Ordinary Differential Equations

(MA102 Mathematics II)

Shyamashree Upadhyay

IIT Guwahati

First order ODE s

We will now discuss different methods of solutions of first order ODEs. The first type of such ODEs that we will consider is the following:

Definition

Separable variables: A first order differential equation of the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

is called separable or to have separable variables.
Such ODEs can be solved by direct integration:
Write $\frac{d y}{d x}=g(x) h(y)$ as $\frac{d y}{h(y)}=g(x) d x$ and then integrate both sides!

Example

$e^{x} \frac{d y}{d x}=e^{-y}+e^{-2 x-y}$
This equation can be rewritten as $\frac{d y}{d x}=e^{-x} e^{-y}+e^{-3 x-y}$, which is the same as $\frac{d y}{d x}=e^{-y}\left(e^{-x}+e^{-3 x}\right)$. This equation is now in separable variable form.

Losing a solution while separating variables

Some care should be exercised in separating the variables, since the variable divisors could be zero at certain points. Specifically, if r is a zero of the function $h(y)$, then substituting $y=r$ in the ODE $\frac{d y}{d x}=g(x) h(y)$ makes both sides of the equation zero; in other words, $y=r$ is a constant solution of the ODE $\frac{d y}{d x}=g(x) h(y)$. But after variables are separated, the left hand side of the equation $\frac{d y}{h(y)}=g(x) d x$ becomes undefined at r. As a consequence, $y=r$ might not show up in the family of solutions that is obtained after integrating the equation $\frac{d y}{h(y)}=g(x) d x$.

Recall that such solutions are called Singular solutions of the given ODE.

Example

Observe that the constant solution $y \equiv 0$ is lost while solving the IVP $\frac{d y}{d x}=x y ; y(0)=0$ by separable variables method.

First order linear ODEs

Recall that a first order linear ODE has the form

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) . \tag{1}
\end{equation*}
$$

Definition

A first order linear ODE (of the above form (1)) is called homogeneous if $g(x)=0$ and non-homogeneous otherwise.

Definition

By dividing both sides of equation (1) by the leading coefficient $a_{1}(x)$, we obtain a more useful form of the above first order linear ODE, called the standard form, given by

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) . \tag{2}
\end{equation*}
$$

Equation (2) is called the standard form of a first order linear ODE.

Theorem

Theorem

Existence and Uniqueness: Suppose $a_{1}(x), a_{0}(x), g(x) \in C((a, b))$ and $a_{1}(x) \neq 0$ on (a, b) and $x_{0} \in(a, b)$. Then for any $y_{0} \in \mathbb{R}$, there exists a unique solution $y(x) \in C^{1}((a, b))$ to the IVP

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) ; y\left(x_{0}\right)=y_{0} .
$$

Solving a first order linear ODE

Steps for solving a first order linear ODE:

(1) Transform the given first order linear ODE into a first order linear ODE in standard form $\frac{d y}{d x}+P(x) y=f(x)$.
(2) Multiply both sides of the equation (in the standard form) by $e^{\int P(x) d x}$. Then the resulting equation becomes

$$
\begin{equation*}
\frac{d}{d x}\left[y e^{\int P(x) d x}\right]=f(x) e^{\int P(x) d x} \tag{3}
\end{equation*}
$$

(3) Integrate both sides of equation (3) to get the solution.

Example

Solve $x \frac{d y}{d x}-4 y=x^{6} e^{x}$.
The standrad form of this ODE is $\frac{d y}{d x}+\left(\frac{-4}{x}\right) y=x^{5} e^{x}$. Then multiply both sides of this equation by $e^{\int \frac{-4}{x} d x}$ and integrate.

Differential of a function of 2 variables

Definition

Differential of a function of $\mathbf{2}$ variables: If $f(x, y)$ is a function of two variables with continuous first partial derivatives in a region R of the $x y$-plane, then its differential $d f$ is

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y .
$$

In the special case when $f(x, y)=c$, where c is a constant, we have $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$. Therefore, we have $d f=0$, or in other words,

$$
\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0
$$

So given a one-parameter family of functions $f(x, y)=c$, we can generate a first order ODE by computing the differential on both sides of the equation $f(x, y)=c$.

Exact differential equation

Definition

A differential expression $M(x, y) d x+N(x, y) d y$ is an exact differential in a region R of the $x y$-plane if it corresponds to the differential of some function $f(x, y)$ defined on R. A first order differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is called an exact equation if the expression on the left hand side is an exact differential.
Example: 1) $x^{2} y^{3} d x+x^{3} y^{2} d y=0$ is an exact equation since $x^{2} y^{3} d x+x^{3} y^{2} d y=d\left(\frac{x^{3} y^{3}}{3}\right)$.
2) $y d x+x d y=0$ is an exact equation since $y d x+x d y=d(x y)$.
3) $\frac{y d x-x d y}{y^{2}}=0$ is an exact equation since $\frac{y d x-x d y}{y^{2}}=d\left(\frac{x}{y}\right)$.

Criterion for an exact differential

Theorem

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in a rectangular region R defined by $a<x<b, c<y<d$. Then a necessary and sufficient condition for $M(x, y) d x+N(x, y) d y$ to be an exact differential is $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

Example

Solve the ODE $\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0$.
This equation can be expressed as $M(x, y) d x+N(x, y) d y=0$ where $M(x, y)=3 x^{2}+4 x y$ and $N(x, y)=2 x^{2}+2 y$. It is easy to verify that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=4 x$. Hence the given ODE is exact. We have to find a function f such that $\frac{\partial f}{\partial x}=M=3 x^{2}+4 x y$ and $\frac{\partial f}{\partial y}=N=2 x^{2}+2 y$. Now $\frac{\partial f}{\partial x}=3 x^{2}+4 x y \Rightarrow f(x, y)=\int\left(3 x^{2}+4 x y\right) d x=x^{3}+2 x^{2} y+\phi(y)$ for some function $\phi(y)$ of y. Again $\frac{\partial f}{\partial y}=2 x^{2}+2 y$ and $f(x, y)=x^{3}+2 x^{2} y+\phi(y)$ together imply that $2 x^{2}+\phi^{\prime}(y)=2 x^{2}+2 y \Rightarrow \phi(y)=y^{2}+c_{1}$ for some constant c_{1}. Hence the solution is $f(x, y)=c$ or $x^{3}+2 x^{2} y+y^{2}+c_{1}=c$.

Converting a first order non-exact DE to exact DE

Consider the following example:

Example

The first order DE $y d x-x d y=0$ is clearly not exact. But observe that if we multiply both sides of this DE by $\frac{1}{y^{2}}$, the resulting ODE becomes $\frac{d x}{y}-\frac{x}{y^{2}} d y=0$ which is exact!

Definition

It is sometimes possible that even though the original first order DE $M(x, y) d x+N(x, y) d y=0$ is not exact, but we can multiply both sides of this DE by some function (say, $\mu(x, y)$) so that the resulting $\mathrm{DE} \mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0$ becomes exact. Such a function/factor $\mu(x, y)$ is known as an integrating factor for the original DE $M(x, y) d x+N(x, y) d y=0$.

Remark: It is possible that we LOSE or GAIN solutions while multiplying a ODE by an integrating factor.

How to find an integrating factor?

We will now list down some rules for finding integrating factors, but before that, we need the following definition:

Definition

A function $f(x, y)$ is said to be homogeneous of degree n if $f(t x, t y)=t^{n} f(x, y)$ for all (x, y) and for all $t \in \mathbb{R}$.

Example

1) $f(x, y)=x^{2}+y^{2}$ is homogeneous of degree 2 .
2) $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$ is homogeneous of degree 0 .
3) $f(x, y)=\frac{x\left(x^{2}+y^{2}\right)}{y^{2}}$ is homogeneous of degree 1 .
4) $f(x, y)=x^{2}+x y+1$ is NOT homogeneous.

How to find an integrating factor? contd...

Definition

A first order DE of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous if both $M(x, y)$ and $N(x, y)$ are homogeneous functions of the same degree.
NOTE: Here the word "homogeneousÂ" does not mean the same as it did for first order linear equation $a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)$ when $g(x)=0$.

Some rules for finding an integrating factor: Consider the $D E$

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{*}
\end{equation*}
$$

Rule 1: If $(*)$ is a homogeneous DE with $M(x, y) x+N(x, y) y \neq 0$, then $\frac{1}{M x+N y}$ is an integrating factor for $(*)$.

How to find an integrating factor? contd...

Rule 2: If $M(x, y)=f_{1}(x y) y$ and $N(x, y)=f_{2}(x y) x$ and $M x-N y \neq 0$, where f_{1} and f_{2} are functions of the product $x y$, then $\frac{1}{M x-N y}$ is an integrating factor for (*).
Rule 3: If $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=f(x)$ (function of x-alone), then $e^{\int f(x) d x}$ is an integrating factor for $(*)$.
Rule 4: If $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=F(y)$ (function of y-alone), then $e^{-\int F(y) d y}$ is an integrating factor for $(*)$.

Proof of Rule 3

Proof.

Let $f(x)=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}$. To show: $\mu(x):=e^{\int f(x) d x}$ is an integrating factor. That is, to show $\frac{\partial}{\partial y}(\mu M)=\frac{\partial}{\partial x}(\mu N)$.
Since μ is a function of x alone, we have $\frac{\partial}{\partial y}(\mu M)=\mu \frac{\partial M}{\partial y}$. Also $\frac{\partial}{\partial x}(\mu N)=\mu^{\prime}(x) N+\mu(x) \frac{\partial N}{\partial x}$.
So we must have:
$\mu(x)\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\mu^{\prime}(x) N$, or equivalently we must have,
$\frac{\mu^{\prime}(x)}{\mu(x)}=f(x)$,
which is anyways true since $\mu(x):=e^{\int f(x) d x}$.

The proof of Rule 4 is similar. The proof of Rule 2 is an exercise.

Another rule for finding an I.F.

- If a differential equation is in the special form

$$
y\left(A x^{p} y^{q}+B x^{r} y^{s}\right) d x+x\left(C x^{p} y^{q}+D x^{r} y^{s}\right) d y=0
$$

where A, B, C, D are constants, then an I.F. has the form $\mu(x, y)=x^{a} y^{b}$, where a and b are suitably chosen constants.

Solution by substitution

Often the first step of solving a differential equation consists of transforming it into another differential equation by means of a substitution.
For example, suppose we wish to transform the first order differential equation $\frac{d y}{d x}=f(x, y)$ by the substitution $y=g(x, u)$, where u is regarded as a function of the variable x. If g possesses first partial derivatives, then the chain rule

$$
\frac{d y}{d x}=\frac{\partial g}{\partial x} \frac{d x}{d x}+\frac{\partial g}{\partial u} \frac{d u}{d x}
$$

gives $\frac{d y}{d x}=g_{x}(x, u)+g_{u}(x, u) \frac{d u}{d x}$. The original differential equation $\frac{d y}{d x}=f(x, y)$ now becomes $g_{x}(x, u)+g_{u}(x, u) \frac{d u}{d x}=f(x, g(x, u))$. This equation is of the form $\frac{d u}{d x}=F(x, u)$, for some function F. If we can determine a solution $u=\phi(x)$ of this last equation, then a solution of the original differential equation will be $y=g(x, \phi(x))$.

Use of substitution: Homogeneous equations

Recall: A first order differential equation of the form $M(x, y) d x+N(x, y) d y=0$ is said to be homogeneous if both M and N are homogeneous functions of the same degree.
Such equations can be solved by the substitution : $y=v x$.

Example

Solve $x^{2} y d x+\left(x^{3}+y^{3}\right) d y=0$.
Solution: The given differential equation can be rewritten as $\frac{d y}{d x}=\frac{x^{2} y}{x^{3}+y^{3}}$.
Let $y=v x$, then $\frac{d y}{d x}=v+x \frac{d v}{d x}$. Putting this in the above equation, we get $v+x \frac{d v}{d x}=\frac{v}{1+v^{3}}$. Or in other words, $\left(\frac{1+v^{3}}{v^{4}}\right) d v=-\frac{d x}{x}$, which is now in separable variables form.

DE reducible to homogeneous DE

For solving differential equation of the form

$$
\frac{d y}{d x}=\frac{a x+b y+c}{a^{\prime} x+b^{\prime} y+c^{\prime}}
$$

use the substitution

- $x=X+h$ and $y=Y+k$, if $\frac{a}{a^{\prime}} \neq \frac{b}{b^{\prime}}$, where h and k are constants to be determined.
- $z=a x+b y$, if $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}$.

Example

Solve $\frac{d y}{d x}=\frac{x+y-4}{3 x+3 y-5}$.
Observe that this DE is of the form $\frac{d y}{d x}=\frac{a x+b y+c}{a^{\prime} x+b^{\prime} y+c^{\prime}}$ where $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}$.
Use the substitution $z=x+y$. Then we have $\frac{d z}{d x}=1+\frac{d y}{d x}$. Putting these in the given DE, we get $\frac{d z}{d x}-1=\frac{z-4}{3 z-5}$, or in other words, $\frac{3 z-5}{4 z-9} d z=d x$. This equation is now in separable variables form.

DE reducible to homogeneous DE, contd...

Example

Solve $\frac{d y}{d x}=\frac{x+y-4}{x-y-6}$.
Observe that this DE is of the form $\frac{d y}{d x}=\frac{a x+b y+c}{a^{\prime} x+b^{\prime} y+c^{\prime}}$ where $1=\frac{a}{a^{\prime}} \neq \frac{b}{b^{\prime}}=-1$.
Put $x=X+h$ and $y=Y+k$, where h and k are constants to be determined. Then we have $d x=d X, d y=d Y$ and

$$
\begin{equation*}
\frac{d Y}{d X}=\frac{X+Y+(h+k-4)}{X-Y+(h-k-6)} \tag{*}
\end{equation*}
$$

If h and k are such that $h+k-4=0$ and $h-k-6=0$, then $(*)$ becomes

$$
\frac{d Y}{d X}=\frac{X+Y}{X-Y}
$$

which is a homogeneous DE. We can easily solve the system

$$
\begin{aligned}
& h+k=4 \\
& h-k=6
\end{aligned}
$$

of linear equations to detremine the constants h and k !

Reduction to separable variables form

A differential equation of the form

$$
\frac{d y}{d x}=f(A x+B y+C)
$$

where A, B, C are real constants with $B \neq 0$ can always be reduced to a differential equation with separable variables by means of the substitution $u=A x+B y+C$.
Observe that since $B \neq 0$, we get $\frac{u}{B}=\frac{A}{B} x+y+\frac{C}{B}$, or in other words, $y=\frac{u}{B}-\frac{A}{B} x-\frac{C}{B}$. This implies that $\frac{d y}{d x}=\frac{1}{B}\left(\frac{d u}{d x}\right)-\frac{A}{B}$. Hence we have $\frac{1}{B}\left(\frac{d u}{d x}\right)-\frac{A}{B}=f(u)$, that is, $\frac{d u}{d x}=A+B f(u)$. Or in other words, we have $\frac{d u}{A+B f(u)}=d x$, which is now in separable variables form.

Equations reducible to linear DE: Bernoulli's DE

Definition

A differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \tag{1}
\end{equation*}
$$

where n is any real number, is called Bernoulli's differential equation.
Note that when $n=0$ or 1 , Bernoulli's DE is a linear DE.
Method of solution: Multiply by y^{-n} throughout the DE (1) to get

$$
\begin{equation*}
\frac{1}{y^{n}} \frac{d y}{d x}+P(x) y^{1-n}=Q(x) \tag{2}
\end{equation*}
$$

Use the substitution $z=y^{1-n}$. Then $\frac{d z}{d x}=(1-n) \frac{1}{y^{n}} \frac{d y}{d x}$. Substituting in equation (2), we get $\frac{1}{1-n} \frac{d z}{d x}+P(x) z=Q(x)$, which is a linear DE.

Example of Bernoulli's DE

Example

Solve the Bernoullis DE $\frac{d y}{d x}+y=x y^{3}$.
Multiplying the above equation throughout by y^{-3}, we get

$$
\frac{1}{y^{3}} \frac{d y}{d x}+\frac{1}{y^{2}}=x
$$

Putting $z=\frac{1}{y^{2}}$, we get $\frac{d z}{d x}-2 z=-2 x$, which is a linear DE.
The integrating factor for this linear DE will be $=e^{-\int 2 d x}=e^{-2 x}$. Therefore, the solution is $z=e^{2 x}\left[-2 \int x e^{-2 x} d x+c\right]=x+\frac{1}{2}+c e^{2 x}$. Putting back $z=\frac{1}{y^{2}}$ in this, we get the final solution $\frac{1}{y^{2}}=x+\frac{1}{2}+c e^{2 x}$.

Ricatti's DE

The differential equation

$$
\frac{d y}{d x}=P(x)+Q(x) y+R(x) y^{2}
$$

is known as Ricatti's differential equation. A Ricatti's equation can be solved by method of substitution, provided we know a paticular solution y_{1} of the equation.
Putting $y=y_{1}+u$ in the Ricatti's DE, we get

$$
\frac{d y_{1}}{d x}+\frac{d u}{d x}=P(x)+Q(x)\left[y_{1}+u\right]+R(x)\left[y_{1}^{2}+u^{2}+2 u y_{1}\right] .
$$

But we know that y_{1} is a particular solution of the given Ricatti's DE. So we have $\frac{d y_{1}}{d x}=P(x)+Q(x) y_{1}+R(x) y_{1}^{2}$. Therefore the above equation reduces to

$$
\frac{d u}{d x}=Q(x) u+R(x)\left(u^{2}+2 u y_{1}\right)
$$

or, $\frac{d u}{d x}-\left[Q(x)+2 y_{1}(x) R(x)\right] u=R(x) u^{2}$, which is Bernoulli's DE.

Orthogonal Trajectories

Orthogonal Trajectories

Suppose

$$
\frac{d y}{d x}=f(x, y)
$$

represents the DE of the family of curves. Then, the slope of any orthogonal trajectory is given by

$$
\frac{d y}{d x}=-\frac{1}{f(x, y)} \quad \text { or } \quad-\frac{d x}{d y}=f(x, y)
$$

which is the DE of the orthogonal trajectories.
Example: Consider the family of circles $x^{2}+y^{2}=c^{2}$. Differentiate w.r.t x to obtain $x+y \frac{d y}{d x}=0$. The differential equation of the orthogonal trajectories is $x+y\left(-\frac{d x}{d y}\right)=0$. Separating variable and integrating we obtain $y=c x$ as the equation of the orthogonal trajectories.

