

Overview of Optimization Models for Planning and Scheduling

Ignacio E. Grossmann Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA

January 18, 2006

Enterprise-wide Optimization Seminar

- I. Classification of batch scheduling problems Classification of optimization models for batch scheduling
- **II. Discrete and continuous time scheduling models**
- **III.Numerical comparison of optimization models**
- **IV. Alternative solution approaches**
- V. Commercial software for scheduling of batch plants
- VI. Beyond current scheduling capabilities

Mendez, C.A., J. Cerda, I.E. Grossmann, I. Harjunkoski, M. Fahl, "State-of-the-art Review of Optimization Methods for Short-term Scheduling of Batch Processes," to appear in *Comp. & Chemical Engineering* (2006).

Floudas, C.A.; Lin, X. "Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review." *Comp. and Chem. Eng.*, 28, 2109 – 2129 (2004).

Kallrath, J. "Planning and scheduling in the process industry," OR Spectrum, 24, 219-250 (2002).

Pinto, J.M. & Grossmann, I.E., "Assignments and sequencing models of the scheduling of process systems," *Annals of Operations Research*, 81, 433 – 466 (1998).

Shah, N., "Single- and multisite planning and scheduling: Current status and future challenges," Proceedings of FOCAPO-98 75 – 90 (1998).

Pekny, J. F. & Reklaitis, G. V., "Towards the convergence of theory and practice: A technology guide for scheduling/planning methodology. Proceedings of FOCAPO-98 91 – 111 (1998).

Mauderli. A. M.: Rippin. D. W. T. Production Planning and Scheduling for Mu1tip;;pose Batch Chemical Plants. *Comp. Chem.Eng.* 3, 199 (1979).

Reklaitis, G. V. Review of Scheduling of Process Operation. AIChE Symp. Ser. 78, 119-133 (1978).

Major Academic Research Efforts

School	Researcher(s)
	Weblink
Åbo Akademi University	T. Westerlund
•	http://www.abo.fi/~twesterl/
Carnegie Mellon University	I.E. Grossmann
2	http://egon.cheme.cmu.edu
Imperial College	C. Pantelides, N. Shah
1 0	http://www.ps.ic.ac.uk
Instituto Superior Lisbon	A. Barbosa Povoa
I	http://alfa.ist.utl.pt/~d3662/
INTEC - CONICET	J. Cerdá
	http://intecwww.arcride.edu.ar/~icerda/
National University of Singapore	I.A. Karimi
	http://www.chee.nus.edu.sg/staff/000731karimi.html
Polytechnic University	J. Pinto
	http://www.poly.edu/faculty/iosempinto/
Princeton University	C.A. Floudas
	http://titan.princeton.edu/home.html
Purdue University	J. Pekny and G.V. Reklaitis
	http://engineering.purdue.edu/ChE/Research/Systems/index.html
Rutgers University	M. Ieranetritou
	http://sol.rutgers.edu/staff/marianth/
Technical University Graz	R. E. Burkard
	http://www.opt.math.tu-graz.ac.at/burkard/
Universitat Politécnica de Catalunya	L. Puigianer
	http://deg.upc.es/www.deg/cat/infogral/curriculs/Lluis%20Puigianer.htm
University College London	I. Papageorgiou
	http://www.chemeng.ucl.ac.uk/staff/papageorgiou.html
University of Dortmund	S. Engell
	http://www.bci.uni-dortmund.de/ast/en/content/mitarbeiter/elehrstuhlinhaber/engell.html
University of Sao Paulo	J. Pinto
	http://www.lscp.pgi.ep.usp.br/pro_zeca.html
University of Tessaloniki	M. Georgiadis
	http://www.cperi.certh.gr/en/compro.shtml#SECT2
University of Wisconsin	C. Maravelias
	http://www.engr.wisc.edu/che/faculty/maravelias_christos.html

Classification optimization models

Major differences in methods:

discrete vs continuous time fixed variable batch sizes (splitting/mixing)

Performance models VERY sensitive to objective function "Easiest": maximize profit "Most difficult": minimize makespan (completion time)

Time representations

Time	DISCRETE			CONTIN	NUOUS		
Event representation	Global time intervals	Global time points	Unit-specific time events	Time slots*	Unit-specific immediate precedence*	Immediate precedence*	General precedence*
Main decisions	Lot-sizing, allocation, sequencing, timing	Lot-sizing, sequenci	, allocation, ng, timing		Allocation, sequ	uencing, timing	
Key discrete variables	W _{ijt} defines if task <i>i</i> starts in unit <i>j</i> at the beginning of time interval <i>t</i> .	$\frac{Ws_{in}/Wf_{in}}{define if task}$ define if task <i>i</i> starts/ends at time point <i>n</i> . $\frac{W_{inn}}{defines}$ if task <i>i</i> starts at time point <i>n</i> and ends at time point <i>n</i> '.	Ws _{in} /W _{in} / Wf _{in} define if task <i>i</i> starts/is active/ends at event point <i>n</i> .	<i>W</i> _{<i>iljk</i>} define if stage <i>l</i> of batch <i>i</i> is allocated to time slot <i>k</i> of unit <i>j</i> .	X_{iiij} defines if batch <i>i</i> is processed right before of batch <i>i</i> ' in unit <i>j</i> . XF_{ij} defines if batch <i>i</i> starts the processing sequence of unit <i>i</i>	X_{ii} defines if batch <i>i</i> is processed right before of batch <i>i</i> '. XF_{ij}/W_{ij} defines if batch <i>i</i> starts/is assigned to unit <i>i</i>	X'_{ii} define if batch <i>i</i> is processed before or after of batch <i>i'</i> . W_{ij} defines if batch <i>i</i> is assigned to unit <i>j</i>
Type of process	General network	General	network		Seque	ntial	
Material balances	Network flow equations (STN or RTN)	Network flow equations (STN or RTN)	Network flow equations (STN)		Batch-or	riented	
Critical modeling issues	Time interval duration, scheduling period (data dependent)	Number of time points (iteratively estimated)	Number of time events (iteratively estimated)	Number of time slots (estimated) and batch tasks (lot- sizing)	Number of batch tasks sharing units (lot-sizing) and units	Number of batch tasks sharing units (lot-sizing)	Number of batch tasks sharing resources (lot-sizing)
Critical problem features	Variable processing time, sequence- dependent changeovers	Intermediate due dates and raw-material supplies	Intermediate due dates and raw-material supplies	Inventory, resource limitations	Inventory, resource limitations	Inventory, resource limitations	Inventory

* Batch-oriented formulations assume that the overall problem is decomposed into the lot-sizing and the short-term scheduling issues. The lotsizing or "batching" problem is solved first in order to determine the number and size of "batches" to be scheduled.

Discrete Time Formulations

Main Assumptions

- •The scheduling horizon is divided into a finite number of time intervals with known duration
- •Tasks can only start or finish at the boundaries of these time intervals

Advantages

Resource constraints are only monitored at predefined and fixed time points
Simple models and easy representation of a wide variety of scheduling features

Disadvantages

- •Model size and complexity depend on the number of time intervals
- •Constant processing times are required (rounding may be suboptimal)
- •Changeovers are difficult to handle

State Task Network (STN) (Kondili, Pantelides, Sargent, 1993)

Carnegie Mellon

Discrete-time STN Model (1)

Variables:

- $W_{ijt} = 1$ if unit *j* starts processing task *i* at the beginning of time period *t*; 0 otherwise. $B_{ijt} =$ Amount of material which starts undergoing task *i* in unit *j* at the beginning of period *t*.
- S_{st}^{qr} = Amount of material stored in state s, at the beginning of period t.
- U_{ut} = Demand of utility *u* over time interval *t*.

Capacity limitations:

$$W_{ijt}V_{ij}^{\min} \le B_{ijt} \le W_{ijt}V_{ij}^{\max} \quad \forall i,t,j \in K_i \qquad \text{Batch Units}$$
$$0 \le ST_{st} \le C_s \quad \forall s,t \qquad \text{Storage capacity}$$

Material balances:

Inventories Produced Consumed Purchased/Sold

$$ST_{st} = ST_{st-1} + \sum_{i \in \overline{T}_s} \overline{\rho}_{is} \sum_{j \in K_i} B_{ij,t-p_{is}} - \sum_{i \in T_s} \rho_{is} \sum_{j \in K_i} B_{ijt} + R_{st} - D_{st} \quad \forall s, t$$

1

Availability of utilities:

$$U_{ut} = \sum_{t} \sum_{j \in K_{i}} \sum_{\theta=0}^{p_{i}-1} (\alpha_{ui\theta} W_{ijt-\theta} + \beta_{ui\theta} B_{ijt-\theta}) \quad \forall u, t \text{ Linear function batch size}$$
$$0 \le U_{ut} \le U_{ut}^{\max} \quad \forall u, t$$

Objective Function:

$$\max \ Z = \sum_{s} \sum_{t=1}^{H} C_{st}^{D} D_{st} - \sum_{s} \sum_{t=1}^{H} C_{st}^{R} R_{st} + \sum_{s} C_{s,H+1} S_{s,H+1} - \sum_{u} \sum_{t=1}^{H} C_{ut} U_{ut}$$

Carnegie Mellon

Reformulation

Original MILP of Kondili was expensive to solve

Culprit: big-M allocation constraints

$$\sum_{i \in I_j} W_{ijt} \leq 1 \qquad \forall j, t$$

$$\sum_{i' \in I_j} \sum_{t'=t}^{t+p_{ij}-1} W_{i'jt'} - 1 \leq M_{ij} \left(1 - W_{ijt}\right) \quad \forall i \in I_j, j, t$$

Solution: Replace by constraint below (Shah, 1992)

Classical Kondili Example

MILP 72 0-1 variables 179 continuous variables 250 constraints

1987 Kondili's B&B: 908 sec, 1466 nodes, Vax-8600 1992 Shah's B&B: 119 sec, 419 nodes, SUN Sparc 2003 CPLEX 7.5: 0.45 sec, 22 nodes, IBM-T40

Disadvantages discrete-time STN: No. time intervals may be large Changeovers not easy to handle: require definition cleanup tasks

Optimal Schedule

RTN-based Discrete Time Formulation

•Computationally similar to STN

Consider a <u>reaction task i, that lasts 5 hours</u>. It converts material A to B. It is carried out in a reactor. It uses <u>0.25 kg/s of steam per t of</u> <u>material being processed during the first hour</u>. Then it used <u>2 kg/s of</u> <u>cooling water per t of material being processed until the end of the</u> <u>operation</u>

Assume time intervals of one hour: $\delta = 1$ h

Reactor: $\mu_{i,R,0}$ =-1; $\mu_{i,R,5}$ =1 Materials: $\nu_{i,A,0}$ =-1; $\nu_{i,B,5}$ =1 Utilities: $\nu_{i,S,0}$ =-0.25; $\nu_{i,S,1}$ =0.25 $\nu_{i,CW,1}$ =-2; $\nu_{i,CW,5}$

Extension to continuous time STN/RTN has proved VERY difficult

- Zhang & Sargent (1995); Schilling & Pantelides (1996): RTN Continuous
- Mockus & Reklaitis (1999): STN Continuous
- Maravelias & Grossmann (2003): STN Continuous
- Ierapetritou & Floudas (1998): Continuous Event-Based Formulation
- Cerda and Mendez (2000); Rodriguez et al. (2001); Lee et al. (2001); Castro et al. (2001)

Alternative: Sequential processes

Advantages: continuous time, can handle changeovers

Disadvantages: cannot easily handle variable batch sizes, resource constraints

(Pantelides, 1996; Zhang and Sargent, 1996; Mockus and Reklaitis, 1999; Mockus and Reklaitis, 1999; Lee et al., 2001, Giannelos and Georgiadis, 2002; Maravelias and Grossmann, 2003)

- •Define a common time grid for all shared resources
- •The maximum number of time points is predefined
- •The time at which each time point takes place is a model decision (continuous domain)
- •Tasks allocated to a certain time point *n* must start at the same time
- •Only zero wait tasks must finish at a time point, others may finish before

Continuous Time Representation I

Continuous Time Representation II

ADVANTAGES

- •Significant reduction in model size when the minimum number of time points is predefined
- •Variable processing times
- •Resource constraints are monitored at each time point

DISADVANTAGES

- •Definition of the minimum number of time points
- •Model size, complexity and optimality depend on the number of time points predefined

STN-based Continuous Formulation (Global Time Points)

(Maravelias and Grossmann, 2003)

ALLOCATION CONSTRAINTS

$$\sum_{i \in Ij} Ws_{in} \leq 1 \qquad \forall j, n$$

$$\sum_{i \in Ij} Wf_{in} \leq 1 \qquad \forall j, n$$

$$\sum_{i \in Ij} \sum_{n' \leq n} (Ws_{in'} - Wf_{in'}) \leq 1 \qquad \forall j, n$$

$$\sum_{n} Ws_{in} = \sum_{n} Wf_{in} \qquad \forall i$$

$$V_{i}^{\min}Ws_{in} \leq Bs_{in} \leq V_{i}^{\max}Ws_{in} \quad \forall i, n$$

$$V_{i}^{\min}Wf_{in} \leq Bf_{in} \leq V_{i}^{\max}Wf_{in} \quad \forall i, n$$

$$V_{i}^{\min}\left(\sum_{n' < n}Ws_{in'} - \sum_{n' \leq n}Wf_{in'}\right) \leq Bp_{in} \leq$$

$$V_{i}^{\max}\left(\sum_{n' < n}Ws_{in'} - \sum_{n' \leq n}Wf_{in'}\right) \quad \forall i, n$$

$$Bs_{in-1} + Bp_{i(n-1)} = Bp_{in} + Bf_{in} \quad \forall i, n > 1$$

$$\begin{split} & \left\{ \begin{array}{ll} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^c} \rho_{is}^c B S_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} \quad \forall s, n > 1 \\ S_{sn} \leq C_s^{\max} \quad \forall s, n & \begin{array}{c} \text{MATERIAL AND RESOURCE} \\ \text{BALANCES} \\ R_{rn} = R_{r(n-1)} - \sum_i \mu_{ir}^c W S_{in} + \nu_{ir}^c B S_{in} + \sum_i \mu_{ir}^p W f_{in} + \nu_{ir}^p B f_{in} \quad \forall r, n \\ T_{n+1} \geq T_n \quad \forall n & \begin{array}{c} \text{TIMING AND SEQUENCING} \\ \text{CONSTRAINTS} \\ Tf_{in} \leq T_n + \alpha_i W S_{in} + \beta_i B S_{in} + H(1 - W S_{in}) \quad \forall i, n \\ Tf_{in} \geq T_n + \alpha_i W S_{in} + \beta_i B S_{in} - H(1 - W S_{in}) \quad \forall i, n \\ Tf_{i(n-1)} \leq T_n + H \quad (1 - W f_{in}) \quad \forall i, n > 1 \\ Tf_{i(n-1)} \geq T_n - H(1 - W f_{in}) \quad \forall i \in I^{ZW}, n > 1 \\ Tf_{i(n-1)} \geq T_n - H(1 - W f_{in}) \quad \forall i \in I_{j, n} \\ \end{array} \right.$$

$$S_{s \in S_{j}}$$
SHARED STORAGE TASKS
$$S_{sjn} \leq C_{j}V_{jsn} \quad \forall j \in J^{T}, s \in S_{j}, n$$

$$S_{sn} = \sum_{j \in J_{s}^{T}} S_{sjn} \quad \forall s \in S^{T}, n$$
19

RTN-Based Continuous Formulation (Global Time Points)

(Castro et al., 2004)

$$T_{n'} - T_{n} \ge \sum_{i \in I_{r}} (\alpha : W_{inn'} + \beta : B_{inn'}) \quad \forall r \in R^{J}, n, n', (n < n')$$

$$T_{n'} - T_{n} \le H \left(1 - \sum_{i \in I_{r}^{2W}} W_{inn'} \right) + \sum_{i \in I_{r}^{2W}} (\alpha : W_{inn'} + \beta : B_{inn'}) \quad \forall r \in R^{J}, n, n', (n < n') \right)$$

$$T_{n'} - T_{n} \le H \left(1 - \sum_{i \in I_{r}^{2W}} W_{inn'} \right) + \sum_{i \in I_{r}^{2W}} (\alpha : W_{inn'} + \beta : B_{inn'}) \quad \forall r \in R^{J}, n, n', (n < n') \right)$$

$$T_{n'} - T_{n} \le H \left(1 - \sum_{i \in I_{r}^{2W}} W_{inn'} \right) + \sum_{i \in I_{r}^{2W}} (\alpha : W_{inn'} + \beta : B_{inn'}) \quad \forall r \in R^{J}, n, n', (n < n') \right)$$

$$R_{n'} = R_{n'} - 1 + \sum_{i \in I_{r}} \left[\sum_{n' < n} \left(\mu_{ir}^{p} W_{in' n} + v_{ir}^{p} B_{in' n} \right) - \sum_{n' > n} \left(\mu_{ir}^{c} W_{inn'} + v_{ir}^{c} B_{inn'} \right) \right] + \sum_{i \in I_{r}} \left(\mu_{ir}^{p} W_{i(n-1)n} - \mu_{ir}^{c} W_{in(n+1)} \right) \quad \forall r, n > 1$$

$$R_{r}^{min} \le R_{r} \le R_{r}^{max} \quad \forall r, n$$

$$V_{i}^{min} W_{in(n+1)} \le \sum_{r \in R_{i}^{n}} R_{ri} \le V_{i}^{max} W_{in(n+1)} \quad \forall i \in I^{s}, n, (n \neq I)$$

$$STORAGE CONSTRAINTS$$

$$V_{i}^{min} W_{i(n-1)n} \le \sum_{r \in R_{i}^{n}} R_{ri} \le V_{i}^{max} W_{i(n-1)n} \quad \forall i \in I^{s}, n, (n \neq 1)$$

STN-based Continuous Formulation

(Unit-specific Time Event)

(Ierapetritou and Floudas, 1998; Vin and Ierapetritou, 2000; Lin et al., 2002; Janak et al., 2004).

Main Assumptions

- •The number of event points is predefined
- •Event points can take place at different times in different units

Event-Based Representation

Advantages

•More flexible timing decisions

•Fewer number of event points

Disadvantages

•Definition of event points (especially resource constraints, inventories)

- More complex models
- •Additional tasks for storage and utilities

(Pinto and Grossmann (1995, 1996); Chen et. al. ,2002; Lim and Karimi, 2003)

Main Assumptions

•A number of time slots with unknown duration are postulated to be allocated to batches

Batches to be scheduled are defined a priori

•No mixing and splitting operations

•Batches can start and finish at any time during the scheduling horizon

Advantages

Time

•Significant reduction in model size when a minimum number of time slots is predefined •Simple model and easy representation for sequencing and allocation scheduling problems

Disadvantages

•Resource and inventory constraints are difficult to model

•Model size, complexity and optimality depend on the number of time slots predefined

(Pinto and Grossmann (1995)

$$\begin{split} &\sum_{j} \sum_{k \in K_{j}} W_{ijkl} = 1 \quad \forall i, l \in L_{i} & \text{BATCH ALLOCATION} \\ &\sum_{i} \sum_{l \in L_{i}} W_{ijkl} \leq 1 \quad \forall j, k \in K_{j} & \text{SLOT ALLOCATION} \\ &Tf_{jk} = Ts_{jk} + \sum_{i} \sum_{l \in L_{i}} W_{ijkl} \Big(p_{ij} + su_{ij} \Big) \quad \forall j, k \in K_{j} & \text{SLOT TIMING} \\ &Tf_{il} = Ts_{il} + \sum_{j} \sum_{k \in K_{j}} W_{ijkl} \Big(p_{ij} + su_{ij} \Big) & \forall i, l \in L_{i} & \text{BATCH TIMING} \\ &Tf_{jk} \leq Ts_{j(k+1)} & \forall j, k \in K_{j} & \text{SLOT SEQUENCING} \\ &Tf_{il} \leq Ts_{i(l+1)} & \forall j, k \in K_{j} & \text{STAGE SEQUENCING} \\ &-M \Big(1 - W_{ijkl} \Big) \geq Ts_{il} - Ts_{jk} & \forall i, j, k \in K_{j}, l \in L_{i} \\ &M \Big(1 - W_{ijkl} \Big) \geq Ts_{il} - Ts_{jk} & \forall i, j, k \in K_{j}, l \in L_{i} \\ \end{split}$$

Global General Precedence Sequential Plants

(Méndez et al., 2001; Méndez and Cerdá (2003,2004))

Main Assumptions

- •Batches to be scheduled are defined a priori
- •No mixing and splitting operations

•Batches can start and finish at any time during the scheduling horizon

UNITS $X_{2,3} = I$ $X_{3,5} = I$ (6*5)/2= 15 SEQUENCING VARIABLES Allocation variables $Y_{2,J} = 1; Y_{3,J} = 1; Y_{5,J} = 1$ $Y_{1,F'} = 1; Y_{4,F'} = 1; Y_{6,F'} = 1$

Advantages

- •General sequencing is explicitly considered in model variables
- •Changeover times and costs are easy to implement
- •Lower number of sequencing decisions

Disadvantages

Resource constraints are difficult to model
Material balances cannot be handled

Carnegie Mellon

6 BATCHES, 2 UNITS

Global General Precedence Sequential Plants

(Méndez and Cerdá, 2003)

$$\begin{split} \sum_{j \in J_{il}} W_{ilj} = 1 \quad \forall i, l \in L_i & \text{ALLOCATION CONSTRAINT} \\ Tf_{il} = Ts_{il} + \sum_{j \in J_{il}} tp_{ilj} W_{ilj} \quad \forall i, l \in L_i \quad \text{PROCESSING TIME} \\ Ts_{iT} \geq Tf_{il} + cl_{il,iT} + su_{iT} - M(1 - X_{il,iT}) - M(2 - W_{ilj} - W_{iT'j}) \quad \forall i, i', l \in L_i, l' \in L_i, j \in J_{il,iT} \\ & \text{SEQUENCING CONSTRAINTS} \\ Ts_{il} \geq Tf_{iT'} + cl_{iT',il} + su_{il} - M X_{il,iT'} - M(2 - W_{ilj} - W_{iT'j}) \quad \forall i, i', l \in L_i, l' \in L_i, j \in J_{il,iT'} \\ \end{split}$$

 $Ts_{il} \ge Tf_{i(l-1)}$ $\forall i, l \in L_i, l > 1$ **Stage precedence**

Comparison of models

Carnegie Mellon

Case study I

17 tasks, 19 states, 9 units

Westenberger, Kallrath (1995)

Case study II

Pinto, Grossmann (1997)

Case Study 1

Computational results for discrete and continuous STN models

Case Study	Event representation (time	Binary vars, cont. vars,	LP	Objective	CPU time ^a	Relative
	intervals or points)	constraints	relaxation	function		gap
1.a	Global time intervals (30)	720, 3542, 6713	9.9	28	1.34	0.0
	Global time points (8)	384, 2258, 4962	24.2	28	108.39	0.0
1.b	Global time intervals (240)	5760, 28322, 47851	1769.9	1425.8	7202	0.122
	Global time points (14)	672, 3950, 8476	1647	1407.4	258.54	0.042

^{*a*} Seconds on Pentium IV PC with CPLEX 8.1 in GAMS 21.

Gantt charts for case 1.b (Profit maximization)

Case Study	Event representation	Binary vars, cont. vars,	Objective	CPU time	Nodes
		constraints	function		
2.a	Time slots & preordering	100, 220, 478	1.581	67.74 ^{<i>a</i>} (113.35)*	456
	General precedence	82, 12, 202	1.026	0.11^{b}	64
	Unit-based time events (4)	150, 513, 1389	1.026	0.07^{c}	7
2.b	Time slots & preordering	289, 329, 1156	2.424	2224 ^{<i>a</i>} (210.7)*	1941
	General precedence	127, 12, 610	1.895	7.91^{b}	3071
	Unit-based time events (12)	458, 2137, 10382	1.895	6.53 ^c	1374
2.c	Time slots & preordering	289, 329, 1156	8.323	76390 ^{<i>a</i>} (927.16)*	99148
	General precedence	115, 12, 478	7.334	35.87^{b}	19853
	Unit-based time events (12)	446, 2137, 10381	7.909	178.85 ^c	42193

Comparison of model sizes and computational requirements

Seconds on ^{*a*} IBM 6000-530 with GAMS/OSL / ^{*b*} Pentium III PC with ILOG/CPLEX / ^{*c*} 3.0 GHz Linux workstation with GAMS 2.5/CPLEX 8.1. *Seconds for disjunctive branch and bound

General precedence fastest

Alternative Solution Approaches

- (1) Exact methods MILP MINLP
- (3) Meta-heuristics Simulated annealing (SA)

Tabu search (TS) Genetic algorithms (GA)

(5) Artificial Intelligence (AI)

Rule-based methods Agent-based methods Expert systems (2) Constraint programming (CP) Constraint satisfaction methods

(4) Heuristics Dispatching rules

(6) Hybrid-methods

Exact methods + CP Exact methods + Heuristics Meta-heuristics + Heuristics

Exact methods provide rigorous and general basis

Solution of real-world problems requires: Hybrid methods Aggregation Decomposition

MILP Formulation Continuous Time STN

$$\max Z = \sum SS_{un}\zeta_{s}$$

$$\sum_{i=1(i)}\sum_{n \le u} (W_{S_{ini}} - Wf_{ini}) \le 1 \quad \forall j, \forall n$$

$$\sum_{i=1(i)}\sum_{n \le u} (W_{S_{ini}} - Wf_{ini}) \le 1 \quad \forall j, \forall n$$

$$T_{ini} = \sum_{n} Wf_{ini} \quad \forall i$$

$$D_{ini} = a_{i}Ws_{ini} + \beta_{i}Bs_{ini} \quad \forall i, \forall n$$

$$Tf_{ini} \le Ts_{ini} + D_{ini} + H(1 - Ws_{ini}) \quad \forall i, \forall n$$

$$Tf_{ini} \ge Ts_{ini} + D_{ini} - H(1 - Wf_{ini}) \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} + H(1 - Wf_{ini}) \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} + H(1 - Wf_{ini}) \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} + H(1 - Wf_{ini}) \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} + H(1 - Wf_{ini}) \quad \forall i, \forall n$$

$$Tf_{ini} = T_{ini} - H(1 - Wf_{ini}) \quad \forall i, \forall n$$

$$B_{i}^{MIN}Ws_{ini} \le Bs_{ini} \le B_{i}^{MAX}Ws_{ini} \quad \forall i, \forall n$$

$$B_{i}^{MIN}Ws_{ini} \le Bf_{ini} \le B_{i}^{MAX}Ws_{ini} \quad \forall i, \forall n$$

$$B_{ini}^{MIN}Ws_{ini} \le Bf_{ini} \le SI(i)$$

$$B_{ini}^{O} = \rho_{ini}Bf_{ini} \quad \forall i, \forall n, \forall s \in SO(i)$$

$$S_{sini} = S_{sini} + \sum_{i \in O(s)} B_{ini} \quad \forall i, \forall n, \forall s \in SO(i)$$

$$S_{sini} = S_{sini} + \sum_{i \in O(s)} B_{ini} \quad \forall i, \forall n, \forall s \in SO(i)$$

$$S_{sini} = S_{sini} + \sum_{i \in O(s)} B_{ini} \quad \forall i, \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{in}Wf_{ini} + \delta_{ini}Bs_{ini} \quad \forall i, \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{in}Wf_{ini} + \delta_{ini}Bs_{ini} \quad \forall i, \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{ini}Wf_{ini} + \delta_{ini}Bs_{ini} \quad \forall i, \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{ini}Wf_{imi} + \delta_{ini}Bs_{imi} \quad \forall n, \forall n$$

$$Mass balances$$

$$R_{imi}^{O} = \gamma_{ini}Wf_{imi} + \delta_{ini}Bs_{imi} \quad \forall i, \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{ini}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{ini}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$Mass balances$$

$$R_{imi}^{O} = \gamma_{ini}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{imi}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$Mass balances$$

$$R_{imi}^{O} = \gamma_{imi}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{imi}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{imi}Wf_{imi} + \delta_{imi}Bs_{imi} \quad \forall n, \forall n$$

$$R_{imi}^{O} = \gamma_{imi}Wf_{imi} + \delta_{imi}Ws_{imi} \quad \forall n$$

$$R_{imi}^{O} = \gamma_$$

30

Hybrid MILP/Constraint Programming Method

$Z_{ic} = 1$ if copy *c* of task *i* is carried out

Tasks \Rightarrow ActivitiesUnits \Rightarrow Unary ResourcesUtilities \Rightarrow Discrete ResourcesStates \Rightarrow Reservoirs

$$\begin{split} \sum_{i \in I(j)} \sum_{c} D_{ic} Z_{ic} &\leq H \quad \forall j \\ B_{i}^{MIN} Z_{ic} &\leq B_{ic} \leq B_{i}^{MAX} Z_{ic} \quad \forall i, \forall c \\ S_{s} &= S_{0} + \sum_{i} \sum_{c} \rho_{is}^{O} B_{ic} - \sum_{i} \sum_{c} \rho_{is}^{I} B_{ic} \quad \forall s \\ S_{s} &\geq d_{s} \quad \forall s \in FP \\ S_{s} &\leq C_{s} \quad \forall s \in INT \\ Z_{ic+1} &\leq Z_{ic} \quad \forall i, \forall c < |C| \\ Integer Cuts \end{split}$$

$$\begin{split} B_{i}^{MIN} &\leq B_{ic} \leq B_{i}^{MAX} \quad \forall i, \forall c \\ B_{ics}^{I} &= \rho_{is}^{I} B_{ic} \quad \forall i, \forall c, \forall s \\ B_{ics}^{O} &= \rho_{is}^{O} B_{ic} \quad \forall i, \forall c, \forall s \\ R_{ic} &= \alpha_{i} + \beta_{i} B_{ic} \quad \forall i, \forall c \\ \sum \sum_{i} \sum_{c} B_{ics}^{O} &\geq d_{s} \quad \forall s \in FP \\ \hline Task[i,c] \ requires \ Unit[j] \qquad \forall j, \forall i \in I(j), \forall c \\ Task[i,c] \ requires \ R_{ic} \ Utility[r] \qquad \forall i, \forall c \\ Task[i,c] \ consumes \ B_{ics}^{I} \ State[s] \qquad \forall i, \forall c, \forall s \\ \hline Task[i,c] \ produces \ B^{O}_{ics} \ State[s] \qquad \forall i, \forall c, \forall s \\ \hline Task[i,c] \ end \ \leq MS \qquad \forall i, \forall c \\ \hline Task[i,c] \ precedes \ Task[i,c+1] \qquad \forall i, \forall c$$

Example Makespan Minimization

Optimal Schedule

Minimum completion time = 15 hours

Aspen Plant Scheduler (Aspentech)

Model Enterprise Optimal Single Site Scheduler (OSS Scheduler) (PSEnterprise)

VirtECS Schedule (Advanced Process Combinatorics)

SAP Advanced Planner and Optimizer (*SAP APO*) (*SAP*)

1. Reactive Scheduling

Changes while executing a schedule:

- New orders
- Equipment breakdown

Approaches rely mostly on making small changes (e.g. Mendez et al.)

2. Integration of Planning and Scheduling

Key: Aggregated models, decomposition

Example: Erdirik & Grossmann (2005)

3. Integration of Process Models

Generally leads to MINLP problems

Examples: Mendez et. al (2005), Flores & Grossmann (2005)

Approaches to Planning and Scheduling

Erdirik, Grossmann, 2005)

Carnegie Mellon

Decomposition

Inical

EERING

Planning

Sequential Hierarchical Approach

Different models / different time scales

Mismatches between the levels

Simultaneous Planning and Scheduling

Detailed scheduling over the entire horizon

- Very Large Scale Problem ٠
- Solution times quickly intractable •

GOAL:

٠

٠

- Propose a novel decomposition algorithm to integrate planning and scheduling for multiproduct . continuous plants.
- Ensure optimality and consistency between the two levels. ٠

Planning and Scheduling of Continuous Plants

- Multiproducts to be processed in a single continuous unit/production line
- Time horizon subdivided into **weeks** at the end of which demands are specified.
- Transition times are **sequence dependent**
- Continuous time representation is used.

Decisions

- Amounts to be produced
- Length of processing times
- Product inventories
- Sequencing of products

Objective

• Max Profit = Sales – Operating Costs – Inventory Costs – Transition Costs

Example

• Determine **plan and schedule** for **5** products for a planning horizon of **4 weeks** to maxes single Unit (A)

Demand input data for Example 1

		Time Period							
	1	2	3	4					
		Demand	l(kg)						
Α	10,000	20,000	30,000	10,000					
B	25,000	20,000	15,000	25,000					
С	30,000	40,000	50,000	30,000					
D	30,000	20,000	13,000	30,000					
Е	30,000	20,000	12,000	30,000					

	ition Data for Examp	le 1
Product	Product	

Product	Α	F	B C]	D	E
			Transi	tion times ((hrs)	
Α		0.00	2.00	1.50	1.00	0.75
В		1.00	0.00	2.00	0.75	0.50
С		1.00	1.25	0.00	1.50	2.00
D		0.50	1.00	2.00	0.00	1.75
Ε		0.70	1.75	2.00	1.50	0.00
			Trans	ition costs	(\$)	
Α		0	760	760	750	760
В		745	0	750	770	740
С		770	760	0	765	765
D		740	740	745	0	750
Е		740	740	750	750	0

Production rated data for Example 1

	Production
Product	Rates(kg/hr)
Α	800
B	900
С	1,000
D	1,000
Е	1,200

Cost data for Example 1

	Operating	Selling
	Costs (\$/kg)	Price (\$/kg
Α	0.19	0.25
В	0.32	0.40
С	0.55	0.65
D	0.49	0.55
Е	0.38	0.45

Inventory Cost (\$/kg.h)	
0.0000306	

Results of Example

Computational Results

Method	Number of	Number of	Number of	Number of	Time	Solution	
	binary	continuous	Equations	Major	(CPUs)	(\$)	
	variables	variables		Iterations			
Full Space	120	987	906		6000 *	43,120.8	*8% gap
Proposed				15	207.9	43,120.8	
algorithm (0%)							
Problem UB	20	151	564		2.0	43,013.0	
Problem LB	120	996	949		205.9	43,120.8	
Proposed				4	28.9	43,120.8	
algorithm (1%)							
Problem UB	20	151	251		0.2	43,540.5	
Problem LB	120	996	938		28.7	43,120.8	

Refinery Scheduling and Blending

•Production logistics (scheduling)

Multiple product demands Resource allocation Timing of operations Inventory and pumping constraints Logistic and operating rules

•Production quality (blending)

BLENDING

Variable product recipes Product specifications Complex correlations for product properties

Problem statement

- Scheduling horizon
- •Components, Products
- Storage tanks, Blend headers
- Component properties, stocks and suppliesProduct specifications, stocks and demands
- •Min/Max flowrates and concentrations
- Correlations for predicting product propertiesOperating rules

- •Allocation of resources
- Inventory levels in tanks
- •Component concentrations in each product
- •Volume of each product
- •Pumping rates
- •Production and storage tasks timing

MAXIMIZE PRODUCTION PROFIT

REQUIRES SIMULTANEOUS SCHEDULING AND BLENDING

Proposed optimization approach

MILP multiperiod optimization method Discrete or continuous time domain representation Linear approximations for product properties Iterative procedure for improving predictions Integrated production logistics and quality specifications Variable recipes and min/max component concentrations Discrete decisions for resource allocation and operating rules

Product property prediction

•Volumetric average

 $pr_{p,k,t} = \sum_{i} pr_{i,k} v_{i,p,t}^{I} \qquad \forall p,k,t$

•Non-linear flowrate-composition matching $v_{i,p,t}^{I}F_{p,t}^{P} = F_{i,p,t}^{I} \quad \forall i, p, t$

Volumetric product property correlation (*Linear*)

$$pr_{p,k}^{\min}F_{p,t}^{P} \leq \sum_{i} pr_{i,k}F_{i,p,t}^{I} \leq pr_{p,k}^{\max}F_{p,t}^{P} \qquad \forall p,k,t$$

Linear approximation for non-linear product properties

$$pr_{p,k}^{\min}F_{p,t}^{P} + bias_{p,k,t}F_{p,t}^{P} \leq \sum_{i} pr_{i,k}F_{i,p,t}^{I} \leq pr_{p,k}^{\max}F_{p,t}^{P} + bias_{p,k,t}F_{p,t}^{P} \quad \forall p,k,t$$

Example

Numerical results

Example: Blending and scheduling

Objective: Make scheduling and blending decisions that maximize profit

Min/max production for each time interval

Demands at specific due dates

Product specifications

Operating conditions

Discrete time formulation

Profit: M\$1,611.21

Operates blenders at full capacity for 2.67 days less than discrete time

Continuous time formulation

9 0-1, 841 cont, 832 constr. 0.26 CPUsec/CPLEX

Simultaneous Cyclic Scheduling and Control of a Multiproduct CSTR Reactor

Flores, Grossmann (2005)

Given is a CSTR reactor N products Lower bounds demand rates Dynamic model for reactions

Determine cyclic schedule Cycle time Sequence Amounts to produce Lenghts transitions and their dynamic profile

Objective: Maximize total profit

Basic ideas MIDO model

Use orthogonal collocation for converting dynamic eqtns into algebraic eqtns.

Discretized DEA solved as MINLP (DICOPT)

MIDO Optimization model

 \max

$$\begin{cases} \sum_{i=1}^{N_p} \frac{C_i^p W_i}{T_c} - \sum_{i=1}^{N_p} \frac{C_i^s (G_i - W_i)}{2\Theta_i T_c} - \sum_{k=1}^{N_s} \sum_{f=1}^{N_{fe}} h_{fk} \sum_{c=1}^{N_{ep}} \frac{C^r t_{fck} \Omega_{c,N_{ep}}}{T_c} \left((x_{fck}^1 - \bar{x}_k^1)^2 + \dots + (x_{fck}^n - \bar{x}_k^n)^2 + (u_{fck}^1 - \bar{u}_k^1)^2 + \dots + (u_{fck}^m - \bar{u}_k^m)^2 \right) \end{cases}$$
(1)

s.t. Scheduling constraints:

Product assignments Amounts manufactured Processing times Transition constraints Timing relations

Dynamic and control optimization

Dynamic mathematical model discretization Continuity constraint between finite elements Model behavior at each collocation point

Dynamics:

Scheduling: $\sum_{k=1}^{N_{x}} y_{dk} = 1, \forall i$ $\sum_{i=1}^{N_{p}} y_{dk} = 1, \forall k$ $y'_{dk} = y_{i,k-1}, \forall i, k \neq 1$ $y'_{i,1} = y_{i,N_{x}}, \forall i$ $W_{i} \ge D_{t}T_{c}, \forall i$ $W_{i} = G_{i}\Theta_{i}, \forall i$ $G_{i} = F^{\circ}(1 - X_{i}), \forall i$ $\theta_{dk} \leqslant \theta^{max}y_{dk}, \forall i, k$ $\Theta_{i} = \sum_{k=1}^{N_{p}} \theta_{dk}, \forall i$ $p_{k} = \sum_{i=1}^{N_{p}} \theta_{dk}, \forall k$ $z_{ipk} \ge y'_{pk} + y_{dk} - 1, \forall i, p, k$

$$\begin{split} \sum_{k=1}^{N_s} \sum_{f=1}^{N_{fs}} h_{fk} \sum_{c=1}^{N_{ep}} \frac{C^r t_{fck} \Omega_{c,N_{ep}}}{T_c} \left((x_{fck}^1 - \bar{x}_k^1)^2 \\ + \dots + (u_{fck}^m - \bar{u}_k^m)^2 \right) \right\} \qquad) \\ x_{fde}^n = x_{o,fk}^n + \theta_k^e h_{fk} \sum_{l=1}^{N_{ep}} \Omega_{lc} x_{flk}^n, \forall n, f, c, k \\ x_{o,fk}^n = x_{o,f-1,k}^n + \theta_k^e h_{f-1,k} \sum_{l=1}^{N_{ep}} \Omega_{l,N_{ep}} \dot{x}_{f-1,l,k}^n, \forall n, f \ge 2, k \\ \dot{x}_{fok}^n = f^n (x_{fck}^1, \dots, x_{fck}^n, u_{fck}^1, \dots, u_{fdk}^n), \forall n, f, c, k \\ x_{in,k}^n = \sum_{t=1}^{N_p} x_{is,t}^n y_{l,k}, \forall n, k \\ x_k^n = \sum_{t=1}^{N_p} x_{is,t}^n y_{l,k+1}, \forall n, k \ne N_s \\ x_k^n = \sum_{t=1}^{N_p} x_{is,t}^n y_{l,k+1}, \forall n, k = N_s \\ u_{in,k}^m = \sum_{t=1}^{N_p} u_{is,t}^m y_{l,k+1}, \forall m, k \ne N_s - 1 \\ u_k^m = \sum_{t=1}^{N_p} u_{is,t}^m y_{l,k+1}, \forall m, k = N_s \\ x_{nf_t,N_{ep},k}^n = x_{n,k}^n, \forall m, k \\ u_{1,1,k}^m = u_{m,k}^m, \forall m, k \\ u_{1,1,k}^m = x_{im,k}^m, \forall n, k \\ x_{o,1,k}^n = x_{im,k}^n, \forall n, f, c, k \\ x_{mm}^n \leqslant x_{fck}^n \leqslant x_{max}^n, \forall n, f, c, k \end{split}$$

Example: 5 products

Third order kinetics: R –

$$\stackrel{k}{\to} P, \qquad -R_R = kc_R^3$$

$$\frac{dc_R}{dt} = \frac{Q}{V}(c_o - c_R) + R_R$$

Data

Product	Q	$-c_o$	Demand	Product	Inventory
	[lt/hr]	[mol/lt]	rate [Kg/h]	$\cos t [\$/kg]$	$\cos t [\$]$
A	10	0.0967	3	200	1
В	100	0.2	8	150	1.5
C	400	0.3032	10	130	1.8
D	1000	0.393	10	125	2
E	2500	0.5	10	120	1.7

	Slot	Product	Process time	Production rate	w	Transition Time	T start	T end
-			[h]	[Kg/h]	[Kg]	[h]	[h]	[h]
Results	1	A	41.5	9.033	374.31	5	0	46.4
	2	D	2.06	607	1249.4	5	46.4	53.6
	3	E	23.4	1250	29270.4	5	53.6	82
	4	C	4.48	278.72	1249.4	5	82	91.5
	5	В	12.48	80	999.5	21	91.5	125

Cycle time = 124.8 h Profit = \$7889/h

CENTER

1. Optimization-based scheduling very active area of research *Major modeling tool: mixed-integer optimization*

2. Great diversity in applications makes single solutions still elusive *Tailored solutions are still most effective, but MOVING target !*

3. Real–world industrial problems require combination of approaches and aggregation/decomposition