
Solutions to
“Pattern Recognition and Machine Learning”

by Bishop

tommyod @ github

Finished May 2, 2019.
Last updated June 27, 2019.

Abstract

This document contains solutions to selected exercises from the book “Pattern
Recognition and Machine Learning” by Christopher M. Bishop.

Written in 2006, PRML is one of the most popular books in the field of machine
learning. It’s clearly written, never boring and exposes the reader to details without
being terse or dry. At the time of writing, the book has close to 36 000 citations
according to Google.

While short chapter summaries are included in this document, they are not in-
tended to substitute the book in any way. The summaries will largely be meaningless
without the book, which I recommend buying if you’re interested in the subject. The
solutions and notes were typeset in LATEX to facilitate my own learning process.

I hope you find my solutions helpful if you are stuck. Remember to make an
attempt at solving the problems yourself before peeking. More likely than not,
the solutions can be improved by a reader such as yourself. If you would like to
contribute, please submit a pull request at https://github.com/tommyod/lml/.

Several similar projects exist: there’s an official solution manual, a repository
with many solutions at https://github.com/GoldenCheese/PRML-Solution-Manual
and a detailed errata located at https://github.com/yousuketakada/prml_errata.

Figure 1: The front cover of [Bishop, 2006].

1

https://github.com/tommyod/lml/
https://github.com/GoldenCheese/PRML-Solution-Manual
https://github.com/yousuketakada/prml_errata

Contents

1 Chapter summaries 3
1.1 Introduction . 3
1.2 Probability Distributions . 6
1.3 Linear Models for Regression . 9
1.4 Linear Models for Classification . 11
1.5 Neural networks . 12
1.6 Kernel methods . 14
1.7 Sparse Kernel Machines . 16
1.8 Graphical Models . 18
1.9 Mixture Models and EM . 21
1.10 Approximate Inference . 22
1.11 Sampling Methods . 24
1.12 Continuous Latent Variables . 26
1.13 Sequential Data . 29
1.14 Combining Models . 30

2 Exercises 31
2.1 Introduction . 31
2.2 Probability Distributions . 36
2.3 Linear Models for Regression . 44
2.4 Linear Models for Classification . 47
2.5 Neural networks . 52
2.6 Kernel methods . 59
2.7 Sparse Kernel Machines . 62
2.8 Graphical Models . 64
2.9 Mixture Models and EM . 71
2.10 Approximate Inference . 76
2.11 Sampling Methods . 82
2.12 Continuous Latent Variables . 83
2.13 Sequential Data . 86

2

1 Chapter summaries

Notation

Scalar data is given by x = (x1, . . . , xN)T , where N is the number of samples. Vector
data is given by X, which has dimensions N ×M , where N is the number of data points
(rows) and M is the dimensionality of the feature space (columns).

Mathematics

Some useful mathematics is summarized here, also see the book appendix.

• The gamma function Γ(x) satisfies Γ(x) = (x− 1)Γ(x− 1), and is given by

Γ(x) =

∫ ∞
0

ux−1e−u du.

It’s a “continuous factorial,” which is proved by integration by parts and induction.

• The Jensen inequality states that, for convex functions

f

(∑
j

λjxj

)
≤
∑
j

λjf(xj),

where
∑

j λj = 1 and λj ≥ 0 for every j.

1.1 Introduction

Probability

The joint probability is given by p(x, y), which is short notation for p(X = xi∩Y = yj).

• The sum rule is

p(x) =
∑
y

p(x, y) =

∫
p(x, y) dy.

– Applying the sum rule as above is called “marginalizing out y.”

• The product rule is
p(x, y) = p(x|y)p(y).

– Computing p(x|y) is called “conditioning on y.”

• Let w be parameters and D be data. Bayes theorem is given by

p(w|D) =
p(D|w)p(w)

p(D)
⇔ posterior =

likelihood× prior

evidence
.

– Frequentist: data D generated from a fixed w.

– Bayesian: data D fixed, find best w given this data.

3

• Frequentists generally quantify the properties of data driven quantities in light of
the fixed model parameters, while Bayesians generally quantify the properties of
unknown model parameters in light of observed data. See [VanderPlas, 2014].

Expectation and covariance

Let x be distributed with density p(x), then

• The expectation of a function f(x) defined over x with probability density p(x) is

E[f] =
∑
j

f(xj)p(xj) =

∫
f(x)p(x) dx

• The variance of f(x) is

var[f] = E
[
(f − E[f])2

]
= E[f 2]− E[f]2

• The covariance of x and y given by

cov[x, y] = Ex,y [(x− E[x])(y − E[y])]

• The covariance matrix Σ has entries σij corresponding to the covariance of variables
i and j. Thus Σ = I means no covariance. (Note that real data may have no
covariance and still be dependent, i.e. have predictive power, xj = f(xk) where f is
non-linear. See “Anscombe’s quartet” on Wikipedia.)

Polynomial fitting

Let y(x,w) =
∑M

j=1wjx
j be a polynomial. We wish to fit this polynomial to values

x = (x1, . . . , xN) and t = (t1, . . . , tN) i.e. a degree M polynomial fitting N data points.

• The maximum likelihood solution is to minimize

E(w, x) ∝
N∑
n=1

[y(xn,w)− tn]2 .

• Regularization adds a weight-dependent error so that Ẽ(w, x) = E(w, x) + E(w).
For instance, Ridge minimizes the 2-norm:

Ẽ(w, x) ∝
N∑
n=1

[y(xn,w)− tn]2 + λ ‖w‖2
2

While LASSO (Least Absolute Shrinkage and Selection Operator) minimizes and
error with the 1-norm. Both are examples of Tikhonov regularization.

4

Gaussians

The multivariate Gaussian is given by

N (x|µ,Σ) =
1

(2π)D/2 |Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ is the mean and Σ is the covariance. Working with the precision Λ := Σ−1 is
sometimes easier.

Parameter estimation

Let x = {x1, . . . , xN} be a data set which is identically and independently distributed
(i.i.d). The likelihood function for the Gaussian is

p
(
x|µ, σ2

)
=

N∏
j=1

N
(
xj|µ, σ2

)
.

Estimates for the parameters θ = (µ, σ2) can be obtained by maximizing the likelihood,
which is equivalent to maximizing the log-likelihood ln p (x|µ, σ2).

• Maximizing the likelihood p(D|w) is equivalent to minimizing E = eTe in polyno-
mial fitting.

• Maximizing the posterior p(w|D) (MAP) is equivalent to minimizing regularized
sum of squares E = eTe+ λwTw.

Model selection

• Both model and model hyperparameters must be determined.

– Minimize the error over the test set. Balance bias and variance. High bias can
lead to underfitting, high variance can lead to overfitting.

• Split data into training, testing and validation.

• If data is scarce, using K-fold cross validation is an option.

Decision theory

• Assign x to a region Rj ⊆ RM corresponding to a class Cj, which might or might
not be the true class.

• Minimizing misclassification is done by assigning x to the Cj which maximizes the
posterior p(Cj|x). This is equivalent to maximizing chance of begin correct.

• Loss function Lk,j may be used, the loss function assigns a penalty when the true
class and the predicted class differ. Lk,j 6= Lj,k in general. Pick the Cj which
minimizes expected loss, i.e. pick the class Cj which minimizes∑

k

Lk,jp(x, Cj).

5

Three general decision approaches in decreasing order of complexity: (1) inference with
class conditional probabilities p(x|Cj), (2) inference with posterior class probabilities
p(Cj|x) and (3) discriminant function.

x p(Ck,x) Ckinference

discriminant function

decision

Information theory

• h(x) = − ln p(x) measures the degree of surprise.

• The entropy is the expected surprised, defined as

H[p] = E[h] = −
∑
j

p(xj) ln p(xj) = −
∫
p(x) ln p(x) dx

and measures how many nats are needed to encode the optimal transmission of
values drawn from p(x).

– Discrete entropy is maximized by the uniform distribution.

– Continuous (or differential) entropy is maximized by the Gaussian.

• Conditional entropy is given by

H[x|y] = −
∑
i,j

p(xi, yj) ln p(xi|yj) = −
∫∫

p(x, y) ln p(xi|yj) dx dy,

and we have that H[x, y] = H[y|x] + H[x].

• The Kullback-Leibner divergence is given by

KL(p‖q) = −
∫
p(x) ln

(
q(x)

p(x)

)
dx

and is interpreted as the additional information needed if using q(x) to encode values
instead of the correct p(x).

1.2 Probability Distributions

Conjugate priors

• Since we know that

p(w|D) ∝ p(D|w)× p(w)

posterior ∝ likelihood× prior

we seek probability density functions such that the left hand side and the right hand
side is of the same functional form. In other words, the likelihood p(D|w) is fixed,

6

and we seek priors p(w) such that posterior p(w|D) is of the same functional form.
The idea is similar to eigenfunctions.

• Example: Since the binomial distribution is proportional to pk(1− p)n−k, the Beta
distribution, proportional to pα−1(1 − p)β−1, is a conjugate prior. The product of
these distributions then ensures that the posterior is of the same functional form as
the prior.

Parameter Conjugate prior

µ in Gaussian Gaussian
p in Binomial Beta-distribution
p in Multinomial Dirichlet-distribution

The multidimensional Gaussian

• Gaussians arise naturally in sums x1 + · · · + xN and averages, since when N → ∞
the sum is normally distributed by the central limit theorem.

• The multidimensional Gaussian can be diagonalized by diagonalizing the precision
matrix Λ = Σ−1, then exp(xTΛx) ∼= exp(yTDy), where D = diag(d1, . . . , dD).

• One limitation is the unimodal nature of the Gaussian, i.e. it has a single peak.

• Partitioned Gaussians. Let x ∼ N (x|µ,Σ), where Λ = Σ−1 and

x =

(
xa
xb

)
µ =

(
µa
µb

)
Σ =

(
Σaa Σab

Σba Σbb.

)
.

– Conditional distribution

p(xa|xb) = N (x|µa|b,Λ−1
aa)

µa|b = µa −Λ−1
aa Λab(xb − µb)

– Marginal distribution

p(xa) = N (xa|µa,Σaa)

7

– These results are proved using inverse of 2 × 2 block matrices and examining
the quadratic and linear terms in the exponential.

• There also exist closed-form expressions for Bayes theorem when the prior and
likelihood are Gaussians with linear relationship.

Bayesian inference

• Gaussian variables.

– To estimate µN (σ2 is assumed known), use Gaussian prior.

– To estimate λ = 1/σ2, use Gamma function as prior, i.e.

Gam(λ|a, b) =
baλa−1

Γ(a)
exp(−bλ)

since it has the same functional form as the likelihood.

• The Student-t distribution may be motivated by:

– Adding an infinite number of Gaussians with various precisions.

– It’s the distribution of the sample mean (X̄ − µ)/(S/
√
n) when x1, . . . , xN are

i.d.d. from a Gaussian.

– As the degrees of freedom df → ∞, the Student-t distribution converges to a
Gaussian. An important property of the Student-t distribution is it’s robustness
to outliers.

Periodic variables

• The mean can be measured as θ̄, where we think of the data as lying in a circle.

• The von-Mises distribution is a Gaussian on a periodic domain. It is given by

p(x|θ0,m) =
1

2πI0(m)
exp [m cos(θ − θ0)] .

The exponential family

• The exponential family is given by

p(x|η) = g(η)h(x) exp
(
ηTu(x)

)
and many probability functions are members of this family. The entries of the vector
η are called natural parameters, and g(η) is a normalization constant.

• Maximum likelihood depends only on the sufficient statistics
∑

n u(xn).

• Non-informative priors make few assumptions, letting the data speak for itself.

8

Nonparametric methods

• The general equation for density estimation is

p(x) ' K

NV

where K is the number of points in a neighborhood of volume V and N is the total
number of points.

• Kernel functions (or Parzen windows) estimate a neighborhood giving decreasing
weight to samples further away, e.g. a Gaussian kernel. The volume V is fixed, the
data (and kernel function) determines K.

• Nearest neighborhood fixes K, letting V be a function of the data.

1.3 Linear Models for Regression

Linear basis function models

• We assume the dependent data y may be written as

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x).

– The function y(x,w) is linear in w, but not necessarily in x since φj(·) might
be a non-linear function. It’s called a linear model because it’s linear in w.

– Choices for the functions {φj} include identity, powers of x, Gaussians, sig-
moids, Fourier basis, Wavelet basis, and arbitrary non-linear functions.

• Assuming a noise term ε ∼ N (0, β−1), the maximum-likelihood solution is

wML =
(
ΦTΦ

)−1
ΦT t = Φ†t,

where Φ† is the Moore-Penrose pseudoinverse and the design matrix Φ has entries
Φij = φj(xi). The ML solution is equivalent to minimizing the sum of squares.

• Sequential learning is possible with e.g. the gradient descent algorithm, which is
used to compute w(τ+1) = wτ − η∇En. This facilitates on-line learning.

• If there are multiple outputs which are linear in the same set of basis functions, the
solution is wk = Φ†tk for every output k, and the system decouples.

• Regularizing the error E(w) with a quadratic term αwTw/2 has ML solution(
αI + ΦTΦ

)
w = ΦT t.

The solution above is equivalent to a prior p(w | α) = N (w | 0, α−1I).

9

The Bias-Variance decomposition

• The bias-variance decomposition is

expected loss = (bais)2 + variance + noise.

• Imagine drawing many data sets D from a distribution p(t,x).

– The bias is the distance from the average prediction to the conditional expec-
tation f(x) = E [t|x]. In other words:

Bias
[
f̂(x)

]
= E

[
f̂(x)− f(x)

]
– The variance is the variability of y(x;D) around it’s average.

Var
[
f̂(x)

]
= E[f̂(x)2]− E[f̂(x)]2

• Flexible models have high variance, while rigid models have high bias.

Bayesian linear regression

• We introduce a parameter distribution over w, for instance an isotropic Gaussian
distribution with covariance matrix S0 = α−1I.

p(w) = N (w|m0,S0)

Although the prior p(w) is isotropic, the posterior p(w | t) need not be.

p(w) = N (w |m0,S0) (prior)

p(t | w) =
N∏
n=1

p(tn | w) (likelihood)

p(w | t) = N (w |mN ,SN) (posterior)

• Analytical calculations are possible, leading to refinement of the posterior distribu-
tion of the parameters w as more data is seen.

• A predictive distribution p(t|t, α, β) can be found. The predictive distribution ac-
counts for uncertainty of the parameters α and β.

• The model may be expressed via an equivalent kernel k(x, xn) as

y(x,w) = y(x,mN) = βφ(x)SNΦT t =
N∑
n=1

βφ(x)TSNφ(xn)︸ ︷︷ ︸
k(x,xn)

tn

In this context, a kernel is a “similarity function,” a dot product in some space.
This can reduce to lower dimensions and make computations faster.

10

Bayestian model selection and limitations

• Bayestian model selection uses Bayes theorem with models {Mi} and data D as

p(Mi | D) =
p(D | Mi)p(Mi)

p(D)

where Mi is a model (distribution). It’s possible to choose the best model given
the data by evaluating the model evidence (or marginal likelihood) p(D | Mi) via
marginalization over w.

• Some disadvantages of the simple linear model includes the fact that the functions
φj(x) are fixed before data is observed, and the number of functions often grow
exponentially with the number of inputs. These shortcomings are often alleviated
in other models by the fact that data typically lies on a lower-dimensional manifold.

1.4 Linear Models for Classification

Least squares and Fisher’s linear discriminant

• The following are non-probabilistic models, where the output is not a probability.

• Least squares classification minimizes a quadratic error function, and is analytically
tractable. The results are not probabilities, the method is very sensitive to outliers,
and does not necessarily give good results even when the data is linearly separable.

• Fisher’s linear discriminant seeks to find w to minimize

J(w) =
wTSBw

wTSWw
=

between class variance

within class variance
.

The method projects data to a (hopefully) desirable subspace, where generative or
discriminative methods may be used. Solved by w ∝ S−1

W (m2 −m1).

• The perceptron algorithm find a separating plane if the data is linearly separable,
but does terminate otherwise. Historically important.

Generalized linear models and probabilistic generative models

• A generalized linear model (GLM) is of the form y(x) = f
(
wTx+ w0

)
, where the

activation function f(·) may be non-linear.

• A probabilistic model first models p(x | Ck) and p(Ck), and then uses Bayes theorem
to model p(Ck | x). From Bayes theorem, we have

p(C1 | x) =
p(x | C1)p(C1)

p(x | C1)p(C1) + p(x | C2)p(C2)
=

1

1 + exp(−a)︸ ︷︷ ︸
the sigmoid σ(a)

,

where a = ln (p(x | C1)p(C1))−ln (p(x | C2)p(C2)). If we assume normal distributions
with shared covariance matrices, then a(x) is linear in x.

11

Probabilistic discriminative models

• A probabilistic model finds p(Ck | x) directly, without modeling the class-conditional
distribution of p(x | Ck). In other words, we can determine w in the GLM y(x) =
f
(
wTx+ w0

)
directly. This entails fitting O(M) coefficients instead of O(M2).

• To find w in y(x) = σ
(
wTx+ w0

)
, we minimize the cross entropy, given by the

negative log-likelihood

E(w) = − ln p(t | w)︸ ︷︷ ︸
likelihood

= −
M∑
n=1

tn ln(yn) + (1− tn) ln(1− yn)︸ ︷︷ ︸
cross entropy

.

• Using the Newton-Raphson method

wn+1 = wn −H−1(wn)∇E(wn)

on the error function E(w) is an instance of the iterative reweighed least squares
(IRLS) method. Every step involves a weighted least squares problem, and E(w)
has a unique global minimum.

The Laplace approximation

• The idea behind the Laplace approximation is to place a normal distribution on a
mode z0 of the function f(z)

f(z) ' f(z0) exp

[
−1

2
(z − z0)TA(z − z0)

]
A = −∇∇ ln f(z)|z=z0

• One application of Laplace approximation is Bayesian logistic regression, which is
generally intractable. Using the Laplace approximation, an approximation to exact
Bayesian inference is possible.

1.5 Neural networks

The basic idea of neural networks

• A neural network has a fixed number of adaptable basis functions. Unlike the
algorithms considered so far, neural networks let the activation functions themselves
be learned, not just the weights of their linear combinations. The notation is:

xi, i = 1, . . . , D zj, j = 1, . . . ,M yk, k = 1, . . . , K
w

(1)
ji

w
(3)
ki

w
(2)
kj

12

• In a two-layer network, the equation for the output is

yk = σ

(M∑
j=0

w
(2)
kj h

(M∑
i=0

w
(1)
ji xi︸ ︷︷ ︸

zj

))
,

where σ(·) and h(·) are the activation functions in the final (3rd) and hidden (2nd)
layer, respectively. They may differ in general.

– In regression problems, the final activation function σ(·) is often the identity,
and the error E(w) is the sum-of-squares error.

– In regression problems, the final activation function σ(·) is often the softmax,
and the error E(w) is the cross entropy.

• To see how the first layer learns activation functions, consider a D-D-2 network with
softmax activation functions trained using cross entropy error. The first part of the
network learns non-linear functions φj(x), which are used for logistic regression in
the second part. This is perhaps best seen if we write

yk = σ

(D∑
j=0

w
(2)
kj φj(x)

)
, φj(x) = h

(D∑
i=0

w
(1)
ji xi

)
.

Network training

• Network training involves finding weights w to minimize E(w), this is a non-convex
optimization problem, typically solved iteratively, i.e.

wk+1 = wk + ∆wk

where ∆wk is some update rule. For instance ∆wk = −η∇E
(
wk
)

for gradient
descent, which requires gradient information.

• Computing the gradient ∇wE
(
wk
)

is done using back-propagation, which is appli-
cation of the chain rule of calculus to the network. First information is propagated
forward in the network, then an error is computed and the ∂wjkE are found by
propagating information backward in the network.

• Second order derivatives, i.e. the Hessian H = ∇∇E, may be approximated or
computed. Approximation schemes include diagonal approximation, outer product
approximation, inverse from outer product (using the Woodbury matrix identity)
and finite differences. Exact evaluation is also possible, and computing fast multipli-
cation is possible by considering the operator R{·} in vTH = vT∇∇E = R{∇E}.

Neural network regularization

• Naively adding a regularization term such as Ẽ(w = E(w) + αwTw/2 will be
inconsistent with scaling properties. A better regularization is to use

α1

2

∑
w∈W1

w2 +
α2

2

∑
w∈W2

w2

13

where W1 denotes (non-bias) weights in layer 1.

– The regularization above is called weight-decay, since it corresponds to decaying
weights while training by multiplying with a factor between 0 and 1. It can be
shown that

weight decay ∼= early stopping.

• Four ways to learn invariance is

– Augmenting the training data while learning, using some function s(x, ξ),
where s(x, 0) = x. As an example, the function might rotate an image slightly.

– Use tangent propagation regularization to penalize the Jacobian of the
neural network, with no penalization along the tangent of the transformation.

– Pre-process the data and extract invariant features by hand.

– Build invariance into the structure of the neural net, e.g. CNNs.

– It can be shown that

augmenting data while learning ∼= tangent propagation regularizer.

Soft weight sharing and mixture density networks

• Using soft weight sharing, we assume a Gausian mixture distribution as a prior over
the weights in the network.

• Mixture density networks work well for inverse problems, where p(t | x) might be
multimodal. The approach is to use a neural network to learn πk, µk and σ2

k in the
mixture density

p(t | x) =
K∑
k=1

πkN
(
t | µk(x), Iσ2

k(x)
)
.

The {πk} have softmax activations in the output to enforce the summation con-
straint, while the {σ2

k(x)} have exponential activations to enforce positivity.

• A full Bayesian treatment of neural networks is not analytically intractable. How-
ever, using the Laplace approximation for the posterior parameter distribution, and
alternative re-estimation of α and β it is possible to use approximate evidence ap-
proximation.

1.6 Kernel methods

Introduction to kernel methods

• The dual representation expresses a prediction y(x) = wTφ(x) entirely in terms
of the N seen data points by use of the kernel k(x,x′) = φ(x)Tφ(x). This is in
contrast to learning weights w. The dual formulation of Ride regression is

y(x) = k(x)T (K + λI)−1 t, (1)

14

where k(x)T = (k(x1,x), k(x2,x), . . . , k(xN ,x)) and Knm = k(xn,xm).

– Typically the number of data points N is much greater than the dimensionality
M of the features φ(x). Since (1) needs to invertK ∈ RN×N , it’s not obviously
useful. One advantage is that infinite dimensional feature mappings need not
be computed explicitly. A simple example is φ(x) = (1, x, x2, . . .), which is
infinite dimensional, but k(x, x′) becomes (1− x2)−1.

– A kernel is valid if it corresponds to an inner product a feature space. A kernel
is valid if K is positive definite for every possible x. Valid kernels may be
constructed from other valid kernels, for instance

k = k1 + k2, k = k1k2, k = exp(k1), . . .

This is called kernel engineering.

• Kernel regression (the Nadaraya-Watson model) models p(x, t) as

p(x, t) =
1

N

N∑
n=1

f(x− xn, t− tn).

Gaussian processes

• A prior over weights w ∼ p(w), implicitly defines a distribution over functions
y(x) = wTφ(x). Predictions on a finite set of values is given by y = Φw. Formu-
lated in term of kernels, a Gaussian process is specified by

E [y(xn)y(xm)] = k(xn,xm) = cov [y] .

• The kernel may for instance be given by

k(xn,xm | θ) = φ0 exp

(
−θ1

2
‖xn − xm‖

)
+ θ2 + θ3x

T
nxm.

If xn ≈ xm, then the kernel will be comparatively large and the covariance will be
larger. In other words; points that are close are more highly correlated.

• In Gaussian process regression, the predicted mean and variance is given by

µ(XN+1) = kTC−1
N t

σ2(XN+1) = c− kTC−1
N k,

where CN = k(xn,xm) + β−1δnm is the covariance matrix after observing N points.

Hyperparameters and extensions

• Hyperparameters θ in k(xn,xm | θ) can be optimized by maximizing the log likeli-
hood ln p(t | θ), which is in general non-convex. This is type 2 maximum likelihood.

• Gaussian processes can be used for classification, by composing the output with a
sigmoid so that y = σ(a(x)). Not analytically tractable, but approximate meth-
ods exist: (1) variational inference, (2) expectation maximization and (3) Laplace
approximation.

15

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True function
Predicted means
Samples with noise
Predicted variance

Figure 2: Gaussian process regression on data from yi = sin(xi) + ε.

1.7 Sparse Kernel Machines

Support vector machines

Figure 3: Data which is linearly separable in the feature vector space φ(x), but not in
x-space. The maximum margin hyperplane is non-linear in x-space. Source: Wikipedia.

• The main idea (when data is linearly separable) is to optimize w and b in the equa-
tion y(x) = wTφ(x) + b so that the separating hyperplane has a maximal margin.
The points closest to the margin are called support vectors, and the hyperplane
depends only on these points.

• Lagrange multipliers and the Karush-Kuhn-Tucker (KKT) conditions are needed to
solve the problem. For the problem below, the Lagrangian is L(x, λ) = f(x)−λg(x).

Optimization problem KKT-conditions

minimize f(x) g(x) ≥ 0, λ ≥ 0

subject to g(x) ≥ 0 λg(x) = 0

16

The KKT conditions must be true at the optimum. They state that each constraint
is either active or inactive, and generalize Lagrange multipliers to deal with inequal-
ity constraints.

• The linearly separable classification problem has Lagrange function

L(w, b,a) =
1

2
‖w‖2 −

N∑
n=1

an (tnyn − 1) .

Differentiating with respect to w and b, and substituting back into the Lagrange
function yields the dual form of the optimization problem

L̂(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (2)

which is expressed entirely in terms of the kernel k(xn,xm) and the lagrange multi-
pliers. The constraints are an ≥ 0 and

∑
n antn = 0, and predictions are given by

y(x) =
∑

n antnk(xn,x)+ b. Since an = 0 when point n is not a support vector (the
constraint is inactive), prediction relies only on the support vectors.

• The linearly inseparable classification problem minimizes

C
N∑
n=1

ξn +
1

2
‖w‖2 ,

where ξn are slack variables and the constraint is tnyn ≥ 1 − ξn instead of tnyn ≥
1. The dual Lagrangian function L̂(a) is exactly equal to Equation (2), but the
constraints are now 0 ≤ an ≤ C (box constraints) and

∑
n antn = 0.

• The optimization problems above are quadratic programs (QP), and specialized
methods for solving QP for SVMs exist: chunking, decomposition methods and
sequential minimal optimization. The problems are often large, since k(xn,xm)
must be evaluated for every pair of points.

• The regression problem introduces a more robust error function

1

2

∑
n

(yn − tn)2 +
λ

2
‖w‖2 � C

∑
n

Eε (yn − tn) +
1

2
‖w‖2 ,

where Eε(·) increases linearly outside of a margin of width 2ε. Two slack variables

ξn ≥ 0 and ξ̂n ≥ 0 are introduced, and minimizing the above is equivalent to

minimize
ξ,ξ̂,w

C
∑
n

(ξn + ξ̂n) +
1

2
‖w‖2 ,

and L̂(a, â) is again quadratic. The resulting optimization problem is a QP.

• The ν-SVM is mathematically equivalent to the above, but uses a parameter ν which
controls the fraction of the data points that become support vectors. This is a more
intuitive parameterization.

17

Relevance vector machines

• For regression, the model and prior are formulated as

p(t | x,w, β) = N (t | y(x,w), β−1), where y(x,w) =
∑
n

wnk(xn,x) + b

p(w | α) =
M∏
i

N (wi | 0, α−1
i).

The name relevance vector machine comes from the fact that automatic relevance
determination is used to infer the important data points in an SVM-like function
y(x,w), and these relevance vectors are analogous to support vectors.

• The hyperparameters {αi} and β are efficiently determined through re-estimation
equations. The expectation maximization algorithm is also an option.

• The model is typically very sparse, even more sparse than SVM, as many of the {αi}
are driven to infinity. The downside is that the optimization problem is non-convex,
and in general takes O(M3) time, where M = N + 1 if a SVM-like kernel is used.
For classification, Laplace approximation may be used to derive results.

1.8 Graphical Models

σ2 t̂ x̂

tn w

xn α

N

Figure 4: A graphical model for polynomial regression. Model parameters are shown
without circles (e.g. σ2), random variables are encircled (e.g. xn), observed random
variables are shaded (e.g. tn) and plate notation is used to repeat the enclosed nodes.

Directed graphs

• A graph is associated with a factorization of the joint probability density function
p(x). For instance, the graph below means that p(x) can be factored as p(x1 |
x2)p(x2)p(x3 | x2). It imposes structure on p(x) by it’s lack of edges.

x1 x2 x3

18

• Approaches to reducing the number of model parameters include:

– Removing edges: induces factorization properties on p(x).

– Sharing parameters: merging parents together into a common node.

– Restricting the functional form: for instance assuming p(y = 1 | x) = σ
(
wTx

)
.

• The three examples below demonstrate conditional independence properties in sim-
ple directed graphs. Observing c blocks the tail-to-tail and head-to-tail paths, but
observing c (or any descendant of c) unblocks the head-to-head path.

a c b

a 6⊥⊥ b | ∅

a c b

a ⊥⊥ b | c

a c b

a 6⊥⊥ b | ∅

a c b

a ⊥⊥ b | c

a c b

a ⊥⊥ b | ∅

a c b

a 6⊥⊥ b | c

• D-separation. Consider disjoint subsets A, B and C of edges in a graph. Let C be
observed. A path from A to B is said to be blocked if

– There is a tail-to-tail or head-to-tail path with a node in C in the path.

– There is a head-to-head path, where the middle not is not in C, nor any of it’s
descendants.

If every path from A to B is blocked, then A ⊥⊥ B | C.

• A graph can be thought of as a filter. The filter inputs are pdfs p(x), and those
factoring according to the given graph structure pass through the filter. For instance,
p(x) =

∏
i p(xi) would pass any such filter. The set DF , for directed factorization,

is the set of probability density functions passing through a specific filter.

• The Markov blanket of a graph is the minimal set of nodes that isolates xi from the
rest of the graph. In other words, p(xi | x{i 6=i}) is only functionally dependent on
the nodes in the Markov blanket, which consists of parents, children and co-parents
when the graph is directed.

x x

x xi x

x x

The Markov blanket in an undirected graph has a similar, but simpler structure; it
only consists of the parents and children.

Markov random fields

• Markov random fields are undirected graphs whose nodes are random variables.

19

• Sets of nodes A and B are conditionally independent given C, denoted A ⊥⊥ B | C,
if removing the nodes in C leaves no path from A to B. This is simpler than in the
directed case, where d-separation and path blocking is more nuanced.

• The factors in the factorization of p(x) are functions of the maximal cliques in the
graph. Cliques are subsets of nodes which are fully connected. Let xC be nodes
associated with a clique C, then

ψC(xC)︸ ︷︷ ︸
potential function

= exp
(
− E(xC)︸ ︷︷ ︸

energy function

)
︸ ︷︷ ︸

Boltzmann distribution

is the potential function associated with a clique. The joint distribution is given by

p(x) =
1

Z

∏
C

ψC(xC),

where Z is a normalization constant called the partition function.

• A directed graph can be related to an undirected graph by moralization. This
involves “marrying the parents” and converting directed edges to undirected edges.
It represents a loss of structure.

Inference

• Inference on a chain is accomplished by sending messages ; one forward and one
backward. This let’s us evaluate marginals p(xn) efficiently. If each variable has K
possible states, the algorithm is O(NK2) instead of the naive O(KN).

x1 x2 . . . xN

• Factor graphs comprise factor nodes and variable nodes. They can be constructed
from undirected trees, directed trees and directed polytrees. A factor graph is
bipartite, and they are used in the sum product algorithm.

• The sum-product algorithm facilitates efficient computation of marginals p(xs) in
factor graphs. It works by sending messages µf→x(x) and µx→f (x) from leaves to
an arbitrary root note, then back to the leaves. Marginals are then computed as

p(x) =
∏

s∈ne(x)

µfs→x(x).

• The max-sum algorithm finds the state xmax maximizing the joint probability func-
tion, as well as the value p(xmax). The algorithm involves first sending messages
from leaves to root, then backtracking to find the state xmax.

20

1.9 Mixture Models and EM

K-means and mixtures of Gaussians

• In K-means classification, the EM algorithm minimizes the objective function

J =
N∑
n=1

K∑
k=1

rnk ‖xn − µk‖2 .

– The expectation step re-assigns points xn to clusters via rnk ∈ {0, 1}K .

– The maximization step re-computes the k prototypes {µk}.
• Mixtures of Gaussians are given by the equation

p(x) =
K∑
k=1

πkN (x | µk,Σk)

where πk are the mixing coefficients. If p(zk = 1) = πk, we obtain the model below.
For every xn, there is a latent (unobserved) zn corresponding to which mixture xn
is from. For instance, if zn = (0, 1, . . .), then xn is drawn from mixture number 2.

zn

xn

N

πk

µk,Σk

K

– The EM algorithm for Gaussian mixtures is the following.

∗ The expectation step evaluates the responsibilities γ(znk), defined as
the posterior probabilities γ(znk) := p(znk = 1 | xn).

∗ The maximization step re-computes the πk,µk,Σk (functions of γ(znk)).

The expectation-maximization (EM) algorithm

• The goal is to maximize the log likelihood ln p(X | θ). If this is difficult, but
maximizing ln p(X,Z | θ) is easier, then the EM algorithm is applicable.

– The expectation step evaluates the posterior probability of the latent vari-
ables Z given X and θold. These are the responsibilities denoted by γ above.

p(Z |X,θold) =
p(Z,X | θold)∑
Z p(Z,X | θold)

21

– The maximization step maximizes the expectation of the complete data log-
likelihood over the posterior probability of the latent variables.

θnew = arg max
θ

Q(θ,θold)

Q(θ,θold) = EZ
[
ln p(Z,X | θold)

]︸ ︷︷ ︸
complete data log-likelihood

=
∑
Z

p(Z |X,θold) ln p(Z,X | θold)

The maximization can often be accomplished by setting derivatives to zero.

• The general EM algorithm maximizes ln p(X | θ), which can be decomposed as

ln p(X | θ) = L(q,θ) + KL(q||p).

– The expectation step maximizes the functional L(q,θ) with respect to the
distribution q(Z) while keeping θ constant. This amounts to minimizing
KL(q||p), since ln p(X | θ) is not a function of q(Z). The Kullback–Leibler
divergence KL(q||p) is minimized when q(Z) = p(Z |X,θ).

– The maximization step maximizes the functional L(q,θ) with respect to θ
while q(Z) is held constant. This causes ln p(X | θ) to increase.

• Examples of EM include K-means, mixtures of Gaussian distributions, mixtures of
Bernoulli distributions (latent class analysis) and EM for Bayesian linear regression.

1.10 Approximate Inference

The goal of approximate inference is to find the posterior distribution over the latent
variables, i.e. p(Z |X), and take expectations with respect to this distribution.

The two approaches are either:

• Stochastic: converge eventually, but often slow in practice, e.g. sampling.

• Deterministic: approximate p(Z | X) analytically, .e.g. variational inference. This
approach is “exactly wrong,” but often tractable. Uses a set of re-estimation equa-
tions.

Variational inteference and factorized distributions

• The log model evidence (marginal probability) ln p(X) can be decomposed as

ln p(X) = L(q) + KL(q||p),

where KL(q||p) is the Kullback-Leibler divergence of q(Z) with respect to p(Z |X).
Recall that the distribution q(Z) is arbitrary—the decomposition holds for any
choice of q(Z). Variational inference restricts the functional form of q(Z) and
maximizes L(q), which is equivalent to by minimizing the KL divergence KL(q||p).

22

• The technique of factorized distributions assumes that q(Z) factors as
∏M

i=1 qi(Zi),
and the minimizer for a single factor is given by

ln q?j (Zj) = E
i 6=j

[ln p(Z,X)] + const =

∫
ln p(Z,X)

M∏
i 6=j

q(Zi) dZi + const,

where the expectation E
i 6=j

[·] is taken with respect to all the M groups of variables

in the factorized distribution q(Z) =
∏M

i=1 qi(Zi) except the jth.

– This leads to coupled re-estimation equations, since the optimal qj(Zj) is de-
pendent on the other factors. The equations are solved by cycling through the
groups of variables and solving each in turn.

– Additional induced factorizations may naturally arise from interactions be-
tween the assumed factorizations

∏
i qi(Zi) and the conditionally independent

properties of the true joint distribution p(Z,X).

• If we minimize the reverse KL divergence KL(p||q) instead of KL(q||p), we get the
simple analytical solution

q?j (Zj) =

∫
p(Z)

∏
i 6=j

dZj = p(Zj).

However, minimizing the reversed KL leads to averaging over several modes of the
posterior p(Z |X), which in the context of mixtures yields bad solutions.

Examples of factorized distributions

• Some examples using factorized distributions given in the text are (1) univariate
Gaussians (for tutorial purposes), (2) mixtures of Gaussians, (3) general model
comparison and (3) linear regression.

– Approximating the predictive distribution p(x̂ | X) of possible unobserved
values is possible, and evaluating the variational lower bound L(q) is also pos-
sible (this bound should never decrease, and provides a practical check that
the math and convergence is correct).

• The assumed factorization in mixtures of Gaussians is

q(Z,π,µ,Λ) = q(Z)︸ ︷︷ ︸
variables

q(π,µ,Λ)︸ ︷︷ ︸
parameters

,

and this approach of grouping variables and parameters separately leads to good
results when the distributions are members of the exponential family. Variables
(extensive) scale with observed data, while parameters (intensive) do not.

• There are several advantages of variational inference compared to EM. For mixture
models of Gaussians singularities vanish when appropriate priors are used, and the
model learns the optimal value of K automatically. Since there are K! symmetries,
proper regularization must be used however.

23

Local variational methods and expectation propagation

• Local variational methods bound (typically univariate) functions by means of simpler
functions. An example is bounding convex functions y(x) using a tangent linear
function. When η is the slope parameterizing the tangent and −g(η) is the intercept,
convex duality states that

g(η) = max
x
{ηx− f(x)} f(x) = max

η
{ηx− g(η)} .

If y(x) is not convex, suitable transformations may be used.

• To see how local variational methods can be applied, consider the integral

I =

∫
σ(a)p(a) da︸ ︷︷ ︸
intractable

≥
∫
f(a, ξ)p(a) da︸ ︷︷ ︸

tractable

= F (ξ).

We can optimize F (ξ) for it’s maximizer ξ?, but note that this does not optimize
f(a, ξ)p(a) for every value of a, so it will in general not be an exact bound.

• Expectation propagation minimizes the reverse Kullback Leibler divergence. It’s an
iterate algorithm which cycles through factors, optimizing them one-by-one.

1.11 Sampling Methods

Basics

• The purpose of sampling methods is often to evaluate expectations such as

E [f] =

∫
f(z)p(z) dz ' 1

L

L∑
`=1

f
(
z`
)

where {z1, z2, . . . ,zL} are samples drawn from the probability density function p(z).
We assume that no analytical expression for the integral

∫
f(z)p(z) dz exists.

• If the indefinite integral of the desired probability distribution can be inverted, then
a uniform sampler py(y) can be used to find qz(z) by transformation. A software
implementation of uniform sampling from py(y) is almost always available.

py(y)
uniform

qz(z)
desired

f

h

• Rejection sampling uses a proposal distribution kq(z) to sample from p̃(z). The
proposal function is not normalized, and kq(z) ≥ p̃(z) for every value of z.

(a) A value z0 is drawn from the proposal function q(z).

(b) A value u0 is uniformly drawn from the interval [0, kq(z0)].

24

Figure 5: Rejection sampling visualized with p̃(z) in blue and kq(z) in black. Source:
https://theclevermachine.files.wordpress.com

(c) If u0 ≤ p̃(z), the sample z0 is kept. If not, it’s discarded.

Adaptive rejection sampling constructs the proposal function on the fly (typically
piecewise linear in ln p(z)). Sampled points which are not accepted are used to refine
the proposal function.

• Importance sampling computes expectations without sampling from p̃(z). A pro-
posal function q̃(z) is used, and the success of the algorithm depends crucially on
how close q̃(z) is to p̃(z).

E[f] =

∫
f(z)p(z) dz ' 1

L

L∑
`=1

p(z`)

q(z`)
f(z`) =

1

L

L∑
`=1

w`f(z`)

The weights w` measure how close the distributions are at z`. Notice that in general
the distributions are not required to be normalized.

• Sampling importance-resampling uses a sampling distribution q(z). The use of a
sampling distribution is similar to rejection sampling, but we need not determine
the constant k required for kq(z) ≥ p̃(z) in rejection sampling.

Initially L samples are drawn from q(z), and then for each z` a weight w` =
p(z)/q(z) is assigned. New samples are then drawn (bootstrapped) from the distri-
bution given by the samples z1, . . . ,zL and corresponding probabilities w1, . . . , wL.

MCMC, Gibbs sampling and Hybrid Monte Carlo

• The Markov Chain Monte Carlo (MCMC) sampler moves around on the p.d.f. p(z)
by means of a symmetric proposal distribution q(z | zτ). A proposed point z? is
accepted with acceptance probability A(z?, zτ) given by

A(z?, zτ) = min

(
1,
p̃(z?)

p̃(zτ)

)
.

25

https://theclevermachine.files.wordpress.com

If a point is not accepted, the previous point is again; this leads to duplicates of
the same point. The effective sample size can be much lower than the apparent
sample size due to the potentially high correlation of the samples, especially if p(z)
is multimodal, highly correlated or complicated in other ways.

– The Metropolis Hastings algorithm does not require the proposal distribution
to be symmetric. The acceptance probability for a possible transition k is

Ak(z
?, zτ) = min

(
1,
p̃(z?)qk(z

τ | z?)
p̃(zτ)qk(z? | zτ)

)
.

– Gibbs sampling cycles through the conditional probabilities p(zi | z\i) in turn
and samples new zis. It’s a special case of the Metropolis Hastings algorithm,
and the pratical applicability depends on being able to sample from p(zi | z\i).
If this is not analytically feasible, simpler sampling algorithms can be used as
sub-routines.

• Hybrid Monte Carlo moves over the probability density function by viewing it as a
dynamical system. This reduces random walk behavior. The system’s Hamiltonian
function is given by

H(z, r) = E(z)︸ ︷︷ ︸
potential

+K(r)︸ ︷︷ ︸
kinetic

,

where r is the momentum (velocity times mass in physics) and z the state.

– Leapfrog integration integrates along a path where the Hamiltonian is constant,
i.e. ∂tH = 0, and the new proposed state is accepted with probability

min (1, exp [H(z, r)−H(z?, r?)]) .

Figure 6: A Hybrid Monte Carlo step: the black dotted path shows the leapfrog integration
path. Source: https://chi-feng.github.io/mcmc-demo/app.html

1.12 Continuous Latent Variables

Principal Component Analysis (PCA)

• The goal of PCA is to project D-dimensional data to M ≤ D dimensions. This
is achieved by solving either one of the following equivalent optimization problems,

26

https://chi-feng.github.io/mcmc-demo/app.html

whose analytical solution is an eigenvalue decomposition of the data covariance
matrix.

– Maximize the variance of the projected data.

– Minimize the squared distance from the data xn to it’s projection x̃n, i.e.

J =
1

N

N∑
n=1

‖xn − x̃n‖2 .

• Applications of PCA include

– Visualization of data when M = 2.

– Compression of data when M < D.

– Whitening the data (diagonalizing the covariance matrix) when M = D

• Various algorithms exist for solving the eigenvalue problem, which has computa-
tional cost proportional to either O(D3) or O(N3). The SVD can be used for greater
numerical stability, iterate algorithms exist, and sparse algorithms also exist.

Probabilistic Principal Component Analysis (PPCA)

µ xn W

σ2 zn

N

• PPCA is a probabilistic model with a continuous M -dimensional latent variable
z. The prior over the latent variable z and the conditional probability over the
observed variable x respectively given by

p(z) = N (z | 0, I) p(x | z) = N
(
x |Wz + µ, σ2I

)
. (3)

The model is generative, and we can think of x as being generated by

x = Wz + µ+ ε, where ε = N
(
ε | 0, σ2I

)
.

This is a particular instance of the linear-Gaussian framework. Both the marginal
distribution p(x) and the posterior p(z | x) can be found analytically, and they are
both governed by Gaussian distributions.

• If we let σ2 → 0, we recover the standard PCA model.

• Some advantages of the probabilistic formulation include: an iterative EM-algorithm
that is sometimes computationally preferable, automatic determination of M from
the data via automatic relevance determination, existence of a likelihood function
and being able to run the model generatively.

27

• Factor analysis is a generalization of PPCA. The constant diagonal covariance σ2I
in Equation (3) for PPCA is replaced by an arbitrary diagonal covariance Ψ. The
posterior then becomes becomes

p(x | z) = N (x |Wz + µ,Ψ) .

The independent variance of x given z is explained by Ψ, and the covariance be-
tween variables is explained by W . No analytical solution is available, but the
iterative EM-algorithm can be used to compute a maximum likelihood solution for
the parameters W and Ψ.

Kernel PCA and non-linear latent variable analysis

Figure 7: A dense autoencoder network with 4 layers of weights. Source: Wikipedia.

• Kernel PCA performs PCA in an M -dimensional feature space mapped to by a
feature map φ : RD → RM . However, the dot product φ(xn)Tφ(xm) is never
explicitly computed, instead the kernel function k(x,x′) = φ(x)Tφ(x′) is used.
The computation involves the eigendecomposition of a N × N matrix, where N is
the number of observations—so it can be computationally expensive.

• Independent component analysis (ICA) decomposes a multivariate signal into inde-
pendent non-Gaussian signals. Non-linearity and non-Gaussianity are related, since
a general density can be obtained by a non-linear transformation of a Gaussian.

• Autoencoders (or auto-associative neural networks) perform non-linear PCA when
the number of layers with weights are 4. With 2 layers of weights, the optimal
solution to the objective function (minimizing the sum-of-squares) is the PCA—
even when the activation functions are non-linear.

• Some other methods for modeling non-linear manifolds are: principal curves, mul-
tidimensional scaling, local linear embedding, isometric feature mappings and self-
organizing maps.

28

1.13 Sequential Data

MC, state space models and Hidden Markov Models (HMM)

Figure 8: Hidden Markov Model with latent states and observed variables. The
source is https://www.researchgate.net/publication/278639262_micromachines_

Reciprocal_Estimation_of_Pedestrian_Location_and_Motion_State_toward_a_

Smartphone_Geo-Context_Computing_Solution.

• An Mth order Markov Chain assumes that the probability of xn is conditional on
the previous M observations xn−1,xn−2, . . . ,xn−M .

• A state space model introduces a set of latent variables zn in addition to the observed
variables xn. It’s governed by probability density functions

p(zn | zn−1) and p(xn | zn).

The key property is that zn+1 ⊥⊥ zn−1 | zn, i.e. when zn is observed, observing zn±1

gives no additional information about zn∓1.

• A Hidden Markov Model (HMM) is a state space model with discrete latent variables
zn. At each time step, the HMM can be thought of as a mixture model.

– Structuring the transitions probabilities in a matrix A, we have

p(zn | zn−1,A) =
K∏
k=1

K∏
k=1

A
zn−1,jznk
jk .

• To perform maximum likelihood in a HMM, the iterative EM algorithm is used.
In the E-step forward and backward messages are sent using a forward-backward
algorithm, and in the M step these are used to maximize the model parameters.

• The most likely sequence of states is found using the Viterbi algorithm, which is the
general max-sum algorithm in the context of HMMs.

• Extensions include: (1) sampling p(T | k), which is the duration T of a state k,
upon entering that state, (2) autoregressive HMMs, (3) input-output HMMs and
(4) factorial HMMs, which have several latent sequences.

29

https://www.researchgate.net/publication/278639262_micromachines_Reciprocal_Estimation_of_Pedestrian_Location_and_Motion_State_toward_a_Smartphone_Geo-Context_Computing_Solution
https://www.researchgate.net/publication/278639262_micromachines_Reciprocal_Estimation_of_Pedestrian_Location_and_Motion_State_toward_a_Smartphone_Geo-Context_Computing_Solution
https://www.researchgate.net/publication/278639262_micromachines_Reciprocal_Estimation_of_Pedestrian_Location_and_Motion_State_toward_a_Smartphone_Geo-Context_Computing_Solution

Linear dynamical systems

• A linear dynamical system is a linear-Gaussian model of the form:

p(zn | zn−1) = N (zn | Azn−1,Γ) (transitions)

p(xn | zn) = N (xn | Czn−1,Σ) (emissions)

p(z1) = N (z1 | µ0,P0) (initial value)

• The sum-product algorithm (Kalman filter and Kalman smoother equations) can
be used to find the marginal distribution p(z) of the latent variables conditional on
the observation sequence.

• Inference of the model parameters is possible using the EM algorithm.

• Extensions include allowing the zn to be governed by mixtures of Gaussians as well
as combining hidden Markov models with LDS.

1.14 Combining Models

Bagging and boosting

• In bayesian model averaging we assume that the dataset X is generated by one
model h, and we try to determine which one. As more data is seen, p(h |X) peaks
for some model h.
In contrast, model combination allows for data in different regions of the input space
to potentially be generated by different models.

• Bagging (committees) reduces the variance of predictions by bootstrapping the data
set, fitting several models, and averaging predictions.

• Boosting trains a sequence of models y`. A common boosting method is AdaBoost,
which minimizes the exponential error function

E =
N∑
n=1

exp (−tnfm(xn)) , where fm(x) =
1

2

M∑
`=1

α` y`(x)︸ ︷︷ ︸
weak learner

.

Conditional mixture models

• A mixture of linear regression models can be defined by

p(t | θ) =
K∑
k=1

πkN (t | wT
kφ, β

−1).

Optimal values for the model parameters can be found using EM and weighted
least squares. The model p(t | θ) can have k modes, and will potentially assign
probability to regions with no data points.

• In a mixture of experts the model weights πk(x) are functions of the input x.

30

2 Exercises

2.1 Introduction

Exercise 1.2

We start with Equation (1.4) from the book and differentiate it with respect to wi:

∂wiẼ(w) =
N∑
n=1

[y(xn,w)− tn] ∂wiy(xn,w) + λwi

=
N∑
n=1

[y(xn,w)− tn] (xn)i + λwi

=
N∑
n=1

[
M∑
j=0

wj(xn)j − tn

]
(xn)i + λwi = 0

Multiplying through the factor (xn)i and rearranging the terms yields

M∑
j=0

wj

N∑
n=1

(xn)i+j︸ ︷︷ ︸
Aij

+λwi =
N∑
n=1

(xn)itn︸ ︷︷ ︸
Tij

,

where the definitions of Aij and Tij are identical to those given in Exercise 1.1. Finally
we employ the Kronecker delta symbol δij to pull the wi into the sum, since λwi =∑M

j=0 λδijwj we have
M∑
j=0

(Aij + δijλ)wj = Tij.

This solves the problem. Notice that in vector notation this system can be written as(
ΦTΦ + Iλ

)
w = ΦT t,

where Φij = (xi)
j. Solving the system solves the regularized polynomial fitting problem.

Exercise 1.8

We first show that E [x] = µ. We define K(σ) = 1/
√

2πσ and evaluate the integral

E [x] =

∫
K(σ) exp

(
− 1

2σ2
(x− µ)2

)
x dx

=

∫
K(σ) exp

(
− 1

2σ2
z2

)
(z + µ) dz (change of variables)

=

∫
K(σ) exp

(
− 1

2σ2
z2

)
z dz + µ

∫
K(σ) exp

(
− 1

2σ2
z2

)
dz

= 0 + µ,

31

where the first integral in the second to last line is zero because it’s an odd function
integrated over the real line, and the second integral evaluates to µ since the integrand is
unity (it’s a centered normal distribution, which has integral 1).

The second part of the problem asks us to verify that E [x2] = µ2 + σ2. We factor the
normal distribution as N (x | µ, σ2) = K(σ2)E(σ2), where

K(σ2) =
(
2πσ2

)−1/2 ∂K

∂σ2
= −

(
2πσ2

)−3/2
π = −K(σ2)3π

E(σ2) = exp

(
− 1

2σ2
(x− µ)2

)
∂E

∂σ2
=

1

2σ4
(x− µ)2E(σ2).

We expedite notation by writing these functions as K and E, and their derivatives with
respect to σ2 as K ′ and E ′. Using the product rule of calculus, we have

∂

∂σ2

(∫
K(σ2)E(σ2) dx = 1

)
∫
K ′E +KE ′ dx = 0∫

KE

(
−πK2 +

1

2σ4
(x− µ)2

)
dx = 0.

Substituting −πK2 = −1/(2σ2), expanding the square term, multiplying out the KE
term and performing the integrals, we obtain

− 1

2σ2
+

1

2σ4

∫
KEx2 dx+ 0− µ2

2σ4
= 0,

and solving this for the unknown integral yields E [x2] =
∫
KEx2 dx = µ2 +σ2 as required.

To show that Equation (1.51) from the book holds, notice that

var [x] = E
[
(x− E [x])2

]
= E

[
x2 − 2xµ+ µ2

]
= E

[
x2
]
− 2µ2 + µ2 = E

[
x2
]
− E [x]2 ,

where we have used µ interchangeably with E [x].

Exercise 1.10

Recall that the definition of the expected value is E [x] =
∫
p(x)x dx, and that

∫
p(x) dx =

1 Statistical independence means that p(x, y) factors as p(x)p(y), so we have

E [x+ y] =

∫∫
p(x, y)(x+ y) dx dy =

∫∫
p(x)p(y)(x+ y) dx dy (independence)

=

∫∫
p(x)p(y)x dx dy +

∫∫
p(x)p(y)y dx dy

=

∫
p(y)

(∫
p(x)x dx

)
dy +

∫
p(y)y

(∫
p(x) dx

)
dy

=

∫
p(y) (E [x]) dy +

∫
p(y)y dy = E [x] + E [y] (by definition)

32

To show that var [x+ y] = var [x] + var [y], we use the preceding result along with the
definition from Equation (1.38) in [Bishop, 2006] var [x] = E [(x− E [x])2] to write

var [x+ y] = E
[
((x+ y)− E [x+ y])2]

= E
[
((x− E [x]) + (y − E [y]))2] (rearranging)

= E
[
(x− E [x])2 + 2 (x− E [x]) (y − E [y]) + (y − E [y])2]

= E
[
(x− E [x])2]+ E [2 (x− E [x]) (y − E [y])]︸ ︷︷ ︸

0

+E
[
(y − E [y])2]

= var [x] + var [y] .

The cross term vanishes since x and y are independent. We will not show this in detail, but
it can be shown by first noticing that E [xy] = E [x]E [y] when x and y are independent,
and then showing that E [(x− E [x])] = E [x]− E [x] = 0.

Exercise 1.15

Due to the size of this problem, we split the solution into parts.

a) The redundancy is present due to the fact fact multiplication is commutative, so
the weights may be factored out. For instance, when M = 2, we see that

wijxixj + wjixjxi = (wij + wji)xixj = w̃ijxixj.

We remove redundancy by ordering the products in a common term with i1 ≥ i2 ≥
· · · ≥ iM . This ordering corresponds to Equation (1.134).

For instance, instead of summing over terms with x1x2x3, x1x3x2, x2x1x3 and so
forth, we make use of a common weight for the x3x2x1-term.

b) The total number of terms equals the number of terms in the nested sum

n(D,M) =
D∑
i1=1

i1∑
i2=1

· · ·
iM−1∑
iM=1

1,

which contains M sums. To prove the recursive formula, we expand the outer sum
and notice that the result is D nested sums over M − 1 sums each. We have

n(D,M) =
D∑
i1=1

i1∑
i2=1

· · ·
iM−1∑
iM=1

1

=

(
1∑

i2=1

· · ·
iM−1∑
iM=1

1

)
+

(
2∑

i2=1

· · ·
iM−1∑
iM=1

1

)
+ · · ·+

(
D∑
i2=1

· · ·
iM−1∑
iM=1

1

)
= n(D = 1,M − 1) + n(D = 2,M − 1) + · · ·+ n(D = D,M − 1)

=
D∑
i=1

n(i,M − 1).

33

c) We skip the base case, which is easily verified. Assuming the result holds for D, we
we show that it holds for D + 1 by writing

D+1∑
i=1

(i+M − 2)!

(i− 1)! (M − 1)!
=

D∑
i=1

(i+M − 2)!

(i− 1)! (M − 1)!
+

(D +M − 1)!

D! (M − 1)!
.

The sum on the right hand side is the given result for D, which we assume is true.
Substituting this fact, we write

D+1∑
i=1

(i+M − 2)!

(i− 1)! (M − 1)!
=

(D +M − 1)!

(D − 1)!M !
+

(D +M − 1)!

D! (M − 1)!

=
(D +M − 1)!D

D!M !
+

(D +M − 1)!M

D!M !

=
(D +M − 1)! (D +M)

D!M !
=

(D +M)!

D!M !

=
((D + 1) +M − 1)!

((D + 1)− 1)!M !
,

which shows that the result holds for D + 1 when it holds for D.

d) We skip the base case of the inductive argument, as it should be easy to carry out.

The inductive step is performed as follows. Below, the first equality comes from
Equation (1.135) in the book, the second comes from assuming the result holds for
M − 1, and the third comes from Equation (1.136).

n(D,M) =
D∑
i=1

n(i,M − 1) =
D∑
i=1

(i+M − 2)!

(i− 1)! (M − 1)!
=

(D +M − 1)!

(D − 1)!M !
.

Comparing the first and final expression, we observe that if we assume the relation
holds for M − 1, it does indeed hold for M too.

Exercise 1.21

Starting with the inequality a ≤ b, we multiply both sides by a > 0 to obtain a2 ≤ ab.
We can take the square root of both sides and preserve the inequality, since the square
root is monotonically increasing. Doing so, we obtain the desired inequality.

To prove the integral inequality, we apply the inequality on each term in Equation (1.78),
then replace the integral over R1 ∪R2 with the real line:

p(mistake) =

∫
R1

p(x, C2) dx+

∫
R2

p(x, C1) dx

≤
∫
R1

{p(x, C1) p(x, C2)}1/2 dx+

∫
R2

{p(x, C2) p(x, C1)}1/2 dx

=

∫
{p(x, C2) p(x, C1)}1/2 dx

34

Exercise 1.25

This closely follows the derivation in Section 1.5.5. If x ∈ Rn and t ∈ Rm, we view
E [L(t,y(x))] as a functional from the set of functions {f | f : Rn → Rm} to R. Compar-
ing the ordinary derivative and the functional derivative, we see that

f(x+ ε) = f(x) + εT∇f(x), and

F (y(x) + εη(x)) = F (y(x)) + ε

∫ ∫
ηT δyj(x)F (y(x)) dt dx

= F (y(x)) + ε

n∑
j=1

∫ (∫
δF (y(x))

δyj(x)
dt

)
︸ ︷︷ ︸

must be 0

ηj(x) dx.

The above condition implies that(∫
δF (y(x))

δyj(x)
dt

)
= 2

∫
(yj(x)− tj)p(x, t) dt = 0,

which, following the derivation leading to Equation (1.89), leads to

yj(x) =

∫
tjp(t | x) dt = Et [tj | x] .

This applies to any component j of y(x), so y(x) = Et [t | x]. To show that this reduces
to Equation (1.89) in the case of a single target variable, simply define t := (t), i.e. a
vector with one component.

Exercise 1.33

A hint as to why this is true is given on page 54, which states that H [y | x] is “the average
additional information needed to specify y, given x.” If the conditional entropy is zero,
then y must be completely specified by x, i.e. a function of x. If H [y | x] = 0, then∑

i

∑
j

p(xi, yj) ln p(yj | xi) = 0.

Using p(xi, yj) = p(yj | xi)p(xi) and rearranging the sums, we obtain

∑
i

p(xi)

[∑
j

p(yj | xi) ln p(yj | xi)

]
= 0.

We know that 0 ≤ p(xi) ≤ 1 for every xi. Assuming now that p(xi) > 0, the bracketed
term must be zero for every i, i.e.∑

j

p(yj | xi) ln p(yj | xi) = 0 for every i.

35

Consider now the term p(yj | xi) ln p(yj | xi). The functional form of this term is z ln z,
and this function is negative except when z = 0 and when z = 1, where it is zero. Since
we are adding terms that are either negative or zero, and the sum must evaluate to zero,
every term in the sum must be zero. Therefore, p(yj | xi) must be 0 or 1 for each value
of yj. However, since

∑
j p(yj | xi) = 1, every value of p(yj | xi) must be zero except for

one. In other words, xi completely determines yj.

Exercise 1.38

We wish to prove Equation (1.115) based on Equation (1.114). Clearly the case M = 1 is
true, and we assume the case M = 2 is true, since this is given by Equation (1.114). For
the inductive step, we assume the identity holds in the base case, and in the M − 1 case,
and then

f

(
M∑
i=1

λixi

)
= f

(
M−1∑
i=1

λixi + λMxM

)
= f

(∑M−1
k=1 λk∑M−1
k=1 λk

M−1∑
i=1

λixi + λMxM

)
.

The sum of
∑M−1

k=1 λk and λM is unity, and
∑M−1

i=1 λixi/
∑M−1

k=1 λk is a weighted average of
x-values. Since it’s a weighted average, it may be treated as just another x-value.

Applying the base case for two x values, we obtain

f

(∑M−1
k=1 λk∑M−1
k=1 λk

M−1∑
i=1

λixi + λMxM

)
≤

(
M−1∑
k=1

λk

)
f

(
1∑M−1

k=1 λk

M−1∑
i=1

λixi

)
+ λMf (xM) .

Now we can appeal to the M − 1 case of the inequality, which we assume to be true by
the induction hypothesis. We can appeal to it since the λi/

∑M−1
k=1 λk are normalized and

sum to unity in the equation above due to the normalizing factor in front of the sum. To
ease notation, we define α =

∑M−1
k=1 λk and write

αf

(
M−1∑
i=1

λi
α
xi

)
+ λMf (xM) ≤ α

(
M−1∑
i=1

λi
α
f(xi)

)
+ λMf (xM) =

M∑
i=1

λif(xi).

This proves the Jensen inequality.

2.2 Probability Distributions

Exercise 2.6

We split this problem into three parts: (a) expected value, (b) variance and (c) mode.

36

a) The expected value is computed from the definition as

E[µ] =

∫
µp(µ) dµ =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

µµa−1(1− µ)b−1 dµ

=
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

µ(a+1)−1(1− µ)b−1 dµ (re-cast as Beta)

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)
=

a

a+ b
,

where we used Equation (2.265) from [Bishop, 2006], along with Γ(x+ 1) = xΓ(x).

b) To compute the variance, we will employ var[µ] = E[µ2]− E[µ]2. Similarly to the
sub-problem above, we observe that

E[µ2] =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

µ(a+2)−1(1− µ)b−1 dµ

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 2)Γ(b)

Γ(a+ b+ 2)
=

(a+ 1)a

(a+ b+ 1)(a+ b)
,

where in the last equality we have used Γ(x + 2) = (x + 1)xΓ(x), which is simply
repeated application of Γ(x+ 1) = xΓ(x) twice.

The remaining computation is

var[µ] = E[µ2]− E[µ]2 =
(a+ 1)a

(a+ b+ 1)(a+ b)
−
(

a

a+ b

)
,

which after some manipulation equals the desired result. We omit the details.

c) The mode is the maximum of the distribution. We differentiate the p.d.f. using
the product rule of calculus to obtain

p′(µ) = (a− 1)µa− 2(1− µ)b−1 + µa−1(b− 1)(1− µ)b−2(−1) = 0.

Diving by µa and (1− µ)b and rearranging, we obtain

(a− 1)

(b− 1)

(1− µ)

µ
= 1.

Solving the equation above for µ yields (a− 1)/(a+ b− 2) as required.

Exercise 2.8

The first part is to prove Equation (2.270). We apply the definitions of Ex [x | y] and
Ey[f(y)] in turn, and then the product rule of probability. Doing so, we observe that

Ey [Ex [x | y]] = Ey

[∫
xp(x | y) dx

]
=

∫ (∫
xp(x | y) dx

)
p(y) dy

=

∫∫
xp(x, y) dx dy = E[x].

37

The second part, which consists of proving Equation (2.271), is slightly more involved.
It helps to keep track of whether the quantities are constants, functions of x or functions
of y. It’s also useful to know, from the definition of conditional variance, that

varx[x | y] =

∫
p(x | y) (x− Ex [x | y])2 dx = Ex[x2 | y]− Ex[x | y]2. (4)

The result above does not come as a surprise, since it’s merely the familiar result for
variance, i.e. varx[x] = Ex[x2]− Ex[x]2, conditioned on y in every term.

Let’s examine the first term in the right hand side of (2.270) first, i.e. Ey [varx[x | y]].
Using Equation (4) above, we see that

Ey [varx[x | y]] = Ey
[
Ex[x2 | y]− Ex[x | y]2

]
= Ey

[
Ex[x2 | y]

]
− Ey

[
Ex[x | y]2

]
= E[x2]− Ey

[
Ex[x | y]2

]
, (5)

where we used Equation (2.270) from the book in the last equality.

We now investigate the second term in Eqn (2.270), i.e. vary [Ex [x | y]]. Using the
definition of variance (Equation (1.38) in [Bishop, 2006]), followed by Equation (2.270)
from the book, and the linearity of the expected value, we obtain

vary [Ex [x | y]] = Ey


Ex [x | y]︸ ︷︷ ︸

f(y)

−Ey [Ex [x | y]]︸ ︷︷ ︸
scalar


2

= Ey
[
(Ex [x | y]− E[x])2] (previous result)

= Ey
[
Ex [x | y]2 − 2Ex [x | y]E[x] + E[x]2

]
(multiply)

= Ey
[
Ex [x | y]2

]
− Ey [2Ex [x | y]E[x]] + Ey

[
E[x]2

]
(linearity)

= Ey
[
Ex [x | y]2

]
− 2Ey [Ex [x | y]]E[x] + E[x]2 (constants)

= Ey
[
Ex [x | y]2

]
− E[x]2 (6)

Finally, adding Equations (5) and (6) produces the result we’re after.

Exercise 2.15

The entropy is given by H[p(x)] = −
∫
p(x) ln p(x) dx from it’s definition, and we start

by computing the logarithm of p(x), which is

ln p(x) = −D
2

ln(2π)− 1

2
ln |Σ| − 1

2
(x− µ)TΣ−1(x− µ).

Defining ∆2 as (x− µ)TΣ−1(x− µ) (see Equation (2.44) in the book), we have

H[p(x)] = −
∫
p(x) ln p(x) dx =

D

2
ln(2π) +

1

2
ln |Σ|+ 1

2

∫
p(x)∆2 dx,

38

since
∫
Kp(x) dx = K for constants K such as D ln(2π)/2. The only troublesome term

is the last one, so what remains to do is show that
∫
p(x)∆2 dx = D. If we can show this,

then we’ve proven the equation given in the problem statement.

We will now show that
∫
p(x)∆2 dx = D. First, however, we’ll present a result for the

univariate Gaussian, which we will need later on. Here’s the univariate result, easily
verified by means of partial integration.

1√
2πσ

∫
exp

(
− x2

2σ2

)
dx =

1√
2πσ

∫
x2

σ2
exp

(
− x2

2σ2

)
dx = 1 (7)

We now rotate into y-space by y = U(x− µ), which diagonalizes Σ−1. From Equations
(2.50) and (2.56) in [Bishop, 2006], we see that the integral

∫
∆2p(x) dx now becomes∫

RD

(
D∑
i=1

y2
i

λi

)
D∏
j=1

1

(2πλj)1/2
exp

(
−
y2
j

2λj

)
dy.

Multiplying the product into the sum, and integrating each term, we have

D∑
i=1

∫
RD

y2
i

λi

D∏
j=1

1

(2πλj)1/2
exp

(
−
y2
j

2λj

)
dy,

where dy := dy1 dy2 · · · dyD. To clarify the meaning of the equation above, let’s focus on
term i in the outer sum and write out the products more explicitly, the above integral is(∫

1

(2πλ1)1/2
exp

(
− y2

1

2λ1

)
dy1

)
· · ·
(∫

1

(2πλD)1/2
exp

(
− y2

D

2λD

)
dyD

)
, (8)

but the ith factor is special, since it has the additional y2
i /λi factor, i.e. it’s given by(∫

1

(2πλi)1/2

y2
i

λi
exp

(
− y2

i

2λi

)
dyi

)
. (9)

Now comes the crucial observation; every factor in (8) except the ith is a univariate
Gaussian, so these integrals evaluate to 1. The special ith term (9) is in same functional
form as Equation (7) (with λi = σ2), so it also evaluates to 1. Therefore the product of
integrals for every term i evaluates to a product of ones, and the sum is simply

D∑
i=1

∫
RD

y2
i

λi

D∏
j=1

1

(2πλj)1/2
exp

(
−
y2
j

2λj

)
dy =

D∑
i=1

1 = D.

We’ve shown that
∫
p(x)∆2 dx = D, and this solves the problem.

39

Exercise 2.20

We expand a in the eigenvector basis of Σ, writing a =
∑

i αiui. Using the fact that
uiuj = δij, we have

aTΣa = aTΣ
∑
i

αiui = aT
∑
i

αiΣui = aT
∑
i

αiλiui

=
∑
j

αju
T
j

∑
i

αiλiui =
∑
i

α2
iλi.

If λi > 0 for every i, then clearly the sum is positive—so it’s sufficient. On the other hand,
if the sum is positive, then no λi can be negative or zero. If it were, we could choose a
in the direction of the corresponding eigenvector and obtain a negative sum, which would
be a contradiction. In other words, it’s a also necessary condition that λi > 0 for every i.

Exercise 2.27

We split this exercise into two parts.

a) We wish to show that E[x+ z] = E[x] + E[z]. Using the definition of the expected
value, along with independence, we see that

E[x+ z] =

∫∫
(x+ z)p(x, z) dx dz =

∫∫
(x+ z)p(x)p(z) dx dz

=

∫
xp(x)p(z) dx dz +

∫
zp(x)p(z) dx dz = E[x] + E[z].

b) As in the previous sub-problem, we use the definition to obtain

cov[x+ z] = E
[
(x+ z − E[x+ z])(x+ z − E[x+ z])T

]
= E

[
(x− E[x] + z − E[z])(x− E[x] + z − E[z])T

]
.

We wish to expand the inner square term. In order to avoid too heavy notation, we
introduce a := x− E[x] and b := z − E[z]. From there, we observe that

E
[
(a+ b)(a+ b)T

]
= E

[
aaT + abT + baT + bbT

]
= E

[
aaT

]
+ 2E

[
abT

]
+ E

[
bbT

]
.

Using the definitions of a and b, we see that this is

cov[x] + 2 cov[x, z] + cov[z],

and since the variables are independent, cov[x, z] = 0. We have shown that

cov[x+ z] = cov[x] + cov[z].

40

Exercise 2.31

If y = x + z, then py(y) = px(x) ∗ pz(z), where ∗ denotes the convolution operator. To
see why this is true, draw an x-z coordinate system and sketch a line x + z = a. The
probability that y = x + z = a is py(y = a) =

∫
px(a − t)pz(a) dt, since this integrates

over all possible ways to obtain the sum a.

In this case, when have y = x+ z, so we evaluate

py(y) = px(x) ∗ pz(z) =

∫
px(y − t)pz(y) dt

=

∫
N (y | µx + t,Σx)︸ ︷︷ ︸

p(y|t)

N (y | µz,Σz)︸ ︷︷ ︸
p(y)

dt.

Matching terms with Equations (2.109) and (2.110) we see that

py(y) = N (y | µz + µx,Σz + Σx) .

Exercise 2.40

The posterior is proportional to the prior times the likelihood. When the prior is Gaussian,
we have

p(µ |X) ∝ p(µ)p(X | µ) = N (µ | µ0,Σ0)
N∏
n=1

N (x | µ,Σ) .

Let us ignore normalization constants and only consider the product of the exponential
functions, this approach yields the following exponential function (which is not a p.d.f.)

p(µ |X) ∝ N (µ | µN ,ΣN)

= exp

(
−1

2

(
(µ− µ0)TΣ−1

0 (µ− µ0) +
N∑
n=1

(xn − µ)TΣ−1(xn − µ)

))
. (10)

We will multiply out the quadratic forms in Equation (10) above, and compare it to

(µ− µN)TΣ−1
N (µ− µN) = µTΣ−1

N µ− 2µTNΣ−1
N µ+ const. (11)

Multiplying out the terms in the inner parenthesis of Equation (10) and rearranging, we
obtain the following quadratic dependence on µ:

µT
(
Σ−1

0 +NΣ−1
)
µ− 2

(
µT0 Σ−1

0 +NµTMLΣ−1
)
µ+ const.

Comparing the above with Equation (11), we immediately see that

Σ−1
N = Σ−1

0 +NΣ−1 (12)

µTNΣ−1
N = µT0 Σ−1

0 +NµTMLΣ−1. (13)

41

Equation (12) corresponds with (2.141) from [Bishop, 2006], and answers the first part of
the exercise. Equation (13) needs a little more refinement, and we will make use of the
following matrix identity, which is (C.5) in the appendix.

(A−1 +B−1)−1 = B(A+B)−1A = A(B +A)−1B

Using the above on Equation (13), we see that

ΣN =
(
Σ−1
N

)−1
=
(
Σ−1

0 +NΣ−1
)−1

=
1

N
Σ

(
Σ0 +

1

N
Σ

)−1

Σ0 = Σ0

(
1

N
Σ + Σ0

)−1
1

N
Σ.

Right multiplying Equation (13) with ΣN and using the equation above, we obtain

µTN = µT0 (Σ +NΣ0)−1 Σ + µTML (Σ +NΣ0)−1NΣ0.

We have solved the second part of the problem. Observe also how this corresponds with
(2.142), which represents the univariate case. It’s reassuring that the multivariate solution
corresponds elegantly with the univariate case.

Exercise 2.43

We integrate, perform a change of variables, and finally recognize the gamma function:∫ ∞
−∞

exp

(
−|x|

q

2σ2

)
dx = 2

∫ ∞
0

exp

(
− xq

2σ2

)
dx (symmetry)

= 2

∫ ∞
0

exp (−u)
2σ2

q
x1−q du (substitute u = xq/2σ2)

= 2

∫ ∞
0

exp (−u)
2σ2

q

[(
2σ2u

)1/q
]1−q

du (substitute definition)

= 2
2σ2

q
(2σ2)1/q−1

∫ ∞
0

exp (−u)u1/q−1 du (recognize Γ(1/q))

= 2
2σ2

q
(2σ2)1/q−1 Γ(1/q) =

2

q
(2σ2)1/q Γ(1/q)

Exercise 2.47

In this problem, we only consider the factor dependent on x. We see that

lim
ν→∞

[(
1 +

λ(x− µ)2

ν

)ν]−1/2

= exp
(
λ(x− µ)2

)−1/2
= exp

(
−λ(x− µ)2

2

)
,

where we have used the fact that exp(x) = limn→∞ (1 + x/n)n.

42

Exercise 2.49

a) Using the definitions and changing the order of integration, we have

E[x] =

∫ ∞
−∞
xp(x) dx

=

∫ ∞
−∞
x

(∫ ∞
0

N
(
x | µ, (ηΛ)−1

)
Gam (η | ν/2, ν/2) dη

)
dx

=

∫ ∞
0

Gam (η | ν/2, ν/2)

[∫ ∞
−∞
xN

(
x | µ, (ηΛ)−1

)
dx

]
dη

= µ

∫ ∞
0

Gam (η | ν/2, ν/2) dη = µ

b) We start by introducing a preliminary result, which is the fact that∫ ∞
0

Gam(λ | a, b) 1

λ
dλ =

b

a− 1

∫ ∞
0

Gam(λ | a, b) 1

λ
dλ =

b

a− 1
. (14)

To solve the problem we will make use of the result given in Equation (14) above,
as well as the shortcut formula cov [x] = E

[
xxT

]
− E [x]E [x]T .

The term E [x]E [x]T is already known, it’s µµT as a result of the the previous
sub-problem. The term second term, i.e. E

[
xxT

]
, is computed similarly to the

previous sub problem, and we make use of Equation (14) to write:

E[xxT] =

∫ ∞
−∞
xxTp(x) dx

=

∫ ∞
−∞
xxT

(∫ ∞
0

N
(
x | µ, (ηΛ)−1

)
Gam (η | ν/2, ν/2) dη

)
dx

=

∫ ∞
0

Gam (η | ν/2, ν/2)

[∫ ∞
−∞
xxTN

(
x | µ, (ηΛ)−1

)
dx

]
dη

=
(
(ηΛ)−1 + µµT

) ∫ ∞
0

Gam (η | ν/2, ν/2) dη

= Λ−1

∫ ∞
0

Gam (η | ν/2, ν/2)
1

η
dη + µµT

= Λ−1 ν/2

ν/2− 1
+ µµT

Combining the results of E
[
xxT

]
and E [x]E [x]T above solves the problem.

c) We differentiate (2.161) with respect to x to obtain∫ ∞
0

2ηΛ(x− µ)N
(
x | µ, (ηΛ)−1

)
Gam (η | ν/2, ν/2) dη = 0,

which is identically zero when x = µ.

43

Exercise 2.55

Starting with Equation (2.187) in [Bishop, 2006], we have

A(mML) =

(
1

N

N∑
n=1

cos θn

)
cos θML

0 +

(
1

N

N∑
n=1

sin θn

)
sin θML

0

= r̄ cos θ̄ cos θML
0 + r̄ sin θ̄ sin θML

0 ,

where we used (2.268) in the last equality. Next we recognize that θ̄ = θML
0 and apply

sin2 θ̄ + cos2 θ̄ = 1 to finish the result, showing that indeed A(mML) = r̄.

Exercise 2.57

The multidimensional Gaussian is given by

p (x | µ,Σ) =
1

(2π)D/2 |Σ|1/2
exp

(
−1

2
xTΣx+ xTΣµ− 1

2
µTΣµ

)
,

where the quadratic term has been multiplied out. One way to write the term xTΣx as
a linear combination of ηT and u(x) is to recolonize that

xTΣx = vect (Σ)T vect
(
xxT

)
,

where vect (·) maps the (i, j)-th entry of a D×D matrix to the D(i− 1) + jth entry of a
column vector, i.e. vect

(
a11 a12
a21 a22

)
= (a11, a12, a21, a22)T . We then obtain the following.

h(x) = (2π)−D/2 η =

(
Σ−1µ

−1
2

vect (Σ−1)

)
u(x) =

(
x

vect
(
xxT

)) g(η) =
1

|Σ|1/2
exp

(
−1

2
µTΣµ

)

2.3 Linear Models for Regression

Exercise 3.7

The prior and likelihood are respectively given by

p(w) = N (w |m0,S0)

p(t | w) =
N∏
n=1

N (tn | wTφ(xn), β−1).

Computing the posterior distribution of the weights w gives the product p(w | t) = p(t |
w)p(w). We only focus on α in the resulting exponential exp(α/2), which becomes

N∑
n=1

(tn −wTφ(xn))Tβ(tn −wTφ(xn)) + (w −m0)TS−1
0 (w −m0). (15)

44

We want to compare this to

f(w) = (w −mN)TS−1
N (w −mN) = wTS−1

N w − 2mT
NS

−1
N w + const. (16)

The term quadratic in w The quadratic term in w in Equation (15) is

N∑
n=1

(wTφ(xn))TβwTφ(xn)) +wTS−1
0 w = wT

[
N∑
n=1

φ(xn)βφ(xn)T + S−1
0

]
w.

Matching with Equation (16), we see that

S−1
N =

N∑
n=1

φ(xn)βφ(xn)T + S−1
0 = βΦTΦ + S−1

0 ,

since
(
ΦTΦ

)
ij

=
∑

k ΦkiΦkj =
∑

k φi(xk)φj(xk). This solves the first part of the problem.

The term linear in w The linear term in w in Equation (15) is

2
N∑
n=1

(wTφ(xn))Tβtn + 2mT
0S
−1
0 w = 2

[
β

N∑
n=1

tnφ(xn)T +mT
0S
−1
0

]
w

= 2
[
βtTΦ +mT

0S
−1
0

]
w.

Matching with the second term in the right hand side of Equation (16), we see that

mT
NS

−1
N = βtTΦ +mT

0S
−1
0 .

Right multiplying with SN , taking the transpose and using the symmetry of SN completes
the problem.

Exercise 3.11

Showing that σ2
N+1(x) ≤ σ2

N(x) entails showing that

φ(x)TSN+1φ(x) ≤ φ(x)TSNφ(x).

We use the Woodbury matrix identity from Appendix C in [Bishop, 2006] to write

SN+1 =
[
S−1
N + βφ(x)φ(x)T

]−1
= SN −

SNφ(x)φ(x)TSN
1 + φ(x)TSNφ(x)

.

Substituting this into the inequality above reveals that we only have to show that

φ(x)T
SNφ(x)φ(x)TSN
1 + φ(x)TSNφ(x)

φ(x) ≥ 0.

This is easy to see, since γ := φ(x)TSNφ(x) ≥ 0 as long as the covariance matrix SN is
positive semi-definite (which we assume it is), and then the expression above becomes

γ2

1 + γ
≥ 0.

45

Exercise 3.16 (Unfinished)

Evaluating the integral is straightforward

p(t | α, β) =

∫
p(t | w, β)p(w | α) dw

=

∫
N
(
t | Φw, Iβ−1

)
N
(
w | 0, Iα−1

)
dw (definitions)

= N
(
t | 0, Iβ−1 + ΦΦTα−1

)
(using Eqn (2.115))

The logarithm of the above expression, as a function of t, should be proportional to the
quadratic form tT

(
Iβ−1 + ΦΦTα−1

)
t. We must show that this matches with E(mM) in

Equation (3.86). I failed to show this, below is my attempt.

The below is unfinished work We expand Equation (3.82) to

E(mN) =
1

2

(
βtT t− 2βtTΦmN

)
+

1

2
mT

N

βΦTΦ + Iα︸ ︷︷ ︸
A

mN

Substituting mN = βA−1ΦT t into the expression above and writing it as a quadratic
form, we obtain

1

2
tT
(
βI − β2ΦA−1ΦT

)
t

I also know that

A−1 =
(
βΦTΦ + Iα

)−1
= α−1ΦT

(
α−1ΦΦT + β−1I

)
β−1Φ−T ,

by Equation (C.5) from the Appendix, but I am unable to show that this reduces to the
result above.

Exercise 3.20

We verify the steps that are non-trivial in list-form below.

• Let’s consider two matrices A and B, not necessarily the A given in the section of
the book. If A = αI +B , then B has eigenvalues given by BuB = λBuB. The
matrix A has eigenvalues given by AuA = λAuA. Substituting the definition of A
into this, we have

(αI +B)uA = λAuA ⇒ BuA = (λA − α)uA.

From this we see that A and B share eigenvectors, and the eigenvalues of A are
shifted by α compared to the eigenvalues of B, so that λA = λB + α.

46

• Taking the logarithm of the determinant is achieved by eigenvalue decomposition

ln |A| = ln
∣∣QΛQT

∣∣ = ln |Q| |Λ|
∣∣QT

∣∣ = ln |Λ| = ln

(
M∏
i

(λi + α)

)
.

• The differentiation should be straightforward.

• We pull the M into the sum by writing

γ = M − α
M∑
i

1

λi + α
=

M∑
i

λi + α

λi + α
−

M∑
i

α

λi + α
=

M∑
i

λi
λi + α

.

2.4 Linear Models for Classification

Exercise 4.6

This exercise is mostly algebra. Our strategy will be to show the right-hand side first,
and then the left-hand side. The right hand side requires less algebra.

To show the right-hand side, we split the sum, which yields

N∑
n=1

(
wTxn + w0 − tn

)
xn =

∑
n∈C1

(
wTxn + w0 − tn

)
xn +

∑
n∈C2

(
wTxn + w0 − tn

)
xn = 0.

We now move the tnxn-terms to the right hand-side, and use the fact that tn = N/N1

when n ∈ C1 and tn = −N/N2 when n ∈ C1. Doing so, we obtain the correct expression∑
n∈C1

(
wTxn + w0

)
xn +

∑
n∈C2

(
wTxn + w0

)
xn = N(m1 −m2), (17)

since
∑

n∈C1 tnxn +
∑

n∈C2 tnxn = N(m1 −m2) on the right-hand side.

Let us now focus on the left-hand side of Eqn (17). Notice first that w may be pulled
outside of the sums, by the following algebra (here showed over a single sum, not both)∑

n

(
wTxn + w0

)
xn =

∑
n

(
wTxn −wTm

)
xn =

∑
n

(
xnx

T
n − xnmT

)
w.

Using this result on both sums in Eqn (17) leaves us with the expression(∑
n∈C1

(
xnx

T
n − xnmT

)
+
∑
n∈C2

(
xnx

T
n − xnmT

))
w = N(m1 −m2).

At this point we’re pretty close, but we have to reduce the term in the left parenthesis.
Observe that the first term becomes∑

n∈C1

xnx
T
n − xnmT =

∑
n∈C1

xnx
T
n − xn

(
N1

N
m1 +

N2

N
m2

)T
=
∑
n∈C1

xnx
T
n −

N1N1

N
m1m

T
1 −

N2N1

N
m1m

T
2 , (18)

47

and the second term will be very similar due to symmetry. We complete the square above:

∑
n∈C1

xnxTn − 2m1x
T
n +m1m

T
1︸ ︷︷ ︸

added this

+ 2N1m1m
T
1 −N1m1m

T
1︸ ︷︷ ︸

and subtracted it

−N1N1

N
m1m

T
1 −

N2N1

N
m1m

T
2 ,

Now we make use of N1 −N2
1/N = N1N2/N to obtain∑

n∈C1

(
xnx

T
n − 2m1x

T
n +m1m

T
1

)
︸ ︷︷ ︸

half of SW

+
N2N1

N

(
m1m

T
1 −m1m

T
2

)︸ ︷︷ ︸
half of SB

,

and we’re finished. If we apply the same algebra as performed from Equation (18) and
onwards to C2 too, and add the results, it will yield SW +N1N2SB/N .

Exercise 4.9

The probability of class Cj is given by p(Cj) = πj, and p(φn, Cj) = p(φn | Cj)p(Cj) by the
product rule of probability. The probability of a single data point becomes

p(tn,φn | π) =
K∏
j=1

(πj p(φn | Cj))tnj .

The notation above is somewhat heavy, so it helps to consider a specific example. Consider
the case when the number of classes K = 3, and the observation tn = (0, 1, 0)T . The
probability of observing this value, for an arbitrary φn, is

p(tn = (0, 1, 0),φn | π) = π2 p(φn | C2).

Assuming i.i.d. data, the log-likelihood function becomes

ln p(D | π) = ln p(t,Φ | π) =
N∑
n=1

K∑
j=1

tnj (ln (πj) + ln (p(φn | Cj))) .

We wish to maximize the log-likelihood with respect to the vector π, given the condition
that the prior class probabilities sum to unity, i.e.

∑K
j=1 πj = 1. Setting up the Lagrange

function and differentiating with respect to πk yields

N∑
n=1

tnk
πk

+ λ =
Nk

πk
+ λ = 0, (19)

where λ is a Lagrange multiplier. Solving the above for πk yields −Nk/λ, and

K∑
j=1

πj = −1

λ

K∑
j=1

Nj = 1 =⇒ λ = −N.

Substituting the above value for the Lagrange multiplier λ into Equation (19) gives the
corrcect answer, which is πk = Nk/N .

48

Exercise 4.10

This problem is similar to the previous one, but now p(φn | Cj) = N (φn | µj,Σ). The
likelihood is given by

p(t,Φ | π,µ,Σ) =
N∏
n=1

K∏
j=1

[πj N (φn | µj,Σ)]tnj .

Taking logarithms gives the expression

− 1

2

N∑
n=1

K∑
j=1

tnj
[
K + ln |Σ|+ (φn − µj)TΣ−1(φn − µj)

]
, (20)

where K is a constant which is not a function of µj or Σ.

Differentiating Equation (20) with respect to µk and equating it to 0 gives

N∑
n=1

tnkΣ
−1(φn − µk) = 0.

Solving this for µk reveals the desired answer, where we must use
∑N

n=1 tnk = Nk.

Studying the terms dependent on Σ, we obtain

−N
2

ln |Σ| − 1

2

K∑
j=1

∑
n∈Cj

(φn − µj)TΣ−1(φn − µj).

Now the apply the trace trick. The trace trick uses the fact that the trace of a scalar is
equal to itself, and tr(aTb) = tr(baT), to write a quadratic form as

aTΣ−1a = tr
(
aTΣ−1a

)
= tr

(
Σ−1aaT

)
.

From this, we can derive the following

−N
2

ln |Σ| − 1

2

K∑
j=1

∑
n∈Cj

(φn − µj)TΣ−1(φn − µj)

= −N
2

ln |Σ| − 1

2

K∑
j=1

∑
n∈Cj

tr
(
Σ−1(φn − µj)(φn − µj)T

)
(trace trick)

= −N
2

ln |Σ| − 1

2
tr

 K∑
j=1

∑
n∈Cj

Σ−1(φn − µj)(φn − µj)T
 (linearity of trace)

= −N
2

ln |Σ| − N

2
tr

Σ−1 1

N

K∑
j=1

∑
n∈Cj

(φn − µj)(φn − µj)T︸ ︷︷ ︸
S

 . (definition of S)

49

We have shown that Equation (4.77) holds for K classes. Differentiating

−N
2

ln |Σ| − N

2
tr
(
Σ−1S

)
with respect to Σ shows that Σ−1 = S. We will trust that the result in 4.2.2 is true, and
not show this. To show it, one must first study the derivative of ln |Σ| and tr (Σ−1S),
and we will do not that here.

Exercise 4.13

Differentiating E(w) with respect to w, we must keep in mind that yn = σ(wTφn) is a
function of w. We obtain

∇wE(w) = −
N∑
n=1

tn
yn
y′n +

1− tn
1− yn

(−y′n)

where y′n = yn(1− yn)φn, substituting this into the equation above and simplifying gives

−
N∑
n=1

tn
yn
yn(1− yn)φn −

1− tn
1− yn

yn(1− yn)φn =
N∑
n=1

(yn − tn)φn.

Exercise 4.15

We will show that H is positive definite, and that the solution is a minimum.

As a step toward showing that H is positive definite, we first show that R is positive
definite. This is easy to show from the definition of positive definiteness:

aTRa =
∑
i

aiyi(1− yi)ai =
∑
i

a2
i yi(1− yi).

This expression is positive for every non-zero a, since yi(1− yi) > 0 because the sigmoid
function has 0 < yi < 1. The Hessian H is positive definite by the same token, since

uTHu = uTΦTRΦu = bT︸︷︷︸
uTΦT

Hb =
∑
i

b2
i yi(1− yi) > 0.

We now argue that the solution is the unique minimum. Notice that the solution might
be a subspace, for instance when the data is linearly separable. Expanding a taylor series
around the minimum w∗ yields the following

E(w∗ + ∆w) ' E(w∗) + ∆wE(w∗) (∆w)︸ ︷︷ ︸
0

+ (∆w)T H(w∗) (∆w) +O
(
‖∆w‖3)

Notice that since the yis are all functions of the weights w, so the Hessian matrix is also
a function of w. At the minimum, ∆wE(w∗) (∆w) = 0, so the middle term vanishes.
Clearly the function is minimized when ∆w = 0, since this minimizes the remaining
quadratic (∆w)T H (∆w).

50

Exercise 4.20

Let block (k, j) be given by the block-matrix Bkj =
∑N

n=1 ynk (Ikj − ynj)φnφTn . We want

to show that
∑K

k=1

∑K
j=1 u

T
kBkjuj ≥ 0 for every u = (uT1 ,u

T
2 , . . . ,u

T
K)T .

Our strategy will be to first write out the sum over k, j and n. Then we will rearrange
the sum over n to the outer level, and show that the summand in the sum over n is always
nonnegative. Thus the total sum is nonnegative.

We substitute the definition of Bkj and move the sum over n to the outer level.

∑
k

∑
j

uTkBkjuj =
∑
k

∑
j

uTk

[∑
n

ynk (Ikj − ynj)φnφTn

]
uj

=
∑
n

[∑
k

ynku
T
kφnφ

T
n

∑
j

(Ikj − ynj)uj

]
(21)

If every term in the sum over n is nonnegative, then the entire expression will be nonneg-
ative. For every term n, the following manipulation holds.

∑
k

ynku
T
kφnφ

T
n

[∑
j

(Ikj − ynj)uj

]
=
∑
k

ynku
T
kφnφ

T
n

[
uk −

∑
j

ynjuj

]
=
∑
k

ynku
T
kφnφ

T
nuk −

∑
k

ynku
T
kφnφ

T
n

∑
j

ynjuj

In the first equality, we used the relationship
∑

j Ikjuj = uk, since the identity matrix
(alternatively the Kronecker delta δkj) “picks out” the kth term in the sum.

In the last equality, we must show that the second term is smaller than, or equal to, the
first term. To show this, we define the function f(u) = uTφnφ

T
nu. This function is

positive semi-definite, and therefore convex, since

f(u) =
(
uTφn

) (
φTnu

)
=
(
uTφn

) (
uTφn

)
= α2 ≥ 0.

Using this function, we write

∑
k

ynku
T
kφnφ

T
nuk −

∑
k

ynku
T
kφnφ

T
n

∑
j

ynjuj =
∑
k

ynkf(uk)− f

(∑
k

ynkuk

)
.

Since
∑

k p (Ck | φn) =
∑

k ynk = 1 and f(u) is convex, from Jensen’s Inequality we have

f

(∑
k

ynkuk

)
≤
∑
k

ynkf(uk).

We have showed that the term in the square brackets in Equation (21) nonnegative. There-
fore, the total sum over n must be nonnegative, and

∑K
k=1

∑K
j=1 u

T
kBkjuj ≥ 0 as claimed.

51

Exercise 4.22

We can approximate the integral as

p(D) =

∫
p(D | θ)p(θ) dθ =

∫
p(D,θ) dθ ' p(D,θMAP)

(2π)M/2

|A|1/2

using Equation (4.135) to approximate the integral in the vicinity of the mode p(D,θMAP).
Taking logarithms and using the product rule of probability gives Equation (4.137), re-
vealing the Occam factor.

2.5 Neural networks

Exercise 5.7

We split this exercise into two parts: (1) differentiating the softmax function and (2)
differentiating the error function. The result of the first sub-problem will be used to solve
the latter.

Differentiating the softmax function First we differentiate yk = h(ak) = softmax(ak)
with respect to ak to obtain

∂yk
∂ak

=
∂

∂ak
softmax(ak) =

∂

∂ak

(
exp ak∑
j exp aj

)
=

exp ak
∑

j 6=k exp aj(∑
j exp aj

)2 (product rule)

= yk

∑
j 6=k exp aj∑
j exp aj

= yk

(
1− exp ak∑

j exp aj

)
= yk(1− yk).

In a similar fashion, we differentiate yk = softmax(ak) with respect to ai to obtain

∂yk
∂ai

=
∂

∂ai
softmax(ak) =

− exp(ak) exp(ai)(∑
j exp aj

)2 = −yiyk.

These two results may be summarized using the Kronecker delta function δkj as

∂yk
∂ai

=
∂

∂ai
softmax(ak) = yk (δkj − yi) .

52

Differentiating the error function With the purpose of expressing the error E(w)
defined by Equation (2.24) as a function of independent parameters, we write it as

E(w) = −
N∑
n=1

K∑
k=1

tnk ln yk(xn,w)

= −
N∑
n=1

tn1 ln yn1 + tn2 ln yn2 + · · ·+ tnK ln ynK

= −
N∑
n=1

(
K−1∑
k=1

tnk ln ynk + tK ln

(
1−

K−1∑
k=1

ynk

))
,

since
∑K

k=1 ynk = 1 for every n, and so the first K − 1 parameters uniquely determine the

last one. Recall also the constraint,
∑K

k=1 tnk = 1 which we will use later.

Ignoring the summation over n and differentiating with respect to aj, we obtain

∂ajE(w) = −

K−1∑
k 6=j

tk
1

yk
∂ajyk + tj

1

yj
∂ajyj − tK

1(
1−

∑K−1
k=1 yk

)∂aj
(

1−
K−1∑
k=1

yk

) .
Now we apply the formulas for the derivatives of the softmax function, and simplify the
first two terms. The notation

∑K−1
k 6=j means “sum over k = 1, . . . , K − 1, but skip k = j.”

∂ajE(w) = −

K−1∑
k 6=j

tk
1

yk
(−ykyj) + tj

1

yj
yj(1− yj)− tK

1(
1−

∑K−1
k=1 yk

)∂aj
(

1−
K−1∑
k=1

yk

)
= −

K−1∑
k 6=j

tk(−yj) + tj(1− yj)− tK
1(

1−
∑K−1

k=1 yk

) (−yj K−1∑
k 6=j

yk + yj(1− yj)

)
We simplify further by introducing the jth term back into the sums and performing
cancellations in the fractions. These simplifications yield

∂ajE(w) = −

K−1∑
k 6=j

tk(−yj) + tj(1− yj)− tK
1(

1−
∑K−1

k=1 yk

) (−yj K−1∑
k 6=j

yk + yj(1− yj)

)
= −

−yj K−1∑
k=1

tk + tj − tK
1(

1−
∑K−1

k=1 yk

)yj (1−
K−1∑
k=1

yk

)
= −

[
−yj

K−1∑
k=1

tk + tj − tKyj

]
= −

[
−yj

K∑
k=1

tk + tj

]
= yj − tj.

This solves the problem. In the last equality, we used the fact that
∑K

k=1 tk = 1.

53

Exercise 5.13

The Hessian matrix H is of dimension W ×W . Since it’s symmetric, i.e. has H = HT ,
the number of independent parameters consist of the diagonal, plus off-diagonals, i.e.

W + (W − 1) + (W − 2) + · · ·+ 2 + 1 =
W (W + 1)

2
.

The gradient b = ∇wE(w) has W free parameters, and therefore the total number of free
parameters in the second-order Taylor expansion is given by

W (W + 1)

2
+W =

W (W + 3)

2
.

Exercise 5.18

We introduce skip-layer connections from theD-dimensional input layer to theK-dimensional
output layer. The notation for the D-M -K network is summarized in the diagram below.

xi, i = 1, . . . , D zj, j = 1, . . . ,M yk, k = 1, . . . , K
w

(1)
ji

w
(3)
ki

w
(2)
kj

The equations outlined in Section 5.3.2 in [Bishop, 2006] mostly remain identical when a
skip-layer is added. The exception is Equation (5.64) for the outputs, which becomes

yk =
M∑
j=0

w
(2)
kj zj +

D∑
i=0

w
(3)
ki xi︸ ︷︷ ︸

skip-layer

.

The derivatives of E(w) with respect to w
(1)
ji and w

(2)
kj remain the same, since these weights

are not dependent on the w
(3)
ki . Differentating with respect to w

(3)
ki yields

∂En

w
(3)
ki

= (yn − tn)∂
w

(3)
ki
yk = (yn − tn)xi ≡ δkxi.

Exercise 5.20

The Hessian H is ∇∇E, where the gradients are taken with respect to the weights. Using
the result from Exercise 5.7 for the derivative of the error function with multiclass outputs
and softmax activation functions, we obtain

∇E(w) =
N∑
n=1

∇En(w) =
N∑
n=1

∂En
∂an
∇an =

N∑
n=1

(yn − tn)∇an.

54

The term ∇an represents the gradient of the scalar function an(w) with respect to the
weights. We do not propagate the derivative further back into the network. Differentiating
again, we obtain

∇∇E(w) =
N∑
n=1

(∇an) (∇yn)T + (yn − tn)∇∇yn

=
N∑
n=1

yn(1− yn) (∇an) (∇an)T + (yn − tn)︸ ︷︷ ︸
close to zero

∇∇yn

'
N∑
n=1

yn(1− yn) (∇an) (∇an)T =
N∑
n=1

yn(1− yn)bnb
T
n .

The term (yn − tn) is assumed to be close to zero, for the reasons stated in Section 5.4.2.

Exercise 5.25

We split this problem into three parts: computing the gradient and the component w
(τ)
j ,

solving the difference equation, and comparing with regularization.

The gradient and w
(τ)
j The first step is to compute the gradient, which we find to be

∇wE(w) = H(w −w∗).

The component along w
(τ)
j is given by uTj w

(τ). The recursive relationship for a single

component of the w(τ) vector becomes

w(τ) = w(τ−1) − ρH(w(τ−1) −w∗)
uTj w

(τ) = uTj w
(τ−1) − ρuTjH(w(τ−1) −w∗)

w
(τ)
j = w

(τ−1)
j − ρηj(w(τ−1)

j − w∗j)

where we used uTjH = (Huj)
T = ηju

T
j .

At this point, we wish to solve the following first order, linear, inhomogeneous difference
equation with constant coefficients. To ease notation, we introduce k := ρηj and a = w∗j .

w
(τ)
j = w

(τ−1)
j − ρηj(w(τ−1)

j − w∗j)
yn = yn−1 − k(yn−1 − a)

Solving the difference equation There exists a rich theory for dealing with equations
such as these. Since we know the answer we’re after, a proof by induction is also a viable

55

option. However, we will directly solve the problem. First we write out terms as

yn − yn−1(1− k) = ka

yn−1 − yn−2(1− k) = ka

yn−2 − yn−3(1− k) = ka

... =
...

y1 − y0(1− k) = ka.

We multiply the first equation by (1− k)0, the second by (1− k)1, the third by (1− k)2,
and so forth. Then we sum over the the left-hand side and right-hand side. The sum
telescopes, and we appeal to the summation of a geometric series to obtain

yn − y0(1− k)n = ka
(
1 + (1− k) + · · ·+ (1− k)n−1

)
= ka

(
1− (1− k)n

1− (1− k)

)
.

Substituting the definitions of a, k and y0 = 0, we see that

yn = a (1− (1− k)n) ⇐⇒ w
(τ)
j = w∗j (1− (1− ρηj)τ) .

Comparing with regularization Convergence is straightforward, since if |1− ρηj| <
1, then the factor (1− ρηj)τ will go to zero as τ →∞, and clearly

lim
τ→∞

w
(τ)
j = w∗j (1− 0) = w∗j .

To show the results related to the size of ηj, consider first the case when ηj � (ρτ)−1.
This is the same as ρηj � 1/τ . Since |1− ρηj| < 1, we know that 0 < ρηj < 2. No matter

what value ρηj has, τ must be huge, so w
(τ)
j ' w∗j .

Consider now the case when ηj � (ρτ)−1. This is the same as ρηj � 1/τ . No matter

what value ρηj has, τ must be close to zero, so (1− (1− ρηj)τ) is small and
∣∣∣w(τ)

j

∣∣∣� ∣∣w∗j ∣∣.
These results are analogous to those in Section 3.5.3, if we identify (ρτ)−1 with the regu-
larization parameter α. Notice that eigenvalues are denoted by η in this problem, and by
λ in Section 3.5.3.

Exercise 5.27

From the problem text, we know that E [ξ] = 0. By “unit covariance”, Bishop means
that cov [ξ] = cov [ξi, ξj] = I = δij. First we see that y(s(x, ξ)) takes the simple form

y(s(x, ξ)) = y(x+ ξ) ' y(x) +∇y(x)Tξ + ξT∇∇y(x)ξ +O(ξiξjξk)

Ignoring cubic terms, we can write the quadratic factor in the error function as

(y(s(x, ξ))− t)2 =
(
[y(x)− t] +∇y(x)Tξ + ξT∇∇y(x)ξ

)2

' [y(x)− t]2 + 2 [y(x)− t]∇y(x)Tξ

+
(
∇y(x)Tξ

)2
+ 2 [y(x)− t] ξT∇∇y(x)ξ + . . .

56

We drop the last term, since when y(x) ' t + ξ the term will be of order O(ξ3). Substi-
tuting the remaining terms into the error function, we observe that

Ẽ =
1

2

∫∫∫
(y(s(x, ξ))− t)2 p(t | x)p(x)p(ξ) dx dt dξ

= E +
1

2

∫∫∫ (
2 [y(x)− t]∇y(x)Tξ +

(
∇y(x)Tξ

)2
)
p(t | x)p(x)p(ξ) dx dt dξ

= E + 0︸︷︷︸
since E[ξ]=0

+
1

2

∫∫∫ (
∇y(x)Tξ

)2
p(t | x)p(x)p(ξ) dx dt dξ.

The final term may then be written as

Σ =
1

2

∫∫∫
∇y(x)TξξT∇y(x)p(t | x)p(x)p(ξ) dx dt dξ

=
1

2

∫
∇y(x)T


∫
ξξTp(ξ) dξ︸ ︷︷ ︸
cov[ξ]=I

∇y(x)p(x) dx =
1

2

∫
‖∇y(x)‖2 p(x) dx

Exercise 5.31

We wish to differentiate Ẽ(w) with respect to σj. Since Ẽ(w) = E(w) + λΩ(w) and
E(w) is not a function of σj, we need only consider the final term. We observe that

∂σj Ẽ(w) = ∂σjλΩ(w) = −∂σjλ
∑
i

ln

(
M∑
j=1

πj N (wi | µj, σj)

)

= −λ
∑
i

1∑M
j=1 πj N (wi | µj, σj)

∂σj

(
M∑
j=1

πj N (wi | µj, σj)

)

= λ
∑
i

1∑M
j=1 πj N (wi | µj, σj)

(
πj N (wi | µj, σj)

[
1

σj
− (wi − µj)2

σ3
j

])
= λ

∑
i

γj(wi)

[
1

σj
− (wi − µj)2

σ3
j

]
,

where in the first equality we used ln(x)′ = x′/x, and in the second we used the fact that

∂σj N (wi | µj, σj) = N (wi | µj, σj)
[

(wi − µj)2

σ3
j

− 1

σj

]
by the chain rule and product rule of differentiation. Finally, we used the definition of
γj(wi) from Equation (5.140).

57

Exercise 5.37

We split this problem into two parts, one for E [t | x] and one for s2(x).

a) Computing E [t | x] is relatively straightforward. We use the definition of p(t | x):

E [t | x] =

∫
tp(t | x) dt =

∫
t

[
K∑
k=1

πk(x)N
(
t | µk(x), Iσ2

k(x)
)]

dt

=
K∑
k=1

πk(x)E
[
N
(
t | µk(x), Iσ2

k(x)
)]

=
K∑
k=1

πk(x)µk(x)

b) Computing s2(x) is a bit more involved, we first decompose the variance as

s2(x) = E
[
tT t | x

]
− E [t | x]T E [t | x] .

We will study these two expected values in turn and order. The first term is

E
[
tT t | x

]
=

∫
tT tp(t | x) dt =

∫
tT t

[
K∑
k=1

πk(x)N
(
t | µk(x), Iσ2

k(x)
)]

dt.

We interchange summation and integration, and factor the multidimensional Gaus-
sian into one-dimensional factors. This is straightforward since the covariance ma-
trix is diagonal.

K∑
k=1

πk(x)

∫
tT t

D∏
j=1

N
(
tj | µkj(x), σ2

k(x)
)

︸ ︷︷ ︸
factored Gaussian

dt

Next we write tT t as
∑D

i=1 t
2
i and pull the factored Gaussian into the terms in each

sum. The final step is to integrate over each term in the sum over i. When j 6= i,
the integral is unity, but when i = j we use Equation (1.50) from [Bishop, 2006],
which states that E[x2] = µ2 + σ2. The result is

K∑
k=1

πk(x)
D∑
i=1

(
µ2
ki(x) + σ2

k(x)
)

=
K∑
k=1

πk(x)
(
µk(x)Tµk(x) +Dσ2

k(x)
)
. (22)

We are happy with the first term in the decomposed variance, and move on to
the second. The second term in the decomposed variance is E [t | x]T E [t | x]. To
simplify notation, we write

∑K
k=j πj(x)µj(x) as E [t | x]. The second term in the

decomposed variance may be written as

E [t | x]T E [t | x] =
K∑
k=1

πk(x)E [t | x]T E [t | x] (23)

where we are allowed to add the sum over k, since
∑K

k=1 πk(x) = 1.

58

Finally we’re in a position to combine the results. We merge E
[
tT t | x

]
from

Equation (22) with E [t | x]T E [t | x] from Equation (23) to obtain

K∑
k=1

πk(x)
[
Dσ2

k(x) + µk(x)Tµk(x)− E [t | x]T E [t | x]
]

=

K∑
k=1

πk(x)
[
Dσ2

k(x) + ‖µk(x)− E [t | x]‖2] .
This is the result we’re after. Notice that Dσ2

k(x) is correct, not σ2
k(x) as Equation

(5.160) states. This is a typo in the book.

2.6 Kernel methods

Exercise 6.3

First we observe that the Euclidean distance d(x,x′) may be expressed as a kernel func-
tion:

d(x,x′) = (x− x′)T (x− x′) = xTx− 2xTx′ + x′ Tx′

=
(
xTx, i

√
2x, 1

)T (
1, i
√

2x′,x′ Tx′
)

= φ (x)T φ (x′) = k(x,x′)

where i ≡
√
−1 denotes the imaginary unit. We can extend the above to an arbitrary

kernel k(x,x′).

The nearest neighbor rule assigns a point x to the class of nearest neighbor. Instead of
using d(x,x′), we use a kernel k(x,x′) to measure similarity. The algorithm becomes:

For a new point x, assign to it the class of the point x∗ defined by

x∗ = arg min
x′∈D

k(x,x′).

Exercise 6.7

Verifying Equation (6.17) We assume that k1(x,x′) and k2(x,x′) are valid kernels.
In other words, there exist functions φ1(·) and φ2(·) so that

k1(x,x′) = φ1 (x)T φ1 (x′)

k2(x,x′) = φ2 (x)T φ2 (x′) .

The sum of these kernels is also a kernel, since

k(x,x′) = k1(x,x′) + k2(x,x′)

= φ1 (x)T φ1 (x′) + φ2 (x)T φ2 (x′)

= (φ1 (x) ,φ2 (x))T︸ ︷︷ ︸
φ(x)T

(φ1 (x′) ,φ2 (x′))︸ ︷︷ ︸
φ(x′)

= φ(x)Tφ(x′).

59

Verifying Equation (6.18) Again we assume that

k1(x,x′) = φ1 (x)T φ1 (x′)

k2(x,x′) = φ2 (x)T φ2 (x′) .

The product of these kernels is also a kernel. We write out to obtain a quadratic form

k(x,x′) = k1(x,x′)k2(x,x′) = φ1 (x)T φ1 (x′)φ2 (x)T φ2 (x′)

Since abT = baT we can write this as

φ1 (x)T φ1 (x′)φ2 (x)T φ2 (x′) = φ1 (x)T φ2 (x)φ1 (x′)
T
φ2 (x′)

= φ1 (x)T φ2 (x)︸ ︷︷ ︸
φ(x)T

φ1 (x′)
T
φ2 (x′)︸ ︷︷ ︸

φ(x′)

= φ(x)Tφ(x′).

Notice that φ(x) = φ(x)T := φ1 (x)T φ2 (x) is a scalar, which is a valid kernel because
it’s an inner product in a one-dimensional feature space.

Exercise 6.11

Consider first exp(xix
′
i/σ

2). Using the power series exp(z) =
∑

j=0 z
j/j!, the exponential

may be written as

exp(xix
′
i/σ

2) = 1 +

(
xix
′
i

σ2

)
+

1

2

(
xix
′
i

σ2

)2

+
1

6

(
xix
′
i

σ2

)3

+ · · ·

=

(
1,
xi
σ
,

1√
2

(xi
σ

)2

,
1√
6

(xi
σ

)3

, . . .

)T
(

1,
x′i
σ
,

1√
2

(
x′i
σ

)2

,
1√
6

(
x′i
σ

)3

, . . .

)
= φ(xi)

Tφ(x′i)

Extending this, we find that

exp(xTx′/σ2) = exp(x1x
′
1/σ

2) exp(x2x
′
2/σ

2) · · · exp(xMx
′
M/σ

2)

= φ(x1)Tφ(x′1)φ(x2)Tφ(x′2) · · ·φ(xM)Tφ(x′M)

This is a valid kernel by Equation (6.18) in [Bishop, 2006], since each factor in the product
is valid. Each term in the product consists of a mapping to a feature space of infinite
dimensionality, given by

φ(xi) =

(
1,
xi
σ
,

1√
2

(xi
σ

)2

,
1√
6

(xi
σ

)3

, . . . ,
1√
k!

(xi
σ

)k)
.

60

Exercise 6.15

The entries of the Gram matrix Knm are given by φ(xn)Tφ(xm) = k(xn,xm). The
kernel k(xn,xm) is valid if and only if K is positive semidefinite. Therefore we may safely
assume that K is positive semidefinite, which is equivalent to its leading principal minors
being non-negative. In particular, the det(K) ≥ 0.

In the 2× 2 case, the Gram matrix is

K =

(
k(x1,x1) k(x1,x2)
k(x2,x1) k(x2,x2)

)
.

The determinant becomes

det(K) = k(x1,x1)k(x2,x2)− k(x1,x2)2 ≥ 0,

and this is equivalent to the Cauchy-Schwartz inequality. We used the symmetry of the
kernel function in the expression for the determinant, i.e. k(x1,x2) = k(x2,x1).

Exercise 6.18

We use a Parzen density estimator with a Gaussian component density function to model
the joint distribution. Since the covariance matrix is diagonal, the Gaussian component
density factors as

f(x− xn, t− tn) = N (x | xn, σ2)N (t | tn, σ2).

We find expressions for g(x− xn) and k(x, xn) as

g(x− xn) =

∫
f(x− xn, t) dt = N (x | xn, σ2)

k(x, xn) =
g(x− xn)∑N
m g(x− xm)

=
N (x | xn, σ2)∑N
mN (x | xm, σ2)

.

We will solve the problem by expressing the quantities p(t | x), E [t | x] and var [t | x] as
functions of the normal distributions, which are proportional the the kernel as seen above.

The conditional density p(t | x) becomes

p(t | x) =
p(t, x)

p(x)
=

1
N

∑
n f(x− xn, t− tn)∫

1
N

∑
m f(x− xm, t− tm) dt

=

∑
nN (x | xn, σ2)N (t | tn, σ2)∑

mN (x | xm, σ2)
=
∑
n

k(x, xn)N (t | tn, σ2).

61

The conditional expectation E [t | x] can be read off from Equation (6.45), or we
can take take expected value of the above. Either way, the result is

E [t | x] =
∑
n

k(x, xn)tn =
∑
n

[
N (x | xn, σ2)∑N
mN (x | xm, σ2)

]
tn.

The conditional variance var [t | x] can be calculated using var [t | x] = E [t2 | x] −
E [t | x]2. We know the second term already from the previous sub-problem, so let’s focus
on the second term. First we use for the conditional density above, and then we use
Equation (1.50) from [Bishop, 2006].

E
[
t2 | x

]
=

∫
p(t | x)t2 dt =

∫
p(t, x)

p(x)
t2 dt =

∫ [∑
n

k(x, xn)N (t | tn, σ2)

]
t2 dt

=
∑
n

k(x, xn)

∫
N (t | tn, σ2)t2 dt =

∑
n

k(x, xn)(t2n + σ2) = σ2 +
∑
n

k(x, xn)t2n

Combining these results, the conditional variance becomes

var [t | x] = E
[
t2 | x

]
− E [t | x]2 = σ2 +

∑
n

k(x, xn)t2n −

(∑
n

k(x, xn)tn

)2

.

Exercise 6.24

The matrix W is positive definite since

xTWx =
∑
i

xiWiixi =
∑
i

x2
iWii.

For a vector x 6= 0, the x2
i terms are positive, and the Wii terms are positive. Therefore

their product is positive, and the sum of positive terms is always positive.

We can also appeal to the relationship with eigenvalues, since the eigenvalues of a diag-
onal matrix are the diagonal elements. A matrix is positive definite if and only if every
eigenvalue is positive.

To see that the sum of two positive definitive matrices A and B is positive definite, write

xT (A+B)x = xTAx+ xTBx.

By assumption, both terms are positive, and the sum of positive terms is positive.

2.7 Sparse Kernel Machines

Exercise 7.4 and 7.5

We solve these problems, but not in the order that they’re given.

62

The distance from the margin to the nearest point is ρ. Since ρ = tiyi/ ‖w‖, where i is
the index of a support vector data point (there are at least two), we have

1

ρ2
=
‖w‖ ‖w‖

(tiyi)2
= wTw

where we used Equation (7.4) from the book, i.e. tiyi = 1, which is valid for data points
corresponding to support vectors. This solves the second part of Exercise 7.5.

We now expand the inner product and apply Equation (7.13) to get

1

ρ2
= wTw =

∑
m

amtm
∑
n

antnk(xm,xn) =
∑
m

amtm (y(xm)− b) . (24)

Recall that for every (xn, tn) data point, either

a) The constraint is inactive and an = 0. The point is not a support vector.

b) The constraint is active and y(xn)tn = 1. The point is a support vector.

Combining the above with Equation (7.9), we observe that

1

ρ2
=
∑
m

amtm (ym − b) =
∑
m

amtmym − b
∑
m

amtm︸ ︷︷ ︸
0

=
∑
m

am. (25)

In words: each term am · tmym in the sum from m = 1, . . . , N is either 0 · tmym or am · 1,
which is equal to summing over the {am}. This solves Exercise 7.4

Finally we make the observation that

2L̃(a) = 2
∑
m

am −
∑
m

amtm
∑
n

antnk(xm,xn),

and use Equations (24) and (25) to write the second term as
∑

m am. This solves the
first part of Exercise 7.5. We have solved the exercises.

Exercise 7.10

TODO

Exercise 7.12

TODO

63

Exercise 7.16

In this problem, we will omit the subscripts to ease notation. Differentiating λ(α) twice
by making use of Equation (7.100), we obtain the second derivative, which is

λ′′(α) =
−
(
s
α

)2 − 4
(
s2

α
− (q2 − s)

)
2(α + s)

.

We know that α ≥ 0, and since C is positive semidefinite, it’s inverse is also positive
semidefinite and so s ≥ 0 too. The denominator in λ′′(α) must therefore be positive.

The first term in the numerator is also positive, and in the stationary point when α∗ =
s2/(q2 − s) , the second term in the numerator becomes

s2

α∗
− (q2 − s) = s2

(
q2 − s
s2

− (q2 − s)
)

= 0.

Since λ′′(α∗) ≤ 0 at the stationary point, it’s indeed a maximum point.

2.8 Graphical Models

Exercise 8.3

Showing that p(a, b) 6= p(a)p(b). We first show that p(a, b) 6= p(a)p(b). To do so, we
only need to produce a counterexample. In other words, we must provide values ai and
bj such that p(a = ai, b = bj) 6= p(a = ai)p(b = bj). Specifically, we will show that
p(a = 1, b = 1) is not equal to p(a = 1)p(b = 1).

We first compute the marginal probabilities as:

p(a = 1) =
∑
b

∑
c

p(a = 1, b, c) = 0.192 + 0.064 + 0.048 + 0.096 = 0.4

p(b = 1) =
∑
a

∑
c

p(a, b = 1, c) = 0.048 + 0.216 + 0.048 + 0.096 = 0.408

The joint probability is given by

p(a = 1, b = 1) =
∑
c

p(a = 1, b = 1, c) = 0.048 + 0.096 = 0.144

Clearly this is a counterexample, since 0.4 · 0.408 = 0.1632 6= 0.144. As a result, the
distribution over a and b is marginally dependent, i.e. p(a, b) 6= p(a)p(b).

Showing that p(a, b | c) = p(a | c)p(b | c). To show that a and b are marginally
independent when conditioned on c, we must show that p(a, b | c) = p(a | c)p(b | c) for
every value of c. In this problem, we must show that it holds for both c = 0 and c = 1.

64

We will only show the computation when c = 0, since the computations are completely
identical when c = 1. First we start by computing the probability

p(c = 0) = 0.192 + 0.048 + 0.192 + 0.048 = 0.48.

We want to find p(a | c = 0) and p(b | c = 0) for all values of a and b. Using the product
rule and sum rule, we obtain

p(a = 0 | c = 0) =
p(a = 0, c = 0)

p(c = 0)
=

∑
b p(a = 0, b, c = 0)

p(c = 0)
=

0.192 + 0.048

0.48
= 0.5

p(a = 1 | c = 0) = 1− p(a = 0 | c = 0) = 0.5

p(b = 0 | c = 0) =
p(b = 0, c = 0)

p(c = 0)
=

∑
a p(a, b = 0, c = 0)

p(c = 0)
=

0.192 + 0.192

0.48
= 0.8

p(b = 1 | c = 0) = 1− p(b = 0 | c = 0) = 0.2

Next we evaluate the joint distribution for all values of a and b. When c = 0, we use
Bayes theorem to write

p(a, b | c = 0) =
p(a, b, c = 0)

p(c = 0)
.

Structuring the computations in tabular form, we obtain the following numbers:

p(a = 0, b = 0, c = 0)

p(c = 0)
=

0.192

0.48
= 0.4

p(a = 0, b = 1, c = 0)

p(c = 0)
=

0.048

0.48
= 0.1

p(a = 1, b = 0, c = 0)

p(c = 0)
=

0.192

0.48
= 0.4

p(a = 1, b = 1, c = 0)

p(c = 0)
=

0.048

0.48
= 0.1

Directly evaluating every possibility, we notice that indeed

p(a = 0, b = 0 | c = 0) = 0.4 p(a = 0 | c = 0)p(b = 0 | c = 0) = 0.5 · 0.8 = 0.4

p(a = 0, b = 1 | c = 0) = 0.1 p(a = 0 | c = 0)p(b = 1 | c = 0) = 0.5 · 0.2 = 0.1

p(a = 1, b = 0 | c = 0) = 0.4 p(a = 1 | c = 0)p(b = 0 | c = 0) = 0.5 · 0.8 = 0.4

p(a = 1, b = 1 | c = 0) = 0.1 p(a = 1 | c = 0)p(b = 1 | c = 0) = 0.5 · 0.2 = 0.1

We have shown that p(a, b | c = 0) = p(a | c = 0)p(b | c = 0) for all of the 22 = 4 possible
values of a and b. Analogous computations for c = 1 reveal that p(a, b | c) = p(a | c)p(b | c)
in general. We omit these tedious calculations, as they are indistinguishable from those
already shown.

Exercise 8.6

The logical OR function, i.e. OR : {0, 1}M → {0, 1}, returns 1 if any one of the M
arguments is 1. It only returns 0 if every one of the M arguments is 0.

65

Reduction to the logical OR function. The probabilistic OR function is given by

p(y = 1 | x1, . . . , xM) = 1− (1− µ0)
M∏
i=1

(1− µi)xi .

Notice that when µ0 = 0 and µi = 1 for i = 1, . . . ,M the above reduces to

p(y = 1 | x1, . . . , xM) = 1−
M∏
i=1

0xi =

{
0 if every xi = 0

1 else
,

which is exactly the logical OR function, since we take 00 to be 1. We observe that when
0 ≤ µi ≤ 1, then 0 ≤ (1−µ0)

∏M
i=1 (1− µi)xi ≤ 1, and the returned value is between 0 and

1 inclusive. Furthermore, if µ0 ≈ 0 and µi ≈ 1 for i = 1, . . . ,M , then the probabilistic
OR function is “close” to the logical OR function.

Interpretation of the µis. We can interpret µ0 by observing that

p(y = 1 | x = 0) = 1− (1− µ0) = µ0.

Therefore the parameter µ0 may be interpreted as the probability that y = 1 when every
xi = 0. The logical OR function has zero probability of this, so setting µ0 ≈ 0 yields a
function whose behavior resembles the logical OR.

We can interpret the µis similarly by noting that

p(y = 1 | xi = 1,x{j 6=i} = 0) = 1− (1− µi) = µi.

The interpretation is that µi is the probability that y = 1 when xi = 1 and every other
xj = 0. In the logical OR function this probability is one, so setting µ0 ≈ 1 yields a
function whose behavior resembles the logical OR.

Exercise 8.8

Recall that the meaning of the ⊥⊥ symbol for conditional independence:

a ⊥⊥ b | d ⇐⇒ p(a, b | d) = p(a | d)p(b | d)

a ⊥⊥ b, c | d ⇐⇒ p(a, b, c | d) = p(a | d)p(b, c | d).

We will show that a ⊥⊥ b, c | d implies a ⊥⊥ b | d. From the sum rule, we know that

p(a, b | d) =
∑
c

p(a, b, c | d).

Appealing to the conditional independence a ⊥⊥ b, c | d, we write the above as

p(a, b | d) =
∑
c

p(a, b, c | d) = p(a | d)
∑
c

p(b, c | d) = p(a | d)p(b | d).

We have shown that a ⊥⊥ b, c | d implies a ⊥⊥ b | d.

66

Exercise 8.11

This is a lengthy problem, as the computations require some care. We add a D node to
the graph given in Figure 8.21 in [Bishop, 2006], obtaining the following structure.

B (Battery) F (Fuel tank)

G (Fuel Gauge)

D (Driver’s reading)

We split the problem into three parts: we (1) evaluate p(F = 0 | D = 0), (2) evaluate
p(F = 0 | D = 0, B = 0), and (3) compare the results and discuss.

Evaluating p(F = 0 | D = 0). From Bayes theorem, we have

p(F = 0 | D = 0) =
p(D = 0 | F = 0)p(F = 0)

p(D = 0)
.

We evaluate the three terms in the equation above in turn.

a) The denominator p(D = 0) may be evaluated using the sum rule, and the graph
factorization property, as

p(D = 0) =
∑
B,F,G

p(D = 0, B, F,G)

=
∑
B,F,G

p(D = 0 | G)p(G | B,F)p(B)p(F) = 0.352.

The sum ranges over 23 = 8 terms. To reduce the probability of error when com-
puting by hand, this sum (and every other sum in this problem) was computed in
the accompanying ch8 problem 11.py Python script.

b) The first factor in the numerator is p(D = 0 | F = 0), which evaluates to

p(D = 0 | F = 0) =
∑
B,G

p(D = 0, B,G | F = 0)

=
∑
B,G

p(D = 0 | G)p(G | F = 0, B)p(B) = 0.748.

c) The second factor is simply p(F = 0) = 0.1.

Combining the three results above, we find that

p(F = 0 | D = 0) =
p(D = 0 | F = 0)p(F = 0)

p(D = 0)
=

0.748 · 0.1
0.352

= 0.2125.

67

Evaluating P (F = 0 | D = 0, B = 0). We solve this in a slightly different way, using the
product rule instead of Bayes theorem. In the numerator, we will have a joint distribution
p(D = 0, B = 0, F = 0) instead of the product p(D = 0, B = 0 | F = 0)p(F = 0). Either
approach would produce the same result, of course.

P (F = 0 | D = 0, B = 0) =
p(D = 0, B = 0, F = 0)

p(D = 0, B = 0)
.

We evaluate the denominator and the numerator.

a) The denominator p(D = 0, B = 0) may be evaluated using the sum rule and the
graph factorization. The sum ranges over 22 terms, and evaluates to

p(D = 0, B = 0) =
∑
F,G

p(D = 0, B = 0, F,G)

=
∑
F,G

p(D = 0 | G)p(G | B = 0, F)p(B = 0)p(F) = 0.0748.

b) The numerator evaluates to

p(D = 0, B = 0, F = 0) =
∑
G

p(D = 0, B = 0, G, F = 0)

=
∑
G

p(D = 0 | G)p(G | F = 0, B = 0)p(B = 0)p(F = 0)

= 0.0082

Combining the two results above above, we find that

P (F = 0 | D = 0, B = 0) =
p(D = 0, B = 0, F = 0)

p(D = 0, B = 0)
=

0.0082

0.0748
≈ 0.1096.

Discussion. When the driver informs us that the fuel gauge reads empty, the probability
of the tank actually being empty is 0.2125. If we also know that if the battery is flat, the
probability of the tank actually being empty decreases to 0.1096. Finding out that the
battery is flat explains away the observation that the driver reads the fuel gauge as empty.
Intuitively, this is because we now have another probable reason for the gauge showing
empty, which we had relatively little prior reason to believe was true.

Exercise 8.16

We wish to evaluate p(xn | xN) for every n = 1, 2, . . . , N − 1. We will make some
observations, and then sketch an algorithm.

68

Observations. By using the product rule and then marginalizing over every variable
apart from xn, we obtain the following expression for the conditional probability.

p(xn | xN) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

p(x)

p(xN)

=
1

Z

∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

ψ1,2(x1, x2)ψ2,3(x2, x3) · · · ψN−1,N(xN−1, xN)

p(xN)
.

The equation above only differs from Equation (8.52) because of the marginal distribution
p(xN) in the denominator in the last term. Assuming that we know p(xN), we group terms
as in Equation (8.52), writing them as

1

Z
µα(xn)

[∑
xn+1

ψn,n+1(xn, xn+1) · · ·

[∑
xN

ψN−1,N(xN−1, xN)

p(xN)

]
· · ·

]
︸ ︷︷ ︸

µ∗β(xn)

.

The difference between the µ∗β(xn) introduced here and the µβ(xn) in the book is the
denominator in the innermost parenthesis.

Algorithm sketch. We sketch an O(NK2) algorithm which uses message passing.

1) The first step involves finding p(xN). Since p(xN) = µα(xN)µβ(xN)/Z = µα(xN)/Z,
we compute µα(x2), then µα(x3), and so forth by use of the recursive relationship
detailed in Equation (8.55). This step is O(NK2), and every µα(xn) is stored.

2) Having obtained p(xN), we compute the µ∗β(xn) by the following equations, which
give an initial value and a recursive relationship.

µ∗β(xN−1) =
∑
xN

ψN−1,N(xN−1, xN)

p(xN)

µ∗β(xn) =
∑
xn+1

ψn,n+1(xn, xn+1)µ∗β(xn+1)

This step is also O(NK2), and every µ∗β(xn) is stored.

3) Now we can compute p(xn | xN) for every n = 1, . . . , N − 1 using

p(xn | xN) =
1

Z
µα(xn)µ∗β(xn).

Since
∑

xn
p(xn | xN) = 1, we compute Z as

∑
xn
µα(xn)µ∗β(xn).

The algorithm runs in O(NK2) time, where N is the number of variable nodes and K
is the number of states per variable. We propagate messages forward, then backwards,
evaluate Z and compute the conditional probabilities p(xn | xN).

69

Exercise 8.21

The solution to this problem has somewhat dense notation. Drawing and working through
a concrete example while reading is highly recommended. From the sum rule, we have

p(xs) =
∑
x\xs

p(x).

The joint distribution p(x) can be factored as the product of:

• fs(xs), the factor defined over the variables xs. This factor is not marginalized out.

• The factors “two steps” away from fs(xs) in the graph, i.e. the “grandchildren.”
More formally, for every variable node index i ∈ ne(fs) adjacent to fs, the product
of the factors associated with the factor nodes ` ∈ ne(xi) \ fs.

We substitute this factorization of p(x) into the above to obtain

p(xs) =
∑
x\xs

fs(xs)

 ∏
i∈ne(fs)

 ∏
`∈ne(xi)\fs

F`(xi, X`)

 ,
where F`(xi, X`) denotes the factors associated with factor node ` and it’s sub-tree, ad-
jacent to xi ∈ xs. Next we bring the factor fs(xs) out of the sum, and interchange
summation and products. Interchanging summation and products is valid since the prod-
ucts are over disjoint factors. We obtain

p(xs) = fs(xs)
∏

i∈ne(fs)

 ∏
`∈ne(xi)\fs

∑
X`

F`(xi, X`)

 ,

since the variables x\xs is the union of every set X`. Recall that the variables X` belong
to the sub-trees associated with the factors “two steps” away from fs(xs). Using the
definition of µf`→xi(xi) from Equation (8.64) followed by Equation (8.69), we obtain

p(xs) = fs(xs)
∏

i∈ne(fs)

 ∏
`∈ne(xi)\fs

∑
X`

F`(xi, X`)


= fs(xs)

∏
i∈ne(fs)

 ∏
`∈ne(xi)\fs

µf`→xi(xi)


= fs(xs)

∏
i∈ne(fs)

µxi→fs(xi).

This is equivalent to Equation (8.72), which is what we wanted to show.

70

2.9 Mixture Models and EM

Exercise 9.2

Recall the general Robbins-Monro algorithm: given p(θ, z) we compute the root of the
regression function

f(θ) = Ez [z | θ] =

∫
zp(z | θ) dθ

by iterating the recursive equation

θN = θN−1 − aN−1z
(
θN−1

)
. (26)

In this case, let’s consider θ as a specific µk. We fixate k, and consider the points in the
data stream x1,x2,x3, . . . for which rnk = 1, i.e. points which are closest to cluster k.

The cluster prototype µk which is closest to a point xn is a function of the previously
seen data x1,x2, . . . ,xn−1, but upon seeing a data point xn we can always compute the
closest cluster. In other words, we assume that we know which data points belong to k,
but remark that we do not really know this “ahead of time.” We wish to find the root of∑

xn|k

(xn − µk) .

where xn | k denotes the data points that are assigned to cluster k. Let Nk be the total
number of data points falling closest to µk. As Nk goes to infinity, we have

− lim
Nk→∞

1

Nk

∑
xk|k

(xn − µk) = −
∫

(x− µk) p(x | k) dx = E [− (x− µk) | k] ,

so clearly we’re trying to minimize a regression function. We now identify µk as θ and
− (x− µk) as z in Equation (26), which leads us to the desired sequential update rule

µnew
k = µold

k + ηn (x− µk) .

Exercise 9.4

Recall that in the original EM algorithm in Section 9.3 we wish to maximize p(X | θ)
with respect to θ. In other words, we want to compute

max
θ

ln p(X | θ) = max
θ

ln

(∑
Z

p(X,Z | θ)

)
but we settle for maximizing EZ [ln p(X,Z | θ)] instead.

In this problem, we wish to maximize p(θ | X) ∝ p(X | θ)p(θ) with respect to θ. In
other words, we want to compute

max
θ

ln (p(X | θ)p(θ)) = max
θ

ln

(∑
Z

p(X,Z | θ)p(θ)

)

71

but we settle for maximizing EZ [ln p(X,Z | θ)p(θ)] instead. Expanding the logarithm
and writing out the expected value explicitly, the expression becomes∑

Z

p(Z |X,θ) (ln p(X,Z | θ) + ln p(θ)) = Q+ ln p(θ).

The E step remains the same, since the expected value is to be taken over the same
posterior distribution p(Z | X,θ) as in the case when we’re maximizing the likelihood
p(X | θ). The M step is altered from maximizing Q to maximizing Q + ln p(θ), since
we wish to maximize p(X | θ)p(θ) and not p(X | θ).

Exercise 9.10

Applying the product rule to the conditional probability yields

p(xb | xa) =
p(xb,xa)

p(xa)
=

p(x)

p(xa)
.

We already have an expression for the numerator, given in the problem statement. The
denominator found by substituting the definition and applying the sum rule.

p(xa) =
∑
xb

p(xa,xb) =
∑
xb

K∑
j=1

πjp(xa,xb | j) =
K∑
j=1

πjp(xa | j).

Substituting this into the above fraction and diving every term in the sum, we obtain

p(xb | xa) =

∑K
k=1 πkp(xa,xb | k)∑K
j=1 πjp(xa | j)

=
K∑
k=1

(
πk∑K

j=1 πjp(xa | j)

)
p(x | k).

From the expression above we observe that the mixing coefficients in the conditional distri-

bution become πk/
(∑K

j=1 πjp(xa | j)
)

, while the component densities remain unchanged.

Notice that if xa = x and xb = ∅, the above reduces to the original expression for p(x).

Exercise 9.12

In this problem we use the notation p(x | µk) instead of p(x | k). Furthermore, we will
assume that by “denote the mean and covariance of p(x | k) as µk and Σk” the problem
text is interpreted as stating that E [x | µk] = µk and cov [x | µk] = Σk. In other words,
the expected value and variance is taken over the variable x.

The mean. The expected value of the mixture distribution is readily found to be

E[x] =
∑
x

xp(x) =
∑
x

x

K∑
k=1

πkp(x | µk) =
K∑
k=1

πk
∑
x

xp(x | µk)

=
K∑
k=1

πk E [x | µk] =
K∑
k=1

πkµk.

72

The covariance. To evaluate the covariance of the mixture distribution, recall Equation
(1.42) in [Bishop, 2006], which states the covariance identity

cov [x] = E
[
xxT

]
− E [x]E [x]T .

We explore the last term E
[
xxT

]
, since we’ve already found that E[x] =

∑K
k=1 πkµk in

the previous sub-problem.

In turn we use the definition of the expected value, then the definition of p(x), the defi-
nition of the conditional expected value, the covariance identity, and finally the variables
given in the problem statement:

E
[
xxT

]
=
∑
x

p(x)xxT =
∑
x

(
K∑
k=1

πkp(x | µk)

)
xxT

=
K∑
k=1

πk
∑
x

p(x | µk)xxT =
K∑
k=1

πk E
[
xxT | µk

]
=

K∑
k=1

πk

(
cov [x | µk] + E [x | µk]E [x | µk]T

)
(covariance identity)

=
K∑
k=1

πk
(
Σk + µkµ

T
k

)
Combining the above expression for E

[
xxT

]
with the covariance identity yields Equation

(9.50) from the book, and this is what the problem asked us to show.

Exercise 9.14

In general, from the sum and product rule, we know that

p(x | µ,π) =
∑
z

p(x | z,µ)p(z | π)︸ ︷︷ ︸
p(x,z|µ,π)

.

By substituting the expressions for p(x | z,µ) and p(z | π), we see that

p(x | µ,π) =
∑
z

(
K∏
k=1

p(x | µk)zk
)

︸ ︷︷ ︸
p(x|z,µ)

(
K∏
k=1

πzkk

)
︸ ︷︷ ︸

p(z|π)

=
∑
z

K∏
k=1

[p(x | µk)πk]zk .

The sum is taken over states of z, which are unit vectors, e.g. (1, 0, 0, . . .), (0, 1, 0, . . .)
and (0, 0, 1, . . .) and so forth. There are K such states, and therefore K terms in the sum.
In the first term of the sum, i.e. the first state of z, the only term in the product which
is not 1 is p(x | µ1)π1. Likewise, the second term becomes p(x | µ2)π2 and the third
p(x | µ3)π3 and so forth. Therefore only one factor is each product remain, yielding

p(x | µ,π) =
∑
z

K∏
k=1

[p(x | µk)πk]zk =
K∑
k=1

p(x | µk)πk.

The equation above is the result which the problem asked us to show.

73

Exercise 9.18

We keep the results of Exercise 9.4 in mind: we know the E step will be unchanged in the
sense that we take expected value over the same distribution p(Z | X,θ). The problem
is finding the expected value and maximizing it, i.e. finding explicit equations for pi and
the µk which maximize the expected complete-data log likelihood.

The expected value. The expectation becomes

EZ [ln p(X,Z | µ,π) + ln p(µ,π)] = EZ [ln p(X,Z | µ,π)] + ln p(µ,π).

Let’s investigate the last term, which is due to the priors over the model parameters.
While π is a K-dimensional vector, π represents a set of K vectors µ = {µ1, . . . ,µK}.

The vector π = (π1, . . . , πK) is subject to the constraint
∑

k πk = 1. The probability of
π is given by Equation (2.38) for the Dirichlet distribution from the book, i.e.

p(π | α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
k=1

παk−1
k ∝

K∏
k=1

παk−1
k . (27)

In the set of vectors µ = {µ1, . . . ,µK}, the individual vectors µi and µj are independent,
so we can factor the joint distribution as p(µ) = p(µ1) · · · p(µK). We assume that the
entries of the kth vector µk are independent given ak and bk, so that p(µki | ak, bk) is
given by Equation (2.13), i.e.

p(µki | ak, bk) =
Γ(ak + bk)

Γ(ak)Γ(bk)
µak−1
ki (1− µki)bk−1 ∝ µak−1

ki (1− µki)bk−1

and therefore

p(µk | ak, bk) =
D∏
i=1

p(µki | ak, bk) ∝
D∏
i=1

µak−1
ki (1− µki)bk−1.

Combining the equation above with the factorization p(µ) = p(µ1) · · · p(µK), we observe
that the probability of the set µ = {µ1, . . . ,µK} becomes

p(µ) = p(µ1) · · · p(µK) ∝
K∏
k=1

D∏
i=1

µak−1
ki (1− µki)bk−1. (28)

Note that we have ignored multiplicative constants independent of π and the µks, since
when we take logarithms these constants will become additive. Additive constants dis-
appear upon differentiating, and can safely be ignored as they will play no role in the
following maximization step.

74

Finally we take the logarithm of p(µ,π) = p(µ)p(π). Using Equations (27) and (28) for
the priors over π and µ, we then obtain:

ln p(µ,π) = ln (p(µ)p(π)) = ln p(µ) + ln p(π)

ln p(π | α) ∝
K∑
k=1

(αk − 1) lnπk

ln p(µ) ∝
K∑
k=1

D∑
i=1

(ak − 1) lnµki + (bk − 1) ln(1− µki)

The maximization. We ignore constants and explicitly give the equation for the
complete-data log likelihood, which becomes

EZ [ln p(X,Z | µ,π)] + ln p(µ,π)

=
N∑
n=1

k∑
k=1

γ(znk)

[
ln πk +

D∑
i=1

xni lnµki + (1− xni) ln(1− µki)

]

+
K∑
k=1

(αk − 1) lnπk +
K∑
k=1

D∑
i=1

(ak − 1) lnµki + (bk − 1) ln(1− µki).

(29)

Notice that the first term with the double sum is identical to Equation (9.55) in the book.

Maximizing w.r.t. π. We introduce a Lagrange multiplier for the constraint
∑

k πk =
1, and then differentiate (29) with respect to πk to obtain∑

n

γ(znk)
1

πk
+ (αk − 1)

1

πk
+ λ = 0.

Multiplying by πk, summing both sides over k = 1, . . . , K and using
∑

k πk = 1 lets us
solve for the Lagrange multiplier λ. Substituting this back into the equation and using
Equation (9.57) from the book and the fact that

∑
kNk = N then yields the solution

πk =
Nk + αk − 1

N +
∑

j(αj − 1)
=
Nk + αk − 1

N + α0 −K
.

Notice the similarity with Equation (9.60), which represents the same equation with no
prior p(π | α). In fact, if we set (α1, . . . , αK) = (1, . . . , 1), then α0 =

∑
k αk = K and the

expression above reduces exactly to Equation (9.60).

Maximizing w.r.t. µk. We differentiate Equation (29) above with respect to µki:∑
n

γ(znk)

(
xni
µki
− 1− xni

1− µki

)
+
ak − 1

µki
− bk − 1

1− µki
= 0

75

The common denominator is µki(1− µki). Multiplying the fractions to obtain a common
denominator and then multiplying both sides of the equation by it yields∑

n

γ(znk) (xni − µki) + (ak − 1) + µki(2− ak − bk) = 0.

We solve for µki and make use of Equations (9.57) and (9.58), to get

µki =

∑
n γ(znk)xni + (ak − 1)

Nk + (ak − 1) + (bk − 1)
or µk =

Nkx̄k + (ak − 1)

Nk + (ak − 1) + (bk − 1)
.

Notice that if ak = bk = 1, then this reduces to the equation with no prior.

2.10 Approximate Inference

Exercise 10.4

The (reversed) Kullback-Leibler divergence is defined as

KL(p||q) = −
∫
p(x) ln

p(x)

q(x)
dx.

In this problem q(x) = N (x | µ,Σ), and therefore

∂µq(x) = Σ−1 (x− µ) q(x)

∂Σ ln q(x) = −1

2
Σ−T +

1

2
ΣT (x− µ) (x− µ)T Σ−T .

The first equation is essentially differentiation of a quadratic form with respect to the
vector, which we assume is known and straightforward. The second equation is more
involved, and the result presented here is taken from the matrix cookbook 1.

Differentiating the KL divergence with respect to µ and setting it equal to zero yields∫
p(x)Σ−1x dx =

∫
p(x)Σ−1µ dx.

Taking constants out of the integrals and left-multiplying with Σ (which we assume to be
invertible) yields µ =

∫
p(x)x dx, which solves the first part of the problem.

To solve the second part, we differentiate with respect to Σ and equate the result to zero:∫
p(x)Σ−T + p(x)ΣT (x− µ) (x− µ)T Σ−T dx = 0.

Right-multiplying by Σ−T and using ΣT = Σ, we then solve for Σ−1 and obtain

Σ−1 =

∫
p(x) (x− µ) (x− µ)T dx = E

[
(x− µ) (x− µ)T

]
= cov[x].

1https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

76

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Exercise 10.8

The mean of the variational posterior distribution for τ is given by

E[τ] =
aN
bN

We will examine both of these terms as N →∞. Clearly aN ' N/2 as N goes to infinity.

The expression for bN requires more finesse. By the linearity of the expected value

bN '
1

2

[
N∑
n=1

(
x2
n − 2xn E[µ] + E[µ2]

)
+ λ0

(
E[µ2]− 2µ0 E[µ] + µ2

0

)]
. (30)

As N →∞, we see that E[µ] = x̄, and that (from Equation (1.50) in the book)

E[µ2] = µ2 + λ−1
N ' x̄2 +

1

(λ0 +N)E[τ]
' x̄2.

Substituting the expressions for E[µ] and E[µ2] back into Equation (30) yields

bN '
1

2

[
N∑
n=1

(xn − x̄)2 + λ0 (x̄− µ0)2

]
' 1

2

N∑
n=1

(xn − x̄)2 ,

where the final asymptotic equality holds because (x̄− µ0)2 remains constant as N →∞.
We are now in a position to see that the expected value of the variational posterior
distribution over the precision, i.e. 1/E[τ], asymptotically equals the sample variance. In
other words, we have

1

E[τ]
=
bN
aN
' 1

N

N∑
n=1

(xn − x̄)2 .

Using the above, we readily observe that var[τ] goes to zero. We have

var[τ] =
aN
b2
N

=
E[τ]

bN
' 0

since E[τ] converges but bN grows as N →∞.

Exercise 10.11

We will make two assumptions in this problem: (1) a Lagrange multiplier can be used to
optimize a functional F [y] in the same way that it is used to optimize a function y(x), and
(2) the variation δF [y]/δy can be taken irrespective of whether the function y(x) is defined
over real numbers of integers. We assume these to be true, but a rigorous approach would
be to investigate these assumptions thoroughly—which we will not.

The functional we wish to optimize becomes

F [q(m)] =
∑
m

∑
Z

q (Z | m) q(m) ln

[
p(Z,X,m)

q (Z | m) q(m)

]
+ λ

(∑
m

q(m)− 1

)
.

77

Taking the variation with respect to q(m) and requiring that the functional derivative
vanishes gives the equation∑

Z

q (Z | m) ln

[
p(Z,X | m)

q (Z | m)

]
+
∑
Z

q (Z | m) ln

[
p(m)

q(m)

]
−
∑
Z

q (Z | m) + λ = 0

where we have used p(Z,X,m) = p(Z,X | m)p(m). The first term is Lm, in the second
only the logarithm remains when we perform the sum (since the probability mass function
sums to unity). The equation above therefore becomes

Lm + ln
p(m)

q(m)
− 1 + λ = 0,

which means that q(m) = p(m)eλ−1+Lm ∝ p(m)eLm , which we wanted to show.

Exercise 10.12

We detail some of the steps going from Equation (10.41) to (10.49). Starting with

ln q?(Z) = Eπ,µ,Λ[ln p(X,Z,π,µ,Λ)] + const

we obtain Equation (10.44) by noticing that only p(Z | π) and p(X | Z,µ,Λ) in (10.41)
are functions of Z. The expected value of the first term becomes

Eπ[ln p(Z | π)] = Eπ

[
ln

N∏
n=1

K∏
k=1

πznkk

]
= Eπ

[
N∑
n=1

K∑
k=1

znk lnπk

]
=

N∑
n=1

K∑
k=1

znk Eπ [lnπk]

and since ln p(xn, zn |,µ,Λ) ∝ ln |Λk|−D ln(2π)−E
[
(xn − µ)TΛk(xn − µ)

]
the expected

value of the second term becomes

Eµ,Λ[ln p(X | Z,µ,Λ)] = Eµ,Λ

[
ln

N∏
n=1

K∏
k=1

N (xn | µk,Λ−1
k)znk

]

= Eµ,Λ

[
N∑
n=1

K∑
k=1

znk lnN (xn | µk,Λ−1
k)

]

=
N∑
n=1

K∑
k=1

znk
1

2

(
EΛ[ln |Λk|]−D ln(2π)− Eµ,Λ

[
(xn − µ)TΛk(xn − µ)

])
.

Combining the expressions for the two terms Eπ[ln p(Z | π)] and Eµ,Λ[ln p(X | Z,µ,Λ)]
yields Equation (10.46) in the book.

In going from Equation (10.47) to (10.48), we wish to choose a normalization constant C
so that

C
∑
zn

p(zn) = C
∑

znk∈zn

(
K∏
k=1

ρznknk

)
= C

K∑
k=1

ρnk = 1.

This ensures normalization. Multiplying with C takes us from (10.47) to (10.48).

We have explained the major steps going from Equation (10.41) to (10.49).

78

Exercise 10.19

We immediately integrate out q(π) = Dir(q | α), leaving us with∫∫
πkN

(
x̂ | µk,Λ−1

k

)
N
(
µk |mk, (βkΛk)

−1
)
W (Λk |Wk, νk)︸ ︷︷ ︸

q(µk,Λk)

dµk dΛk

where the explicit form of q(µk,Λk) is given by Equation (10.59) in the book.

We then structure the integral as

πk

∫
W (Λk |Wk, νk)

[∫
N
(
x̂ | µk,Λ−1

k

)
N
(
µk |mk, (βkΛk)

−1
)
dµk

]
dΛk

and since p(x̂) =
∫
p(x̂ | µk)p(µk) dµk we appeal to Equations (2.113), (2.114) and (2.115)

for the marginal distribution p(x̂). After some work we then obtain

πk

∫
W (Λk |Wk, νk)N

(
x̂ |mk,Λ

−1
k + β−1Λ−1

k

)
dΛk (31)

The one dimensional case Let’s consider first a one dimensional case of (31). We
ignore the constant πk and drop the subscript on k to ease notation. The Wishart distri-
bution reduces to the gamma distribution, and in a single dimension we have

W (λ | w, ν) = Gam(λ | a = ν/2, b = w−1/2)

so that Equation (31) becomes∫ ∞
0

Gam(λ | a = ν/2, b = w−1/2)N
(
x | m,λ−1(1 + β−1)

)
dλ.

Using Equations (2.42) and (2.146) for the Normal distribution and the Gamma distribu-
tion respectively, the integral explicitly becomes

1

Γ(ν/2)

(
1

2
w−1

)ν/2
1

(2π(1 + β−1))1/2

∫ ∞
0

λ(ν−1)/2 exp

(
−1

2
w−1λ− 1

2

λ(x−m)2

1 + β−1

)
dλ.

(32)
Following Equation (2.158) in the book, we change variables to

z = λ

[
1

2
w−1 +

1

2

(x−m)2

1 + β−1

]
︸ ︷︷ ︸

α

and use the gamma function Γ(·), defined by Equation (1.141) to obtain

1

Γ(ν/2)

(
1

2
w−1

)ν/2
(2π(1 + β−1))−1/2α−ν/2−1/2

∫ ∞
0

z
ν−1
2 exp(−z) dz︸ ︷︷ ︸

Γ(ν/2+1/2)

.

79

Rearranging the factors and multiplying with 1 (last factor), we obtain

Γ(ν/2 + 1/2)

Γ(ν/2)

(
1

2w

)ν/2(
1

2π

)1/2(
β + 1

β

)−1/2

α−ν/2−1/2

(
β + 1

β

)−ν/2−1/2+ν/2+1/2

we now pull the last factor into the others, obtaining

Γ(ν/2 + 1/2)

Γ(ν/2)

(
β + 1

β2w

)ν/2(
1

2π

)1/2 [
β + 1

β2w
+

(x−m)2

2

]−ν/2−1/2

.

We compare this with the last term in (2.158) and identifying the term as

λ = a/b =
νβw

1 + β
ν = 2a = ν

This is indeed equal to

St(x | µ, νβw
1 + β

, ν),

which is a one-dimensional variant of (10.81) and (10.82).

The D-dimensional case We now move to the general case of (31), and again we
ignore the constant πk and drop the subscript on k to ease notation.

Using Equations (2.155) and (2.43) for the definition of the Wishart distribution and
Gaussian, the integral explicitly becomes

B

(2π)D/2

∫
|Λ|(ν−D−1)/2 exp

(
−1

2
Tr(W−1Λ)

)
1

|Λ−1|1/2 (1 + β−1)1/2

exp

(
− 1

2(1 + β−1)
(x̂−m)TΛ(x̂−m)

)
dΛ.

We decompose Λ as into it’s eigenvalues and eigenvectors

Λ = UEUT =
D∑
i

λiuiu
T
i

and since Λ is positive definite every eigenvalue is non-negative.

dΛ = dΛ(?)∣∣Λ−1
∣∣1/2 =

D∏
i

λ
−1/2
i

|Λ| =
D∏
i

λi

tr
(
W−1Λ

)
=

D∑
i

λiu
T
i W

−1ui

(x̂−m)TΛ(x̂−m) =
D∑
i

λi (x̂−m)Tui︸ ︷︷ ︸
yi

(x̂−m)uTi =
D∑
i

λiy
2
i

80

Wishart becomes

|Λ|(ν−D−1)/2 exp

(
−1

2
Tr(W−1Λ)

)
=

D∏
i

λ
(ν−D−1)/2
i exp

(
−1

2
λiu

T
i W

−1ui

)

Gaussian becomes

exp

(
− 1

2(1 + β−1)
(x̂−m)TΛ(x̂−m)

)
=

D∏
i

exp

(
−λiy2

i

2(1 + β−1)

)

The integral becomes

B

(2π)D/2
1

(1 + β−1)1/2

D∏
i

∫
λ

(ν−D)/2
i exp

(
−1

2
λiu

T
i W

−1ui −
λiy

2
i

2(1 + β−1)

)
dλi

Solving yields

B

(2π)D/2
1

(1 + β−1)1/2

D∏
i

(
1

2
uTi W

−1ui +
y2
i

2(1 + β−1)

) ν−D
2

+1

Γ

(
D − ν

2
− 1

)

I AM STUCK HERE.

1D case

1

Γ(ν/2)

(
1

2
w−1

)ν/2
1

(2π(1 + β−1))1/2

∫ ∞
0

λ(ν−1)/2 exp

(
−1

2
w−1λ− 1

2

λ(x−m)2

1 + β−1

)
dλ.

(33)

Want to show

Γ((ν + 1−D)/2)

Γ((ν + 1)/2−D)

|W |1/2

πD/2

(
β

1 + β

)
1

(ν + 1−D)D
[
1 + ∆2

]D− ν+1
2

where

∆2 =
β

1 + β
(x̂−m)TW (x̂−m)

Exercise 10.23

TODO

Exercise 10.28

TODO

81

Exercise 10.34

TODO

2.11 Sampling Methods

Exercise 11.4

We start with Equations (11.10) and (11.11), square them and add them together. The
result is the following relationship between variables (z1, z2) and (y1, y2).

r2 = z2
1 + z2

2 = exp

(
−1

2

(
y2

1 + y2
2

))
Substitute the equation above back into Equations (11.10) and (11.11) to obtain

z1 = y1

exp
(
−1

4
(y2

1 + y2
2)
)

(y2
1 + y2

2)
1/2

z2 = y2

exp
(
−1

4
(y2

1 + y2
2)
)

(y2
1 + y2

2)
1/2

.

Differentiating these equations yield the following relations

∂zi
∂yi

=

(
y2
j − y4

i /2− y2
i y

2
j/2
)

exp
(
−1

4

(
y2
i + y2

j

))(
y2
i + y2

j

)3/2

∂zi
∂yj

= −
yiyj

(
y2
i /2 + y2

j/2 + 1
)

exp
(
−1

4

(
y2
i + y2

j

))(
y2
i + y2

j

)3/2
.

Notice the symmetry (yi, yj) ↔ (yj, yi). Symbolic manipulations will reveal that the
absolute value of the determinant then becomes∣∣∣∣∂(z1, z2)

∂(y1, y2)

∣∣∣∣ =

∣∣∣∣∂z1

∂y1

∂z2

∂y2

− ∂z1

∂y2

∂z2

∂y1

∣∣∣∣ =
1

2
exp

(
−1

2

(
y2
i + y2

j

))
which corresponds perfectly with Equation (11.12) and solves the problem.

Exercise 11.7

The following diagram shows the change of variables and the associated probability density
functions.

py(y) qz(z)

f

h

In this problem py(y) is uniform on (0, 1) and z = f(y) = b tan(y) + c. The inverse of f(y)
is simply y = h(z) = tan−1 ((z − c)/b). We wish to find qz(z), which we do by evaluating

qz(z) =
dy

dz
=

d

dz

(
tan−1

(
z − c
b

))
=

1

1 +
(
z−c
b

)2

1

b
.

82

Here c is a shift parameter and b is a scale parameter. Multiplying by k and ignoring
the last factor 1/b allows the unnormalized distribution to completely overlap the gamma
distribution in Figure 11.5. This is required in rejection sampling.

Exercise 11.12

The standard Gibbs sampler is not ergodic in this case, and would not sample from
the shown mixture distribution correctly. Instead it would get stuck on one of the two
distributions. To see this, notice that p(x1 | x2) and p(x2 | x1) are both zero outside of
the initial distribution in the mixture, hence the standard Gibbs sampler has no way of
moving from one distribution to the other and is forever stuck.

Exercise 11.15

Starting from Equation (11.58) in the book, we see that

dzi
dτ

=
∂H

∂ri
=

∂

∂ri
[E(z) +K(r)] =

∂K(r)

∂ri
= ri.

Where we have used Equations (11.56) and (11.57). The first term in the chain of equalities
above equals the last, showing that (11.53) is indeed equivalent to (11.58).

The next sub problem is trivial, since we have

∂H

∂zi
=

∂

∂zi
[E(z) +K(r)] =

∂E(z)

∂zi
.

2.12 Continuous Latent Variables

Exercise 12.4

If we let the distribution of z by given by p(z) = N (z | m,Σ), then the marginal
distribution over x becomes

p(x) = N (x |Wm+ µ, σ2I +WΣ−1W T).

There is redundancy in the term Wm + µ as we have the freedom to choose both m
and µ without altering the conditional covariance. Setting m = 0 lets us use µ alone to
control the conditional mean.

Having set m = 0, we see that there is a redundancy in the conditional covariance too.
Making use of the Cholesky decomposition we can write Σ−1 as RTR, so the conditional

covariance becomes σ2I +WRTRW T = σ2I +WRT
(
WRT

)T
. We have the freedom

to choose both W and R without altering the conditional mean. Setting R = I lets us
use W alone to control the conditional covariance.

83

Setting m = 0 and R = I we recover

p(x) = N (x | µ, σ2I +WW T).

Therefore “enriching” the model with m and R did not actually produce a more complex
model, only redundant parameters. In terms of re-defining variables, the new definitions
would be

µ̂ = Wm+ µ ŴŴ T = WΣ−1W T .

Exercise 12.6

The node x can be split up into nodes x1, . . . , xD since the covariance σ2I is diagonal.
Hence the paths from xi to xj when i 6= j are tail-to-tail at the observed node z, the path is
blocked and therefore the conditional independence xi ⊥⊥ xj | z holds. Algebraically, the
distribution p(x | z) factorizes into p(x1 | z) · · · p(xD | z) due to the diagonal covariance.

Exercise 12.10

Differentiating Equation (12.43) for the log likelihood once yields

C−1
∑
n

(xn − µ),

and equating this to 0 and solving yields µML. Differentiating again we obtain

−
∑
n

C−1 = −NC−1.

A quadratic form −yTC−1y has a unique maximum at y = 0 if C−1 is positive definite.
The inverse of C−1 is clearly positive definite, since from (12.36)

yTCy =
(
W Ty

)T (
W Ty

)
+ σ2yTy > 0 when y 6= 0.

The inverse of a positive definite matrix is also positive definite, which can be shown by
writing the matrix in it’s eigendecomposition. Since C−1 is positive definite −yTC−1y
is always negative except for when y = 0. Hence the maximum likelihood solution µML

represents a unique maximum.

Exercise 12.14

We consider first when M = D − 1 in Equation (12.51), then we have

D(D − 1) + 1− (D − 1)(D − 2)

2
= D(D − 1) + 1− (D − 1)D

2
+ (D − 1)

=
(D − 1)D

2
+D =

(D + 1)D

2
= D + (D − 1) + · · ·+ 1

84

which recovers the standard result for the degrees of freedom in symmetric a D × D
matrix.

When M = 0 Equation (12.51) simply equals 1. This represents the degrees of freedom
in the a Gaussian with isotropic covariance matrix σ2I.

Exercise 12.18

The factor analysis model is equal to the PPCA model, except for the fact that the
conditional variance σ2I is replaced by the diagonal matrix Ψ. One free parameter σ2 is
replaced by the D parameters in Ψ. Following the logic leading up to Equation (12.51),
the factor analysis model has

DM +D −M(M − 1)/2

independent parameters in the covariance (and D in the mean). The difference is the 1
in the middle of (12.51) becoming a D.

Exercise 12.23

The distribution over z remains p(z) = N (z | 0, I). We let y ∈ {0, 1}K be a latent
multinomial variable representing which of the K mixture PPCA models an observation
xn is drawn from. The latent distribution over y governed by a parameter π, so that

p(yk = 1) = πykk .

The conditional distribution becomes

p(x | z,y) = N
(
x |Wkz + µk, σ

2
kI
)
. (34)

The probabilistic graphical model below is inspired by Figures 12.10 and 9.6 on pages
574 and 433 respectively. Below σ2 = {σ2

1, . . . , σ
2
K}, µ = {µ1, . . . ,µK} and W =

{W1, . . . ,WK}.

µ xn W

σ2 zn yn

N

If the variances mixture parameters {σ2
k}, {µk} and {Wk} are shared, then the mixture

model above reduces to the ordinary PPCA model. To see this, notice that Equation (34)
reduces to the ordinary PPCA model and the latent variable y becomes superfluous.

85

2.13 Sequential Data

Exercise 13.8

The first part of the problem asks us to show Equations (13.22) and (13.23). To show
Equation (13.22), we combine Equation (13.9) with the multinomial probability density
function, given by

p(xn | φk) =
D∏
i=1

µxniik .

We drop the subscript on n, and see that

p(x | z) =
K∏
k=1

p(x | φk)zk =
K∏
k=1

(
D∏
i=1

µxiik

)zk

=
D∏
i=1

K∏
k=1

µxizkik .

To show Equation (13.23), we maximize Equation (13.17) with respect to µik. We use
a Lagrange multiplier to account for the constraint

∑
i µik = 1 for every k = 1, . . . , K.

Only the final term in Equation (13.17) and the constraint term is a function of µik, so
the Lagrange function becomes

L(µik) =
N∑
n=1

K∑
k=1

γ(znk)
D∑
i=1

xni ln(µik)− λ

(∑
i

µik − 1

)
+ const.

We differentiate this with respect to µik and solve for the Lagrange multiplier λ by sum-
ming both sides over i. We obtain

1

µik

[
N∑
n=1

γ(znk)xni

]
− λ = 0 ⇒ λ =

D∑
i=1

N∑
n=1

γ(znk)xni.

Solving for µik yields

µik =

∑N
n=1 γ(znk)xni∑N

n=1 γ(znk)
∑D

i=1 xni
=

∑N
n=1 γ(znk)xni∑N
n=1 γ(znk)

.

The second part of the problem asks us to consider the case when x has multiple bi-
nary outputs governed by Bernoulli distributions. In this case the conditional distribution
of xn is given by

p(xn | φk) =
D∏
i=1

µxniik (1− µik)(1−xni)

and there is no summation constraint on µik, but of course it has to be in the range [0, 1].
The optimization of Equation (13.17) becomes

L(µik) =
N∑
n=1

K∑
k=1

γ(znk)
D∑
i=1

xni ln (µik) + (1− xni) ln (1− µik)

86

where no Lagrange multiplier is present. Differentiating with respect to µik yields

∂µikL(µik) =
N∑
n=1

γ(znk)

[
xni
µik
− 1− xni

1− µik

]
= 0

and solving this yields

µik =

∑N
n=1 γ(znk)xni∑N
n=1 γ(znk)

which is exactly the same as Equation (13.23).

References

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer, New York.

[VanderPlas, 2014] VanderPlas, J. (2014). Frequentism and Bayesianism: A Python-
driven Primer.

87

	Chapter summaries
	Introduction
	Probability Distributions
	Linear Models for Regression
	Linear Models for Classification
	Neural networks
	Kernel methods
	Sparse Kernel Machines
	Graphical Models
	Mixture Models and EM
	Approximate Inference
	Sampling Methods
	Continuous Latent Variables
	Sequential Data
	Combining Models

	Exercises
	Introduction
	Probability Distributions
	Linear Models for Regression
	Linear Models for Classification
	Neural networks
	Kernel methods
	Sparse Kernel Machines
	Graphical Models
	Mixture Models and EM
	Approximate Inference
	Sampling Methods
	Continuous Latent Variables
	Sequential Data

