Overview of the ACCA Residential HVAC Design Process- MRC 2015, ACCA Man J, S and D 2 Tech/2 PR

Course Description

This course is an overview of the HVAC design process developed by ACCA (Air Conditioning Contractors of America) for residential dwellings. It will acquaint the attendee with 2015 MRC requirements for design calculations, definitions, and specific code citations. The class will cover ACCA Manuals J, S, D, T as well as other pertinent ACCA documents that have impact on the design and performance of HVAC systems. It will cover the ANSI process for standards and review past and current design standards so that participants can distinguish which standards are current and which are not. Participants will be given sources for additional information as well as check lists for design documents to help insure that the design documents are for that specific project. Course Length 4 hours less three 15-minute breaks. Course breakdown is for 2 technical hours and 2 plan review hours.

Intended Audience

The class is intended for HVAC and building inspectors, HVAC students, HVAC suppliers, HVAC field personnel not needing full design understanding, as well as homeowners wanting a better understanding of their HVAC system. This is an entry level course and assumes that the participant has some mechanical and building code understanding as well as building construction understanding.

Course Objective

The course objective is to give attendees an understanding of what the entire HVAC design process entails. It will give the attendee enough information to determine if an HVAC design is complete and if it is for the project being build. The course will provide sources for additional HVAC design information as well as checklists for each design function.

Class Facilitators

The facilitators for this class are John D. Sedine and Aaron J. Sedine. Their resumes are attached to this document.

Course Outline

Introduction (10 minutes)

- 1. Introduction of facilitators
- 2. Review of course content and objectives

Prerequisite Information (10 minutes)

- 1. Review 2015 MRC code requirements for HVAC design documents including Energy Star version 3 and similar programs.
- 2. Review ACCA ANSI standard references cited in the 2015 MRC and their importance.
- 3. Discussion on using standards that are cited versus older versions of standards that would not be in compliance with the 2015 MRC.
- 4. Discussion on the need to ensure that the HVAC design is in compliance of the 2015 MRC and the benefit to the occupants as well as the environment.
- 5. Overview of ACCA residential design process and manuals and standards involved.

ACCA Residential Design Process and Manuals

- 1. Manual J Residential Load Calculation (70 minutes)
 - Review of past editions
 - Review of current ANSI edition and separation of manual into a normative section and informative section.
 - Overview of heat gain / heat loss and how it relates to building systems
 - Discussion on block loads versus room by room loads
 - Do's and Don'ts of performing load calculations (Mandatory Provisions)
 - Review typical building construction and the different elements that have an impact on heat gain / heat loss calculations.
 - Review other impacts on calculations such as occupancy loads, ventilation loads, appliance, and lighting loads.
 - Discuss heat transfer and the different mathematical calculations for heating and cooling loads as well as those for exterior walls versus interior wall.
 - Review Manual J manual long form for block load or room by room load.
 - Discussion over a typical 3-bedroom 3-bathroom home with basement and resulting loads.
 - Review of load calculation form and required data that the document should contain.
 - Questions

2. Manual S Equipment Selection (30 minutes)

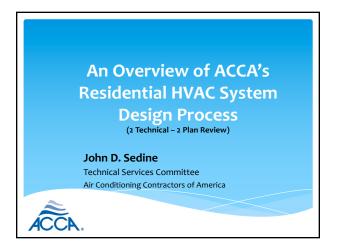
- Review current ANSI edition.
- Review normative section and informative section.
- Discussion on furnace efficiency factor in regard to input and output.
- Discussion on mixed air temperature and amount of outdoor air allowed through a gas furnace.
- Discussion of sensible and latent capacities for cooling equipment.
- Discussion of mixed air temperature and outdoor air on cooling equipment.
- Overview of size limits for residential HVAC equipment.
- Discussion on the verification path for HVAC equipment.
- Questions

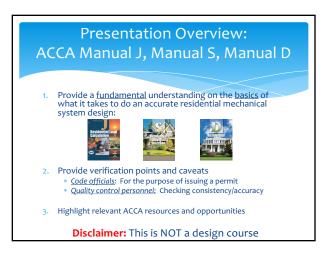
3. Manual D Residential Duct Systems (55 minutes)

- Review current ANSI edition
- Review what part is normative section and what part is informative
- Discuss how ductwork calculations are done based upon "total effective length TEL".
- Acquaint participants with "equivalent lengths of fittings" and discuss "good fittings" and "bad fittings".
- Review and discuss duct sizing and friction rate work sheets.
- Discuss static pressure, available static pressure, and friction rate.
- Perform sample duct sizing calculations
- Discuss factors that alter available static pressures and resulting friction rates.
- Review of duct friction rate slide rules.
- Discussion on zoned systems, using building spaces for plenums, flexible duct, and other topics from the informative section as necessary.
- Questions

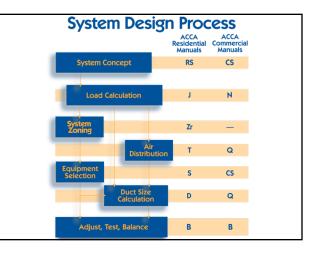
4. Manual T Air Distribution Basics (10 minutes)

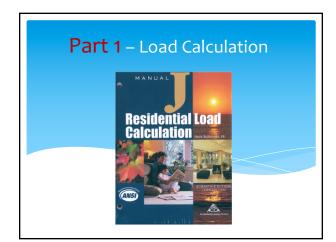
- Brief discussion on ASHRAE "comfort zone" or breathing zone.
- Discuss air stagnation, a bodies perception of "draft", and typical air velocities found during winter and summer.
- Questions

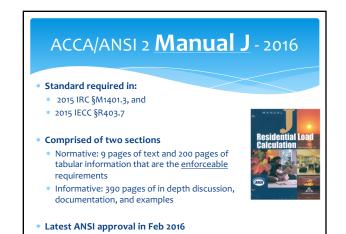

5. Manual B Test and Balance (10 minutes)

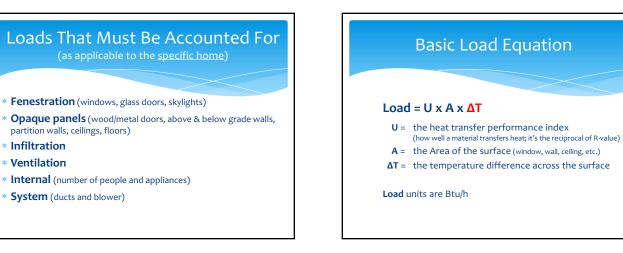

- Brief discussion on the important of air balancing.
- Questions

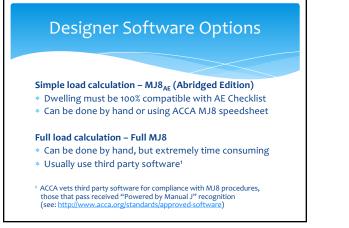
6. Other ACCA resources that may be of interest (10 minutes)

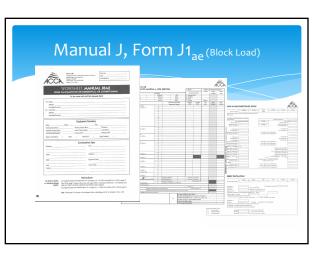

- <u>www.acca.org</u>
- Free standards and checklists
- Bob's House
- ACCA ANSI Standard 4 Maintenance of Residential Systems
- ACCA ANSI Standard 5 Quality Installation Specification
- ACCA ANSI Standard 6 Restoring the Cleanliness of HVAC Systems
- 7. **Questions?** (5 minutes)


Glenn C. Hourahan, P.E. ACCA

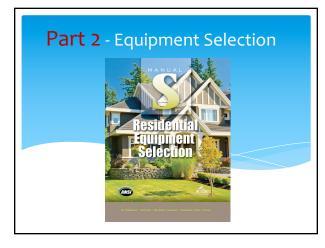







Load Calcs: Hea	t Gain / Heat Loss
Summer	Winter
 * Heat flows INTO the home * Sensible heat – dry heat (dry bulb; thermometer) * Latent heat – wet heat (wet bulb; humidity) 	 Heat flows OUT of the home Sensible heat only
Heat Gain so we need cooling	Heat Loss so we need heating
Heat flow is a rate; the units ar	e Btu/h. (Analogous to mph).

Ν	Manual J Load Design Conditions								
Two	o design cond	litions hence, t	two sets of peak loa	ads.					
		Outdoor Design Temp (Geographic-specific)	Indoor Design Temp						
Н	leat Gain (summer)	1% db condition	75 F						
Н	Heat Loss (winter) 99% db condition 70 F								
	Residential and								


Load Calculation Min. Verification Points

- * Location (City, State)
- * Outdoor design temperatures and grains (Why deviating from MJ8 Tables 1A or 1B?)
- * Indoor design temperatures (75°F db cooling, 70°F db heating unless superseded by code/regulation)
- * Orientation matches actual home or plan
- * Occupants = number of bedrooms + 1
- * Conditioned **floor area** = home or plan
- * Eave overhang depth and internal shading = home or plan / default
- * Number of skylights = home or plan
- * Sensible + latent heat gain = total heat gain

What to Watch Out For ... Some practitioners will try to fudge the numbers to get bigger loads: • Change the design temperatures (outdoor and/or indoor) • Design to the worst case scenario (e.g., very loose house) • Add more occupants than 'number of bedrooms plus 1' • Calculate duct loads even when ducts in conditioned space • Not include window overhangs and shading

* Puff up internal loads* Use a factor of safety

The above practices are not supported by ACCA. Manual J instructs practitioners to be thorough and reflect the ACTUAL conditions.

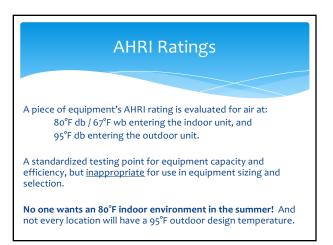
ANSI/ACCA 3 Manual S - 2014 Standard required in: 2015 IRC §M1401.3, and 2015 IECC §R403.7 Comprised of two sections: Normative: 22 pages of <u>enforceable</u> requirements Informative: 270 pages of in-depth discussion, documentation, and examples Latest ANSI approval in May 2014

Overview Equipment Selection Steps

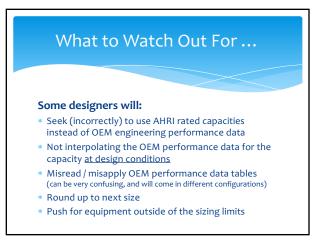
1. Start with sizing values

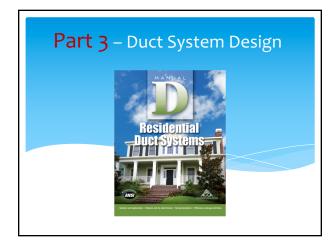
- * MJ8 heating load: For furnaces and boilers
- * MJ8 cooling load: For cooling-only and heat pump units

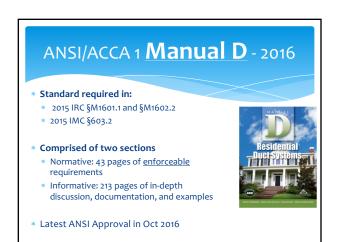
2. Manual S provides sizing rules


- * Sets upper and lower limits for equipment total capacity
- 3. Designer must use OEM performance data
 - * Capacity values must be for operating conditions

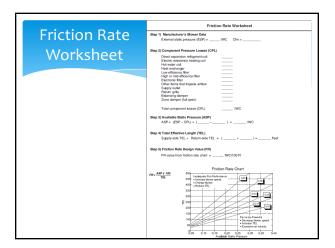
Size Limits For Each Equipment Type

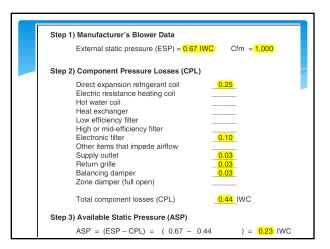

Size	Limits for Cool	ing-Only Equi	pment				
Equipment Type	Single Speed	Two Speed	Variable Speed See Note 8				
	Ducted or Du	ctless Total Coc	ling Capacity]			
Air-Air	Max = 1.15	Max = 1.20	Max = 1.30	S	ize Limits for F	ossil Fuel Furn	aces
	Min = 0.90	Min = 0.90 FS	Min = 0.90 RS	Output Capacity	Single Stage	Multi Stage	Modulat Burner
Water-Air pipe loop system	Max = 1.15 Min = 0.90	Max = 1.20 Min = 0.90 FS	Max = 1.30 Min = 0.90 RS	for Heating- Only Preferred ³ Output	Sizing value to 1.4 x sizing value	Sizing value to 1.4 x sizing value at full capacity	Sizing valu 1.4 x sizi value at capacit
Water-Air open-piping system	Max = 1.25 Min = 0.90	Max = 1.30 Min = 0.90 FS	Max = 1.35 Min = 0.90 RS		Sizing value to 1.4 x sizing	Sizing value to 1.4 x sizing	Sizing valu 1.4 x sizi
Zone Damper Systems	systems shall h	ess air issues, zo ave as little exces sible when full-co	s cooling	Capacity for Heating and Cooling	value	value at full capacity	value at capacit
-,	compared to the Manual J block load for the space served.		Maximum ⁴ Output Capacity for	Sizing value to 2.0 x sizing value	Sizing value to 2.0 x sizing value at full	Sizing valu 2.0 x sizi value at	

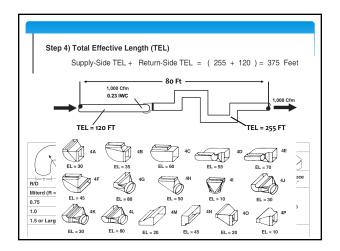


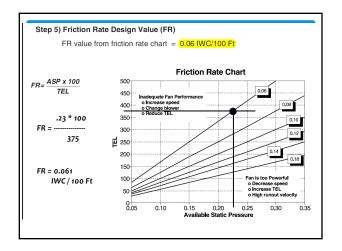

	ł	lea	t Pu	m	p :	Siz	zing L	imits	
Siz		r Condition		nps					
Equipment Type	Single Speed	Two Speed	Vari Spi						
	Ducted or	Ductless	Ducted	Du	ctless				
Air-Air	Max = 1.15 Min = 0.90	Max = 1.20 Min = 0.90 FS	Max = 1.20 Min = 0.90 RS	Min	(= 1.30 = 0.90 RS				
Water-Air pipe loop system	Max = 1.15 Min = 0.90	Max = 1.20 Min = 0.90 FS	Max = 1.20 Min = 0.90 RS			Size Limits for Condition B Heat Pumps JSHR = 0.95 or greater; and HDD / CDD = 2.0 or greater			
Water-Air open pipe system	Max = 1.25 Min = 0.90	Max = 1.25 Min = 0.90 FS	Max = 1.25 Min = 0.90 RS		Equipment		Single Speed	Two Speed	Variable Speed
Air					Air-Air Ducter Ductle	dor	Max = +15,000 Min = 0.90	Max = +15,000 Min = 0.90 FS	Max = +15,000 Min = 0.90 RS
Designer must heed the notes for the tables.					Water- pipe lo system	oop	Max = +15,000 Min = 0.90	Max = +15,000 Min = 0.90 FS	Max = +15,000 Min = 0.90 RS
					Water- open p syster	pipe	Max = +15,000 Min = 0.90	Max = +15,000 Min = 0.90 FS	Max = +15,000 Min = 0.90 RS

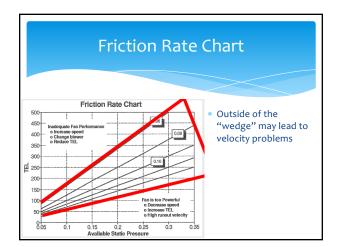
Equipment Sizing / Selection Min. Verification Points									
	Cooling Equipment Heating Equipment								
Equipment Information	TypeModel	TypeModel							
Capacities satisfy design conditions	Sensible CapacityLatent CapacityTotal Capacity	Total Output CapacityAuxiliary Heating Cap.							
Within load sizing limits	• To be verified	• To be verified							
Blower Info (at design conditions)	CFMESP	CFMESP							

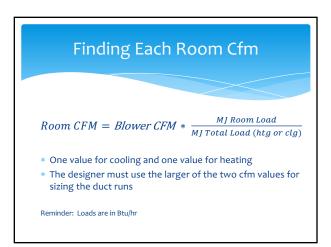


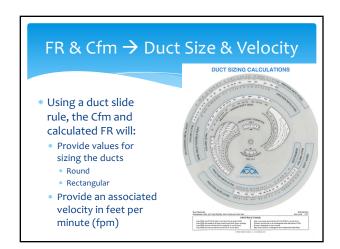


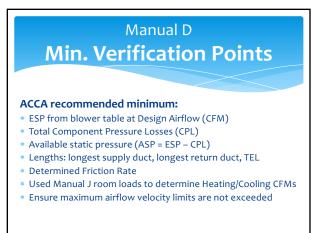


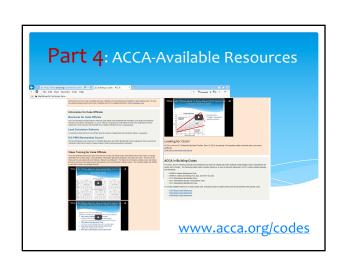

Glenn C. Hourahan, P.E. ACCA

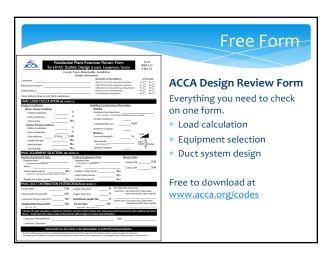

An Overview on ACCA's Residential HVAC System Design Process

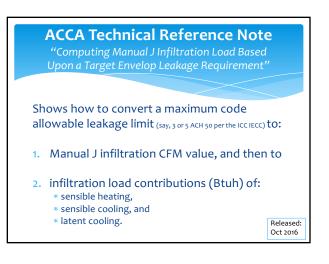




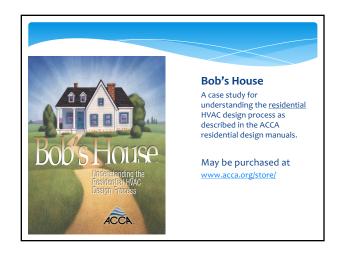


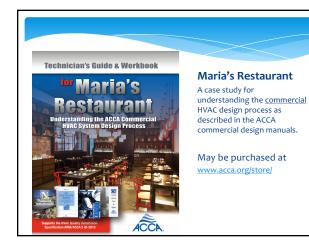

Example								
* Air ha	ndler deliv	ers 1000 Cf	fm at 0.23 l	WC (net)				
* Total	heating loa	d: 60,000	Btu/h					
* Total	 Total cooling load: 48,000 Btu/h 							
$Room CFM = \frac{Blower CFM x MJ Room Load}{MJ Total Load (htg or clg)}$								
Blower Cfm = 1000								
Total heating load = 60,000 Btu/h								
	To	otal cooling l	oad = 48,000	Btu/h				
	C - Btu/h	H - Btu/h	C - Cfm	H - Cfm	Design Cfm			
Room 1	4800	5800	100	97	100			
Room 2	19200	25200	400	420	420			
Room 3	24000	29000	500	483	500			


Velocity Limit									
 Compare the cfm with the If the velocity limit velocity 	limits y exce	for tur eds th	buleno e limits	ce/nois 5, then	e cont use th	rol e cfm	Ũ		
		Air Velo	ocity for N	oise Contr	ol Subject te	Notes 1, 2	and 8		
Component			ide (Fpm)				ide (Fpm)		
		rvative		imum		rvative	Maxi		
	Rigid	Flex	Rigid	Flex	Rigid	Flex	Rigid	Flex	
Trunk Ducts	700	700	900	900	600	600	700	700	
Branch Ducts	600	700	900	900	500	600	700	700	
Supply Outlet Face Velocity	Size fo	r Throw	700	Note 7	-	-	-	-	
Return Grille Face Velocity	-	500							
Filter Grille Face Velocity	-	300							



Free ACCA Membership for ICC Code Offices


To obtain ACCA member benefits for free, contact:


Karla Price Higgs Vice President, Member Services International Code Council <u>KHiggs@iccsafe.org</u>

