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Foreward

Welcome to the general physics laboratory! This laboratory experience is designed to guide
your learning of fundamental concepts of experimentation and data collection, delivered
through the medium of hands-on experiments on why and how objects with mass move and
interact with other objects. As a student, you should be aware that you and your colleagues
will have a broad set of backgrounds in math, science, and writing and a similarly broad
set of career trajectories. Even with the diversity of participants in a course such as this,
everyone can share an appreciation of the scientific process. It is our job as instructors (TAs,
faculty, and other assistants) to help facilitate this learning independent of your preparation
level. Some will find this easier than others, but we will have done our job if you, regardless
of background, walk away appreciating a little more deeply what it means for a scientist to
claim that “I know something” based on experiments.

Some passages of text have been emphasized and color coded to make finding them later
more convenient.

Checkpoint
Checkpoints are intended to cause the student to be sure he is understanding and
remembering the material before continuing to waste his time.

Helpful Tip
Helpful tips offer the student an opportunity to learn a shortcut or otherwise to make
better use of his effort.

Historical Aside
A Historical Aside informs the student of some of the history associated with the
discussion topic. History itself is not helpful in performing the experiment or in
understanding the physics; however, it sometimes helps the student understand why
we do things as we do.
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WARNING
Warnings are exactly what they seem. Defying warnings can result in some personal
injury (likely not serious), in some disruption of the apparatus (time-consuming to
repair), etc.

General Information
General Information is usually very helpful with respect to understanding the
discussion topic in the broader context of the physical world.

We hope these decorations improve the student’s experience and help him/her to learn
to experiment more effectively.

6



Chapter 1

Introduction to the Laboratory

Physics is an experimental science. As part of a basic education in Physics, students learn
both physical principles and problem solving (130/135 lecture) and concepts of experimen-
tal practice and analysis (136). Physics 136-1 is designed to provide an introduction to
experimental techniques in the laboratory, focused on experiments on forces, masses, and
motion. We will build on algebra, geometry, trigonometry, and world experience to introduce
laws of motion and conservation that seem to permeate the physical world. These laws are
expressed using algebra and trigonometry and we will utilize these equations as examples of
how scientists gather and process data to test an idea’s validity. The process of using a set
of tools to yield data and then of analyzing the data to reach conclusions is the same for
life-sized mechanics as for more abstract subject areas that will follow in later courses.

The primary purpose of the Physics Laboratory is NOT to duplicate the concepts of
lecture, although reinforcement is certainly beneficial and intended. This lab is an indepen-
dent course from lecture covering independent concepts. The topics of the lecture serve as
examples that we will explore in the lab to learn how to trust and to believe in physical
principles. The schedule of topics in each lecture may not correspond directly with the
material in the lab, which will be focused on observing and measuring physical phenomena.
These two components complement each other, but they seldom track each other. Taken
together, the 130/135 and 136 physics courses should provide the knowledge, problem solving
skills, intuition, and practical experience with apparatus and data collection expected of a
first year in college-level physics.

1.1 Objectives of Introductory Physics Laboratories

In this course, students should expect to advance several learning goals that are broadly
relevant in science, technology, and general understanding of human knowledge. These
objectives are outlined by the American Association of Physics Teachers at
www.physics.usu.edu/dennison/3870-3880/References/AAPT%20Lab%20Goals.pdf :

• Develop experimental and analytical skills for both theoretical problems and data.
• Appreciate the “Art of Experimentation” and what is involved in designing and
analyzing a data-driven investigation, including inductive and deductive reasoning.
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CHAPTER 1: INTRODUCTION

• Reinforce the concepts of physics through conceptual and experiential learning.
• Understand the role of direct observation as the basis for knowledge in physics.
• Appreciate scientific inquiry into exploring creatively how the world works.
• Facilitate communication skills through informative, succinct written reports.
• Develop collaborative learning skills through cooperative work.

1.2 Calculus vs Non-Calculus Based Physics

The same set of experiments are given to students in both calculus-based and algebra-based
physics courses. The work in this laboratory is designed to be independent of calculus, but
it is natural that students with more math background can better appreciate the subtleties
of the physics probed in these experiments. Calculus is never required in this course, and
your grading will not be affected by your knowledge of calculus (or lack thereof).

For completeness the physical laws and principles will be presented in their most general
form and that typically does require calculus; however, the student will receive the same
grade if he simply ignores these derivations and goes directly to the solutions while keeping
necessary assumptions and approximations in mind. These solutions frequently contain
algebra and trigonometry but they can always be understood intuitively without resorting
to calculus.

1.3 What to Bring to the Laboratory

You should bring the following items to each lab session, including the first session of the
course. There is no additional textbook.

1) A bound quadrille ruled lab notebook. You must have your own, and you cannot
share with your lab partner. A suitable version is sold by the Society of Physics
Students in Dearborn B6. This lab notebook can be reused for future physics labs
or salvaged by SPS. A scientist’s notebook is his most reliable long-term memory,
his evidence that he performed the work and when, and his instructions for how to
reproduce the work.

2) This Physics Laboratory 1st Quarter lab manual. A printed copy of each relevant
experiment must be brought to class each week; but the student may choose to print
it himself or to purchase the printed copy from the Norris bookstore. The cost of ink
and paper is commensurate with the manual’s purchase price.

3) A scientific calculator.
4) An ink pen.
5) You will need to transfer electronic data files and figures from lab to your lab

reports. The lab’s computers are designed to use ‘box’ for this purpose; however this
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CHAPTER 1: INTRODUCTION

can be done by email, another cloud storage account, or a USB drive.

6) Periodically, hard documents need digitized. Each lab has a document scanner
that also can utilize the students’ box accounts, but students with phone cameras
might prefer to use those. TAs require signed data to accompany each report.

1.4 Lab Reports

You will write lab reports and submit them electronically. The purpose of this exercise is
both to demonstrate your work in lab and to guide you to think a bit more deeply about
what you are doing. The act of technical writing also helps improve your communication
skills, which are broadly relevant far beyond the physics lab.

Appendix E of this lab manual provides some guidance on how best to prepare these
reports. You should keep in mind that these are not publishable manuscripts, but concise
and clear descriptions of your experiments. They will follow a clear format to communicate
your work best. They are not meant to be long. In the past, similar reports were written in
class in about 30minutes. . . these at-home reports are a bit more involved than that, but not
by much, and the electronic format allows the students to begin utilizing word processors for
technical writing. Students should walk out of the lab with Data and Analysis sections mostly
complete and several ideas and details to incorporate into their Purpose, Procedure, and
Conclusions. One additional hour should flesh out these skeletons into report submissions.

In addition to background material, details of apparatus function, and instructions for
gathering data, each chapter of this lab manual suggests ideas you should consider while
assembling your reports. Be certain to read each chapter carefully up to the Procedures
before class. You will be tasked with taking an online quiz about this material before class
and prior knowledge will help you perform efficiently and correctly while in the laboratory.
It is also a good idea to scan the Procedures and to examine the Analysis and Conclusions
for the kinds of physics good data will demonstrate.
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Chapter 2

Understanding Errors and Uncertain-
ties in the Physics Laboratory

2.1 Introduction

We begin with a review of general properties of measurements and how measurements affect
what we, as scientists, choose to believe and to teach our students. Later we narrow our
scope and dwell on particular strategies for estimating what we know, how well we know it,
and what else we might learn from it. We learn to use statistics to distinguish which ideas
are consistent with our observations and our data.

2.1.1 Measurements, Observations, and Progress in Physics

Physics, like all natural sciences, is a discipline driven by observation. The concepts and
methodologies that you learn about in your lectures are not taught because they were first
envisioned by famous people, but because they have been observed always to describe the
world. For these claims to withstand the test of time (and repeated testing in future scientific
work), we must have some idea of how well theory agrees with experiment, or how well
measurements agree with each other. Models and theories can be invalidated by conflicting
data; making the decision of whether or not to do so requires understanding how strongly
data and theory agree or disagree. Measurement, observation, and data analysis are key
components of physics, equal with theory and conceptualization.

Despite this intimate relationship, the skills and tools for quantifying the quality of
observations are distinct from those used in studying the theoretical concepts. This brief
introduction to errors and uncertainty represents a summary of key introductory ideas for
understanding the quality of measurement. Of course, a deeper study of statistics would
enable a more quantitative background, but the outline here represents what everyone who
has studied physics at the introductory level should know.

Based on this overview of uncertainty, you will perhaps better appreciate how we have
come to trust scientific measurement and analysis above other forms of knowledge acquisition,
precisely because we can quantify what we know and how well we know it.

11



CHAPTER 2: UNCERTAINTIES

2.2 Some References

The study of errors and uncertainties is part of the academic field of statistics. The discussion
here is only an introduction to the full subject. Some classic references on the subject of
error analysis in physics are:

• Philip R. Bevington and D. Keith Robinson, Data Reduction and Error Analysis for
the Physical Sciences, McGraw-Hill, 1992.

• John R. Taylor, An Introduction to Error Analysis; The Study of Uncertainties in
Physical Measurements, University Science Books, 1982.

• Glen Cowan, Statistical Data Analysis, Oxford Science Publications, 1998

2.3 The Nature of Error and Uncertainty

Error is the difference between an observation and the true value.

Error = observed value− true value

The “observation” can be a direct measurement or it can be the result of a calculation that
uses measurements; the “true” value might also be a calculated result. Even if we do not
know the true value, its existence defines our “error”; but in this case we will also be unable
to determine our error’s numeric value. The goal of many experiments, in fact, is to estimate
the true value of a physical constant using experimental methods. When we do this our error
cannot be known, so we study our apparatus and estimate our error(s) using knowledge of
our measurement uncertainties.

Example: Someone asks you, what is the temperature? You look at the thermometer
and see that it is 71◦ F. But, perhaps, the thermometer is mis-calibrated and the actual
temperature is 72◦ F. There is an error of −1◦ F, but you do not know this. What you can
figure out is the reliability of measuring using your thermometer, giving you the uncertainty
of your observation. Perhaps this is not too important for casual conversation about the
temperature, but knowing this uncertainty would make all the difference in deciding if you
need to install a more accurate thermometer for tracking the weather at an airport or for
repeating a chemical reaction exactly during large-scale manufacturing.

Example: Suppose you are measuring the distance between two points using a meter
stick but you notice that the ‘zero’ end of the meter stick is very worn. In this case you
can greatly reduce your likely error by sliding the meter stick down so that the ‘10 cm’
mark is aligned with the first point. This is a perfectly valid strategy; however, you must
now subtract 10 cm from the remaining point(s) location(s). A similar strategy applies (in
reverse) if your ruler’s zero is not located at the end and you must measure into a corner; in
this case you must add the extra length to your measurement(s).

12



CHAPTER 2: UNCERTAINTIES

Another common goal of experiments is to try to verify an equation. To do this we
alter the apparatus so that the parameters in the equation are different for each “trial”.
As an example we might change the mass hanging from a string. If the equation is valid,
then the apparatus responds to these variations in the same way that the equation predicts.
We then use graphical and/or numerical analysis to check whether the responses from the
apparatus (measurements) are consistent with the equation’s predictions. To answer this
question we must address the uncertainties in how well we can physically set each variable
in our apparatus, how well our apparatus represents the equation, how well our apparatus is
isolated from external (i.e. not in our equation) environmental influences, and how well we
can measure our apparatus’ responses. Once again we would prefer to utilize the errors in
these parameters, influences, and measurements but the true values of these errors cannot be
known; they can only be estimated by measuring them and we must accept the uncertainties
in these measurements as preliminary estimates for the errors.

2.3.1 Sources of Error

No real physical measurement is exactly the same every time it is performed. The uncertainty
tells us how closely a second measurement is expected to agree with the first. Errors can
arise in several ways, and the uncertainty should help us quantify these errors. In a way the
uncertainty provides a convenient ‘yardstick’ we may use to estimate the error.

• Systematic error: Reproducible deviation of an observation that biases the results,
arising from procedures, instruments, or ignorance. Each systematic error biases
every measurement in the same direction, but these directions and amounts vary with
different systematic errors.

• Random error: Uncontrollable differences from one trial to another due to environ-
ment, equipment, or other issues that reduce the repeatability of an observation. They
may not actually be random, but deterministic (if you had perfect information): dust,
electrical surge, temperature fluctuations, etc. In an ideal experiment, random errors
are minimized for precise results. Random errors are sometimes positive and sometimes
negative; they are sometimes large but are more often small. In a sufficiently large
sample of the measurement population, random errors will average out.

Random errors can be estimated from statistical repetition and systematic errors can be
estimated from understanding the techniques and instrumentation used in an observation;
many systematic errors are identified while investigating disagreement between different
experiments.

Other contributors to uncertainty are not classified as ‘experimental error’ in the same
scientific sense, but still represent difference between measured and ‘true’ values. The
challenges of estimating these uncertainties are somewhat different.

• Mistake, or ‘illegitimate errors’: This is an error introduced when an experi-
menter does something wrong (measures at the wrong time, notes the wrong value).

13
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not precise
accurate

not precise
not accurate

precise
accurate

precise
not accurate

Figure 2.1: Several independent trials of shooting at a bullseye target illustrate the difference
between being accurate and being precise.

These should be prevented, identified, and corrected, if possible, and ideally they
should be completely eliminated. Lab notebooks can help track down mistakes or find
procedures causing mistakes.

• Fluctuations: Sometimes, the variability in a measurement from its average is not
a random error in the same sense as above, but a physical process. Fluctuations can
contain information about underlying processes such as thermal dynamics. In quantum
mechanics these fluctuations can be real and fundamental. They can be treated using
similar statistical methods as random error, but there is not always the desire or the
capacity to minimize them. When a quantity fluctuates due to underlying physical
processes, perhaps it is best to redefine the quantity that you want to measure. (For
example, suppose you tried to measure the energy of a single molecule in air. Due to
collisions this number fluctuates all over the place, even if you could identify a means
to measure it. So, we invent a new concept, the temperature, which is related to the
average energy of molecules in a gas. Temperature is something that we can measure,
and assign meaningful uncertainties to. Because of physical fluctuations caused by
molecular collisions, temperature is a more effective measurement than one molecule’s
energy. Temperature reflects the aggregate average of all of the molecules and, as such,
fluctuates far less.
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CHAPTER 2: UNCERTAINTIES

2.3.2 Accuracy vs. Precision

Errors and uncertainties have two independent aspects:

• Accuracy: Accuracy is how closely a measurement comes to the ‘true’ value. It
describes how well we eliminate systematic error and mistakes.

• Precision: Precision is how exactly a result is determined without referring to the
‘true’ value. It describes how well we suppress random errors and thus how well a
sequence of measurements of the same physical quantity agree with each other.

It is possible to acquire two precise, but inaccurate, measurements using different instruments
that do not agree with each other at all. Or, you can have two accurate, but imprecise,
measurements that are very different numerically from each other, but statistically cannot
be distinguished.

2.4 Notation of Uncertainties

There are several ways to write various numbers and uncertainties, but we will describe our
data using Absolute Uncertainty: The magnitude of the uncertainty of a number in the
same units as the result. We use the symbol δx for the uncertainty in x, and express the
result as x± δx.
Example: For an uncertainty δx = 6 cm in a length measurement L of x = 2meters, we
would write L = (2.00± 0.06)m. Note that x and δx have the same number of digits after
the decimal point. In fact, δx tells us how many digits in x are truly measurable and allows
us to discard the noise; because of this x and δx always have the same number of decimal
places.

2.5 Estimating Uncertainties

The process of estimating uncertainties requires practice and feedback. Uncertainties are
always due to the measuring tool and to our proficiency with using it.

2.5.1 Level of Uncertainty

How do you actually estimate an uncertainty? First, you must settle on what the quantity
δx actually means. If a value is given as x ± δx, what does the range ±δx mean? This is
called the level of confidence of the results.

Assuming no systematic biases, x− δx < true value < x+ δx 68% of the time. There are
valid reasons to specify tolerances much greater than the statistical uncertainty. For example,

15



CHAPTER 2: UNCERTAINTIES

inches
centimeters

Figure 2.2: Measuring a string with a ruler. A reasonable measurements from this might
be reported as 7.15± 0.05 cm.

manufacturers cannot afford to have 32% of their products returned. But scientists generally
use 68% confidence levels.

Helpful Tip
Frequently, students list “human error” among the reasons why predictions disagree
with measurements. Actually, it is the tools we use that have limitations. The “human
error” in reading e.g. a meter stick should be included in the measurement tolerance
and compounded with other measurement uncertainties. In this case, the sigma for
the comparison contains these “human errors” and cannot be the reason the difference
is greater than the sigma. Humans can design micrometers and interferometers to
measure better than meter sticks. Our tools are limited, but humans are more versatile.

2.5.2 Reading Instrumentation

Measurement accuracy is limited by the tools used to measure. In a car, for example, the
speed divisions on a speedometer may be only every 5mph, or the digital readout of the
odometer may only read down to tenths of a mile. To estimate instrumentation accuracy,
assume that the uncertainty is one half of the smallest division that can be unambiguously
read from the device. Instrumentation accuracy must be recorded during laboratory
measurements. In many cases, instrument manufacturers publish specification sheets that
detail their instrument’s errors more thoroughly. In the absence of malfunction, these
specifications are reliable; however, ‘one half of the smallest division’ might not be very
reliable if the instrument has not been calibrated recently.

2.5.3 Experimental precision

Even on perfect instruments, if you measure the same quantity several times, you will obtain
several different results. For example, if you measure the length of your bed with a ruler
several times, you typically find a slightly different number each time. The bed and/or
the ruler could have expanded or contracted due to a change in temperature or a slightly
different amount of tension. Your eye might not be properly aligned with the ruler and the
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CHAPTER 2: UNCERTAINTIES

bed so that parallax varies the measurements. These unavoidable uncertainties are always
present to some degree in an observation. In fact, if you get the same answer every time,
you probably need to estimate another decimal place (or even two). Even if you understand
their origin, the randomness cannot always be controlled. We can use statistical methods
to quantify and to understand these random uncertainties. Our goal in measuring is not
to get the same number every time, but rather to acquire the most accurate and precise
measurements that we can.

2.6 Quantifying Uncertainties

Here we note some mathematical considerations of dealing with random data. These results
follow from the central limit theorem in statistics and analysis of the normal distribution.
This analysis is beyond the scope of this course; however, the distillation of these studies are
the point of this discussion.

2.6.1 Mean, Standard Deviation, and Standard Error

Statistics are most applicable to very large numbers of samples; however, even 5-10 samples
benefit from statistical treatment. Statistics greatly reduce the effect of truly random fluctu-
ations and this is why we utilize this science to assist us in understanding our observations.
But it is still imperative that we closely monitor our apparatus, the environment, and our
precision for signs of systematic biases that shift the mean.

With only a few samples it is not uncommon
(

1
2N
)
for all samples to be above (or below)

the distribution’s mean. In these cases the averages that we compute are biased and not
the best representation of the distribution. These samples are also closely grouped so that
the standard error is misleadingly small. This is why it is important to develop the art of
estimating measurement uncertainties in raw data as a sanity check for such eventualities.

The mean

Suppose we collect a set of measurements of the same quantity x, and we label them by an
integer index i: {xi} = (x1, x2, . . . xN). What value do we report from this set of identical
measurements? We want the mean, µ, of the population from which such a data set was
randomly drawn. We can approximate µ with the sample mean or average of this particular
set of N data points:

µ ≈ x̄ = 1
N

∑
i

xi (2.1)

Of course, this is not the true mean of the population, because we only measured a small
subset of the total population. But it is our best guess and, statistically, it is an unbiased
predictor of the true mean µ.
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The standard deviation

How precisely do we know the value of x? To answer this question of statistical uncertainty
based on the data set {xi}, we consider the squared deviations from the sample mean x̄.
The sample variance s2

x is the sum of the squared deviations divided by the ‘degrees of
freedom’ (DOF). For N measurements the DOF for variance is N − 1. (The origin of the
N − 1 is a subtle point in statistics. Ask if you are interested.) The sample standard
deviation, sx, is the square root of the sample variance of the measurements of x.

sx =
√∑N

i=1(xi − x̄)2

DOF (2.2)

The sample standard deviation is our best ‘unbiased estimate’ of the true statistical standard
deviation σx of the population from which the measurements were randomly drawn; thus it
is what we use for a 68% confidence interval for one measurement (i.e. each of the xi).

The standard error

If we do not care about the standard deviation of one measurement but, rather, how well
we can rely on a calculated average value, x̄, then we should use the standard error or
standard deviation of the mean sx̄. This is found by dividing the sample standard deviation
by
√
N :

sx̄ = sx√
N
. (2.3)

If we draw two sets of random samples from the same distribution and compute the two
means, the two standard deviations, and the two standard errors, then the two means will
agree with each other within their standard errors 68% of the time.

2.6.2 Reporting Data

Under normal circumstances, the best estimate of a measured value x predicted from a set of
measurements {xi} is given by x = x̄± sx̄ . Statistics depend intimately upon large numbers
of samples and none of our experiments will obtain so many samples. Our uncertainties will
have 1-2 significant figures of relevance and the uncertainties tell us how well we know our
measurements. Therefore, we will round our uncertainties, δm, to 1-2 significant
figures and then we will round our measurements, m, to the same number of
decimal places; (3.21± 0.12) cm, (434.2± 1.6)nm, etc.

2.6.3 Error Propagation

One of the more important rules to remember is that the measurements we make have a
range of uncertainty so that any calculations using those measurements also must have a
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commensurate range of uncertainty. After all the result of the calculation will be different
for each number we should choose even if it is within range of our measurement.

We need to learn how to propagate uncertainty through a calculation that depends
on several uncertain quantities. Final results of a calculation clearly depend on these
uncertainties, and it is here where we begin to understand how. Suppose that you have
two quantities x and y, each with an uncertainty δx and δy, respectively. What is the
uncertainty of the quantity x + y or xy? Practically, this is very common in analyzing
experiments and statistical analysis provides the answers disclosed below.

For this course we will operate with a set of rules for uncertainty propagation. It is
best not to round off uncertainties until the final result to prevent accumulation of rounding
errors. Let x and y be measurements with uncertainty δx and δy and let c be a number with
negligible uncertainty. We assume that the errors in x and y are uncorrelated; when one
value has an error, it is no more likely that the other value’s error has any particular value
or trend. We use our measurements as described below to calculate z and the propagated
uncertainty in this result (δz).

• Multiplication by an exact number: If z = c x, then

δz = c δx (2.4)

• Addition or subtraction by an exact number: If z = c+ x, then

δz = δx (2.5)

• Addition or subtraction: If z = x± y, then

δz =
√

(δx)2 + (δy)2 (2.6)

• Multiplication or division: If z = xy or z = x
y
, then

δz

z
=

√√√√(δx
x

)2

+
(
δy

y

)2

(2.7)

• Power: If z = xc, then
δz

z
= c

δx

x
(2.8)

The important pattern in these rules is that when you combine multiple uncertainties,
you do not add them directly, but rather you square them, add, and then take the square
root. The reason for this is intuitive: if one error is randomly positive, the other one is
sometimes negative, which reduces the total error. Therefore, it is incorrect to estimate the
combination of two uncertainties as their sum since this overestimates the average size of
the combined error.
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2.6.4 (Essential) Significant Figures

WARNING
Failure to adhere to the following protocol will result in point deductions.

The significant figures of a number are the digits in its representation that contribute to
the precision of the number. In practice, we assume that all digits used to write a number
are significant (except leading zeroes). Therefore, completely uncertain digits should not be
used in writing a number and results should be rounded to the appropriate significant figure.
The noise in our measurements should be discarded. For example, you should not express
your height as 70.056 inches if your uncertainty is ±0.1 inch. It would more appropriately
be written as 70.1 inches. Uncertainties specified using only significant digits are always ±5
times a power of 10; the least significant displayed digit was the result of rounding up or
down by as much as 0.5 of that digit. Usually we know our uncertainty to be something
close to this but yet different. Further, results of simple calculations should not increase the
number of significant digits. Calculations transform our knowledge; they do not increase our
knowledge. The rounding should be performed at the final step of a calculation to prevent
rounding errors at intermediate steps from propagating through your work but one or two
extra digits suffice to prevent this.

Zeros are also considered significant figures. If you write a number as 1,200, we assume
there are four significant digits. If you only mean to have two or three, then it is best to use
scientific notation: 1.2×103 or 1.20×103. Leading zeros are not considered significant: 0.55
and 0.023 have just two significant figures. After some time the decimal point frequently
gets obscured, but the ‘0’ and the space allows us to realize that this is 0.55 not ‘55.’

There are some guidelines for tracking significant figures throughout mathematical ma-
nipulation. This is useful as a general method to keep track of the precision of a number so
as not to carry around extra digits of information, but you should generally be using more
formal error estimates from Sections 2.5 and 2.6 for reporting numbers and calculations in
the physics lab.

• Addition and Subtraction: The result is known to the decimal place of the least
precise input number.
Example: 45.37 + 10 = 55, not 55.37 or 55.4
Why? δ =

√
0.0052 + 0.52 = 0.5

Where we used the sum formula Equation (2.6).

• Multiplication and Division: The result is known to as many significant figures
as are in the least precise input number.
Example: 45.4× 0.25 = 11, not 11.4

Why? δ = 11
√(

0.05
45

)2
+
(

0.005
0.25

)2
= 0.2 > 0.05
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Where we used the product formula Equation (2.7).

Example: If you measure a value on a two-digit digital meter to be 1.0 and another
value to be 3.0, it is incorrect to say that the ratio of these measurements is 0.3333333, even
if that is what your calculator screen shows you. The two values are measurements; they are
not exact numbers with infinite precision. Since they each have two significant digits, the
correct number to write down is 0.33. If this is an intermediate result, then 0.333 or 0.3333
are preferred, but the final result must have two significant digits.

For this lab, you should use proper significant figures for all reported numbers including
those in your notebook. We will generally follow a rule for significant figures in reported
numbers: calculate your uncertainty to two significant figures, if possible, using
the approach in Sections 2.5 and 2.6, and then use the same level of precision in
the reported error and measurement. This is a rough guideline, and there are times
when it is more appropriate to report more or fewer digits in the uncertainty. However, it is
always true that the result must be rounded to the same decimal place as the uncertainty.
The uncertainty tells us how well we know our measurement.

2.7 How to Plot Data in the Lab

Plotting data correctly in physics lab is somewhat more involved than just drawing points on
graph paper. First, you must choose appropriate axes and scales. The axes must be scaled
so that the data points are spread out from one side of the page to the other. Axes must
always be labeled with physical quantity plotted and the data’s units. Then, plot your
data points on the graph. Ordinarily, you must add error bars to your data points, but
we forgo this requirement in the introductory labs. Often, we only draw error bars in the
vertical direction, but there are cases where it is appropriate to have both horizontal and
vertical error bars. In this course, we would use one standard deviation (standard error if
appropriate for the data point) for the error bar. This means that 68% of the time the ‘true’
value should fall within the error bar range.

Do not connect your data points by line segments. Rather, fit your data points to a
model (often a straight line), and then add the best-fit model curve to the figure. The line,
representing your theoretical model, is the best fit to the data collected in the experiment.
Because the error bars represent just one standard deviation, it is fairly common for a data
point to fall more than an error bar away from the fit line. This is OK! Your error bars
are probably too large if the line goes through all of them! Since 32% of your data points
are more than 1σ away from the model curve, you can use this fact to practice choosing
appropriate uncertainties in your raw data.

Some of the fitting parameters are usually important to our experiment as measured
values. These measured parameters and other observations help us determine whether the
fitting model agrees or disagrees with our data. If they agree, then some of the fitting
parameters might yield measurements of physical constants.
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2.8 Fitting Data (Optional)

Fully understanding this section is not required for Physics 136. You will use least-squares
fitting in the laboratory, but we will not discuss the mathematical justifications of curve fitting
data. Potential physics and science majors are encouraged to internalize this material; it will
become an increasingly important topic in upper division laboratory courses and research and
it will be revisited in greater detail.

In experiments one must often test whether a theory describes a set of observations.
This is a statistical question, and the uncertainties in data must be taken into account to
compare theory and data correctly. In addition, the process of ‘curve fitting’ might provide
estimates of parameters in the model and the uncertainty in these parameter estimations.
These parameters tailor the model to your particular set of data and to the apparatus that
produced the data.

Curve fitting is intimately tied to error analysis through statistics, although the math-
ematical basis for the procedure is beyond the scope of this introductory course. This
final section outlines the concepts of curve fitting and determining the ‘goodness of fit’.
Understanding these concepts will provide deeper insight into experimental science and the
testing of theoretical models. We will use curve fitting in the lab, but a full derivation
and statistical justification for the process will not be provided in this course.
The references in Section 2.2, Wikipedia, advanced lab courses, or statistics textbooks will
all provide a more detailed explanation of data fitting.

2.8.1 Least-Squares and Chi-Squared Curve Fitting

Usually data follows a mathematical model and the model has adjustable parameters (slope,
y-intercept, etc.) that can be optimized to make the model fit the data better. To do this we
compute the vertical distance between each data point and the model curve, we add together
all of these distances, and then we adjust all of the parameters to minimize this sum. This
strategy is the “least squares” algorithm for fitting curves.

Scientific curve fits benefit from giving more precise data points a higher weight than
points that are less well-known. This strategy is “chi squared” curve fitting. These algorithms
may be researched readily on the internet.

2.9 Strategy for Testing a Model

2.9.1 A Comparison of Measurements

If we have two independent measurements, X1 = x1 ± δx1 and X2 = x2 ± δx2, of the same
physical quantity and having the same physical units, then we will conclude that they agree
if the smaller plus its δ overlaps with the larger minus its δ.
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A disagreement could mean that the data contradicts the theory being tested, but
it could also just mean that one or more assumptions are not valid for the experiment;
perhaps we should revisit these. Disagreement could mean that we have underestimated
our errors (or even have overlooked some altogether); closer study of this possibility will be
needed. Disagreement could just mean that this one time the improbable happened. These
possibilities should specifically be mentioned in your Analysis according to which is most
likely, but further investigation will await another publication.

Helpful Tip
One illegitimate source of disagreement that plagues students far too often is simple
math mistakes. When your data doesn’t agree and it isn’t pretty obvious why, hide
your previous work and repeat your calculations very carefully to make sure you get
the same answer twice. If not, investigate where the two calculations began to differ.
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Chapter 3

Experiment 1:
A Modern Galileo

The study of motion was one of the first successful applications of the scientific method
advocated by early scientists such as Galileo (1564 - 1642). In fact, the experiment we will
perform here is very similar to one designed by Galileo to quantify the nature of the motion
of objects. We have, of course, updated the apparatus considerably; we will supplement
the low-tech inclined plane of Galileo with an electronic timer instead of a water clock and
nearly frictionless air pucks in place of a rolling ball. Our results will be as convincing as
Galileo’s, demonstrating that there is a general principle underlying the motion of objects
due to gravity. The underlying modern description of this physics took another century for
Newton to formulate (it will take you another week or so).

(t)r

r            i           j          k(t)  = x(t)    +  y(t)    +   z(t)

z

x

y

Figure 3.1: Plot of the position vector,
r(t); this curve is called the trajectory.

The famous inclined plane experiments of
Galileo showed that for an object moving under the
influence of gravity, there is a precise mathematical
relationship between the distance traveled and the
time that has passed. Galileo wanted to observe
and to test this relationship, but falling objects
accelerate too quickly for him to perform accurate
experiments with his crude instrumentation. The
inclined plane solved Galileo’s problem: it slowed
the motion down so that his measurement tools
could be effective in testing his hypotheses. This
short description of Galileo’s experiment already
illuminates several of the primary challenges of
experiments in physics: measurement, limits of
instrumentation, accurate collection of data, cre-
ativity, problem solving, and rigorous hypothesis testing.

Galileo explored the relationship between two physical variables — position and time.
In mechanics, the mathematical description of motion is called kinematics. The origin
of this motion is studied in dynamics, which we will explore later. Our first experiment
will familiarize you with the kinematical quantities used to describe the motion of point-like
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objects — position, velocity, and acceleration. Each of these can change with time. If we
wish to record motion quantitatively, we need to measure both the positions of a body and
the times when the body was at each position. You are already intuitively familiar with the
basic procedure of these measurements. Position is measured with respect to some reference
coordinate system. For example, a ruler can measure the distance between two points: 1)
y = 0 and 2) the object’s location. Time is measured using some form of a “clock”; all clocks
begin with pulses at very regular time intervals. The specific approach to implementing
these observations are the details provided by an experimenter such as yourself or Galileo.
Figure 3.1 shows one possible representation of the motion of an object, defined by the
coordinates x, y, and z.

3.1 Background: The Mathematics of Kinematics

Time (s) Position (cm)
0 1.00
1 5.00± 0.05
2 7.00
3 7.00
4 5.00

Table 3.1: Sample position vs. time
data presented in a labeled table.

As background to the experiment, we first de-
velop the basic mathematics of motion described
using vectors. Motion in three dimension can be
described in the most general way using three
coordinates. The position of an object’s center
of mass is represented by the vector r(t), which
changes in time along a continuous line called its
trajectory. This trajectory can be represented at
specific times by noting the coordinates of the
position at each time. Table 3.1 is an example
of the data for one-dimensional motion expressed

0 1 2 3 4 5

8

t (s)

2

6

4

s(
cm

)

Figure 3.2: Plot of position s vs. time,
with data from Table 3.1. The lines are
only guides to the eye.

in tabular form. Practically, when recording
data in the laboratory, you will write down a
table of values that are measured. It is often
convenient to plot the position s(t) of the object
as a function of time t, shown for example in
Figure 3.2.

We can now describe the other kinematic
quantities from these data points. We define
the average velocity, v̄, of the body during a
particular time interval, ∆t1,2 = t2 − t1, as the
ratio of the change of position ∆s1,2 = s2 − s1
to ∆t1,2:

v̄ = ∆s1,2

∆t1,2
= s2 − s1

t2 − t1
(3.1)

For the special path in which an object leaves
a point and then returns to the same position
the average velocity is zero. During the mo-
tion, however, the average velocity calculated

26



CHAPTER 3: EXPERIMENT 1

between any two time points will vary. An accurate description of the motion requires
a more powerful descriptive tool than the average velocity. The instantaneous velocity is
defined using calculus by taking the limit of Equation (3.1).

v(t) = ds
dt = lim

∆t→0

s(t+ ∆t)− s(t)
(t+ ∆t)− t (3.2)

The symbol ds
dt is the “derivative, with respect to time, of the function s(t).” This concept

is from calculus, and it is a measure of the rate at which the function s(t) changes. These
expressions generalize to vectors. For students in Physics 130-a, the calculus origins of these
expressions are not crucial, but the meaning of velocity as being the rate that a position
vector changes is the point of the discussion and certainly important.

If the velocity is uniform, the derivative of the position is a constant over all time and
the instantaneous velocity is the same as the average velocity. However, if the velocity is not
uniform, then the velocity is itself a function of time. We can similarly define the average
acceleration, ā, as the change in the instantaneous velocity, ∆v1,2 = v2 − v1, divided by the
time interval ∆t1,2 = t2 − t1 over which the change occurs:

ā = ∆v1,2

∆t1,2
= v2 − v1

t2 − t1
(3.3)

The instantaneous acceleration at time t is also obtained following the calculus limit process
as above:

a(t) = dv
dt = lim

∆t→0

v(t+ ∆t)− s(t)
(t+ ∆t)− t (3.4)

Here, dv
dt is the derivative, with respect to time, of the function v(t). Since the velocity

v(t) is already the derivative of the position s(t), the acceleration can be obtained from the
position function by applying the derivative process twice. The symbol d2s

dt2 is called the
“second derivative,” with respect to time, of the function s(t). The graphical or geometrical
interpretation of the acceleration in relation to velocity is similar to that of the velocity in
relation to position: the instantaneous acceleration at some time t is equal to the slope (of
the tangent) of the velocity versus time curve at t.

Kinematics defines the quantities s(t), v(t), and a(t) which completely characterize the
motion of the center of mass of any object. Given any one of these functions and appropriate
initial values, differential calculus (or plane geometry plus ingenuity) allows us to calculate
the other two functions. As noted previously, kinematics does not tell us where these
functions come from, only how they are related. If the velocity changes uniformly, the
acceleration is a constant over all time. In this case, the instantaneous acceleration is the
same as the average acceleration. This kinematic condition, the constant acceleration that
Galileo measured, is one characteristic of gravity near earth’s surface.
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Checkpoint
In studying the motion of an object, what does the trajectory represent?

3.2 The Experiment

Spark
Generator

Compressed Air
and High Voltage

Ground

6o Level

Puck

Record
Paper

Carbon
Paper

Leveling
Screw

Meter
Stick

Spark
Activation

Air Valve

Figure 3.3: A photograph of the apparatus showing the
relevant controls.

Here, you will reproduce Galileo’s
seminal inclined plane experiment.
You will find experimental evi-
dence for very specific rules that
govern motion. From lecture, you
are likely already familiar with
these rules. By performing the
experiment yourself, you will learn
to record data, to understand how
“good” your measurements are, to
notice your experiment’s environ-
ment, and to gain experience in
“fitting” a model to these data.
Your own data will make a strong
case, likely as strong as Galileo’s
own experiment from the 17th cen-
tury, of this fundamental observa-
tion: the distance traveled under
the influence of gravity is propor-
tional to the square of the time that
elapses. It may seem simple, but
proving this hypothesis with real
data was one of the earliest ap-
plications of the modern scientific
method and the basis for the later
development of Newton’s First Law
of Motion. And simple or not, prior
to Galileo this was a controversial point.

3.2.1 The Apparatus

In this experiment we will use an “air hockey puck” to study the motion of an object
accelerating under the influence of gravity. Figure 3.3 shows a photograph of the experiment.
Pressurized air keeps a disk, or “puck”, of stainless steel afloat above a glass surface so that it
can move practically without friction. A pointed electrode protruding from a hollow chamber
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Figure 3.4: Pressurized air and a high-voltage wire inside the hose float the puck on a
cushion of air and excite a spark through the record paper.

open to the bottom of the puck, is aligned along the axis of the puck (see Figure 3.4).

Checkpoint
Why do you float the puck used in this experiment on an air cushion? If the mass of
the puck were doubled, what effects would this have on the experiment?

This electrode sits just above a special sheet of carbon paper which covers the surface
of the table. The embedded carbon turns this paper into a fair conductor of electricity. A
sheet of white paper – the record paper – is placed between the carbon sheet and the floating
puck. The pulse generator – when activated by pressing the hand-held pushbutton – applies
a series of high-voltage pulses to the puck electrode. With each high voltage pulse an electric
discharge takes place between the carbon sheet and the pointed electrode in the center of the
puck. This electrical discharge leaves a mark – a black dot – caused by carbon evaporation.
The marks are made on the underside of the record paper and each one reflects the position
of the puck at the time of the spark. In our laboratory equipment, the electrode is pulsed
by a high-voltage pulse generator operating at a constant frequency of 60 cycles per second,
or 60 Hertz (Hz). This means that every 1/60 sec a black dot will mark the position of the
projected center of mass of the moving object (the center of the puck’s bottom surface). This
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trajectory contains all the necessary information (position as a function of time) necessary
to determine the velocity and acceleration of the puck.

Helpful Tip
Do not turn the air supply on all the way. It will damage the air hose. Only turn it
on a little way. The puck will float well.

WARNING
Do not drop the puck. The table top is glass! The puck should be on the white
record paper and not on the carbon paper whenever the push-button activating the
pulse generator is pressed. The white paper should be on the carbon paper. If you
touch the high voltage terminal and ground at the same time, you may get a shock –
harmless, but unpleasant! Always make sure that the ground clip is properly connected
to the carbon sheet before activating the pulser.

Checkpoint

A pulse generator is used in an experiment which operates at 60 kHz (60 × 103

oscillations/sec). What time interval will pass between successive dots?

Historical Aside
The carbon paper we are using has a trade name: Teledeltos. It was developed and
patented around 1934 by Western Union. It was originally used to transmit newspaper
images over the telegraph lines (as an early fax machine). The receiving end of the
“Wirephoto” system operated on the same principle as our laboratory equipment. The
cylinder of a drum was covered first with a sheet of Teledeltos paper, and then with a
sheet of white record paper. A pointed electrode triggered by signals transmitted over
the telegraph lines would then reconstruct the image by varying the density of black
dots on the record paper. The image was then scaled photographically.
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3.3 Procedure

Helpful Tip
There is a video on Canvas regarding this first experiment. Viewing it before class will
make your experiment proceed faster and with fewer missteps.

3.3.1 Collecting position data

Using the inclined level, set the table bed to an inclination angle of 6◦ by adjusting the screws
until the air bubble is centered in the level while the level is squared in the wood frame.
Clear away eraser crumbs and other debris. Place a sheet of carbon paper on the air table
and connect it with the alligator clip to the pulse generator. Place a sheet of record paper
on top of the carbon sheet, set the puck on the white paper, and turn on the pressurized air.
Adjust the air flow rate just a little more than enough to free up the puck’s motion. Too
much air pressure will cause the puck to rebound like water pressure pushes a garden hose;
but, too little air pressure will not remove enough friction. Rotate the valve about 5◦ more
than just enough for the puck to move on its own. Hold the puck with its top edge near the
top end of the record paper. Turn on the power of your pulse generator. If your activation
fob has a rocker switch, turn that switch on also. Activate the pulse and release the puck
simultaneously. Hold the button down until the puck reaches the bottom of the paper. The
puck will slide down the incline accelerating under the influence of gravity and the sparks
will record its motion.

Helpful Tip
Your TA or lab staff should already have leveled the inclined table at the beginning
of the week. You should check it is correct, but it is not likely that you will need to
readjust the incline unless an earlier student modified it or one of the glide cups has
been removed from under the legs.

Release the push-button as soon as the puck hits the frame of the air table. A dotted line
will be generated on the underside of the record paper as shown in Figure 3.5. By looking
at the separation between the dots you can see that the puck is accelerating; the distances
between the dots along the motion are increasing while the time interval is a constant 1/60 s.
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Figure 3.5: Typical evaporated carbon dots on the record paper.

3.3.2 Compute the velocity as a function of time

Now you will construct a basic graph by hand of these data in your lab notebook. Graphing
paper can make this more accurate if it is available. Introduce a coordinate system on your
paper that you can use to measure the puck’s position; a single axis (x or y) along the straight
trajectory will suffice. Choose the origin of the coordinate system to be near the beginning
of the puck’s motion. Draw a line perpendicular to the dots at this point. Begin with a dot
near this reference but far enough along the trajectory that the separation between the dots
is evident. Measure the distance between the reference line and the first discernible dot (we
can refer to this dot as #1). Count down through seven dots (6 intervals) and measure the
distance from the reference line to this dot (dot #7). Continue to measure distances between
the reference line and each successive dot following six intervals. That is, note the distances
to dot #1, #7, #13, #19, #25 . . .#6n + 1. These are the positions of your puck in your
chosen coordinate system. Make a table of these values similar to Table 3.1. You will need
columns (and column headings) for time (s), position (cm), displacement (cm), and velocity
(cm/s). Note and record your experimental uncertainties in the body of your table.

Checkpoint
• How accurately can you position the zero on the meter stick at the reference

mark?

• How well can you read the dots’ positions from the meter stick? Together these
are the uncertainties in your position measurement.

• What determines the time? Can you decide what the uncertainties in the times
should be?

Helpful Tip
Your Procedure in your report should describe how you measured position and time.
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time (s)

velocity
 (mm/s)

Figure 3.6: Example of setting up graph axes, with appropriate labels and units.

The average velocity is given by the distance between two consecutive dots divided by the
time needed for the puck to travel this distance. This time is 1/60 s between adjacent dots;
we have measured the distance between the first and seventh dots or over six intervals, so the
time interval is 6 × (1/60) = 0.10 s. Calculate the velocity of the puck by subtracting each
position coordinate value from the value above it in the position column, x. Label the new
column displacement or ∆x. (Don’t forget to put the units in the heading of the column.)
Calculate the displacements for all of your data. Calculate the velocity for each interval
by dividing the displacement, ∆x = xi+1 − xi, by the time interval, 0.1 s, for each entry.
Since the time interval is 0.10 s, you can merely transfer entries from the previous column by
moving the decimal point one place to the right . . . that is by multiplying by 10 s−1. Do the
calculation (v = ∆x/∆t) for one set of data if you are not already convinced of this. These
calculations can always be done using a spreadsheet program, but is unnecessary here.

Now you should plot your results. The first time, it can be most instructive to do this
by hand using an entire page of your lab notebook or an entire page of graph paper. Plot
the velocity data points as a function of time t. Label the velocity vs. time plot, with the
proper units as shown in Figure 3.6. Note that the time interval between our chosen points
is 1/10 s. You might wonder where in the interval should the velocity point be plotted, at
t = 0 s, 0.10 s, or 0.05 s. . . ? Technically, the data point should be plotted midway in the
interval, so that the velocity for the interval 0 − 0.10 s should be plotted at 0.05 s, and the
next at 0.15 s, etc.. However, such a horizontal translation doesn’t change the slope and our
choice of t = 0 was arbitrary anyway, so there is really no wrong choice as long as the same
point is chosen for every interval.

Helpful Tip

To improve your plotting accuracy, scale both axes (velocity and time) so that your
data occupy at least half of your page. You can always conveniently double the space
between 0 s and 0.1 s. . .
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3.3.3 Calculate the puck acceleration

Do your points lie in a straight line? Remember that measurements have experimental
uncertainty, so there is likely to be fluctuations above and below the best line. If one or
more points vary greatly, check to be sure that the points were measured and calculated
correctly. Maybe the spark timer missed a spot? If so you must count this spot despite its
absence; the time did pass, after all, even if the voltage was too low to mark it.

Once you are happy with your data, you should estimate the acceleration from your
measurements. For this introductory lab, we typically do this by hand first. The acceleration
is given by the slope of the straight line that best fits your data. With the straight edge of
a ruler choose a line that seems best to fit all the data. It helps to lower your eye near the
line and to view the page edge on. Draw this line, extend it all the way across the page, and
choose two points that lie on the line (NOT the data points), one on either end, near the
extreme ends of the line. If possible choose points for which x and y values can be easily
read. Use these values to calculate the slope, a, of the line. Don’t forget to include your
units. This procedure mimics a data fitting algorithm, but relies on your eye and brain to
estimate the best line.

3.3.4 Estimate the uncertainty in the slope

The value of every measured quantity in an experiment is only a small part of the required
information that should be recorded about a measurement. Every measurement has units
that must be recorded, since every physical value is compared to some scale. Also, an exper-
imenter must determine the expected range of values which might reasonably be expected if
a similar experiment were repeated. This last piece of information communicates how precise
the measurement is. Obviously, using modern equipment, your measurements likely can be
more precise than Galileo’s (but perhaps he spent more time getting it perfect than your
two hours. . . ). If you want to claim that your modern tools are better, you must give some
estimate of how precise you expect your measurement to be. This is an important part of
experimentation, and it is why there is an entire chapter of this manual (Chapter 2) devoted
to it.

Similar to data collection, your estimate of the acceleration as the slope is also subject
to uncertainty. When looking at your data, representative lines that you might draw should
pass among the set of data points; however, we can easily see the influence of random
perturbations on the graph. Choose a new line using your straight edge that passes among
your data points and deviates as much as it reasonably might from your earlier (“best fit”)
line. Try to increase or decrease the slope of the line as much as you can and still be close to
most of the data points. This is not an exact measurement, only an estimate. Calculate the
slope of this new line and compare it with the previous measurement by taking the difference
between the two numbers. How different are the slopes of these two new lines? Report this
difference as the uncertainty, δa, in your measurement of acceleration, a: acceleration =
a± δa. (Don’t forget the units of both a and δa.)
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Checkpoint
To build some intuition for your measurement precision, you could calculate the
percentage uncertainty relative to the best fit value. Would you describe your fitting
procedure as a precise determination of the acceleration? How precise is it?

3.3.5 (Optional) Fitting the data

Is the slope of your velocity graph constant? if so, this means that the acceleration is constant
as time passes. Using calculus we can reverse the process of differentiation in Section 3.1
and obtain the position from the acceleration. If the acceleration is not constant, this can
be a harder math problem. But, if the acceleration is constant a, then the position function
x(t) can be obtained using basic kinematic methods:

x(t) = x0 + vx0 t+ 1
2at

2 (3.5)

where x0 and vx0 are initial position and initial velocity at time t = 0, respectively. Note that
this kinematics procedure is entirely mathematical; there is no rule that says that motion
must have constant acceleration, only that if it does, its position looks like Equation (3.5).

Plot your position data in the computer program of your choice.

Checkpoint
Do your data look like a parabola? Said another way. . . do your data look consistent
with the relationship between x and t given by Equation (3.5)?

Now fit your position data to Equation (3.5) using the program of your choice (see the
Appendices). It is important that your fitting procedure give you the uncertainty of your
fit parameters. The meaning of this uncertainty from Least Squares fitting is discussed in
Chapter 2. The procedure here is outlined using Vernier’s Graphical Analysis software.

Run Vernier Software’s Graphical Analysis program. Rename the x column to ‘time’ by
double-clicking the gray column header. Type the new column name into the name edit
control and type the units (s?) into the units edit control. OK and repeat for the y column
to prepare it to hold the position data. Type your measured positions and times into the
table and note that the points are graphed as you type them.

Equation (3.5) is the equation of a parabola. Do your data points look like a section of a
parabola? In that case draw a box around your data points with your mouse so that every
row of the data table turns black. From the menu choose Analyze/Curve Fit. . . , select the
parabola model, click “Try Fit”, and verify that the curve passes through your data points.
The computer should draw a black parabola section through your data points. If it does not
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do so, ask your instructor to help you. The computer will choose values for ‘A’, ‘B’, and ‘C’
to make the math model fit your data points as well as possible. Once the model curve passes
through your data points, OK and drag the parameters box away from your data points.
Copy and paste your data table and graph into Word R©, save it to Box Sync\PhysLabs, and
print a copy for your notebook. Compare the model function to Equation (3.5) and note
that

1
2a = A so a = 2A. (3.6)

Is this acceleration measurement similar to the slope of your other graph?

Helpful Tip
Be certain to save your fit in an electronic format for submission with your report!

3.4 Analysis

The procedures in Sections 3.3.1–3.3.4 exemplify the best analysis that Galileo would have
been able to apply to extract an acceleration. Do your results support the same conclusions
that Galileo achieved? The ‘by hand’ methods outlined above are obviously rather crude.
With computers, we can apply more rigorous algorithms to get the best measurement of
the acceleration and its uncertainty provided by your experiment. In your analysis of this
experiment, you will go beyond the tools available to Galileo and use modern computers
to obtain quantitative results. In this way, you can understand the statistical significance
of your conclusions. We will build on these computer analysis approaches throughout the
course.

Helpful Tip
You may be tempted to collect your data and to leave lab since you have access
to computers outside of lab. This could cost you significant time in preparing your
reports without the guidance of your TA. You are likely better off taking advantage of
the full assigned lab time to finalize your figures and analysis before writing the actual
summary report outside of class. It will likely go much faster.

In the lab, you have access to Microsoft Excel R©and Vernier Software’s Graphical Analysis
program. They both have their benefits. You can use what is most comfortable to you.
In the end, you will need to submit a clear, well-labeled graph of your results with your
report. Regardless of what software tool you use, the program will be performing a statistical
procedure known as Least Squares fitting to obtain the best line possible from your data.
(See Section 2.8 for more information.)
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Figure 3.7: Schematic diagrams illustrating the relation between slope of incline and
acceleration of gravity.

3.4.1 Prediction of acceleration from vector analysis

Solve for the acceleration due to gravity in the inclined plane. You should perform this
calculation in your lab notebook. Introduce a coordinate system with one axis along the
plane of the incline (call the axes of the new system surface, s, and normal, n, instead of x
and y). The acceleration vector g must then be resolved into components along the s and
n axes. This is done with the help of the trigonometric relations given in Figure 3.7. The
acceleration of the puck, a, measured in this experiment is the component of g along the s
axis of the incline. This quantity is related to g = |g| by

|a| = g sin θ. (3.7)

(Note that the steeper the incline, the larger the acceleration of the puck for the same g.
Can you see this from the last equation? Also note that θ = 90◦ means the incline is vertical
and a = g. Is this what you would expect?) Use this analysis to “predict” the acceleration of
gravity at the Earth’s surface, g, from your measurement of the acceleration on the inclined
plane. Use the same equation to calculate the uncertainty in your value of g from your
uncertainty in a. Write it in the notebook in the form g ± δg. (Don’t forget to include your
units in each of these values; since units multiply the numbers, it is common practice to use
the same units and to factor them outside: g = (981.4± 1.2) cm/s2.)

Checkpoint
Does your experimental value for gravity agree with the well-known value? What does
it mean to “agree”?
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3.5 Guidelines

Your TA will be looking at the work that you perform in class as well as your communication
of these results in a short written report. Remember that there is a template which will make
preparation of this short writeup simpler.

These guidelines detail the elements that your TA expects to find in your in-class note-
book. Your grade will be based in part on completing these tasks, but also on the quality of
the tasks. Therefore, merely having these elements does not guarantee a good score. Your
TA also has discretionary points in the grade not tied to specific sections in which he or she
will be able to rate how well your understanding of the material is communicated both in
lab and in writing.

3.5.1 Lab Notebook

Your Lab Notebook should contain the following:

• A table of data collected in the lab (printed or hand written).
• A hand-drawn figure of your plotted position and velocity data.
• Estimated ‘best fit’ lines for the acceleration of your puck.
• Relevant sample calculations for vector analysis of the inclined plane.

3.5.2 Lab Report Guidelines

Your Lab Report should contain the following information. Your goal with the reports is
to communicate the experiment to the reader in a short write-up. These general guidelines
will not necessarily be repeated for every experiment, since they do not change. Refer to
Appendix E for writing instructions and the ‘Example.pdf’ on CANVAS.

1. Introductory Information
• An informative title for your report
• Your name and your partner’s name(s)
• Your lab section number and the date of the experiment

2. Purpose Explain in your own words what the purpose of this lab work was. Why
should we perform the experiment? Why should others contribute (financially and/or
otherwise) to see the experiment completed? Be as brief and clear as possible. What
did you try and measure? What physics will each measurement illustrate and/or test?
What else might we learn whose usefulness we might not know yet (esp. new equipment,
strategies, etc.)? We are always interested in new information and capabilities.
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3. Procedure Refer to Appendix E for writing instructions and the ‘Example.pdf’ on
CANVAS for generally applicable instruction. Your procedure for this experiment
should answer:
• What object were you watching?
• Why did the object move?
• How did you obtain the positions and correlate them to times?
• How did you compute velocities and measure acceleration?
• How might your experiment measure g?

Two concise paragraphs can answer all of these, but a bullet list is also acceptable.
Illustrations might help. Manufacturer names and model numbers will convey much
information with few words.

4. Data and Results Refer to Appendix E for writing instructions and the ‘Exam-
ple.pdf’ on CANVAS. All raw data, M , must contain 1) the quantity measured (m),
2) a reasonable estimate of experimental uncertainty (δm), and 3) the correct units
multiplying the measurement and uncertainty: M = (m± δm) units.
For this specific report:
• A table of t, s, and v. This might be located in your appendix and yet should be
addressed by name here.

• A graph of velocity vs. time fit to a line. This might be located in your appendix
and yet should be addressed by name here.

• (optional) A graph of position vs. time fit to a parabola.
• Examples of velocity and acceleration calculations.
• Your measured g ± δg with units. This might be in the next section instead.

Unlike many lab reports, you are not required to write a Theory section in this class.
You can assume that your reader knows and understands the theory as if such a
section existed. You may refer to a calculation that appears in your lab notebook
without reproducing it in your report if you append images of your notes after your
Conclusions. The lab report is not the correct venue for derivations! Occasional sample
calculations may be appropriate, but not full derivations. Your notebook will contain
derivations periodically.

5. Analysis of Results Refer to Appendix E for writing instructions and the ‘Exam-
ple.pdf’ on CANVAS. For this specific report:
• A comparison between your measured g and the accepted value discerned from
previous measurements. (See Section 2.9.)

• A graph showing your best fit of the velocity curve. This probably will be located
in the previous section or your appendix, but its implications should be discussed
here.

• “Other sources of error”.
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Ultimately, this section should convince your reader that your conclusions are valid;
this section should not be your conclusions.

6. Conclusion Refer to Appendix E for writing instructions and the ‘Example.pdf’ on
CANVAS. The conclusions for this experiment should:
• Clearly and completely specify your measured g.
• Characterize the puck’s motion in kinematic terms.
• State which equations your data support, contradict, or neither.
• Suggest applications for part or all of your apparatus and/or procedure.
• Suggest likely improvements to the experiment.

Generally, Purpose and Conclusions address the same topics. Reviewing Data and
Analysis sometimes reveals physical constants to report.
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Chapter 4

Experiment 2:
Kinematics and Projectile Motion

Galileo is famous for several early mechanics experiments. In our first experiment, we
reproduced the simple inclined plane to show that objects follow uniform acceleration in
gravity. This conclusion about gravity is of course related to Galileo’s famous “leaning tower
of Pisa” experiment.

Galileo also used an inclined plane to launch objects into the air to observe their projectile
motion, or motion in two dimensions under the influence of gravity. In Galileo’s time, the
recent invention of cannons prompted deeper understanding of projectile motion for improved
warfare. In modern times, our interest in mechanics is a bit more general and fundamental.
Here, we will use the same inclined plane apparatus from Experiment 1 to explore motion in
two-dimensions; since this requires two position coordinates, we must use

(
x(t), y(t)

)
instead

of s(t). Our approach will be different from Galileo’s, involving more sophisticated computer
data acquisition, but the conclusions about mechanics will be the same: objects in motion in
two dimensions with constant acceleration will follow a parabolic path. In this experiment, we
will investigate the vector acceleration in more detail than before. We will utilize computer
analysis, and we will also note how an object will recoil from an elastic spring in preparation
for our upcoming study of collisions. Just as the incline slows down gravity’s acceleration,
the elastic band slows down the collision with the wooden frame so that we may study it in
more detail.

4.1 Background: Kinematics

The mathematics of kinematics that was covered in the previous experiment is still relevant
to this experiment, and you should refer to the material in Experiment 1 for a refresher.
The definitions of position, velocity, and acceleration used here are all the same, except in
this experiment we will need to distinguish between motion in more than one dimension.
The concept of vectors, although relevant to Experiment 1, is now required. Since we have
already shown that the acceleration due to gravity on an inclined plane is a constant along
the plane, Equation (3.5) will be particularly important as well to describe motion under
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gravity.
The primary insight that distinguishes dynamics in more than one dimension from the

simpler one-dimensional case is that each direction is distinct and the governing equations
can be written independently. This surprising structure is inherent in the vector form of
Newton’s laws. Of course, motion in different directions can be coupled in many ways, but
the laws of classical mechanics can always be written on separate orthogonal axes using
vector components.

4.2 Hooke’s Law

In 1660 Robert Hooke realized that when a spring is compressed or stretched the effort
needed grew larger as the amount the spring was deformed increased. Additionally, the
effort (force) needed to compress the spring was opposite to the effort needed to stretch the
spring. Hooke succinctly expressed this relation using the equation

Fs = −kx (4.1)

where x is the signed amount that the spring is stretched and k is the constant of pro-
portionality that characterizes each particular spring. The negative sign summarizes the
fact that the spring tries to return to its undeformed shape and exerts a force, Fs, itself to
achieve this. Since this force will affect the puck’s motion while the puck is in contact with
the elastic cord, we will find that the acceleration is not constant during these times. The
student might recall that we omitted from consideration (and possibly did not record it at
all) all of the puck’s motion after it contacted the wooden frame in the previous experiment.
The puck’s motion was also greatly affected by that interaction and in the next few weeks we
will begin to understand this more clearly. The elastic cord greatly slows down this reversal
in motion so that we can investigate it. This strategy is not unlike using the inclined plane
to slow down the effect of gravity itself.

4.3 Apparatus

WARNING
Whenever the push-button which activates the pulse generator is pressed, the puck
should be on the white record paper and not on the carbon paper. The white paper
should be on the carbon paper. If you touch the high voltage terminal and ground at
the same time, you may get a shock – harmless but unpleasant! Always make sure
that the ground clip is properly connected to the carbon sheet before activating the
pulser.

42



CHAPTER 4: EXPERIMENT 2

Spark
Activation

Meter
Stick

Elastic
Spring

Mark
y=0

Compressed Air
and High Voltage

Spark
Generator

Computer

Air Valve

6o Level

Carbon
Paper

Record
Paper

Ground

Figure 4.1: A photograph showing the apparatus and
the relevant controls. The ‘ghostly’ puck image at the
right is the second location we need to mark y = 0; the
first location is illustrated by the puck itself.

The apparatus we use in this
experiment is nearly identical to
that used in Experiment 1. The
primary difference is the addition
of an elastic cord across the ta-
ble (see Figure 4.1). Operation of
the remaining components such as
the ‘air hockey puck’, the Teledel-
tos paper, and the 60Hz pulse
generator are familiar.

4.4 Procedure

4.4.1 The puck’s posi-
tions

Consider the motion as taking
place in one dimension. Conse-
quently, the position is simply the
displacement of the puck with respect to the origin of the coordinate system, or in other
words, a measure of how far away (and in which direction) the puck is from the reference line
(See Figure 4.2). The location of the origin and the orientation of the axes of a coordinate
system is ours to choose as we find convenient. With the help of the inclined level, set the
table at an angle of 6◦ by adjusting the leveling screws until the air bubble is centered in the
level and the level is squared in the frame. To avoid introducing an error due to parallax,
position your eyeball directly above the level.

Helpful Tip
The lab technician has probably already oriented the incline, but you should check his
work since your data depends upon it.

Place a sheet of carbon paper on the air table and connect it with the alligator clip to
the pulse generator. Place a sheet of record paper on top of the carbon sheet, set the puck
on the air table near the left side of the paper just barely touching the elastic cord, turn
on the power to the pulse generator, and briefly press the sparker button. Move the puck
near the right side of the paper just barely touching the cord and briefly press the sparker
button. A straight line connecting these two dots will be our x-axis and will separate the
motion into sections having a spring force and having no spring force.
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Helpful Tip
Since these reference points are already on your paper, be sure not to disturb the record
paper after you begin making these measurements until you have finished recording
all of your data.

Figure 4.2: An illustration of the preferred
coordinate system for the analysis. It is con-
venient to separate the data into a class of
points where the puck was accelerated by the
elastic cord and a class where the puck was
not. These coordinates separate those points
by y < 0 and y > 0, respectively.

Turn on the pressurized air until the puck
just starts to move freely. Open the valve
another 5◦ or so; if there are leaks in your air
hose you might need to open the valve a little
more still. Now your puck should rebound
almost to the same height from which it was
released. Make sure the puck does not hit
the wood frame; release from a lower height
or ask your teaching assistant to adjust your
elastic cord if necessary. Allow the puck to
slide down the incline from some position
near the top of the paper, bounce off of the
elastic cord, and come to rest again near the
top of the paper. It will be helpful to give
the puck a small horizontal velocity before
releasing it so that the upward trajectory
does not cover up the downward trajectory.
After practicing a few times, activate the
spark timer with the push button trigger
as you release the puck; keep the button
pressed until the puck comes to rest again
near the top of the paper. Dots will be
recorded every 1/60th of a second but will
appear on the underside of the paper.

WARNING
Do not turn the air supply on all the way. It will damage the air hose. Only turn it
on a little way. The puck will float well. Do not drop the puck. The table top is glass!

Remove the record paper and turn it over. Remember that flipping the paper interchanges
the left and right sides. Use a straight edge to connect the points on the left and right of
the paper where the puck first contacts the cord; call this line y = 0. Beginning with the
first discernible individual dot at the beginning of the puck’s motion, circle every other dot
(1, 3, 5, etc.). Measure the vertical distance from the y = 0 reference line to each of the
circled dots in turn giving dots above the axis + and those below the axis −. The distance
we need is from the center of the line to the center of the dot when the ruler is perpendicular
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to the line. Estimate the uncertainties in 1) positioning the ruler’s 0 at the center of the
line and 2) reading the location of the dots’ centers. How confident are you that the ruler
is perpendicular to the line? Will this affect your uncertainty estimate? If the cord was not
carefully placed horizontally, will this affect your uncertainty estimate? Your ability to draw
your reference line through the centers of the dots is also relevant. How might we estimate
the uncertainties in our times?

We will enter these data into the Graphical Analysis (‘Ga3’) computer program from
Vernier. The computer will do the tedious job of calculating the velocity and acceleration.
The Ga3 program has a data window with columns for data entry. Double-click the first
column header and label it as ‘t’ with units of seconds (‘s’). Calculate the entries by enabling
the “Generate Values” option in the dialog box. Set the first time entry to 0, the interval
to 1

30 = 0.03333, and the end time to about 2 seconds. Enter the position measurements
into the second column labeling it as ‘y’ with the units of your measurements: m, cm, etc.
As the data is entered the computer will plot the position as a function of time. The plot
should resemble the trajectory of dots on the paper.

4.4.2 Calculate and plot the instantaneous velocity

This is the same task as in the first kinematics lab. You can focus on the vertical velocity
so that it is a one-dimensional problem. We can calculate the instantaneous velocity by
subtracting displacements of consecutive intervals

(
1
30 s

)
. Actually, the result is the average

velocity for the interval; however, such approximations are the only information available
to experiments. There is always at least one instant within this interval (usually near the
center) for which this average is the instantaneous velocity. Note that on the downward
path consecutive positions decrease in value giving negative differences, and thus negative
velocities. On the upward path consecutive positions get larger, giving positive differences
and thus, positive velocities.

Helpful Tip
A common mistake is to forget that the velocity depends on the direction of the object’s
motion. The puck slides down and yields negative velocity values. And then the puck
bounces back up and generates positive values of velocity!

In the previous lab you took differences of position and divided by the time interval for
each successive pair of position points. You can instruct the computer to perform this task by
choosing “Data/New Calculated Column...” from the menu. Selecting this option will bring
up a window in which you can specify the parameters of a new column. Title the column
‘v’ in units of velocity appropriate for your measurements (cm/s. . . etc.). In the “Equation:”
edit control, select “Functions/delta” and “Variables (Columns)” position (y?). Next, divide
by (‘/’) “Functions/delta” and “Variables (Columns)” time (t?). Click “Done” and a new
velocity column will be generated — actually this is average velocity for the 1

30 s intervals,
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but this is the best we can do without calculus. . . Click the position graph and use the sizing
handles to move the bottom up to about 1

3 of the screen; we want to display the velocity and
the acceleration both under the position. “Insert/Graph” from the menu, adjust its height
to about 1

3 of the screen, adjust its width to match the position graph, and use the dark
border to position it under the position graph. If the y-axis is not already “Velocity”, click
the y-axis label and choose velocity (v?). Similarly make sure the x-axis is time.

Now repeat this process to generate an acceleration column by dividing “delta(“v”)” by
“delta(“t”)”. Don’t forget your column title and units and place acceleration on the third
and bottom graph. Adjust the time axis scales and graph widths and positions so that the
times are vertically aligned for all three graphs.

Checkpoint
Does the velocity decrease uniformly before the puck hits the spring? Does the velocity
resume a uniform rate of decrease again after the puck leaves the spring?

4.4.3 Observe your graphs

Do you see any points on any of the graphs that seem out-of-place? If so, re-measure the
positions near this time to be sure you have entered all of them correctly. With the time
axis of each plot aligned (all minimum and maximum times are the same for the three axes)
make some observations. Note the relative changes in each plot. For instance, when the
puck slides down, it will do so at some constant acceleration (as in your first kinematics
experiment). When it contacts the spring it is decelerated to a stop; i.e. the acceleration is
opposite to the velocity or positive in this case. Note the relative sizes of the acceleration of
gravity alone versus the spring force plus gravity. Is the spring force (acceleration) constant?
Is it consistent with Hooke’s law (ma = F = −ky)? After the puck stops, the cord continues
to accelerate the puck in the positive direction making the new velocities positive. The puck
bounces back and loses contact with the spring. Finally, its acceleration depends only on
gravity again and will again be a (negative) constant. Draw a box around these constant
acceleration velocities before the spring and “Analyze/Linear Fit” to get a measured value
of acceleration. If necessary right-click on the fit parameters box, “Linear Fit Options. . . ”,
and enable “Show Uncertainty” so that your measured acceleration is complete with its
uncertainty. (It is also possible to draw a box around the constant acceleration points and
“Analyze/Statistics” to find their mean and standard deviation.) To avoid mixing up your
printout with those of your classmates, enter your name in the Text Window; you might also
consider entering other information about your data such as the error in your measurements
of y and t. Obtain a hard copy of your table and plot for each of your lab notebooks (one for
each member of your group) by using “File/Page Setup. . . ” and “Landscape” orientation.
Next “File/Print. . . ”, click “OK”, and enter 2 (or 3) in the “number of copies to print” edit
control.
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Helpful Tip

You can copy and paste the graph and/or the table into a Word R©document that you
can build into your report. You can also print to the pdf printer and have an electronic
copy of your figure. This may be the most useful way of preparing to submit your
report for grading. In this case print only one copy.

4.4.4 Indicate where the puck was in contact with the spring

Indicate on the y(t) graph, by a vertical line through all three graphs, the times at which the
puck made contact with the spring (y = 0). Once the times when the puck first made contact
with the spring and second left the spring are determined, note any worthwhile observations
in your lab notebook.

Checkpoint
If you press the spring with your finger, does its reaction have the correct sign? Does
the force get bigger as y gets bigger? This is the minimum necessary for the cord to
be consistent with Hooke’s law.

4.4.5 (Optional) Two-dimensional motion

Now that you have repeated your 1D analysis of the vertical motion with the spring, you
can record the horizontal positions as well. Draw a y-axis perpendicular to the x-axis; you
can utilize the 3-4-5 right triangle to do this more precisely. Now measure the x locations
of the same dots and enter them into the “x” column. Once again, the dots’ x coordinates
are signed. You can now plot a trajectory, which is a plot of y vs. x. Except for scale, the
trajectory should be identical to the dots on the paper.

Historical Aside
So far we have analyzed kinematics as position as a function of time. This is
natural for our mathematical expressions in dynamics are functions of time. But,
historically and practically, the trajectory shape (position vs. position), is often what
one actually wants to know. In the case of Galileo and his contemporaries, cannon
shot trajectories were of particular importance. Battleships of WWII had complex
(and large) mechanical computers that performed calculations so that they could fire
2700 pound projectiles accurately toward a target 25 miles away.
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4.4.6 (Optional) Hooke’s Law

We wish to observe evidence of Hooke’s law in our data.1 Soon we will learn about Newton’s
second law of motion, the net force equals mass times acceleration (F = ma). When the
puck is stretching the elastic band, the force obeys Hooke’s law (see Equation (4.1)) so that

ma = F = −ky (4.2)

and the acceleration is proportional to the position. Insert a new graph of acceleration
versus position and observe the result for y < 0. Is the result consistent with Hooke’s law
and Newton’s second law of motion?

4.5 Analysis

As in Experiment 1’s optional exercise, you should use computer software to fit your data
and extract model parameters. These parameters will come with mathematical uncertainties
that you can use to compare your measured accelerations of gravity to each other and/or to
other measurements. (See Section 2.9.1.)

The most important part of this experiment is to examine the three curves for y(t), v(t),
and a(t) all aligned on the same sheet of graph paper or computer plot, and to recognize the
following relations predicted by our study of kinematics:

4.6 Lab Notebook Guidelines

Your grade will be based on two components: your in-class performance (including your lab
notes) and your short written report communicating your work and its implications. Refer
to Appendix E.

Your Lab Notebook should contain the following:

• A table of data collected in the lab (printed or hand written),
• Plots of the position, the velocity, and acceleration,
• One or two least-squares fit(s) for velocity,
• (Option) Graph of y vs. x depicting the trajectory,
• (Option) Graph of a vs. y illustrating Hooke’s law,
• Other measurements, ideas, and observations.

1Thanks to Jonathan Trossman for this idea.
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4.6.1 Calculus predictions for kinematics

Our study of kinematics predicts that your three graphs should have the following properties:

• The value of the puck coordinate y(t)

– decreases until the bumper spring reverses the vertical velocity,
– reaches a minimum value when the velocity is zero,
– increases again until the end of the trajectory,
– is minimum at the same time as acceleration is maximum.

• The velocity v(t)

– increases in the negative direction at a uniform rate until after the puck comes
into contact with the spring,

– reaches maximum negative value (algebraic minimum) when acceleration is zero,
– begins increasing (less and less negative and finally positive) after the minimum,
– increases further becoming more and more positive, until just before the puck

loses contact with the spring,
– from there on the velocity decreases again (at a uniform rate only after the puck

leaves the spring).

• The acceleration a(t)

– is constant from the moment the puck is released until it comes in contact with
the spring,

– increases as the puck stretches the spring,
– goes to zero as the velocity becomes minimum in value,
– becomes positive and much larger than the acceleration due to gravity alone,
– is maximum at the same time y(t) is minimum,
– goes to zero again as the velocity becomes maximum in value,
– becomes constant again after the puck leaves the spring,

• Generally,

– When the puck hits the bumper spring, – its trajectory y(t) starts to flatten out,
– its instantaneous velocity curve v(t) does not immediately stop decreasing, and
– its acceleration curve a(t) does not immediately change sign.

– When the puck is at the maximum compression point of the bumper spring, –
its trajectory has reached a minimum, – its velocity goes through zero, and – its
acceleration is at a maximum.

Draw conclusions about our kinematic relations from these observations and note these
observations in your discussion.
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4.6.2 Thoughts on the written report

Refer to Appendix E. Some topics for discussion include:

• What physical relations have your data tested?

• Is Hooke’s law (F = −ky) feasible?

• How about Newton’s second law (F = ma)? Is acceleration greatest when applied
force is greatest?

• What do your data say about calculus’ prediction that a function is extreme (maximum
or minimum) when its derivative is zero?

• Recall that position’s derivative is velocity and that velocity’s derivative is acceleration.
Both pairs of curves are predicted to have this behavior.

• Did you make any measurements worthy of reporting in your Conclusions?

• Is there an advantage to having the trajectory as a graph of y vs. x in addition to the
dots on the record paper?

• Do you have a prediction for what a graph of x vs. t might look like?

Each of these topics should be addressed in 2-3 sections, but the particular sections vary
with the topics. Refer to Appendix E.
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Experiment 3:
Newton’s Second Law

The relationship between force and motion was first addressed by Aristotle (384 - 332 B.C.).
He argued that the natural state of an object was to be at rest, and a force was not only
required to put an object into motion, but a continued force was required to keep the body
in motion. This may at first seem to correspond well with our everyday experiences, but it
is certainly not what is taught in physics.

Galileo Galilei (1564 -1642), in addition to his postulates on uniform gravitational accel-
eration, proposed that a body at rest is a special case of a more general state of constant
motion (i.e. constant velocity). He understood that without friction acting on a body to
slow it down, it might indeed continue to move in a straight line forever. Galileo proposed
that bodies remain at rest or in a state of constant motion if no force acts to change this
motion. Friction is just another example of a force.

Isaac Newton (1642 -1727) formalized the relationship between force and motion in his
Principia (published in 1687). Newton proposed that the acceleration of an object is directly
proportional to the net force acting on an object and inversely proportional to the mass of
the object. The Law is summarized in the vector formula F = ma. In this laboratory,
we will verify this relationship quantitatively. This law describes our understanding of the
dynamics of classical mechanics.

5.1 Background: Forces, Energy, and Work

The concepts of work and energy can be derived from Newton’s Second Law in mechanics.
The details of these quantities will be covered in detail in lecture and in later lab exercises.
For the purposes of the laboratory, basic relevant definitions are given here.

In the case of a constant force, the physical work done by this force is defined simply.
If a position changes by a displacement ∆x under a constant force Fx along that direction,
then the work done by the force is

W = Fx∆x = F∆x cos θ (5.1)
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where θ is the angle between the direction of the force and the direction of displacement.
This can be succinctly written as a vector dot product:

W = F ·∆x (5.2)

Kinematics equations for uniform acceleration can be manipulated to obtain a useful relation-
ship between physical work and the change in kinetic energy known as the Work-Energy
Theorem:

1
2mv

2
f −

1
2mv

2
i = ∆KE = W = F ·∆x (5.3)

The Work-Energy Theorem is only valid when W is the total work done by all forces acting
on an object. Since all forces can change kinetic energy, it is important to be able to know
all of the forces acting on the object under study. In particular, we often would like to
eliminate friction as a relevant force since its magnitude can rarely be directly measured
(often resulting in energy lost from the system, according to the Work-Energy Theorem).
This may not be entirely possible, and so you should be aware that this may influence your
results despite the considerable expense and effort that has been made to minimize friction
in constructing the laboratory equipment.

Historical Aside
One might take pause to appreciate the fact that Galileo and Newton were able
to discover the principles of mechanics (forces, energy, etc.) without the benefit of
technically advanced equipment. Galileo rolled spheres and cylinders down inclines
and dropped objects from the Tower of Pisa. Newton extended Galileo’s observations
to the motion of planets and moons of our solar system. Yet, they were able mentally to
extract the kernel of truth from such an environment and to recognize the universality
of the laws of motion.

5.2 Apparatus

We will be using an air track for this experiment. It consists of a hollow extruded aluminum
beam with small holes drilled into the upper surface. Compressed air is pumped into the
beam and released through the holes. This forms a cushion of air that supports a glider on
a nearly frictionless surface.

Helpful Tip
Do not move the air track. It is leveled and difficult to readjust.

Attached to the air track is a sonic motion sensor. The computer signals the range finder
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to emit a sound pulse. The pulse reflects off the plastic card attached to the glider and
returns an echo to the motion sensor. The computer receives the signal and calculates the
position of the glider from the time delay between sending the pulse and receiving the echo
and the known speed of sound waves in air. Computer software plots the data and can use
the data to calculate velocity and acceleration. The setup is shown in Figure 5.1.

Helpful Tip
Do not disturb the rangefinder. Your data depends upon its proper alignment.

Pulley

Mass
Hanger

(m)

Air
Track

Pasco 850
Computer
Interface

Computer
Monitor,

Keyboard,
and Mouse

Sonic
Motion
Sensor

Accessories

Glider (M)

Reflector

Levelling
Screws

Figure 5.1: Photograph of the air track,
glider, weights, and motion sensor used to
examine Newton’s second law of motion.

The computer is actually doing the same
measurement you did in the first laboratory
when you determined the positions of the
air puck by tediously measuring the distance
from a reference line to each of the dots laid
down by the spark timer. The computer’s
fast speed enables it to process more position
data while you concentrate on the physics
involved rather than the calculations. The
computer is also doing the same calculations
as you did when you found average velocity
from displacements and time intervals.

The glider has a string attached to it
which runs over a pulley at the end of the
track opposite the range finder. At the other
end of the string is a weight holder. Weights
can be added to vary the accelerating force
on the glider. The vertical force of gravity
acting on the weights is transferred via the
pulley to a horizontal tension applied to the
glider. If friction and a few other small forces

can be neglected, only this gravitational force accelerates the glider and the hanging masses
at the same rate. The string’s length maintains a constant distance between the two so the
time derivatives must also be the same. You can draw the force diagrams and solve Newton’s
equations for the expected acceleration before coming to lab for a better understanding of
this.

Helpful Tip
Be sure that the string touches only the glider, the round pulley, and the weight hanger;
otherwise, the string will experience a large frictional force that is not included in your
data analysis.
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We are using Pasco’s Capstone program with their 850 Universal (computer) Interface.
We have already prepared Capstone to gather your data and we have saved the setup for
you to load. Open the “Newtons Law.cap” file from the lab’s website:

‘http://groups.physics.northwestern.edu/lab/newtons-law.html’

Before proceeding we must verify that the track is level. Each day the tracks are pre-
adjusted by the Laboratory Assistant. This is a delicate adjustment and should only rarely
need to be done if the track is not moved around on the table and the table is not moved
around on the floor. To test the level, momentarily detach the string and weight holder from
the glider. With the glider near the center of the range of motion on the track, turn on the
air supply, and verify that the glider remains (mostly) at rest when free to move along the
track. Be careful that slight gusts of air from other sources are not affecting the motion of
the glider. Be careful not to bump the air track or the table. If the air track appears to be
out of level (noticeable and sustained acceleration), let the Teaching Assistant know before
attempting any adjustments. With the permission of the Teaching Assistant you may adjust
the level screws on the legs of the air track to bring the track to level.

Helpful Tip
Random or back-and-forth motion is not an indication of being unlevel; only continuous
acceleration indicates that the track needs leveling. Even a mild breath will move the
glider!

WARNING
Small adjustments make a big difference; since friction is so low, even a tiny component
of g along the track will cause acceleration.

5.3 Procedure

We will hang masses under their gravitational weights to provide known external forces.
This force will accelerate the air track cart. Table 5.1 shows the measured masses of these
weights.
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5.3.1 Acceleration vs. Unbalanced External Force

Table 5.1: Measured masses
of hanging weights and weight
holder.

Description Mass (g)
Holder 1.984± 0.035

Small Black 0.961± 0.019
Large Black 1.9430± 0.0087
Small Silver 4.926± 0.039
Large Silver 9.941± 0.045

In this experiment we will measure the acceleration
of the glider under conditions of varying accelerating
force provided by varying the weights hanging from
the pulley. Choose an initial weight for the weight
holder at the end of the string. The masses of the
various weights is shown in Table 5.1. You will want
to use total mass combinations in the range from 2 g
to 22 g. Start with an initial mass of 2.0 g or 4.0 g.
Make repeated runs with at least 5 different mass
combinations up to 22 g.

For each run start by moving the glider away from
the pulley until the weight hanger is near the pulley; hold it there. Placing a finger in contact
with the air track and glider simultaneously provides enough friction to hold the glider. Be
sure the software is at the point where the velocity graph is visible. To begin taking data,
click the “Record” button at the bottom left and release the glider. Be sure not to obstruct
the path the range finder’s sound wave needs to travel or reflections from you, the video
monitor, etc. will confuse your data. If this happens merely delete the data run and retake
the data. If your data is noisy, check that the reflector above the glider is perpendicular
to the track and that the visual image reflected from the Motion Sensor verifies that it is
pointed correctly. Ask your instructor for assistance.

When the glider hits the end of the track or the hanger hits the floor, click the “Stop”
button. (The “Record” button turns into the “Stop” button when pressed and vice versa.)
You should now see a plot of the glider’s position and velocity displayed as a function of time.
You can choose to retake the data by deleting the data (button at the bottom right) and
repeating or just leave the bad results and take new data over the old. If everything seems
okay, proceed to analyze the data run. Let the mouse cursor hover on the velocity plot so
that the toolbar appears above the velocity vs. time graph. Click the ‘Data Selection Tool’
( ) on the toolbar and size it to highlight the appropriate section of data points. Select the
linear fit option from the curve fitting tool ( ) and enable the tool. Optionally, from the
position graph choose the quadratic fit after selecting the appropriate data points. A square
will appear with the pertinent fit results. If necessary, right-click the parameters box and
enable the “Show Uncertainties” option.

Checkpoint
What uncertainties should you record for your hanger’s and weights’ masses?

Note the mass of the hanging weight (m± δm) g and the corresponding fit parameter
(a± δa)m/s2 in a nice table for later use. Now change the hanging mass by adding and/or
removing weights on the hanger and repeat the experiment. Repeat the experiment at least
five times with at least five different hanging weights.
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Since we want to check whether F = Ma, run Vernier Software’s Graphical Analysis 3.4
(Ga3) program. We have already prepared “Newtons Law.ga3” and stored it on the website
as well

‘http://groups.physics.northwestern.edu/lab/newtons-law.html’

You will need to right-click the link from the FireFox browser and to save the template
(Downloads, Documents, or Box Sync/Physlabs would be good places). Next, click the blue
arrow at the top right and select the “Newtons Law.ga3” file. Do your data points seem
linear? If so, then it is reasonable to fit them to a line.

Checkpoint
What does Newton’s law F = Ma predict for F versus a for this experiment? What
do we expect for the line’s slope and y-intercept?

As you enter “Hanging Mass” values in the designated units, the computer enters the
calculated force in the calculated column. You should check one or two of these values
to make sure you entered the correct number and that you understand how the force was
calculated. You can double-click the “Force” column heading to see how the title, units, and
formula are entered; you can also see the formula that the computer uses.

Finally, we need to plot F vs. a instead of m vs. a. If necessary, click the “Hanging
Mass” on the vertical axis and select “Force” instead. Now your Ga3 file is the same as ours
for Part 1; feel free to save yours frequently to avoid losing your work.

Now let us try to fit our data points to the F = Ma model suggested by Newton. If your
mass column is not sorted numerically, choose “Data/Sort Data Set/Force vs. Acceleration”
from the menu, sort using any column. Select the data points you want to analyze by drawing
a box around them with your mouse, choose “Analyze/Curve Fit/Proportional” from the
menu. Click “Try Fit” and verify that the black model line passes through your data points;
click “OK.” The computer will choose values for the proportionality constant (A) to minimize
the vertical distances between your data points and the straight line given by y = Ax. The
process the computer uses is called the “Least Squares Fit.”

Historical Aside
A Linear Regression is a particular least squares fit that can be solved exactly; this
yields a set of equations which determine slope and intercept (y = Mx+B) of a
straight line that best represents the set of (x, y) values. These equations were derived
by using calculus to find the minimum of the sum of the squares of the deviations of y
value of the line at each x-value of data from the corresponding y-value of data. These
equations have been written into Ga3 and are used for the ‘Data/Linear Fit’ option.
The solution is available on the web.
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Record the slope of the best fit line, its uncertainty, and its units in your notebook.
We can represent experimental uncertainties in either of two equivalent ways. For example,
Newton’s second law predicts our glider’s mass to be M = (0.210± 0.006) kg. We can also
express the uncertainty as a percent (%) of the measurement M = 0.210 kg± 3%. If Ga3
does not show the uncertainties in slope and intercept, right-click on the parameters box,
“Fit Options...”, and select the “Show Uncertainties” option. You should write the values
you measured in your lab notebook. You should weigh your glider and record its mass,
uncertainty, and units in your lab notebook. The value we get using Newton’s second law
should be close to this value.

Helpful Tip
The scale can measure the gliders’ masses to four significant figures; however, it can
measure the 1 g, 2 g, 5 g, and 10 g masses to little more than one significant figure. You
can improve this by measuring them in groups of ten and dividing the result by 10,
but a far better strategy is to use the values in Table 5.1 that were obtained with a
more sensitive (and more fragile) scale.

5.3.2 Acceleration Proportional to Inverse of the Mass

In this experiment we will measure the acceleration of the glider with a fixed hanging weight
on the weight holder at the end of the string while varying the mass of the glider. The initial
mass of the glider is about 0.20 kg. You can check your glider’s mass with the electronic scale
in the lab. Don’t forget to record your units. The mass of the glider can be changed by adding
weights to the thin rods extending from each side and the top of the glider. The cylindrical
weights which fit over these rods each have a mass of (50.00± 0.01) g. A maximum of four
weights can be added giving you five possible mass values between 0.2000 kg and 0.4000 kg.
Keep the glider balanced across the beam by adding equal weights to each side; odd weights
can be added to the top.

Checkpoint
What value of uncertainty should you record for the scale’s reading?

Obtain values for the acceleration of the glider for each of five values of glider masses
using the same procedure followed in Section 5.3.1. Use a mass of 10 g on the 2.0 g weight
holder for a total of (11.925± 0.057) g. This will produce an accelerating force of

mg = (0.011925 kg)(9.807m/s2) = (0.11695± 0.00056) N.

You can use that data point from the first experiment, and save yourself some time. Make
a table of the results. Plot the acceleration as a function of the mass of the glider.
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Checkpoint
Do you get a linear relationship? If not, what does the plot suggest?

Helpful Tip
Determine a way to obtain a linear plot by rearranging Newton’s second law.

You should use the Least Squares Fitting Program (Ga3) again to find the slope of the
line, the uncertainty in the slope, and the units of both. “Newtons Law.ga3” is already
setup to process this data also; just select “Page 2” instead of “Page 1” from the toolbar.
Alternatively, you can adapt your previous setup by renaming the columns, changing the
“Equation” formula, and selecting the correct columns for your graph.

Checkpoint
What measurement corresponds to the slope of this graph?

5.3.3 (optional) Test of the Work-Energy Theorem

In this experiment we will measure the position and velocity of the glider at two separate
points and compare the change in kinetic energy with the work done by the force of the
string on the glider.

You may rerun the experiment for a specific set of accelerating weights and glider mass
or you can use the data from the last run. Whatever the source of data, be sure that you
measure the position (x) and the velocity (v) at the same times. If you move the mouse
cursor to one of the graphs, you will find that a toolbar will appear above the graph. On the
toolbar will be a button to “Show Coordinates and access Delta Tool” ( ). When you push
the button, a pair of dotted (x, y) axes will appear at the top left of the graph. Grab the
square at the ‘origin’ with the mouse and drag it to your data points. The coordinates of
the data point, (t, x) or (t, v), will be displayed in a box. After you drop the origin, you can
grab this text box and move it around with your mouse if you choose; it might be necessary
to uncover the origin so that you can move the ‘origin’ to the next point you wish to study.

Select two points, one near the start of the motion of the glider and one where the glider
is near the end of the track. Be sure to choose points on the constant acceleration section
of the graph (and be sure the time for velocity is the same as the time for position.) Record
the readings of x-position and corresponding velocity (v) of the glider for these two points.

Using the velocities calculate the change of kinetic energy experienced by the glider
between these two points. Find the change in position by taking the difference between the
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two position measurements. Use this with the value of the accelerating force (the mass of
the weight holder and weights multiplied by g) to calculate the work done on the glider by
the tension of the string pulling it.

Compare the two numbers and decide if the Work-Energy Theorem has been verified.
If there is a significant discrepancy, can it be explained? Good predictions (i.e. small
Difference) indicates that Newton’s law works well for this purpose whereas large differences
might indicate that the law has a problem, that our data has a problem, or that our
assumptions are not realized by our experiment. Check your calculations if your agreement
is very bad but note that we have not considered our measurement uncertainties and, thus,
have no quantitative expectation for agreement.

5.4 Analysis

Using the values you recorded in Section 5.3.1, compute the difference (∆M) between your
measurement of glider mass (using the mass scale) and that predicted by Newton’s second
law from the slope of your graph. When using the mass scale, be sure to weigh all of the
mass that was being accelerated by the various forces. Refer to Section 2.9.1.

Using the values you recorded in Section 5.3.2, compute the difference (∆F ) between
your measurement of applied force (from the constant hanging mass) and that predicted by
Newton’s second law from the slope of your graph.

(optional) Using the values you recorded in Section 5.3.3, compute the difference (∆E)
between the change in kinetic energy and the work done by gravity.

Are we confident that the air track was exactly level? Did we eliminate all friction? If
not, where are places we might have missed? Is the glider’s mass the only mass accelerated
by the hanging weight? If not, can you think of a way to estimate a compensation? Did
we include the uncertainties in our mass measurements in our σ? Would these uncertainties
increase our σ and make our ∆ a smaller multiple of σ? What total mass was moving
and thus contributing to kinetic energy? What other sources of experimental error have we
excluded (by choice or by accident) from our analysis?

5.5 Guidelines

Your grade will be based on two components: your in-class performance (including your lab
notes) and your brief written report communicating your work and its implications.

5.5.1 Notebook

Your Lab Notebook should contain the following:

• Two tables of data collected in the lab (printed or hand written).
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• A figure (graph) showing the acceleration of the cart with a fixed weight of the cart
versus the various mass hanging from the string.

• A figure (graph) showing the acceleration of the cart versus the reciprocal cart mass
when the hanging weight was not changed.

• (optional) A calculation and comparison of the work and change in kinetic energy.

5.5.2 Report

Your written report should address the following physics:

• Does your data support Newton’s Second Law of Motion?
• (optional) Does your data support the Work-Energy Theorem?
• Since the Work-Energy Theorem follows directly from Newton’s Second Law, what
does your answer to the second part imply about the first part?

• “Yes” and “No” are terrible answers to these questions. Use these questions to guide
your discussions and report structure.

• Don’t forget to label your figures and tables (including units); don’t forget to discuss
each figure and each table in your text.

• Your report’s ‘Analysis’, ‘Discussion of Results’, etc., should closely follow the Analysis
in your notebook as described Section 5.4. See Appendix E.

• Your report should always summarize the physics that your data supports or con-
tradicts and all physical constants that you have measured in your ‘Conclusions’.
Any suggestions for improvements to the experiment and/or applications of what you
observed or used are also welcome.
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Experiment 4:
Conservation of Energy

For this experiment, we will further our understanding of energy and work in Newton’s laws
of mechanics. We pick up from Equation (5.3). The derivations of the Work-Energy theorem
there are still valid in this discussion.

The Work-Energy Theorem presents a way of dealing with kinematic quantities in me-
chanics without regard for vector direction. These directionless quantities, such as kinetic
energy, are called scalars.

Historical Aside
It turns out that scalar quantities played an important role historically in the
development of classical and analytic mechanics by early luminaries such as Joseph-
Louis Lagrange (1736-1813) and William Rowan Hamilton (1805-1865). Scalar
quantities are often much easier to work with than vectors, and the concepts of
mechanics using scalars implied by the Work-Energy theorem translate naturally to
quantum mechanics even when the vector approach of Newton’s Laws does not. If
this short aside tantalizes you, consider becoming a physics major and learning more
in the advanced physics courses!

All forces are vectors and all forces do work when applied to a moving object; however,
the work done by some forces is independent of the path the object takes in its motion. The
force of gravity is one such force. The work done by the force of gravity moving an object
from point A to point B separated by a displacement ∆r is

Wg = mg ·∆r = mg |∆r| cos θ = −mg∆y (6.1)

where θ is the angle between the displacement vector and the gravitational force (straight
down). But |∆r| cos θ is just the difference in height, −∆y. This gives a positive value for
downward motion, Wg = −mg∆y = mgyi−mgyf . (Having the y-axis point upward opposite
mg means that yf < yi for downward motion.) Even if we travel around the world, this
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conservative force does negative work every time we go up, positive work every time we go
down, and zero work when we go sidewise such that the total is just Wg = −mg∆y.

If we make the approximation that the force of gravity is everywhere uniform for a given
mass, m, and choose the y-direction to be up, then the work done against the force of
gravity in elevating the mass above the ground is recoverable by letting the mass return to
the ground. We think of the elevated mass as having potential to do work or “potential
energy.” To cement this idea further, we take the work done by the force of gravity and move
it to the energy side of the work-energy theorem

mg(yf − yi) + 1
2mv

2
f −

1
2mv

2
i = W = F ·∆x (6.2)

The last term on the right side of this equation still represents all external forces except
gravity acting on the mass m. One can regroup the terms on the left to recognize a total
energy consisting of potential and kinetic energy.

mgyf + 1
2mv

2
f −

(
mgyi + 1

2mv
2
i

)
= Ef − Ei = W = F ·∆x (6.3)

General Information
In this form we see that the change in total energy and not just kinetic energy equals
the work that we have not already considered using potential energy functions.

The Principle of Conservation of Energy is expressed as

mgyf + 1
2mv

2
f =

(
mgyi + 1

2mv
2
i

)
+ F ·∆x (6.4)

or
Ef = Ei +W ; (6.5)

the final energy is the initial energy plus the energy we add as work. (We can also “add”
negative work to remove energy.) Forces that have a potential energy function are known
as conservative forces. Every conservative force has a potential energy function whose final
value is added on the left and whose initial value is added on the right.

If only conservative forces act on a set of objects, then the total amount of kinetic and
potential energy is a constant of the motion. A loss of kinetic energy must be accompanied
by an equivalent gain of potential energy and vise-versa. Since we are free to choose the
initial and final points on our trajectory, the Principle of Conservation of Energy applies to
every point on the trajectory or, equivalently, to all instants of time.

A force which can be treated in terms of potential energy is one in which the work done
by the force depends only on the starting and ending points of the path along which the mass
is moved and not on the specific trajectory or path along which the mass travels. Another
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feature of forces having potential energy functions is that the total work done by such a force
around any closed path, where the starting point is the same as the ending point, is zero;
everything is as if the mass had not moved at all.

Friction is not a conservative force. When friction does work, that energy loss cannot be
recovered by returning to the original position. On the other hand, the force of a spring is
a conservative force. In general, the work done by a conservative force is the same as the
energy lost by the potential energy function, W = −∆PE. The potential energy function
of a spring having spring constant, k, and compressed by x is

PES = 1
2kx

2 (6.6)

In summary, there are three forms of mechanical energy to consider in the motion of the
glider in this experiment:

KE = 1
2mv

2 (6.7)

PEG = mgy (6.8)

PES = 1
2kx

2 (6.9)

If there are no other external forces acting on the system and doing work, the sum of these
three forms of mechanical energy is conserved.

General Information
Friction is a non-conservative force, so the energy it removes from our system of
objects cannot be returned to the kinetic energy of the objects’ motions. However,
we believe that even this energy is still present somewhere in the universe. In the
particular case of friction, no macroscopic object can be perfectly smooth; as the two
microscopically rough surfaces bounce on each other, their atoms and molecules start
to shake internally like a baby playing with the mobile above his crib. We measure
this internal shaking as the objects’ temperatures. The energy lost to friction becomes
thermal energy inside the two objects, ∆E = mC∆T .

6.1 Background – Hooke’s Law

We introduced Hooke’s law earlier in Equation (4.1). A direct result of this conservative
spring force is the spring’s potential energy function in Equation (6.9). To calculate the
potential energy of the spring one also needs to know the spring constant k, which is a
measure of the stiffness of the spring. Hooke’s force law governs the force versus compression

63



CHAPTER 6: EXPERIMENT 4

Elevating

Spacer

Figure 6.1: Before measuring the spring constant, remove the elevating spacer so the track
is level. Execute the Hooke’s Law Capstone setup and slowly press the cart against the elastic
rubber bumper. Slowly release the spring and stop Capstone. The motion sensor measures
the cart position (x) and the force sensor measures the spring force Fs.

of springs
Fs = −kx.

Ideally, this equation applies to our experiment. We will use Pasco’s force sensor to measure
Fs and simultaneously we will use their sonic motion sensor to measure x.

6.2 Apparatus

The apparatus shown in Figure 6.2 is very similar to what we used in the last lab. It
consists of a hollow extruded aluminum beam with small holes drilled into the upper surface.
Compressed air is pumped into the beam and is released under pressure through the holes.
This forms a cushion of air between the beam and a glider and allows the glider to move
along the beam with almost no friction. The glider literally floats on the air cushion.

WARNING
Do not move the air track. It is leveled and difficult to readjust.

Attached to the air track is a sonic motion sensor which is controlled by the computer.
The computer signals the motion sensor to emit a sound pulse. The pulse travels through
the air at the speed of sound, reflects off the plastic card attached to the glider, and returns
an echo to the motion sensor. The computer receives the signal and calculates the position
of the glider from the time delay between sending the pulse and receiving the echo and the
speed of sound in air.
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WARNING
Do not touch the rangefinder. Good data requires that it point directly at the cart.
Avoid obstructing the path to the glider; sound will reflect from your hand, your
notebook, your video monitor, etc.

Computer Sonic
Motion
Sensor

Force
Sensor

Elastomer
Spring

Reflector

Glider

Figure 6.2: Photograph of the apparatus
ready for energy conservation. Note the shim
used to elevate one end of the air track through
an accurately measurable angle from a leveled
air track.

We are using Pasco’s 850 Universal (com-
puter) Interface and their Capstone control
software to plot the data and to calculate
velocity. Double-click on the Capstone icon
on the desktop. We have already prepared
Capstone for use with this experiment and
published it on the lab’s website as ‘Conser-
vation Energy.cap’

‘groups.physics.northwestern.edu/lab/’;

open this file now. Now we are ready to take
data.

6.3 Procedure

6.3.1 Measuring the angle

Before proceeding we must set and deter-
mine the angle of the air track’s incline.
This is made simple by the fact that the feet
of the air track are spaced 1.0000 m apart.
Remove the shim that has been placed under
the single foot at one end and measure the
shim’s thickness, t. This is the amount
the shim will elevate the single air track
foot. Before replacing the shim, verify that
the air track is level by turning on the air
pressure and seeing that the glider does not
accelerate. If necessary, adjust the leveling screws by equal amounts to keep the beam
balanced and level the track; small adjustments make a big difference. As you replace
the shim under the foot, note that the entire air track rotates about the axis defined by the
two places where the leveling adjustments contact the table. Without the shim the air track
is horizontal and to insert the shim we must first rotate the air track about the pivot by
the angle θ. (See Figure 6.3.) We form a right triangle with opposite side having the shim’s
thickness and hypotenuse defined by the bottoms of the air track’s feet. We can find the
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Figure 6.3: A sketch of how to use the geometry to convert glider position into height for
the tilted air track.

angle of inclination, θ, using
sin θ = t

1.0000 m (6.10)

We will find it convenient to define the x-axis to coincide with the air track and the
origin to be when the glider just barely touches the rubber spring. We will also define the
glider’s height at this point to be the gravitational potential energy zero. When the glider is
at position x on our coordinate system, then, x is the hypotenuse of a similar right triangle
having opposite side y above our gravitational potential energy zero. In this coordinate
system, ŷ is not perpendicular to x̂. The height of the glider above its height at the origin
is given by trigonometry to be

y = x sin θ = xt

1.0000 m (6.11)

Capstone reports x in m, so the units of y are the same as the units of t. What should
you report for the uncertainties in x? Using these coordinates, it is easy to represent the
gravitational potential energy function as

PEg(x) = mgy(x) = mgxt

1 m (6.12)

If t is expressed in m, m is expressed in kg, and g = 9.807m/s2, then PEg will have units of
Joules (J=N·m=kg·m2/s2).

6.3.2 Determining the spring constant

Before we can compute the energy stored in the stretched spring, we need to determine the
spring constant k. First, turn on the air pump and remove the elevating shim from beneath
the air track foot. (See Figure 6.1.) Now download the ‘Hooke’s Law’ Capstone setup file
from the lab’s website and allow Capstone to execute it. With nothing touching the spring,
press the ‘Zero’ button on the force sensor to calibrate its zero. Hold the glider cart as shown
in Figure 6.1, press ‘start’ at the bottom left of the display, gradually push the cart into the
spring harder and harder, gradually release the force, and press ‘stop’.

Does the spring force seem proportional to the position? The specific character of this
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N PEg (J) PEs (J) KE (J) ET (J)
1 _ 0 0 _
2 _ 0 _ _
3 0 0 _ _
4 _ _ 0 _
5 0 0 _ _
6 _ 0 _ _
7 _ 0 0 _

Figure 6.4: Simulated data showing points and areas of interest. A suggested data table to
analyze the energy at several instants of time.

graph is suitable for Analysis discussion. To find the spring constant, fit the data to a line
and note that the slope is the spring constant. You can copy the data into Ga3 to perform
this analysis or you can analyze it in Capstone. What are the units of your spring constant
and uncertainty?

6.3.3 Conservation of Energy

In this experiment we will measure the various energies of the glider as it moves along the air
track changing height along the way and sum all of the energies to arrive at a total energy.
In the end, we will see whether the total energy remains the same. For each run start by
touching the glider to the bumper spring at the lower end of the track and holding it there.
DO NOT COMPRESS THE SPRING; simply touch it. You can hold the glider steady by
touching a finger simultaneously to the air track and the glider’s bottom. To begin taking
data, click the “Record” button at the bottom left and wait a short moment with the glider
touching the bumper; this will identify x0 to be this glider location. When x > x0 the spring
is not compressed and when x < x0 the spring is compressed by x0−x. After a brief moment
when you see that the program has marked x = x0 clearly, move the glider quickly to a spot
about half-way up the track and release the glider from rest. The glider will accelerate down
the slope and bounce off the bumper.

Be sure to move out of the way of the motion sensor. Also be sure the computer’s video
monitor and other items in the lab are at least a foot away from the sound’s path. Otherwise,
the motion sensor might mistake echoes off these items as signals from the glider and yield
garbage for some of your data. If this happens merely retake the data being more careful.
Continue taking data as the glider bounces off the lower bumper and rebounds back up the
track. When the glider comes to rest momentarily and starts back down you can click the
“Stop” button using the mouse. The “Record” button turns into the “Stop” button (and
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vice versa) when it is clicked.
You should see a plot of the position of the glider as shown in Figure 6.4 and the velocity

displayed as a function of time. You can choose to retake the data by deleting the data
using the button at the bottom right of the screen and by repeating or just by leaving the
bad results and by taking new data over the old. If everything seems okay, proceed to the
analysis.

First, we need to determine the motion sensor reading at x0. Move the mouse cursor
to the position graph and hover there. A toolbar will appear above the graph containing
an icon for selecting data points for analysis ( ). Click this selector button to bring up a
pale area surrounded by eight sizing squares. You can drag the selected area with the mouse
and you can change its shape by dragging one of the sizing squares. Shape and position the
selected area so that only the data having the x0 position at the first of the run are selected.
Compute the statistics for this data using the “Σ” button on the toolbar ( ). If the mean
(x̄0), the std. dev. (sx0), and the number of data points (N) are not all displayed, click the
little down triangle to the right of the “Σ” button and check all that are absent. You may
optionally un-check those statistics that we do not need. If necessary, review Section 2.6.1
to learn how to report your measurement.

6.3.4 (optional) Measure the Impulse

As an option, we can measure the impulse of the glider colliding with the spring and then
we can compare this to the change in the glider’s momentum. For this purpose, execute
the “Impulse.cap” template and release the cart from the top of the incline. Don’t forget to
press the ‘Zero’ button on the force sensor first. Copy the force versus time data from the
table and paste it into Ga3. Draw a box around the pulse and ‘Analyze/Integral’ (or press
the ’Integral’ toolbar button) to find the area under the force pulse

I =
∫

F dt. (6.13)

Next week we will learn that this impulse integral equals the cart’s change in momentum

I = pf − pi = M
(
vf − vi

)
. (6.14)

Don’t forget to include the signs of the velocities when computing this difference.

6.4 Analysis

OPTION 1: If you move the mouse cursor to one of the graphs, you will find that a toolbar
will appear above the graph. On the toolbar will be a button to “Show Coordinates and
access Delta Tool” ( ). When you push the button, a pair of dotted (x, y) axes will appear
at the top left of the graph. Grab the square at the ‘origin’ with the mouse and drag it to
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your data points. The coordinates of the data point, (t, x) or (t, v), will be displayed in a
box. After you drop the origin, you can grab this text box and move it around with your
mouse if you choose; it might be necessary to uncover the origin so that you can move the
origin to the next point you wish to study.

Figure 6.4 also shows specific times along the position plot numbered 1, 2,. . . ,7. Note:
at the points designated with number 1 and 7, the glider is at the top of its trajectory where
the velocity is zero. The glider will have no kinetic energy and no spring potential energy at
these points; all of the energy is gravitational potential energy. For data points number 2 - 3
and 5 - 6, the glider will have both kinetic and potential energy but still no spring potential
energy. At the point 5, the glider will have no kinetic energy and almost no gravitational
potential energy, only spring potential energy.

Find convenient points near the suggested number positions in Figure 6.4 to obtain
position and velocity data from your plots. Read the numbers using the measurement tool;
the ordered pairs are (t, xms) in the position graph and (t, v) in the velocity graph. Record
both the position and velocity for the same time coordinate at these strategic points. Be
sure to obtain the position at 4 even though gravitational potential energy is minimal at
that point; in this case, x = xms−x0 will be used to determine the spring’s potential energy.

Make a table like Figure 6.4 showing the kinetic (6.7), gravitational potential (6.8),
spring potential (6.9), and total energies for each of the positions 1 through 7. Using the
appropriate formulas for the appropriate energy calculate the entries to the table. (This
table is transposed – i.e. incorrectly formatted – but the student will find it more convenient
for adding the total energies.)

Be sure to be consistent with units. The total energy is the sum of the other three entries;
compare the total energies through the motion. Is energy conserved? Graph the nine total
energies to allow visual comparison; the horizontal axis can be numbers 1-7. Look for trends
especially for data that was calculated in a similar manner. Be aware of measurement
uncertainties.

Checkpoint
Note that the spring potential energy was obtained from a radically different method.
Does it fit in with the trends set by the other energy totals? How well do you trust
that number?

OPTION 2: We can also let the computer analyze all of our data. Find the row in
Capstone’s data table that corresponds to the instant we released the glider from rest. Click
this time entry in the data table, use the scrollbars to move to the bottom of the table, hold
the “Shift” key while clicking the last position entry, and ctrl+c to copy all entries after we
released the glider to the Windows clipboard.

Execute Vernier Software’s Graphical Analysis 3.4 (Ga3) program. We have prepared a
Ga3 template to process all of your data. Open ‘Conservation Energy.ga3’ at
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‘http://groups.physics.northwestern.edu/lab/’.

Click the first row under “time” and ctrl+v or “Edit/Paste” to paste your (t, x) points into
Ga3. Ga3 should immediately fill in most of the remaining columns with default parameters.
You need to repair the “Equations” for your experiment by replacing the constants (m, k, t
(thickness), and x0) by the values you measured for your apparatus. Double-click “KE” and
repair the glider mass. Double-click “PEg” and repair the glider mass, the axis zero (x̄0),
and the shim thickness (t). Double-click “E1” and repair the spring constant (k) and the
axis zero (x0).

Since the spring is not compressed for most of your data, the spring’s potential energy
must be handled a little differently. Scroll through your data and identify which rows have
x < x̄0. These rows and only these rows have the correct values for spring potential energy
in column “E1”. Select the column “E1” data for these rows. The easiest way to select the
range is to click the first entry you want to copy, to use the scrollbar to find the last entry
you want to copy, and to hold down the ‘Shift’ key while clicking this last entry; now only
the data to be copied is selected. Verify that your selection is correct by using the scrollbar
again to find the first entry again. Now copy them with ctrl+c or “Edit/Copy”, click the
“Es” column at the top of this range of rows, and paste the spring potential energy into
this range of rows using ctrl+v or “Edit/Paste”. This will replace the zeros that are in the
template by default.

Now Ga3 should show the total energy (E) vs. the time in the graph window. Click the
lowest number on the energy axis and enter “0” for the minimum value.

Checkpoint
Does it look like total energy is a constant plus some random fluctuations?

Print three graphs that compare the individual energy of each ‘store’ (KE, PEG, and
PES) to the total energy. For each of the graphs, select one individual energy column and
the total energy simultaneously. If the y-axis does not specify which columns are plotted,
then you must do so (i.e. using the ‘Text’ box). Study these graphs until you understand
how the total energy changes its form in the course of motion and yet remains constant.
Print each of these to the .pdf driver and/or copy each to your Word R© document also for
illustrating your written report.

6.5 Discussion

Discuss what your data says about the Principle of Energy Conservation. Are there particular
places when/where your total energy changed noticeably? Was the change larger than the
uncertainty in your total energy? What was the glider doing at these times? If necessary,
repeat the experiment while watching the glider and the video monitor to correlate the
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motion with the data points. This is a clue to the cause of the change(s). Can you identify
any causes for the change(s)? What other forms of energy might the losses have become?
What mechanism (force × distance) might have allowed the losses?

Helpful Tip
Use Ga3 to find the average total energy and its standard deviation before a noticeable
change and again after the change. This will allow you to decide objectively whether
the change is statistically significant. Do you remember how to do this? If not, review
Chapter 2 on errors.

Discuss how your measurement uncertainties might contribute to the variations in total
energy. What other sources of error have we not considered? If these other energy forms
were added into our total and all of our errors were considered, is it possible that total energy
is conserved?

6.6 Guidelines

Is energy conserved in your data? If some of the other energy forms discussed in Analysis
were measured and added to your total energy, might energy be conserved? How well does
your data support this last conclusion? We might want to use our spring again. . . what is
its spring constant? (Units? Uncertainty?) Can you think of a way to estimate the friction
between the air track and glider using your data?

6.6.1 Notebook

Your Lab Notebook should contain the following:

• Complete specifications for the glider mass, the shim thickness, and the axis zero.
• Example Position vs. time and velocity vs. time graphs.
• Force vs. Position graph fit to Hooke’s law.
• A labeled data table of energies. (at least nine rows, but NOT more than one screenful.)
• Details about the force sensor and position sensor.
• Three example calculations to verify that KE, PEG, and PES are each computed
correctly.

• An objective analysis of each noticeable energy change.
• Three graphs comparing separate energies to total energy.
• One graph of total energy vs. time.
• Other thoughts and/or observations.
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6.6.2 Report

Referring to Appendix E, our written report should contain the following:

• Labeled Position vs. time and Velocity vs. time graphs.
• Specifications of m, t, k, and x0.
• OPTIONAL: Three graphs comparing separate energies to total energy.
• One graph of total energy vs. time.
• Objective discussion of specific time(s) total energy changed (if it did) and reasonable
explanations for why. Enumerate any observations that support these possibilities.
Detailed calculations are not desired in your report; however, you should be prepared
to defend your statements with your notebook.

• A clear statement concluding whether your data supports or contradicts the Law of
Conservation of Energy. (Maybe your data does neither?) Did you measure any
constants worth reporting? Can you think of any applications for anything you have
used or observed? How might the experiment be improved?
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Experiment 5:
Conservation of Momentum

Conservation laws such as the one we studied in the previous experiment lead to interesting
insights and general principles. Isaac Newton (1642 - 1727) formalized the relationship
between force and motion in his Principia (published in 1687) in which he proposed his
most quoted third law “For every action there is an equal and opposite reaction”. This law
is the source of a second conservation law which actually has broader application than the
energy conservation law. It also represents a departure from our previous treatments in that
we will consider two masses m1 and m2 that can interact with each other. This is a dramatic
departure – it is the first step to treating objects as having spatial volume composed of many
particles.

Historical Aside
Conservation laws are so general that they are instrumental in determining the
existence of many subatomic particles. For example, large particle colliders will
accelerate particles and smash them into each other. Detectors then monitor what
comes out of these collisions. We place so much trust in the conservation laws that
when momentum or energy are missing, we expect that there may be an undiscovered
particle present. Intense searches then led to discoveries of these particles.

7.1 Background – Collisions

If m1 acts with a force F21 on m2 to accelerate it such that F21 = m2 a2, then by Newton’s
3rd Law m2 should respond with an equal but opposite force F12 acting on m1 such that
F12 = m1 a1. The acceleration is defined as a change in velocity over a change in time
a = ∆v/∆t. There is every reason to believe that F12 only acts while F21 is acting and that
both forces act over the same interval of time ∆t. Starting from Newton’s 3rd Law which
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can now be written formally as

F12 = −F21 (7.1)
m1 a1 = −m2 a2 (7.2)

m1
∆v1

∆t = −m2
∆v2

∆t (7.3)

m1∆v1 = −m2∆v2 (7.4)

which we can unravel to m1(v1f − v1i) = −m2(v2f − v2i). Reorganizing by causality yields

m1 v1i +m2 v2i = m1 v1f +m2 v2f (7.5)

We observe a repeating form, mv, which we define to be momentum, p, which is properly a
vector:

p = mv (7.6)

The above Equation (7.5) simply stated, makes note that the total momentum of a system
of masses is a conserved quantity,

N∑
i=1

pi = constant (7.7)

Newton had actually formulated his second law in terms of momentum. The equation took
the form

F = dp
d t
. (7.8)

Here we recognize that momentum is a vector quantity. This expression is a more inclusive
rule which reduces to the more familiar form of Newton’s 2nd Law when we include the
assumption that mass, m, is a constant of motion,

F = d (mv)
d t

= m
dv
d t

= m a (7.9)

Checkpoint
In the previous experiment we saw that in the case of energy conservation friction was
not so easy to eliminate. Although energy conservation was a nice idea in an ideal
world, it was difficult to achieve in practicality. Will we encounter a similar constraint
with the application of conservation of momentum?

Whereas workW is defined as a force F multiplied by a distance ∆x over which the force
acts, we now define impulse I to be a force F multiplied by an interval of time ∆t during
which the force acts,

W = F ·∆x and I = F∆t (7.10)
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In a similar way in which the case of zero external work brought about the conditions for
the Principle of Conservation of Mechanical Energy, we can say that having zero external
impulse for a system gives rise to the Principle of Conservation of Momentum (Equation 7.7).

Newton’s 3rd Law says that for each force there is an equal and opposite reaction force.
These forces encompass any and all internal forces between any set of masses. Any external
forces must originate from different sources than the masses we are studying. Interestingly
enough, friction may be included as an internal force acting between the masses as they
interact. Such a force would preclude conservation of energy, and yet it does not destroy
the action–reaction relationship and momentum conservation will still hold. Such a class
of problems are generally referred to as collision problems. We will study the energy and
momentum of two masses as they collide with and without friction.

7.1.1 Elastic Collisions

A collision that occurs without loss of kinetic energy is called a perfectly elastic collision.
An elastic collision between two masses, m1 and m2, can be completely specified by two
equations, one for conservation of momentum and a second for conservation of kinetic energy.
We use the prime symbol to indicate velocities after the collision,

m1 v1 +m2 v2 = m1 v
′
1 +m2 v

′
2 (7.11)

1
2m1 v

2
1 + 1

2m2 v
2
2 = 1

2m1 v
′2
1 + 1

2m2 v
′2
2 (7.12)

These two equations allow for prediction of the unambiguous result of the collision

v′1 = m1 −m2

m1 +m2
v1 + 2m2

m1 +m2
v2 (7.13)

v′2 = 2m1

m1 +m2
v1 + m2 −m1

m1 +m2
v2 (7.14)

General Information
On the way to deriving these equations one comes upon an interesting side issue in
the equation v1 − v2 = v′2 − v′1. Basically this equation states that the velocity at
which the masses approach each other before the collision will be the same as they
leave each other after the collision. If you were riding on one of the carts watching
the other cart approach, you would see the cart depart at the same speed after the
collision. Essentially it would bounce off at the same speed as it came in.

7.1.2 Inelastic Collisions

A collision in which some energy is lost to friction is an inelastic collision. The outcome
of such a collision is difficult to predict with simple physics principles. Equation (7.12) is
not applicable, and the single momentum conservation equation alone is not sufficient to
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determine the resulting two velocities of two masses uniquely. Another equation for the
two velocities is required. Sometimes we may state that a certain fraction or percent of the
initial kinetic energy survives the collision. This thinking leads to a ‘coefficient of restitution’.
Other times we may find that the masses fuse together so that both final velocities are the
same, v′1 = v′2 = v′, and the outcome is again predictable,

m1 v1 +m2 v2 = (m1 +m2) v′ (7.15)

v′1 = v′2 = v′ = m1v1 +m2v2

m1 +m2
(7.16)

We will test these Equations, (7.11), (7.12), and (7.16), in the following series of experi-
ments.

General Information
Explosions are closely related to collisions, but in explosions we have more kinetic
energy after the explosion than we did before. This can only happen when some form
of stored energy gets released as kinetic energy. In a grenade, chemical energy in gun-
powder gets released as one notable example. We will not study explosions, but we
admit the similarities between explosions and what we will do.

7.2 Apparatus

We will again be using the air track to minimize external impulses. The set up shown in
Figure 7.1 is very similar to what we used in the last lab. It consists of a hollow extruded
aluminum beam with small holes drilled into the upper surface. Compressed air is pumped
into the beam and released through the holes. This forms a cushion of air supporting two
gliders on a nearly frictionless surface. The glider can move with almost frictionless horizontal
motion. The gliders can be attached with rubber band bumpers, knife edges, or clay pots
to explore different collision conditions.

WARNING
Do not move the air track. It is leveled and difficult to readjust.

Attached to the air track are two sonic motion sensors which are controlled by the
computer. The computer signals a motion sensor to emit a sound pulse. The pulse reflects
off the plastic card attached to the glider and returns an echo to the motion sensor. The
computer receives the signal and calculates the position of the glider from the time delay
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Figure 7.1: A photograph of an apparatus used to study momentum conservation. The
elastomer spring and bumper between the carts also conserves kinetic energy; a needle and
clay pot instead sticks the carts together. The accessories have different masses, so changing
accessories should always precede weighing the carts.

between sending the pulse and receiving the echo using the average speed of sound in air.
Computer software plots the data and can use the data to calculate velocity and acceleration.

WARNING
Do not touch the rangefinder. The quality of your data depends upon its pointing
directly at the glider. Do not obstruct the path between the sensors and gliders with
your hand, the video monitor, etc.

7.3 Procedure

We are using Pasco’s Capstone with their 850 Universal (computer) Interface. We have
published a configuration file for you to use ‘Conservation Momentum.cap’ at

‘http://groups.physics.northwestern.edu/lab/’;

open this file now. Once the air track is under pressure, the gliders have the masses you
want, and the gliders are closing on each other, click “Record” at the bottom left. Once
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the button has been clicked, it turns into the “Stop” button you will need to end the data
collection phase. After the collision, allow the gliders to move for a few more seconds and
click “Stop”. If you don’t have several seconds worth of data before and after the collision,
“Delete Last” run at bottom right, adjust the experiment to get better data, and repeat the
experiment.

Helpful Tip
Take care to note which velocity graph corresponds to which glider. If you get the
glider masses and/or their velocities confused, your results will be wrong and you will
probably need to repeat the experiment to get this right.

Checkpoint
Both velocities before the collision should be constant and both velocities after the
collision should be constant; however, there will usually be a few data points during
the collision when neither velocity is constant.

All of these equivalent velocities can be treated statistically and reported as described
in Section 2.6.1. For each of the three experiments, report your measured velocities to be
vk = (v̄ ± δv) U. “U” is the units of velocity; m/s in this case. k is some subscript like “1b”
for the velocity of mass 1 before the collision or “1i” for initial velocity of mass 1. Choose
your subscripts so that you will know what they mean; decide on a subscript strategy early
and be consistent or you will get confused. It might help to write down explicitly in your
notes what you have chosen your symbols to mean.

7.3.1 Elastic collisions

In this experiment we will measure the speeds of two air carts before and after they collide
with each other. First, attach the rubber band bumper and knife edge to the gliders.
Carefully weigh both gliders with attachments and record their masses in your data. Don’t
forget to estimate your measurement uncertainty and to record your units. Be sure to note
which measurement corresponds to which cart.

Note that the motion sensors face in opposite directions; rightward motion will have
positive velocity when measured by the left sensor but negative velocity when measured by
the right sensor. Set one cart at rest near the center of the air track. You may simultaneously
touch the glider and the track with one finger to keep it at rest. Give the second cart a
velocity directing it away from the first cart. The cart will bounce off the end of the track
and rebound reaching a stable speed before colliding with the first cart. Be sure to release
the resting cart prior to the collision by sliding your finger perpendicularly to the allowed
motion. The extra time while the cart is moving away from the resting cart will give you a
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chance to hit “Record” before the collision occurs. Try to click “Record” at the same time
the cart hits the end stop. Alternatively, it is permissible to press “Record” before setting
the cart into motion; just don’t get confused by the extra data points that begin such a run.
Be sure the plastic cards on both gliders are perpendicular to the track so the sound will be
reflected directly to the motion sensor. Orient the gliders so that the plastic reflector card
is closer to the sensor than the center of mass; otherwise, the echo from the glider’s front
will sometimes confuse the sensor. Be sure to keep your hands, your body, and other items
in the lab at least a foot away from the motion sensors’ sound paths; they might mistake
reflections off of these items as signals from the glider. If this happens merely retake the
data. Let the computer continue to take data as the gliders bounce off one another and until
one of them hits the end of the track. Hit the “Stop” button using the mouse.

Scan the data and look for the collision event which should show a sudden exchange of
velocity between the carts. Hover the mouse cursor on a velocity graph so that a toolbar
appears above that graph. The toolbar will contain a data selection tool icon ( ). Click
this selector button to bring up a pale area surrounded by eight sizing squares. You can drag
the selected area with the mouse and you can change its shape by dragging one of the sizing
squares. Shape and position the selected area so that only the data having the vi velocity at
the first of the run are selected. Compute the statistics for this data using the “Σ” button
( ) on the toolbar. If the mean (v̄i), the std. dev. (svi), and the number of data points
(N) are not all displayed, click the little down triangle to the right of the “Σ” button and
check all that are absent. You may optionally un-check those statistics that we do not need.

Use these statistics to record the mean and the deviation of the mean as described in
Section 2.6.1; note that some of the velocities you need are on the other graph making it
necessary to obtain another selection tool for those points. If you need more significant digits
for some particular mean, you can right-click the parameters box, ‘Properties...’, and change
the significant digits that are displayed.

Find the change in the two masses’ velocities

∆vi = v′i − vi (7.17)

and combine the uncertainties in the velocities’ changes using

δ(∆vi) =
√

(δv′i)2 + (δvi)2. (7.18)

Calculate the change in momentum for each mass in the system using Equation (7.4),

∆p1 = m1∆v1 and ∆p2 = m2∆v2 (7.19)

The negative sign in Equation (7.4) was already provided by the opposite facing motion
sensors. Estimate the uncertainties in these changes in momentum using

δ∆p1 =
√

(m1 δ∆v1)2 + (∆v1 δm2)2 or δ∆p2 =
√

(m2 δ∆v2)2 + (∆v2 δm2)2 (7.20)
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Calculate the changes in kinetic energy for the two masses using

∆KE1 = 1
2m1(v′21 − v2

1) and ∆KE2 = 1
2m2(v′22 − v2

2) (7.21)

Calculate the uncertainty in the moving mass’ kinetic energy before the collision using

δKEmov = 1
2

√
(v2δm)2 + (2mvδv)2 (7.22)

Helpful Tip
The uncertainties in these calculated measurements are determined as specified in
Section 2.6.3. All three experiments have four velocities and two masses with about
the same uncertainties as in the first experiment. All of these measurements and
uncertainties must be recorded; however, we will assume that δ∆p1, δ∆p2, δKE1, and
δKE2 are the same for all three experiments. This is a source of error! for the
second and third experiments, but it also saves substantial time.

We will estimate the uncertainties in Equations (7.21) by assuming that the uncertainty in
each of the four kinetic energies (two masses before and two masses after) are approximately
the same as we found using Equation (7.22). This is wrong! But this is all we will take time
to do.

δ(∆KE1) ∼ δ(∆KE2) ∼
√

(δKEmov)2 + (δKEmov)2 = δKEmov
√

2 (7.23)

We should repeat these uncertainty calculations (Equation (7.22) and Equation (7.20)) for
every mass and for every experiment to follow; however, we would see that they are similar
within a factor of 2 or so. Instead of repeating these uncertainty calculations we will use
our time to perform more experiments and we will simply assume that every experiment will
have the same uncertainties for ∆pi and for ∆KEi (i = 1, 2).

7.3.2 Moving Target, Elastic Collision

Keep the elastic bumpers and repeat the above procedure for both gliders in motion. Since
neither mass changed, it is not necessary to weigh the gliders; just remember which glider
has which mass. Add masses to one of the gliders while keeping the glider balanced; note
the new masses. Record all four velocities and uncertainties as described by Equation (??).
(We will continue to use the uncertainties in momentum calculated in Part 1; however, we
still want to record the correct velocity specifications.) Compute the change in momentum
for the two masses using

∆p1 = m1(v′1 − v1) and ∆p2 = m2(v′2 − v2) (7.24)
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Checkpoint
Do these have opposite signs? Don’t forget that the sensors face in opposite
directions...

Another way to state the conservation of momentum is to say that the momentum lost
by 1 must be gained by 2 and vice versa. The same can be said for the gains and losses in
kinetic energy. Compute the changes in kinetic energies for the two masses using

∆KE1 = 1
2m1(v′21 − v2

1) and ∆KE2 = 1
2m2(v′22 − v2

2) (7.25)

Now, just record the same uncertainties for these values as you have already recorded
above (using Equation (7.20) and Equation (7.23)). Copying the uncertainties from our
previous measurements is wrong, but it is much quicker than computing them again.

7.3.3 Completely Inelastic Collision

Repeat Experiment 2 for a completely inelastic collision. To do this, replace the bumper
on one glider with the needle-point and the knife edge on the other glider with the clay
pot receptacle. This will change the masses of both gliders, so it will be necessary to weigh
them again. You might as well decide what additional mass you want your gliders to have
and weigh the lumped totals. Since time is short and the effect is small, just use the same
uncertainties for the masses that you already have at hand. The needle and clay pot should
cause the gliders to stick together when they collide. If this is not the case, ask your TA to
re-pack the clay in the pot. Allow one or both masses to move prior to colliding and have the
computer to record their velocities before and after the collision. Record all four velocities
and uncertainties as described by Equation (??). Determine the changes in momentum and
in kinetic energy for each of the masses during the collision. Estimate the uncertainties in
these changes to be the same as the first experiment.

7.4 Analysis

Calculate the difference (∆) between the absolute values of the two changes in momentum
and the uncertainty (σ) of these differences. Review Section 2.9.1. Since statistics is
normalized to σ, we will find it convenient to convert the units of our ∆ into σ. Now it
is easy for us to assess the probability that our prediction is statistically different from our
measurement. Compute the difference and uncertainties in the kinetic energies as well.
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7.5 Guidelines

What external forces have we omitted from our considerations that might affect the mo-
mentum of one or both of our masses? What forces (internal or external) have we omitted
from our considerations that might perform work on one or both of our masses? What other
forms of energy might have been generated during the collisions? Can you think of sources of
experimental error that we have not included in our total uncertainties? Are our differences
so much bigger than our uncertainties that these other considerations are unlikely to explain
them? If so, make sure you have not made mistakes while processing your data.

7.5.1 Notebook
Your Lab Notebook should contain the following:

• Observed details about commercial equipment.
• Clear sketches (velocities and masses) of each experiment.
• Table(s) containing glider masses, two initial, two final velocities, correct units, and
correct uncertainties for each experiment.

• Table(s) of all momenta and energies (and their uncertainty estimates) before and after
the collisions.

• Calculations of relevant uncertainties for comparing before and after the collisions (esp.
Part 1).

• Calculation of before vs. after comparison (∆) and total composite uncertainty (σ).
• Table of Results showing ∆ and σ in momentum (energy) units as well as ∆ with σ
units.

7.5.2 Report
Your report should address:

• What physical relationships do your data support?
• Clear illustrations (velocities and masses) of each experiment.
• How did we reduce external forces? Measure mass? Velocity?
• Summarize (and produce) the tables in the notebook.
• Summarize other important sources of error.
• When is momentum conserved?
• When is kinetic energy conserved?
• Have we measured anything worth reporting in our Conclusions?
• How might we improve our experiment?
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Experiment 6:
Collisions in Two Dimensions

Projectile
and

Target

Spark
Generator

Air Valves

Compressed Air
and High Voltage

Level

Level Adjustments

Record Paper
Protractor

Carbon
Paper

Meter
Stick

Figure 8.1: A photograph of the apparatus detailing
relevant controls.

Last week we introduced the
Principle of Conservation of
Momentum and we demon-
strated it experimentally in
linear collisions. This week we
will extend this demonstration
to include two-dimensional
collisions. It turns out
that multi-dimensional colli-
sions are one of our main
sources of information about
sub-atomic and other funda-
mental particles, so under-
standing momentum and en-
ergy conservation in these sit-
uations has broad significance
to physics.

Historical Aside
Conservation of energy
and momentum in col-
lisions (and associated
particle decays) are ex-
ceptionally important in
the discovery and identi-
fication of new sub-
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Historical Aside
atomic particles. In 1930, the neutrino was proposed by Wolfgang Pauli to account for
the lack conservation of energy and momentum in beta particle decay. The neutrino
was directly detected in 1956 and observed to obey the characteristics predicted by the
conservation laws (and eventually its detection received a Nobel Prize). More recently,
in 2012, the Higgs boson was discovered at the Large Hadron Collider at CERN (also
prompting a Nobel Prize). This apparatus collides two high-energy protons together
to produce a stream of sub-atomic particles, including the Higgs, which was detected
by looking at the energy of other emitted particles from the collision. Clearly the
physics of sub-atomic particles are far more complex than Newton’s Laws, but the
principles of conservation of energy and momentum in collisions are key ingredients
for understanding the output of high-energy collisions.

In this experiment the elastic collision between two air hockey pucks is recorded. The
information obtained is used to confirm the conservation of momentum in 2D and of kinetic
energy in elastic collisions. As illustrated in Figure 8.1, we once again utilize the pucks and
table from our first two experiments. This time the table is level, however, and we use two
pucks.

8.1 Background

We wish to confirm the principle of the conservation of momentum; in other words we wish
to confirm that

pbefore = pafter (8.1)

where the subscripts are with respect to the time of the collision. Note that in our current
approach, we are considering vector momenta, which means that each component of the
vector and not just the magnitude must be conserved. Figure 8.2 represents these two
situations. Two vectors are equal only when their components are identical. To test
Equation (8.1) we must determine and then compare the momentum components of the
total system (projectile and target) before and after the collision. If the subscripts ‘p’ and ‘t’
indicate the projectile and the target pucks respectively, and if the primed quantities refer
to the velocities after the collision, then Equation (8.1) can be written as follows,

mpvp +mtvt = pp + pt = p′p + p′t = mpv′p +mtv′t (8.2)

We choose the velocity of the t-puck to be zero and if we define the vp to be along the x-axis;
we can rewrite the last equation in components along the x and y axes,

mpvp = ppx + ptx = p′px + p′tx = mpv
′
p cos θ′p +mtv

′
t cos θ′t (8.3)

0 = ppy + pty = p′py + p′ty = mpv
′
p sin θ′p +mtv

′
t sin θ′t. (8.4)
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Figure 8.2: Sketch of two puck trajectories before and after elastic collision in 2D. The
recommended x-axis is shown and the dashed vertical line is the recommended y-axis.

We will also wish to determine if the kinetic energy, KE, is conserved and that conse-
quently it is an elastic collision. We will wish to confirm that

1
2mpv

2
p = KEbefore = KEafter = 1

2mpv
′2
p + 1

2mtv
′2
t (8.5)

Please notice that energy is a scalar (not a vector, such as momentum p or velocity v) and
consequently you do not need to use components.

8.2 Apparatus
The apparatus sketched in Figure 8.1 has been used previously in labs 1 and 2, so we will
forgo most of the apparatus’ description. The two air pucks are the solid puck, which is
the one used in the first and second labs, and a less massive rimmed puck. The first one is
used as a projectile (p) and the second one as a target (t). The table and gravity combine
to constrain both pucks to move in a plane. To qualify for the Conservation of Momentum
using measured velocities, we must eliminate all external force components in the plane of
motion; this means leveling the table so that gravity is perpendicular to the plane of motion
and reducing friction as much as possible.

Checkpoint
What conditions must be met in order for momentum to be conserved in a three
dimensional collision?

Each of the pucks is also fitted with a pressurized air hose to push a cushion of air under
the pucks to minimize friction and a pointed electrode periodically pulsed with high voltage
to record the positions of the pucks at the times of these pulses. Knowledge of these positions
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and the times of the pulses will allow us to determine the pucks’ velocities. The masses of p
and t pucks are

mp = 1.20 kg and mt = 0.680 kg (8.6)

but this does not include the attached hoses and wires.

WARNING
Do not turn the air supply on all the way. It will damage the air hose. Only turn it
on a little way. The puck will float well. Do not drop the puck. The table top is glass!

WARNING
The puck should be on the white record paper and not on the carbon paper whenever
the push-button activating the pulse generator is pressed. The white paper should be
on the carbon paper. If you touch the high voltage terminal and ground at the same
time, you may get a shock – harmless, but unpleasant! Always make sure that the
ground clip is properly connected to the carbon sheet before activating the pulser.

8.3 Procedure

Carefully level the air table, first with the level and then by trying to keep the floating
t-puck stationary at the center of the air table. It will also help to lift the hose vertically
with only a little slack. With the t-puck at rest near the center of the table, practice making
a two-dimensional collision in which the projectile puck is given a velocity of about 0.5 m/s
and the angle between the two pucks, after the collision, is about 45◦. Now make a record
of the collision by holding the spark timer button throughout the relevant motion. Be sure
to note whether the projectile is the heavy or the light puck in your Data. Also note both
masses, units, and uncertainties.

Draw arrows on the record paper that show the directions of the pucks’ velocities before
and after the collision. Since the target puck was not moving prior to the collision (hopefully),
only three vectors will be shown. If this is done correctly, the projectile puck will be moving
inward prior to the collision and both pucks will be moving outward after the collision.
Sketch your x-axis parallel to the incoming velocity and your y-axis perpendicular to the
x-axis. Perfection is neither needed nor desired at this point. Rotate the paper until the
x-axis points to the right as it should and draw the y-axis upward as it should be.

Remove the record paper from the apparatus and transfer your velocities and axes to the
back side where the puck locations are recorded. Note that the puck trajectories are usually
not perfectly straight. We desire the velocity vectors immediately prior to and immediately
following the collision; however, to get accurate speeds we must measure reasonably long
distances (∆x ≥ 3 cm) so that our measurement uncertainties are a smaller fraction of our
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measurements themselves. Using a straight edge, draw three lines along the three velocities
as close to the instant of collision as you can guess. These lines will need to extend about
six inches on each side of the collision and they will need to extend back until they cross the
x-axis. Draw arrows on the correct ends of these lines to indicate the correct orientation of
the velocity vectors. If necessary, check your original notes on the front side of the paper to
make sure you get these right.

Using the straight edge, carefully extend the incoming velocity across the entire page
and label it to be the x-axis. Referring to the front side of the page, carefully construct the
y-axis perpendicular to this x-axis. Since we are working on the back of the page, the y-axis
direction and our angles will be opposite to what we normally experience; positive angles
will now be clockwise from +x and negative angles will now be counterclockwise from +x.
Use the protractor to measure the angles of the outgoing velocity vectors and record them
in your notebook’s Data section. The angles you want to measure have the tips of the vector
arrows out by the protractor scale and the tail of the vector arrows crossing the x-axis.

Checkpoint
How accurately can you construct these vectors? How accurately can you read
the protractor? Let these questions guide you when estimating the experimental
uncertainties in your angle measurements.

Don’t forget to record the units and the uncertainties of these angles in a table. While
you’re at it, record their sines and cosines to four significant digits beside the angles.

Begin with the trajectory with the closest dot spacing. Use a ruler to measure the distance
between two dots at least 3 cm apart and count the number of spaces, N , between these
two endpoints. Now measure the length of the same number, N , of spaces for the other
trajectories. Frequently, the dot closest to the collision along each of the pucks’ trajectories
might have occurred before or after the collision with equal probability. If you cannot be
certain whether the closest dot occurred before or after the collision, omit it from further
consideration. Also, once in a while the sparker skips a dot; you must count this skipped
dot to obtain correct measurements; circle the place you think the dot should be. As long
as the same number of spaces is used on all vectors, the interval (∆t = N

60 s) will cancel from
our calculations. Record the distances the three pucks moved in this time interval in a nice
table in your Data section. Don’t forget to estimate your measurement uncertainties and to
record your units. If your target trajectory before the collision was not a point, you will need
to ask your instructor to help you estimate its initial momentum so that you can include it
below as well.
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First, calculate the pucks’ speeds:

vp = ∆sp

∆t v′p =
∆s′p
∆t (8.7)

vt = ∆st

∆t
?= 0 v′t = ∆s′t

∆t (8.8)

and use these to compute the x and y components of each of the three (four?) momenta:

ppx = mpvp, ptx = mtvt cos θt
?= 0

p′px = mpv
′
p cos θ′p, p′tx = mtv

′
t cos θ′t

ppy = 0, pty = mtvt sin θt
?= 0

p′py = mpv
′
p sin θ′p, p′ty = mtv

′
t sin θ′t

and estimate their uncertainties using the appropriate uncertainty equations. We have
provided an Excel R© worksheet to propagate the uncertainties ‘2D Momentum.xlsx’ at

‘http://groups.physics.northwestern.edu/lab/’.

This is necessary since none of the formulas (Equations 2.4-2.8) accommodate trigonometric
functions. The student may also enter formulas and allow the spreadsheet to perform his
calculations of momentum components or he can simply enter the correct numbers. The
results may be printed or copied to a Word R© document for inclusion in the report.

Checkpoint

If these calculations were done correctly, all of the x components (except possibly
the initial target momentum) should be positive and the y components should have
opposite signs. This is insufficient to assure correctness but might indicate simple
mistakes.

Find the total momentum before and again after the collision using

px = ptx + ppx p′x = p′tx + p′px

py = ppy + pty p′y = p′ty + p′py.

Find the initial and final kinetic energies using

KE = 1
2mpv

2
p + 1

2mtv
2
t

KE ′ = 1
2mpv

′2
p + 1

2mtv
′2
t .
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8.4 Analysis

Can you say something about the frictional forces in the air puck system? Why do the three
velocity vectors not intersect at a point? Calculate the differences between 1) the initial
and final x momentum, 2) the initial and final y momentum, and 3) the initial and final
kinetic energy. Instead of computing the uncertainties in these total momentum components
in detail, we might accept that the y-momentum is conserved. In this case, the difference
between before and after the collision would entirely be due to our measurement uncertainties
(and other possible error sources...) Since the same measurements are used to compute the
x-momentum, we should expect about the same disagreement. If

∆px ≈ σy = ∆py (8.9)

within a factor of 2-3, then we can reasonably conclude that this line of thought supports
momentum conservation.

What does our study of statistics indicate about our experiment and the conservation
of momentum and kinetic energy?What external forces can you think of that might have
affected the momentum of one or both pucks? What forces (internal or external) can you
think of that might have performed work on one or both pucks? Can you think of any
evidence to support this? What other forms of energy might the initial kinetic energy have
become? What other sources of experimental error can you think of that we have not
incorporated into our total errors, σ? Is it likely in your estimation that these considerations
are large enough to explain the differences between the theories of momentum and energy
conservation and your data? How might sliding friction between the pucks (an internal force)
affect: 1) the intersections of the velocity lines, 2) the conservation of momentum, 3) the
conservation of kinetic energy, and 4) the rotation (and the rotational kinetic energy) of the
disks?

8.5 Report Guidelines

Is pbefore = pafter? How well can you make this comparison? (what is the uncertainty?) Did
you verify all 3D components? How might we apply this to alpha rays interacting with a
gold nucleus? Was kinetic energy conserved?

Your Lab Notebook should contain the following:

• A sketch of the observed collision.
• A table of puck masses, dot distances, and trajectory angles.
• Calculation of momentum (both components).
• Table of 6-8 before and after momentum components; total momentum components
before and after.

• A comparison of (x, y) momentum components complete with error analysis.
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• Kinetic energy (total) before and after.
• A comparison of the energies and their error analysis.
• Observations regarding error sources, external forces (impulses), other forms of energy
excited by the collision.

Your Report should contain the following:

• A complete description of the apparatus and method (or a suitable reference to previous
work and a description of similarities and differences).

• A schematic sketch of your collision.
• Data tables showing your raw data, your momentum components, and comparisons
between initial and final momentum components.

• Data table summarizing initial and final kinetic energies and their comparisons; can
be appended to previous table.

• Discussion of error sources, external forces, work, etc.
• Discussion introducing raw data and leading to total momentum components and
kinetic energy.

• A statement of conclusion telling what physics your data supports, contradicts, or
neither.

• Possible improvements.
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Experiment 7:
Newton’s Second Law for Rotational
Motion

Isaac Newton (1642 -1727) formalized the relationship between force and motion in his
Principia (published in 1687) in which he proposed that the acceleration of an object is
directly proportional to the net force acting on an object and inversely proportional to the
mass of the object. The Law is summarized in the succinct vector formula F = ma. This
law can be straightforwardly translated from a single particle to a collection of particles (an
object). This composite object can have its center of mass move, but it can also rotate (with
all constituent particles moving together) about an axis. In Classical Mechanics, Newton’s
Laws must still govern the motion of all of these particles that make the object. As such,
Newton’s Second Law can be generalized to rotating objects. For the rotation of a rigid
body about a fixed axis, Newton’s second law takes on the slightly different, yet similar,
form τ = Iα where these terms will be explained below.

9.1 Background

The measure of rotation is the angular position θ analogous to linear position x. The coun-
terpart of linear velocity v = ∆x/∆t is angular velocity ω = ∆θ/∆t. Angular acceleration
α = ∆ω/∆t is similar to linear acceleration a = ∆v/∆t.

When the measure of rotation is given in units of radians then the relationship between
linear terms and their rotational counterparts take the following forms: s = rθ, vT = rω,
aT = rα, where s is the arc length swept out by the radius vector rotating through the angle
θ and vT and aT are tangential velocity and tangential acceleration. r might point to any
particle in the object.

The rotational counterpart of force is torque, τ , defined in terms of the Force, F, and a
radius vector, r, which locates the point of application of the force with respect to the axis
of rotation,

τ = r× F (9.1)
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Newton’s Second Law takes the form
τ = Iα (9.2)

where I is called the moment of inertia and plays the role of inertial mass in rotating rigid
bodies. I depends not merely on the amount of mass rotating but also on how the mass is
distributed with respect to the axis of rotation. The total moment of inertia, I, of a body
consisting of a finite number of mass elements, mi, located by their distance from the axis
of rotation, ri, is given by

I =
N∑
i=1

mi r
2
i or I =

∫
M
r2 dm (9.3)

The moment of inertia of a disk of mass M and radius R is calculated as

Idisk = 1
2MR2 (9.4)

Checkpoint
Newton’s Second Law is fundamentally a vector relationship. If you think carefully
about the axis of rotation, can you modify the rotation law τ = Iα to be a vector
law? Analogous to linear motion, this vector description would perhaps make signs
and directions of torques a more intuitive concept for problem solving.

The motion of a rigid body can be described completely in terms of the linear equations
of motion of the center of mass of the object and the equations of rotational motion of the
body about its center of mass. We have previously studied the motion of the center of mass
of rigid bodies and in this laboratory we will quantitatively verify Newton’s Second Law in
it’s rotation form.

General Information
We emphasize that this is not a new law of physics. What we do now is also a direct
result of Newton’s Second Law but applied to all of the pieces that make up a rigid
body.

9.2 Apparatus

We will be using an air table for this experiment. Our version consists of a hollow aluminum
plate with small holes drilled into the upper surface. Compressed air is pumped into the
plate and released through the holes. This forms a cushion of air supporting a disk on a
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Figure 9.1: Sketch of lab apparatus showing the rotating disks, the thread spool that provides
torque, the weights that provide force, the compressed air controls, and the optical tachometer
that measures disks’ orientations.

nearly frictionless surface. The disk can rotate about a vertical axis with almost frictionless
rotational motion. A manifold of tubes and valves allows us to direct this compressed air
under the bottom disk only to allow both disks to rotate synchronously, between the two
disks only to allow only the top disk to rotate, or under both disks to allow the two disks to
rotate independently from each other.

Mounted on the disk is a spindle which has a string wound around it. The other end of
the string passes over a pulley at the edge of the lab table and has a weight holder attached to
the end of the string. Since the radius of the spindle separates the string’s tension force from
the disks’ center of rotation, the tension exerts a torque on the top disk and the spindle.
This torque causes the disk’s rotation to change at constant acceleration as described by
Equation (9.2).

Two optical encoders will count black and white stripes painted on the edges of the disks.
The stripes are illuminated by red LEDs selected to emit light of the color that generates
the best sensitivity for the encoders. Since there are 24 stripes, each is 360◦/24 = 15◦ wide.
By counting the stripes that pass, we measure the angle the disk rotates. By measuring the
time needed for a stripe to pass, we can compute a measured angular velocity. Differences
in angular velocity in the same time interval allow us also to compute a measured angular
acceleration.

All of these measurements and calculations are performed by an ‘Arduino’ microcontroller
circuit that has been mounted to the bottom of the apparatus main board. Ten times per
second, the Arduino also sends the latest time, position, velocity, and acceleration that it
measured for each of the two disks through the USB to the computer.

A computer terminal simulation program called “TeraTerm” will receive this data and
allow us to copy it and to paste it into Vernier Software’s Ga3 graphical analysis software.
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We will use Ga3 to plot the angular positions, angular velocities, and (possibly) angular
accelerations versus time and to fit them to kinematic models.

WARNING
Do not force the valves closed. Turn them off gently! The valves will fully close before
they stop turning.

WARNING
Do not drop the disks. They are heavy! Dropped from the tabletop, one might
easily break your foot. Furthermore, the dents, scratches, and dings reduce their
performance.

9.3 Procedure

First, remove the spindle and measure its diameter from the center of the string on either
side using the Vernier calipers. With the Vernier scale’s help, you can estimate the spindle’s
diameter to a small fraction of a millimeter. Record half this distance and half its estimated
uncertainty in your Data as the radius, r, needed to relate the string’s tension to the torque
that it exerts.

The tension, T , in the string is obtained from the mass on the weight holder as well
as the mass of the holder itself. Multiply this mass by the acceleration of gravity. Since
the string leaves the spindle at right angles to the radius (see Figure 9.2), the torque is the
simple product of the tension and the radius of the spindle. Equation (9.1) reduces to

|τττ | = |r| |F| = rgm (9.5)

Since neither r nor g will change today, you might find it convenient to store their product
in a calculator memory.

9.3.1 Angular Acceleration Proportional to Unbalanced External
Torque

In this experiment we will measure the angular acceleration of one disk under conditions of
varying torques. This will allow us to decide whether angular acceleration is indeed directly
proportional to torque and also whether the constant of proportionality is the disk’s moment
of inertia. Choose an initial weight for the hanging mass between 2 g and 30 g.

For each run start by winding the string on the spindle such that the weight holder is
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Spindle

Disk

String

PulleyRadius of Spindle

Tension

Figure 9.2: Top view of apparatus showing how string tension is converted to torque by the
spindle. Note the right angle between the radius vector and the tension force.

hanging over the pulley near the top of its travel and holding the disk keeps it there. If the
string is not straight on the pulley, try winding the string in the opposite direction; viewed
from above, the disk should rotate clockwise after being released from rest. Be sure that
the string does not touch anything except the spindle, the pulley, and the mass hanger since
any resulting friction will skew your results. Be sure the TeraTerm program is ready to take
data. Press any keyboard key and release the disk. The Arduino will send data for 10 s and
then stop automatically. This data will auto-scroll up TeraTerm’s window. Once the mass
reaches its bottom, stop the disk and rewind the string for the next run.

Use the mouse to “Edit/Select All” in TeraTerm. Use the mouse to “Edit/Copy Table”
in TeraTerm. Save ‘Angular Momentum.ga3’ from the website at

‘http://groups.physics.northwestern.edu/lab/’

and execute it using the blue arrow at Firefox’ upper right. Click Row 1 under the Time
column and paste your data with ctrl+v or “Edit/Paste”. Save your data in Ga3 format,
analyze the data with relevant curve fit(s) and save the data again. Record the angular
acceleration, uncertainty, and units in an appropriate data table. Delete the old data from
TeraTerm using “Edit/Clear Buffer”. Repeat this procedure until you have at least five
combinations of hanging mass (to get torque) vs. the resulting angular acceleration. The
measured masses of the weights and weight holder is shown in Table 5.1.

Once data from all five torques has been gathered, click the down triangle beside “1: Kine-
matics” on the toolbar and select “2: v Torque” instead. This changes Ga3’s display page
so that now your data table and graph should be ready for you to enter each total hanging
mass and the corresponding angular acceleration. Each pair of entries automatically plots
the point on the graph.
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Figure 9.3: Example data showing disk angle vs. time and angular speed vs. time. We
are interested only in the constant acceleration portion prior to six seconds; this cut-off time
will vary. After this time the weights are lifted causing constant deceleration α < 0). If the
string is long enough, the weights will be at rest on the floor for a constant velocity period
between these.

Helpful Tip
If you want, you can switch back and forth between these two pages. Analyze a
parabola or a line to get acceleration on page “1: Kinematics” and then switch to page
“2: v Torque” to add the acceleration and hanging mass to the plot. This strategy will
immediately alert you to a bad data point so that you can retake the data immediately.

Once all five data points have been plotted, drag the mouse cursor across the graph to
select all five points, “Analyze/Curve Fit.../Proportional”, “Try Fit”, and if it looks good
“OK”. The constant of proportionality (A) should be the moment of inertia of your disk
about the rotation axis. If the uncertainty is not shown, right-click the parameters box, “Fit
Properties...”, and enable “Show Uncertainties”.

Record the slope of the best fit line, the units of the slope, and the uncertainty of
the slope. Determine the moment of inertia of the disk by measuring the radius of the
disk and calculating the moment using the formula for moment of inertia of a disk given
in Equation (9.4). (The aluminum disk has mass Maluminum = (0.517 ± 0.001) kg and the
spindle has mass Mspindle = (13.6± 0.1) g.

WARNING
When weighing the disks, place the disk gently on the scale or you will break the scale’s
force sensor.
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Figure 9.4: Example data with curve fits. The angle vs. time data is parabolic and the
speed vs. time data is linear. The fit to angle is more accurate and precise; however, the
‘A± δA’ parameter must be doubled in this case.

Use their respective masses and radii in Equation (9.4) and then add the results. You
might find that the spindle and the pulley are negligible relative to the disk and its uncer-
tainty.) Speaking of uncertainty in calculated moment of inertia, we can find it from the
uncertainties in R and M . Review Chapter 2 to learn to do this.

9.3.2 Angular Acceleration Inversely Proportional to the Moment
of Inertia

In this experiment we will measure the angular acceleration of the disk with a fixed hanging
weight at the end of the string. We will do this several times while varying the moment of
inertia of the disk. This will show whether angular acceleration is inversely proportional to
moment of inertia and whether the constant of proportionality is the torque. Obtain values
for the angular acceleration of the combination of disks for each of four values of moments
of inertia using Equation (9.4).

Three disks of exactly the same dimensions are provided; two are made from steel and one
is made from aluminum. The mass of the steel disks is Msteel = (1.480± 0.001) kg and the
mass of the aluminum disk is Maluminum = (0.517± 0.001) kg . The two different masses give
two moments of inertia, but the apparatus is designed to allow only the aluminum, only the
steel, the steel and aluminum, or two steel disks to spin for a total of four different moments
of inertia. Place the heaviest weight used in Section 9.3.1 above on the weight hanger. Since
the combination of this mass and only the aluminum disk was measured above, it is not
necessary to repeat that experiment; merely use the data gathered above. Use this same
hanging weight to measure the angular acceleration of the remaining three combinations of
disks (aluminum and steel, steel alone, and two steel disks).

Always reattached the spindle to the top disk. Make a table of the results. Enter the data
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into Ga3 page “3: v Inertia”. Do your data lie in a straight line? If not, can you rearrange
Equation (9.2) to make your plot linear? You might find that a suitable calculated column is
provided. . . Once again fit to a proportionality model; review the end of Section 9.3.1 if you
don’t recall how to do that. Record the slope, its uncertainty, and its units in your notebook;
this is the torque that Newton’s Second Law predicts for the weight on your string.

Use Equation (9.1), the spindle radius, and the mass hanging from the string to calculate
a measured torque (slope of the line). The computer has already computed this torque on
page “2: v Torque”; but it might be a good idea to check its work. Use the uncertainties in
hanging mass and spindle radius to estimate the uncertainty in this prediction. Don’t forget
to include your units as well.

An even more thorough procedure would be to recognize that the power, n, of the
moment of inertia relation In can be obtained by applying the natural log to the expression
α = τIn to give ln(α) = ln(τ) + n ln(I). This is the equation of a straight line (y = a+ bx;
a = y-intercept, b = slope) where n is slope of the line and ln(τ) is the y-intercept. You can
take the natural log (ln[ ]) of your angular acceleration – moment of inertia pairs and feed
them into Ga3. Ga3 can then fit them to a straight line, “a + n * x”, from which you can
deduce the power, n, and the torque, ea. If our hypothesis is correct, then the ideal exponent
should be n = −1. Selecting “Analysis/Regression” from the menu will provide uncertainties
for the fit parameters. Alternatively, Ga3 can fit your original data to the power law directly
if you enter “T * x^ n” into the fit model edit box. The program will do the calculation for
you. This is so common that a “Power law” fit y = AxB is already provided.

9.4 Analysis

What does statistics say about how well our data agrees with Newton’s second law in
rotational form? Record reasons for any discrepancies or deviations from your best fit lines
in your discussion of results. Can you think of any forces or torques that might exist in
reality and that we have omitted from your analysis?

Can you think of sources of error that we have not incorporated into your total errors?
Is the string tension truly T = mg or is there a correction that we should have applied? Are
the data points we gave Ga3 linear? What does this imply about Newton’s second law?

9.5 Report Guidelines

Your Lab Notebook should contain the following:

• Measurements of the spindle and disk radii and masses of disks and weights (with
uncertainties and units).

• Calculation of torque (and uncertainty?).
• Example of ω vs. t (or θ vs. t) and measurement of α.
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• Calculation of the relevant moments of inertia (and uncertainty?).
• Plots of the angular acceleration vs. torque and the angular acceleration vs. moments
of inertia.

• Differences and expected errors.
• Other thoughts and observations.

We expect that students should already have begun learning to compose reports for
themselves. We do advise that they keep Appendix E, their past reports, their graders’
comments, and the example report foremost in their attention.
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Chapter 10

Experiment 8:
Oscillations and the Pendulum

Periodic motion is one of the most important concepts in physics, and it is fitting that
we end the first quarter of a physics lab on mechanics by setting the stage for describing
a phenomenon that prevails in essentially all areas of physics. Here, we will treat the
mechanical motion of a physical pendulum. If you continue in physics, it will become clear
that this motion is directly analogous to a great many physical processes, and the description
of oscillations is of fundamental importance.

Historical Aside
Oscillations truly are ubiquitous in physics. A thermodynamic system near equilibrium
can oscillate. Vibrations of a solid are oscillations. Light can be considered as
oscillations of the electromagnetic field. Quantum mechanics is described by oscillating
wavefunctions. Atomic clocks are periodic oscillations of atomic states. The list goes
on and on. . .

In this laboratory you will observe the motion of a pendulum to decide whether New-
ton’s laws predict its motion correctly. You will time the period of oscillation using two
technologies, you will evaluate the quality of these measurements, and you will consider
how measurement strategies might be improved. This lab relies heavily on what you have
learned in the third lab about torque and moment of inertia. If you are not thoroughly
familiar with these concepts, read the previous lab manual chapter again before attending
this lab. We will further begin to understand how oscillations and periodic motion can result
from conservative force(s) acting on a mass.

10.1 Background

A pendulum is a rigid body mounted on a fixed horizontal axis, about which it is free to
rotate under the influence of gravity. In the schematic representation of the pendulum shown

101



CHAPTER 10: EXPERIMENT 8

Figure 10.1: Sketch of a physical pendulum showing relevant physical parameters.

in Figure 10.1, O represents a point through which the axis of rotation passes, and P is the
center of mass. The line OP makes an instantaneous angle, θ, with the vertical line, which
gives the position of equilibrium of the pendulum. The weight of the pendulum of mass, m,
is the force applied to its CM. A torque of magnitude

τ = |τττ | = |d×mg| = mgd sin θ (10.1)

will force the pendulum to rotate around the axis through O. The torque direction is
determined by the “right hand” rule. The CM will describe an arc of a circle so the motion
is a circular one. The angle θ will fully describe the position of the pendulum with respect to
its position of equilibrium as time goes on. Because one parameter, θ, is sufficient to describe
the motion, it is said that the system has one ‘degree of freedom’. (The number of degrees of
freedom of a system is the minimum number of parameters necessary to describe its motion.
Linear motion along the x-axis is characterized by 1 parameter: the position x; this motion
has one degree of freedom. Translational motion in a plane can be characterized by two
parameters, (x, y); this motion has two degrees of freedom, etc.). To derive the equation of
motion, [θ(t)], we must solve Newton’s law for rotational motion using the expression for
torque acting on a pendulum:

I
d2θ

dt2 = Iα = τ = −mgd sin θ (10.2)

We make the assumption that the angle of oscillation, θ, is small so that sin θ can be replaced
by θ in radians. Then Newton’s law for the equation of motion of the pendulum is

d2θ

dt2 + mgd

I
θ = 0 (10.3)

This differential equation can be solved and has solution given by

θ(t) = θmax cos(ωt+ ϕ) where ω2 = mgd

I
(10.4)
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Since the argument of cos has radian units and parameter t has units of seconds (s), parameter
ω must have units rad/s. From the units of m, g, d, and I, we see that ω has units 1/s;
however, radians are arc length/radius whose length units cancel from the division resolving
this seeming contradiction. We must be careful to distinguish between the parameter ω and
the angular velocity of the pendulum’s rigid body. We call parameter ω angular (or radian)
frequency, which enhances the tendency to confuse; however, ω is the angular frequency of
cosine’s argument only in this case even though in other situations the rigid body might
spin continuously with a constant angular velocity of the other sort instead of oscillating
back and forth as in this case. It is, perhaps, unfortunate that ω has these two different
definitions, but it is also because both kinds of motion utilize the sine and cosine functions
for their descriptions that we name this parameter ω for both kinds of motion. Constants
θmax and ϕ are constants of integration and can be uniquely determined from the angular
position and angular velocity of the pendulum at t = 0. These initial conditions are the
angular position, θ(0), and the angular velocity, dθ

dt (0), when the clock was first started.
These integration constants can sometimes be determined uniquely from angular position
specified at two different times, θ(t0) and θ(t1).

This equation describes harmonic motion, and the pendulum is called a harmonic oscil-
lator. This is true only when the oscillations are small. We might note that replacing cos by
sin also solves the problem and one frequently sees this alternate representation. Since sin
and cos are each periodic with period 2π rad, we can introduce a period of time, T , that is
the period of our equation of motion,

2π = ωT0 so T0 = 2π
ω

= 2π
√

I

mgd
(10.5)

We use T0 for the motion of a pendulum that is harmonic. . . only for θmax << 1 rad; however,
the motion is periodic for θmax < π rad. We use T for this more general periodic motion.
When we discuss periodic motion, we describe it using its angular frequency and its period;
however, we also sometimes describe it using its frequency, f , defined to be how many back
and forth oscillations occur in each second of time. It is perhaps not surprising that any
one of these three parameters completely determines this aspect of periodic motion and that
there are relations that allow us to determine all three once any one becomes known,

ω = 2πf and f = 1
T

(10.6)

We will not prove so here, but the period of a pendulum’s motion for all amplitudes is given
by

T = 2T0

π
K

(
sin θmax

2

)
≈ T0 + aθ2

max (10.7)

The special function K(x) is the complete elliptic function of the first kind; for amplitudes
larger than π

4 or so, we will need to evaluate this function instead of using the approximation
in cases where the period needs to be predicted accurately.

The pendula shown in Figure 10.1 and Figure 10.3 are called physical pendula. Often the
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Mass m

d

Figure 10.2: A sketch of a simple pendulum made of a single point mass.

actual pendulum consists of a long lightweight bar or cord, which serves as a support for a
small, massive bob. The idealization of this into a point mass at the end of a weightless rod
of length d is called a simple pendulum. In a simple pendulum, the length of the support, d
(Figure 10.2), becomes identical to the distance between the axis of rotation and the center of
mass of Figure 10.1. The moment of inertia, I, equals md2 for a point mass. Equation (10.5)
for the period then becomes

Tsimple = 2π
√
d

g
(10.8)

The period of motion of a pendulum for small amplitudes is therefore independent of its
amplitude, and depends only on the geometry of the pendulum and on the local value of
g, the acceleration due to gravity. Pendula have therefore been used as the key element in
clocks, or inversely to measure g or to measure the moment of inertia, I, of an object.

The analysis of the pendulum motion based on energy considerations is very interesting.
When you displace the bob from its vertical position of equilibrium to some angle θ, you do
a certain amount of work. This work is stored in the pendulum in the form of gravitational
potential energy. When you now release the pendulum this energy oscillates from potential
energy (parameterized by position) into kinetic energy (parameterized by speed) as it swings
back and forth. The friction of the pendulum, in the air and at the point of suspension, will
slowly dissipate the energy. You can view the oscillation as a cyclic transformation of energy
from one form (potential) into another (kinetic) and back again. It is indeed always true
in physics that oscillations (in mechanical systems, electrical circuits, or in optical devices)
take place only when you have two energy reservoirs, and a mechanism whereby energy is
transferred from one system to the other, repeatedly back and forth, until the motion is
completely damped out.
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10.2 Apparatus

The experimental apparatus for this experiment consists of two copies of a mass on a bar
that each act as a physical pendulum (Figure 10.3). These bars are attached to a metal
frame. Angle demarcations are present to read the pendulum amplitudes.

WARNING
Do not force the pendulum in any direction other than the plane of oscillation. It will
break the suspension!

WARNING
Do not move the pendulum frame. The pendulum frame is level. Unstable oscillation
will break the suspension!

We will measure the pendulum’s period using a stopwatch application whose link may
be found on the lab’s website.

Next, we will measure the period automatically using Pasco’s Capstone program and
850 Universal Interface, which is connected to a photoelectric system that includes a light
emitting diode (LED) and a phototransistor. These two devices are located inside the two
gold cylinders mounted on the pendulum base. The LED generates a light beam which hits
the phototransistor. When the pendulum swings between the LED and phototransistor, it
blocks the beam, separates the LED - phototransistor couple, and starts Capstone’s clock.
After a complete oscillation the pendulum will interrupt the beam and signal Capstone to
measure the past cycle and to begin a new cycle. The photocouple was developed and built in
the electronics shop of the High Energy Physics group at Northwestern University especially
for this lab.

10.3 Procedure

10.3.1 Calculate the Moment of Inertia

Calculate the mass, m, and the moment of inertia, I, of one of the two identical pendula of
your setup. Each pendulum, shown in Figure 10.3, consists of a shaft and a bob, both made
of aluminum, with cylindrical shape. The moment of inertia of the entire pendulum will be
the sum of the contributions from the shaft and from the bob,

Ipendulum = Ishaft + Ibob (10.9)
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Figure 10.3: Illustration of the pendulum in our experiment.

Appendix 10.6 has a drawing showing the physical dimensions of the pendula and shows how
to calculate Ibob as an example. To determine Ipendulum you must now calculate Ishaft. In
order to have enough time during the lab to complete the experiments, these calculations
must be completed before you come to the lab. (Note that all of the information is
supplied in the appendix.)

10.3.2 Predict the Period

Calculate the period, T0, of one of the two identical pendula of your setup using Equa-
tion (10.5) for a physical pendulum. To calculate T0, you need the mass, m, and the
moment of inertia, I, of the pendulum. You also need to know the distance, d, between
the axis of rotation and the CM of the shaft-bob system. Appendix 10.6 also shows you how
to determine the location of the CM.

Helpful Tip
Perform these calculations at home prior to attending the lab.

10.3.3 Simple Pendulum Period

Helpful Tip
Perform these calculations at home prior to attending the lab.
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Calculate the period, Tsimple, of one of the two identical pendula in your setup, using
Equation (10.8) for the simple pendulum. Again, Tsimple and T0 should be calculated before
the lab, with all the information needed available in Appendix 10.6.

10.3.4 Time the Pendulum Period

WARNING
To prevent damaging the suspension, do not displace the pendulum outside
of the vertical plane. Do not put marks on the scale indicating the angle
of displacement, θmax.

Measure the period, T , of one of the two identical pendula of your setup. First, access the
stopwatch application from the lab website. How might you use the stopwatch to measure
one period of the pendulum’s motion? Practice this strategy a few times and then measure
the period nine times. Take turns with your partner(s) to minimize any systematic bias to
start/stop early or late. Enter these measurements into Ga3, plot them, and evaluate their
mean and standard deviation. What do you imagine to be the primary reason why your
measurements vary from try to try?

Can you invent a strategy to improve your measurement of period? Such a strategy
must reduce the effect of your primary error. For example, you might envision dividing your
primary error among several periods instead of concentrating it all in a single period. If
the period itself varies substantially, this strategy will fail or (possibly) mislead you. Once
you invent a strategy, use this method to measure the period nine more times, enter these
measurements into Ga3, plot them, and evaluate their mean and standard deviation.

The standard deviation is the typical uncertainty in each single measurement. Knowing
this compare the two standard deviations above and decide whether your strategy succeeded.
If you failed to reduce your uncertainty in period by 5× to 10×, improve your strategy further
or try to invent a more effective strategy. Once you have a strategy that works well, express
your best estimate of measured period as

T = (m± sm)U. (10.10)

If necessary, review Section 2.6.1 to learn how to do this.

10.3.5 Automated Timing: The Photo-gate

Let the computer automatically measure the period, Tθ. We first need to execute the
‘Pendulum.cap’ from the lab’s website. This should setup Capstone to gather pendulum
period. Hold the pendulum at rest at the desired oscillation amplitude and click the
“Record” button at the bottom left; release the pendulum and allow it to oscillate for at

107



CHAPTER 10: EXPERIMENT 8

least 10 complete periods. If Capstone is configured correctly, it will plot the period for each
oscillation on the y-axis and the time the measurement was completed on the x-axis. Press
“Stop” after at least 10 data points are gathered to complete this sequence of measurements.
The “Record” button changes into the “Stop” button and vice versa when it is clicked.

Hover the mouse cursor over the graph so that the toolbar will appear at the top. The
toolbar will contain an icon ( ) for selecting data points. Click this selector button to bring
up a pale area surrounded by eight sizing squares. You can drag the selected area with
the mouse and you can change its shape by dragging one of the sizing squares. Shape and
position the selected area so that all of the data points are selected. Compute the statistics
for this data using the statistics button ( ) on the toolbar. If the mean (T̄θ), the standard
deviation (sTθ), and the number of data points (N) are not all displayed, click the little down
triangle to the right of the ( ) button and check all that are absent. You may optionally
un-check those statistics that we do not need.

Use these statistics to record the mean and the deviation of the mean

T =
(
T̄ ± sT√

N

)
U (10.11)

If you need more significant digits, you can right-click the parameters box, ‘Properties. . . ’,
and change the significant digits that are displayed. Round the uncertainty to one-two
significant digits and round the mean to match.

We might imagine that our data could be described by a simple pendulum. The data in
the Appendix gives d = (0.613± 0.001)m. Use this and Equation (10.8) to predict a simple
pendulum period and estimate its uncertainty. Don’t forget to include the units for your
predicted period.

10.3.6 Extrapolate to Zero Amplitude

Enter your data table into Vernier Software’s Ga3 graphical analysis program. Double-click
the column headers to correct the column labels and to add correct units. Plot the periods
on the y-axis and the amplitudes on the x-axis. Draw a box around the data points with
the mouse. Once all data points are selected, “Analyze/Curve Fit. . . ” and fit the data to
Equation (10.7). Scroll to the last few fit models and look for ‘Pendulum’. If you find it,
verify the function to be

T0 + a * x ˆ 2 (10.12)

If the equation is anything else, click its radio button, delete it, create a new fit function,
type Expression 10.12 into the edit box, type “Pendulum” into the name, and press “OK”.
Now, select the ‘Pendulum’ function by clicking its radio control and “Try Fit”. If the model
curve passes through your data points, “OK”. If the fitting parameter T0’s uncertainty is
not displayed, right-click on the parameters box, “Fit Properties. . . ”, and select “Show
Uncertainties”. Record your T0, its uncertainty, and its units in your notebook. This is an
extrapolated estimate for the limit of your pendulum’s period as its amplitude approaches
zero. In this limit, sin θ = θ exactly; and Equations (10.2) and (10.3) are exactly the same.
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10.3.7 Coupled Pendula

Helpful Tip
This section describes a very advanced experiment. We include it for the Integrated
Sciences Program and to explain the purpose of the unused pendulum.

In nature there are many fascinating examples of systems which have two degrees of
freedom (this means that two parameters are sufficient to describe the time dependence of
the motion).

General Information
Some of the most beautiful examples of coupled oscillators involve molecules (for
instance, ammonia NH3) and elementary particles (the system of neutral K◦, K̄◦
mesons). To study them thoroughly requires a knowledge of quantum mechanics.
Many examples of coupled systems with two degrees of freedom can also be found in
electrical circuits.

There is no set procedure for a coupled pendulum experiment provided here. If you have
time in the lab after completing your data analysis, you may explore this more complicated
system with two degrees of freedom. Here are some thoughts to consider with two pendula:

• You have a system of two pendula. How many different, distinct “modes” of oscilla-
tion can you identify? Would ‘symmetric’ and ‘antisymmetric’ have any meaning in
describing the modes you identify?

• How can you make the system oscillate in one or the other mode?
• Which is larger: the period of the symmetric or antisymmetric mode?

10.4 Analysis

A thorough consideration of the dimensions in the appendix and of their uncertainties leads
to a predicted T0 = (1.5549± 0.0012) s.

Does Equation (10.4) describe the pendulum’s motion that you observed? What does
your data say about the periods of pendula? Is this true for both the simple and the physical
pendulum? Use complete sentences and define all symbols in your equation(s). Find the
difference between the value of T0 predicted by Equation (10.5) and the value measured.
Compare your measured T0 to the simple pendulum prediction of Equation (10.8). Which
periods (if either) agree with your best measurement?

What do your observations say about the equation of motion we found using our math-
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ematical studies of differential equations? Do you think it likely that a function of time
chosen at random would perform as well? If so, go ahead and produce one.

Can you think of any forces (i.e. torques) that acted on the pendulum (other than the
gravity that we included in our equation of motion)? What other forms of energy might
the original gravitational potential energy have become? What might be the effect of these
forces (torques) on our pendulum’s motion?

What sources of experimental error have we omitted from the total error calculated
above? For each one elaborate on the probability that it is negligibly small compared to
those we have included and on the ease with which its error might be evaluated numerically.
Consider the complexity of the pendulum’s motion and prediction using Newton’s second
law of rotational dynamics while discussing the accuracy and efficacy of Newton’s second
law.

10.5 Report Guidelines

Your Lab Notebook should contain the following:

• Details about the stopclock, pendulum, photogate, and timer.
• A calculation of the moment of inertia of the physical pendulum.
• A calculation of the periods for the physical pendulum and the simple pendulum.
• Stopclock measurements of the pendulum period.
• Stastics of stopclock measurements.
• A table of period vs. amplitude.
• A plot of period vs. amplitude (with fit to model).
• Uncertainty estimates and discussion.
• Comparison of predicted period of simple and physical pendulum period to measured
T0; respective error analysis.

• Discussion of losses and other error sources.

We expect that students should already have begun learning to compose reports for
themselves. We do advise that they keep Appendix E, their past reports, their graders’
comments, and the example report foremost in their attention.
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10.6 APPENDIX: Moment of Inertia

10.6.1 Moment of Inertia

Axis of Rotation

CM
R

h

Axis of Rotation

CM

X

(a)

(b)

Figure 10.4: Drawing detailing coordi-
nates of this pendulum.

Figure 10.4 is a drawing showing the defini-
tions and shape of the pendulum used in this
laboratory experiment. Figure 10.5 shows all
of the relevant dimensions of the pendulum
components. The concept of moment of inertia
was introduced in the seventh lab. The moment
of inertia of a cylinder whose base is a circle of
radius, R, and whose height is h, is given in
Equation (10.13), in the case that the cylinder
is rotating around an axis through its center of
mass and perpendicular to the symmetry axis
of the cylinder, as shown in Figure 10.4(a).

ICM = M

12 (3R2 + h2) (10.13)

If the axis of rotation is parallel to the one in
Figure 10.4a, but at a distance X as shown
in Figure 10.4b, then the parallel axis theorem
gives

I = ICM +MX2 (10.14)

(M is the mass of the cylinder). If the bob were
a point mass (the radius of a point is zero), then
ICM = 0 and this becomes the moment of inertia
of a simple pendulum. The moment of inertia of
the physical pendulum is

Ipendulum = Ishaft + Ibob (10.15)

General Information
Any strategy that allows the rotation of the object to be neglected will result in a
simple pendulum. One example includes isolating the massive bob from the light
shaft using quality (‘frictionless’) bearings. Another is to utilize bifilar suspension to
prevent rotation.
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10.6.2 The Bob

We calculate as an example the bob’s moment of inertia, Ibob. The bob has a cylindrical
shape with radius R and it has a hole of radius r (for the shaft) along its symmetry axis.
The I of the bob, relative to its CM, is calculated with Equation (10.13) as illustrated in
Figure 10.6. The bob is a solid cylinder with a hole drilled down its axis so its moment
of inertia is the moment of inertia of a solid cylinder minus the moment of inertia of the
material that was drilled out of the hole.

To calculate these quantities (Isolid and Ihole) we need the mass of the two aluminum cylin-
ders, their radii, and their height. The dimensions of the two cylinders are included in Fig-
ure 10.5 and the mass density of aluminum can be found in tables to be ρAl = 2.7× 103 kg/m3.

Axis of Rotation
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5
 m

m

3.97 mm6
1
3

 m
m
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of Mass

7
1

1
 m

m

25.4 mm

9
5

.3
 m

m

Shaft

Bob

Figure 10.5: Illustration of
the pendulum in our experiment,
showing relevant dimensions.

Since density is defined to be mass/volume, we can find the
masses of the cylinders from their volumes and aluminum’s
density:

Msolid = ρVsolid = ρπR2h

= (2.7× 103 kg/m3)π(2.54× 10−2 m)2(0.0953 m)
= 0.52152 kg

is the mass of the solid cylinder before the hole was drilled
and

Mhole = ρVhole = ρπR2
holeh

= (2.7× 103 kg/m3)π(3.97× 10−3 m)2(0.0953 m)
= 0.01274 kg

is the mass removed to drill the hole. We can now
use these masses, the dimensions in Figure 10.5, and
Equation (10.13) to find the moments of inertia of these
two cylinders about their centers-of-mass;

Isolid = Msolid

12 (3R2
solid + h2)

= 0.52152 kg
12 [3(2.54× 10−2 m)2 + (0.0953 m)2]

= 4.7882× 10−4 kg m2

for the solid cylinder and

Ihole = Mhole

12 (3R2
hole + h2)

= 0.01274 kg
12 [3(3.97× 10−3 m)2 + (0.0953 m)2]

= 9.692× 10−6 kg m2
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Ibob,solid Ibob,hole Ibob
Figure 10.6: Illustration of the strategy to calculate the moment of inertia of a cylinder
with coaxial hole.

if the mass that was removed from the hole were to be re-assembled into its original cylinder.
If we review Figure 10.6 we can find the moment of inertia of the bob containing the hole as
it stands by subtracting the moment of inertia of the material that filled the hole prior to
drilling from the moment of inertia of the solid cylinder;

ICM
bob = Isolid − Ihole = (4.7882− 0.0969)× 10−4 kg m2 = 4.691× 10−4 kg m2 (10.16)

is the moment of inertia of the bob about its own center-of-mass. Unfortunately, the axis
of rotation is some distance, Xbob, away from the bob’s center-of-mass and perpendicular
to the axis of the bob’s axis of symmetry. Recall that Equation (10.13) also applies to an
axis perpendicular to the cylinders’ axis of symmetry (see Figure 10.4) so that the axis of
rotation is parallel to the axis for which ICM

bob is the moment of inertia for the bob. This is
the required condition for us to use the parallel axis theorem in Equation (10.15). The mass
that we need to use is the mass of the bob not the mass of the solid cylinder and not the
mass of the hole but, rather, the difference between them,

Mbob = Msolid −Mhole = 0.52152 kg− 0.01274 kg = 0.50878 kg

and

Ibob = ICM
bob +MbobX

2
bob = 4.691× 10−4 kg m2 + (0.50878 kg)(0.613 m)2 = 0.1917 kg m2

is the moment of inertia of the bob about the axis of rotation.

Checkpoint

We might note that after all of our hard work, ICM
bob only changed the least significant

digit from 2 to 7; the vast bulk of the moment of inertia of the bob is due to the center-
of-mass being located far from the axis of rotation. For most rotational systems we
will not need so much accuracy in which case we could have treated the bob as a
point mass. It turns out, however, that oscillating systems like our pendulum are
remarkably accurate so that even this miniscule mistake would have resulted in a
noticeable oversight. The accuracy of a pendulum is the reason they are chosen to be
time standards for clocks.
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10.6.3 The Shaft

It is now left as an exercise for the student to perform a subset of this exercise to
calculate the moment of inertia of the cylindrical shaft about the rotation axis and to add
that value to the moment of inertia of the bob shown above. Since the shaft is a simple solid
cylinder, it will not be necessary to subtract out a hole; the remaining steps will be required,
however.

10.6.4 Calculating the Center of Mass

Consider the torques on a continuous or distributed mass system as shown in Figure 10.1.
Each piece of mass experiences a gravitational force and tends to rotate the rigid body about
the axis of rotation. Larger masses will experience larger weights and correspondingly larger
torques. Continuous bodies can be treated using calculus; however, we are also aware now
that all matter is made from atoms and molecules so that we can also treat each atom as a
point particle exactly like we will do here. Since each particle experiences a torque due to
its gravity, we can find the total torque by adding all of these torques together,

τ =
N∑
i=1

ximig (10.17)

We might also consider the possibility that we can pretend all of the masses were at the
same point and ask the question “Where should that point be if its weight is to provide the
same torque as the extended body?” In this case the torque is simply

xCMMg = τ =
N∑
i=1

ximig (10.18)

where M = ∑N
i=1 mi is the total mass. For these torques to be equal we must have

xCM = 1
M

N∑
i=1

mixi (10.19)

We call xCM the “center of mass” or the “center of gravity” of the object. Referring to
Figure 10.1 again, we admit the possibility that the axis of rotation might be in the left-
right direction instead of into the page. In this case the torques about the axis of rotation
would concern the y coordinate instead of x; however, exactly the same line of reasoning
would have led us to

yCM = 1
M

N∑
i=1

miyi (10.20)
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in that case. We also note that where we place the mass along the vertical line passing
through (x, y) does not affect the torque about either axis, so we might as well define

zCM = 1
M

N∑
i=1

mizi (10.21)

as well. In fact, we can combine all of these into a single vector equation

rCM = 1
M

N∑
i=1

miri. (10.22)

We need to use Equation (10.5) to predict the period of our pendulum, but we do not
know yet the value of parameter d. Studying Figure 10.1, however, in view of the discussion
of center of mass above we see that d = |rCM|. Figure 10.5 details the locations of the
centers-of-mass of the two masses making up our pendulum so we can find that

d = Mbob xbob +Mshaft xshaft

Mbob +Mshaft

= (0.50878 kg)(0.613 m) + (0.09505 kg)(0.3492 m)
0.50878 kg + 0.09505 kg

= 0.57147 m (10.23)

The CM of the pendulum is just 4 cm above the CM of the bob. If you had substituted the
CM of the bob for that of the pendulum (bob + shaft), the error would have been small.
The accuracy of our measurement would have detected this discrepancy, however.
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Appendix A

Physical Units

In science, we describe processes in Nature using mathematics. Math is very concise,
structured, and adaptable so that once we have mathematical models that mimic Nature, we
can make very specific and accurate predictions about what will happen in other situations.
Engineers use this fact to very good effect to obtain useful results in society.

Physical laws are usually expressed in terms of physical quantities that have dimensions.
The definition of units that are used to describe these dimensions is the raison d’être of the
National Institute of Standards and Technology (NIST). An example that we all should have
seen by now is Newton’s second law,

F(a) = ma (A.1)

Given a mass whose “value” is m, to get motion whose acceleration is a we must apply a
push or a pull whose “value” is F. Since a push or a pull is an entirely different entity than
a mass, we include in F a different multiplicative variable (N, dyne, pounds, etc.) than we
include in m’s value (kg, g, slugs, etc.). The specific point that we need to address now is
“What about the parameter a?” What intrinsic multiplicative variable should we include
in a’s “value” so that the model is mathematically self-consistent? We can use algebra to
figure this out.

Let the unknown units be x and consider the specific case of F = 1N and m = 1 kg . To
solve our problem we substitute these values into the model and solve for our unknown, x,

1N = F = ma = (1 kg)(1x) so x = N
kg (A.2)

If we multiply all of a’s pure numbers by the units N/kg , then the unknowns (and unknow-
ables) that we call units will always cancel in such a way that forces will always have units N,
masses will always have units kg, and accelerations will always have units N/kg. Because all
of these are always true, our model is mathematically self-consistent. Of course, kinematics
has taught us that N/kg = m/s2 and that we can also determine acceleration by measuring
the distances that objects move, the rates that objects move, and the times needed for these
motions and rates to occur. One of the most beautiful and compelling aspects of physics is
the frequency that a single physical entity (acceleration in this case) can be determined in
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more than one way (sometimes many, many more than one).
Let us now move on to a more general case. Let us pretend that we have developed a

model represented by
f(x) = ax+ bx3 (A.3)

Without more information the units of f , x, a, and b are ambiguous; so, let us stipulate that
f is force (N) and that x is position (m). Is this enough information for us to determine
the units of a and b? Our first instinct might be to answer that “No, one equation cannot
yield two unknowns”; however, the rules of algebra must be obeyed as well. When we add
the two quantities ax and bx3, they must have the same units. Furthermore, these common
units will be assigned to f , so the results of these multiplications had better yield units of
N! Now our problem has reduced to exactly the same problem as we solved above; we just
have to solve it twice in the present case. Let A be the units of a, let B be the units of b,
and substitute into the model:

1N = f = ax = (1A)(1m) so A = N
m = kg

s2 (A.4)

1N = f = bx3 = (1B)(1m)3 so B = N
m3 = kg

s2 m2 (A.5)

Models having any number of terms can be handled in exactly this same way; we just have to
solve the problem once for each term as above. Most students will also soon find short-cuts
that will make this much more expedient than it may seem just now.

Converting units

Before looking at more complex situations, we will summarize how to convert between
different physical units. Over the years many, many systems of units have been conceived
and used for specifying distance. Historically, it has been important for economic, political,
legal, personal, and scientific reasons that we have the ability to specify distance concisely
and accurately. From a need to know our height or shoe size to a need to know the area
of a land tract or to know how far away is the center of government, we need the ability to
measure and to communicate distances. The problem is that different purposes benefit from
somewhat different units of measure. It does not make sense to measure the distance to Los
Angeles in human hair-widths, for example, even though you often hear small things being
referred to “the thickness of a human hair” (∼ 100 micrometers, by the way). To compare
‘apples’ to ‘apples’, we invariably have to convert between different units of measure.

The simplest strategy to convert between systems of units is to place the unit for distance
in one system beside the unit for distance in the other system and simply to see how they
compare. We use one of the “yardsticks” to measure the length of the other “yardstick”. As
an example, we might use a meter stick to measure the length of a foot long ruler; when
we do so we will find that 1 ft = 0.3048m. We could also use the foot ruler to measure the
meter stick and to find that 1m = 3.2808 ft. Of course, these numbers are inverses of each
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other, which is required for the measurements to be consistent. This implies that

0.3048 m
ft = 1 = 3.2808 ft

m (A.6)

Let us suppose that we are given some distance d = 33.24 ft and that we need to communicate
this distance to Paris, France, where no one has heard of “ft”; over there everyone measures
distance in “m”. We can multiply anything by 1 without changing its value. This applies to
d as well. We see that 1 = 0.3048m/ft so that multiplying by 0.3048m/ft is just multiplying
by 1.

d = 33.24 ft = 33.24 ft× 1 = 33.24 ft× 0.3048 m
ft = 10.13m (A.7)

Dimensionless Functions

Frequently we find expressions like

f(x) = f0e
ax or g(x) = g0 ln

(
x

x0

)
(A.8)

These functions belong to the class of exponential functions (recall that y = ex if and only
if x = ln y). What must the units of f0, a, g0, and x0 be in order that f and g be force (N)
and that x be distance (m)? First, realize that e ≈ 2.7183 is just a number, no different
than 3, 8, or 1 as far as units are concerned. Multiplying pure numbers together does not
(and cannot) cause units to appear; therefore, raising e to a power (multiplying e by itself
over and over) also results in a pure number without units. Then f0 and g0 must have the
same units as f and g, respectively.

An exponent necessarily has no units. The only way to convert between units is to
multiply by ratios of units and only raising to higher exponents (xa)b = xab yields products
of exponents. Units are algebraic unknowns so that having units in an exponent is equivalent
to having the exponent to be unknown. . . not to know how many times to multiply the base.
We might invent a rule or a convention simply to ignore the units – simply pretend that they
are not there – just raise the base to whatever number is there. But that would mean that

1.6332 = 50.3048 m = 51.000 ft = 5 (A.9)

which is clearly not true. On the other hand, requiring that exponents have no units works
out a little better. To show this we re-arrange our english-metric conversions a little

1 = 3.2808 ft
m and ft

m = 0.3048 (A.10)

and manipulate them similar to the way we did above. Let b be some arbitrary number and
note that

b = b1 = b3.2808 ft
m = b(3.2808)(0.3048) = b1 (A.11)
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which is self-consistent.
Exponents must be pure numbers. For similar reasons the arguments of logarithms must

also be unitless, pure numbers. To see this recall that

ln
(
x

x0

)
= ln(x)− ln(x0) (A.12)

If x and x0 have the same units, the units cancel on the left and leave a pure number to
be the logarithm’s argument. If they have different units, then any unit conversion applied
to x0 on the right would change the value subtracted from ln(x) thus implying that the
quantity on the left can simultaneously be equal to both values. So, how do we deal with
the right side of Equation (A.12) if x and x0 have units? We understand that we actually
mean something different:

ln(x)− ln(x0) = ln(x)− ln(x0) + ln(a)− ln(a) = ln(x/a)− ln(x0/a) = ln x

x0
(A.13)

The constant a must have the same dimensions as x and x0, and although it cancels entirely
from the expression, it must be there to make the logarithm’s dimensionless argument make
sense. Incidentally, this is also why logarithmic scales like the Richter scale for earthquakes
and the dB scale for sound always have a reference intensity (a definite value with units),
equivalent to x0 or a in the discussion above.

Sine, cosine, and tangent are trigonometric functions whose arguments are usually derived
from angles. Trigonometric functions arguments are dimensionless, but they are not unitless;
these arguments must have the units of their angular measure. What this means is that if you
scale physical dimensions, the angles do not change. . . if you change your angular measure,
then the angle’s numerical value (degrees or radians) does change. Frequently, we deal with
expressions like

x(t) = x0 cos(ωt+ φ) (A.14)

If x has units of m and t has units of s, what are the units of x0, ω, and φ? The cosine function
itself has no units so x0 has the units of x. The argument of the cosine is a polynomial, so each
term must have the angular units that the cosine function needs. The natural units of angle
are radians so that a circle has 2π radians. The units of ω must be rad/s. You might notice
a similarity between logarithms, exponentials, and trigonometric functions: their arguments
are all dimensionless. This is not an accident. Mathematics typically concerns functions
applied to numbers. Thus, mathematical expressions tend to be defined in a way such that
they have no dimensions. It is only in physics, where we have to compare real measurements
of different quantities, where the reference units appear. Therefore, in these mathematical
functions, we must convert the argument to pure numbers for the expressions to make sense.
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Using Vernier Graphical Analysis

Additional guidance is generally provided in the lab experiment chapters.

Helpful Tip
There are two version of this software on the lab computers. The older one, ‘Gax’ is
not well-liked and has caused many TA and student headaches throughout the years.
The newer version, ‘Graphical Analysis 3.4’ (Ga3) is more functional and reliable but
requires a few more steps to get it to do what you need it to do. Please use Graphical
Analysis 3.4 in this course. Excel and Gax are always available if you prefer, however.

When we perform a least squares fit to a mathematical model, we are effectively compiling
all of the knowledge gained by our data into a much smaller set of fitting parameters. To
the extent that our data applies to this particular model, the experimental errors that are
inevitable in measurements are averaged out so that we might utilize the fitting parameters
to improve upon a prediction of our model beyond the data points themselves. This does not
mean that the fitting parameters have no uncertainties associated with them; indeed they
do have and it is essential that we specify each uncertainty when we discuss the parameter.

Many times Graphical Analysis 3.4 does not show the uncertainties in fitting parameters
by default. We can always ask it to do so by right-clicking the parameters box, “Proper-
ties...”, and select “Show Uncertainties”. We can also specify other properties in the fitting
parameters such as the number of significant digits.

Not only is the older Gax somewhat unstable, but it also offers meaningful estimates
of fitting parameter uncertainties only for the separate ‘linear regression’; custom models
have no convenient way to get uncertainty estimates. Since fitting parameters are effectively
measurements that the computer has deduced from the data, it is essential that we be able
to specify the uncertainties and the units that must accompany them. These are the reasons
why we prefer Ga3 that has a less obvious user interface.
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Using Microsoft Excel

C.1 Creating plots and curve fits

Helpful Tip
The primary advantage of Excel is that students have access to it at home. However,
it is more challenging to perform statistical-based fits in Excel unless you write your
own spreadsheet or macros. It is recommended that you perform your data analysis
with Graphical Analysis 3.4 in the lab. However, you always have access to Excel in
many locations in case you want to plot outside the lab.

This short list of resources will help guide you in creating figures in Excel, if you decide
to use it.

• A good introduction to basic graphing in Excel is provided by the LabWrite project:
https://www.ncsu.edu/labwrite/res/gt/graphtut-home.html

• Curve fitting in Excel can be performed, but sometimes it is much more painful than
using a dedicated data analysis program. For least-squares curve fitting, this link
details how to use Excel:
http://www.jkp-ads.com/articles/leastsquares.asp
Neither do Excel’s least-squares fitting parameters come specified with uncertainty
estimates even after you go through these acrobatics.

• We can use Excel’s “LINEST” function to provide complete statistics on straight lines.
See ‘linest’ in Excel’s Help files to learn more about its usage.
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C.2 Performing Calculations

All calculations in spreadsheets begin with “=”. First, select the cell that will hold the result
of the calculation, type “=”, and enter the formula to be evaluated. Typing “=5+9” and
‘Enter’ will yield “14” in the cell; the cell beneath will then be selected. If you need a cell to
contain ‘=’ instead the results of a calculation, precede it with a single quote ‘′’. . . anything
you type after that will be displayed verbatim. Even numeric characters won’t be numbers
after ‘′’.

If this was the extent of their capabilities, spreadsheets would not be very popular. Each
spreadsheet cell is at the intersection of a column having alphabetic label at the top and a
row having numeric label at the left. ‘A1’ is the cell at the top left corner of the sheet, ‘C8’
is at the eighth row and third column, and ‘Z26’ is at the 26th row and the 26th column.
After column ‘Z’ comes column ‘AA’ to ‘AZ’, ‘BA’ to ‘BZ’,. . . , ‘ZA’ to ‘ZZ’. If even more
columns are needed, three, four, and five characters can be used. Column ‘numbers’ count
up just like decimal digits, but column designations have base 26 instead of base 10.

As an exercise we could put the numbers 1-10 in cells A1:A10. Then in, say, B7 we could
type ‘=A1+A2+A3+A4+A5+A6+A7+A8+A9+A10’ to add the numbers (55). After we
type ‘=’, we could click on cell A1 to get the computer to place the ‘A1’ in the formula.
This comes in handy in a large project when you don’t remember the cell designation and
it is not visible on the screen.

This is pretty nice and the total (cell B7) will automatically update anytime one or more
of the numbers in A1:A10 changes. However, this would mean a lot of typing if the sum of,
say, A1:A1000 were needed instead. It turns out that spreadsheets have a ‘sum’ function for
adding the contents of cells. “=sum(A1:A10)” would also add the contents of these cells.
ANY block of cells can be specified using “range” designators. “=sum(a1:z6)” will add the
first six rows of the first 26 columns. The function names and column designators are not
sensitive to case. The cell into which the result is to be placed MUST NOT be part of the
range or an error will result. The ‘A1:A10’ or ‘A1:Z6’ can be generated by the computer by
dragging the mouse across the desired range of cells.

In addition to ‘sum’, we could ‘average’, ‘stdev’, ‘count’, etc. to perform statistics on a
range. Many other functions are part of the standard spreadsheet application. A partitioned
list and usage instructions can be generated using the ‘function’ toolbar button; usually the
icon has ‘f ’, ‘fx’, ‘f(x)’, or such.

Frequently, we want to generate graphs. To do this we first need to generate the
independent (x-axis) values. Enter ‘10’ into say C3 and ‘=0.1+C3’ into C4. Now, go back
to C4 and ctrl+c to copy this formula. Next, drag the mouse from C5 to C103 to select this
range (the cells turn black) and ctrl+v to paste the formula into all of the selected cells.
Now, C3=10, C4=10.1,. . . , C103=20. Click on one of these cells and look at the formula in
the formula bar. The computer has automatically replaced the ‘3’ in ‘C3’ with the correct
number to add 0.1 to the cell above this one! This always happens by default when you copy
and paste the formulas from one cell to another unless you “Edit/Paste Special. . . ” and
specify the details you want pasted.
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For relatively smooth functions, these 101 values will yield a very nice graph. Smaller
increments can also be generated at need for more quickly changing functions. Uniformly
spaced numbers are needed so often that a shortcut exists. Type 10 into C3 and 10.1 into
C4. Next, drag from C3 to C4 to select both and release the mouse button. The bottom
right corner of the selected cells is a drag handle that can be used to extend the pattern
10.0, 10.1, 10.2,. . . by dragging this handle downward with the left mouse button. Rows of
incrementing numbers can be generated similarly.

Now that we have our abscissa, we need to generate our ordinate. Click on D3 and enter
‘=3*sin(C3)’. Go back to D3 and drag the drag handle at the bottom right downward to
D103. Release the mouse button and note that the result is a sinusoid with amplitude 3. This
is OK! but we can generate families of curves with varying amplitudes, frequencies, or phases
quite easily. Enter ‘2’ into D2, ‘2.2’ into E2,. . . , ‘3’ into I2. Now enter “=D$2*cos($C3)”
into D3. Go back to D3, drag the drag handle across to I3, and release the mouse button.
Now, drag the drag handle down to I103 and note that we have generated six sinusoids
with amplitudes given by row 2. The ‘$’ prevented the ‘2’ in ‘D2’ and the ‘C’ in ‘C3’
from changing. Using ‘$A$1’ or ‘$B$3’ would insert the number in A1 or B3 into all of the
formulas; this would allow you to tweak these two numbers by hand to optimize all of the
curves at once.

Practice generating various abscissas and ordinates so that you can remember these
basics. Also practice plotting the results and pasting the plots into a Word document. You
will want ‘scatter plots’ so that you can choose the (x, y) points.
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Using Microsoft Word

Helpful Tip
A nice template containing a report outline and hints for performing many of
the functions science reports, journal publications, and books often employ can be
downloaded from each lab’s website. All word processing programs have similar
capabilities and many can import the template. . . although perhaps not seamlessly.
Hopefully, this will get you started using word processing software.

For your electronic write-ups, you can embed figures directly in the Word files, or you
can upload them separately. If you want to embed in Microsoft Word while preparing your
document, here are some useful sources of assistance.

• To embed an Excel figures directly into Word, you can follow the instructions here:
https://support.office.com/en-us/article/Insert-a-chart-from-an-Excel-spreadsheet-
into-Word-0b4d40a5-3544-4dcd-b28f-ba82a9b9f1e1

• If you want to embed a pdf figure into a Word document, you can follow the instructions
here:
https://support.office.com/en-za/article/Add-a-PDF-to-a-document-
9a293b43-45de-4ad2-a0b7-55a734cf6458

• Another set of instructions for embedding pdfs in Word, with a focus on preserving
quality, can be found here:
https://pagehalffull.wordpress.com/2012/11/20/quick-and-easy-way-to-insert-a-pdf-
graph-or-diagram-into-a-microsoft-word-document-without-losing-too-much-quality/

• For embedding more general images in Word, and using word wrapping, see here:
https://support.microsoft.com/en-us/kb/312799
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With Microscoft Word, there are usually many ways to accomplish the same task. Some
produce better results than others. This is why you always have the option of uploading
figures and images separately from the text of your write-up.

Helpful Tip
Your goal for writing in this lab is clarity in communication, not professional quality
documents. Beginning students have much difficulty including enough background
information about their experiment and apparatus and they tend to include too much
mundane detail that applies only to their specific apparatus instead. Eventually our
work will be read by scientists all over the world, so it is essential that we practice
including enough information about our apparatus and procedure that everyone in the
world can understand our data while simultaneously avoiding these mundane details
that will tend to confuse readers without our apparatus in front of them.
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Composing a Report

E.1 Title and Partner Credit

Each report must have a relevant title. Each report must list all lab partners with the report
author listed first. Technical reports begin at a general viewpoint discussing widely known
science and angle toward more specific aspects of this experiment and the particular science
that is within its scope.

E.2 Purpose or Introduction

We typically suggest 3–5 brief sentences that note the Purposes of the experiment. What
physics will the experiment test? Usually physics is expressed as equations; however, fre-
quently these equations are ‘named’. The widely-known name is a preferred mode of address,
but a forward citation to your Theory is second-best. (In this case Theory is absent so use
the lab manual equation number.)

What new OEM instruments and devices will we learn to use? What physical quantities
will we measure?

E.3 Theory

The Theory section would be quite similar to the mathematical development in this manual.
Because of this, we do not require a Theory section in your reports. You may cite the equation
numbers from this manual as if you had typed the relevant development into your report.
In professional papers you will need to demonstrate that your apparatus and procedure are
accurate representations of the science you wish to test; in these cases you may refer to
similar developments in this manual for ideas in how to proceed.
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E.4 Apparatus and Procedure

What specific instruments and devices were used? Manufacturer names and model numbers
allow the reader to seek technical specifications directly from the manufacturer. How were
the devices connected and/or utilized? What data did each device report? What system
state did each device control? If the Data do not make it redundant, what Procedure was
followed to generate the data? This section will answer these questions, but they can usually
be answered in pairs and triplets by well structured sentences. Content is important, but
length is not important.

Frequently, a sketch, a schematic diagram, or a photograph can convey much information
and quickly. Students may copy and paste such illustrations from the lab manual, the
website, etc.; however, he must cite the source in each case. Citations must lead the
reader directly and completely to the cited object. A book name, publisher, and page
number (or figure label) is a valid citation. A url and figure label is another. Furthermore,
we can give a student permission to copy only the illustrations that we own. Copying from
other sources is not allowed at all without prior permission from those authors.

E.5 Data and Results

Briefly state general observations and publish data tables and graphs to portray your mea-
surements. Graphs usually will also include a fitted model of the physics equation(s).
Frequently, there will also be ‘singleton’ measurements that do not logically fit into any
of the tables. Sometimes a ‘miscellaneous’ measurements table can house these and other
times these measurements are worked into paragraphs. The visibility and tidiness of tables
and graphs make these favorite places to portray data.

All measurements have three pieces:

1. The best estimate m for the measured value,

2. An objective estimate δm of measurement uncertainty, and

3. Units (U) multiplying the best estimate and uncertainty.

No measurement is complete until all three pieces are included: M = (m± δm)U. Mea-
surements in paragraphs are disclosed using this format. Measurements in tables have the
name (M) and units (U) in the table column headers and the best estimate and uncertainty
(m± δm) in the respective table column. Graphs have the best estimate represented as a
location on the graph, the uncertainty represented by error bars, and the measurement name
and units in the axis titles. We will not specify error bars, but we will repeat some of the
graph’s measurements in suitable tables that do specify uncertainty. Professional reports
will utilize only one of these formats for each data set; but students are not yet professionals.

As described in Section 2.5, the uncertainty tells us how well we know the measured value
so we need only 1-2 significant digits in the uncertainty. Since the uncertainty does tell us how
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well we know the measured value, it is necessary that these two numbers have exactly
the same number of decimal places: (10.2± 0.1), (13.935± 0.025), and (1250± 10) are
all correctly specified (except for absent units); however, (10.2± 0.05), (10.225± 0.2), and
(2.2258± 0.1254) are all incorrect at this level.

Usually the raw measurements will be used in physics model equations to predict other
measurements. Show one example of how you calculated each of these predictions from the
raw data; we prefer that you show the formula with symbols, the numbers substituting for
the symbols, and the result with correct units. In 2–3 experiments during the quarter, your
TA will also specify that you use the methods in Section 2.6.3 to specify the uncertainties
in these derived results; please show one example for each of these as well when required.
Additionally, specify which table columns contain raw data and which contain derived results.

E.6 Analysis of Results

In the Analysis section, we will decide whether our data prove anything and, if so, what they
prove. First, do the model curves fit the data points? If so, this is strong evidence that the
data supports the model even if some of the model parameters are different than expected.

To determine whether two numbers are distinguishable by the experiment, we rely heavily
upon statistics to decide, but we also simply use the relevant statistics results without proof.
The strategy (see Section 2.9.1) is to form NULL hypotheses by subtracting results computed
using a model under test from a direct measurement taken to check the model

∆M = |mP −mM| . (E.1)

We also need the acceptable error (σ or ‘sigma’) in this difference

σM =
√

(δmP)2 + (δmM)2. (E.2)

General Information
The following observations are also discussed in Section 2.9.1.

Statistics tells us that 68.3% of the time ∆M < σM ifMP andMM are taken from the same
distribution. Similarly, 95.4% of the time ∆M < 2σM and 99.73% of the time ∆M < 3σM .
These probabilities get progressively more certain as agreement requirements get poorer. We
may also turn this argument around. If we stated that ∆M > σM means that the prediction
and measurement are different, then this statement would be wrong 32% of the time (about
1/3 of the time). Insisting that ∆M > 2σM means the numbers are different would make
us wrong 4.6% of the time (about 1/22 of the time). Having ∆M > 3σM happens due to
statistics alone only 0.27% of the time (about 1/370 of the time).
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Being wrong 1/3 of the time is considered unsavory among scientists. Being wrong 1/22
of the time, even, is undesired. Thus we generally expect and state that when ∆M < 2σM
the two numbers probably do come from the same distribution and any disagreement is
due to “other sources of error.” Contrarily, having ∆M > 3σM happens only 1/370 of the
time so we usually expect that this difference probably has a non-statistical cause; we
reject the hypothesis that these two numbers are taken from the same distribution. This
does not necessarily mean that the physics model is incorrect, but this does remain one
possibility. Other possibilities include 1) one or more of the assumptions needed for the
model to be valid are not met, 2) we have underestimated (or completely overlooked) some
of our uncertainties, 3) the environment has perturbed the experiment, 4) the experiment’s
performance was substandard, etc.

We also need to enumerate several of the most likely “other sources of error” that might
cause any observed discrepancies however small. Our considerations of how well the model
curves fit the data points, of how well the parameters match what we should expect, of how
well other observations match the model’s predictions are all relevant to the conclusions we
draw.

E.7 Conclusions

This section should be very brief, but it also should be self-reliant. Which of our original
hypotheses do our data support? Which do they contradict? Which are neither supported
nor contradicted? We do not say why; (everything above says why.) Equations may be
referenced via citation or accepted name (Newton’s law, conservation of energy, Equation (4),
etc.). What physical measurements have you made? These are constants independent of the
experiment that we (or others) might need one day. Can you think of any applications for
what we have observed? Finally, how might we improve the experiment if we should perform
it again?
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Submitting a Report in Canvas

Preparation

Your lab report should be written in either Microsoft Word or be converted to a text-readable
pdf. Every student at Northwestern has access to Microsoft Word and Excel for lab report
preparation. JPEG format is not allowed for the main text.

Both Word and pdf formats allow your TA to provide helpful feedback using Canvas’
SpeedGrader system. Experience has shown that this online feedback is popular to students
in the 136 labs. This formatting requirement is therefore beneficial to everyone involved.

If possible, it is easiest if all of your files are merged into a single document. In Word,
images and figures can be embedded directly into the text file. If you are submitting a
pdf prepared in another method, it is possible to attach images and figures saved in the
lab as pdf documents into a single pdf file. Adobe Acrobat Professional can accomplish
this. Alternatively, you can merge pdf files online. One possible provider is PDFMerge
(http://www.pdfmerge.com/).

If you cannot put all of your content into a single file, it is accessible to load figures as
separate files (such as jpeg files). If you submit as separate files, you should refer to each
uploaded figure in some other part of your Lab Report. Your TA is not required to view
or grade any document that is not referred to in other graded sections of your report. It is
recommended that you name your files “Figure X” where X is a number. Then you can refer
to each figure by name. Alternatively, you can upload figures as a single document such as
a pdf, and have the appropriate labels on the figures in each document. Remember: a lab
report is practice in communication of ideas and activities. Failure to make references to
uploaded figures clear to your TA can result in lost points.

Submission

To submit your lab report, open the assignment in the Module on Canvas. Click the “Submit
Assignment” link.
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Under the File Upload tab, select the “Choose File” button and select the appropriate
file. You can press “Add Another File” to create another upload link. When all files are
ready and you agree to the TurnItIn pledge, you can press “Submit Assignment”. You are
able to re-submit your assignment to Canvas, although if it is late it will be flagged. You
should also be able to view your TurnItIn similarity score a few minutes after submission.

Your TA will be able to see all submitted files in the Canvas grading system.
It is probably easiest on your TA if the first file that you upload is your main lab
report text, followed by figure files in order. Do not make life harder for your
TAs as they grade your work!
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