

directed downward (acentripetal � v2/R). There is no tangential

acceleration at the top (no forces act in this direction). Some

distance beyond the highest point, there will be both a cen-

tripetal acceleration (since the car still moves along an arc) and

a tangential acceleration (since now a component of the gravi-

tational force is tangent to the path).

4. (D) Handle end; handle end. Since the rotation is about an

axis through the center of mass (near the hammer head), the

end of the handle is furthest from the axis. Thus both the speed

v � �R and the centripetal acceleration acentripetal � �2R are

largest at the end of the handle, since R is largest there (and

� is a constant for all points on a rigid body).

Checkup 12.3

1. The centripetal acceleration always points toward the center of

curvature of the circular arc of the problem; here, this is verti-

cally down. The tangential acceleration points perpendicular

to a radius at any point; since the elevator accelerates upward,

the tangential acceleration at the top of the wheel points hori-

zontally toward the left.

2. Yes to both. As long as there is no slipping, we have � � v/R

and � � a/R, so the behavior of an angular quantity is the

same as the corresponding translational quantity.

3. (D) 20. For constant acceleration and starting from rest, the

angular position is . Since this is proportional to t2,

the angular position will be four times greater in twice the

time. Thus the total number of revolutions in the first two sec-

onds is 4 � 5 � 20.

Checkup 12.4

1. Since the angular velocity is proportional to , the angular

position, which is the integral of the angular velocity over time

[Eq. (12.23)], will be proportional to Thus the

angular position will be times as large at t � 4 s as it

was at t � 1 s.

2. (D) t4. If the angular acceleration � increases in proportion to

the time t, then the angular velocity � � � � dt increases in

proportion to t2. The centripetal acceleration is given by

acentripetal � v2�R � �2R, and so increases in proportion to the

fourth power of the time.

Checkup 12.5

1. Since all of the mass M is at the same distance from the axis of

rotation, the moment of inertia is simply I � MR2.

2. Rotation about an axis perpendicular to the rod through its end

gives the largest moment of inertia, since more mass is located

at a greater distance from the axis of rotation. Rotation about

an axis along the rod must give the smallest moment of inertia,

since in this case all of the mass is very close to the axis.

3. About an axis along one edge or through its center parallel 

to one edge, the distribution of mass (relative to the axis of

rotation) in each case is the same as for the corresponding rod

(imagine viewing Fig. 12.19b from above, that is, along the

axis of rotation). Thus the moment of inertia of the square

about an axis along one edge is ; about an axis

through its center parallel to one edge, it is .

4. About an axis through the center, each particle is a 

distance l�2 from the axis, and so the moment of inertia is

. About an axis through one

particle, one particle is a distance l from the axis and the 

other is at zero distance, so I � ml2 	 0 � ml2. Since we 

have shifted the axis by d � l�2 in the second case, we indeed

have , so the

parallel-axis theorem is satisfied (notice we must use the total

mass M � 2m).

5. (B) 2MR2. Since the axis is shifted by a distance d � R, the

parallel-axis theorem gives I � ICM 	 Md 2 � MR2 	 MR2

� 2MR2 for rotation about a point on the hoop.

I � ICM 	 Md 2 � 1
2 ml 

2 	 (2m)(l�2)2 � ml 
2

I � m(l�2) 2 	 m (l�2)2 � 1
2 ml 2

1
12 ML2

I � 1
3ML2

43/2 � 8

t1�2	1 � t 3/2.

t1�2

f � 1
2 �t2

              



C O N C E P T S  I N  C O N T E X T
The Gravity Probe B satellite, containing four high-precision gyroscopes,

was recently placed in orbit by a rocket.These gyroscopes are used for a del-

icate test of Einstein’s theory of General Relativity. The rotor of one of

these gyroscopes is shown here. It consists of a nearly perfect sphere of

quartz, 3.8 cm in diameter, suspended electrically and spinning at 10 000

revolutions per minute.

Some of the questions we can address with the concepts developed in

this chapter are:

? When initially placed in orbit, the rotor is at rest. What torque and

what force are needed to spin up this gyroscope with a given angular

acceleration? (Example 4, page 401)

? A rotating body, such as this rotor, has not only kinetic energy,

but also an angular momentum, which is the rotational analog of the

linear momentum introduced in Chapter 10. How is the angular

Dynamics of a 
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momentum of the gyroscope expressed in terms of its angular velocity? 

(Example 8, page 406)

? The gyroscope is used like a compass, to establish a reference direction in space.

How does a gyroscope maintain a fixed reference direction? (Physics in Practice:

The Gyrocompass, page 414)

A s we saw in Chapter 5, Newton’s Second Law is the equation that determines the

translational motion of a body. In this chapter, we will derive an equation that

determines the rotational motion of a rigid body. Just as Newton’s equation of motion

gives us the translational acceleration and permits us to calculate the change in veloc-

ity and position, the analogous equation for rotational motion gives us the angular

acceleration and permits us to calculate the change in angular velocity and angular posi-

tion. The equation for rotational motion is not a new law of physics, distinct from

Newton’s three laws. Rather, it is a consequence of these laws.

13.1 WORK,  ENERGY,  AND POWER 
IN ROTATIONAL MOTION; TORQUE

We begin with a calculation of the work done by an external force on a

rigid body constrained to rotate about a fixed axis. Figure 13.1 shows the

body, with the axis of rotation perpendicular to the page.The force is applied

at some point of the body at a distance R from the axis of rotation. For a

start, we will assume that the force has no component parallel to the axis;

any such component is of no interest in the present context since the body

does not move in the direction parallel to the axis, and so a force parallel to

the axis can do no work. In Fig. 13.1, the force is shown entirely in the

plane of the page. The work done by this force during a small displace-

ment of the point at which the force acts is the product of the force F, the

displacement ds, and the cosine of the angle between the force and the dis-

placement [see Eq. (7.5)]. The cosine of this angle is equal to the sine of the angle �

between the force and the radial line (see Fig. 13.1). Hence, we can write the work as

dW � F ds sin �

If the body rotates through a small angle d�, the displacement is ds � R d�, and

therefore

dW � FR d� sin � (13.1)

The product FR sin � is called the torque of the force F, usually designated by the

symbol � (the Greek letter tau):

(13.2)

With this notation, the work done by the force, or the work done by the torque, is simply

(13.3)

This is the rotational analog of the familiar equation dW � F dx for work done in

translational motion. The torque � is analogous to the force F, and the angular dis-

placement d� is analogous to the translational displacement dx. The analogy between

torque and force extends beyond the equation for the work. As we will see in the next

section, a torque applied to a rigid body causes angular acceleration, just as a force

applied to a particle causes translational acceleration.

dW � t df

t � FR sin u

FIGURE 13.1 Force applied to a rigid

body rotating about a fixed axis. As in

Chapter 12, the axis of rotation is indicated

by a circled dot. The force makes an angle �

with the radial line and an angle 90� � �

with the instantaneous displacement ds.

y

x
O

R

df
q

F90°–  q
Cosine of angle between
F and ds equals sinq.

q is angle between F and
radial line.

By definition of angle,
ds = R df.

Axis of rotation is 
perpendicular to page.

For rotation, displacement
ds is perpendicular to
radial line.

ds

               



396 CHAPTER 13 Dynamics of a Rigid Body

work done by constant torque

According to Eq. (13.3), each contribution to the work is the product of the torque

� and the small angular displacement d�. Thus the total work done in rotating a body

from an initial angle �1 to a final angle �2 is

(13.4)

In the special case of a constant torque, the torque may be brought outside the inte-

gral to obtain

or simply

(for � � constant) (13.5)

where �� � �2 � �1 is the change in angular position during the time that the

torque is applied. Equation (13.5) is analogous to the equation for the work done

by a constant force on a body in one-dimensional translational motion, W � F �x.

From Eq. (13.2), we see that the unit of torque is the unit of force multiplied by

the unit of distance; this SI unit of torque is the newton-meter (N�m).

Note that according to Eq. (13.2), for a force of given magnitude, the torque is

largest if the force acts at right angles to the radial line (� � 90�) and if the force acts

at a large distance from the axis of rotation (large R). This dependence of the torque

(and of the work) on the distance from the axis of rotation and on the angle of the

push agrees with our everyday experience in pushing doors open or shut. A door is a

rigid body, which rotates about a vertical axis through the hinges. If you push per-

pendicularly against the door, near the edge farthest from the hinge (largest R; see

Fig. 13.2a), you produce a large torque, which does work on the door, increases its

kinetic energy, and swings the door quickly on its hinges. If you push at a point near

the hinge (small R; see Fig. 13.2b), the door responds more sluggishly. You produce

a smaller torque, and you have to push harder to do the same amount of work and

attain the same amount of kinetic energy and the same final angular velocity. Finally,

if you push in a direction that is not perpendicular to the door (small �; see Fig. 13.2c),

the door again responds sluggishly, because the torque is small.

W � t¢f

W � t�
f2

f1

df � t(f2 � f1)

W � �dW � �
f2

f1

tdf

FIGURE 13.2 (a) A push against the door

far from the hinge produces a large angular

acceleration. (b) The same push near the

hinge produces a small angular acceleration.

(c) A push against the door at a small angle

also produces a small angular acceleration.

(c) Small torque(a) Large torque (b) Small torque

Distance R from
axis is larger.

Distance R from
axis is smaller.

Push is not
perpendicular to door.
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Suppose that while opening a 1.0-m-wide door, you push against

the edge farthest from the hinge, applying a force with a steady

magnitude of 0.90 N at right angles to the surface of the door. How much work

do you do on the door during an angular displacement of 30�?

SOLUTION: For a constant torque, the work is given by Eq. (13.5), W � � ��.

The definition of torque, Eq. (13.2), with F � 0.90 N, R � 1.0 m, and � � 90�,

gives

� � FR sin 90� � 0.90 N � 1.0 m � 1 � 0.90 N�m

To evaluate the work, the angular displacement must be expressed in radians;

�� � 30� � (2� radians�360� ) � 0.52 radian. Then

W � � �� � 0.90 N�m � 0.52 radian

� 0.47 J

The equation for the power in rotational motion and the equations that express the

work–energy theorem and the conservation law for energy in rotational motion are anal-

ogous to the equations we formulated for translational motion in Chapters 7 and 8. If we

divide both sides of Eq. (13.3) by dt, we find the instantaneous power delivered by the torque:

or

(13.6)

where � � d��dt is the angular velocity. Obviously, this equation is analogous to the

equation P � Fv obtained in Section 8.5 for the power in one-dimensional transla-

tional motion.

The work done by the torque changes the rotational kinetic energy of the body.

Like the work–energy theorem for translational motion, the work–energy theorem

for rotational motion says that the work done on the body by the external torque equals

the change in rotational kinetic energy (the internal forces and torques in a rigid body

do no net work):

(13.7)

If the force acting on the body is conservative—such as the force of gravity or the

force of a spring—then the work equals the negative of the change in potential energy,

and Eq. (13.7) becomes 

(13.8)

or

(13.9)

This expresses the conservation of energy in rotational motion: the sum of the kinetic

and potential energies is constant, that is,

(13.10)E � 1
2 I�2 � U � [constant]

1
2 I�2

1 � U1 � 1
2 I�2

2 � U2

�U2 � U1 � 1
2 I�2

2 � 1
2 I�2

1

W � K2 � K1 � 1
2 I�2

2 � 1
2 I�2

1

P � t�

P �
dW

dt
� t

df

dt

EXAMPLE 1

conservation of energy 
in rotational motion

               



A meterstick is initially standing vertically on the floor. If the

meterstick falls over, with what angular velocity will it hit the

floor? Assume that the end in contact with the floor does not slip.

SOLUTION: The motion of the meterstick is rotation about a fixed axis passing

through the point of contact with the floor (see Fig. 13.3). The stick is a uniform

rod of mass M and length l � 1.0 m. Its moment of inertia about the end is Ml2�3

(see Table 12.3), and its rotational kinetic energy is therefore 

The gravitational potential energy is Mgy, where y is the height of the center of

mass above the floor. When the meterstick is standing vertically, the initial angu-

lar velocity is �1 � 0 and y1 � l�2, so the total energy is

(13.11)

Just before the meterstick hits the floor, the angular velocity is �2 and y2 � 0.

The energy is

(13.12)

Conservation of energy therefore implies

from which we obtain

(13.13)

Taking the square root of both sides, we find

At what instantaneous rate is gravity delivering energy to the

meterstick of Example 2 just before it hits the floor? The mass

of the meterstick is 0.15 kg.

SOLUTION: The rate of energy delivery is the power,

From Example 2, we know � � 5.4 radians/s just before the stick hits the floor.

At that instant, gravity acts perpendicular to the stick at the center of mass 

(in the next chapter we will see that the weight acts as if concentrated at the center

of mass), a distance R � l�2 � 0.50 m from the end. So the torque exerted by

gravity is

Thus the instantaneous power delivered by the torque due to gravity is

P � t� � 0.74 N�m � 5.4 radians/s � 4.0 W

� 0.74 N�m

  t � FR sin u � mg
l

2
 sin 90� � 0.15 kg � 9.81 m/s2 � 0.50 m � 1

P � t�

EXAMPLE 3

�2 � B
3g

l
� B

3 � 9.81m/s2

1.0 m
� 5.4  radians/s

�2
2 �

3g

l

1
6 Ml2�2

2 � Mgl>2

E � 1
6 Ml2�2

2 � Mgy2 �  16 Ml2�2
2 � 0

E � 1
6 Ml2�2

1 � Mgy1 � 0 � Mgl>2

1
2 I�2 � Ml 2�2>6.

EXAMPLE 2
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FIGURE 13.3 Meterstick rotating about

its lower end.

f

y

x

y

O

Initially,
y1 = l /2.

When stick hits
floor, y2 = 0.

               



13.2 The Equation of Rotational Motion 399

Checkup 13.1

QUESTION 1: You are trying to tighten a bolt with a wrench. Where along the handle

should you place your hand so you can exert maximum torque? In what direction

should you push?

QUESTION 2: A force is being exerted against the rim of a freely rotating wheel, but

the work done by this force is zero. What can you conclude about the direction of the

force? What is the torque of the force?

QUESTION 3: Consider the meterstick falling over, as in Example 2. What is the torque

that the weight exerts on the meterstick when it is in the upright, initial position?

After the stick begins to fall over, the torque increases. When is the torque maximum?

QUESTION 4: Suppose you first push a door at its outer edge at right angles to the sur-

face of the door with a force of magnitude F. Next you push the door at its center,

again at right angles to the surface, with a force of magnitude F�2. In both cases you

push the door as it moves through 30�. The ratio of the work done by the second push

to the work done by the first push is:

(A)  (B)  (C) 1 (D) 2 (E) 4

13.2 THE EQUATION OF 
ROTATIONAL MOTION

Our intuition tells us that a torque acting on a wheel or some other body free to rotate

about an axis will produce an angular acceleration. For instance, the push of your hand

against a crank on a wheel (see Fig. 13.4) exerts a torque or “twist” that starts the wheel

turning.The angular acceleration depends on the magnitude of your push on the crank

and also on its direction (as well as on the inertia of the wheel). Your push will be most

effective if exerted tangentially, at right angles to the radius (at � � 90�; see Fig. 13.4a).

It will be less effective if exerted at a smaller or larger angle (see Fig. 13.4b). And it will

be completely ineffective if exerted parallel to the radius (at � � 0 or 180�; see Fig.

13.4c)—such a push in the radial direction produces no rotation at all. These qualita-

tive considerations are in agreement with the definition of torque,

(13.14)t � FR sin u

1
2

1
4

✔

FIGURE 13.4 (a) A push at right angles

to the radius is most effective in producing

rotation. (b) A push at 45� is less effective.

(c) A push parallel to the radius produces

no rotation.

(a) (b) (c)

90°
45° 0°

Largest
torque.

Zero
torque.

Smaller
torque.

               



equation of rotational motion 
for net torque

equation of rotational motion

According to this equation, the torque provided by a force of a given magnitude F is

maximum if the force is at right angles to the radius (� � 90�), and it is zero if the

force is parallel to the radius (� � 0� or 180�).

The quantity R sin � appearing in Eq. (13.14) has a simple geometric interpreta-

tion: it is the perpendicular distance between the line of action of the force and the

axis of rotation (see Fig. 13.5); this perpendicular distance is called the moment arm

of the force. Hence, Eq. (13.14) states that the torque equals the magnitude of the

force multiplied by the moment arm.

To find a quantitative relationship between torque and angular acceleration, we

recall from Eq. (13.6) that the power delivered by a torque acting on a body is

(13.15)

The work–energy theorem tells us that the work dW equals the change of kinetic

energy in the small time interval dt. The small change in the kinetic energy 

is Thus,

(13.16)

Inserting this into the left side of Eq. (13.15), we find

(13.17)

Canceling the factor of � on both sides of the equation, we obtain

(13.18)

But d��dt is the angular acceleration �; hence

(13.19)

This is the equation for rotational motion. As we might have expected, this equation

says that the angular acceleration is directly proportional to the torque. Equation (13.19)

is mathematically analogous to Newton’s Second Law, ma � F, for the translational

motion of a particle; the moment of inertia takes the place of the mass, the angular

acceleration the place of the acceleration, and the torque the place of the force.

In our derivation of Eq. (13.19) we assumed that only one external force is acting

on the rigid body. If several forces act, then each produces its own torque. If an indi-

vidual torque would produce an angular acceleration in the rotational direction chosen

as positive, it is reckoned as positive, and if a torque would produce an angular accel-

eration in the opposite direction, it is reckoned as negative. The net torque is the sum

of these individual torques, and the angular acceleration is proportional to this net

torque:

(13.20)

In the evaluation of the net torque, we need to take into account all the external forces

acting on the rigid body, but we can ignore the internal forces that particles in the

body exert on other particles also in the body.The torques of such internal forces cancel

(this is an instance of the general result mentioned in Section 10.4: for a rigid body, the

work of internal forces cancels).

I� � tnet

I� � t

I 
d�

dt
� t

I�d�

dt
� t�

dW � I� d�

dK � d (1
2 I�2) � 1

2 I �  2� d� � I� d�.

dW

dt
� t�
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FIGURE 13.5 The distance between the

center of rotation and the point of applica-

tion of the force is R. The perpendicular

distance between the center of rotation and

the line of action of the force is R sin �.

O

y

x

R �

F

rotation axis

R sin � is
moment arm.

               



13.2 The Equation of Rotational Motion 401

The rotor of the gyroscope of the Gravity Probe B experiment

(see the chapter photo and Fig. 13.6) is a quartz sphere of

diameter 3.8 cm and mass 7.61 � 10�2 kg. To start this sphere spinning, a stream

of helium gas flowing in an equatorial channel in the surface of the housing is

blown tangentially against the rotor. What torque must this stream of gas exert on

the rotor to accelerate it uniformly from 0 to 10000 rpm (revolutions per minute)

in 30 minutes? What force must it exert on the equator of the sphere?

SOLUTION: The final angular velocity is 2� � 10000 radians�60 s � 1.05 � 103

radians/s, and therefore the angular acceleration is

The moment of inertia of the rotor is that of a sphere (see Table 12.3):

Hence the required torque is, according to Eq. (13.19),

The driving force is along the equator of the rotor—that is, it is perpendicular to

the radius—so sin � � 1 and Eq. (13.2) reduces to � � FR, which yields

Two masses m1 and m2 are suspended from a string that runs,

without slipping, over a pulley (see Fig. 13.7a). The pulley has

a radius R and a moment of inertia I about its axle, and it rotates without friction.

Find the accelerations of the masses.

SOLUTION: We have already found the motion of this system in Example 10 of

Chapter 5, where the two masses were an elevator and its counterweight, and

where we neglected the inertia of the pulley. Now we will take this inertia into

account.

Figure 13.7c shows the “free-body” diagrams for the masses m1 and m2. In

these diagrams, T1 and T2 are the tensions in the two parts of the string attached

to the two masses. (Note that now T1 and T2 are not equal. For a pulley of zero

moment of inertia, these tensions would be equal; but for a pulley of nonzero

moment of inertia, a difference between T1 and T2 is required to produce the angu-

lar acceleration of the pulley.) If the acceleration of mass m1 is a (reckoned as pos-

itive if upward), then the acceleration of mass m2 is �a, and the equations of motion

of the two masses are

EXAMPLE 5

F �
t

R
�

6.4 � 10�6 N�m

0.019 m
 �  3.4 �  10�4  N

 � 6.4 � 10�6  N�m

 t � I� � 1.1 � 10�5 kg�m2 � 0.582 radian/s2

 � 2
5 � 7.61 � 10�2  kg � (0.019  m)2 � 1.1 � 10�5 kg�m2

 I � 2
5 MR2

 �
1.05 � 103  radians/s � 0

30 � 60 s � 0
� 0.582 radian/s2

 � �
�2 � �1

t2 � t1

EXAMPLE 4

FIGURE 13.6 A gyroscope sphere for

Gravity Probe B.

Concepts
in

Context

               



(13.21)

(13.22)

Figure 13.7b shows the “free-body” diagram for the pulley. The tension forces

act at the ends of the horizontal diameter (since the string does not slip, it behaves

as though instantaneously attached to the pulley at the point of first contact; see

points P and P� in Fig. 13.7a). The upward supporting force of the axle acts at

the center of the pulley, and it generates no torque about the center of the pulley.

The tensions act perpendicular to the radial direction, so sin � � 1 in Eq. (13.2).

Taking the positive direction of rotation as counterclockwise (to match the posi-

tive direction for the motion of mass m1), we see that the tension forces T1 and T2

generate torques �RT1 and RT2 about the center.The equation of rotational motion

of the pulley is

(13.23)

The translational acceleration of each hanging portion of the string must match the

instantaneous translational acceleration of the point of first contact (for the given

condition of no slipping). Hence the translational acceleration a of the masses is

related to the angular acceleration � by a � �R, or � � a /R [see Eq. (12.13)].

Furthermore, according to Eqs. (13.21) and (13.22), T1 � m1g � m1a and 

T2 � m2 g � m2a. With these substitutions, Eq. (13.23) becomes

Solving this for a, we find

(13.24)a �
m2 � m1

m1 � m2 � (I>R2)
 g

I (a>R) � �R(m1g � m1a ) � R(m2g�m2a )

I� � tnet � �RT1 � RT2

   �m2a � T2 � m2 g

 m1a � T1 � m1g
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FIGURE 13.7 (a) Two masses m1 and m2 suspended from a string that

runs over a pulley. (b) “Free-body” diagram for the pulley. (c) “Free-body”

diagrams for the masses m1 and m2.

P' P

R

m2

m1

x

T2

T2

T1

T1

w2

w1
(a)

(c)

(b)

Pulley is mounted
to a fixed support.

Support force
acts at center,
thus producing
no torque.

T1 and T2 need
to be different to
produce an angular
acceleration of 
(massive) pulley.

String rotates
pulley without
slipping.

               



13.2 The Equation of Rotational Motion 403

COMMENT: If the mass of the pulley is small, then I 	R2 can be neglected; with this

approximation, Eq. (13.24) reduces to Eq. (5.44), which was obtained without

taking into account the inertia of the pulley.

A device of this kind, called Atwood’s machine, can be used to determine the

value of g. For this purpose, it is best to use masses m1 and m2 that are nearly equal.

Then a is much smaller than g and easier to measure; the value of g can be calcu-

lated from the measured value of a according to Eq. (13.24).

In some cases—for instance, the rolling motion of a wheel—the axis of rota-

tion is in motion, perhaps accelerated motion, and is not a fixed axis. For such

problems, some further arguments can be used to demonstrate that Eq. (13.19)

remains valid for rotation about an axis in accelerated translational motion, provided

the axis passes through the center of mass of the rotating body. When this condition is

met, we can use the equation of rotational motion (13.19) as in the following

examples.

An automobile with rear-wheel drive is accelerating at 4.0 m/s2

along a straight road. Consider one of the front wheels of this

automobile (see Fig. 13.8a).The axle pushes the wheel forward, providing an accel-

eration of 4.0 m/s2. Simultaneously, the friction force of the road pushes the bottom

of the wheel backward, providing a torque that gives the wheel an angular accel-

eration.The wheel has a radius of 0.38 m and a mass of 25 kg. Assume that the wheel

is (approximately) a uniform disk, and assume it rolls without slipping. Find the

backward force that the friction force exerts on the wheel, and find the forward

force that the axle exerts on the wheel.

SOLUTION: Figure 13.8b shows a “free-body” diagram of the wheel, with

the horizontal forces acting on it (besides these horizontal forces, there

are also a vertical downward push exerted by the axle and a vertical upward

normal force exerted by the road; these forces exert no torque and cancel,

so they need not concern us here).The forward push of the axle is P, and

the rearward push of the ground is f. The force P, acting at the center of

the wheel, exerts no torque; the force f, acting at the rim, exerts a torque

Rf. Thus, the equation for the rotational motion of the wheel is

or, since for a uniform disk (see Table 12.3),

As we have seen in Example 4 of Chapter 12, the angular acceleration of a rolling

wheel is related to the translational acceleration by � � a 	R. Hence

from which

 � 50 N

 f �  12 Ma � 1
2 � 25 kg � 4.0 m/s2

1
2 Ma � f

1
2 MR� � f

I � 1
2 MR2

I� � R f

EXAMPLE 6

Atwood’s machine

FIGURE 13.8 (a) Front wheel of an auto-

mobile. (b) “Free-body” diagram for the

wheel. The friction force of the road pushes

the wheel backward. The axle pushes the

wheel forward.

x

f

P

(a)

(b)

RR

RR

Forward push P of axle
exerts no torque about
center of the wheel.

Friction force f of
road pushes the
wheel backward.

               



To find the force P, we need to examine the equation for the translational

motion. The net horizontal force is Fnet � P � f. Hence the equation for the

translational motion of the wheel is

from which

Thus, the force required to accelerate a rolling wheel is larger than the force required

for a wheel that slips on a frictionless surface without rolling—for such a wheel

the force would be only Ma � 25 kg � 4.0 m/s2 � 100 N. Here, the additional

rotational inertia adds an additional amount to the required

force, so the total required force is that for sliding

without rolling.

A solid cylinder of mass M and radius R rolls down a sloping

ramp that makes an angle 	 with the ground (see Fig. 13.9a).

What is the acceleration of the cylinder? Assume that the cylinder is uniform and

rolls without slipping.

SOLUTION: Figure 13.9b shows the “free-body” diagram for the cylinder. The

forces on the cylinder are the normal force N exerted by the ramp, the friction

force f exerted by the ramp, and the weight w. The friction force is exerted on the

rim of the cylinder, and the weight is effectively exerted at the center of the cylin-

der (in the next chapter we will see that the weight can always be regarded as con-

centrated at the center of mass). As axis of rotation, we take the axis that passes

through the center of the cylinder. The weight exerts no torque about this axis,

and neither does the normal force (zero moment arm). Hence, the only force that

exerts a torque is the friction force, and so

The equation of rotational motion is then

The moment of inertia of a uniform cylinder is the same as that of a disk,

. Furthermore, for rolling motion without slipping, � � a�R. Hence

or

(13.25)

To evaluate the acceleration, we need to eliminate the friction force f from this

equation. We can do this by appealing to the equation for the component of the

translational motion along the ramp (the motion along the x direction in Fig. 13.9b).

a �
2f

M

1
2 MR a � R f

I � 1
2 MR2

I� � R f

t � R f

EXAMPLE 7

3
2

f �  12 Ma1
2 MR2

 � 150 N

 P � Ma � f � 25 kg � 4.0 m/s2 � 50 N

Ma � P � f
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FIGURE 13.9 (a) A cylinder rolling down

an inclined plane. (b) “Free-body” diagram

for the cylinder.

(a) 

(b) 

R

b

O

y

f

x

w

N

b

Only friction force
f exerts a torque
about axis of
cylinder.

Normal force acts
along a radial line,
exerting zero torque.

Weight acts at
center of mass and
exerts no torque
about the axis.

               



13.2 The Equation of Rotational Motion 405

The components of the forces along the ramp are � f for the friction force and

Mg sin 	 for the weight. Hence

or

Substituting this into Eq. (13.25), we find

which we can immediately solve for a:

COMMENT: Note that the force Mg sin 	 along the ramp here produces an accel-

eration that is two-thirds of the acceleration that the cylinder would have if it were

to slip down a frictionless ramp without rolling. This is consistent with the last

example, where we saw that a force as large was required to produce a given accel-

eration. The same factor occurs in both cases, because both the disk and the cylin-

der have the same moment of inertia, .1
2 MR2

3
2

a � 2
3 g sin 	

a � 2g sin 	  � 2a

f � Mg sin 	  � Ma

Ma � Mg sin 	  � f

PROBLEM-SOLVING TECHNIQUES TORQUES AND ROTATIONAL MOTION

The general techniques for the solution of problems of rota-

tional motion are similar to the techniques we learned in

Chapters 5 and 6 for translational motion.

1 The first step is always a careful enumeration of all the

forces. Make a complete list of these forces, and label each

with a vector symbol.

2 Identify the body whose motion or whose equilibrium is

to be investigated and draw the “free-body” diagram show-

ing the forces acting on this body. If there are several dis-

tinct bodies in the problem (as in Example 5), then you

need to draw a separate “free-body” diagram for each.

When drawing the arrows for the forces acting on a rotat-

ing body, be sure to draw the head or the tail of the arrow

at the actual point of the body where the force acts, since

this will be important for the calculation of the torque.

Note that the weight acts at the center of mass (we will

establish this in the next chapter).

3 Select which direction of rotation will be regarded as pos-

itive (for instance, in Example 5, we selected the counter-

clockwise direction of rotation as positive). If the problem

involves joint rotational and translational motions, select

coordinate axes for the translational motion, preferably

placing one of the axes along the direction of motion.

4 Select an axis for the rotation of the rigid body, either an

axis through the center of mass, or else a fixed axis (such

as an axle or a pivot mounted on a support) about which

the body is constrained to rotate. Calculate the torque of

each force acting on the body about this center. Remember

that the sign of the torque is positive or negative depend-

ing on whether it produces an angular acceleration in the

positive or the negative direction of rotation.

5 Then apply the equation of rotational motion, I� � �, to

each rotating body, where � is the net torque on a given

body.

6 If the rigid body has a translational motion besides the

rotational motion, apply Newton’s Second Law, F � ma,

for the translational motion (see Examples 5 and 6). For

rolling without slipping, the translational and the rota-

tional motions are related by v � �R and a � �R.

7 If there are several distinct bodies in the problem, you need

to apply the equation of rotational motion or Newton’s

Second Law separately for each (see Example 5).

               



angular momentum

Checkup 13.2

QUESTION 1: Consider a meterstick falling over, as in Example 2. At what instant is

the angular acceleration produced by the weight force maximum?

QUESTION 2: A rolling cylinder has both rotational kinetic energy (reckoned about

its center of mass) and translational kinetic energy. Which is larger?

QUESTION 3: Consider the rolling cylinder of Example 7. When this cylinder reaches

the bottom of the ramp, is its kinetic energy larger, smaller, or the same as that of a

similar cylinder that slips down a frictionless ramp without rolling?

QUESTION 4: A sphere and a cylinder of equal masses roll down an inclined plane

without slipping. Will they have equal kinetic energies when they reach the bottom?

Which will get to the bottom first?

QUESTION 5: A thin hoop and a solid cylinder roll down an inclined plane without slip-

ping. When they reach the bottom, the translational speed of the hoop is

(A) Less than that of the cylinder

(B) Greater than that of the cylinder

(C) Equal to that of the cylinder

13.3 ANGULAR MOMENTUM 
AND ITS  CONSERVATION

In Chapter 10 we saw how to express the equation for the translational motion in

terms of the momentum: the rate of change of the momentum equals the force (dpx�dt �

Fx). Likewise, we can express the equation for rotational motion in terms of angular

momentum. The angular momentum of a body rotating about a fixed axis is defined as the

product of the moment of inertia and the angular velocity,

(13.26)

This equation for angular momentum is analogous to the equation p � mv for trans-

lational momentum. The SI unit of angular momentum is kg�m2/s, which can also be

written in the alternative form J�s. Table 13.1 gives some examples of typical values

of angular momenta.

According to the data given in Example 4, what is the angular

momentum of the rotor of the Gravity Probe B gyroscope when

spinning at 10 000 revolutions per minute?

SOLUTION: From Example 4, the angular velocity is � � 1.05 � 103 radians/s,

and the moment of inertia is 
 � 1.1 � 10�5 kg�m2. So

 � 1.2 � 10�2 kg�m2/s

 L � I
 � 1.1 � 10�5 kg�m2 � 1.05 � 103 radians/s

EXAMPLE 8

L � I�

✔

406 CHAPTER 13 Dynamics of a Rigid Body
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conservation of angular momentum

equation of rotational motion in
terms of angular momentum

13.3 Angular Momentum and Its Conservation 407

SOME ANGULAR MOMENTA

Orbital motion of Earth 2.7 � 1040 J�s

Rotation of Earth 5.8 � 1033 J�s

Helicopter rotor (320 rev/min) 5 � 104 J�s

Automobile wheel (90 km/h) 1 � 102 J�s

Electric fan 1 J�s

Frisbee 1 � 10�1 J�s

Toy gyroscope 1 � 10�2 J�s

Phonograph record (33.3 rev/min) 6 � 10�3 J�s

Compact disc (plating outer track) 2 � 10�3 J�s

Bullet fired from rifle 2 � 10�3 J�s

Orbital motion of electron in atom 1.05 � 10�34 J�s

Spin of electron 0.53 � 10�34 J�s

TABLE 13.1

To express the equation for rotational motion in terms of angular momentum, we

proceed as we did in the translational case. We note that if the change of angular veloc-

ity is d�, then dL � I d�. Dividing both sides of this relation by dt, we see

If we compare this with Eq. (13.18), we see that the right side can be expressed as the

torque, so

(13.27)

This says that the rate of change of angular momentum equals the torque. Obviously, this

equation is analogous to the equation dpx�dt � Fx for translational motion.

We now see that the analogy between rotational and translational quantities men-

tioned in Section 12.3 can be extended to angular momentum and momentum.

Table 13.2 lists analogous quantities, including the quantities for work, power, and

kinetic energy.

If there is no torque acting on the rotating body, � � 0 and therefore dL �dt � 0,

which means that the angular momentum does not change:

(when � � 0) (13.28)

This is the Law of Conservation of Angular Momentum. Since L � I�, we can also

write this law as

(13.29)I� � [constant]

L �  [constant]

dL

dt
� t

dL

dt
� I 

d�

dt

TABLE 13.2

FURTHER ANALOGIES BETWEEN 1D
TRANSLATIONAL AND ROTATIONAL
QUANTITIES

S

S

S

S

S

S
dL

dt
� t

dp

dt
� F

L � I�p � mv

I� � tma � F

K � 1
2 I�2K � 1

2 mv 2

P � t�P � Fv

dW � t dfdW � F dx

               



A pirouette performed by a figure skater on ice provides a nice illustration of the

conservation of angular momentum. The skater begins the pirouette by spinning

about her vertical axis with her arms extended horizontally (see Fig. 13.10a); in this

configuration, the arms have a large moment of inertia. She then brings her arms close

to her body (see Fig. 13.10b), suddenly decreasing her moment of inertia. Since the ice

is nearly frictionless, the external torque on the skater is nearly zero, and therefore the

angular momentum is conserved. According to Eq. (13.26), a decrease of I requires

an increase of � to keep the angular momentum constant. Thus, the change of con-

figuration of her arms causes the skater to whirl around her vertical axis with a dramatic

increase of angular velocity (see Fig. 13.11).

Like the law of conservation of translational momentum, the Law of Conservation

of Angular Momentum is often useful in the solutions of problems in which the forces

are not known in detail.

Suppose that a pottery wheel is spinning (with the motor dis-

engaged) at 80 rev/min when a 6.0-kg ball of clay is suddenly

dropped down on the center of the wheel (see Fig. 13.12). What is the angular

velocity after the drop? Treat the ball of clay as a uniform sphere of radius 8.0 cm.

The pottery wheel has a moment of inertia I � 7.5 � 10�2 kg�m2. Ignore the

(small) friction force in the axle of the turntable.

SOLUTION: Since there is no external torque on the system of pottery wheel and

clay, the angular momentum of this system is conserved. The angular momentum

before the drop is

(13.30)

where � is the initial angular velocity and I the moment of inertia of the pottery

wheel. The angular momentum after the drop is

(13.31)

where �� is the final angular velocity and I� the moment of inertia of pottery wheel

and clay combined. Hence

(13.32)

from which we find

(13.33)

The wheel is initially rotating with angular velocity

The moment of inertia of the pottery wheel is given,

I � 7.5 � 10�2 kg�m2

� � 2p � f � 2p �
80 rev

60 s
� 8.4  radians/s

�œ �
I

I œ�

I� � I œ�œ

Lœ � I œ�œ

L � I�

EXAMPLE 9
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FIGURE 13.10 Figure skater performing

a pirouette. (a) Arms extended. (b) Arms

folded against body.

(a)

(b)

Skater has a larger
moment of inertia
when arms are out…

…and a smaller moment
of inertia and a larger
angular velocity when
arms are in.

FIGURE 13.11 A figure skater whirling

at high speed.

               



angular momentum for circular orbit

13.3 Angular Momentum and Its Conservation 409

and the moment of inertia of the clay is that of a uniform sphere (see Table 12.3):

Accordingly,

As already mentioned in Chapter 9, the Law of Conservation of Angular

Momentum also applies to a single particle moving in an orbit under the influence of

a central force. Such a force is always directed along the radial line, and it therefore

exerts no torque. If the particle is moving along a circle of radius r with velocity v (see

Fig. 13.13), its moment of inertia is mr2 and its angular velocity is � � v�r. Hence I�

� mr2 � v 	r � mvr, and the angular momentum of the particle is

(circular orbit) (13.34)

This formula is valid not only for a circular orbit, but also for the perihelion and

aphelion points of an elliptical orbit, where the instantaneous velocity is perpendi-

cular to the radius. In Chapter 9 we took advantage of the conservation of the angu-

lar momentum L � mvr to compare the speeds of a planet at perihelion and at

aphelion.

The angular momentum defined by Eq. (13.34) is called the orbital angular

momentum to distinguish it from spin angular momentum of a body rotating about

its own axis. For instance, the Earth has both an orbital angular momentum (due to its

motion around the Sun) and a spin angular momentum (due to its rotation about its

own axis). Table 13.1 includes examples of both kinds of angular momentum.

L �  mvr

 � 7.0 radians/s

 �
7.5 � 10�2 kg�m2

7.5 � 10�2 kg�m2 � 1.5 � 10�2 kg �m2
� 8.4 radians/s

 �œ �
I

I œ � �
I

I � Iclay

�

  � 1.5 � 10�2 kg�m2

 Iclay � 2
5 MR2 � 2

5 � 6.0 kg � (0.080 m)2

v

Ball of clay.

Initially, only
pottery wheel
is rotating.

v'

Clay and wheel
rotate together.

FIGURE 13.13 A particle moving with

speed v along a circle of radius r. The moment

of inertia of this particle with respect to the

center of the circle is I � mr2.

r

v

For a particle, all
of mass is a distance
r from axis.

FIGURE 13.12 (a) A pottery wheel rotates

with angular velocity �; (b) when a ball of clay

is dropped on the wheel, the angular velocity

slows to �'.

(b)(a)

orbital angular momentum 
and spin angular momentum

               



torque vector

Checkup 13.3

QUESTION 1: A hoop and a uniform disk have equal radii and equal masses. Both are

spinning with equal angular speeds. Which has the larger angular momentum? By

what factor?

QUESTION 2: Two automobiles of equal masses are traveling around a traffic circle

side by side, with equal angular velocities. Which has the larger angular momentum?

QUESTION 3: You sit on a spinning stool with your legs tucked under the seat.

You then stretch your legs outward. How does your angular velocity change?

QUESTION 4: Consider the spinning skater described in Fig. 13.10. While

she brings her arms close to her body, does the rotational kinetic energy remain

constant?

QUESTION 5: Three children sit on a tire swing (see Fig. 13.14), leaning back-

ward as the wheel rotates about a vertical axis. What happens to the rotational

frequency if the children sit up straight?

(A) Frequency increases (B) Frequency decreases

(C) Frequency remains constant

13.4 TORQUE AND ANGULAR
MOMENTUM AS VECTORS

The rotational motion of a rigid body about a fixed axis is analogous to one-dimensional

translational motion. More generally, if the axis of rotation is not fixed but changes in

direction, the motion becomes three-dimensional. A wobbling, spinning top provides

an example of such a three-dimensional rotational motion. In this case, the torque and

the angular momentum must be treated as vectors, analogous to the force vector and

the momentum vector. The definitions of the torque vector and the angular-momen-

tum vector involve the vector cross product that we introduced in Section 3.4. When

a force F acts at some point with position vector r, the resulting torque vector is the

cross product of the position vector and the force vector:

(13.35)� � r � F

✔

410 CHAPTER 13 Dynamics of a Rigid Body

PROBLEM-SOLVING TECHNIQUES
CONSERVATION OF ANGULAR
MOMENTUM

The use of conservation of angular momentum in a problem

involving rotational motion involves the familiar three steps

we used with conservation of momentum or of energy in

translational motion:

1 First write an expression for the angular momentum at

one instant of the motion [Eq. (13.30)].

2 Then write an expression for the angular momentum at

another instant [Eq. (13.31)].

3 And then rely on conservation of angular momentum to

equate the two expressions [Eq. (13.32)].This yields one

equation, which can be solved for an unknown quantity,

such as the final angular speed.

FIGURE 13.14 Children on a spinning

tire swing.

               



angular-momentum vector

According to the definition of the cross product, the magnitude of � is

(13.36)

and the direction of � is perpendicular to the force

vector and the position vector, as specified by the

right-hand rule (see Fig. 13.15). Note that since

the position vector depends on the choice of

origin, the torque also depends on the choice of origin.

We will usually place the origin on some axis or

some pivot, and the torque (13.35) is then reck-

oned in relation to this pivot. For instance, for

rotation about a fixed axis, we place the origin on

that axis, so r is in the plane of the circular motion

of the point at which the force acts; then r � R,

and Eq. (13.36) agrees with Eq. (13.2).

The definition of the angular-momentum vector of a rigid body is based on the

definition of the angular-momentum vector for a single particle. If a particle has trans-

lational momentum p at position r, then its angular-momentum vector is defined as the

cross product of the position vector and the momentum vector:

(13.37)

As in the case of the torque, the angular momentum vector depends on the choice of origin.

For instance, if the particle is moving along a circle, we place the origin at the center

of the circle, so r and p are in the plane of the circular motion. Since the vectors r and

p are perpendicular, the magnitude of their cross product is then L � rp sin 90� � rp

� rmv. By the right-hand rule, the direction of r � p is perpendicular to the plane of

the circular motion, parallel to the axis of rotation. (see Fig. 13.16).

For a rigid body rotating about some (instantaneous) axis, the angular-momentum

vector is defined as the sum of the angular-momentum vectors of all the particles in

the body,

(13.38)

As in the case of a single particle, the value of the angular momentum obtained from

this formula depends on the choice of the origin of coordinates. For the calculation of

the angular momentum of a rigid body rotating about a fixed axis, it is usually con-

venient to choose an origin on the axis of rotation.

Figure 13.17 shows a dumbbell, a rigid body consisting of two

particles of mass m attached to the ends of a massless rigid

rod of length 2r. The body rotates with angular velocity � about a perpendicular

axis through the center of the rod. Find the angular momentum about this center.

SOLUTION: Each particle executes circular motion with speed v � r�. Hence

the angular momentum of each has a magnitude L � rmv � mr 2� (compare the

case of a single particle, illustrated in Fig. 13.13). The direction of each angular-

momentum vector is parallel to the axis of rotation (see Fig. 13.16). Thus the

direction of the vector sum of the two angular-momentum vectors is also parallel

to the axis of rotation, and its magnitude is

L � mr 
2� � mr 

2� � 2mr 
2�

EXAMPLE 10

L � r1 � p1 � r2 � p2 � #
 
#
 
#

L � r � p

t � rF sin u

13.4 Torque and Angular Momentum as Vectors 411

FIGURE 13.15 The torque vector � is

perpendicular to the force F and the posi-

tion vector r, in the direction specified by

the right-hand rule: place the fingers of

your right hand along the direction of r

and curl toward F along the smaller angle

between these vectors; your thumb will

then point in the direction of r � F.

FIGURE 13.16 Angular-momentum

vector for a particle.

z

y

x

r

L

p

O

Orient your right
hand so that you
can curl your
fingers from
direction of r to p.

Your thumb then
points along L.

FIGURE 13.17 A rotating dumbbell.

z

m m

r r

Rod rotates about
a perpendicular axis
through its center.

u

z

y

x

O

F

t

r

Your thumb then
points along t.

Orient your right
hand so that you can
curl your fingers from
direction of r to F.
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Suppose that the rod of the dumbbell described in the

preceding example is welded to an axle inclined at an angle

	 with respect to the rod. The dumbbell rotates with angular velocity � about this

axis, which is supported by fixed bearings (see Fig. 13.18). Find the angular momen-

tum about an origin on the axis, at the center of mass.

SOLUTION: Each particle executes circular motion, but since the origin is not at

the center of the circle, the angular momentum is not the same as in Example 10.

The distance between each particle and the axis of rotation is

and the magnitude of the velocity of each particle is

The direction of the velocity is perpendicular to the position vector. Hence the

angular-momentum vector of each mass has a magnitude

(13.39)

The direction of the angular-momentum vector of each mass is perpendicular

to both the velocity and the position vectors, as specified by the right-hand rule.

The angular-momentum vector of each mass is shown in Fig. 13.18; these vectors

are parallel to each other, they are in the plane of the axis and the rod, and they

make an angle of 90� � 	 with the axis.The total angular momentum is the vector

sum of these individual angular momenta. This vector is in the same direction as

the individual angular-momentum vectors, and it has a magnitude twice as large

as either of those in Eq. (13.39):

(13.40)

As the body rotates, so does the angular-momentum vector, remaining in the

plane of the axis and the rod. If at one instant the angular momentum lies in the

z–y plane, a quarter of a cycle later it will lie in the z–x plane, etc.

COMMENT: Note that the z component of the angular momentum is

This can also be written as

(13.41)

where R � r sin 	 is the perpendicular distance between each mass and the axis

of rotation. Since 2mR2 is simply the moment of inertia of the two particles about

the z axis, Eq. (13.41) is the same as 

Lz � I� (13.42)

As we will see below, this formula is of general validity for rotation around a 

fixed axis.

The preceding example shows that the angular-momentum vector of a rotating body

need not always lie along the axis of rotation. However, if the body is symmetric about

the axis of rotation, then the angular-momentum vector will lie along this axis. In such

a symmetric body, each particle on one side of the axis has a counterpart on the other

Lz � 2m
R2

Lz � L cos(90� � 	) � 2m�r2 sin 	 cos(90� � 	) � 2m�r 
2 sin 

2	

L � 2m�r 
2 sin 	

ƒ L1 ƒ � ƒ L2 ƒ � m ƒ r � v ƒ � mrv � m�r 
2 sin 	

v � �R � �r sin 	

R � r sin 	

EXAMPLE 11

FIGURE 13.18 A rotating dumbbell ori-

ented at an angle 	 with the axis of rotation.

L2 r22r2

rr1
�

OO

m

y

R

L1

90° – �

m
R

z

Angular
momentum
L � r � p need
not lie along axis
of rotation.

               



equation of rotational motion for 
vector angular momentum

side of the axis, and when we add the angular-momentum vectors contributed by these

two particles (or any other pair of particles), the resultant lies along the axis of rotation

(see Fig. 13.19).

Since Newton’s Second Law for translational motion states that the rate of change

of the momentum equals the force, the analogy between the equations for transla-

tional and rotational motion suggests that the rate of change of the angular momen-

tum should equal the torque. It is easy to verify this for the case of a single particle. With

the usual rule for the differentiation of a product,

(13.43)

The first term on the right side is

(13.44)

This is zero because the cross product of a vector with itself is always zero. According

to Newton’s Second Law, the second term on the right side of Eq. (13.43) is 

(13.45)

where F is the force acting on the particle. Therefore, Eq. (13.43) becomes 

(13.46)

In the case of a rigid body, the angular momentum is the sum of all the angular

momenta of the particles in the body, and the rate of change of this total angular

momentum can be shown to equal the net external torque:

(13.47)

This equation for the rate of change of the angular momentum of a rigid body is

analogous to the equation dp�dt � F for the rate of change of the translational momen-

tum of a particle.

To compare the vector equation (13.47) with our earlier equation I� � �, we

must focus our attention on the component of the angular momentum along the

axis of rotation, that is, the z axis. Figure 13.20 shows an arbitrary rigid body

rotating about a fixed axis, which coincides with the z axis. As in Example

11, the angular-momentum vector of this body makes an angle with the axis

of rotation. However, as we discussed in Example 11, the z component of

the angular momentum of each particle in the rotating body is simply equal to its

moment of inertia about the z axis multiplied by the angular velocity [see Eq. (13.42)].

Hence, when we sum the contributions of all the particles in the rotating body, we

find that the z component of the net angular momentum of the entire rotating body

equals the net moment of inertia of the entire body multiplied by the angular veloc-

ity. This establishes that the equation 

(13.48)

is of general validity.

Lz � I �

d L

dt
� �

d L

dt
� r � F � �

r �
dp

dt
� r � F

dr

dt
� p � v � (mv) � m(v � v) � 0

 �
dr

dt
� p � r �

dp

dt

 
d

dt
L �

d

dt
(r � p)
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FIGURE 13.19 For a rotating symmetric

body, the angular momentum is always

along the axis of rotation.

y

z

L1L2

r1r2r2

x

OO

If a body is symmetric about
axis of rotation, resultant
angular momentum will be
along axis of rotation.

FIGURE 13.20 A body rotating about the

z axis.

y

z

Lz

L

x

O

Angular momentum 
makes an angle with 
z axis.

Component of 
angular momentum 
along z axis is Lz.

               



You grasp the gimbals of a spinning gyroscope with both

hands and you forcibly twist the axis of the gyroscope through

an angle in the horizontal plane (see Fig. 13.21). If the angular momentum of

the gyroscope spinning about its axis is 3.0 � 10�2 J�s, what are the magnitude and

the direction of the torque you need to exert to twist the axis of the gyroscope at

a constant rate through 90� in the horizontal plane in 1.0s?

SOLUTION: Figure 13.22a shows the angular-momentum vector L of the spin-

ning gyroscope at an initial time and the new angular-momentum vector L � dL

after you have turned the gyroscope through a small angle d	. From the figure, we

see that dL is approximately perpendicular to L, and that the magnitude of dL is

dL � L d	

EXAMPLE 12

414 CHAPTER 13 Dynamics of a Rigid Body

PHYSICS IN PRACTICE THE GYROCOMPASS

A gyroscope is a flywheel suspended in gim-

bals (pivoted rings; see Fig. 1). The angular-

momentum vector of the flywheel lies along its

axis of rotation. Since there are no torques on

this flywheel, except for the very small and negligible fric-

tional torques in the pivots of the gimbals, the angular-

momentum vector remains constant in both magnitude

and direction. Hence the direction of the axis of spin

remains fixed in space—the gyroscope can be carried about,

its base can be twisted and turned in any way, and yet the

axis always continues to point in its original direction.

Thus, the gyroscope serves as a compass. High-precision

gyroscopes are used in the inertial-guidance systems for

ships, aircraft, rockets, and spacecraft (see Fig. 2). They

provide an absolute reference direction relative to which

the orientation of the vehicle can be established. In such

applications, three gyroscopes aimed along mutually per-

pendicular axes define the absolute orientation of an x, y,

z coordinate grid.

The best available high-precision gyroscopes, such as

those used in the inertial-guidance system of the Hubble

Space Telescope, are capable of maintaining a fixed reference

direction with a deviation, or drift, of no more than 10 arc-

seconds per hour. The special gyroscopes developed for the

Gravity Probe B experiment are even better than that; their

drift is less than 1 milliarcsecond per year!

FIGURE 1 Gyroscope mounted in gimbals.

FIGURE 2 Internal-guidance

system for an Atlas rocket. This

system contains gyroscopes to sense

the orientation of the rocket and

accelerometers to measure the

instantaneous acceleration. From

these measurements, computers

calculate the position of the rocket

and guide it along the intended

flight path.

y

z

L

x

O

How should you
push to rotate
gyroscope’s axis in
horizontal plane?

FIGURE 13.21 A gyroscope held in both

hands. The axis of the gyroscope is horizon-

tal, and the hands twist this axis sideways

through an angle in the x–y plane.

Concepts
in

Context

               



Hence

(13.49)

According to Eq. (13.49), the magnitude of the torque is

With L � 3.0 � 10�2 J�s and d	�dt � (90�)	(1.0 s) � ��2 radians/s,

Since � � dL/dt, the direction of the torque vector � must be the direction of

dL ; that is, the torque vector must be perpendicular to L, or initially into the plane

of the page (see Fig. 13.22b). To produce such a torque, your left hand must push

up, and your right hand must pull down.This is contrary to intuition, which would

suggest that to twist the axis in the horizontal plane, you should push forward with

your right hand and pull back with your left! This surprising behavior also explains

why a downward gravitational force causes the slow precession of a spinning top,

as considered in the next example.

A toy top spins with angular momentum of magnitude L; the

axis of rotation is inclined at an angle � with respect to the

vertical (see Fig. 13.23). The spinning top has mass M; its point of contact with

the ground remains fixed, and its center of mass is a distance r from the point of

contact. The top precesses; that is, its angular-momentum vector rotates about the

vertical. Find the angular velocity �p of this precessional motion. If a top has

r � 4.0 cm and moment of inertia I � MR2�4, where R � 3.0 cm, find the period

of the precessional motion when the top is spinning at 250 radians/s.

SOLUTION: From Fig. 13.24a, we see that the weight, Mg, acting at the center

of mass, produces a torque � of magnitude

(13.50)

As in Example 12, the change in angular momentum dL will be parallel to the

torque, since � � d L�dt. In a time dt, the top will precess though an angle d	 given

by (see Fig. 13.24b)

Using dL � � dt � rMg sin� dt, we thus have

The precessional angular velocity is the rate of change of this angle:

(13.51)

Thus the angular velocity of precession is independent of the tilt angle �.

�p �
d	

dt
�

rMg

L
 

d	 �
rMg sin u dt

L sin u
�

rMg

L
dt

d	 �
dL

Lsinu

t � rMg sin  u

EXAMPLE 13

t � 3.0 � 10�2 J�s �
p

2
 radians/s � 4.7 � 10�2 N�m

t �
dL

dt
� L 

d	

dt

dL

dt
 �  L 

d	

dt
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FIGURE 13.22 (a) dL is approximately

perpendicular to L, in the x–y plane.

(b) The torque � is parallel to dL, also in

the x–y plane.

FIGURE 13.23 A tilted top spinning

with angular velocity �.

�

CM

L

�

�

�

�

(a) 

O

x

z

yL

d Ldb
L � d L

O

x

z

y
F

r

�

(b) 

When you rotate
gyroscope’s axis, angular
momentum changes by d L.

For desired � � r�F,
direction of force must
be downward!

Since � � d L/dt,
� is parallel to d L.

               



The period of the precession is related to the precessional angular velocity by

For the particular top described, we insert the angular momentum

and obtain

Since this precessional period is proportional to �, we see that as the spinning of

the top slows down, the top will precess with a shorter period, that is, more quickly.

Checkup 13.4

QUESTION 1: A particle has a nonzero position vector r and a nonzero momentum p.

Can the angular momentum of this particle be zero?

QUESTION 2: What is the angle between the momentum vector p and the angular-

momentum vector L of a particle?

QUESTION 3: Suppose that instead of calculating the angular momentum of the dumb-

bell shown in Fig. 13.17 about the center, we calculate it about an origin on the z axis

at some distance below the center. What are the directions of the individual angular-

momentum vectors of the two masses m in this case? What is the direction of the total

angular momentum?

QUESTION 4: Is a torque required to keep the dumbbell in Fig. 13.18 rotating around

the z axis at constant angular velocity?

QUESTION 5: What is the direction of the angular-momentum vector of the rotating

minute hand on your watch (calculated with respect to an origin at the center of the

watch face)?

(A) In the direction that the minute hand points

(B) Antiparallel to the direction that the minute hand points

(C) In the plane of the watch face, but perpendicular to the minute hand

(D) Perpendicularly out of the face of the watch

(E) Perpendicularly into the face of the watch

✔

 � 0.90 s

 �
p � (0.030 m)2 � 250 radians/s

2 � 0.040 m � 9.81 m>s2

 T �
2pMR2�

4rMg
�
pR2�

2rg

L � I
 �
MR2

4
 �

T �
2p

�p

�
2pL

rMg
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FIGURE 13.24 (a) The weight of the

top, acting at the center of mass (a distance

r from the point of contact), produces a

torque perpendicular to r and to the weight.

(b) The torque is parallel to dL, which

results in a slow precession around a vertical

axis at an angular velocity �p.

(a) 

O

Mgr

x

z

y

u

u

�

O

Mg

x

z

y

(b)

�p

d L

L

db

Lsinu

Rotational axis of 
a precessing top
traces out a cone.

Since � � r�F,
downward weight
exerts a torque in
horizontal plane.

Since � � dL/dt,
d L is parallel to �.

�p � db/dt is 
precessional 
frequency.
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TORQUE

where � is the angle between the force F and

the radial line of length R.

SUMMARY

WORK DONE BY TORQUE

WORK DONE BY A CONSTANT TORQUE

POWER DELIVERED BY TORQUE where � is 

the angular velocity.

CONSERVATION OF ENERGY IN ROTATIONAL MOTION

EQUATION OF ROTATIONAL MOTION (Fixed axis) 

where I is the moment of inertia and � is the angular

acceleration.

ANGULAR MOMENTUM OF ROTATION

CONSERVATION OF ANGULAR MOMENTUM

ANGULAR MOMENTUM OF PARTICLE (In circular orbit)

ANGULAR MOMENTUM VECTOR

(13.6)P � t�

(13.3)t � FR sin u

(13.4)W � �t df

(13.5)W � t¢f

(13.10)E � 1
2 I
2 � U � [constant]

(13.19)I� � t

(13.26)L � I


(13.29)I
 � [constant]

(13.34)L � mvr

(13.37)L � r � p

z



m m

r r

PROBLEM-SOLVING TECHNIQUES Torques and Rotational Motion (page 405)

PROBLEM-SOLVING TECHNIQUES Conservation of Angular Momentum (page 410)

PHYSICS IN PRACTICE The Gyrocompass (page 414)

z

y

x

r

L

p
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R
F

moment
arm
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TORQUE VECTOR

EQUATION OF ROTATIONAL MOTION FOR
VECTOR ANGULAR MOMENTUM

GYROSCOPIC PRECESSION ANGULAR VELOCITY

where r is the distance from the point of contact

to the center of mass.

(13.35)T � r � F

(13.47)
d L

dt
� �

(13.51)�p �
rMg

L

QUEST IONS FOR DISCUSSION

1. Suppose you push down on the rim of a stationary phono-

graph turntable. What is the direction of the torque you exert

about the center of the turntable?

2. Many farmers have been injured when their tractors suddenly

flipped over backward while pulling a heavy piece of farm

equipment. Can you explain how this happens?

3. Rifle bullets are given a spin about their axis by spiral grooves

(“rifling”) in the barrel of the gun. What is the advantage of this?

4. You are standing on a frictionless turntable (like a phonograph

turntable, but sturdier). How can you turn 180� without leav-

ing the turntable or pushing against any exterior body?

5. If you give a hard-boiled egg resting on a table a twist with

your fingers, it will continue to spin. If you try doing the same

with a raw egg, it will not. Why?

6. A tightrope walker uses a balancing pole to keep steady

(Fig. 13.25). How does this help?

7. Why do helicopters need a small vertical propeller on their tail?

8. The rate of rotation of the Earth is subject to small seasonal vari-

ations. Does this mean that angular momentum is not conserved?

9. Why does the front end of an automobile dip down when the

automobile is braking sharply?

10. The friction of the tides against the ocean coasts and the

ocean shallows is gradually slowing down the rotation of the

Earth. What happens to the lost angular momentum?

11. An automobile is traveling on a straight road at 90 km/h.

What is the speed, relative to the ground, of the lowermost

point on one of its wheels? The topmost point? The midpoint?

12. A sphere and a hoop of equal masses roll down an inclined

plane without slipping. Which will get to the bottom first? Will

they have equal kinetic energy when they reach the bottom?

13. A yo-yo rests on a table (Fig. 13.26). If you pull the string

horizontally, which way will it move? If you pull vertically?

�p

L

FIGURE 13.25 A tightrope walker. FIGURE 13.26 Yo-yo resting on a table. (a) String pulls horizontally. (b) String

pulls vertically.

String pulls
horizontally.

String pulls
vertically.

(a) (b)
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14. Stand a pencil vertically on its point on a table and let go. The

pencil will topple over.

(a) If the table is very smooth, the point of the pencil will slip

in the direction opposite to that of the toppling. Why?

(b) If the table is somewhat rough, or covered with a piece of

paper, the point of the pencil will jump in the direction of

the toppling. Why? (Hint: During the early stages of the

toppling, friction holds the point of the pencil fixed; thus

the pencil acquires horizontal momentum.)

15. An automobile travels at constant speed along a road consist-

ing of two straight segments connected by a curve in the form

of an arc of a circle. Taking the center of the circle as origin,

what is the direction of the angular momentum of the auto-

mobile? Is the angular momentum constant as the automobile

travels along this road?

16. Is the angular momentum of the orbital motion of a planet

constant if we choose an origin of coordinates on the Sun?

17. A pendulum is swinging back and forth. Is the angular

momentum of the pendulum bob constant?

18. What is the direction of the angular-momentum vector of the

rotation of the Earth?

19. A bicycle is traveling east along a level road. What are the

directions of the angular-momentum vectors of its wheels?

PROBLEMS

13.1 Work,  Energy,  and Power  in
Rota t iona l  Mot ion;  Torque

1. The operating instructions for a small crane specify that when the

boom is at an angle of 20� above the horizontal (Fig. 13.27), the

maximum safe load for the crane is 500 kg. Assuming that this

maximum load is determined by the maximum torque that the

pivot can withstand, what is the maximum torque for 20� in

terms of length R of the boom? What is the maximum safe load

for 40�? For 60�?

3. The repair handbook for an automobile specifies that the

cylinder-head bolts are to be tightened to a torque of 62 N�m.

If a mechanic uses a wrench of length 20 cm on such a bolt,

what perpendicular force must he exert on the end of this

wrench to achieve the correct torque?

4. A 2.0-kg trout hangs from one end of a 2.0-m-long stiff fish-

ing pole that the fisherman holds with one hand by the other

end. If the pole is horizontal, what is the torque that the

weight of the trout exerts about the end the fisherman holds?

If the pole is tilted upward at an angle of 60�?

5. You hold a 10-kg book in your hand with your arm extended

horizontally in front of you. What is the torque that the

weight of this book exerts about your shoulder joint, at a dis-

tance of 0.60 m from the book?

6. If you bend over, so your trunk is horizontal, the weight of

your trunk exerts a rather strong torque about the sacrum,

where your backbone is pivoted on your pelvis. Assume that

the mass of your trunk (including arms and head) is 48 kg, and

that the weight effectively acts at a distance of 0.40 m from

the sacrum. What is the torque that this weight exerts?

7. The engine of an automobile delivers a maximum torque of

203 N�m when running at 4600 rev/min, and it delivers a

maximum power of 142 hp when running at 5750 rev/min.

What power does the engine deliver when running at maxi-

mum torque? What torque does it deliver when running at

maximum power?

8. The flywheel of a motor is connected to the flywheel of a

pump by a drive belt (Fig. 13.29). The first flywheel has a

radius R1, and the second a radius R2. While the motor wheel

is rotating at a constant angular velocity �1, the tensions in the

upper and the lower portions of the drive belt are T and 

T 
, respectively. Assume that the drive belt is massless.

(a) What is the angular velocity of the pump wheel?

(b) What is the torque of the drive belt on each wheel?

FIGURE 13.27 Small crane.

20°

2. A simple manual winch consists of a drum of radius 4.0 cm to

which is attached a handle of radius 25 cm (Fig. 13.28). When

you turn the handle, the rope winds up on the drum and pulls

the load. Suppose that the load carried by the rope is 2500 N.

What force must you exert on the handle to hold this load?

FIGURE 13.28
Manual winch.

2500 N

25 cm

4.0 cm
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(c) By taking the product of torque and angular velocity, cal-

culate the power delivered by the motor to the drive belt,

and the power removed by the pump from the drive belt.

Are these powers equal?

9. The Wright Cyclone engine on a DC-3 airplane delivers a

power of 850 hp with the propeller revolving steadily at 2100

rev/min. What is the torque exerted by air resistance on the

propeller?

10. A woman on an exercise bicycle has to exert an (average) tan-

gential push of 35 N on each pedal to keep the wheel turning

at constant speed. Each pedal has a radial length of 0.18 m. If

she pedals at the rate of 60 rev/min, what is the power she

expends against the exercise bicycle? Express your answer in

watts and in kilocalories per minute.

11. With what translational speed does the upper end of the

meterstick in Example 2 hit the floor? If, instead of a 1.0-m

stick, we use a 2.0-m stick, with what translational speed does

it hit?

12. A ceiling fan uses 0.050 hp to maintain a rotational frequency

of 150 rev/min. What torque does the motor exert?

13. The motor of a grinding wheel exerts a torque of 0.65 N�m to

maintain an operating speed of 3450 rev/min. What power

does the motor deliver?

14. From the human-body data of Fig. 10.17, calculate (a) the

torque about the shoulder for an arm held horizontally and (b)

the torque about the hip for a leg held horizontally.

15. A large grinding table is used to thin large batches of silicon

wafers in the final stage of semiconductor manufacturing, a

process called backlap. If the driving motor exerts a torque of

250 N�m while rotating the table 1200 times for one batch of

wafers, how much work does the motor do?

16. Recently, a microfabricated torque sensor measured a torque as

small as 7.5 � 10�24 N�m. If the torque is produced by a force

applied perpendicular to the sensor at a distance of 25 �m

from the axis of rotation, what is the smallest force that the

sensor can detect?

*17. The angular position of a ceiling fan during the first two

seconds after start-up is given by � � Ct2, where C �

7.5 radians/s2 and t is in seconds. If the fan motor exerts a

torque of 2.5 N�m, how much work has the motor done 

after t � 1.0 s? After t � 2.0 s?

*18. While braking, a 1500-kg automobile decelerates at the rate

of 8.0 m/s2. What is the magnitude of the braking force that

the road exerts on the automobile? What torque does this

force generate about the center of mass of the automobile?

Will this torque tend to lift the front end of the automobile or

tend to depress it? Assume that the center of mass of the auto-

mobile is 60 cm above the surface of the road.

*19. A tractor of mass 4500 kg has rear wheels of radius 0.80 m.

What torque and what power must the engine supply to the

rear axle to move the tractor up a road of slope 1:3 at a con-

stant speed of 4.0 m/s?

*20. A bicycle and its rider have a mass of 90 kg. While accelerat-

ing from rest to 12 km/h, the rider turns the pedals through

three full revolutions. What torque must the rider exert on the

pedals? Assume that the torque is constant during the acceler-

ation and ignore friction within the bicycle mechanism.

*21. A meterstick is held to a wall by a nail passing through the

60-cm mark (Fig. 13.30). The meterstick is free to swing

about this nail, without friction. If the meterstick is released

from an initial horizontal position, what angular velocity will

it attain when it swings through the vertical position?

FIGURE 13.29 Motor and pump

wheels connected by a drive belt.

T

T '

R1 R2

FIGURE 13.30 A meterstick.

FIGURE 13.31 A hanging sphere.

*22. A uniform solid sphere of mass M and radius R hangs from a

string of length R�2. Suppose the sphere is released from an

initial position making an angle of 45� with the vertical

(Fig. 13.31).

(a) Calculate the angular velocity of the sphere when it

swings through the vertical position.

(b) Calculate the tension in the string at this instant.

*23. The maximum (positive) acceleration an automobile can

achieve on a level road depends on the maximum torque the

engine can deliver to the wheels.

(a) The engine of a Maserati sports car delivers a maximum

torque of 441 N�m to the gearbox. The gearbox 

steps down the rate of revolution by a factor of 2.58;

that is, whenever the engine makes 2.58 revolutions,

the wheels make 1 revolution. What is the torque deliv-

ered to the wheels? Ignore frictional losses in the gear-

box.

(b) The mass of the car (including fuel, driver, etc.) is 1770

kg, and the radius of its wheels is 0.30 m. What is the

maximum acceleration? Ignore the moment of inertia of

the wheels and frictional losses.
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*24. An automobile of mass 1200 kg has four brake drums of

diameter 25 cm. The brake drums are rigidly attached to the

wheels of diameter 60 cm. The braking mechanism presses

brake pads against the rim of each drum, and the friction

between the pad and the rim generates a torque that slows the

rotation of the wheel. Assume that all four wheels contribute

equally to the braking. What torque must the brake pads exert

on each drum in order to decelerate the automobile at 7.8 m/s2?

If the coefficient of friction between the pad and the drum is

�k � 0.60, what normal force must the brake pad exert on the

rim of the drum? Ignore the masses of the wheels.

*25. In one of the cylinders of an automobile engine, the gas

released by internal combustion pushes on the piston, which,

in turn, pushes on the crankshaft by means of a piston rod

(Fig. 13.32). If the crankshaft experiences a torque of 31 N�m

and if the dimensions of the crankshaft and piston rod are as

in Fig. 13.32, what must be the force of the gas on the piston

when the crankshaft is in the horizontal position as in Fig.

13.32? Ignore friction, and ignore the masses of the piston 

and rod.

28. The original Ferris wheel, built by George Ferris, had a radius

of 38 m and a mass of 1.9 � 106 kg. Assume that all of its

mass was uniformly distributed along the rim of the wheel. If

the wheel was initially rotating at 0.050 rev/min, what con-

stant torque had to be applied to bring it to a full stop in 30 s?

What force exerted on the rim of the wheel would have given

such a torque?

29. The pulley of an Atwood machine for the measurement of g is

a brass disk of mass 120 g. When using masses m1 � 0.4500 kg

and m2 � 0.4550 kg, an experimenter finds that the larger

mass descends 1.6 m in 8.0 s, starting from rest. What is the

value of g?

30. A hula hoop rolls down a slope of 1:10 without slipping.

What is the (linear) acceleration of the hoop?

31. A uniform cylinder rolls down a plane inclined at an angle �

with the horizontal. Show that if the cylinder rolls without

slipping, the acceleration is sin �.

32. The spare wheel of a truck, accidentally released on a straight

road leading down a steep hill, rolls down the hill without slip-

ping. The mass of the wheel is 60 kg, and its radius is 0.40 m;

the mass distribution of the wheel is approximately that of a

uniform disk. At the bottom of the hill, at a vertical distance

of 120 m below the point of release, the wheel slams into a

telephone booth. What is the total kinetic energy of the wheel

just before impact? How much of this kinetic energy is trans-

lational energy of the center of mass of the wheel? How much

is rotational kinetic energy about the center of mass? What is

the speed of the wheel?

33. Galileo measured the acceleration of a sphere rolling down an

inclined plane. Suppose that, starting from rest, the sphere

takes 1.6 s to roll a distance of  3.00 m down a 20� inclined

plane. What value of g can you deduce from this?

34. A yo-yo consists of a uniform disk with a string wound around

the rim. The upper end of the string is held fixed. The yo-yo

unwinds as it drops. What is its downward acceleration?

35. A man is trying to roll a barrel along a level street by pushing

forward along its top rim. At the same time another man is

pushing backward at the middle, with a force of equal magni-

tude F (see Fig. 13.33). The barrel rolls without slipping.

Which way will the barrel roll? Find the magnitude and direc-

tion of the friction force at the point of contact with the street.

The barrel is a uniform cylinder of mass M and radius R.

a � 2
3 g

FIGURE 13.32 Automobile piston and crankshaft.

13.2 The Equat ion of  Rota t iona l  Mot ion

26. While starting up a roulette wheel, the croupier exerts a

torque of 100 N�m with his hand on the spokes of the wheel.

What angular acceleration does this produce? Treat the wheel

as a disk of mass 30 kg and radius 0.25 m.

27. The center span of a revolving drawbridge consists of a uni-

form steel girder of mass 300 metric tons and length 25 m.

This girder can be regarded as a uniform thin rod. The bridge

opens by rotating about a vertical axis through its center.

What torque is required to open this bridge in 60 s? Assume

that the bridge first accelerates uniformly through an angular

interval of 45� and then the torque is reversed, so the bridge

decelerates uniformly through an angular interval of 45� and

comes to rest after rotating by 90�.

3.8 cm

15
 c

m

F

piston

crankshaft

FIGURE 13.33 One man pushes horizontally at a cylinder’s

top; another pushes with equal force in the opposite direction

at its middle. Which way does it roll?
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36. An electric blender uniformly accelerates from rest beginning

at t � 0; at t � 0.50 s, the blender has reached 250 radians/s

and continues accelerating. If the rotating components have a

moment of inertia of 2.0 � 10�4 kg�m2, at what instantaneous

rate is the motor delivering energy at t � 0.50 s?

37. A basketball is released from rest on a 15� incline. How many

revolutions will the basketball undergo in 4.0 s? Assume the

basketball is a thin spherical shell with a diameter of 23 cm,

and that it rolls without slipping.

38. A 25-cm length of thin string is wound on the axle of a toy

gyroscope that rotates in fixed bearings; the radius of the

winding is 2.0 mm. If the string is pulled with a steady force

of 5.0 N until  completely unwound, how long does it take to

complete the pull?  What is the final angular velocity? The

moment of inertia of the gyroscope (including axle) is

5.0 � 10�5 kg�m2.

39. A phonograph turntable driven by an electric motor acceler-

ates at a constant rate from 0 to 33.3 revolutions per minute

in a time of 2.0 s. The turntable is a uniform disk of metal,

of mass 1.2 kg and radius 15 cm. What torque is required to

produce this acceleration? If the driving wheel makes con-

tact with the turntable at its outer rim, what force must it

exert?

*40. A bowling ball sits on the smooth floor of a subway car. If the

car has a horizontal acceleration a, what is the acceleration of

the ball? Assume that the ball rolls without slipping.

*41. A hoop rolls down an inclined ramp. The coefficient of static

friction between the hoop and the ramp is �s. If the ramp is

very steep, the hoop will slip while rolling. Show that the criti-

cal angle of inclination at which the hoop begins to slip is

given by tan � � 2�s.

*42. A solid cylinder rolls down an inclined plane. The angle of

inclination � of the plane is large so that the cylinder slips

while rolling. The coefficient of kinetic friction between the

cylinder and the plane is �k. Find the rotational and transla-

tional accelerations of the cylinder. Show that the translational

acceleration is the same as that of a block sliding down the

plane.

**43. Suppose that a tow truck applies a horizontal force of 4000 N

to the front end of an automobile similar to that described in

Problem 63 of Chapter 12. Taking into account the rotational

inertia of the wheels and ignoring frictional losses, what is the

acceleration of the automobile? What is the percentage differ-

ence between this value of the acceleration and the value cal-

culated by neglecting the rotational inertia of the wheels?

**44. A cart consists of a body and four wheels on frictionless axles.

The body has a mass m. The wheels are uniform disks of mass

M and radius R. Taking into account the moment of inertia of

the wheels, find the acceleration of this cart if it rolls without

slipping down an inclined plane making an angle � with the

horizontal.

**45. When the wheels of a landing airliner touch the runway, they

are not rotating initially. The wheels first slide on the runway

(and produce clouds of smoke and burn marks on the runway,

which you may have noticed; see Fig. 13.34), until the sliding

friction force has accelerated the wheels to the rotational speed

required for rolling without slipping. From the following data,

calculate how far the wheel of an airliner slips before it begins

to roll without slipping: the wheel has a radius of 0.60 m and a

mass of 160 kg, the normal force acting on the wheel is 2.0 �

105 N, the speed of the airliner is 200 km/h, and the coeffi-

cient of sliding friction for the wheel on the runway is 0.80.

Treat the wheel as a uniform disk.

FIGURE 13.34 A landing airliner.

13.3 Angular  Momentum and i t s
Conser vat ion

46. You spin a hard-boiled egg on a table, at 5.0 rev/s. What is the

angular momentum of the egg? Treat the egg as a sphere of

mass 70 g and mean diameter 5.0 cm.

47. The Moon moves around the Earth in an (approximately)

circular orbit of radius 3.8 � 108 m in a time of 27.3 days.

Calculate the magnitude of the orbital angular momentum of

the Moon. Assume that the origin of coordinates is centered

on the Earth.

48. At the Fermilab accelerator, protons of  momentum 5.2 � 10�16

kg�m/s travel around a circular path of diameter 2.0 km. What

is the orbital angular momentum of one of these protons?

Assume that the origin is at the center of the circle.

49. Prior to launching a stone from a sling, a Bolivian native

whirls the stone at 3.0 rev/s around a circle of radius 0.75 m.

The mass of the stone is 0.15 kg. What is the angular momen-

tum of the stone relative to the center of the circle? 

50. A communications satellite of mass 100 kg is in a circular

orbit of radius 4.22 � 107 m around the Earth. The orbit is in

the equatorial plane of the Earth, and the satellite moves along

it from west to east with a speed of 4.90 � 102 m/s. What is

the magnitude of the angular momentum of this satellite?

51. According to Bohr’s (oversimplified) theory, the electron in

the hydrogen atom moves in one or another of several possible

circular orbits around the nucleus. The radii and the orbital
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velocities of the three smallest orbits are, respectively, 0.529 �

10�10 m, 2.18 � 106 m/s; 2.12 � 10�10 m, 1.09 � 106 m/s;

and 4.76 � 10�10 m, 7.27 � 105 m/s. For each of these orbits

calculate the orbital angular momentum of the electron, with

the origin at the center. How do these angular momenta

compare?

52. A high-speed meteoroid moves past the Earth along an

(almost) straight line. The mass of the meteoroid is 150 kg,

its speed relative to the Earth is 60 km/s, and its distance of

closest approach to the center of the Earth is 1.2 � 104 km.

(a) What is the angular momentum of the meteoroid in the

reference frame of the Earth (origin at the center of the

Earth)?

(b) What is the angular momentum of the Earth in the refer-

ence frame of the meteoroid (origin at the center of the

meteoroid)?

53. A train of mass 1500 metric tons runs along a straight track at

85 km/h. What is the angular momentum of the train about a

point 50 m to the side of the track, left of the train? About a

point on the track?

54. The electron in a hydrogen atom moves around the nucleus

under the influence of the electric force of attraction, a 

central force pulling the electron toward the nucleus.

According to the Bohr theory, one of the possible orbits 

of the electron is an ellipse of angular momentum 2h with 

a distance of closest approach (1 � 2 �3)a0 and a distance

of farthest recession (1 � 2 �3)a0, where h and 

a0 are two atomic constants with the numerical values 

1.05 � 10�34 kg�m2/s (“Planck’s constant”) and 5.3 � 10�11 m

(“Bohr radius”), respectively. In terms of h and a0, find the

speed of the electron at the points of closest approach and

farthest recession; then evaluate numerically.

55. According to a simple (but erroneous) model, the proton is a

uniform rigid sphere of mass 1.67 � 10�27 kg and radius

1.0 � 10�15 m. The spin angular momentum of the proton is

5.3 � 10�35 J�s. According to this model, what is the angular

velocity of rotation of the proton? What is the linear velocity

of a point on its equator? What is the rotational kinetic

energy? How does this rotational energy compare with the

rest-mass energy mc2?

56. What is the angular momentum of a Frisbee spinning at 

20 rev/s about its axis of symmetry? Treat the Frisbee as a uni-

form disk of mass 200 g and radius 15 cm.

57. A phonograph turntable is a uniform disk of radius 15 cm and

mass 1.4 kg. If this turntable accelerates from 0 rev/min to

78 rev/min in 2.5 s, what is the average rate of change of the

angular momentum in this time interval?

58. The propeller shaft of a cargo ship has a diameter of 8.8 cm, a

length of 27 m, and a mass of 1200 kg. What is the rotational

kinetic energy of this propeller shaft when it is rotating at 

200 rev/min? What is the angular momentum?

59. The Sun rotates about its axis with a period of about 25 days.

Its moment of inertia is 0.20MSR 2
S, where MS is its mass and

22

22

RS its radius. Calculate the angular momentum of rotation of

the Sun. Calculate the total orbital angular momentum of all

the planets; make the assumption that each planet moves in a

circular orbit of radius equal to its mean distance from the

Sun listed in Table 9.1. What percentage of the angular

momentum of the Solar System is in the rotational motion of

the Sun?

60. Suppose we measure the speed v1 and the radial distance r1 of a

comet when it reaches perihelion. Use conservation of angular

momentum and conservation of energy to determine the speed

and the radius at aphelion.

61. A playground merry-go-round is rotating at 2.0 radians/s.

Consider the merry-go-round to be a uniform disk of mass 

20 kg and radius 1.5 m. A 25-kg child, moving along a radial

line, jumps onto the edge of the merry-go-round. What is its

new angular velocity?  The child then kicks the ground until

the merry-go-round (with the child) again rotates at 2.0 radi-

ans/s. If the child then walks radially inward, what will the

angular velocity be when the child is 0.50 m from the center?

62. The moment of inertia of the Earth is approximately 0.331

ME R2
E . If an asteroid of mass 5.0 � 1018 kg moving at 150

km/s struck (and stuck in) the Earth’s surface, by how long

would the length of the day change? Assume the asteroid was

traveling westward in the equatorial plane and struck the

Earth’s surface at 45�.

63. In a popular demonstration, a professor rotates on a stool at

0.50 rev/s, holding two 10-kg masses, each 1.0 m from the

axis of rotation. If she pulls the weights inward until they are

10 cm from the axis, what is the new rotational frequency?

Without the weights, the professor and stool have a moment

of inertia of 6.0 kg�m2 with arms extended and 4.0 kg�m2 with

arms pulled in.

64. In a demonstration, a bicycle wheel with moment of inertia

0.48 kg�m2 is spun up to 18 radians/s, rotating about a vertical

axis. A student holds the wheel while sitting on a rotatable

stool. The student and stool are initially stationary and have a

moment of inertia of 3.0 kg�m2. If the student turns the bicy-

cle wheel over so its axis points in the opposite direction, with

what angular velocity will the student and stool rotate? For

simplicity, assume the wheel is held overhead, so that the stu-

dent, wheel, and stool all have the same axis of rotation.

65. A very heavy freight train made up of 250 cars has a total mass

of 7700 metric tons. Suppose that such a train accelerates from

0 to 65 km/h on a track running exactly east from Quito,

Ecuador (on the equator). The force that the engine exerts on

the Earth will slow down the rotational motion of the Earth.

By how much will the angular velocity of the Earth have

decreased when the train reaches its final speed? Express your

answer in revolutions per day. The moment of inertia of the

Earth is 0.33ME R 2E.

66. There are 1.1 � 108 automobiles in the United States, each of

an average mass of 2000 kg. Suppose that one morning all

these automobiles simultaneously start to move in an eastward

direction and accelerate to a speed of 80 km/h.
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(a) What total angular momentum about the axis of the Earth

do all these automobiles contribute together? Assume that

the automobiles travel at an average latitude of 40�.

(b) How much will the rate of rotation of the Earth change

because of the action of these automobiles? Assume that

the axis of the Earth remains fixed. The moment of inertia

of the Earth is 8.1 � 1037 kg�m2.

*67. Two artificial satellites of equal masses are in circular orbits of

radii r1 and r2 around the Earth. The second has an orbit of

larger radius than the first (r2 � r1). What is the speed of

each? What is the angular momentum of each? Which has the

larger speed? Which has the larger angular momentum?

*68. Consider the motion of the Earth around the Sun. Take as

origin the point at which the Earth is today and treat the

Earth as a particle.

(a) What is the angular momentum of the Earth about this

origin today?

(b) What will be the angular momentum of the Earth about

the same origin three months from now? Six months from

now? Nine months from now? Is the angular momentum

conserved?

*69. The friction of the tides on the coastal shallows and the ocean

floors gradually slows down the rotation of the Earth. The

period of rotation (length of a sidereal day) is gradually

increasing by 0.0016 s per century. What is the angular

deceleration (in radians/s2) of the Earth? What is the rate of

decrease of the rotational angular momentum? What is the

rate of decrease of the rotational kinetic energy? The moment

of inertia of the Earth about its axis is 0.331MER2
E, where ME

is the mass of the Earth and RE its equatorial radius.

*70. Phobos is a small moon of Mars. For the purposes of the fol-

lowing problem, assume that Phobos has a mass of 5.8 � 1015

kg and that it has a shape of a uniform sphere of radius 7.5 �

103 m. Suppose that a meteoroid strikes Phobos 5.0 � 103 m

off center (Fig. 13.35) and remains stuck. If the momentum

of the meteoroid was 3 � 1013 kg�m/s before impact and the

mass of the meteoroid is negligible compared with the mass of

Phobos, what is the change in the rotational angular velocity

of Phobos?

of inertia remains constant during this movement. The

moment of inertia of the rowboat about the vertical axis is 

20 kg�m2 and that of the woman is 0.80 kg�m2.

*72. Two automobiles both of 1200 kg and both traveling at 

30 km/h collide on a frictionless icy road. They were initially

moving on parallel paths in opposite directions, with a

center-to-center distance of 1.0 m (Fig. 13.36). In the colli-

sion, the automobiles lock together, forming a single body of

wreckage; the moment of inertia of this body about its center

of mass is 2.5 � 103 kg�m2.

(a) Calculate the angular velocity of the wreck.

(b) Calculate the kinetic energy before the collision and after

the collision. What is the change of kinetic energy?

7.5 km

5.0 km

meteoroid

FIGURE 13.35 A meteoroid strikes Phobos.

*71. A woman stands in the middle of a small rowboat. The row-

boat is floating freely and experiences no friction against the

water. The woman is initially facing east. If she turns around

180� so that she faces west, through what angle will the row-

boat turn? Assume that the woman performs her turning

movement at constant angular velocity and that her moment

FIGURE 13.36 Two automobiles collide.

1.0 m

FIGURE 13.37 Three astronauts about to start running

around inside Skylab.

*73. In one experiment performed under weightless conditions in

Skylab, the three astronauts ran around a path on the inside

wall of the spacecraft so as to generate artificial gravity for

their bodies (Fig. 13.37). Assume that the center of mass of

each astronaut moves around a circle of radius 2.5 m; treat the

astronauts as particles.

(a) With what speed must each astronaut run if the average

normal force on his feet is to equal his normal weight (mg)?

(b) Suppose that before the astronauts begin to run, Skylab is

floating in its orbit without rotating. When the astronauts

begin to run clockwise, Skylab will begin to rotate coun-

terclockwise. What will be the angular velocity of Skylab

when the astronauts are running steadily with the speed

calculated above? Assume that the mass of each astronaut

is 70 kg and that the moment of inertia of Skylab about

its longitudinal axis is 3 � 105 kg�m2.

(c) How often must the astronauts run around the inside if

they want Skylab to rotate through an angle of 30�?
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*74. A flywheel rotating freely on a shaft is suddenly coupled by

means of a drive belt to a second flywheel sitting on a parallel

shaft (Fig. 13.38). The initial angular velocity of the first fly-

wheel is �; that of the second is zero. The flywheels are uni-

form disks of masses M1, M2 and of radii R1, R2, respectively.

The drive belt is massless and the shafts are frictionless.

(a) Calculate the final angular velocity of each flywheel.

(b) Calculate the kinetic energy lost during the coupling

process. What happens to this energy?

FIGURE 13.38 Two flywheels coupled by a drive belt.

*75. A thin rod of mass M and length l hangs from a pivot at its

upper end. A ball of clay of mass m and of horizontal velocity

v strikes the lower end at right angles and remains stuck 

(a totally inelastic collision). How high will the rod swing after

this collision?

**76. If the melting of the polar ice caps were to raise the water level

on the Earth by 10 m, by how much would the day be length-

ened? Assume that the moment of inertia of the ice in the

polar ice caps is negligible (they are very near the axis), and

assume that the extra water spreads out uniformly over the

entire surface of the Earth (that is, neglect the area of the con-

tinents compared with the area of the oceans). The moment of

inertia of the Earth (now) is 8.1 � 1037 kg�m2.

77. Consider a projectile of mass m launched with a speed v0 at

an elevation angle of 45�. If the launch point is the origin of

coordinates, what is the angular momentum of the projectile

at the instant of launch? At the instant it reaches maximum

height? At the instant it strikes the ground? Is the angular

momentum conserved in this motion with this choice of

origin?

13.4 Torque and Angular  Momentum
as Vec tors

78. Show that for a flat plate rotating about an axis perpendicular

to the plate, the angular-momentum vector lies along the axis

of rotation, even if the body is not symmetric.

79. A child’s toy top consists of a uniform thin disk of radius

5.0 cm and mass 0.15 kg with a thin spike passing through its

center. The lower part of the spike protrudes 6.0 cm from the

disk. If you stand this top on its spike and start it spinning at

200 rev/s, what will be its precession frequency?

80. Suppose that the flywheel of a gyroscope is a uniform disk

of mass 250 g and radius 3.0 cm. The distance of the center

of this flywheel from the point of support is 4.0 cm. What

is the precession frequency if the flywheel is spinning at

120 rev/s?

81. If a bicycle in forward motion begins to tilt to one side, the

torque exerted by gravity will tend to turn the bicycle. Draw a

diagram showing the angular momentum of a (slightly tilted)

front wheel, the weight of the wheel, and the resulting torque.

In which direction is the instantaneous change in angular

momentum? Will this change make the tilt worse or better?

82. Slow precession can be used to determine a much more rapid

rotational frequency. Consider a top made by inserting a small

pin radially into a ball (a uniform sphere) of radius R � 6.0 cm.

The pin extends 1.0 cm from the surface of the ball and

supports the top. When set spinning, the top is observed to

precess with a period of 0.75 s. What is the rotational

frequency of the top?

*83. The wheel of an automobile has a mass of 25 kg and a diame-

ter of 70 cm. Assume that the wheel can be regarded as a uni-

form disk.

(a) What is the angular momentum of the wheel when the

automobile is traveling at 25 m/s (90 km/h) on a straight

road?

(b) What is the rate of change of the angular momentum of

the wheel when the automobile is traveling at the same

speed along a curve of radius 80 m?

(c) For this rate of change of the angular momentum,

what must be the torque on the wheel? Draw a diagram

showing the path of the automobile, the angular- 

momentum vector of the wheel, and the torque 

vector.

*84. Consider the airplane propeller described in Problem 38 in

Chapter 12. If the airplane is flying around a curve of radius

500 m at a speed of 360 km/h, what is the rate of change of

the angular momentum of the propeller? What torque is

required to change the angular momentum at this rate? Draw

a diagram showing L, dL�dt, and �.

*85. A large flywheel designed for energy storage at a power plant

has a moment of inertia of 5 � 105 kg�m2 and spins at 3000

rev/min. Suppose that this flywheel is mounted on a horizon-

tal axle oriented in the east–west direction. What are the mag-

nitude and direction of its angular momentum? What is the

rate of change of this angular momentum due to the rotational

motion of the Earth and the consequent motion of the axle of

the flywheel? What is the torque that the axle of the flywheel

exerts against the bearings supporting it? If the bearings are at

a distance of 0.60 m from the center of the flywheel on each

side, what are the forces associated with this torque?

R1

R2
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REVIEW PROBLEMS

86. A door is 0.80 m wide. What is the torque you exert about

the axis passing through the hinges if you push against this

door with a perpendicular force of 200 N at its middle?

What is it if you push at the edge? A wind is blowing against

the other side of the door and trying to push it open. Where

should you push to keep the door closed?

87. An elevator of mass 900 kg is being lifted at constant speed

by a cable wrapped around a wheel (see Fig. 13.39). The

radius of the wheel is 0.35 m. What torque does the cable

exert on the wheel?

88. Each of the two fuel turbopumps in the Space Shuttle deliv-

ers a power of 700 hp. The rotor of this pump rotates at

37 000 rev/min. What is the torque that the rotor exerts

while pushing against the fuel?

89. A manual winch has a crank of length (radius) 0.25 m. If a

laborer pushes against its handle tangentially with a force of

200 N, how much work does the laborer do while turning the

crank through 10 revolutions?

90. A meterstick is initially standing vertically on the floor. If the

meterstick falls over, with what angular velocity will it hit the

floor? Assume that the end in contact with the floor experi-

ences no friction and slips freely.

*91. A heavy hatch on a ship is made of a uniform plate of steel

that measures 1.2 m � 1.2 m and has a mass of 400 kg.

The hatch is hinged along one side; it is horizontal when

closed, and it opens upward. A torsional spring assists in

the opening of the hatch. The spring exerts a torque of

2.00 � 103 N�m when the hatch is horizontal and a torque

of 0.30 � 103 N�m when the hatch is vertical; in the range

of angles between horizontal and vertical, the torque

decreases linearly (e.g., the torque is 1.15 � 103 N�m when

the hatch is at 45�).

(a) At what angle will the hatch be in equilibrium so the

spring exactly compensates the torque due to the weight? 

(b) What minimum push must a sailor exert on the hatch to

open it from the closed position? To close it from the

FIGURE 13.39
Elevator cable

attached to a wheel.

open position? Assume that the sailor pushes perpendic-

ularly on the hatch at the edge that is farthest from the

hinge.

92. With your bicycle upside down on the ground, and the

wheel free to rotate, you grasp the front wheel at the top

and give it a horizontal push of 20 N. What is the instan-

taneous angular acceleration of the wheel? The wheel is a

hoop of mass 4.0 kg and radius 0.33 m; ignore the mass of

the spokes.

93. A toy top consists of a disk of radius 4.0 cm with a rein-

forced rim (a ring). The mass of the disk is 20 g, and the

mass of the rim is 15 g. The mass of the pivot of this top is

negligible.

(a) What is the moment of inertia of this top?

(b) When you give this top a twist and start it rotating at

100 rev/min on the floor, friction slows the top to a stop

in 1.5 min. Assuming that the angular deceleration is

uniform, what is the angular deceleration?

(c) What is the frictional torque on the top?

(d) What is the work done by the frictional torque?

94. The turntable of a record player is a uniform disk of radius

0.15 m and mass 1.2 kg. When in operation, it spins at 

rev/min. If you switch the record player off, you find that the

turntable coasts to a stop in 45 s.

(a) Calculate the frictional torque that acts on the turntable.

Assume the torque is constant, that is, independent of

the angular speed.

(b) Calculate the power that the motor of the record player

must supply to keep the turntable in operation at 

rev/min.

*95. A barrel of mass 200 kg and radius 0.50 m rolls down a 40�

ramp without slipping. What is the value of the friction force

acting at the point of contact between the barrel and the

ramp? Treat the barrel as a cylinder of uniform density.

*96. A disk of mass M is free to rotate about a fixed horizontal

axis. A string is wrapped around the rim of the disk, and a

mass m is attached to this string (see Fig. 13.40). What is the

downward acceleration of the mass?

331
3

331
3

0.35 m

FIGURE 13.40 A mass m hanging from a disk.

M

m

               



Review Problems 427

FIGURE 13.43 The precessing Earth.

*97. A hoop of mass M and radius R rolls down a sloping ramp

that makes an angle of 30� with the ground. What is the

acceleration of the hoop if it rolls without slipping?

*98. An automobile has the arrangement of the wheels shown in

Fig. 13.41. The mass of this automobile is 1800 kg, the

center of mass is at the midpoint of the rectangle formed by

the wheels, and the moment of inertia about a vertical axis

through the center of mass is 2200 kg�m2. Suppose that

during braking in an emergency, the left front and rear

wheels lock and begin to skid while the right wheels con-

tinue to rotate just short of skidding. The coefficient of

static friction between the wheels and the road is �s � 0.90,

and the coefficient of kinetic friction is �k � 0.50. Calculate

the instantaneous angular acceleration of the automobile

about the vertical axis through the center of mass.

FIGURE 13.41 An automobile.

FIGURE 13.42 A ball of putty strikes a rod.

*99. Neutron stars, or pulsars, spin very quickly about their axes.

Their high rate of spin is the result of the conservation of

angular momentum during the formation of the neutron star

by the gradual contraction (shrinking) of an initially normal

star.

(a) Suppose that the initial star is similar to the Sun, with a

radius of 7.0 � 108 m and a rate of rotation of 1.0 revo-

lution per month. If this star contracts to a radius of

1.0 � 104 m, by what factor does the moment of inertia

increase? Assume that the relative distribution of mass

in the initial and the final stars is roughly the same.

(b) By what factor does the angular velocity increase? What

is the final angular velocity?

*100. A rod of mass M and length l is lying on a flat, frictionless

surface. A ball of putty of mass m and initial velocity v at

right angles to the rod strikes the rod at a distance l/4 from

the center (Fig. 13.42). The collision is inelastic, and the

putty adheres to the rod.

(a) Where is the center of mass of the rod with adhering

putty?

(b) What is the velocity of this center of mass after the

collision?

(c) What is the angular momentum about this center of

mass? What is the moment of inertia, and what is the

angular velocity?

*101. A communications satellite of mass 1000 kg is in a circular

orbit of radius 4.22 � 107 m around the Earth. The orbit is

in the equatorial plane of the Earth, and the satellite moves

along it from west to east. What are the magnitude and the

direction of the angular-momentum vector of this satellite?

*102. The spin angular momentum of the Earth has a magnitude

of 5.9 � 1033 kg�m2/s. Because of forces exerted by the Sun

and the Moon, the spin angular momentum gradually

changes direction, describing a cone of half-angle 23.5� (Fig.

13.43). The angular-momentum vector takes 26 000 years to

swing once around this cone. What is the magnitude of the

rate of change of the angular-momentum vector; that is,

what is the value of |dL�dt|?

3.0 m

1.5 m

l

l/4

23.5°
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Answers  to  Checkups

Checkup 13.1

1. You should place your hand at the end of the handle farthest

from the bolt; this will provide the largest R in Eq. (13.2) and

maximize the torque. Similarly, your push should be perpendic-

ular to the wrench handle, in order to maximize sin � to the

value sin 90� � 1 in Eq. (13.2).

2. The direction must be toward the axis (along a radius), so that

sin � � sin 0� � 0; thus both the torque and the work done

will be zero.

3. Initially, when the stick is upright, the weight acts downward,

along the radial direction, and so the torque is zero. As the

stick falls, the weight (mg) and the point at which it acts (R �

yCM � l�2) remain constant. Only the angle between the force

and the radial line changes; the sine of this angle is maximum

just as the meterstick hits the floor (when sin � � sin 90� � 1),

so the torque is maximum then.

4. (A) . The work done is W � � �� � FR sin � ��. In both

cases, pushing at right angles implies sin � � 1, and both

angular displacements �� are the same. But with half the

force applied at half the radius for the second push, the work

will be one-fourth of that for the first push.

Checkup 13.2

1. The angular acceleration results from the torque exerted by

gravity at the center of mass; this is maximum when the weight

is perpendicular to the radial direction (when sin � � 1). That

occurs when the meterstick is horizontal, just before it hits the

floor.

2. The translational kinetic energy is twice as large for a (uni-

form) rotating cylinder, because the rotational kinetic energy

is 

3. The rolling cylinder’s total kinetic energy is the same as for a

slipping cylinder; in each case, it is equal to the change in

potential energy Mgh. For the rolling cylinder, one-third of

the total kinetic energy is rotational kinetic energy, and two-

thirds is translational kinetic energy; thus, the rolling cylin-

der’s translational speed is smaller when it reaches the bottom

than that of a slipping cylinder (by a factor of ).

4. The sphere and cylinder must have equal kinetic energies when

they reach the bottom; each kinetic energy is equal to the

change in potential energy Mgh. The sphere’s moment of iner-

tia is only , compared with for the cylinder, so the

sphere will achieve a higher speed and get to the bottom first.

5. (A) Less than that of the cylinder. For the thin hoop (I �

MR2), only one-half of its kinetic energy is translational; for

the cylinder , two-thirds of its kinetic energy will

be translational. Since the total kinetic energy in each case will

equal the change in potential energy (Mgh), the speed of the

hoop will be smaller.

(I � 1
2Mr 2)

1
2 MR22

5 MR2

22>3

1
2I�2 � 1

2 � 1
2 MR 2 � (v>R) 2 � 1

2 � 1
2Mv 2.

1
4

Checkup 13.3

1. Since the angular momentum is L � I� and the angular

speeds (�) are equal, the hoop (with moment of inertia 

I � MR2; see Table 12.3) has a larger angular momentum by a

factor of 2 compared with the uniform disk (which has

).

2. Since the angular velocities are equal and the angular momen-

tum is L � I�, the car with the larger moment of inertia I �

MR2 has the greater angular momentum. Since the masses

are equal, this is the car on the outside, with the greater

value of R.

3. Since there are no external torques on you, angular momen-

tum L � I� is conserved. Since you increase your moment 

of inertia I by stretching your legs outward (increasing R2),

your angular velocity � must decrease.

4. No. Since angular momentum L � I� is conserved and 

she decreases her moment of inertia I, her angular 

velocity � increases. But her rotational kinetic energy is

Since I� is constant and �

increases, the kinetic energy increases. Thus the skater 

must do work to bring her arms close to her body.

5. (A) Frequency increases. The moment of inertia decreases

when the children sit up, since more of their mass is closer to

the axis. Since the angular momentum L � I� is conserved,

a smaller moment of inertia requires a larger angular

frequency.

Checkup 13.4

1. Yes; since the angular-momentum vector is L � r � p, it will

be zero when r and p are parallel (or antiparallel).

2. Since the angular-momentum vector is L � r � p, L is

always perpendicular to p; the angle between them is 90�.

3. The individual angular-momentum vectors will be inclined at

an angle with respect to the z axis; each, however, will point

toward the z axis, like the angular-momentum vectors L1 and

L2 in Fig. 13.19. In this case, the horizontal components of

the two angular-momentum vectors will cancel, and the total

angular-momentum vector will point along the z axis.

4. Yes; the total angular momentum is changing as the dumbbell

rotates about the z axis (because the direction of L is chang-

ing), so a torque is required to produce that change in angular

momentum.

5. (E) Perpendicularly into the face of the watch. By the right-

hand rule, with r pointing along the minute hand and p in the

direction of motion, the clockwise rotation implies that the

angular-momentum vector L � r � p is perpendicularly into

the face of the watch.

K � 1
2 I�2 � 1

2 I� � �.

I � 1
2MR2

               



C O N C E P T S  I N  C O N T E X T
Tower cranes are widely used at construction sites. The K-10000 tower

crane shown here is the largest commercially available tower crane. Its

central tower is 110 m high, and its long horizontal arm reaches out to

84 m. It can lift 120 tons at the end of the long arm, and more than twice

as much at the middle of the long arm. The short arm holds a fixed coun-

terweight of 100 tons (at the end, above the arm) and two additional mobile

counterweights (below the arm). For the lift of a small load, the mobile

counterweights are parked in the inboard position, near the central tower.

For the lift of a large load, the mobile counterweights are moved outward

to keep the crane in balance.

The concepts discussed in this chapter permit us to examine many

aspects of the operation of such a crane:

? Where must the mobile counterweights be placed to keep the crane

in balance for a given load? (Example 2, page 435)

Statics and Elasticity 14

14.1 Statics of Rigid Bodies

14.2 Examples of Static
Equilibrium

14.3 Levers and Pulleys

14.4 Elasticity of Materials

C H A P T E R

429

Concepts
in

Context

              



? What is the tension in the tie-rod (stretched diagonally from the top of the tower

to the end of the arm) that holds the short arm in place? (Example 3, page 435)

? What is the elongation of the lifting cable when subjected to a given load?

(Example 8, page 448)

Engineers and architects concerned with the design of bridges, buildings, and other

structures need to know under what conditions a body will remain at rest, even

when forces act on it. For instance, the designer of a railroad bridge must make sure that

the bridge will not tip over or break when a heavy train passes over it. A body that

remains at rest, even though several forces act on it, is said to be in equilibrium. The branch

of physics that studies the conditions for the equilibrium of a body is called statics.

Statics is the oldest branch of physics.The ancient Egyptians, Greeks, and Romans had

a good grasp of the basic principles of statics, as is evident from their construction of

elegant arches for doorways and bridges. The oldest surviving physics textbook is a

treatise on the statics of ships by Archimedes.

In the first three sections of this chapter, we will rely on the assumption that the

“rigid” structural members—such as beams and columns—indeed remain rigid; that is,

they do not deform. In essence, this means that we assume that the forces are not so

large as to produce a significant bending or compression of the beams or columns.

However, in the last section, we will take a brief look at the phenomenon of the elas-

tic deformation of solid bodies when subjected to the action of large forces.

14.1 STAT ICS OF R IGID BODIES

If a rigid body is to remain at rest, its translational and rotational accelerations must

be zero. Hence, the condition for the static equilibrium of a rigid body is that the sum

of external forces and the sum of external torques on the body must be zero. This means that

the forces and the torques are in balance; each force is compensated by some other

force or forces, and each torque is compensated by some other torque or torques. For

example, when a baseball bat rests in your hands (Fig. 14.1), the external forces on the

bat are its (downward) weight w and the (upward) pushes N1 and N2 of your hands.

If the bat is to remain at rest, the sum of these external forces must be zero—that is,

w � N1 � N2 � 0, or, in terms of magnitudes, �w � N1 � N2 � 0. Likewise, the sum

of the torques of the external forces must be zero. Since the angular acceleration of

the bat is zero about any axis of rotation whatsoever that we might choose in Fig. 14.1,

the sum of torques must be zero about any such axis. For example, we might choose a

horizontal axis of rotation through the center of mass of the bat, out of the plane of the

page, as in Fig. 14.1a. With this choice of axis, the force N2 produces a counterclock-

wise torque r2N2 and the force N1 produces a clockwise torque r1N1, whereas the weight

w (acting at the axis) produces no torque. The equilibrium condition for the torque is

then r2N2 � r1N1 � 0. Alternatively, we might choose a horizontal axis of rotation

through, say, the left hand, out of the plane of the page, as in Fig. 14.1b. With this

choice, the force N1 produces a clockwise torque (r1 � r2)N1, the weight produces a

counterclockwise torque r2w, and the force N2 produces no torque. The equilibrium

condition for the torques is then �(r1 � r2)N1 � r2w � 0. With other choices of 

axis of rotation, we can generate many more equations than there are unknown forces 

or torques in a static equilibrium problem. However, the equations obtained with

different choices of axis of rotation are related, and they can always be shown to be

consistent.
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r1

N1
N2

r2

w

N1
N2

w

(a) 

(b) 

r1 r2

We can choose an axis
through center of mass,
out of plane of page.

We can choose an axis
through left hand, out of 
plane of page.

Bat is at rest, so torques about 
that axis must sum to zero: 
r2N2 – r1N1 = 0.

Torques about that axis 
must sum to zero: 
r2w – (r1 � r2)N1 = 0.

FIGURE 14.1 A baseball bat at rest in

your hands. The external forces are the

downward weight w and the upward pushes

N1 and N2 of the right and left hands,

respectively. These external forces add to

zero. The external torques about any axis

also add to zero. (a) Axis is through center

of mass. (b) Axis is through left hand.

              



From this discussion, we conclude that for the purposes of static equilibrium,

any line through the body or any line passing at some distance from the body can be thought

of as a conceivable axis of rotation, and the torque about every such axis must be zero. This

means we have complete freedom in the choice of the axis of rotation, and we can make

whatever choice seems convenient. With some practice, one learns to recognize which

choice of axis will be most useful for the solution of a problem in statics.

The force of gravity plays an important role in many problems of statics.The force

of gravity on a body is distributed over all parts of the body, each part being subjected

to a force proportional to its mass. However, for the calculation of the torque exerted

by gravity on a rigid body, the entire gravitational force may be regarded as acting on the

center of mass. We relied on this rule in Fig. 14.1, where we assumed that the weight acts

at the center of mass of the bat. The proof of this rule is easy: Suppose that we release

some arbitrary rigid body and permit it to fall freely from an initial condition of rest.

Since all the particles in the body fall at the same rate, the body will not change its

orientation as it falls. If we consider an axis through the center of mass, the absence of

angular acceleration implies that gravity does not generate any torque about the center

of mass. Hence, if we want to simulate gravity by a single force acting at one point of

the rigid body, that point will have to be the center of mass.

Given that in a rigid body the force of gravity effectively acts on the center of

mass, we see that a rigid body supported by a single force acting at its center of mass

or acting on the vertical line through its center of mass is in equilibrium, since the

support force is then collinear with the effective force of gravity, and such collinear

forces of equal magnitudes and opposite directions exert no net torque. This pro-

vides us with a simple method for the experimental determination of the center of

mass of a body of complicated shape: Suspend the body from a string attached to a

point on its surface (Fig. 14.2); the body will then settle into an equilibrium position

such that the center of mass is on the vertical downward prolongation of the string

(this vertical prolongation is marked dashed in Fig. 14.2). Next, suspend the body

from a string attached at another point of its surface, and mark a new vertical

downward prolongation of the string. The center of mass is then at the intersection

of the new and the old prolongations of the string.
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(a) (b)

To find center of mass, 
suspend body by a 
string from a point on 
its surface.

Any two such lines
must intersect at
center of mass.

Center of mass 
will be along vertical 
prolongation of string.

FIGURE 14.2 (a) Bicycle suspended by

a string attached at a point on its “surface.”

(b) Bicycle suspended by a string attached

at a different point.

              



A body suspended from a point above its center of mass, as in Fig. 14.3a, is in stable

equilibrium (see also Section 8.2). If we turn this body through some angle, so the

center of mass is no longer vertically below the point of support, the force of gravity

and the supporting force will produce a torque that tends to return the body to the

equilibrium position. In contrast, if this body is supported by a single force applied at a

point below the center of mass, as in Fig. 14.3b, the body is in unstable equilibrium. If we

turn the body ever so slightly, the force of gravity and the supporting force will produce

a torque that tends to turn the body farther away from the equilibrium position—the

body tends to topple over. Finally, a body supported by a single force at its center of mass,

as in Fig. 14.3c, is in neutral equilibrium. If we turn such a body, it remains in equi-

librium in its new position, and exhibits no tendency to return to its original position

or to turn farther away.

Similar stability criteria apply to the translational motion of a body moving on a

surface. A body is in stable equilibrium if it resists small disturbances and tends to

return to its original position when the disturbance ceases. A car resting at the bottom

of a dip in the road is an example of this kind of equilibrium; if we displace the car

forward and then let go, the car rolls back to its original position. A body is in unsta-

ble equilibrium if it tends to move away from its original position when disturbed. A

car resting on the top of a hill is an example of this second kind of equilibrium. If we

displace the car forward, it continues to roll down the hill. A car resting on a flat street

is in neutral equilibrium with respect to translational displacements. If we displace the

car along the street, it merely remains at the new position, without any tendency to

return to its original position or to move away from it (see Fig. 14.4).

The first four examples of the next section involve stable or neutral equilibrium; the

next two examples involve unstable equilibrium. Engineers take great care to avoid

unstable equilibrium in the design of structures and machinery, since an unstable con-

figuration will collapse or come apart at the slightest provocation.
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(a)

string

stable equilibrium (b) unstable equilibrium (c) neutral equilibrium

Chair is suspended
from a point above
center of mass.

Chair is supported
from a point below
center of mass.

Chair is supported
at center of mass.

FIGURE 14.3 A body (a) in stable

equilibrium; (b) in unstable equilibrium;

(c) in neutral equilibrium.

(a) (b) (c)stable equilibrium unstable equilibrium neutral equilibrium

A displaced car
moves back to
equilibrium.

A displaced car
moves farther away
from equilibrium.

A displaced car
remains at the
new position.

FIGURE 14.4 Stationary automobile in (a) stable, (b) unstable, and (c) neutral equilibrium.

              



Checkup 14.1

QUESTION 1: Is a cyclist balanced on an upright bicycle in stable or unstable equilib-

rium? Assume the cyclist sits rigidly, and makes no effort to avoid whatever might befall

(see Fig. 14.5).

QUESTION 2: You sit in a swing, with your knees bent. If you now extend your legs fully,

how will this change the equilibrium position of the swing and your body?

QUESTION 3: (a) You hold a fishing pole with both hands and point it straight up. Is

the support force aligned with the weight? (b) You point the fishing pole horizontally.

Is the support force aligned with the weight? Is there a single support force?

QUESTION 4: Consider a cone on a table (a) lying flat on its curved side, (b) standing

on its base, (c) standing on its apex. Respectively, the equilibrium of each position is

(A) Stable, unstable, neutral (B) Stable, neutral, unstable

(C) Unstable, stable, neutral (D) Neutral, stable, unstable

(E) Neutral, unstable, stable

14.2 EXAMPLES OF STAT IC EQUIL IBR IUM

The following are some examples of solutions of problems in statics. In these exam-

ples, the conditions of a zero sum of external forces,

(14.1)

and a zero sum of external torques,

(14.2)

are used either to find the magnitudes of the forces that hold the body in equilibrium,

or to find whether the body can achieve equilibrium at all.

A locomotive of mass 90000 kg is one-third of the way across

a bridge 90 m long.The bridge consists of a uniform iron girder

of mass 900000 kg, which is supported by two piers (see Fig. 14.6a). What is the

load on each pier?

SOLUTION: The body whose equilibrium we want to investigate is the bridge.

Figure 14.6b is a “free-body” diagram for the bridge, showing all the forces acting

on it: the weight of the bridge, the downward push exerted by the locomotive, and

the upward thrust exerted by each pier. The weight of the bridge can be regarded

as acting at its center of mass. The bridge is static, and hence the net torque on

the bridge reckoned about any point must be zero.

Let us first consider the torques about the point P2, at the right pier. These

torques are generated by the weight of the bridge acting at a distance of 45 m,

the downward push of the locomotive acting at a distance of 30 m, and the

upward thrust F1 of the pier at P1 acting at a distance of 90 m (the upward thrust

F2 has zero moment arm and generates no torque about P2). The weight of the

bridge is m bridge g � 9.0 � 105 kg � g, and the downward push exerted by the

locomotive equals its weight, m loc g � 9.0 � 104 kg � g. Since each of the forces

EXAMPLE 1

T1 � T2 � T3 � � � � � 0

F1 � F2 � F3 � � � � � 0

✔
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FIGURE 14.5 Is an upright bicycle in

unstable equilibrium?

F1

wloc

wbridge

90 m

(a)

(b)
F2

P2P1

30 m

Upward forces are exerted
by piers.

In equilibrium, net torque
about P1 and about P2
must each be zero.

Downward forces 
are weights of bridge
and locomotive.

FIGURE 14.6 (a) Bridge with a locomotive

on it. (b) “Free-body” diagram for the bridge.

              



acts at right angles to the (horizontal) line from P2 to the point of application of

the force, the magnitude of the torque � � rF sin 90� for each force is simply the

product of the distance and the force, � � rF. According to the equilibrium con-

dition, we must set the sum of the three torques equal to zero:

(14.3)

(14.4)

Here, we have chosen to reckon the first two torques as positive, since they tend

to produce counterclockwise rotation about P2, and the last torque must then be

reckoned as negative, since it tends to produce clockwise rotation. Equation (14.4)

contains only the single unknown force F1. Note that we were able to isolate this

unknown force by evaluating the torques about P2: the other unknown force F2 is

absent because it produces no torque about P2. Solving this equation for the

unknown F1, we find

Next, consider the torques about the point P1. These torques are generated by

the weight of the bridge, the weight of the locomotive, and the upward thrust F2

at point P2 (the upward thrust of F1 has zero moment arm and generates no torque

about P1). Setting the sum of these three torques about the point P1 equal to zero,

we obtain

This equation contains only the single unknown force F2 (the force F1 is absent

because it produces no torque about P1). Solving for the unknown F2, we find

The loads on the piers (the downward pushes of the bridge on the piers) are oppo-

site to the forces F1 and F2 (these downward pushes of the bridge on the piers are

the reaction forces corresponding to the upward thrusts of the piers on the bridge).

Thus, the magnitudes of the loads are 4.7 � 106 N and 5.0 � 106 N, respectively.

COMMENT: Note that the net vertical upward force exerted by the piers is F1

� F2 � 9.7 � 106 N. It is easy to check that this matches the sum of the weights

of the bridge and the locomotive; thus, the condition for zero net vertical force,

as required for translational static equilibrium, is automatically satisfied. This

automatic result for the equilibrium of vertical forces came about because we

used the condition for rotational equilibrium twice. Instead, we could have used

the condition for rotational equilibrium once [Eq. (14.4)] and then evaluated F2

by means of the condition for translational equilibrium [Eq. (14.1)]. The result

for zero net torque about the point P1 would then have emerged automatically.

Also note that instead of taking the bridge as the body whose equilibrium is to

be investigated, we could have taken the bridge plus locomotive as a combined

body. The downward push of the locomotive on the bridge would then not be an

external force, and would not be included in the “free-body” diagram. Instead, the

F2 � 5.0 � 106 N

�45 m � 9.0 � 105 kg � g �60 m � 9.0 � 104 kg � g �90 m � F2 � 0

 � 4.8 � 105 kg � 9.81 m/s2 � 4.7 � 106 N

 � 4.8 � 105 kg � g

 F1 �
(45m � 9.0 � 105 kg� 30 m � 9.0 � 104 kg ) � g

90 m

45 m � 9.0 � 105 kg � g � 30 m � 9.0 � 104 kg � g � 90 m � F1 � 0

 Tbridge � Tloc � Tpier � 0
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weight of the locomotive would be one of the external forces acting on the com-

bined body and would have to be included in the “free-body” diagram.The vectors

in Fig. 14.6b would therefore remain unchanged.

A large tower crane has a fixed counterweight of 100 tons at

the end of its short arm, and it also has a mobile counterweight

of 120 tons. The length of the short arm is 56 m, and the length of the long arm

is 84 m; the total mass of both arms is 100 tons, and this mass is uniformly dis-

tributed along their combined length. The crane is lifting a load of 80 tons hang-

ing at the end of the long arm. Where should the crane operator position the

mobile counterweight to achieve a perfect balance of the crane, that is, a condi-

tion of zero (external) torque?

SOLUTION: To find the position of the counterweight, we consider

the equilibrium condition for the entire crane (alternatively, we could

consider the upper part of the crane, that is, the arms and the tie-

rods that hold them rigid). Figure 14.7 is a “free-body” diagram for

the crane. The external forces are the support force of the base and

the weights of the load, the tower, the horizontal arms, the fixed

counterweight, and the mobile counterweight. The weight of the

arms acts at the center of mass of the combined arms. The total

length of these arms is 84 m � 56 m � 140 m, and the center of

mass is at the midpoint, 70 m from each end, that is, 14 m from the

centerline of the tower.

To examine the balance of torques, it is convenient to select the

point P at the intersection of the arms and the midline of the tower.

All the forces then act at right angles to the line from P to the point

of application of the force, and the torque for each is simply the

product of the distance and the force. The weight of the tower and

the support force of the base do not generate any torques, since they act at zero

distance. The equilibrium condition for the sum of the torques generated by the

weights of the load, the arms, the fixed counterweight, and the mobile counter-

weight is

�load � �arms � �fixed � �mobile � 0 (14.5)

Inserting the values of the weights and moment arms, we have

where we have again chosen to reckon counterclockwise torques as positive and

clockwise torques as negative. When we solve this equation for x, we obtain

The short arm of the tower crane is held in place by a steel

tie-rod stretched diagonally from the top of the tower to the

end of the arm, as shown in Fig. 14.8a. The top part of the tower is 30 m high,

and the short arm has a length of 56 m and a mass of 40 metric tons. The joint

of the arm and the tower is somewhat flexible, so the joint acts as a pivot. Suppose

EXAMPLE 3

 � 21 m

 x �
84 m � 80 t � 14 m � 100 t � 56 m � 100 t

120 t

� x � 120 t � g � 0

 �84 m � 80 t � g �14 m � 100 t � g � 56 m � 100 t � g

EXAMPLE 2

14.2 Examples of Static Equilibrium 435

56 m 84 m
14 mx

wfixed

wmobile

wtower

warms

wload

NN

PP

Mobile counterweight
position may be varied
to balance load.

Center of mass of 
arms is at midpoint.

FIGURE 14.7 “Free-body” diagram of a

tower crane. The crane is balanced, so that

no torque is exerted by the base.

Concepts
in

Context

Concepts
in

Context
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that the counterweights are placed on the short arm as in the preceding example:

the fixed counterweight of 100 metric tons is at the end of the arm, and the mobile

counterweight of 120 metric tons is at a distance of 21 m from the centerline.

(a) What is the tension in the tie-rod? (b) What is the force that the short arm

exerts against the tower at the joint?

SOLUTION: Figure 14.8b is a “free-body” diagram of the short arm, displaying

all the external forces acting on it. These forces are the weight warm of the arm, the

weights of the counterweights wfixed and wmobile, the tension T of the tie-rod, and

the force F exerted by the tower at the joint. The force F is equal and opposite to

the force that the short arm exerts against the tower. The weight of the arm acts

at its center of mass, at a distance of 28 m from the centerline; the mobile coun-

terweight acts at a distance of 21 m; and the fixed counterweight and the tension

act at the end of the short arm, at a distance of 56 m.

(a) To find the tension T, it is convenient to examine the balance of torques

about a point P that coincides with the joint. The force F does not generate any

torque about this point, and hence the condition for the balance of the torques will

contain T as the sole unknown. The weight of the short arm and the counter-

weights act at right angles to the line from P to the point of application of the

force, so the torque for each is the product of the distance and the force. From Fig.

14.8b, we see that the tension acts at an angle �, given by

which corresponds to � � 28�. With the same sign convention for the direction of

the torques as in the preceding example, the equilibrium condition for the torques

exerted by the weight of the arm, the counterweights, and the tension is then

We can solve this equation for T, with the result

(b) To find the components of the force F (Fig. 14.8c), we simply use the con-

ditions for translational equilibrium: the sum of the horizontal components of all

the forces and the sum of the vertical components of all the forces must each be zero.

The weights of the short arm and the counterweights have vertical components,

but no horizontal components. The tension force has a horizontal component 

T cos � and a vertical component T sin �. Hence

and

When we solve these equations for Fx and Fy, we find

Fx � �3.0 � 106 N

3.4 � 106 N � sin 28� � 40 t � g � 120 t � g � 100 t � g � Fy � 0

3.4 � 106 N � cos 28� � Fx � 0

 � 351 � 1000 kg � 9.8 m /s2 � 3.4 � 106 N 

 � 351 t � g 

 T �
28 m � 40 t � g � 21 m � 120 t � g � 56 m � 100 t � g

56 m � sin 2 8�

� 56 m � T � sin 28� � 0

28 m � 40 t � g � 21 m � 120 t � g � 56 m � 100 t � g

tan u �
30 m

56 m
� 0.54

FIGURE 14.8 (a) Steel tie-rod supporting

the short tower crane arm. (b) “Free-body”

diagram for the short tower crane arm. (c)

The x and y components of the forces.

28 m

30 m

21 m

56 m

wfixed

wmobile

warm

(b) 

(a) 

wfixed

wmobile

warm

(c) 

u

F

Fx

T cos u

T sin u

Fy

T

y

x

u

T

P

F

To find tension T, we
examine balance of 
torques here, since force
F exerted by tower does
not contribute here.

…and right end is
attached to tower.

Left end of short
arm is held by
diagonal tie-rod…

…and require that all forces sum to zero
(translational equilibrium) to determine F.

We resolve the tension T into
horizontal and vertical components…

              



and

The x and y components of the force exerted by the short arm on the tower are

therefore �3.0 � 106 N and �9.5 � 105 N, respectively.

The bottom of a ladder rests on the floor, and the top rests

against a wall (see Fig. 14.9a). If the coefficient of static friction

between the ladder and the floor is �s � 0.40 and the wall is frictionless, what is

the maximum angle that the ladder can make with the wall without slipping?

SOLUTION: Figure 14.9b shows the “free-body” diagram for the ladder, with all

the forces. The weight of the ladder acts downward at the center of mass. If the

ladder is about to slip, the friction force at the floor has the maximum magnitude

for a static friction force, that is,

(14.6)

If we reckon the torques about the point of contact with the floor, the normal

force N1 and the friction force f exert no torques about this point, since their moment

f � ms N1

EXAMPLE 4

Fy � 9.5 � 105 N
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From the preceding examples we see that the steps in the

solution of a problem of statics resemble the steps we employed

in Chapter 5.

1 The first step is the selection of the body that is to obey

the equilibrium conditions.The body may consist of a gen-

uine rigid body (for instance, the bridge in Example 1), or

it may consist of several pieces that act as a single rigid

body for the purposes of the problem (for instance, the

bridge plus the locomotive in Example 1). It is often help-

ful to mark the boundary of the selected rigid body with a

distinctive color or with a heavy line; this makes it easier

to recognize which forces are external and which internal.

2 Next, list all the external forces that act on this body, and

display these forces on a “free-body” diagram.

3 If the forces have different directions, it is usually best to

draw coordinate axes on the diagram and to resolve the

forces into x and y components.

4 For each component, apply the static equilibrium condi-

tion for forces: the sum of forces is zero.

5 Make a choice of axis of rotation, calculate the torque

of each force about this axis (� � RF sin �), and apply the

static equilibrium condition for torques: the sum

of torques is zero. Establish and maintain a sign con-

vention for torques; for example, for an axis pointing

into the plane of the paper, counterclockwise torques to

be positive and clockwise torques to be negative.

6 As mentioned in Section 14.1, any line can be thought

of as an axis of rotation; and the torque about every such

axis must be zero. You can make an unknown force dis-

appear from the equation if you place the axis of rotation

at the point of action or on the line of action of this force,

so that this force has zero moment arm. Furthermore, as

illustrated in Example 1, sometimes it is convenient to

consider two different axes of rotation, and to examine

the separate equilibrium conditions of the torques for

each of these axes.

7 As recommended in Chapter 2, it is usually best to solve

the equations algebraically for the unknown quantities,

and to substitute numbers for the known quantities as a

last step. But if the equations are messy, with a clutter of

algebraic symbols, it may be convenient to substitute some

of the numbers before proceeding with the solution of

the equations.

PROBLEM-SOLVING TECHNIQUES STATIC EQUIL IBRIUM

              



arms are zero. The weight w � mg acting at the center of mass exerts a counter-

clockwise torque of magnitude (l�2) � mg � sin �, and the normal force N2 of the

wall exerts a clockwise torque of magnitude l � N2 � sin �, where � is the angle

between the ladder and the normal force (see Fig. 14.9b); since � � 90� � �,

the sine of � equals the cosine of �, and the torque equals l � N2 � cos �. For

equilibrium, the sum of these torques must be zero,

(14.7)

or, equivalently,

(14.8)

We collect the factors that depend on � by dividing both sides of this equation by

mg cos �, so

or, since sin ��cos � � tan �,

(14.9)

To evaluate the angle � we still need to determine the unknown N2. For this,

we use the condition for translational equilibrium: the net vertical and the net hor-

izontal forces must be zero, or

(14.10)

(14.11)

From the first of these equations, N1 � mg; therefore, from the second equation,

N2 � �s mg. Inserting this into our expression (14.9) for the tangent of the angle �,

we obtain the final result

 N2 � ms N1 � 0

N1 � mg � 0

tan u �
2N2

mg

sin u

cos u
�

2N2

mg

1
2

1

2
mg sin u � N2 cos u

�
l

2
mg sin u �  lN2 cos u � 0
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FIGURE 14.9 (a) Ladder leaning against a

wall. (b) “Free-body” diagram for the ladder.

0
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x

l

(b)(a)

a
N2

N1

f

w

u

u

Frictionless wall can exert
only a normal force.

Weight acts at 
center of mass.

Floor exerts both
a normal force and
a friction force.

Ladder is about to slip
when f = ms N1.
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(14.12)

With �s � 0.40, this yields tan � � 0.80. With a calculator, we find that the angle

with this tangent is

For any angle larger than this, equilibrium is impossible, because the maximum

frictional force is not large enough to prevent slipping of the ladder.

A uniform rectangular box 2.0 m high, 1.0 m wide, and 1.0 m

deep stands on a flat floor. You push the upper end of the box

to one side and then release it (see Fig. 14.10a). At what angle of release will the

box topple over on its side?

SOLUTION: The forces on the box when it has been released are as shown in the

“free-body” diagram in Fig. 14.10b. Both the normal force N and the friction force

f act at the bottom corner, which is the only point of contact of the box with the

floor. The weight acts at the center of mass, which is at the center of the box.

Since the box rotates about the bottom corner, let us consider the torque about

this point. The only force that produces a torque about the bottom corner is the

weight.The weight acts at the center of mass; for a uniform box, this is at the center

of the box. The torque exerted by the weight can be expressed as d � Mg, where d

is the perpendicular distance from the bottom corner to the vertical line through the

center of mass (see Fig. 14.10b). This torque produces counterclockwise rotation if

the center of mass is to the left of the bottom corner, and it produces clockwise rota-

tion if the center of mass is to the right of the bottom corner.This means that in the

former case, the box returns to its initial position, and in the latter case it topples

over on its side. Thus, the critical angle beyond which the box will tip over corre-

sponds to vertical alignment of the bottom corner and the center of the box (see Fig.

14.10c).This critical angle equals the angle between the side of the box and the diag-

onal. The tangent of this angle is the ratio of the width and the height of the box,

With our calculator we find that the critical angle is then

COMMENT: In this example we found that the box begins to topple over if its

inclination is such that the center of mass is vertically aligned with the bottom

corner. This is a special instance of the general rule that a rigid body resting on a

surface (flat or otherwise) becomes unstable when its center of mass is vertically above

the outermost point of support.

A uniform rectangular box 2.0 m high, 1.0 m wide, and 1.0 m

deep stands on the platform of a truck (Fig. 14.11a). What is

the maximum forward acceleration of the truck that the box can withstand with-

out toppling over? Assume that the coefficient of static friction is large enough

that the box will topple over before it starts sliding.

EXAMPLE 6

u � 27�

tan u �
0.50 m

1.0 m
� 0.50

EXAMPLE 5

u � 39�

tan u �
2 ms mg

mg
� 2 ms

FIGURE 14.10 (a) Box standing on

edge. (b) “Free-body” diagram for the box.

(c) “Free-body” diagram if the box is tilted

at the critical angle. The center of mass is

directly above the edge.

(a)

(b)

(c)

w

N

f

d

w

N

u

u

Weight acts at 
center of mass.

At critical angle,
weight exerts
no torque.

Consider net torque 
about this corner, where 
friction and normal forces 
exert no torque.

Box is tilted and
does not slip.

For smaller u, weight 
produces a counter-
clockwise torque.

              



SOLUTION: Strictly, this is not a problem of statics, since the translational motion

is accelerated; however, the rotational motion involves a question of equilibrium and

can be treated by the methods of this section. Under the conditions of the prob-

lem, the forces on the box are as shown in Fig. 14.11b. Both the normal force N

and the friction force f act at the rear corner (when the box is about to topple, it

makes contact with the platform only along the rear bottom edge). The weight

acts at the center of mass; for a uniform box, this is at the center of the box, 1.0 m

above and 0.50 m in front of the corner. Since the box is in accelerated motion,

we have to be careful about the choice of axis for the calculation of the torque. As

mentioned before Example 6 in Chapter 13, for an accelerated body, the equation

of rotational motion (and the equilibrium condition of zero torque) is valid only for

an axis through the center of mass. The forces that produce a torque about the

center of mass are N and f, and each torque � � RF sin � may be expressed as the

product of the force and the corresponding moment arm, R sin �; the moment

arms are the perpendicular distances shown in Fig. 14.11b. For an axis pointing

into the page, the normal force tends to produce clockwise rotation and the fric-

tional force counterclockwise; thus the condition of zero torque is

(14.13)

We can obtain expressions for f and N from the equations for the horizontal and

vertical translational motions. The horizontal acceleration is a and the vertical

acceleration is zero; accordingly, the horizontal and vertical components of Newton’s

Second Law are

Inserting these expressions for f and for N into Eq. (14.13), we obtain

from which

If the acceleration exceeds this value, rotational equilibrium fails, and the box topples.

Checkup 14.2

QUESTION 1: Why is it dangerous to climb a ladder that is leaning against a building

at a large angle with the vertical? Why is it dangerous to climb a ladder that is lean-

ing against a building at a small angle with the vertical?

QUESTION 2: Suppose that in Example 5 all the mass of the box is concentrated at

the midpoint of the bottom surface, so the center of mass is at this midpoint. What is

the critical angle at which such a box topples over on its side?

QUESTION 3: Two heavy pieces of lumber lean against each other, forming an A-

frame (see Fig. 14.12). Qualitatively, how does the force that one piece of lumber exerts

on the other at the tip of the A vary with the angle?

QUESTION 4: You hold a fishing pole steady, with one hand forward, pushing upward

to support the pole, and the other hand further back, pushing downward to maintain

✔

a � 0.50g � 4.9 m/s2

0.50 m � mg � 1.0 m � ma � 0

N � mg � 0 

 f � ma 

�0.50 m � N � 1.0 m � f � 0
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(a) 

(b) 

1.0 m

0.50 m

1.0 m

w

N

f

a
2.0 m

moment 
arm for f

moment 
arm for N

When box starts to
topple, friction and
normal forces act at
the rear corner.

For an accelerating body, we 
must use an axis through center
of mass to apply equilibrium
condition of zero torque.

FIGURE 14.11 (a) Box on an accelerating

truck. (b) “Free-body” diagram for the box.

�

Hint: Consider net torque
on one side about its bottom.

FIGURE 14.12 Two pieces of lumber

forming an A-frame.

              



zero net torque. If a fish starts to pull downward on the far end of the pole, then to

maintain equilibrium you must

(A) Increase the upward push and decrease the downward push

(B) Increase the upward push and increase the downward push

(C) Increase the upward push and keep the downward push the same

14.3 LEVERS AND PULLEYS

A lever consists of a rigid bar swinging on a pivot (see Fig. 14.13). If we

apply a force at the long end, the short end of the bar pushes against a load

with a larger force. Thus, the lever permits us to lift a larger load than we

could with our bare hands. The relationship between the magnitudes of

the forces at the ends follows from the condition for static equilibrium for

the lever. Figure 14.13 shows the forces acting on the lever: the force F that

we exert at one end, the force F� exerted by the load at the other end, and

the support force S exerted by the pivot point P. The net torque about the pivot point

P must be zero. Since, for the arrangement shown in Fig. 14.13, the forces at the ends

are at right angles to the distances l and l�, the condition on the net torque is

(14.14)

from which we find

Fl � F �l � � 0
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F

F'

P

l

l'

S

Equilibrium forces are in
inverse ratio to distance
from fulcrum.

To compare F and F', we
evaluate torque about
support point.

FIGURE 14.13 A lever. The vectors show

the forces acting on the lever; F is our push,

F� is the push of the load, and S is the sup-

porting force of the pivot. The force that the

lever exerts on the load is of the same mag-

nitude as F�, but of opposite direction.

F �

F
�

l

l �
(14.15) mechanical advantage of lever

By Newton’s Third Law, the force that the load exerts on the lever is equal in magni-

tude to the force that the lever exerts on the load (and of opposite direction). Hence

Eq. (14.15) tells us the ratio of the magnitudes of the forces we exert and the lever

exerts. These forces are in the inverse ratio of the distances from the pivot point. For a pow-

erful lever, we must make the lever arm l as long as possible and the lever arm l � as

short as possible. The ratio F��F of the magnitudes of the force delivered by the lever

and the force we must supply is called the mechanical advantage.

Apart from its application in the lifting of heavy loads, the principle of the lever finds

application in many hand tools, such as pliers and

bolt cutters.The handles of these tools are long, and

the working ends are short, yielding an enhancement

of the force exerted by the hand (see Fig. 14.14). A

simple manual winch also relies on the principle of

the lever. The handle of the winch is long, and the

drum of the winch, which acts as the short lever arm,

is small (see Fig. 14.15). The force the winch deliv-

ers to the rope attached to the drum is then larger

than the force exerted by the hand pushing on the

handle. Compound winches, used for trimming sails

on sailboats, have internal sets of gears that provide

a larger mechanical advantage; in essence, such com-

pound winches stagger one winch within another,

so the force ratio generated by one winch is further

multiplied by the force ratio of the other.

l

l'

Force from hands is
enhanced by ratio of 
distances from pivot.

FIGURE 14.14 A pair of

pliers serves as levers.

l
l'

Force exerted by hand is
enhanced by ratio of handle
length to drum radius.

FIGURE 14.15 A manual winch.

              



In the human body, many bones play the role of levers that permit

muscles or groups of muscles to support or to move the body. For exam-

ple, Fig. 14.16 shows the bones of the foot; these act as a lever, hinged at

the ankle. The rear end of this lever, at the heel, is tied to the muscles of

the calf by the Achilles tendon, and the front end of the lever is in con-

tact with the ground, at the ball of the foot. When the muscle contracts,

it rotates the heel about the ankle and presses the ball of the foot against

the ground, thereby lifting the entire body on tiptoe. Note that the muscle

is attached to the short end of this lever—the muscle must provide a

larger force than the force generated at the ball of the foot. At first sight,

it would seem advantageous to install a longer projecting spur at the heel

of the foot and attach the Achilles tendon to the end of this spur; but

this would require that the contracting muscle move through a longer

distance. Muscle is good at producing large forces, but not so good at

contracting over long distances, and the attachment of the Achilles tendon

represents the best compromise. In most of the levers found in the human

skeleton, the muscle is attached to the short end of the lever.

Equation (14.15) is valid only if the forces are applied at right angles

to the lever. A similar equation is valid if the forces are applied at some

other angle, but instead of the lengths l and l � of the lever, we must substitute the

lengths of the moment arms of the forces, that is, the perpendicular distances between

the pivot point and the lines of action of the forces. These moment arms play the role

of effective lengths of the lever.

When you bend over to pick up something from the floor, your

backbone acts as a lever pivoted at the sacrum (see Fig. 14.17).

The weight of the trunk pulls downward on this lever, and the muscles attached along

the upper part of the backbone pull upward. The actual arrangement of the mus-

cles is rather complicated, but for a simple mechanical model we can pretend that

the muscles are equivalent to a string attached to the backbone at an angle of about

12� at a point beyond the center of mass (the other end of the  “string” is attached

to the pelvis). Assume that the mass of the trunk, including head and arms, is

EXAMPLE 7
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Achilles
tendon

ball of foot l

l'

F'

F

P

To rotate foot about ankle,
calf muscle must apply a
larger force than floor,
because of its smaller moment
arm for rotation about heel.

Forces are exerted
on foot by floor,… 

…by calf muscle,…

…and by ankle.

FIGURE 14.16 Bones of the foot acting as a lever.

l

l' � 0.40 m

12°

w � F'

P F

0.47 m

Muscle force F must be
large because it acts with
a small moment arm.

In equilibrium, torques about
pelvis from weight w and the
muscle force F must sum to zero.

Assume back
muscles act here
with a force F.

FIGURE 14.17 “Free-body” diagram for the backbone acting as lever. The forces

on the backbone are the weight w of the trunk (including the weight of the backbone),

the pull F of the muscles, and the thrust P of the pelvis acting as pivot.

              



48 kg, and that the dimensions are as shown in the diagram. What force must the

muscles exert to balance the weight of the trunk when bent over horizontally?

SOLUTION: Figure 14.17 shows a “free-body” diagram for the backbone, with all

the forces acting on it. Since the weight w of the trunk acts at right angles to the

backbone, the lever arm for this weight is equal to the distance l� � 0.40 m between

the pivot and the center of mass of the trunk. The lever arm for the muscle is the

(small) distance l , which equals l � 0.47 m � sin 12� � 0.10 m. According to

Eq. (14.15), the force F exerted by the muscles then has magnitude 

This is a quite large force, 4.0 times larger than the weight of the trunk.

COMMENT: Bending over horizontally puts a severe stress on the muscles of the

back. Furthermore, it puts an almost equally large compressional stress on the back-

bone, pulling it hard against the sacrum. The stresses are even larger if you try to

lift a load from the floor while your body is bent over in this position. To avoid

damage to the muscles and to the lumbosacral disk, it is best to lift by bending the

knees, keeping the backbone vertical.

Often, a force is applied to a load by means of a flexible rope, or a string. A pulley

is then sometimes used to change the direction of the string or rope and the direction

of the force exerted on the body. If the pulley is frictionless, the tension at each point

of a flexible rope passing over the pulley is the same. For instance, if we want to lift a

load with a rope passing over a single pulley attached to the ceiling (see Fig. 14.18), the

force we must exert on the rope has the same magnitude as the weight of the load.

Thus, there is no gain of mechanical advantage in such an arrangement of a single

pulley; the only benefit is that it permits us to pull more comfortably than if we

attempted to lift the load directly.

However, an arrangement of several pulleys linked together, called block and

tackle, can provide a large gain of mechanical advantage. For example, consider the

arrangement of three pulleys shown in Fig. 14.19a;

the axles of the two upper pulleys are bolted together,

and they are linked to each other and to the third

pulley by a single rope. If the rope segments linking

the pulleys are parallel and there is no friction, then

the mechanical advantage of this arrangement is 3;

that is, the magnitudes of the forces F and F � are in

the ratio of 1 to 3.This can be most easily understood

by drawing the “free-body” diagram for the lower por-

tion of the pulley system, including the load

(Fig. 14.19b). In this diagram, the three ropes lead-

ing upward have been cut off and replaced by the

forces exerted on them by the external (upper) portions

of the ropes. Since the tension is the same everywhere

along the rope, the forces pulling upward on each of

the three rope ends shown in the “free-body” diagram

all have the same magnitude F, and thus the net

upward force is 3F.

 � 4.0 � 48 kg � 9.81 m /s2 � 1.9 � 103 N

 F �
l �

l
 F � �

l �

l
  w �

l �

l
 Mg �

0.40 m

0.10 m
� Mg � 4.0 � Mg
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(a) (b)

F F F

F'

Force exerted by
hand equals
tension in rope.

For this block and tackle,
tension in rope F is only
one-third of the load F'.

FIGURE 14.19 (a) Block and tackle. (b) “Free-body” diagram for the lower

portion of the pulley system.

For a single pulley,
force exerted by hand
and weight of load
have same magnitude.

FIGURE 14.18 A single pulley.

              



Block-and-tackle arrangements have

many practical applications. For instance,

they are used to provide the proper tension

in overhead power cables for electric trains

and trams (see Fig. 14.20); without such

an arrangement, the cables would sag on

warm days when thermal expansion

increases their length, and they would

stretch excessively tight and perhaps snap

on cold days, when they contract. One

common cause of power failures on cold

winter nights is the snapping of power lines

lacking such compensating pulleys.

Another practical application of block

and tackle is found in the traction devices

used in hospitals to immobilize and align

fractured bones, especially leg bones. A typical arrangement is shown in Fig. 14.21;

here the pull applied to the leg is twice as large as the magnitude of the weight attached

on the lower end to the rope. Also, as in the case of the power line, the tension remains

constant even if the leg moves.

The mechanical advantage provided by levers, arrangements of pulleys, or other

devices can be calculated in a general and elegant way by appealing to the Law of

Conservation of Energy. A lever merely transmits the work we supply at one end to the

load at the other end. We can express this equality of work input and work output by

(14.16)

where 	x is the displacement of our hand and 	x� the displacement of the load.

According to this equation, the forces F � and F are in the inverse ratio of the dis-

placements,

(14.17)

Consider, now, the rotation of the lever by a small angle (see Fig. 14.22). Since the

two triangles included between the initial and final positions of the lever are similar,

the distances 	x and 	x� are in the same ratio as the lever arms l and l�; thus, we imme-

diately recognize from Eq. (14.17) that the mechanical advantage of the lever is l�l�.

Likewise, we immediately recognize from Eq. (14.17) that the mechanical advan-

tage of the arrangement of pulleys shown in Fig. 14.19 is 3, since whenever our hand

pulls a length 	x of rope out of the upper pulley, the load moves upward by a distance

of only 	x�3.

Checkup 14.3

QUESTION 1: Figure 14.23 shows two ways of using a lever. Which has the larger

mechanical advantage?

QUESTION 2: Is Eq. (14.15) for the ratio of the forces F and F � on a lever valid if one

or both of these forces are not perpendicular to the lever?

QUESTION 3: Suppose that the pulleys in a block and tackle are of different sizes. Does

this affect the mechanical advantage?

✔

F �

F
�

¢x

¢x�

F �¢x� � F ¢x
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power cable

Hanging mass maintains
tension when power cable
expands or contracts.

Tension in power 
cable is twice weight
of hanging mass.

FIGURE 14.20 Block and tackle

used for tensioning power line.

	x
	x'l

l'

Ratio of small
displacements equals
ratio of lever arms.

FIGURE 14.22 Rotation of lever by a

small angle produces displacements 	x and

	x� of the ends.

Tension applied to
leg is twice weight
of hanging mass.

FIGURE 14.21 Block and tackle in

traction apparatus for fractured leg.

              



QUESTION 4: A lever is used to lift a 100-kg rock. The distance from the rock to the

fulcrum is roughly one-tenth of the distance from the fulcrum to the handle. If the

rock has a mass of 100 kg, the downward force at the handle necessary to lift the rock

is approximately:

(A) 1 N (B) 10 N (C) 100 N (D) 1000 N

14.4 ELAST IC ITY OF MATERIALS

In our examples of bridges, tower cranes, etc., we assumed that the bodies

on which the forces act are rigid; that is, they do not deform. Although

solid bodies, such as bars or blocks of steel, are nearly rigid, they are not

exactly rigid, and they will deform by a noticeable amount if a large

enough force is applied to them. A solid bar may be thought of as a very

stiff spring. If the force is fairly small, this “spring” will suffer only an

insignificant deformation, but if the force is large, it will suffer a notice-

able deformation. Provided that the force and the deformation remain

within some limits, the deformation of a solid body is elastic, which means

that the body returns to its original shape once the force ceases to act. Such

elastic deformations of a solid body usually obey Hooke’s Law: the defor-

mation is proportional to the force. But the constant of proportionality

is small, giving a small deformation unless the force is large. The corre-

sponding spring constant is thus very large, meaning that an apprecia-

ble deformation requires a large force.

A solid block of material can suffer several kinds of deformation, depending on

how the force is applied. If one end of the body is held fixed and the force pulls on the

other end, the deformation is a simple elongation of the body (see Fig. 14.24). If one

side of the body is held fixed and the force pushes tangentially along the other side,

then the deformation is a shear, which changes the shape of the body from a rectangular

14.4 Elasticity of Materials 445

FIGURE 14.23
Two ways of using a lever.

(b)

(a)

Which applied
force is smaller?

Hint: Distance from
fulcrum to load is the
same in both cases.

L

F

A

	L
Deformation is
an elongation.

Other end is
held fixed.

Force pulls on
one end of body.

FIGURE 14.24 Tension applied to the end of a block of

material causes elongation.

              



parallelepiped to a rhomboidal parallelepiped (see Fig. 14.25a). During this deforma-

tion, the parallel layers of the body slide with respect to one another just as the pages of

a book slide with respect to one another when we push along its cover (see Fig. 14.25b).

If the force is applied from all sides simultaneously, by subjecting the body to the pres-

sure of a fluid in which the body is immersed, then the deformation is a compression of

the volume of the body, without any change of the geometrical shape (see Fig. 14.26).

In all of these cases, the fractional deformation, or the percent deforma-

tion, is directly proportional to the applied force and inversely proportional to

the area over which the force is distributed. For instance, if a given force pro-

duces an elongation of 1% when pulling on the end of a block, then the

same force pulling on the end of a block of, say, twice the cross-sectional

area will produce an elongation of %. This can be readily understood

if we think of the block as consisting of parallel rows of atoms linked by

springs, which represent the interatomic forces that hold the atoms in

their places (see Fig. 14.27). When we pull on the end of the block with

a given force, we stretch the interatomic springs by some amount; and

when we pull on a block of twice the cross-sectional area, we have to

stretch twice as many springs, and therefore the force acting on each

spring is only half as large and produces only half the elongation in each

spring. Furthermore, since the force applied to the end of a row of atoms

is communicated to all the interatomic springs in that row, a given force

produces a given elongation in each spring in a row. The net elongation

of the block is the sum of the elongations of all the interatomic springs

in the row, and hence the fractional elongation of the block is the same

as the fractional elongation of each spring, regardless of the overall length

of the block. For instance, if a block elongates by 0.1 mm when subjected

to a given force, then a block of, say, twice the length will elongate by

0.2 mm when subjected to the same force.

To express the relationships among elongation, force, and area mathematically,

consider a block of initial length L and cross-sectional area A. If a force F pulls on the

end of this block, the elongation is 	L, and the fractional elongation is 	L�L . This

fractional elongation is directly proportional to the force and inversely proportional

to the area A:

1
2
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F

F
A 	x

h

(a)

(b)

Force pushes 
tangentially along
one side.

Other side 
of body is 
held fixed.

Deformation
is a shear.

FIGURE 14.26 Pressure applied to all sides

of a block of material causes compression.

F

A

Deformation is
a compression.

An equal force per
unit area is applied
to each side.

FIGURE 14.27 Microscopically,

a block of solid material may be

thought of as rows of atoms linked

by springs. The springs stretch when

a tension is applied to the block.

F

If force pulling on end is 
distributed over larger area, 
more springs need to be 
stretched, and smaller
deformation will result.

¢L

L
�

1

Y
 
F

A
elongation and Young’s modulus (14.18)

Here the quantity Y is the constant of proportionality. In Eq. (14.18) this con-

stant written as 1/Y, so it divides the right side, instead of multiplying it (this is anal-

ogous to writing Hooke’s Law for a spring as 	x � (l/k) F, where 	x is the elongation

FIGURE 14.25 (a) Tangential force

applied to the side of a block of material

causes shear. (b) When such a tangential

force is applied to the cover of a book, the

pages slide past one another.

              



produced by an applied force F ). Thus, a stiff material, such as steel, that elongates

by only a small amount has a large value of Y. The constant Y is called Young’s mod-

ulus. Table 14.1 lists values of Young’s moduli for a few solid materials. Note that if,

instead of exerting a pull on the end of the block, we exert a push, then F in Eq.

(14.18) must be reckoned as negative, and the change 	L of length will then like-

wise be negative—the block becomes shorter.

In engineering language, the fractional deformation is usually called the strain, and the

force per unit area is called the stress. In this terminology, Eq. (14.18) simply states that the

strain is proportional to the stress.

This proportionality of strain and stress is also valid for shearing deformations and

compressional deformations, provided we adopt a suitable definition of strain, or frac-

tional deformation, for these cases. For shear, the fractional deformation is defined as

the ratio of the sideways displacement 	x of the edge of the block to the height h of

the block (see Fig. 14.25a). This fractional deformation is directly proportional to the

force F and inversely proportional to the area A (note that the relevant area A is now

the top area of the block, where the force is applied):

Here, the constant of proportionality S is called the shear modulus. Table 14.1 includes

values of shear moduli of solids.

For compression, the fractional deformation is defined as the ratio of the change

	V of the volume to the initial volume, and this fractional deformation is, again, pro-

portional to the force F pressing on each face of the block and inversely proportional

to the area A of that face:

In this equation, the minus sign indicates that 	V is negative; that is, the volume de-

creases. The constant of proportionality B in the equation is called the bulk modulus.
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¢x

h
�

1

S
 
F

A

compression and bulk modulus
¢V

V
� �

1

B
 
F

A

shear and shear modulus(14.19)

(14.20)

ELASTIC MODULI OF SOME MATERIALS

MATERIAL YOUNG’S MODULUS SHEAR MODULUS BULK MODULUS

Steel 22 � 1010 N/m2 8.3 � 1010 N/m2 16 � 1010 N/m2

Cast iron 15 6.0 11

Brass 9.0 3.5 6.0

Aluminum 7.0 2.5 7.8

Bone (long) 3.2 1.2 3.1

Concrete 2 — —

Lead 1.6 0.6 4.1

Nylon 0.36 0.12 0.59

Glycol — — 0.27

Water — — 0.22

Quartz 9.7(max) 3.1 3.6

TABLE 14.1

              



Table 14.1 includes values of bulk moduli for solids. This table also includes values of

bulk moduli for some liquids.The force per unit area, F�A, is also known as the pressure:

(14.21)

The formula (14.20) is equally valid for solids and for liquids—when we squeeze a

liquid from all sides, it will suffer a compression. Note that Table 14.1 does not include

values of Young’s moduli and of shear moduli for liquids. Elongation and shear stress

are not supported by a liquid—we can elongate or shear a “block” of liquid as much as

we please without having to exert any significant force.

The lifting cable of a tower crane is made of steel, with a diam-

eter of 5.0 cm.The length of this cable, from the ground to the

horizontal arm, across the horizontal arm, and down to the load, is 160 m (Fig.

14.28). By how much does this cable stretch in excess of its initial length when

carrying a load of 60 tons?

EXAMPLE 8

[pressure] �
F

A
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pressure

60 t
Total cable length
is 160 m.

Cable stretches
due to load.

FIGURE 14.28 Elongation

of a tower crane cable.

SOLUTION: The cross-sectional area of the cable is

and the force per unit area is

Since we are dealing with an elongation, the relevant elastic modulus is the Young’s

modulus. According to Table 14.1, the Young’s modulus of steel is 22 � 1010 N/m2.

Hence Eq. (14.18) yields

The change of length is therefore

 � 0.21 m

 ¢L � 1.3 � 10�3 � L � 1.3 � 10�3 � 160 m

 � 1.3 � 10�3 

¢L

L
�

1

Y
 
F

A
�

1

22 � 1010 N/m2
� 2.9 � 108 N/m2

F

A
�

(60   000 kg � 9.81 m/s2)

2.0 � 10�3 m2
� 2.9 � 108 N/m2

A � pr 2 � p � (0.025 m)2 � 2.0 � 10�3 m2

Concepts
in

Context

              



What pressure must you exert on a sample of water if you want

to compress its volume by 0.10%?

SOLUTION: For volume compression, the relevant elastic modulus is the bulk

modulus B. By Eq. (14.20), the pressure, or the force per unit area, is

For 0.10% compression, we want to achieve a fractional change of volume of

	V�V � �0.0010. Since the bulk modulus of water is 0.22 � 1010 N/m2, the

required pressure is

The simple uniform deformations of elongation, shear, and compression described

above require a rather special arrangement of forces. In general, the forces applied to

a solid body will produce nonuniform elongation, shear, and compression. For instance,

a beam supported at its ends and sagging in the middle because of its own weight or

the weight of a load placed on it will elongate along its lower edge, and compress along

its upper edge.

Finally, note that the formulas (14.18)–(14.20) are valid only as long as the defor-

mation is reasonably small—a fraction of a percent or so. If the deformation is exces-

sive, the material will be deformed beyond its elastic limit; that is, the material will

suffer a permanent deformation and will not return to its original size and shape when

the force ceases. If the deformation is even larger, the material will break apart or crum-

ble. For instance, steel will break apart (see Fig. 14.29) if the tensile stress exceeds

5 � 108 N/m2, or if the shearing stress exceeds 2.5 � 108 N/m2, and it will crumble if

the compressive stress exceeds 5 � 108 N/m2.

Checkup 14.4

QUESTION 1: When a tension of 70 N is applied to a piano wire of length 1.8 m, it

stretches by 2.0 mm. If the same tension is applied to a similar piano wire of length

3.6 m, by how much will it stretch?

QUESTION 2: Is it conceivable that a long cable hanging vertically might snap under

its own weight? If so, does the critical length of the cable depend on its diameter?

QUESTION 3: The bulk modulus of copper is about twice that of aluminum. Suppose

that a copper and an aluminum sphere have exactly equal volumes at normal atmo-

spheric pressure. Suppose that when subjected to a high pressure, the volume of the alu-

minum sphere shrinks by 0.01%. By what percentage will the copper sphere shrink at

the same pressure?

QUESTION 4: While lifting a load, the steel cable of a crane stretches by 1 cm. If you

want the cable to stretch by only 0.5 cm, by what factor must you increase its diameter?

(A) (B) 2 (C) (D) 4 22222

✔

F

A
� 0.22 � 1010 
/m2 � 0.0010 � 2.2 � 106 
/m2

F

A
� �B 

¢V

V

EXAMPLE 9
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FIGURE 14.29 These rods of steel broke

apart when a large tension was applied.
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SUMMARY

STATIC EQUILIBRIUM The sums of the external forces

and of the external torques on a rigid body are zero.

TORQUE DUE TO GRAVITY Gravity effectively

acts at the center of mass.

STATICS CALCULATION TECHNIQUE To eliminate

an unknown force, evaluate torques about the point

where that force acts (or about another point where

the force has zero moment arm).

BLOCK AND TACKLE An arrangement of several

pulleys that provides a mechanical advantage

(equal to the ratio of the distance moved where the

force is applied to the distance moved by the load).

MECHANICAL ADVANTAGE OF LEVER

(14.1)

(14.2)T1 � T2 � T3 � � � � � 0

F1 � F2 � F3 � � � � � 0

(14.15)
F �

F
�

l

l �

w

PRESSURE (14.21)
[pressure] �

F

A

PROBLEM-SOLVING TECHNIQUES Static Equilibrium (page 437)

F

F'

l

l'

F F F

F'

              



Questions for Discussion 451

DEFORMATIONS OF ELASTIC MATERIAL
A is cross-sectional area.

Elongation:

Shear:

Compression:

(Y � Young’s modulus) (14.18)

(S � shear modulus) (14.19)

(B � bulk modulus) (14.20)¢V

V
� �

1
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A
	L

F

F
A 	x

h

F

A

Deformation is
an elongation.

Deformation is
a shear.

Deformation is
a compression.

QUEST IONS FOR DISCUSSION

1. If the legs of a table are exactly the same length and if the floor

is exactly flat, then the weight of the table will be equally dis-

tributed over all four legs. But if there are small deviations from

exactness, then the weight will not be equally distributed. Is it

possible for all of the weight to rest on three legs? On two?

2. List as many examples as you can of joints in the human skele-

ton that act as pivots for levers. Do any of these levers in the

human skeleton have a mechanical advantage larger than 1?

3. Design a block and tackle with a mechanical advantage of 4,

and another with a mechanical advantage of 5. If you connect

these two arrangements in tandem, what mechanical advan-

tage do you get? 

4. Figure 14.30 shows a differential windlass consisting of two

rigidly joined drums around which a rope is wound. A pulley

holding a load hangs from this rope. Explain why this device

gives a very large mechanical advantage if the radii of the two

drums are nearly equal.

5. The collapse of several skywalks at the Hyatt Regency hotel

in Kansas City on July 17, 1982, with the loss of 114 lives, was

due to a defective design of the suspension system. Instead of

suspending the beams of the skywalks directly from single,

long steel rods anchored at the top of the building, some

incompetent engineers decided to use several short steel rods

joining the beams of each skywalk to those of the skywalk

above (Fig. 14.31). Criticize this design, keeping in mind that

the beams are made of a much weaker material than the rods.

beam of
skywalk

suspension
rod

suspension
rod

FIGURE 14.31 Beam of skywalk 

and suspension rods.

FIGURE 14.30
Differential windlass.

6. A steel rod is much less flexible than a woven steel rope of the

same strength. Explain this.
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7. A carpenter wants to support the (flat) roof of a building with

horizontal beams of wood of rectangular cross section. To

achieve maximum strength of the roof (least sag), should he

install the beams with their narrow side up or with their wide

side up?

8. The long bones in the limbs of vertebrates have the shape of

hollow pipes. If the same amount of bone tissue had been

assembled in a solid rod (of correspondingly smaller cross

section), would the limb have been more rigid or less rigid?

PROBLEMS

4.2 Examples  o f  S ta t i c  Equ i l ibr ium

1. At a construction site, a laborer pushes horizontally against a

large bucket full of concrete of total mass 600 kg suspended

from a crane by a 20-m cable (see Fig. 14.32). What is the

force the laborer has to exert to hold the bucket at a distance

of 2.0 m from the vertical?

3. Consider the bridge with the locomotive described in

Example 1 and suppose that, besides the first locomotive at

30 m from the right end, there is a second locomotive, also of

90 000 kg, at 80 m from the right end. What is the load on

each pier in this case?

4. Repeat the calculations of Example 1 assuming that the bridge

has a slope of 1:7, with the left end higher than the right.

5. In order to pull an automobile out of the mud in which it is

stuck, the driver stretches a rope taut from the front end of

the automobile to a stout tree. He then pushes sideways

against the rope at the midpoint (see Fig. 14.34). When he

pushes with a force of 900 N, the angle between the two

halves of the rope on his right and left is 170�. What is the

tension in the rope under these conditions?

6. A mountaineer is trying to cross a crevasse by means of a rope

stretched from one side to the other (see Fig. 14.35). The

mass of the mountaineer is 90 kg. If the two parts of the rope

make angles of 40� and 20� with the horizontal, what are the

tensions in the two parts?FIGURE 14.32
Bucket hanging

from a cable.

FIGURE 14.33 A meterstick held in a hand.

FIGURE 14.34 The rope is

stretched between the automobile

and a tree. The driver is pushing

at the midpoint.

2. You are holding a meterstick of 0.20 kg horizontally in one

hand. Assume that your hand is wrapped around the last

10 cm of the stick (see Fig. 14.33), so the front edge of your

hand exerts an upward force and the rear edge of your hand

exerts a downward force. Calculate these forces.

40° 20°

FIGURE 14.35 Mountaineer suspended from a rope.
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7. The plant of the foot of an average male is 26 cm, and the

height of his center of mass above the floor is 1.03 m. When

he is standing upright, the center of mass is vertically aligned

with the ankle, 18 cm from the tip of the foot (see Fig. 14.36).

Without losing his equilibrium, how far can the man lean for-

ward or backward while keeping his body straight and his feet

stiff and immobile?

FIGURE 14.36
Man standing on

stiff feet. 0.18 m
0.26 m

1.03 m

8. A 50-kg log of uniform thickness lies horizontally on the

ground.

(a) What vertical force must you exert on one end of the log

to barely lift this end off the ground?

(b) If you continue to exert a purely vertical force on the end

of the log, what is the magnitude of the force required to

hold the log at an angle of 30� to the ground? At an angle

of 60�? At an angle of 85�?

(c) If instead you exert a force at right angles to the length of

the log, what is the magnitude of the force required to

hold the log at an angle of 30� to the ground? At an angle

of 60�? At an angle of 85�?

9. In an unequal-arm balance, the beam is pivoted at a point

near one end. With such a balance, large loads can be bal-

anced with small standard weights. Figure 14.37 shows such a

balance with an arm of 50 cm swinging on a pivot 1.0 cm

from one end. When a package of sugar is deposited in the

balance pan, equilibrium is attained with a standard mass of

0.12 kg in the other pan. What is the mass of the sugar?

Neglect the masses of the pans.

1.0 cm
49 cm

FIGURE 14.37 Unequal-arm balance.

10. One end of a uniform beam of mass 50 kg and length 3.0 m

rests on the ground; the other end is held above the ground by

a pivot placed 1.0 m from that end (see Fig. 14.38). An 80-kg

man walks along the beam, from the low end toward the high

end. How far beyond the pivot can the man walk before the

high end of the beam swings down?

11. The mast of a sailboat is held by two steel cables attached 

as shown in Fig. 14.39. The front cable has a tension of 

5.0 � 103 N. The mast is 10 m high. What is the tension in

the rear cable? What force does the foot of the mast exert on

the sailboat? Assume that the weight of the mast can be 

neglected and that the foot of the mast is hinged (and there-

fore exerts no torque).

1.0 m
2.0 m

FIGURE 14.38 Man standing on a beam.

FIGURE 14.39 Steel cables staying a mast.

12. The center of mass of a 45-kg sofa is 0.30 m above its bottom,

at its lateral midpoint. You lift one end of the 2.0-m-long sofa

to a height of 1.0 m by applying a vertical force at the bottom

of one end; the other end stays on the floor without slipping.

What force do you apply? Compare this with the force you

apply when a friend lifts the other end, also to 1.0 m, so that

the weight is shared equally. Based on this, who has the easier

task when a short and a tall person share a bulky load?

13. Suppose that you lift the lid of a chest. The lid is a uniform

sheet of mass 12 kg, hinged at the rear. What is the smallest

force you can apply at the front of the lid to hold it at an angle

of 30� with the horizontal? At 60�?

14. A pole-vaulter holds a 4.5-m pole horizontally with her right

hand at one end and her left hand 1.5 m from the same end.
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The left hand applies an upward force and the right hand a

downward force. If the mass of the pole is 3.0 kg, find those

two forces.

15. A 50-kg diving board is 3.0 m long; it is a uniform beam,

bolted down at one end and supported from below a distance

1.0 m from the same end. A 60-kg diver stands at the other

end. Calculate the downward force at the bolted end and the

upward support force.

16. A window washer’s scaffolding is 12 m long; it is suspended

by a cable at each end. Assume that the scaffolding is a hori-

zontal uniform rod of mass 110 kg. The window washer (with

gear) has a mass of 90 kg and stands 2.0 m from one end of

the scaffolding. Find the tension in each cable.

17. A pencil is placed on an incline, and the angle of the incline is

slowly increased. At what angle will the pencil start to roll?

Assume the pencil has an exactly hexagonal cross section and

does not slip.

18. A 10-kg ladder is 5.0 m long and rests against a frictionless

wall, making an angle of 30� with the vertical. The coefficient

of friction between the ladder and the ground is 0.35. A 60-

kg painter begins to climb the ladder, standing vertically on

each rung. How far up the ladder has the painter climbed

when the ladder begins to slip?

19. Figure 14.40 shows the arrangement of wheels on a passen-

ger engine of the Caledonian Railway. The numbers give the

distances between the wheels in feet and the downward

forces that each wheel exerts on the track in short tons (1

short ton � 2000 lbf; the numbers for the forces include both

the right and left wheels). From the information given, find

how far the center of mass of the engine is behind the front

wheel.

20. A door made of a uniform piece of wood measures 1.0 m by

2.0 m and has a mass of 18 kg. The door is entirely supported

by two hinges, one at the bottom corner and one at the top

corner. Find the force (magnitude and direction) that the door

exerts on each hinge. Assume that the vertical force on each

hinge is the same.

21. You want to pick up a nearly massless rectangular cardboard

box by grabbing its top and side between your forefinger and

thumb (see Fig. 14.41). Show that this is impossible unless the

coefficient of friction between your fingers and the box is at

least 1.

FIGURE 14.41 Box held in a hand.

rear

1.7 2.4 2.3 2.3 3.6 1.7 1.4 1.7

front

74 74

109

160
153

117 117 117 117

FIGURE 14.40 Wheels of a locomotive.

22. A meterstick of wood of 0.40 kg is nailed to the wall at the 75-

cm mark. If the stick is free to rotate about the nail, what hori-

zontal force must you exert at the upper (short) end to deflect

the stick 30� to one side?

*23. A wheel of mass M and radius R is to be pulled over a step of

height h, where R � h. Assume that the pulling force is applied

at the axis of the wheel. If the pull is horizontal, what force

must be applied to barely begin moving? If the pull at the axis is

instead in the direction that requires the least force to begin

moving, what force must be applied?  What is the new direc-

tion? (Hint: Consider the torques about the point of contact

with the step.)

*24. Consider a heavy cable of diameter d and density � from which

hangs a load of mass M. What is the tension in the cable as a

function of the distance from the lower end?

*25. Figure 14.42 shows two methods for supporting the mast of a

sailboat against the lateral force exerted by the pull of the sail.

In Fig. 14.42a, the shrouds (wire ropes) are led directly to the

top of the mast; in Fig. 14.42b, the shrouds are led around a

rigid pair of spreaders. Suppose that the dimensions of the mast
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and the boat are as indicated in this figure, and that the pull of

the sail is equivalent to a horizontal force of 2400 N acting

from the left at half the height of the mast. The foot of the

mast permits the mast to tilt, so the only lateral support of the

mast is that provided by the shrouds. What is the excess ten-

sion in the left shroud supporting the mast in case (a)? In case

(b)? Which arrangement is preferable?

*26. A bowling ball of mass 10 kg rests in a groove with smooth,

perpendicular walls, inclined at angles of 30� and 60� with the

vertical, as shown in Fig. 14.43. Calculate the magnitudes of

the normal forces at the points of contact.

*28. A sailor is being transferred from one ship to another by

means of a bosun’s chair (see Fig. 14.45). The chair hangs

from a roller riding on a rope strung between the two ships.

The distance between the ships is d, and the rope has a length

1.2d. The mass of the sailor plus the chair is m. If the sailor is

at a (horizontal) distance of 0.25d from one ship, find the

force that must be exerted on the pull rope to keep the sailor

in equilibrium. Also find the tension in the long rope. Ignore

the masses of the ropes.

FIGURE 14.42 Two methods for supporting the mast

of a boat.

10 m

2.7 m 2.7 m

7.5 m

2.5 m

(a) (b) 

FIGURE 14.43 A bowl-

ing ball in a groove.

pull
rope

d d3
4

1
4

FIGURE 14.45
Sailor in bosun’s chair.

FIGURE 14.46 Disk hanging from string.

R

l

FIGURE 14.44
A tripod.

*27. A tetrahedral tripod consists of three massless legs (see

Fig. 14.44). A mass M hangs from the apex of the (regular)

tetrahedron. What are the compressional forces in the three legs?

*29. A uniform solid disk of mass M and radius R hangs from a

string of length l attached to a smooth vertical wall (see Fig.

14.46). Calculate the tension in the string and the normal

force acting at the point of contact of disk and wall.

*30. Three traffic lamps of equal masses of 20 kg hang from a wire

stretched between two telephone poles, 15 m apart

(Fig. 14.47). The horizontal spacing of the traffic lamps is

uniform. At each pole, the wire makes a downward angle of

10� with the horizontal line. Find the tensions in all the seg-

ments of wire, and find the distance of each lamp below the

horizontal line.

10° 10°

FIGURE 14.47 Three traffic lamps.

60°30°
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*31. Consider the ladder leaning against a wall described in

Example 4. If the ladder makes an angle of 30� with the wall,

how hard can you push down vertically on the top of the

ladder with your hand before slipping begins?

*32. An automobile with a wheelbase (distance from the front

wheels to the rear wheels) of 3.0 m has its center of mass at a

point midway between the wheels at a height of 0.65 m above

the road. When the automobile is on a level road, the force

with which each wheel presses on the road is 3100 N. What is

the normal force with which each wheel presses on the road

when the automobile is standing on a steep road of slope 3:10

with all the wheels locked?

*33. A wooden box is filled with material of uniform density. The

box (with its contents) has a mass of 80 kg; it is 0.60 m wide,

0.60 m deep, and 1.2 m high. The box stands on a level floor.

By pushing against the box, you can tilt it over (Fig. 14.48).

Assume that when you do this, one edge of the box remains in

contact with the floor without sliding.

(a) Plot the gravitational potential energy of the box as a

function of the angle � between the bottom of the box and

the floor.

(b) What is the critical angle beyond which the box will

topple over when released?

(c) How much work must you do to push the box to this crit-

ical angle?

*34. A meterstick of mass M hangs from a 1.5-m string tied to the

meterstick at the 80-cm mark. If you push the bottom end of

the meterstick to one side with a horizontal push of magni-

tude Mg�2, what will be the equilibrium angles of the meter-

stick and the string?

*35. Five identical books are to be stacked one on top of the other.

Each book is to be shifted sideways by some variable amount,

so as to form a curved leaning tower with maximum protru-

sion (see Fig. 14.49). How much must each book be shifted?

What is the maximum protrusion? If you had an infinite

number of books, what would be the limiting maximum pro-

trusion? (Hint: Try this experimentally; start with the top

book, and insert the others underneath, one by one.)

**36. A wooden box, filled with a material of uniform density,

stands on a concrete floor. The box has a mass of 75 kg and is

0.50 m wide, 0.50 m long, and 1.5 m high. The coefficient of

friction between the box and the floor is �s � 0.80. If you

exert a (sufficiently strong) horizontal push against the side of

the box, it will either topple over or start sliding without top-

pling over, depending on how high above the level of the floor

you push. What is the maximum height at which you can

push if you want the box to slide? What is the magnitude of

the force you must exert to start the sliding?

*37. The left and right wheels of an automobile are separated by a

transverse distance of l � 1.5 m. The center of mass of this

automobile is h � 0.60 m above the ground. If the automobile

is driven around a flat (no banking) curve of radius R � 25 m

with an excessive speed, it will topple over sideways. What is

the speed at which it will begin to topple? Express your

answer in terms of l, h, and R; then evaluate numerically.

Assume that the wheels do not skid.

*38. An automobile has a wheelbase (distance from front wheels to

rear wheels) of 3.0 m. The center of mass of this automobile is

at a height of 0.60 m above the ground. Suppose that this

automobile has rear-wheel drive and that it is accelerating

along a level road at 6.0 m/s2. When the automobile is

parked, 50% of its weight rests on the front wheels and 50%

on the rear wheels. What is the weight distribution when it is

accelerating? Pretend that the body of the automobile remains

parallel to the road at all times.

*39. Consider a bicycle with only a front-wheel brake. During

braking, what is the maximum deceleration that this bicycle

can withstand without flipping over its front wheel? The

center of mass of the bicycle with rider is 95 cm above the

road and 70 cm behind the point of contact of the front wheel

with the ground.

*40. A bicycle and its rider are traveling around a curve of radius

6.0 m at a constant speed of 20 km/h. What is the angle at

which the rider must lean the bicycle toward the center of the

curve (see Fig. 14.50)?

�

F

FIGURE 14.48
Tilted box.

FIGURE 14.49 A stack of books. FIGURE 14.50 Bicycle traveling around curve.
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**41. An automobile is braking on a flat, dry road with a coefficient

of static friction of 0.90 between its wheels and the road. The

wheelbase (the distance between the front and the rear wheels)

is 3.0 m, and the center of mass is midway between the wheels,

at a height of 0.60 m above the road.

(a) What is the deceleration if all four wheels are braked with

the maximum force that avoids skidding? 

(b) What is the deceleration if the rear-wheel brakes are dis-

abled? Take into account that during braking, the normal

force on the front wheels is larger than that on the rear

wheels.

(c) What is the deceleration if the front-wheel brakes are dis-

abled?

*42. A square framework of steel hangs from a crane by means of

cables attached to the upper corners making an angle of 60�

with each other (see Fig. 14.51). The framework is made of

beams of uniform thickness joined (loosely) by pins at the

corners, and its total mass is M. Find the tensions in the

cables and the tensional and compressional forces in each

beam at each of its two ends.

**43. Two smooth balls of steel of mass m and radius R are sitting

inside a tube of radius 1.5R. The balls are in contact with the

bottom of the tube and with the wall (at two points; see

Fig. 14.52). Find the contact force at the bottom and at the

two points on the wall.

FIGURE 14.51
Hanging framework of

beams.

**44. One end of a uniform beam of length L rests against a

smooth, frictionless vertical wall, and the other end is held by

a string of length l � L attached to the wall (see Fig. 14.53).

What must be the angle of the beam with the wall if it is to

remain at rest without slipping?

3
2

R

3R

FIGURE 14.52 Two balls in a tube.

l

La

FIGURE 14.53 Beam, string, and wall.

FIGURE 14.54 A drive belt connecting

flywheels of a motor and a generator.

motor generatorT1

T 2

RR

**45. Two playing cards stand on a table leaning against each other

so as to form an A-frame “roof.” The frictional coefficient

between the bottoms of the cards and the table is �s. What is

the maximum angle that the cards can make with the vertical

without slipping?

**46. A rope is draped over the round branch of a tree, and unequal

masses m1 and m2 are attached to its ends. The coefficient of

sliding friction for the rope on the branch is �k. What is the

acceleration of the masses? Assume that the rope is massless.

(Hint: For each small segment of the rope in contact with the

branch, the small change in tension across the segment is

equal to the friction force.)

**47. The flywheel of a motor is connected to the flywheel of an

electric generator by a drive belt (Fig. 14.54). The flywheels

are of equal size, each of radius R. While the flywheels are

rotating, the tensions in the upper and the lower portions of

the drive belt are T1 and T2, respectively, so the drive belt

exerts a torque � � (T2 � T1)R on the generator. The coeffi-

cient of static friction between each flywheel and the drive

belt is �s. Assume that the tension in the drive belt is as low as

possible with no slipping, and that the drive belt is massless.

Show that under these conditions

T2 �
�

R
  

1

1 � e��s�

T1 �
�

R
  

1

e 
�s� � 1
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**48. A power brake invented by Lord Kelvin consists of a strong

flexible belt wrapped once around a spinning flywheel

(Fig. 14.55). One end of the belt is fixed to an overhead sup-

port; the other end carries a weight w. The coefficient of

kinetic friction between the belt and the wheel is �k. The

radius of the wheel is R, and its angular velocity is �.

(a) Show that the tension in the belt is

as a function of the angle of contact (Fig. 14.55).

(b) Show that the net frictional torque the belt exerts on the

flywheel is 

(c) Show that the power dissipated by friction is

P � wR� (1 � e�2pmk)

t � wR (1 � e�2pmk)

T � we�mk 
�

leans on the handle with all his weight, how much mass can

he lift at the short end?

53. A 60-kg woman sits 80 cm from the fulcrum of a 4.0-m-long

seesaw. The woman’s daughter pulls down on the other end of

the seesaw. What minimum force must the child apply to

hold her mother’s end of the seesaw off the ground?

54. The fingers apply a force of 30 N at the handle of a pair of

scissors, 4.0 cm from the hinge point. What force is available

for cutting when the object to be cut is placed at the far end of

the scissors, 12 cm from the hinge point? When the object is

placed as close to the hinge point as possible, at a distance of

1.0 cm?

55. A laboratory microbalance has two weighing pans, one hang-

ing 10 times farther away from the fulcrum than the other.

14.3 Levers  and Pu l leys

49. The human forearm (including the hand) can be regarded as a

lever pivoted at the joint of the elbow and pulled upward by

the tendon of the biceps (Fig. 14.56a). The dimensions of this

lever are given in Fig. 14.56b. Suppose that a load of 25 kg

rests in the hand. What upward force must the biceps exert to

keep the forearm horizontal? What is the downward force at

the elbow joint? Neglect the weight of the forearm.

50. Repeat the preceding problem if, instead of being vertical, the

upper arm is tilted, so as to make an angle of 135� with the

(horizontal) forearm.

51. A simple manual winch consists of a drum of radius 4.0 cm to

which is attached a handle of radius 25 cm (Fig. 14.57). When

you turn the handle, the rope winds up on the drum and pulls

the load. Suppose that the load carried by the rope is 2500 N.

What force must you exert on the handle to hold this load?

52. The handle of a crowbar is 60 cm long; the short end is 4.0

cm from a bend, which acts as the fulcrum. If a 75-kg man

� R

w

FIGURE 14.55 Belt and flywheel.

(a)
humerus

biceps

ulna radius

(b)

5.5 cm 30 cm 

w

FIGURE 14.56 Forearm as lever.

2500 N

25 cm

4.0 cm

FIGURE 14.57 Manual winch.
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58. A parbuckle is a simple device used by laborers for raising or

lowering a barrel or some other cylindrical object along a

ramp. It consists of a loop of rope wrapped around the barrel

(see Fig. 14.59). One end of the rope is tied to the top of the

ramp, and the laborer pulls on the other end. Suppose that the

laborer exerts a pull of 500 N on the rope, parallel to the

ramp. What is the force that the rope exerts on the barrel?

What is the mechanical advantage of the parbuckle?

59. Consider the differential windlass illustrated in Fig. 14.30.

Calculate what clockwise torque must be applied to the

handle to lift a load of mass m. What tangential force must be

exerted on the handle? What is the mechanical advantage of

this windlass?

60. Design a block and tackle with a mechanical advantage of 4,

and another with a mechanical advantage of 5. If you connect

these two arrangements in tandem, what mechanical advan-

tage do you get?

*61. Figure 14.60 shows a compound bolt cutter. If the dimensions

are as indicated in this figure, what is the mechanical advantage?

*62. The drum of a winch is rigidly attached to a concentric large

gear, which is driven by a small gear attached to a crank. The

dimensions of the drum, the gears, and the crank are given in

Fig. 14.61. What is the mechanical advantage of this geared

winch?FIGURE 14.58
Rope hoist.

When an unknown mass is placed on the inner pan, the

microbalance can measure changes in mass as small as

100 nanograms (1.0 � 10�7 g) and can measure masses up to

2.0 milligrams. What would you expect that the resolution

and maximum load for the outer pan might be?

56. A man of 73 kg stands on one foot, resting all of his weight

on the ball of the foot. As described in Section 14.3, the bones

of the foot play the role of a lever. The short end of the lever

(to the heel) measures 5.0 cm and the long end (to the ball of

the foot) 14 cm. Calculate the force exerted by the Achilles

tendon and the force at the ankle.

57. A rope hoist consists of four pulleys assembled in two pairs

with rigid straps, with a rope wrapped around as shown in

Fig. 14.58. A load of 300 kg hangs from the lower pair of pul-

leys. What tension must you apply to the rope to hold the

load steady? Treat the pulleys and the rope as massless, and

ignore any friction in the pulleys.

FIGURE 14.59 Parbuckle used to move a barrel up a ramp.

16.0 cm

3.0 cm

5.0 cm

3.0 cm

10 cm

F'

F

FIGURE 14.60 Compound bolt cutter.

15 cm

10 cm

5.0 cm

25 cm

FIGURE 14.61 Geared winch.

*63. The screw of a vise has a pitch of 4.0 mm; that is, it advances

4.0 mm when given one full turn. The handle of the vise is

25 cm long, measured from the screw to the end of the

handle. What is the mechanical advantage when you push

perpendicularly on the end of the handle?
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**65. Figure 14.63 shows a tensioning device used to tighten the

rear stay of the mast of a sailboat. The block and tackle pulls

down a rigid bar with two rollers that squeeze together the

two branches of the split rear stay. If the angles are as given in

the figure, what is the mechanical advantage?

lower end. By how much does this wire stretch in excess of its

initial length?

68. An elastic cord is 5.0 m long and 1.0 cm in diameter and acts

as a spring with spring constant 70 N/m. What is the Young’s

modulus for this material?

69. The piano wire described in Problem 67 can be regarded as a

spring. What is the effective spring constant of this spring?

70. A simple hand-operated hydraulic press can generate a pres-

sure of 6.0 � 109 N/m2. If the system is used to compress a

small volume of steel, what fraction of the original volume

does the final volume of steel occupy?

71. A 10-m length of 1.0-mm-radius copper wire is stretched by

holding one end fixed and pulling on the other end with a

force of 150 N. What is the change of length? By briefly

increasing the force to exceed the limit of elastic behavior

(a fractional elongation of approximately 1.0%), the wire may

be permanently deformed; this is often done in order to

straighten out bends or kinks in a wire. Approximately what

force is necessary?

72. A 0.50-mm-radius fishing line made of nylon is 100 m long

when no forces are applied. A fish is hooked and pulls with a

tension force of 250 N. What is the elongation?

73. In a skyscraper, an elevator is suspended from three equal,

parallel 300-m-long steel cables, each of diameter 1.0 cm.

How much do these cables stretch if the mass of the elevator

is 1000 kg?

74. The length of the femur (thighbone) of a woman is 38 cm,

and the average cross section is 10 cm2. How much will the

femur be compressed in length if the woman lifts another

woman of 68 kg and carries her piggyback? Assume that,

momentarily, all of the weight rests on one leg.

75. If the volume of a sphere subjected to an external pressure

shrinks by 0.10%, what is the percent shrinkage of the radius?

In general, show that the percent shrinkage of the volume

equals three times the percent shrinkage of the radius, pro-

vided the shrinkage is small.

76. At the bottom of the Marianas Trench in the Pacific Ocean,

at a depth of 10 900 m, the pressure is 1.24 � 108 N/m2.

What is the percent increase of the density of water at this

depth as compared with the density at the surface?

77. A slab of stone of mass 1200 kg is attached to the wall of a

building by two bolts of iron of diameter 1.5 cm (see

Fig. 14.64). The distance between the wall and the slab of

stone is 1.0 cm. Calculate by how much the bolts will sag

downward because of the shear stress they are subjected to.

78. According to (somewhat oversimplified) theoretical consider-

ations, the Young’s modulus, the shear modulus, and the bulk

modulus are related by

Check this for the first four materials listed in Table 14.1.

Y �
9BS

3B � S

18 cm

25 cm

55°

FIGURE 14.62 Scissors jack.

*64. A scissors jack has the dimensions shown in Fig. 14.62. The

screw of the jack has a pitch of 5.0 mm (as stated in the previ-

ous problem, this is the distance the screw advances when

given one full turn). Suppose the scissors jack is partially

extended, with an angle of 55� between its upper sides. What

is the mechanical advantage provided by the jack?

15°

35°

F'

F

FIGURE 14.63 Tensioning device.

14.4 E las t i c i ty  o f  Mater ia l s

66. The anchor rope of a sailboat is a nylon rope of length 60 m

and diameter 1.3 cm. While anchored during a storm, the

sailboat momentarily pulls on this rope with a force of 1.8 �

104 N. How much does the rope stretch?

67. A piano wire of steel of length 1.8 m and radius 0.30 mm is

subjected to a tension of 70 N by a weight attached to its
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79. A nylon rope of diameter 1.3 cm is to be spliced to a steel

rope. If the steel rope is to have the same ultimate breaking

strength as the nylon, what diameter should it have? The ulti-

mate tensile strength is 2.0 � 109 N/m2 for the steel and

3.2 � 108 N/m2 for nylon.

*80. A rod of aluminum has a diameter of 1.000 002 cm. A ring of

cast steel has an inner diameter of 1.000 000 cm. If the rod

and the ring are placed in a liquid under high pressure, at

what value of the pressure will the aluminum rod fit inside the

steel ring?

*81. A heavy uniform beam of mass 8000 kg and length 2.0 m is

suspended at one end by a nylon rope of diameter 2.5 cm and

at the other end by a steel rope of diameter 0.64 cm. The

ropes are tied together above the beam (see Fig. 14.65). The

unstretched lengths of the ropes are 3.0 m each. What angle

will the beam make with the horizontal?

*83. When a bar of steel is heated, it expands in length by

0.0012% for each degree Celsius of temperature increase. If

the length of the heated bar is to be reduced to its original

value, a compressive stress must be applied to it. The com-

pressive stress required to cancel the thermal expansion is

called thermal stress. What is its value for a cylindrical bar of

cast steel of cross section 4.0 cm2 heated by 150�C?

*84. A power cable of copper is stretched straight between two

fixed towers. If the temperature decreases, the cable tends to

contract (compare Problem 83). The amount of contraction

for a free copper cable or rod is 0.0017% per degree Celsius.

Estimate what temperature decrease will cause the cable to

snap. Pretend that the cable obeys Eq. (14.18) until it reaches

its breaking point, which for copper occurs at a tensile stress

of 2.4 � 108 N/m2. Ignore the weight of the cable and the sag

and stress produced by the weight.

**85. A meterstick of steel, of density 7.8 � 103 kg/m3, is made to

rotate about a perpendicular axis passing through its middle.

What is the maximum angular velocity with which the stick

can rotate if its center is to hold? Mild steel will break when

the tensile stress exceeds 3.8 � 108 N/m2.

**86. The wall of a pipe of diameter 60 cm is constructed of a sheet

of steel of thickness 0.30 cm. The pipe is filled with water

under high pressure. What is the maximum pressure, that is,

force per unit area, that the pipe can withstand? See Problem

85 for data on mild steel.

**87. A hoop of aluminum of radius 40 cm is made to spin about its

axis of symmetry at high speed. The density of aluminum is

2.7 � 103 kg/m3, and the ultimate tensile breaking strength is

7.8 � 107 N/m2. At what angular velocity will the hoop begin

to break apart?

**88. A pipe of steel with a wall 0.40 cm thick and a diameter of

50 cm contains a liquid at a pressure of 2.0 � 104 N/m2.

How much will the diameter of the pipe expand due to this

pressure?

3.0 m

2.0 m

steelnylon

FIGURE 14.65 Beam hanging from two types of rope.

*82. A rod of cast iron is soldered to the upper edges of a plate of

copper whose lower edge is held in a vise (see Fig. 14.66). The

rod has a diameter of 4.0 cm and a length of 2.0 m. The

copper plate measures 6.0 cm � 6.0 cm � 1.0 cm. If we pull

the free end of the iron rod forward by 3.0 mm, what is the

shear strain (	x�h) of the copper plate?

1.0 cm

1.5 cm

4.0 cm

2.0 m

6.0 cm

F

FIGURE 14.64 A slab of stone held by bolts.
FIGURE 14.66 Iron rod and copper plate.

              



462 CHAPTER 14 Statics and Elasticity

REVIEW PROBLEMS

89. A traffic lamp of mass 25 kg hangs from a wire stretched

between two posts. The traffic lamp hangs at the middle of

the wire, and the two halves of the wire sag downward at an

angle of 20� (see Fig. 14.67). What is the tension in the wire?

Assume the wire is massless.

the torque exerted by the axle on the wheel, but neglect the

weight of the wheel. If the tractor is to provide a pull of 8000

N (a pull of 4000 N from each rear wheel), what torque must

the axle exert on each rear wheel?

94. One end of a string is tied to a meterstick at the 80-cm mark,

and the other end is tied to a hook in the ceiling. You push

against the bottom edge of the meterstick at the 30-cm mark,

so the stick is held horizontally (see Fig. 14.71). The mass of

the meterstick is 0.24 kg. What is the magnitude of the force

you must exert? What is the tension in the string?

60°

30°

FIGURE 14.69 Cargo hanging from a boom.

91. Figure 14.69 shows cargo hanging from the loading boom of

a ship. If the boom is inclined at an angle of 30� and the cargo

has a mass of 2500 kg, what is the tension in the upper cable?

What is the compressional force in the boom? Neglect the

mass of the boom.

92. Repeat the calculation of Problem 91, but assume that the

mass of the boom is 800 kg, and that this mass is uniformly

distributed along the length of the boom.

93. A tractor pulls a trailer along a street (see Fig. 14.70). The

rear wheels, which are connected to the engine by means of

the axle, have a radius of 0.60 m. Draw a “free-body” diagram

for one of the rear wheels; be sure to include the forces and

FIGURE 14.70 Tractor pulling trailer.

8000 N

20°

25 kg

45°

FIGURE 14.67 A traffic lamp.

FIGURE 14.68 Sign hanging from a boom.

FIGURE 14.71 Meterstick tied to a hook.

90. A heavy shop sign hangs from a boom sticking out horizon-

tally from a building (see Fig. 14.68). The boom is hinged at

the building and is supported by a diagonal wire, making an

angle of 45� with the boom. The mass of the sign is 50 kg,

and the boom and the wire are massless. What is the tension

in the wire? What is the force with which the end of the

boom pushes against the building?
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100. A flagpole points horizontally from a vertical wall. The pole is

a uniform rod of mass M and length L. In addition to the pole

mount at the wall end (which is hinged and exerts no torque),

the pole is supported at its far end by a straight cable; the

cable is attached to the wall a distance L�2 above the pole

mount. What is the tension in the cable? What are the mag-

nitude and direction of the force provided by the pole wall

mount?

101. A wire stretches when subjected to a tension. This means that

the wire can be regarded as a spring.

(a) Express the effective spring constant in terms of the

length of the wire, its radius, and its Young’s modulus.

(b) If a steel wire of length 2.0 m and radius 0.50 mm is to

have the same spring constant as a steel wire of length

4.0 m, what must be the radius of the second wire?

102. If a steel rope and a nylon rope of equal lengths are to stretch

by equal amounts when subjected to equal tensions, what

must be the ratio of their diameters?

*103. A long rod of steel hangs straight down into a very deep mine

shaft. For what length will the rod break off at the top because

of its own weight? The density of mild steel is 7.8 � 103

kg/m3, and its tensile stress for breaking is 3.8 � 108 N/m2.

95. A beam of steel hangs from a crane by means of cables

attached to the upper corners of the beam making an angle

of 60� with each other. The mass of the beam is M. Find the

tensions in the cables and the compressional force in the

beam.

96. Sheerlegs are sometimes used to suspend loads. They consist of

two rigid beams leaning against each other, like the legs of the

letter A (see Fig. 14.72). The load is suspended by a cable from

the apex of the A. Suppose that a pair of sheerlegs, each at an

angle of 30� with the vertical, are used to suspend an automo-

bile engine of mass 400 kg. What is the compressional force in

each leg? What are the horizontal and vertical forces that each

leg exerts on the ground? Neglect the mass of the legs.

97. A 100-kg barrel is placed on a 30� ramp (see Fig. 14.73).

What push, parallel to the ramp, must you exert against the

middle of the barrel to keep it from rolling down? Assume

that the friction between the barrel and the ramp prevents

slipping of the barrel; that is, the barrel would roll without

slipping if released.

98. Figure. 14.74 shows a pair of pliers and their dimensions. If

you push against the handles of the pliers with a force of

200 N from each side, what is the force that the jaws of the

pliers exert against each other?

99. To help his horses drag a heavy wagon up a hill, a teamster

pushes forward at the top of one of the wheels (see

Fig. 14.75). If he pushes with a force of 600 N, what forward

force does he generate on the axle of the wagon? (Hint: The

diameter of the wheel can be regarded as a lever pivoted at the

ground.)

30°

30°
F

FIGURE 14.73 Barrel on a ramp.

16 cm

4.0 cm

FIGURE 14.74 Pliers.

F

FIGURE 14.75 Teamster pushing on a wheel.
FIGURE 14.72 Sheerlegs supporting a load.
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Answers  to  Checkups

Checkup 14.1

1. If the bicyclist sits rigidly, the equilibrium is unstable: if tipped

slightly, gravity will pull the bicycle and cyclist further over.

2. When you extend your legs while sitting on a swing, you are

shifting your center of mass forward. To remain in equilib-

rium, the swing and your body will shift backward, and tilt, so

as to keep your center of mass aligned below the point of sup-

port.

3. (a) Yes, the (vertical) support force is along the same line as

the weight when holding the pole straight up (more precisely,

it is slightly distributed around the edge of the pole). (b) No,

the support force is provided by the more forward hand

(which pushes up); an additional force from the rear hand

pushes down, to balance the torques from the force of gravity

and the support force.

4. (D) Neutral, stable, unstable. As our intuition might suggest, a

cone on its side is in neutral equilibrium (after a small dis-

placement, it remains on its side). A cone on its base is in

stable equilibrium (after being tipped slightly, it will settle

back on its base). Finally, a cone balanced on its apex is in

unstable equilibrium (after being tipped slightly, the cone will

fall over).

Checkup 14.2

1. When a ladder makes a large angle with the vertical, the

weight of the ladder and the person climbing it exerts a large

torque about the bottom, which can more easily overcome

friction and make the ladder slip. When a ladder makes a

small angle with the vertical, a person on the ladder can shift

the center of mass to a point behind the bottom, causing the

ladder to topple backward.

2. With the center of mass on the bottom, the box would have to

be rotated 90� before toppling over. In that case, however, the

box would then be on its side when it reaches the critical

angle, where the center of mass is just above the support point.

3. For each side of the A, the force that one piece of lumber

exerts on the other must exert a torque about the other’s

bottom that balances the torque due to the other’s weight.

Such a torque increases from zero when the pieces of lumber

are vertical (when the tip of the A makes zero angle) to a max-

imum when the tip approaches 180�. Since the force exerted

by one piece on the other acts with a smaller and smaller

moment arm as the tip angle approaches 180�, the force must

be very large as the tip angle approaches 180�.

4. (B) Increase the upward push and increase the downward

push. If we consider the torques about an axis through the for-

ward hand, then the downward pull from the fish must be bal-

anced by increasing the downward push from the rear hand.

The upward push of the forward hand must increase to bal-

ance those two increased downward forces.

Checkup 14.3

1. The arrangement shown in Fig. 14.23b has the larger ratio

l�l �, and thus has a greater mechanical advantage.

2. No. If, for example, the force F is not perpendicular to the

lever, we must replace l by l sin �, where � is the angle between

the force and the lever.

3. No. The pulley transmits tension to a different direction, inde-

pendent of its size.

4. (C) 100 N. The weight of the rock is w � mg � 100 kg �

9.8 m/s2 � 980 N � 1000 N. The lever has a mechanical

advantage of l ��l � . So the force required to lift the rock is

.

Checkup 14.4

1. The tension determines the fractional elongation [see Eq.

(14.18)]; thus, for a piano wire of twice the length, the elonga-

tion will be twice as long, or 4.0 mm.

2. Yes, a cable can snap under its own weight (the downward

weight below any point must be balanced by the upward ten-

sion at that point). Since the critical length for breaking is a

condition of maximum tensile stress (a force per unit area),

this depends on only the material and its mass density, not its

area.

F � (l �>l )F � � 1
10 � 1000 N � 100 N

1
10

104. A rope of length 12 m consists of an upper half of nylon of

diameter 1.9 cm spliced to a lower half of steel of diameter

0.95 cm. How much will this rope stretch if a mass of 4000 kg

is suspended from it? The Young’s modulus for steel rope is

19 � 1010 N/m2.

105. Suppose you drop an aluminum sphere of radius 10 cm into

the ocean and it sinks to a depth of 5000 m, where the pres-

sure is 5.7 � 107 N/m2. Calculate by how much the diameter

of this sphere will shrink.

              



3. A material with a larger bulk modulus is stiffer, that is, its

volume shrinks less in response to an applied pressure. We can

rewrite Eq. (14.20) as F�A � �B(	V�V ); thus, at constant

pressure, a B that is larger by a given factor results in a frac-

tional volume change that is smaller by the same factor. The

volume of the copper sphere then shrinks by 0.005%.

4. (A) Since the elongation is inversely proportional to the

area of the elastic body [see Eq. (14.18)], if you want to

decrease the elongation of a cable by a factor of 2, you must

increase the cross-sectional area by a factor of 2; thus, you

must increase the diameter by a factor of 22 .

22 .
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