Physics 403 Modern Physics Laboratory

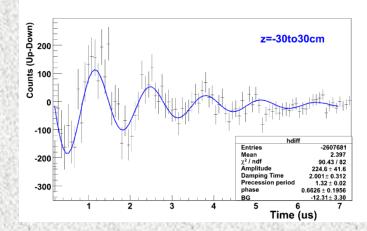
Spring 2013

403 Staff

Instructoria Eugene V Colla (kolla@illinos.edu)

TA's:

Sarvagya Sharma Charles Steiner Jeliazko Jeliazkov Justin Faber John Eichorst (ssharm18@illinois.edu) (csteine2@illinois.edu) (jeliazk2@illinois.edu) (jfaber3@illinois.edu) (eichorst@illinois.edu)


Laboratory Specialist: Jack Boparai (jboparai@illinois.edu)

Support from research groups: Grosse Perdekamp & Kwiat groups

Ferroelectric domains in BaTiO₃

Spin-precession of stopped cosmic ray muons

OUTLINE

- Goals of the course
- Teamwork / grades / expectations from you
- Syllabus and schedule
- Your working mode
 - In class and "after hours" access
 - Safety, Responsibility
 - Home and away computing
 - In-class workstations and laptops
 - Downloads for home
- A brief physics primer of things to come → take a tour !
- Let's get started
 - electronic logbooks
 - digital scopes

Course Goals. Primary goals:

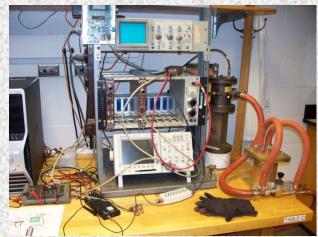
- Learn how to "do" research
 - Each project is a mini-research effort
 - How are experiments actually carried out ?
 - The procedures aren't all written out
 - The questions are not in the back of the chapter
 - The answers are not in the back of the book
 - You will have to learn to guide your own activities
 - Use of modern tools and modern analysis and datarecording techniques

Course Goals. Primary goals:

- Learn how to document your work
 - Online, as you go in paper and electronic logbooks,
 - data files, etc.
 - At intermediate summary points

(e.g. completion of setup or calibration measurements, daily summary, etc.)

- Making an analysis report
- Presenting your findings orally
- Writing formal reports

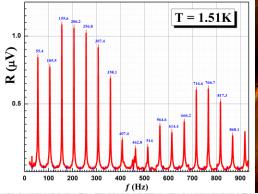

Course Goals. Secondary goals:

- Learn some modern physics
 - Many experiments were once Nobel-prize-worthy efforts
 - They touch on important themes in the development of modern physics
 - Some will provide additional insight to understand advanced courses you have taken
 - Some are just too new to be discussed in textbooks

- **The Experiments**
- Nuclear / Particle (NP)
 - Alpha particle range in gasses

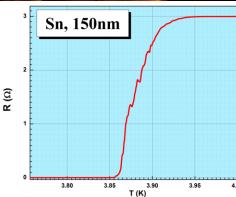
- Cosmic ray muons:
 - Lifetime, capture rate, magnetic moment

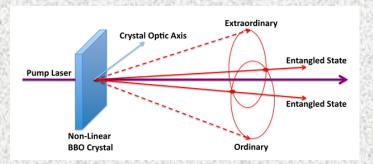
- Angular correlations in nuclear decay
- Angular distribution of cosmic rays

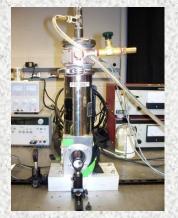


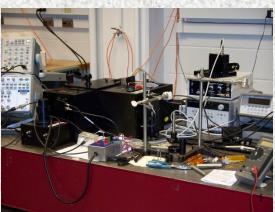
The Experiments

- Condensed Matter (CM)
 - Superconductivity
 - Tunneling in superconductors
 - 2nd sound in ⁴He superfluid state
 - Ferroelectrics and ferroelectric
 - phase transition
 - Pulsed NMR
 - Calibration of temperature sensors
 - Special Tools:
 - Vacuum film deposition
 - Atomic Force Microscope
 - Polarizing microscope
 - n n Sta



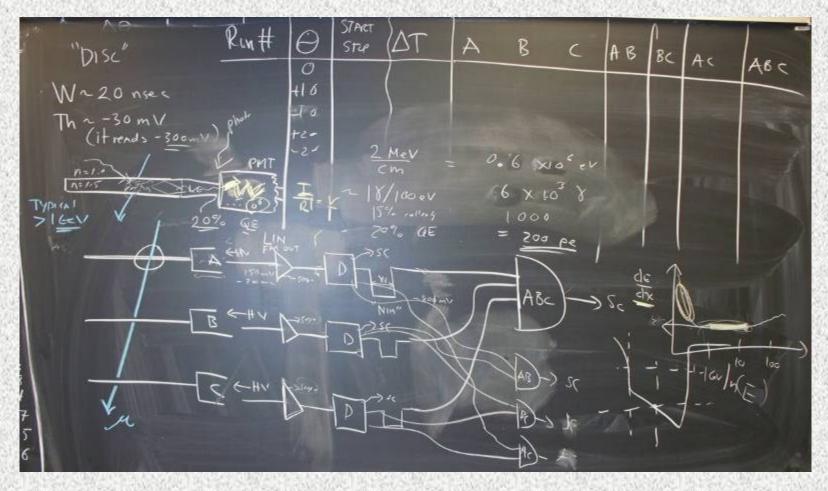

Domains in KDP





The Experiments

- Atomic / Molecular / Optics
 - Optical pumping of rubidium gas
 - Berry's phase
 - Quantum erasure
 - Quantum Entanglement
 - Fluorescence spectroscopy



The "manuals"

- Many are just guides
- A few purchased experiments have "real" manuals
- We serve as your guides ... like real research

Grading: Distribution of "1000" points

ltem	Points
Expt. documentation: elog reports, shift summaries,	180 Total
plot quality; paper logbooks	60 / cycle
Formal reports: physics case, quality of results,	600 Total
depth of analysis, conclusions	100 / report
Oral reports: motivation, organization of	225
presentation; fielding questions	75 / oral
Total	1005
Effective point total will be	1000

The grading scale will be a percentage out of "1000" :

Letter grading scale is approximately 97% = A+, 93% = A, 90% = A-, 87% = B+, 83% = B, 80% = B-, etc

You can **RESUBMIT** one lab report to improve your grade (deadline for resubmissions May, 3 – reading day).

Submission of Lab-Reports

- Due dates as on syllabus at midnight
- The reports should be uploaded to the server:
- https://my.physics.illinois.edu/courses/upload/
- Accepted MS-Word or PDF

Absences / Late Reports

- If you are sick, let Eugene by email. Don't come in and get others sick. We are working side-by-side in a close environment for many hours.
- You can "make up" the time with arrangements and you can have access to the rooms. We will be accommodating.
- Policy for late reports
 - You can have ONE "late ticket" for a "free" delay of up to 3 days, but you must tell us you are using the ticket
 - Reports are due at midnight on the date shown on the syllabus. After that we will charge:
 - 5 points for up to 1 week late. 10 points for up to 2 weeks late.
 - After that, it's too late.

Syllabus

	A STREET AND A STREET ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	CARL ST. Start	CONCERCIPIAL OF	SUP LANCE UNLIGHTED ADARS UNIT	STATUTING BUT IS REPAINTED TO DOWN UNS THE OF	10 BO 10 BO 10 BO 10 BO	
		Date	Day	Activity	Comment	Due	Note
	1	1/15	Tues	Orientation	About Phy403 (ec)		
	2	1/17	Thurs	Cycle 1-1			
이 같은 이 것이 같이 것이 같은 것은 것은 것은 것이 같이 것이 같이 같이 없다.	3	1/22	Tues	Cycle 1-2	OriginPro Intro (ec)		
	1 4	1/24	Thurs	Cycle 1-3	Elog Comments (ec)		
The second second second second	5	1/29	Tues	Cycle 1-4	Written Reports (ec)		
Second Annual Part of Second	6	1/31	Thurs	Cycle 1-5		Rotate	
	7	2/5	Tues	Cycle 1-6	Measuring Temp (ec)		
	8	2/7	Thurs	Cycle 1-7		C1-Ex1	
	7 9	2/12	Tues	Cycle 1-8	Oral Reports/Talks(ec)		
	10	2/14	Thurs	Cycle 2-1		Rotate	
	11	2/19	Tues		ORALS Cycle 1		
	12	2/21	Thurs	Cycle 2-2			
	13	2/26	Tues	Cycle 2-3	Optical spectroscopy (?)	C1-Ex2	
	7 14	2/28	Thurs	Cycle 2-4			
	15	3/5	Tues	Cycle 2-5	Basic Error Analysis (?)	Rotate	
	16	3/7	Thurs	Cycle 2-6			
	17	3/12	Tues	Cycle 2-7	Noise (mw)	C2-Ex1	
<u>cles</u>	18	3/14	Thurs	Cycle 2-8			
	24.5				Spring Break		
	19	3/26	Tues	Cycle 3-1	Lock-in Amps and FT(ec)	Rotate	
	20	3/28	Thurs	Cycle 3-2	•		
	21	4/2	Tues		ORALS Cycle 2	C2-Ex2	
	22	4/4	Thurs	Cycle 3-3			
	23	4/9	Tues	Cycle 3-4	Ferroelectricity (ec)		
	24	4/11	Thurs	Cycle 3-5		Rotate	
	25	4/16	Tues	Cycle 3-6	High Energy Physics & LHC (mgp)	C3-Ex1	
	26	4/18	Thurs	Cycle 3-7			
	27	4/23	Thurs	Cycle 3-8	Entanglement		
	28	4/25	Tues		Working Day / Catch-up		
	29	4/30	Tues		ORALS Cycle 3		
		5/2			READING DAY	C3-Ex2	

Assignment of experiments

3 cycles with 2 experiments → teams change after each cycle → joint team reports and oral presentations

	Nuclear / Particle A. Cosmic Muon Stand i. Muon lifetime ii. Capture rate iii. Magnetic moment B. Alpha range C. Gamma Gamma D. Cosmic angular distribution Sarvagya	Condensed Matter A. Ferro 1 B. Ferro 2 (imaging) C. 2 nd sound of ⁴ He D. pNMR E. Hysteresis loops F. Tunneling G. AFM H. T calibration Eugene	Atomic + CM A.Optical pumping B.Superconductivity C.Mutual inductance	Optics A. Quantum Table i. Berry's phase ii. Quantum erasure iii. Entanglement B. Florescence spectroscopy TA's from Kwiat and Bob Clegg group's
C1-1	1,2 9,10	3,4 11,12 17,18	5,6 13,14	7,8 15,16
C1-2	1,2 9,10	3,4 11,12 17,18	5,6 15,16	7,8 13,14
C2-1	4,13 5,14	1,10 6,15 7,16	2,11 8,12	3,17 9,18
C2-2	4,13 5,14	1,10 6,15 7,16	8,17 9,18	3,12 2,11
C3-1	8,12 3,16 15,18	2,5 9,13	7,11 14,17	4,10 1,6
C3-2	7,11 16,17 6,18	8,14 9,13	3,10 12,15	2,5 1,4

Who is who and who does what (not alphabetical order)

Name	#	NP	CM-1	Atomic / CM-2	Optics
Hao Li	1	2	2	-	2
Matthew Coon	2	2	1	1	2
Kevin Sullivan	3	1	2	1	2
Kangbo Hao	4	2	2	-	2
Aleksandr Marchevskiy	5	2	1	2	1
Tsung-Lin Hsieh	6	1	2	2	1
David Schmid	7	1	2	1	2
Kyle Kleyweg	8	1	1	2	2
	9	2	2	1	1
Aaron Reinhart	10	2	2	1	1
Zhao Zhangji	11	1	2	2	1
Timothy Torp	12	1	2	2	1
Martin Liu	13	2	2	1	1
Nella Granback	14	2	1	2	1
Caroline Wlodarski	15	1	2	2	1
Benjamin Meyer	16	2	2	1	1
Rebecca Glaudell	17	1	2	2	1
Joseph Nash	18	2	2	1	1

Safety is your responsibility !

Hazards: high voltage, radioactive sources,

cryogens, chemical materials

In class work and "after hours" access & work requires

responsible conduct with regards to

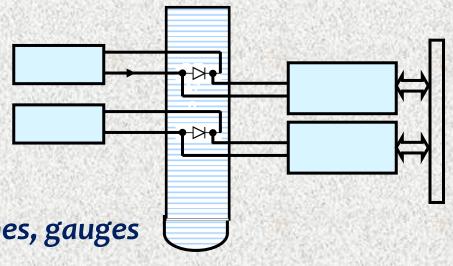
(I) safety/hazards and with

(II) equipment

Discuss potential hazards at the beginning of each experiment

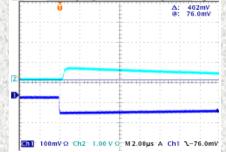
with an instructor or TA . When in doubt stop and ask

All Lab facilities are open for you from 8 am to 6pm or up to 8pm


in case of working at lest in team of two. Any other time - needs

special permission given by instructor.

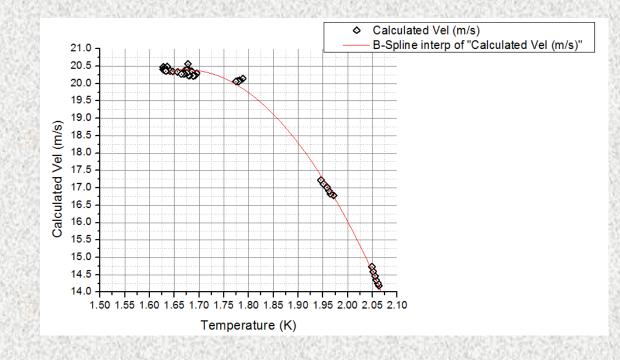
Problems after hours: 217 493 1576 (Eugene's cell)


How to record data (1)

- Work together
- Write down the equipment used
- Make a diagram of the setup
- Note the settings of dials, switches, gauges
- Take a digital photo if appropriate
- Use a software drawing program to make a detailed sketch.
 PowerPoint can be used for drawing. Origin can be used too but is less convenient.

How to record data (2)

- You will almost always look at some signals with a scope.
 - Record a representative trace using the Scope interface.
- When you have come to an intermediate stopping point, take
 - a few minutes and summarize the recent steps
 - Use the eLog (see next).
 - Write down what you did in real sentences.



Tek Run

Provide enough detail that you can reconstruct later what you did!

How to record data (3)

- Plan your plots and analysis as you go.
 - How will you look at the data later?
 - Do you have enough information?
 - Did the equipment perform as expected?

How to record data (4)

- Many experiments require you to "change and measure" something by hand
 - Make a table in a paper logbook for this
 - Double check points periodically to establish reliability
 - Be prepared to state your measurement uncertainty
 - Enter the data in an electronic table and make a final plot
 - Do you have enough points?
 - Do you have any obvious anomalies?
 - You can repeat points but do not throw them out. Use other measurements to check reliability

How to record data (3)

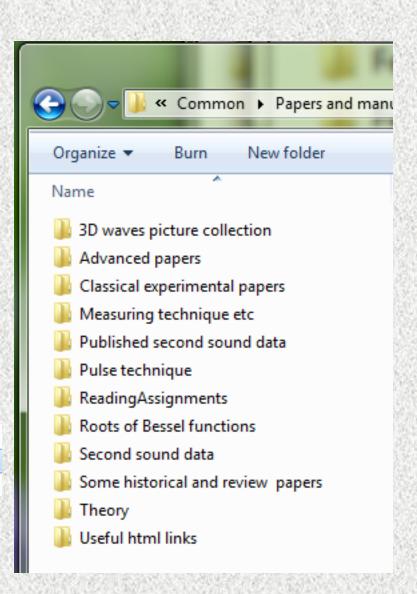
- Many experiments have built-in, computer-based data acquisition (DAQ)
 - You will not have time to fully understand the DAQ, but
 - Be sure you know functionally what it is doing ask
 - A good idea is to make test measurements of something you know
 - Because it's "automatic" don't be fooled into thinking it's "correct."
 <u>You</u> have the burden of overseeing this acquisition, even if the computer is doing the work.
 - As before, anomalies? enough points? uncertainties?
 - You will often get a built-in "online" plot of the results. Don't think that is the end of the game. But, look at the results !

Where to exchange, store and retrieve course information. (I) Your data, projects, tables etc

\\PhyapIportal\phycs403

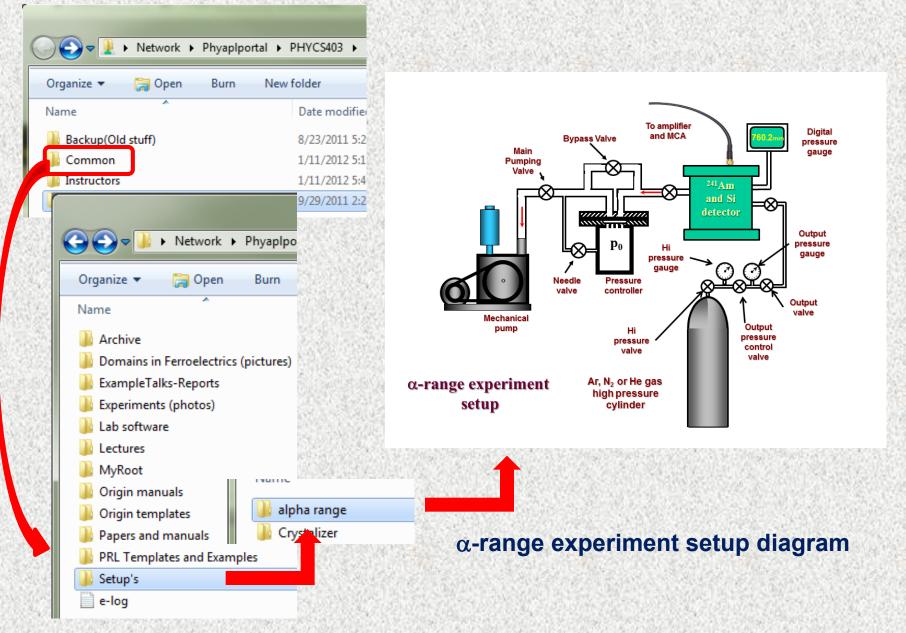
💽 🗢 🖳 🕨 Network 🕨 Phyapipo	ortal 🕨 PHYCS403 🕨			our own your wor	
Organize 🔻 😭 Open 🛛 Burn	New folder			/	
Name	Dar				
Backup(Old stuff) Common	8/2 1/1	▼ → Network	▶ Phyap portal ▶	PHYCS403 > St	tudents 🕨
Instructors	1/1 Organiz	ze 🔻 🛛 📜 Open	Burn Nev	v folder	
🎳 Students	9/2 Name	/		Date modified	Туј
	Arc	hive		1/11/2012 5:56	PM File
				1/11/2012 5:57	PM File
Store all experiment	Ja Stu	dent #2		1/11/2012 5:57	PM File
Store all experiment	📔 🚺 Stur	dent #3		1/11/2012 5:57	PM File
related materials in corresponding folder					
		> ↓ Network	▶ Phyaplportal ▶ PH	HYCS403 ► Student	s ► Student #1
	Orgi	anize 🔻 🛛 Burn	New folder		
	Nam	ne 🌔]	Date modified	Туре
		Experinent #1	1	1/11/2012 5:59 PM	File folder
		Experinent #2	1	1/11/2012 5:59 PM	File folder
		Experinent #3	1	1/11/2012 5:59 PM	File folder

WHERE TO EXCHANGE, STORE AND RETRIEVE COURSE INFORMATION. (I) Your data, projects, tables etc

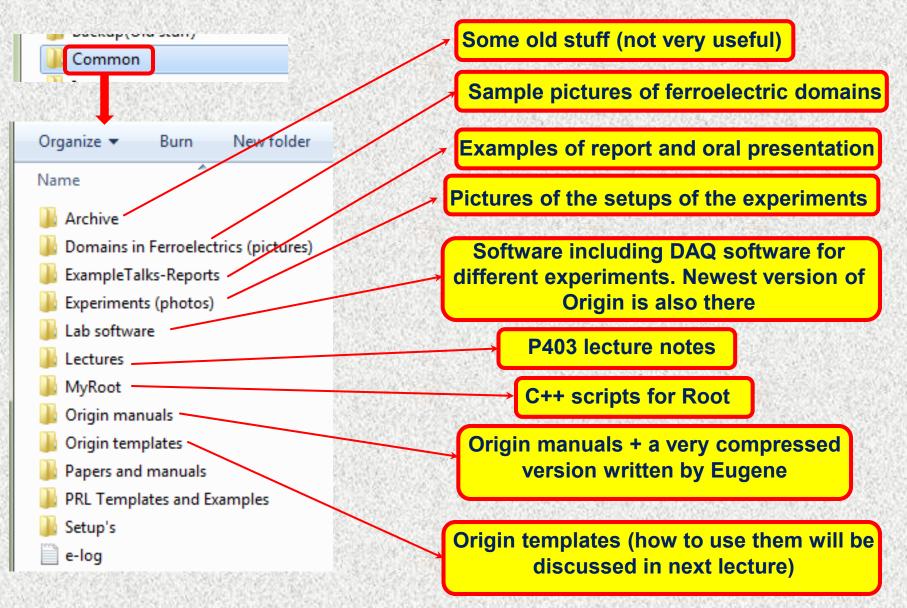

An example of the "smart" structure of folders containing the raw data and data analysis projects

Corganize ▼ But Corganize ▼ But Corganize ▼ But	ttwork ▶ Phyaplportal ▶ P	PHYCS403 ▶ Student	s ► Student :
Name	A	Date modified	Туре
Organize 🔻 Burn New folder		1/11/2012 5:59 PM	File folder
Experinent #2		1/11/2012 5:59 PM	File folder
Name Experiment #3		1/11/2012 5:59 PM	File folder
DKDP_run1	Stores Maria		S. A.
	2		
DKDP_run2	→ - W Students →	Archive Fall 201	10 Backup 🕨
DKDP_run2 DKDP_run3 (sample 2 pins 2&5)		Archive Fall 201	10 Backup 🕨
DKDP_run2 DKDP_run3 (sample 2 pins 2&5)	anize ▼ 😭 Open	Archive Fall 201 Burn New for	
DKDP_run2 DKDP_run3 (sample 2 pins 2&5)	anize 🔻 😭 Open	Burn New fo	
 DKDP_run2 DKDP_run3 (sample 2 pins 2&5) DKDP_run4 (sample 1 a-cut) DKDP_run5(sample 4 c-cut) DKDP_run6(cample 4 c-cut) 	anize 🔻 😭 Open ne	Burn New fo	older Date modifie
 DKDP_run2 DKDP_run3 (sample 2 pins 2&5) DKDP_run4 (sample 1 a-cut) DKDP_run5(sample 4 c-cut) DKDP_run6(sample 4 c-cut) 	anize	Burn New fo	older
 DKDP_run2 DKDP_run3 (sample 2 pins 2&5) DKDP_run4 (sample 1 a-cut) DKDP_run5(sample 4 c-cut) DKDP_run6(sample 4 c-cut) DKDP_run7(sample 4 c-cut) 	anize 🔻 😭 Open ne	Burn New fo	older Date modifie 10/14/2010 8 10/7/2010 5:4
 DKDP_run2 DKDP_run3 (sample 2 pins 2&5) DKDP_run4 (sample 1 a-cut) DKDP_run5(sample 4 c-cut) DKDP_run6(sample 4 c-cut) DKDP_run7(sample 4 c-cut) DKDP_run8(sample 4 c-cut) 	anize	Burn New fo	older Date modifie 10/14/2010 8
 DKDP_run2 DKDP_run3 (sample 2 pins 2&5) DKDP_run4 (sample 1 a-cut) DKDP_run5(sample 4 c-cut) DKDP_run6(sample 4 c-cut) DKDP_run7(sample 4 c-cut) DKDP_run8(sample 4 c-cut) DKDP_run8(sample 4 c-cut) DKDP DC bias runs (Eugene) 	anize	Burn New fo	older Date modifie 10/14/2010 8 10/7/2010 5:4 4/19/2006 11

WHERE TO RETRIEVE COURSE INFORMATION.


Manuals, papers, setup diagrams and other useful materials

💽 🗢 🖳 🕨 Network 🕨 Phyaplı	portal ▶ PHYCS403 ▶
Organize 🔻 😭 Open 🛛 Burn	New folder
Name	Date modifier
Backup(Old stuff)	8/23/2011 5:2
🚹 Common	1/11/2012 5:1
Instructors	1/11/2012 5:4
📙 Students	9/29/2011 2:2
Organize Organize Organize Organize Organize Domains in Ferroelectrics (pictu	
ExampleTalks-Reports Experiments (photos) Lab software	Reserved experies
Lab software	Second sound
MyRoot	\mu stm
🐌 Origin man	
📗 Origin tem 🔤 s	
Papers and manuals	
PRL Templates and Examples	
🅌 Setup's 🎬 e-log	
enog	


WHERE TO RETRIEVE COURSE INFORMATION.

Manuals, papers, setup diagrams and other useful materials

WHERE TO RETRIEVE COURSE INFORMATION.

Manuals, papers, setup diagrams and other useful materials

"JOURNAL CLUB"

This is a new proposed activity for Physic 403 course and it will be presented by Professor *Robert Clegg*

http://ajp.aapt.org/#mainWithRight

http://www.scientificamerican.com/

http://www.nature.com/nature/index.htm

http://publish.aps.org or http://prola.aps.org/

e-LOGS: FIRST A BRIEF TOUR ...

http://www.npl.illinois.edu/elog/modphys/

How to use it

- Pause and summarize your work at natural stopping points in the action. This is useful for particular findings and measurement sequences.
- Along the way, save data, plots, scope shots to a temporary folder on your desktop.
- Near the end of the class, make a "Shift Summary" providing a rather complete overview of the highlights of your work. There, you can upload your plots, scope shots, etc. and describe the data

ENTERING THE e-LOG ... (at this point, you need to work on a computer)

Registering as a new user

•Go to

http://www.npl.illinois.edu/elog/modphys/Modern+Physics+Laboratory+Fall+2011+Semester/ •Click <u>"Register as new user"</u> on the bottom right

•Fill in information for login name, Full Name, e-mail address, and password PASSWORD IS NOT SECURE, DO NOT USE A "SENSITIVE" PASSWORD

•Click "Save" in the upper left hand corner

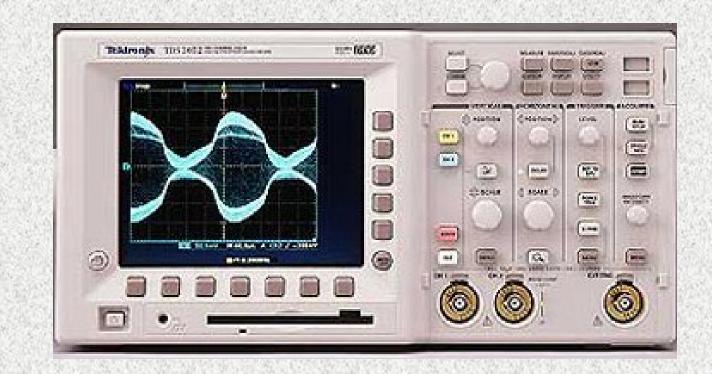
e-LOGS: ABOUT USING IT ...

- Navigating the E-Log
- The e-log user guide can be found at http://midas.psi.ch/elog/userguide.html
- The Main Page
 - The main page shows a summary of the last 100 entries in reverse order (newest at top).
 - ID, Date, Author, Experiment, Post Type, or Subject can be clicked to sort by that category.
 - Full|Summary|Threaded change the way the main page is shown (default is Summary).
 - The menu bar contains several options:
 - New: Create a new post
 - Find: Search for a post
 - Login: Login as a new different user
 - Logout: Logout the current user
 - Help: As simple help page (not very useful)
 - HelpELCode: A help page on using the E-Log code when making posts

e-LOGS: MAKING A POST ...

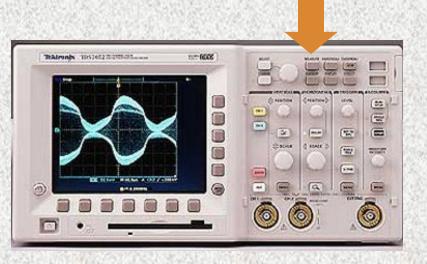
- Create a New Post
- To create a new post, click "New" from the menu bar.
- Fill in the Author, Experiment, Post Type, and Subject
 - If the post is written by more than one person, use a comma separated list.
 - Be sure the Author name is the same you used when registering so that you can edit/delete the post if necessary.
 - If you need a new Experiment or Post Type, click the button "Add Experiment" or "Add Post Type".
 The large blank area is for the Text portion of the post

e-logs: Making a post ...


- Towards the button is the Encoding option. "ELCode" translates the post using E-Log code, refer here for instructions on it's use.
 - "plain" makes the post in plain text with no formatting.
 - "HTML" translates the post according to HTML standards.
 - Attachments can be made in the attachment section.
 - Any file less than 10MB can be attached to the post.
 - Certain file types such as png, jpeg, gif, and txt will be shown at the bottom of the post.
 - To display figures in-line, see the ELCode Help Page
- When finished click "Submit"
- The "Suppress Email notification" box can be unchecked if you would like the entire class to receive an e-mail informing them that your post has been submitted. In general, leave this box checked.

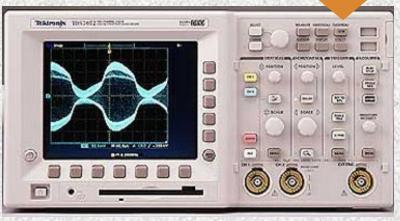
Analyzing Data with ORIGIN or ROOT

- We aim to point you toward two powerful, professional analysis tools:
- ORIGIN (commercial; CM, AMO, bio, ...)
 - Motivations
 - Very powerful and flexible
 - No necessary to have experience with C++
 - It's also free for you ; current available version is Origin Pro v. 8.6
- ROOT (CERN + users; nuclear, particle physics)
 - Motivations
 - Fantastically flexible
 - Outputs pub-quality plots in any format
 - Relatively easy to do complex tasks, like non-linear least-squares fitting, Monte-Carlo, etc.
 - World community of users contributing
 - IT'S FREE ! You can download the whole thing to your PC under Linux, Windows, or MAC oS
 - We provide a starter kit with a suite of tools
 - Lots of tutorials exits


Next: Using the digital scopes

- Each group of 2-3 should share a digital scope
- Function generator to create wave form

Measure


- Period
- Frequency
- Peak to Peak

Quick Menu

Groups common things

