
PENTAHO BUSINESS ANALYTICS

TRAINING

Rahul Gurjar

Course Outline

 Overview of the Pentaho Stack

 Introduction to OLAP, DWH and Dimension Modelling

 Pentaho BA Server

 Pentaho ETL

 OLAP Schema creation in Pentaho in detail

 Dynamic Security in Pentaho OLAP

 MDX in action

 Pentaho Reporting in detail (PRD and PME)

 Analysis Report

 Dashboard (EE and CDE)

 Introduction to Pentaho Big Data Ecosystem

Training Process

Daily schedule:

10:00 am – 6:00 pm

1 hour lunch break

Other breaks as needed

PENTAHO STACK OVERVIEW

 Pentaho Architecture Overview

 Pentaho BA Server

 Pentaho Data Integration

 Pentaho Schema Workbench

 Pentaho Report Designer

 Pentaho Metadata Editor

PENTAHO BA SERVER COMPONENTS

PENTAHO ARCHITECTURE

PENTAHO BA SERVER FEATURES

 User Management

 Helps in Access Control

 Manage Content

 Execute/View Reports

 Manage Data Sources

 Manages Schedules

 Facilitates Self-Service Analysis/Reporting/Dashboard creation

PENTAHO DI FEATURES

 Tool to create and execute ETL flows

 Can connect to a lot of Source and Target Systems

 Metadata driven ETL engine

 The ETLs are simple XML files

 Plugin Based architecture

 Easy to develop and deploy ETL flows

PENTAHO REPORT DESIGNER

 Can connect to various Data Sources including Mondrian

 Seamless integration with the BI Server

 Can ingest data from ETL flows as well

 Developed from the Jfree project

 Can create pixel perfect reports

PENTAHO METADATA EDITOR

 Creates Metadata layer on DB Schema

 Can connect to any database (JDBC)

 Metadata Model for Access Control

 Metadata Model Integrates with BA Server

 MQL is used for data retrieval

PENTAHO SCHEMA WORKBENCH

 Used to develop OLAP Schema

 Mondrian uses these schema to Analysis

 Supports Star and Snowflake schema

 Role based access control

COMMUNITY DASHBOARD EDITOR

 Creates rich Dashboards for the Pentaho BA Server

 Integrated with the BA Server

 Very flexible for the developers

 Connects to various Data Sources including PDI sources

INTRODUCTION TO OLAP, DWH AND

DIMENSION MODELLING

OLAP

 OLAP - Online Analytical Processing

 Provides Multidimensional Analysis of Business Data

 Mondrian is the Engine used in the Pentaho Stack

 MDX is the language that talks to Mondrian

 Pivoting can be done using client tools like Analyzer

 Operations supported : Roll up, Drill Down, Slice and Dice.

DWH

 Subject Oriented

 Time Variant

 Non Volatile

 Main Data Storage system in the BI world

 Mainly used for Reporting and Analysis

 Separate from Transaction Database

 Central repository for Integrated data from various sources

Source 1

Source 2

Source 3

Source N

DWHETL

OLAP Analysis

Canned Reports

Dashboards

Any Client

DATA MART

 Subset of the Organization-wide Data

 Subject Specific

 Smaller in size

DIMENSION MODELING

 Technique and concept used for creating DWH

 Different from ER Modeling

 Facts are Measures

 Dimension are Context that defines facts

 Dimensions have group of hierarchies

 Shared Dimension (Conformed)

 Degenerated Dimension

 Additive, Semi-Additive and Non-Additive Facts

 Factless Fact

PENTAHO BA SERVER
 Tomcat server based Web Application

 User Console:

 Solution access

 Solution Navigation

 Subscribing to an existing schedule

 Private Schedule creation (access based)

 Self Service Report Creation (access based)

 BA Server Administration

 User and Role Management

 System Setting

 Access Control

 Public Schedule creation

 Repository and other Cache Refresh

 Many more...

PENTAHO DATA INTEGRATION

PDI INTRODUCTION

 KETTLE is open source core of PDI Enterprise Edition.

 PDI Enterprise Edition is production-ready

 PDI Features:

 Versioning

 Scheduling

 Real-Time Monitoring

 Access Control

WHY PDI?

Ease of use:

 100% metadata driven (define WHAT you want to do, not HOW to it)
No extra code generation means lower complexity

 Simple setup, intuitive graphical designers, and easy

Flexibility:





Never forces a certain path on the user
Pluggable architecture for extending functionality

Modern standards-based architecture







100% Java with broad, cross-platform support
Over 100 out-of-the-box mapping objects (steps and job entries)

Enterprise class performance and scalability

Lower total cost of ownership (TCO)







Lesser license fees
Short implementation cycles
Reduced maintenance costs

WHERE PDI FITS

DWHPDI

OLAP Analysis

Canned Reports

Dashboards

Any Client

Structured Data

Un-Structured Data

REPOSITORIES

 Metadata Store for PDI:

 XML files

 RDBMS

 Enterprise

 Objects Stored:

 Connections

 Transformation

 Job

 Schema

 Components:

 Spoon

 Pan

 Kitchen

 Carte

THE SPOON UI

 Design and View Tabs

 Main Tree (Design): Lists all open transformations/jobs and their contents

 Run and Preview

 Execution Results

 Debugging

PDI CONFIGURATION FILES

User specific files found in .kettle folder in the User’s home directory:

 kettle.properties: default properties file for variables

 shared.xml: default shared objects file

 repositories.xml: Local repositories file

 db.cache: database cache for metadata

 .spoonrc: User Interface setting, last opened ktrs/kjbs

 .languageChoice: User Language

INTRODUCTION TO TRANSFORMATIONS

 Manages Data Flow

 Smallest Unit

 Reads data from various sources, Transforms it and Loads it in

various targets via steps

 Hops – Connector for various steps for a logical flow. Data and
Metadata flow

 All the steps are initialized at once. Sequence not predictable.

 Processes the data as a stream. Can process unlimited no. of rows

CONNECTIONS

 Multiple connections can be created and shared

 Connection can be shared by right-click and share

 Connection Types:

 JDBC

 ODBC

 JNDI

 Driver jar is required in case of JDBC connection

 Database can be explored from the UI

INPUT STEPS

 These Steps pull the data from source

 Data is pulled in batches, size of which depends on the configuration

 Step Example:

 Text File Input, CSV File Input, Fixed File Input

 Table Input

 Excel Input

 Generate Rows

 Get System Info

OUTPUT STEPS

 Used to Load the Data in the Target

 Commit Size can be configured (Table Output).

 Example Steps

 Text Files Output

 Table Output, Insert/Update, Delete, Update

 Excel Output

 XML Output

TRANSFORMATION STEPS

 Steps that are used to transform the data

 Example Steps:

 Select Values

 Calculator

 Add Constants

 Add Sequence, Add value fields changing sequence

 Sort Rows

 String Operations, String Cut

 Unique Rows

LOOKUPS

 The Lookup feature in PDI accesses a data source to find values
using defined matching criteria (a key value).

 Lookup Example:

 Database Lookup

 Stream lookup

 Merge Join

 Database join

 Dimension Lookup/Update

SET TRANSFORMATIONS
Set transformations are steps that operate on the entire set of data a stream.

The operations operate across all rows, not strictly within a row.

 Example Steps:

 Filter rows

 Sort Rows

 Group by

 Merge Rows

 Unique Rows

INTRODUCTION TO JOBS

 Jobs aggregate individual pieces of functionality

to implement an entire process.

 Manages the Work-flow of the ETL process

 Hops Types

 Unconditional

 Success – True Condition

 Failure – False Condition

 Job Entries can be Job Entries, Transformations or

another Job

 A Job starts with the START button

Job entries

Job hops

COMMONLY USED JOB ENTRIES

 Mail Section – Sends text or HTML mail with option of attachment.

 Scripting – Executes a script on the host where the job is running

 Java Script

 SQL Script

 Shell

 Conditions – Checks or Evaluates some condition. The result is TRUE/FALSE.

 Check DB Connection, Table Exists, Column Exists

 Simple Evaluation

 Check Folder is empty, File is locked, Check if files Exists, File Exists

 Utility – Some utilities for doing some tasks.

 Abort Job

 Ping a host, Telnet a host

 Truncate table

 Write to log

COMMONLY USED JOB ENTRIES CONTINUED…

 File Management – Basic File System task can be performed.

 Create Folder, Delete Folder, Compare Folders

 Create File, Delete File, Copy Files, Move Files

 Unzip File, File Compare

 File Transfer – Move/Copies files from source to target via various protocols.

 Get and Put File with FTP

 Get and Put File with SFTP

 Get and Put File with FTPS

ARGUMENTS, PARAMETERS AND VARIABLES

 Arguments

 A PDI argument is a named, user-supplied, single-value input given as a command line

argument (running a transformation or job manually from Pan or Kitchen, or as part of a

script).

 Parameters

 Parameters are like local variables; they are reusable inputs that apply only to the specific

transformation that they are defined in. When defining a parameter, you can assign it a

default value to use In the event that one is not fetched for it.

 Variables

 A variable in PDI is a piece of user-supplied information that can be used dynamically and

programmatically in a variety of different scopes.

 PDI variables can be used in steps in both jobs and transformations

PENTAHO OLAP (MONDRIAN)

MONDRIAN OVERVIEW
 Mondrian is a ROLAP (relational online analytical processing)

engine written in Java.

 Features of note:

 MDX compliant

 Supports aggregation, calculation and categorization of

data from standard relational databases, including Oracle,

MySQL, Microsoft SQL Server, IBM DB2, and others.

 Automated Optimizations

 Pre-compiled MDX expressions allow Mondrian server to

optimize queries, choosing between evaluating an
expression in memory and pushing the query to the

RDBMS.

 XML based cube schema

 Aggregate Aware

 Role Enabled

MONDRIAN AT WORK

A dimensional model (logical)

 Cubes & virtual cubes

 Shared & private dimensions

 Calculated measures in cube and

in query language

 Parent-child hierarchies

… mapped onto a star/snowflake

schema (physical)

 Fact table

 Dimension tables

 Joined by foreign key relationships

HOW MONDRIAN SCHEMA MAPS TO DB SCHEMA

<Cube name=“moves">

<Table name=“movementfact"/>

<Dimension name="Terminal" foreignKey="terminal_id“>

<Hierarchy name="Terminal" primaryKey="terminal_id">

<Level name="Terminal" table="terminaldim“ column="terminal_name"/>

</Hierarchy>

</Dimension>

<Measure name=“Miles" column=" miles“ aggregator="sum“ formatString="#,###"/>

<Measure name=“Empty Miles" column=“empty_miles“ aggregator="sum“ formatString="#,###"/>

<CalculatedMember name=“Empty Percent“ dimension="Measures“>

<Formula>
([Measures].[Empty Miles] / [Measures].[Miles]) * 100

</Formula>
</CalculatedMember>

</Cube>

CUBES AND HIERARCHIES

 Relational databases organize data into flat, two-dimensional

tables.

 Rows & Columns with single data element intersections

 Multidimensional databases depend on structures called cubes.

 A cube is a collection of measures and dimensions

 There can be n dimensions

 Measures evaluated at the intersection of all n dimensions

 Cubes can be sparse (minimal intersections) or dense (many

intersections)

 Cubes also allow aggregation along dimensional hierarchies

 Enables rapid drill-up/down

 More flexible than table based construct

DIMENSIONS AND MEASURES

• Cubes can have more than two

dimensions.

• The cube shown in the diagram has

four dimensions: Route, Source, Time,

and Measures.

• Measures represent the data

organized by other dimensions

included in the cube.

• The cube shown in the diagram has

two measures, Packages and Last.

43

Dimension

Measure

MONDRIAN CUBE CONSTRUCT

 A basic Mondrian Cube is structured in XML like the following

<Cube>

<Dimension>

<Hierarchy>

<Level>

<Property/>

</Level>

</Hierarchy>

</Dimension>

<Measure/>

<CalculatedMember/>

</Cube>

 It is possible to map to snowflake and similar relational structures.

 For complete schema reference: http://mondrian.pentaho.com/documentation/schema.php

http://mondrian.pentaho.com/documentation/schema.php

FACT JOIN OPTIMIZATION

 The table mapping in the schema tells Mondrian how to get the data, but
Mondrian is smart enough not to read the schema literally.

 It applies a number of optimizations when generating queries:

 If a dimension has a small number of members, Mondrian reads it into a

cache on first use.

 If a dimension is in the fact table (or, more precisely, the level of the

dimension being accessed is in the fact table), Mondrian does not

perform a join.

 If two dimensions access the same table via the same join path,

Mondrian only joins them once.

SCHEMA WORKBENCH

 This is the tool to build and test the Mondrian schema

SW TOOLBAR

 Add Cube

 Add Dimension

 Add Dimension Usage

 Add Hierarchy

 Add Named Set

 Add User Defined Function

 Add Calculated Member

 Add Measure

 Add Level

 Add Property

 Add Virtual Cube

 Add Virtual Dimension

 Add Virtual Measure

MDX IN PSW

 Must have a JDBC connection
setup

 Select a “schema”

 List is the Schemas windows
that are currently open in the
application

 Connect to verify the
Schema/connection

 Top Window

 Enter in an MDX query

 Bottom Window

 Review your results after hitting
Execute

 NOTE: Format is a text printout,
NOT a crosstab

MDX AT WORK

 MDX stands for 'multi-dimensional expressions'.

 It is the main query language implemented by Mondrian.

 This was developed by Microsoft.

 MDX is used to

 Query a multi-dimensional data source to return values.

 Navigate the structure of an OLAP data source (cube).

 Obtain information about dimension hierarchy and its

members.

 Create a calculated member via MDX expressions.

MDX SYNTAX

 MDX and SQL are similar in several aspects, including the fact that

they both use a few common key words to perform queries such as

 SELECT clause (Tuple) ON COLUMNS/ON ROWS,

 FROM clause (which cube), and

 WHERE clause (slicer).

 A basic MDX query looks like this:

SELECT {([Measures].[sales], [Measures].[profit])} ON COLUMNS, {([Region],

[product])} ON ROWS

FROM [salescube]

WHERE ([Time].[2016])

 Mondrian specific MDX documentation is here:

http://mondrian.pentaho.com/documentation/mdx.php

http://mondrian.pentaho.com/documentation/mdx.php

CELLS, TUPLES AND SETS

 Tuples uniquely identify individual cells or groups of cells (a cube slice)

 Tuples are enclosed with ()

 Example Cube Slice: profit for North Region in the Region in Q1 of 2016

 ([Region].[North Region], Time.[2016].[1], profit)

 Sets are ordered collections of tuples

 Sets are enclosed by {}

 All Tuples in a set must have the same dimensionality

 A set can contain a single tuple

 Example Set: Profit for 2016 and 2015

 {(Time.[2016], Profit) , (Time.[2015], Profit)}

 For those interested in more detailed MDX reference, check out this site:

 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/olapdmad/agmdxbasics_04qg.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/olapdmad/agmdxbasics_04qg.asp

SECURITY

 In Pentaho, security can be implemented in two ways with Mondrian

 Role based Security (Static)

 Using DSP (Dynamic Schema Processor)

 We will cover both the approaches in the training

ROLE BASED SECURITY

 A role defines an access-control profile

 It has a series of grants (or denials) for schema elements

 Roles are set when establishing a Mondrian connection

 Roles are defined by <Role> elements, which occur as direct

children of the <Schema> element, after the last <Cube>

<Role name=“South Manager">
<SchemaGrant access="none">
<CubeGrant cube=“sales" access="all">
<HierarchyGrant hierarchy="[Region]" access="custom"

topLevel="[Region].[Territory]“ bottomLevel="[Region].[Territory].[State].[City]“ >
<MemberGrant member="[Region].[South Region]" access="all"/>

</HierarchyGrant>
</CubeGrant>

</SchemaGrant>
</Role>

 The above example restricts South Manager to seeing only South in
the Sales cube

../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_Role
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_SchemaGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_CubeGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_HierarchyGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_MemberGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_HierarchyGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_CubeGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_SchemaGrant
../../../../../../../../../pentaho/kettle/BasicStudies/IntroToMondrian/FullMondrian.html#XML_Role

SECURITY CONTINUED…
 Mondrian Roles are mapped with the BA server in the following ways:

 One-To-One UserRoleMapper

 LookupMap UserRoleMapper

 UserSession UserRoleMapper

 Sample:

 <Role name="California manager">

 <SchemaGrant access="none">

 <CubeGrant cube="Sales" access="all">

 <HierarchyGrant hierarchy="[Store]" access="custom" topLevel="[Store].[Store Country]">

 <MemberGrant member="[Store].[USA].[CA]" access="all"/>

 <MemberGrant member="[Store].[USA].[CA].[Los Angeles]" access="none"/>

 </HierarchyGrant>

 <HierarchyGrant hierarchy="[Customers]" access="custom“ topLevel="[Customers].[State Province]"
bottomLevel="[Customers].[City]">

 <MemberGrant member="[Customers].[USA].[CA]" access="all"/>

 <MemberGrant member="[Customers].[USA].[CA].[Los Angeles]"access="none"/>

 </HierarchyGrant>

 <HierarchyGrant hierarchy="[Gender]" access="none"/>

 </CubeGrant>

 </SchemaGrant>

 </Role>

DYNAMIC SCHEMA PROCESSOR

 A Dynamic Schema Processor (DSP) is a special class that can intercept

the schema when it is loaded.

 It has access to the session variables and hence can modify the schema

based such as user ID, roles and tenant ID

 More details on the implementation of the same can be found at the

following locations:

 http://mondrian.pentaho.com/documentation/schema.php#Schema_proce

ssor

 http://help.pentaho.com/Documentation/6.1/0R0/070/Multi-Tenancy . Here

go to Analyzer Data Multi-Tenancy section for more details.

http://mondrian.pentaho.com/documentation/schema.php#Schema_processor
http://help.pentaho.com/Documentation/6.1/0R0/070/Multi-Tenancy

PRIVILEGE HIERARCHY

 Privileges are established and overridden along the following

hierarchy:

 Schema

 Cube

 Hierarchy

 Member

 Establishing access defaults at higher levels and overriding those
defaults among the lower levels

SCHEMA AND PRIVILEGE

 A <SchemaGrant> defines the default access for objects in a

Schema.

 The access attribute can be "all" or "none“.

 This default access can be overridden by Cube in the

Schema.

 A <CubeGrant> defines the default access to a particular cube

within the Schema.

 The access attribute can be "all" or "none“.

 The access can be overridden by Hierarchies in the Cube.

HIERARCHY PRIVILEGE

 A <HierarchyGrant> defines access to Hierarchy within a Cube.

 Access can be set to “all”, “none” or “custom”

 “all” and “none” follow the pattern as before

 "custom”, enables additional attribute usage for the Hierarchy

 “topLevel” can be set to identify the highest level of member

aggregation that the user can access (preventing view of “big picture”)

 “bottomLevel” can be set to identify the lowest level of member detail

that the user can access (preventing view of “private details”)

 <MemberGrant> elements may be nested to identify member specific

access within the Hierarchy

MEMBER PRIVILEGE

 <MemberGrant> gives (or removes) access to a given member, and all of

its children. Here are the rules:

 Members inherit access from their parents.

 If you deny access to parent, you won't be able to see its children.

 Grants are order-dependent.

 If you grant access to a parent, then deny access to one of the children,

then you will be able to see all other children except the one that was

denied.

 If you deny access to one of the children, then grant access to the parent,

you would override and have access to the child.

 A member is visible if any of its children are visible.

 Suppose you deny access to a parent, then grant access to one of its

children, then you would override and gain access to the parent summary

but none of the detailed siblings of the child.

 Member grants don't override the hierarchy grant's top- and bottom-levels.

CONNECTIONS AND ROLES

 A role only has effect when it is associated with a Mondrian

connection.

 By default, connections have a role which grants them access to

every cube in that connection's schema.

 Most databases associate roles (or 'groups') with users, and

automatically assign them when users log in.

 However, Mondrian does not have the notion of users, so you have

to establish the role in a different way.

 Pentaho action sequences and components enable passing of the

Role into the Mondrian server.

PERFORMANCE TUNING FOR ANALYSIS

 At the table level the DBA will help identify the tables to be optimized

 Mondrian can use Aggregate tables for better performance.

 Detail on how to implement and use aggregate tables can be found at

http://mondrian.pentaho.com/documentation/aggregate_tables.php

 There are certain rules that need to be followed to use aggregate tables.

http://mondrian.pentaho.com/documentation/aggregate_tables.php

CACHE

 By default, Mondrian maintains the cache for a query executed.

 This is based on connection and schema combination.

 This helps the roundtrips to the Database.

 But, will have the stale data if the underlying data has changed.

 Cache should be flushed on a regular basis by the Administrator.

 This can be done from the Pentaho BA server UI or by calling/scheduling

an xaction.

 The cache can also be cleared programmatically by calling few APIs

exposed by Mondrian.

http://mondrian.pentaho.com/documentation/cache_control.php#CacheControl_API

http://mondrian.pentaho.com/documentation/cache_control.php#CacheControl_API

PENTAHO REPORTING

 There are two tools for reporting in Pentaho

 Report Designer

 Interactive Reporting (based on Metadata Editor created models)

PENTAHO REPORT DESIGNER
 Started as an open source - Jfree Report project.

 Provides critical functionality for end users

 Web-based Access

 Prompting/Parameterized Reports

 Scheduling

 Subscriptions

 Bursting/Distribution

 Graphical Design Tools

 Provides features for developers

 Heterogeneous Data Sources

 Relational, OLAP (Mondrian), XML, custom and Pentaho Data
Integration Transformations

 Modular Report Definition

 Separates presentation from query

 Integration points to applications, portals

 JSP, Portlet, Web Service

WHY PRD?

 Flexible Report Design

 Graphical design environment

 Templates for consistent report formats

 Merges for commonly used report elements

 Access relational, OLAP, or XML data

 Conditional hiding of report objects

 Embeddable

 Lightweight

 Easy to extend

 100% Java - Portability, scalability, integration

 Cross Platform (client and server) - Mac, Linux/Unix, Windows

 Multiple Output formats – HTML, CSV, PDF, Excel and Word

ARCHITECTURE

PRD Engine Report-
Definition

Data Source
(Any)

Reports

REPORT DISTRIBUTION

Publishing Report to Reporting Server’s Solution repository allows it to be:

 Viewed online via intranet or internet

 Viewed online as a portlet within a portal

 Burst

 Scheduled/Subscribed

REPORT OBJECTS
 Data Fields (textual, numeric, date)

 Message Field (mix all data fields type and other textual content)

 Labels (text field)

 Shapes

 Rectangles (used for row or column banding)

 Bands (group of objects)

 Lines

 Images

 Charts

 Calculated Fields (Functions/Expressions)

 Custom Calculated Fields (BeanShell Expression)

REPORT SECTIONS

PRD LAYOUT

 Report

This is the master node that

will have all the elements

present in the report.

 Data Sets

Any dataset that is added

to the report will be present

here.

 Report Functions

Functions that can be used

on the elements are listed

under this.

 Page Header Band

The content in this band will be

present in each of the output

pages of the report. This can

be configured to print only on

the 1st and the last page.

 Report Header Band

After the page header, this will

be printed only once; at the

beginning of the report.

 Report Footer Band

If not empty, the content of

this section will be printed at

the end of the report just

before the page footer.

 Page Footer Band

The page footer band, when

not empty, is printed at the

bottom of each page. This

can be configured to print

only on the 1st and the last

page.

 Item Band

This section will have the

data to be displayed by the

Data set queries. Only one

Query can be called in this

section at a time.

 Watermark Band

The watermark band is

printed on the background

of every page.

 Groups

This band will have the

group and sub-group’s

details. All the groups will

appear here.

 NoData Band

The content of this band

will be displayed when no

Data is returned from the

Data –set queries.

CONNECTIONS

 There are various ways to connect to a Data Source in PRD:

 JDBC – Needs a driver corresponding the Database

 JNDI – Configured at the BA server.

 ODBC – ODBC connections

 PDI transformations – a KTR can be a Data Source which in turn can

connect to a lot more Data Sources.

 Pentaho OLAP Schema – The OLAP schema along with a database

connection can act as a source for the Report.

 Pentaho Metadata Model – The Metadata model can be used as a

source for the report.

REPORT FUNCTION

 A function is a custom program that can return a value depending
on other values available in the report.

 It can use values available in a dataset or use the value returned by
another function.

 Functions are often parameterized by outputs of other functions

 Report Functions can be used to:

 Format report content (row banding, remove dups, conditional display,
etc)

 Add hyperlinks

 Generate row level calculations

 Calculate group and report level aggregations (e.g. sum, average, min,
max)

 Add and format charts

 Functions can be added using the Data tab by selecting the
Functions node. All available functions are listed in the Add Function
window.

 It can also be added to a particular element by using the + on the
right side of the element.

HYPERLINK

Uses a java.text.MessageFormat to concatenate and format one or more values evaluated

from an expression, function or report data source.

TextFormatExpression

Adds hyperlinks to all elements with the name specified in 'element'. The link target is read from

a specified field. The column referenced by this field should contain URLs or Strings.

CreateHyperLinksFunction

DescriptionFunction Class

HOW TO ADD HYPERLINK

 Identify the field that will become a hyperlink and specify its

element name with something meaningful (e.g. URLFIELD)

 Create a TextFormatExpression report function to define the url

giving it a meaningful name (e.g. URLTEXT). If the url must be

dynamically determined based on report fields, use those and

refer to them using the {<n>} variable replacement syntax. <n>
refers to the number of the variable field specified starting with 0

for the first field.

 Create a CreateHyperLinksFunction report function whose

element is named the same as your field element name (e.g.

URLFIELD) and whose field is named the same as your

TextFormatExpression (e.g. URLTEXT).

GROUPING

 Groups can be added in the Structure tool-window by selecting the

Groups node, opening the popup menu and selecting Add Group.

 To delete a group, select Groups node in Structure tool-window and

press the Delete key.

 When you expand the group in the Structure tool-window you can

see that there is also a group header band and a group footer band
available.

 Each time a new group starts, the group header band of this group is
printed. Whenever a group ends, the group footer band is printed.

 Subgroups are nested within their parents. You must expand the

parent to see the children.

 Group header and footer bands do not appear in the graphical

report definition area unless you make them appear by selecting the

bands in the Structure tool-window and turning the Show In Layout

GUI property on.

REPORT PARAMETERIZATION

 Reports may be parameterized in one of two general ways

 Query

 Report “behaviour”

 Query Parameters…

 Change what data is provided to the report for execution

 Report Behaviour Parameters can…

 Change how report functions operate, thus

 changing what elements are displayed and/or

 changing the display format of elements and/or

 changing the formulas by which fields are calculated and/or

 etc…

HOW TO DO IT?

 Configure the Parameter:

 Add a Parameter from the Data

Tab in the report.

 Add/Use the Datasource.

 Select the appropriate options for

the parameter.

 The above defined parameter
can be passed on to the main
query to filter the dataset.

 Use the parameter in the query
like the following example:

Select productname, city, amount
from sales

where customernumber =
${Param1}

SUB REPORTS

 A sub report is a fully functional report that can be added to other

reports the same way other report elements are added.

 Sub report can be placed in any band of the “Master” report.

 Sub reports generally use a different query than the “Master” report

therefore you must create 2 data sources within the “Master” report.

 It can make use of the inherited Data sources or can have one itself.

 It can also be parameterized as the main report. The only difference

is, it needs to import the parameter from the “Master” report.

INTERACTIVE REPORTING

 Removes the need to know query languages

 Generates query based upon metadata selection

 Query generated at runtime

 Centralized maintenance

 Can be edited by client tools

 Available to entire solution

 Changes reflected at runtime

 Integration with existing metadata systems

 Security enforced at content design time and runtime

 Embeddable and Extendible

 Metadata can be queried programmatically

 Also exists as an embeddable Java component

 Open and extendible architecture

PENTAHO METADATA ARCHITECTURE

Metadata Editor

(Client)

Database

Pentaho BA Server

JDBC

HTTP

Metadata Model published to Pentaho BA Server

METADATA TERMINOLOGY : DOMAIN

 Domain represents all of the associated modeled business entities

 Each domain is one view of the data

 Servers as the highest level container and namespace

 Can be viewed as metadata “document”

 Each solution is restricted to have at most one domain

 Remember: solution repository can have multiple solutions

 Domain must be published as file metadata.xmi to the solution root

 Metadata editor only works with a domain at time

 Examples:

 “Sales” domain to define the relationships and entities used by sales team

PHYSICAL LAYER

 Connection

 Defines the location, user name, password, etc. for communicating

database

 Domain may contain several connections

 Serves as a parent to other physical layer elements

 Physical Table

 Represents an actual table in the database

 Associated with exactly one connection

 Physical Column

 Maps to an actual column of a table in the database

 Associated with exactly one physical table

BUSINESS LAYER

 Business layer

 Insulates the solution from changes to the physical layer

 Changes in the physical layer are minimized by the logical layer

 Not every physical layer entity will be mapped in the logical layer

 Business Model

 Logical parallel to the physical connection; mapped to a single connection

 Contains the business tables, business columns, and business relationships

 Business Table and Business Column

 Logical mapping of physical table and physical column

 Minimize impact of changes in physical table\physical column

BUSINESS VIEWS

 Business View

 Represents the business user’s window on the logical level

 Business Category

 Child of business model

 A logical grouping of business columns

 Members of category can come from different business tables of same
model

 Example: Customer category could contain customer name, address,
customer ID, credit rating, etc. (all from different tables)

 Business View

 Collection of business categories

 Each business model contains a single view

 Business user’s “view” of model

P
h

y
si

c
a

l
B

u
si

n
e

ss

Name

ID

Order ID
Discount

Rating

Order Date

Ship Date
Order Total

Business Category

Business Column

D
o
m
a
in

PENTAHO METADATA EDITOR

 100% Java application

 Client application to edit and create metadata model (metadata.xmi)

 Provides a graphical user interface

 Publishes metadata to the Pentaho BI Platform\Server

 Interfaces with the Pentaho BI Platform\Server security

 Requires a JDBC connection to the data

STEPS TO CREATE METADATA MODEL

 Create a new Domain.

 Add a database connection.

 Add Physical Tables

 Right-click on connection in navigation tree, choose Import Tables…

 Right-click on existing physical table in navigation tree, choose New Physical Table…

 Physical Columns

 Contained as “children” of physical table; deleted with physical table

 Must exist in database or be calculations

 All physical column management done in physical table property editor

 Creating and configuring a Business Model

 Creating and Managing Business Tables and Columns

 Defining relationship between the Business Tables

 Managing Business Categories

 Save and Publish to the Pentaho BA Server

COMPLETED MODEL

