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Comparative studies have the potential to address 
a wide range of questions about how, when, and 
why different traits have evolved. The compara-
tive approach refers to studies in which variation in 
traits of different species (or different populations) 
is used to test specific hypotheses or to generate new 
hypotheses about evolutionary phenomena. In many 
cases, comparative methods are used to investigate 
how two or more traits covary. Comparative meth-
ods are also used to reconstruct evolutionary history 
or to assess how traits influence patterns of diver-
sification (speciation and extinction; Nunn, 2011). 
In the context of comparative psychology, these 
methods have been used, for example, to investigate 
associations between aspects of neuroanatomy and 
executive function (MacLean et al., 2014; Shultz & 
Dunbar, 2010; see also Chapter 24, this volume), 
to explore how life history traits influence temporal 
decision making (Stevens, 2014; see also Volume 2, 
Chapter 24, this handbook), and to make inferences 
about how life in complex societies has shaped pri-
mate cognitive evolution (Amici, Aureli, & Call, 
2008; Burkart et al., 2014; MacLean et al., 2013; see 
also Chapters 12 and 13, this volume).

Understanding evolutionary relationships—or 
phylogeny—among the species of interest is critical 
for effective inference in comparative research. In a 
very real sense, phylogeny is the scaffolding on which 
one investigates evolutionary change in traits and the 
factors that lead to these changes. This is important 
conceptually, and it is also critically relevant in statis-
tical analyses. For example, in the context of studying 
how traits covary, data on different species cannot 

be treated as independent observations in statisti-
cal analyses because of patterns of inheritance on a 
bifurcating phylogeny (Felsenstein, 1985; Martins & 
Garland, 1991). To deal with this nonindependence, 
comparative biologists incorporate information 
about the evolutionary relationships between species. 
Phylogenetic comparative methods are a set of sta-
tistical approaches designed for exactly this purpose 
(Garamszegi, 2014; Garland, Bennett, & Rezende, 
2005; Nunn, 2011; Rezende & Diniz-Filho, 2012), 
a toolkit that is becoming increasingly useful in the 
field of comparative psychology. In addition to being 
applied in a broader range of evolutionary contexts, 
comparative methods themselves are evolving, and 
many classical techniques are rapidly being replaced 
by newer and more flexible approaches.

In this chapter, we introduce the reader to a 
range of phylogenetic comparative methods that 
can be used to address fundamental questions in 
comparative psychology, including some recent 
methodological advances that will create powerful 
opportunities for future research. We illustrate these 
methods by using a combination of simulated data 
and analyses of published datasets. Given the rapid 
growth of research on comparative cognition, we 
highlight the utility of comparative methods for the 
study of cognitive evolution. However, the concepts 
and statistical approaches described in this chapter 
can be similarly applied in other areas of compara-
tive psychology.

At the outset, we want to emphasize that 
some traits are measured on a quasi-continuous 
scale (e.g., percentage of correct responses on an 
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experimental task), and other traits are measured 
on a discrete scale (e.g., presence or absence of mir-
ror self-recognition). These two types of data often 
require different statistical approaches. For brevity, 
we present a single variant of each method below, 
yet we also direct the reader to relevant literature on 
other approaches throughout and to several recent 
reviews (Garamszegi, 2014; Garland et al., 2005; 
Nunn, 2011; Rezende & Diniz-Filho, 2012). We 
begin with a brief introduction to additional key 

terms and concepts that are foundational to all phy-
logenetic comparative methods.

PHYLOGENETIC TREES

As just noted, phylogenies represent the evolutionary 
relationships between taxa and are frequently  
visualized as trees with a branching pattern (see  
Figure 10.1A). Phylogenetic trees consist of nodes and 
branches. Nodes indicate speciation events where an 

A B C D E F G H

A 4 1 0 0 0 0 0 0

B 1 4 0 0 0 0 0 0

C 0 0 4 3 2 1 1 1

D 0 0 3 4 2 1 1 1

E 0 0 2 2 4 1 1 1

F 0 0 1 1 1 4 3 2

G 0 0 1 1 1 3 4 2

H 0 0 1 1 1 2 2 4

(A)

(B)

FIGURE 10.1. A phylogenetic tree and variance–covariance matrix 
representing the evolutionary relationships between species. A: The root 
of the tree is at the bottom with the tips (terminal branches) extend-
ing upward. Uppercase letters refer to extent taxa at the tips of the tree. 
Nodes are indicated by lowercase letters enclosed in circles, and branch 
lengths are shown to the left of each branch in the tree. The scale bar 
indicates 1 million years (MY). B: The variance–covariance matrix repre-
sents the total age of the phylogeny along the diagonal, with the extent 
of shared evolutionary history between pairs of species indicated on the 
off-diagonals.
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ancestral lineage gave rise to two (or more) descendent 
species. Nodes are connected by branches, which are 
typically drawn to be proportional to evolutionary 
time. Figure 10.1A shows a phylogenetic tree for eight 
species with circles enclosing the internal nodes. Node 
r is located at the root of the phylogeny and repre-
sents the oldest bifurcation in the tree, which in this 
example occurred 4 million years ago. The internal 
branches of the tree (i.e., branches connecting nodes, 
rather than ending at a tip) represent the time that 
species have shared evolutionary history, whereas the 
terminal branches (leading to a tip) represent the time 
that each extant species has evolved independently of 
other taxa in the tree (of course keeping in mind that 
there are often many extinct lineages that are not rep-
resented on a phylogeny of extant species; see Nunn, 
2011).

The extent of shared evolutionary history 
between pairs of species in a phylogeny can be rep-
resented as a variance–covariance matrix (see Figure 
10.1B; Cunningham, Omland, & Oakley, 1998; 
Freckleton, Harvey, & Pagel, 2002). The diagonal 
of the matrix (gray background) represents the vari-
ances, or the total time from the root to the tips of 
the tree (4 million years). The off-diagonals of the 
matrix represent the covariances, or the amount of 
time that pairs of species have shared evolutionary 
history since the root of the tree. In this example, 
the covariance between species C and D is 3 mil-
lion years, reflecting the time between nodes r and 
d, whereas the covariance between species C and 
H is 1, reflecting the time between nodes r and b. 
Variance–covariance matrices play an important role 
in many phylogenetic comparative methods; hence, 
we revisit this concept throughout the chapter.

A first step in most comparative analyses is to 
obtain a phylogeny for the species of interest. For-
tunately, digital phylogenies are widely available 
and can be downloaded from sites such as 10ktrees 
(http://10ktrees.fas.harvard.edu; Arnold, Mat-
thews, & Nunn, 2010), TreeBase (http://treebase.
org; Sanderson, Donoghue, Piel, & Eriksson, 1994), 
and the Open Tree of Life (http://blog.opentreeoflife.
org). Garamszegi and Gonzalez-Voyer (2014) pro-
vided an overview of the steps for obtaining a phy-
logeny for comparative research.

PHYLOGENETIC SIGNAL

As a result of shared evolutionary history, closely 
related species tend to resemble one another more so 
than less closely related taxa; this tendency is termed 
phylogenetic signal (Blomberg & Garland, 2002; 
Blomberg, Garland, & Ives, 2003). Interestingly, the 
extent to which traits are associated with phylogeny 
varies widely from one trait to another, with morpho-
logical traits tending to exhibit higher levels of phylo-
genetic signal than behavioral, cognitive, or ecological 
variables (Blomberg et al., 2003; Kamilar & Cooper, 
2013; MacLean et al., 2012). Quantitative estimates 
of phylogenetic signal in continuous traits can be 
obtained by using a variety of different approaches 
(for reviews, see Kamilar & Cooper, 2013; Münke-
müller et al., 2012; Nunn, 2011). Here we focus on 
one commonly used metric, Pagel’s lambda (Freckle-
ton et al., 2002; Pagel, 1999a).

Lambda is a continuous parameter that ranges 
from 0 to 1, with a value of 0 indicating that trait 
covariances are independent of phylogeny and a 
value of 1 indicating that variation among spe-
cies approximates expectations from a Brownian 
motion model of evolution (i.e., a random walk in 
which trait variance accumulates proportionally to 
evolutionary time). The lambda parameter scales 
the internal branches of a phylogeny by multiply-
ing the internal branch lengths (the off-diagonals in 
the variance–covariance matrix) by lambda while 
retaining the original variances along the diagonal. 
Thus, when λ = 0, the internal structure of the tree 
is entirely eliminated (all internal branch lengths 
are 0, yielding a “star phylogeny”; see Felsenstein, 
1985). In contrast, the internal branch lengths (off-
diagonals in the variance–covariance matrix) remain 
unchanged when λ = 1. Lambda may take any value 
between 0 and 1 (and even slightly higher than 1, 
subject to constraints determined by characteristics 
of the tree). The lambda value for a given trait is 
typically estimated using maximum likelihood to 
find the lambda transformation that makes covari-
ances between species most likely under a Brownian 
motion model of evolution.

To illustrate the concept of lambda and phylo-
genetic signal, Figure 10.2 shows the values of two 
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continuous traits that were simulated on a phylogeny 
to have different levels of phylogenetic signal. The 
maximum likelihood estimate of lambda for the gray 
trait is 0.99, indicating that closely related species 
have highly similar trait values (notice, e.g., that sis-
ter species have gray bars of approximately the same 
magnitude). In contrast, the maximum likelihood 
estimate of lambda for the black trait is ∼0, indicat-
ing that phylogeny is a weak predictor of species-level 
variance (hence, one sees no pattern of sister species 
having black bars of more similar magnitude, com-
pared with other species on the tree). More impor-
tant, these branch-length transformations are not 
a revised estimate of the actual species divergence 
times (the best estimate of which was known before 
analysis). Instead, the transformation estimates the 
extent to which phenotypic covariance matches the 
expected covariance on the basis of phylogeny and 
a Brownian motion model of evolution. For tests of 
phylogenetic signal in discrete traits, we direct the 
reader to Maddison and Slatkin (1991), Abouheif 
(1999), and Fritz and Purvis (2010).

Assessing phylogenetic signal is an important 
first step in comparative analyses because it provides 
information about the extent of nonindependence in 
the data. To date, only a few studies have investigated 
phylogenetic signal in measures of cognition across 
species. Yet the initial findings have suggested that 
several cognitive measures are characterized by sub-
stantial phylogenetic signal relative to behavioral or 
ecological traits. For example, in a comparative analy-
sis of primate data from an intertemporal choice task, 
Stevens found that the maximum likelihood estimate 

of lambda for indifference points was ∼1 (see Vol-
ume 2, Chapter 24, this handbook). Similarly, in tests 
of self-control administered to 36 species, including 
primates, carnivores, rodents, and birds, MacLean 
et al. (2014) reported lambda values of 0.76 across 
the entire sample of species (for the average score 
across cognitive tasks) and 0.86 within primates. 
Thus, as with many other traits, phenotypic variation 
in cognition is not independent of phylogeny.

One common misconception about testing for 
phylogenetic signal in individual traits is that the 
results of these analyses determine whether phy-
logenetic approaches are needed for subsequent 
analyses. For example, if none of the individual 
traits being studied display phylogenetic signal, 
researchers may be tempted to use these findings 
as a justification to forego additional phylogenetic 
analyses. However, as we show in the next section, 
it is phylogenetic signal not in individual traits but 
in the error variance of a statistical model that is 
relevant in comparative analyses of correlated evolu-
tion in two or more traits. Of course, a lack of phy-
logenetic signal should also lead one to be cautious 
about applying phylogenetic methods to reconstruct 
ancestral nodes or to assess how traits influence spe-
ciation and extinction rates across the tree.

“HOW” AND “WHY” QUESTIONS: TESTING 
ADAPTIVE HYPOTHESES

Many of the most interesting questions about cogni-
tive evolution concern when, how, and why particu-
lar aspects of cognition evolved. “When” questions 

FIGURE 10.2. Two traits (indicated in gray and black) with differing levels of 
phylogenetic signal plotted on a phylogeny. The vertical positions of the points 
are proportional to the trait values. The gray trait has strong phylogenetic signal 
(closely related species have more similar trait values), and the black trait has 
weak phylogenetic signal (trait variance is independent of phylogeny).
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often involve assessing whether a particular charac-
ter state is ancestral in a clade or evolved indepen-
dently. These questions embrace Tinbergen’s (1963) 
question about evolutionary history. “How” ques-
tions are typically questions about the proximate 
mechanisms (Tinbergen, 1963) underlying pheno-
typic variance. For example, do differences in life 
history strategies, gene expression in the brain (see 
Chapter 22, this volume), or the volume of brain 
regions relate to species differences in cognition (see 
Chapters 12 and 24, this volume)? “Why” questions 
are typically questions about the selective pressures 
that have favored cognitive evolution. For example, 
does living in complex societies, relying on spatio-
temporally distributed resources, or facing high lev-
els of niche competition favor particular cognitive 
adaptations?

One of the most powerful approaches for inves-
tigating how and why questions involves tests of 
correlated evolution. In brief, the rationale for such 
tests is that correlations between traits across phy-
logeny suggest that these traits may be function-
ally linked (Harvey & Purvis, 1991; Nunn, 2011; 
Nunn & Barton, 2001). However, as we discovered 
in our review of phylogenetic signal, the noninde-
pendence of species-level data is an important con-
sideration when testing such hypotheses because 
many traits are correlated at the species level 
through inheritance from a common ancestor, not 
independent evolutionary origins.

General linear models provide a unified statisti-
cal framework for predicting a continuous depen-
dent measure as a function of an intercept and a 
linear combination of predictor variables weighted 
by regression coefficients (see Chapter 8, this vol-
ume). General linear models assume that errors 
(model residuals) are normally and independently 
distributed with common variance (homoscedas-
ticity). Comparative data frequently violate this 
assumption because the residuals of closely related 
species tend to be more similar than those of more 
distantly related species, and thus errors are not 
independently distributed (i.e., they exhibit phylo-
genetic signal). More important, this scenario can 
arise even in cases when neither the predictor nor 
the response variable has high levels of phylogenetic 
signal, and thus the absence of phylogenetic signal 

in X or Y alone is insufficient justification for ignor-
ing phylogeny in regression models using these vari-
ables (Revell, 2010).

Generalized least squares (GLS) is an exten-
sion of the general linear model that can accom-
modate nonindependence in the data, as well as 
non-Gaussian error distributions (see Chapter 8, 
this volume). Phylogenetic generalized least squares 
(PGLS) is a regression model that is based on the 
GLS framework (Grafen, 1989; Martins & Hansen, 
1997; Pagel, 1999a). It is similar to GLS in that it 
generates regression coefficients, confidence inter-
vals, and significance estimates for one or more pre-
dictors (which can be continuous or discrete) of a 
continuous response variable. PGLS accommodates 
the nonindependence of species-level data by incor-
porating the variance–covariance matrix (described 
above) into the error term of the model to account 
for covariance in model residuals given the phylog-
eny and the extent of phylogenetic signal in the data 
(Symonds & Blomberg, 2014).

The flexibility of PGLS lies in its ability to adjust 
for statistical nonindependence on the basis of the 
actual error structure of the data (based on estimat-
ing lambda or other scaling parameters). This is a 
critical difference between PGLS and independent 
contrasts, an earlier approach that is used to obtain 
statistically independent comparisons within a phy-
logeny (for a review, see Felsenstein, 1985; Nunn & 
Barton, 2001). Specifically, independent con-
trasts are calculated by generating differences—or 
contrasts—between pairs of lineages throughout 
the tree. The method assumes that phylogeny accu-
rately predicts the model’s error structure and thus 
standardizes contrasts by dividing them by the sum 
of their branch lengths to control for heteroske-
dasticity. An alternative is to estimate the extent of 
phylogenetic signal in the data and adjust the model 
accordingly (Symonds & Blomberg, 2014). To do 
so, PGLS is often combined with estimating branch-
length transformations (such as Pagel’s lambda) that 
accommodate diverse evolutionary models and dif-
ferent levels of phylogenetic nonindependence. As 
in the case for estimating phylogenetic signal in a 
single trait, maximum likelihood can be used to find 
the branch-length transformation that optimizes the 
error structure of the residuals in a regression model 
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(Revell, 2010). When lambda is estimated to be 1, 
the results of the PGLS model will be identical to 
those from independent contrasts, and when lambda 
is estimated to be 0, PGLS results will mirror those 
from a general linear model (or GLS with a Gauss-
ian distribution) that does not include phylogeny. 
However, in many cases the maximum likelihood 
estimate of lambda will lie intermediate to these two 
extremes.

A common misconception about phylogenetic 
models is that they are more conservative than non-
phylogenetic approaches and thus guard only against 
Type I statistical errors (see Chapter 8, this volume). 
However, by meeting the assumptions of the under-
lying statistical model, phylogenetic approaches not 
only reduce false positives by correcting for pseudo-
replication but also have increased power to detect 
correlated evolution in cases in which a general 
linear model does not do so (Type II errors). Both of 
these scenarios are illustrated in hypothetical exam-
ples exploring the relationship between an ecological 
predictor and a cognitive dependent measure in  
Figure 10.3. Figure 10.3A depicts the classic prob-
lem of pseudoreplication (see Felsenstein, 1985). 
Data from three clades (monophyletic groups) are 
shown, with clade membership indicated by the 
shading of points. Within each clade, no significant 

association exists between X and Y, as shown in 
the clade-specific dashed regression lines. Between 
clades, however, grade shifts occur in both X and 
Y. When treating species as independent data 
points (i.e., when lambda is forced to equal 0), GLS 
strongly overestimates the relationship between X 
and Y (gray regression line; R2 = .74, p < .001). In 
contrast, PGLS accounts for the nonindependence 
in the model and correctly fails to reject the null 
hypothesis (λ = 0.72, R2 = .05, p = .07).

Figure 10.3B shows a different situation in which 
PGLS again leads one to a correct interpretation of 
scaling relationships. In this case, there is a grade 
shift in X but not in Y, which when analyzed by 
GLS (gray regression line) obscures the strong rela-
tionships between X and Y within each of the three 
clades (dashed regression lines). In this case, GLS 
fails to detect the correlation between X and Y (R2 = 
.05, p = .10), whereas PGLS has increased power to 
do so (λ = 0.84, R2 = .60, p < .001).

As noted previously, PGLS can accommodate 
both continuous and discrete predictors of a contin-
uous response variable, but it is inappropriate to use 
PGLS for a discrete response variable (i.e., logistic 
regression). For a review of methods appropriate for 
categorical response variables, we direct the reader 
to Ives and Garland (2014).

Ecological PredictorEcological Predictor
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(A) (B)

FIGURE 10.3. Examples of scenarios in which phylogenetic generalized 
least squares avoids Type I (A) and Type II (B) statistical errors. Clade mem-
bership is represented by the color of points. The solid gray regression line is 
from a nonphylogenetic model that fails to account for the nonindependence 
of species-level data. The dashed black lines show the clade-specific associa-
tions between the ecological predictor and cognitive dependent measure. See 
text for details.
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PGLS has been incorporated in several recent 
studies of comparative cognition. For example, 
using PGLS with a sample of 13 primate species, 
Stevens (2014) identified links between a range of 
allometric variables, including body mass, brain 
volume, life span, and home range size, and spe-
cies differences in a delayed reward task. In another 
study, MacLean et al. (2014) found that absolute 
brain volume and dietary breadth, but not frugivory 
or species-typical social group size, predicted differ-
ences on two self-control tasks among 36 species of 
mammals and birds. Interestingly, when a smaller 
subset of species was tested on both a social cogni-
tive measure and one of these self-control tasks, 
MacLean et al. (2013) found that social group size 
was a significant predictor of species differences 
on the social but not the self-control task. Last, in 
a recent comparative study of 15 primate species 
(including humans), Burkart et al. (2014) found 
that extensive allomaternal care was the best predic-
tor of proactive prosociality, implicating cooperative 
breeding as a possible selective pressure for human 
hypercooperation (see Chapter 13, this volume). 
We return to this example below to assess whether 
humans show substantially more prosociality than 
other primates given their level of allomaternal care 
(see Phylogenetic Prediction section).

Thus, PGLS has allowed researchers to test a 
wide range of hypotheses about cognitive evolution. 
Unlike studies using proxy variables for cognition, 
such as brain size, a combination of experimental 
and phylogenetic methods has led to unique insights 
about the selective pressures that have favored cog-
nitive evolution in specific cognitive domains. Col-
lectively, these types of studies highlight an exciting 
new direction for research in comparative cognition, 
one that has potential to lead to major insights about 
long-standing questions regarding how and why 
cognition evolves.

“WHEN” QUESTIONS: RECONSTRUCTING 
THE COGNITIVE PAST

Comparative psychologists study the behavior and 
cognition of extant species, yet many questions in 
comparative psychology involve inferences about 
the past. For example, did the last common ancestor 

of humans and great apes have a theory of mind? 
When, and how many times, has social learning 
evolved? Do vertebrate species share a primitive 
number sense?

The answers to these types of questions rely 
on the ability to make inferences about the past 
using information from the present and thus cap-
ture the when questions identified above. Several 
comparative methods are designed for ancestral 
state reconstructions. Here, we focus on maximum 
likelihood approaches for inferences about discrete 
traits, although similar methods can be used with 
continuous variables (for review, see MacLean et al., 
2012). Maximum likelihood methods differ from 
parsimony reconstructions in a number of impor-
tant ways (Pagel, 1999b). Reconstructions based 
on parsimony attempt to minimize the number of 
transitions on the tree, and they ignore information 
about branch lengths (i.e., changes are assumed to 
be equally likely to occur along the shortest and the 
longest branch on the tree). Maximum parsimony 
methods also do not provide easily interpretable 
statistical support measures for reconstructed states 
(Nunn, 2011). More important, parsimony lacks an 
underlying evolutionary model and is being driven 
to extinction by model-based approaches, such as 
those based on maximum likelihood. By using a 
specific evolutionary model, maximum likelihood 
approaches integrate information about branch 
lengths (the amount of time that lineages have 
evolved independently of other taxa in the tree) 
and rates of evolutionary change, and they can pro-
vide estimates of statistical support for each recon-
structed node in the tree. These models can also 
accommodate specific types of trait evolution, such 
as asymmetric transition rates in which the prob-
ability of moving from state A to state B differs from 
that of moving from state B to state A.

To illustrate a maximum likelihood reconstruc-
tion using discrete variables, we present an example 
using data on social learning, extractive foraging, 
and tool use taken from Reader, Jager, and Laland 
(2011). This dataset includes counts of published 
reports for each of these categories in a large sample 
of primates, along with the total number of citations 
for each species at the time data were compiled.  
To create discrete traits based on these data, we 
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first restricted the dataset to species with at least 20 
citations in the Zoological Record database, effec-
tively limiting the data to a subset of reasonably 
well-studied species. Species-level data were then 
collapsed to a genus-level summary (44 genera) to 
allow a concise example for illustrative purposes. 
Finally, within each genus we created three discrete 
variables reflecting whether social learning, extrac-
tive foraging, and tool use had been observed in any 

member of the genus (each of these coded as yes 
[1] or no [0]). Ancestral states were then estimated 
using maximum likelihood in a model with equal 
transition rates between the character states for each 
variable, meaning that the rates of state yes transi-
tioning to state no were equivalent to rates of state 
no transitioning to state yes.

The results of this analysis are plotted on the genus-
level tree in Figure 10.4. The tips of the tree depict the 

Cercopithecus
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Chlorocebus
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Mandrillus
Lophocebus
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FIGURE 10.4. Ancestral state reconstruction of tool use, extractive foraging, 
and social learning modeled as discrete traits in primate genera. Squares at the 
tips of the phylogeny represent the character states for extant species  
(shaded = trait present, unshaded = trait absent). The circles at the internal 
nodes represent the scaled likelihood that a trait was present at that node 
(proportion shaded = likelihood a trait was present). The leftmost circles and 
squares correspond to tool use. The center circles and squares correspond to 
extractive foraging. The rightmost circles and squares correspond to social 
learning. See text for details.
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character states for extant genera using shaded (trait 
present) or unshaded (trait absent) squares (left, tool 
use; center, extractive foraging; right, social learning). 
The circles at the internal nodes of the phylogeny indi-
cate the scaled likelihood (range = 0–1) that each of 
the three traits was present at that node.

This analysis indicates that the last common 
ancestor of the extant great apes used tools (see Vol-
ume 2, Chapter 30, this handbook), practiced extrac-
tive foraging, and learned socially (see Volume 2, 
Chapter 19, this handbook), effectively answering a 
when question about these behaviors. At the root of 
the phylogeny, much more uncertainty exists about 
the character states of all three variables; this is a 
common circumstance, which often requires that 
additional outgroups be added to the tree to bet-
ter resolve the state of the character at the deeper 
nodes. Visualizing the trends across the phylogeny, 
one sees that tool use is estimated to be a recently 
evolved trait (compared with social learning and 
extractive foraging), and a trait that appears only 
after both social learning and extractive foraging are 
well established. Thus, one plausible explanation is 
that tool use is adaptive primarily in species already 
feeding on difficult-to-access or embedded foods 
and that social learning may be required for tool use 
to become widespread (i.e., it is acquired through 
social learning). This hypothesis could be evalu-
ated using a test for correlated evolution of discrete 
traits, in which the state of one variable influences 
the probability of change in another (Pagel, 1994). 
However, a recent article urged caution in using this 
and some other methods of correlated evolution for 
discrete characters (Maddison & FitzJohn, 2015).

Historically, estimating ancestral states has not 
been a common approach in comparative psychol-
ogy. However, we expect that with growing com-
parative databases on animal cognition, these types 
of analysis will become increasingly common. For 
empirical examples of ancestral state estimation for 
continuous cognitive traits, we direct the reader to 
MacLean et al. (2014) and Reader et al. (2011).

PHYLOGENETIC PREDICTION

Evolutionary singularities—or uniquely derived 
traits—present a challenge for comparative methods 

that rely on convergence to infer adaptation. How-
ever, comparative methods can be used to determine 
whether a particular species deviates from what one 
expects given the phylogeny and given the relation-
ships between a set of predictor and response vari-
ables measured in other taxa (Nunn & Zhu, 2014; 
Organ, Nunn, Machanda, & Wrangham, 2011). For 
example, human brains may have more neurons 
than any other primate species, but this trait may 
not be extraordinary given knowledge of human 
brain volumes and the general cellular scaling rules 
of primate brains (Herculano-Houzel, 2009, 2012).

Many long-standing questions in comparative 
psychology relate to whether aspects of cognition 
are qualitatively different in humans and nonhu-
man animals (Penn, Holyoak, & Povinelli, 2008; 
Shettleworth, 2012). Often, these questions are 
investigated by comparing the performance of 
humans and nonhuman animals on a set of cogni-
tive measures with the aim of identifying areas of 
similarity and difference (e.g., Herrmann, Call, 
Hernàndez-Lloreda, Hare, & Tomasello, 2007; 
Inoue & Matsuzawa, 2007). However, even in cases 
in which humans do differ substantially from other 
species, these differences may be predictable within 
a phylogenetic framework and, in this sense, con-
sistent with broader evolutionary patterns. Methods 
for phylogenetic prediction allow statistical infer-
ences about the extent to which an apparent outlier 
is truly remarkable given phylogeny and a set of rel-
evant predictor variables.

As an example of phylogenetic prediction, we 
consider whether humans are unique in their pro-
social tendencies (see Chapters 13 and 44, this vol-
ume). Our analysis here builds on recent research 
by Burkart et al. (2014), who focused on accounting 
for variation in data from prosociality experiments 
in 15 primates species. Across species, the extent of 
allomaternal care was the best predictor of proac-
tive prosociality. Humans exhibited very high levels 
of proactive prosociality, and they deviated from 
the nonhuman primate regression line by less than 
1 standard deviation, although this latter analysis 
does not account for phylogeny in assessing whether 
this residual is extreme. Here, we use more power-
ful methods to assess whether humans are different 
from other primates, accounting for variation in 
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allomaternal care and phylogenetic placement of 
humans. We also use this opportunity to introduce 
Bayesian methods, which are becoming increasingly 
common in phylogenetic methodology.

A number of approaches are available for assess-
ing whether a species (or set of species) exhibits 
an exceptionally large (or small) state of a continu-
ously varying trait, such as body mass, height, or 
even proactive prosocial tendencies. Focusing on 
humans, we could investigate whether the lineage 
leading to humans shows a higher rate of evolution 
in prosocial behavior compared with other lineages 
on the phylogeny. This can be achieved using inde-
pendent contrasts (McPeek, 1995) or by fitting 
models with two different rates for different lineages 
and assessing whether that two-rate model improves 
on a model that fits a single rate (O’Meara, Ané, 
Sanderson, & Wainwright, 2006; Revell, 2008). 
Other, more sophisticated variants on these methods 
are now available (Revell, Mahler, Peres-Neto, & 
Redelings, 2012). One could also examine residuals 
from a regression of prosocial tendencies on another 
trait, such as allomaternal care, with the expectation 
that humans would have an exceptionally high posi-
tive residual (i.e., they are more prosocial than one 
might expect given the degree of allomaternal care 
observed in humans). To incorporate phylogeny, 
this latter approach can be implemented with inde-
pendent contrasts or PGLS (Garland & Ives, 2000).

Here, we use a new approach to phylogenetic 
prediction that involves one or more predictor 
variables in a PGLS framework but runs the analy-
sis using a Bayesian approach implemented with 
Markov chain Monte Carlo, or MCMC (Nunn & 
Zhu, 2014). Briefly, at each iteration, the procedure 
evaluates a new candidate set of parameter values 
that are accepted (replacing the current values in the 
chain) or rejected (maintaining the current values 
in the chain). In general, the algorithm is designed 
to select values that make the data more likely, but 
less likely solutions may be accepted probabilisti-
cally in relation to the likelihood (i.e., parameter 
sets that make the data less likely are less likely to be 
accepted). A record of selected parameter values is 
recorded at predefined intervals (e.g., every 100 iter-
ations). The frequency with which particular values 
are sampled ultimately approximates a probability 

distribution. Thus, in addition to generating a point 
estimate of particular parameters (e.g., the mean 
value across saved iterations), uncertainty about 
these values is reflected in the distribution of values 
that are recorded (“sampled”). In a Bayesian frame-
work, this is referred to as a posterior (as opposed to 
a prior) probability distribution.

Using MCMC in a phylogenetic regression, 
one can sample the posterior probability distribu-
tion of regression coefficients, the intercept, and 
lambda that are central to prediction in the PGLS 
model while also sampling from across a set of trees 
that reflect phylogenetic uncertainty (Nunn, 2011; 
Pagel & Lutzoni, 2002). The analysis takes into 
account all these sources of uncertainty in coef-
ficients, phylogeny, and scaling parameters; the 
resulting set of parameters is then used to generate 
a posterior probability prediction of, for example, 
the state of prosocial behavior in humans, predicted 
on the basis of human levels of allomaternal care 
and humans’ relationship to other primates. This 
posterior probability distribution is a natural way 
to incorporate uncertainty in our prediction. If the 
true human value of prosocial behavior falls outside 
the 95% credible interval of the posterior probabil-
ity distribution for predicted prosocial behavior, 
we would say that human prosocial behavior is 
exceptional relative to other primates, meaning that 
humans are an evolutionary outlier (Nunn, 2011; 
Nunn & Zhu, 2014; Organ et al., 2011).

We used the program BayesModelS to run the 
MCMC analysis (Nunn & Zhu, 2014). The pro-
gram takes input data on prosocial behavior and 
allomaternal care, which we obtained from Burkart 
et al. (2014), and a posterior probability distribu-
tion of trees, which we obtained from Version 3 of 
10kTrees (Arnold et al., 2010). The user must also 
decide how large of a posterior probability sample 
to obtain (i.e., how many samples to save) and 
how often to sample from the chain of parameters 
that is produced. Sampling can too often lead to a 
high correlation among the estimates that are used 
in the posterior probability distribution, whereas 
sampling too little can result in a longer run time. 
The user must also ensure that the sample has 
reached a steady state of estimates (i.e., that it is 
a post–“burn-in” set of parameters during which 
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likelihoods increase rapidly across iterations as the 
model parameters are initially tuned to the data). On 
the basis of initial runs of the model, we decided to 
sample 8,000 estimates of the parameters, with 50 
generations separating each saved set of parameters 
and an initial burn-in of 100 generations (in which 
no samples were retained).

We also estimated both lambda and kappa, where 
the latter parameter scales branches by raising them 
to the power kappa. We allowed BayesModelS to use 
an MCMC procedure to decide whether to estimate 
lambda or kappa, with the proportion of samples 
estimating one or the other giving a measure of rela-
tive support for one transformation over the other. 
Likewise, we allowed the model to estimate the 
regression coefficient for the effect of allomaternal 
care on prosocial behavior or to set it to zero; the 
proportion of time that the coefficient was included 
in the model and estimated, along with the cred-
ible interval on the estimate, gives a sense of how 
strongly prosocial behavior covaries positively with 
allomaternal care. Finally, we transformed the data. 
We used the logit transformation to rescale the pro-
social behavior from a truncated distribution in per-
centage or proportional terms to negative infinity to 
positive infinity (for extremes of 0 and 1 proportion 
of successes, respectively). For two species (Macaca 
silenus and Varecia variegate), values of zero for pro-
social behavior were set to 0.001 before applying the 
logit to avoid negative infinity values. For allomater-
nal care, we used a log10 transformation.

The first stage of our analysis involves estimating 
the association between prosocial behavior and allo-
maternal care. The MCMC model reached stationar-
ity (relatively consistent likelihood estimates after 
the initial burn-in) and showed a good distribution 
of likelihoods (see Figure 10.5A), with most of the 
chain sampling parameters that made the data more 
likely but also sampling some less likely parameter 
combinations (less often). We found strong evi-
dence that allomaternal care should be included in 
the statistical model with prosocial behavior as a 
response variable, with 98.2% of the models includ-
ing allomaternal care, and a generally higher likeli-
hood in models that included allomaternal care (see 
Figures 10.5B and 10.5C). The posterior probability 
distribution of the regression coefficient relating 

allomaternal care to prosocial behavior is shown in 
Figure 10.5D. It can be seen that the vast majority 
of the coefficients are greater than zero, which is 
strongly indicative of a positive association. There-
fore, the model using nonhuman primates suggests 
that allomaternal care is one reason why proactive 
prosociality may have increased in certain lineages 
(Burkart et al., 2014). Finally, we found support for 
both lambda and kappa transformations, with most 
of the chain favoring estimation of lambda rather 
than kappa, and a relatively flat distribution of 
kappa (see Figures 10.5E and 10.5F).

With posterior probability distributions of coef-
ficients, kappa or lambda, and intercepts, we then 
predicted the value of prosocial behavior in humans, 
using our phylogenetic placement and value of 
allomaternal care (3.56, untransformed) for each 
of the 8,000 stored coefficients and parameters. 
This analysis produced 8,000 predictions, sum-
marized by the posterior probability distribution 
for logit-transformed data shown in Figure 10.5G, 
which can be compared with the distribution of 
logit-transformed prosocial behavior for all pri-
mates (see Figure 10.5H). As can be seen, humans 
are not exceptionally different from other primates 
(shown as the black vertical line in Figure 10.5G), 
as might be expected given the small residual noted 
above. Thus, although the value of prosocial behav-
ior in humans is slightly higher than expected, it is 
clearly not an outlier given human levels of alloma-
ternal care and humans’ placement in the primate 
phylogeny.

CONCLUDING REMARKS

The comparative methods reviewed in this chapter 
provide an essential tool kit for investigating a wide 
range of questions about when, why, and how cogni-
tion evolves. Coupled with high-quality datasets on 
species differences in cognition, this approach has 
the potential to catalyze an exciting revolution in 
comparative psychology. More important, the success 
of this endeavor will require datasets covering larger 
comparative samples than are currently common in 
this field. For example, several of the methods we 
reviewed are known to be highly sensitive to sample 
size, having limited statistical power in samples 
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smaller than 20 to 30 species (Kamilar & Cooper, 
2013; Münkemüller et al., 2012). Thus, phylogenetic 
approaches for the study of comparative psychology 
will require not only special statistical methods but 
also datasets that are appropriate for the implementa-
tion of these techniques. In this regard, we expect 
that large-scale collaboration will also be an essential 
ingredient for success (MacLean et al., 2012, 2014).

For readers interested in learning more about 
comparative methods, a wide variety of freely avail-
able resources now exist that cover both basic and 

advanced topics (see Table 10.1). Although compara-
tive methods can be implemented in many different 
software packages, which range in the extent of their 
flexibility, the amount of coding required by the user, 
and documentation, the vast majority of compara-
tive methods (including all of those presented in this 
chapter) are available in R (http://www.r-project.
org), a free and open-source language for statistical 
computing. Table 10.1 provides a list of useful pack-
ages for phylogenetic analysis using R, and tutorials 
including example code for the methods presented in 
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this chapter can be accessed online at the AnthroTree 
website (http://www.anthrotree.info).

In conclusion, phylogenetic comparative meth-
ods will play a key role in unraveling the natural 
history of cognition and inferring the historical 
processes that have shaped the minds of the species 
we study today. We hope the topics reviewed in this 
chapter will stimulate further interest in phyloge-
netic approaches to the study of comparative psy-
chology, and we look forward to future discoveries 
emerging from this approach.
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