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Abstract 

Traditional Automatic Train Operation (ATO) algorithms are generally designed based on 

single-train operation with the objective of improving the speed profile of a single train to 

reduce mechanical energy consumed under operational constraints. For many electrified 

rail transit systems where energy cost is calculated at the substation level, minimizing 

energy consumption needs to consider the reuse of regenerative energy from neighboring 

trains in the same power section. If regenerative energy is considered, when two trains are 

moving in the same power section, one train adjusts its speed to a different speed profile 

according to the position, speed and regeneration potential of the other train to reuse the 

maximum amount of regenerated energy. With the dual objectives of maintaining 

schedule requirements and optimizing energy efficiency, this paper analyses dynamic and 

electric performance of two opposing trains operated in the same DC power section. 

Genetic algorithms have been applied to search for the optimal train speed profiles. 

Tractive/braking efforts of both trains and energy cost at substation level are defined as 

strings of chromosome and the fitness function respectively. Simulation through Visual 

C++ platform demonstrates that the algorithm can provide optimal train speed profiles 

with better energy performance while satisfying operational constraints. Different 

synchronization times have different optimization ratios. This research will help facilitate 

development of on-board train control system logic to analyze energy flow in a multi-train 

network and reduce overall energy consumption.   
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1 Introduction 

Automatic Train Operation (ATO) systems are used to generate optimal driving 

commands for train speed regulation. Traditional ATO algorithms are generally designed 

to reduce the mechanical energy consumption of single train operation by altering a train 

speed profile while still satisfying operational constraints. But for many electrified rail 

transit systems where energy cost is calculated at the substation level, minimizing energy 

consumption is not only a question of reducing the mechanical energy demand of an 

individual train but also of reducing power peaks in the catenary. Therefore, the current 

ATO control algorithm based on single trains needs to be improved to consider power 

flow in the network. 
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When regenerative braking is available on-board electrified rail transit equipment, 

optimization of train speed profiles to effectively use the regenerated energy could be a 

solution to improve overall energy efficiency and lower operating cost. Consider two 

operating modes for two opposing trains in the same power section: both trains either 

systematically applies the same speed profiles, or one train adjusts its speed to a different 

speed profile according to the position, speed and regeneration potential of the other train. 

With operations synchronized to reuse energy, the latter mode achieves better energy 

recovery efficiency than the former one.  

In addition, through Communications-Based Train Control (CBTC) systems, a train 

could be made aware of the projected speed profiles of other trains in the same power 

section before leaving its station (Dingler et al. (2010)). Power flow could be predicted 

accordingly in real-time, allowing for the possible design of coordinated train control 

algorithms for ATO systems. 

With the dual objectives of maintaining schedule requirements and optimizing energy 

efficiency, this paper examines the prospects for recovering and reusing energy from 

regenerative brakes under transit system operating conditions. Assuming that two 

opposing trains are operated in the same power section, analysis of the dynamic and 

electric performance of these trains is conducted in accordance with power available on 

line. To obtain the minimum energy cost at the substation level, genetic algorithms have 

been applied to search for the optimal train speed profiles. To demonstrate an application 

of the optimization framework, energy optimization potentials of transit systems with 

different synchronization time will be compared. 

This paper first provides a brief introduction to how the CBTC system may facilitate 

acquisition of neighbouring train running information for coordinated train control. 

Previous research on ATO control algorithms is presented in order to identify the proper 

solution approach. In the next section, the mathematical model of multi-train operation 

within an electrified network will be presented and enhanced genetic algorithms will be 

proposed to solve this problem. Finally, a case study will demonstrate the effectiveness of 

this method through analysis of optimization potentials. 

2 Architecture of CBTC System 

CBTC makes use of bi-directional train-to-wayside data communication to improve 

safety, efficiency and traffic management. CBTC has been widely applied to light rail, 

heavy rail and commuter rail systems in many countries. A typical CBTC system 

architecture is shown in Figure 1 (IEEE Standard for CBTC (1999)).  

In the illustrated architecture, the Automatic Train Supervision (ATS) system fills the 

role of the control center, dedicated to monitoring trains and schedule adherence. Through 

the data communication network and central ATS system, CBTC subsystems are able to 

exchange information to perform their functions properly. 

Within CBTC, ATO performs part or all of the speed regulation, performance level 

regulation and other functions otherwise assigned to the train operator. ATO control and 

status information can be exchanged, through the ATS, between wayside equipment and 

on-board systems. Via this exchange, information on neighboring train speed profiles can 

be acquired by each individual train. This information allows the ATO subsystem to 

estimate and predict energy consumption and voltage fluctuation based on the operational 

status of trains in the same power section. By choosing the proper acceleration and 

braking commands to coordinate its speed profile with the other trains, power peaks can 

be reduced by absorbing regenerative braking energy. 
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Figure 1 Typical CBTC System 

 

 

3 Previous Research on ATO Control Algorithms 

Research on ATO control algorithms began in 1968 when Japanese scholar Ichikwa et al. 

(1968) solved a simple optimal train control problem by Pontryagin principle. Current 

research efforts are generally based on single-train operation with the aim of providing an 

optimal speed profile in order to minimize mechanical energy consumption (mainly 

tractive energy) under operational constraints such as speed restrictions and scheduled 

running time. This energy efficient driving problem has been generally modelled based on 

motion equations applicable to discrete or continuous control. Pontryagin principle is 

widely used to search for optimal points to make train driving command inputs (Howlett 

(2000)).  

Besides analytical methods, with the rapid development of desktop computing 

capability to solve large-scale optimization problems, numerical methods are being 

researched to solve more complicated train operational problems. Investigated methods 

include dynamic programming (Tang et al. (2013)), fuzzy (Yasunobu et al. (1983)) and 

evolutionary methods (Chang and Sim (1997)). 

Single train based train control optimization discovers that the optimal regimes for 

single train operation includes full acceleration, cruising, coasting and full braking. For 

urban transportation system, the cruising stage is unnecessary unless the maximum speed 

is reached after full acceleration (Thomas, 2008). 

Separate from optimization based on single train, running interactions between trains 

are emphasized in research on coordinated train control and design of multi-train ATO 

algorithms. By introducing regenerative braking, trains have more opportunities to reduce 

energy consumption by using braking energy from other trains. In cases where system 

electrical cost is calculated at the sub-station level, energy exchange between multiple 

trains may have more influence on electricity cost than mechanical energy consumption of 

individual trains.  

In such problems, headway, synchronization time, dwell time and inter-station running 

time are principal factors influencing relative train movement and system power 
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consumption in urban rail transit systems. When the headway becomes shorter, train speed 

regulation is more likely to be affected by other trains. The gradient method, sequential 

quadratic programming and dynamic programming are proposed for this headway 

research (Miyatake et al. (2008, 2010), Tang et al. (2013)). Some studies deal with dwell 

time to improve regenerative energy absorption by delaying departure of the following 

train to synchronize acceleration and braking events (Su et al. (2013)). Control methods 

have applied predictive fuzzy control, search technique and heuristics (Chang et al. (1996), 

Firpo et al. (1995), Gordon et al. (1998)). Finally, evolutionary methods (such as genetic 

algorithms) are proposed to look into the influence of running time on energy (Albrecht 

(2004)). 

This paper adds to previous research by studying coordinated train control under the 

constraint of synchronization time between opposing trains at stations. This problem is a 

high order, non-linear mathematical model that is difficult to solve by traditional 

analytical methods. Although evolutionary methods have proven their effectiveness in 

dealing with similar problems, to improve the convergence performance of traditional 

GAs, enhanced genetic algorithms are proposed to solve this problem. 

 

4 Model Description 

4.1 Assumptions 

The model presented in this paper relies on several key assumptions: 

 Inter-station running time and running distance are pre-defined. 

 Two opposing trains (one eastbound and one westbound) are running in the 

same power section. 

 Traction energy is provided by power substations at both ends of the power 

section. 

 Resistance in the catenary is evenly distributed. 

 Substations are non-reversible. No wayside energy storage devices are 

included in this problem. 

 

4.2 Electrical Network Model 

The electrical network model varies according to the current location and status of the 

two trains within the same power section. As shown in Figure 2, two trains (Udc1 and Udc2) 

are running between two substations (Ud0).  

This model follows the common practice where three-phase AC electricity from the 

general power supply is converted into DC electricity at a substation that feeds train 

operation via catenary. In this model, the current conversion at the substation is not 

considered. Thus, the substation can be described by its external voltage-current 

characteristics as a Thevenin equivalent voltage source Ud0. In the model Rs is an 

equivalent resistor and Iu1 and Iu2 are currents from substations at either ends of the power 

section. 

Two trains are modeled as ideal current sources, IS1 and IS2. Their actual power during 

operation varies according to current and voltage level. Udc1 and Udc2 are catenary voltages 

of the eastbound train and westbound train respectively. Since the catenary resistance is 

assumed to be uniform, the values of the four catenary equivalent resistors R1, R2, R3, R4 

only depend on the current position of trains within the power section. R0 is an on-board 

resistor that is applied during dynamic braking when regenerated electricity cannot be 

used by other trains. 
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Figure 2: Electrical Model When the Eastbound Train (Is1) is in Braking Status and 

Westbound Train (Is2) is in Traction Status 

 

 

During operations, when both trains are in traction status, they take in energy from 

substations and the currents Iu1 and Iu2 are positive. In this status, the required energy will 

rise sharply when either train starts to accelerate. The required energy will decrease when 

the maximum speed is reached and less power is required during cruise status. When the 

eastbound train approaches the station ahead, it starts to brake. Regenerative braking is 

applied and its motor is converted into a generator. Current IS1 is transmitted to the 

overhead wire and is absorbed by the neighboring train in traction status. When the 

network is not receptive (regenerative energy cannot be fully absorbed), the excess 

electricity is dissipated by the resistor R0 on-board the eastbound train as in dynamic 

braking. The diode in the electrical network representation of this train is used to restrict 

the direction of current during dynamic braking. In practice, dynamic braking is not 

encouraged as it wastes energy and also presents a potential risk of overheating and fire. 

Thus dynamic braking is not considered as rewarding as regenerative braking in this 

problem. 

 

4.3 Mathematical Model 

This paper aims to find the optimal speed profile for both eastbound and westbound trains 

according to the energy available on the catenary in order to minimize the total energy 

consumption as measured at the substations.  

Model variables are defined as follows: 

 

s1, s2: The travel distance of eastbound train and westbound train; 

v1, v2: The speed of eastbound train and westbound train; 
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vlimit(s): Speed restriction at position s; 

P1, P2: Electrical power of eastbound train and westbound train; 

n1,T, n2,T: Coefficients of tractive effort applied for eastbound and westbound trains; 

n1,B, n2,B: Coefficients of braking effort applied for eastbound and westbound trains;  

Fmax, 1 (U,v), Fmax, 2 (U,v): Maximum tractive effort applied on eastbound train and 

westbound train under the voltage of U, at the speed of v; 

B max, 1 (U,v), B max, 2 (U,v): Maximum braking effort applied on eastbound train and 

westbound train under the voltage of U, at the speed of v; 

RAir(v): Train resistance; 

RG(s): Gradient resistance; 

RC(s): Curvature resistance; 

Δr: The equivalent resistance of the catenary per unit length; 

μt : Efficiency of driver system at tractive status; 

μg : Efficiency of driver system at braking status; 

S: Required inter-station distance; 

T: Required inter-station running time; 

ΔTdepart: Synchronization time between two train departures from opposite stations; 

M: Train weight; 

J: Total energy cost at substations. 

 

Note: In the definition of Fmax 2, Bmax 2, maximum effort means tractive or braking 

effort when the driver’s handle is at full level. These values are influenced by how much 

power can be provided by the power section (Udc). The values also vary according to 

different train speed status (v).  

 

Based on the network description in the previous section, the total energy cost for the 

power section at the substations can be written as: 

 

 0 1 0 2
0

min
T

d u d uJ U I U I dt    . (1) 

 

Four types of constraints are mainly considered in this model: infrastructure, motion 

equations, electrical constraints and operational constraints. Each will be described in the 

following sections. 

 

Infrastructure  

Line profile (gradient) and alignment (curvature) are very influential on train performance 

and energy consumption. These two infrastructure factors are measured at each location 

by gradient slope and curvature angle respectively. The resulting grade and curvature 

resistance forces experienced by a train are described in the motion equations in the next 

section.  

Another infrastructure constraint is the maximum allowable speed generally set by 

curvature, turnouts or other operational conditions. Speed restrictions are related to 

kilometre posts along the route, and the speed of both trains at any location si must obey 

corresponding limits: 

 

     limit0       1,2i i iv s v s i   . (2) 
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Motion Equations  

The motion equation for this problem are established based on a point-mass model of the 

train. This is a reasonable assumption given the length of most transit train consists 

relative to the rate of change of alignment and profile geometry. When the train is in 

traction status, it is experiencing tractive effort, train resistance, grade resistance and 

curve resistance. When in regenerative braking status, regenerative effort will be applied 

instead of tractive effort. The expression is shown below: 

 

 /         1,2i iv ds dt i   (3) 

 

       

       
 

, max,i

, max,i

,  
      1, 2

,

i T dci i Air i G i C i

i

i T dci i Air i G i C i

n F U v R v R s R s
M v i

n B U v R v R s R s

  
  

  

. (4) 

 

Where tractive and braking coefficients n2T and n2B satisfies 

 

   

   
 

,

,

0,1          
         1, 2

-1,0         

i T

i B

n Traction
i

n Braking

 




. (5) 

 

Electrical Constraints  

According to Kirchhoff's circuit law, the DC circuit power networks in this optimal 

control problem are modeled via equality constraints as: 

 

2 11 12 13 14 0

1 21 22 23 24 0

1 31 32 33 34 2

2 41 42 43 44 1
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     
     
     

. (6) 

 

As the internal resistance of catenary is assumed uniform, the equivalent resistances R1, 

R2, R3, R4  in Figure 2 are defined by the positions of trains within the power section: 

 

 

 

1 1

2 1

3 2

4 2

R s r

R S s r

R S s r

R s r

 

  

  

 

. (7) 

 

Train power is calculated in real-time according to the force coefficient, actual speed 

and the catenary voltage. The train power demand during traction and braking are given in 

equation (8) respectively. 

 

 

 
 

, max,i ci

, max,i

,      
1, 2

, /   

i T d i i t

i

i B dci i i g

n F U v v
P i

n B U v v





   
 

 

. (8) 
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Operational Constraints  

Adhering to the operating schedule is essential for urban transit systems. All optimized 

speed profiles must respect inter-station time and distance requirements. Considering a 

section between two stations, each train departs from one station and stops at the other. 

These operational constraints can be described by: 

 

   

   

1,2 1,2

1,2 1,2

0 0,      0

0 0,       

v v T

s s T S

 

 
. (9) 

 

As two running directions have been considered in the same section, departure 

constraint is also required for operational issues. 

 

   2 10 0 = departt t T  . (10) 

 

Equation (10) defines synchronization time, which is the departure time interval 

(from different stations) between two opposing trains. This constraint ensures within inter-

station section, the westbound train leaves the station ΔTdepart seconds later than the 

eastbound train. 

 

5 Application of Enhanced Genetic Algorithms 

Genetic algorithms (GA) is a global search algorithm technique based on the principle of 

natural selection. It mimics the evolution of biological organisms to achieve optimal 

solutions with a given objective function in an artificial system. In GA, a solution to the 

problem is encoded into strings of digital numbers. Each string (chromosome) represents 

one possible solution. The collective chromosomes form a set of possible solutions, called 

the population. GA performs operations like selection, crossover and mutation on 

chromosomes in the population with a probability based on their corresponding fitness 

values. Optimal solutions, in the form of high fitness individuals will eventually appear 

after generations of evolution. 

Compared with other optimization techniques, GA has several advantages for large 

scale optimization problem. First, since it searches from a group of solutions instead of a 

single point, it avoids being trapped into a local stationary point. Second, it can be applied 

to various types of problems as the search is carried out based on the fitness function 

rather than derivatives. Third, probabilistic transition rules are used so that the optimum 

can be achieved faster with real-time adjustment.  

However, traditional genetic algorithms will give rise to premature convergence if a 

dominant individual occurs in the population. Therefore, by introducing combinational 

selection method, adaptive probability and dual search loop, an enhanced genetic 

algorithm is proposed to solve coordinated train optimal control problem to ensure the 

solution’s effectiveness and efficiency. 

 

5.1 Problem Coding 

A chromosome is defined as the combination of the control variables for the eastbound 

and westbound trains. Each gene represents the coefficient of the applied force at a control 

switching point.  
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In this problem, the control variable is the coefficient of the applied force defined as 

the percentage of maximum traction/braking force applied by the train. It is discretized in 

10-percent increments as 0, ±0.1, ±0.2, ……, ±0.9, ±1. Positive “+” represents 

traction, while negative “-” represents braking. Coasting status is represented by “0”. 

During train operation, the control variable can be switched according to different 

infrastructure parameters, such as speed restrictions, gradient value or curvature value. 

Thus, the solution can be modeled as a sequence of control variables for trains at specific 

control switching points (locations).  

An example of control switching point is illustrated in Figure 3. Control switching 

points s1 to s7 are based on infrastructure parameters. As the number of control switching 

points is pre-determined, the length of chromosome is fixed. 
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Figure 3 Control Switching Points along the Line 

 

 

5.2 Fitness Function 

The objective of this algorithm is to minimize system electrical energy consumption with 

the restriction of travel time and distance. However, GA is formulated to find a maximum 

value during the search process, as fitness values are always positive. In addition, as a 

multi-criterion optimization, a proper combination form needs to be determined to satisfy 

operational constraints. Several modifications have been made to the traditional GA to 

deal with the above issues.  

Therefore, the fitness function has been formulated in equation (11).  

 

     

       

0 1 0 3 1 ,1 ,1

2 ,2 ,2 1 ,1 2 ,2

=1/
0 0

d d S actual assigned

S actual assigned V actual V actual

U I U I w s T s T
J

w s T s T w v T w v T

       
 
        
 


. (11) 

 

The first term is the minimization objective for network energy consumption. The 

following two terms ensure the punctuality and stop accuracy for the arriving train at the 

next station. Ws and Wv are weights for travel distance and speed respectively. These terms 

have higher weights to ensure operational requirements are satisfied first. 

The inversed formulation ensures the minimum energy consumption can be achieved 

when the maximum fitness value is found by GA. 
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5.3 Combinational Selection 

Selection is the process used to select a group of chromosomes from a population for 

later breeding based on their fitness values. Individuals with higher fitness values are 

more likely to be chosen to produce the next generation. Two main selection strategies are 

applied here: roulette wheel selection and rank selection. 

Roulette wheel selection is a fitness-proportionate selection method and is commonly 

used due to its efficiency in best individual selection. The probability for a chromosome to 

be selected is proportional to its fitness. However, since this method can quickly eliminate 

the lower fitted individuals, the solution may inadvertently converge to a local optimum 

point.  

To avoid this potential risk, rank selection is used for population selection in the early 

stages. Instead of using fitness value, rank selection assigns ranking numbers (from 1 to N) 

to each chromosome. The worst has 1 and the best has N. The selection probability is then 

established according to this ranking number. In this way, lower fitted chromosomes have 

more chances to survive. 

The combination of these two methods ensures a variety of species in the early 

evolution stage and that multiple good solutions will emerge for breeding. As the 

evolution proceeds, by using roulette wheel selection, better-fitted individuals have a 

greater chances of selection. Therefore, the later evolution process will be accelerated. 

 

5.4 Adaptive Crossover 

Crossover is the process to taking more than one parent chromosomes and producing 

offspring by exchanging part of their gene information. Crossover has two key parameters: 

crossover probability and crossover operator. The former decides how likely an individual 

is to be chosen for crossover operation, while the latter decides how parents exchange 

information. 

To ensure the efficiency of evolution, adaptive probability has been applied for 

crossover probability.  According to adaptive probability, higher fitness individuals have 

lower probability for crossover. This means their good genetic information is preserved 

for the next generation. On the contrary, lower fitted solutions are have a higher crossover 

rate and are more likely to be recombined in an effort to improve them. Adaptive 

probability is defined in (12). 

 

     c_max c_max c_min max

c_max

' /      '

                                                                      '

avg avg avg

c

avg

P f f P P f f f f
P

P f f

      
 



 . (12) 

 

For crossover operator, traditional two-point crossover is chosen. Everything between 

the two points is swapped between the parent chromosomes, rendering two child 

chromosomes. 

 

5.5 Adaptive Mutation 

Mutation prevents the search from being trapped into a local optimum point by 

introducing new genes to the selected chromosome. The adaptive method is again used 

here to decide the mutation probability for each chromosome. Similar to the crossover 

parameter, the actual mutation probability varies according to the fitness of the 

chromosome. 
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5.6 Secondary Search 

In a departure from traditional genetic algorithms, a secondary search loop has been 

introduced after the initial search iteration finishes. As the solution found by GA is 

usually a quasi-optimal point near the global optimal one, a secondary search process 

through the area neighboring the original result helps find the optimal point. 

In this secondary search, the initial population is established through duplication of the 

best fitted chromosome from the previous search. To ensure the search is restricted to the 

neighboring area, any new values chosen to replace the current genes at mutation stage are 

numbers near that gene value. The normal probability distribution has been applied to 

choose the new mutation value.  

 

5.7 Proposed Algorithm Procedure 

The proposed algorithm procedure is shown in Figure 4. In this procedure, a reference 

value will be calculated first. The reference value is the fitness value when both trains use 

the same single-train-based ATO control algorithm in opposite directions. It is used as the 

threshold for the two selection methods in the main search loop later on. 
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Figure 4 Procedure of Enhanced Genetic Algorithms 

 

After creating an initial population, the search includes two steps: main search loop 

and secondary search loop. The main search loop tries to find the best-fitted individuals 

based on randomly initialized population. Two selection methods are used to ensure 

population diversity during the early stage and efficient convergence during the late 
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period. Once the main search loop ends, the best solution will be passed to the secondary 

search loop. A regular genetic algorithm procedure is then followed to search the 

neighbouring area around the best solution. Final optimal solution will be achieved after 

the two search loops complete. 

 

6 Case Study 

In this section, we analyze the obtained simulation results. Simulations have been 

carried out based on the platform developed by Visual C++ installed on a desktop 

computer with 8 GB of RAM and a 3.2 GHz i3 processor.  The case study solution allows 

verification of the effectiveness of genetic algorithms for coordinated train control. 

The chosen bi-directional simulation section is part of Xi’an metro line of China. The 

distance between stations is 1,517 meters, and the scheduled travel time is 115 seconds for 

both directions. Rated voltage for substation is 1,650V. Internal resistance on the catenary 

is 27 mΩ/km. The maximum of train acceleration is 1.07m/s
2
. Two trains are included in 

this simulation. The westbound train leaves the station 70 seconds later than the eastbound 

train.  

A population of 60 randomly generated chromosomes with length of 83 genes is used 

in the genetic algorithm as the initial population. Maximum crossover rate is 0.8; while 

minimum crossover rate is 0.4. Maximum mutation rate is 0.1; while minimum mutation 

rate is 0.001. As shown in Figure 5, the fitness value generally can reach convergence 

within 150 iterations. 

 
Figure 5  Convergence of Genetic Algorithms 

 

To demonstrate the optimality of coordinated control algorithm, the basic case for the 

case study uses the speed profiles for the eastbound and westbound trains generated for 

both under single-train-based ATO algorithm.  This means their mechanical energy 

consumptions are already minimized; they simply don’t consider the optimization for 

regenerative energy receptivity. 

The case study is implemented in two steps. In the first step, by using the above 

parameters, the train speed profiles for eastbound and westbound trains developed through 

0

10

20

30

40

50

60

70

1 51 101 151 201 251 301 351 401

F
it

n
es

s 
V

al
u
e 

Iterations 



 13 

the coordinated control algorithm are compared to the basic case. The analysis has been 

carried out at a synchronization time of 60s. In the second step, scenarios with different 

synchronization times are developed to study the relationship between synchronization 

time and optimization ratio.  

The results of the first step of the case study are shown in Figure 6. The solid blue line 

is the speed profile of the westbound train in the basic case; the solid orange line is the 

speed profile of the westbound train in the optimal case; the dash blue line is the speed 

profile of the eastbound train in the basic case; and the dash orange line is the speed 

profile of the eastbound train in the optimal case. The four speed profiles are plotted in the 

same time scale and the westbound train departs 60s later than the eastbound train. 

 In the basic case, the two trains are under the control of a single-train-based ATO 

control algorithm. In the optimal case, the eastbound train starts to brake after the 

departure of the westbound train in order to provide regenerative braking energy for its 

acceleration. The westbound train deviates from the original profile in basic case, 

adjusting its actual tractive and braking efforts according to the energy available on the 

catenary and in order to make use of the regenerative energy from the eastbound train. 

After the eastbound train stops, the westbound train mainly applies coasting and braking 

during the rest of the journey, avoiding additional energy consumption.  

 

 
Figure 6 Simulation Results of Speed Profiles 
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As shown by the simulation results in Table 1, by regulating the speed of both 

eastbound and westbound trains to improve the regenerative receptivity, total system 

energy consumption at the substation is reduced by 12%. The average time deviation and 

distance deviation are only1.3% and 0.036% respectively compared with 115s and 1,517 

meters requirements. 

Another benefit of speed coordination is reduced voltage fluctuation. Frequent voltage 

fluctuations will do harm to the on-board and substation electrical equipment, impacting 

system reliability. When a train accelerates and requires energy from a substation, the 

catenary voltage of the train will drop significantly. However, when part of the traction 

energy required by the train can be fed from another train in regenerative braking, less 

energy is required from the power station, and the voltage drop is decreased. The voltage 

performance of the case study is illustrated in Figure 7. 

 

 
Figure 7 Simulation Results of Catenary Voltage 

 

To further investigate the performance of the coordinated train control algorithm, the 

energy saving levels at different synchronization times from 20 to 100 seconds have been 

tested.  

Figure 8 shows the energy consumption for both the basic case and the optimized 

case according to different synchronization times. Figure 9 shows the corresponding ratio 

of optimized to base energy consumption, termed the “energy optimization ratio”. When 

both trains apply single-train-based ATO algorithms as in the base case, system energy 

consumption decreases as the synchronization time increases. Without optimization of 

regenerative receptivity, energy consumption can be reduced by 22% by postponing the 

westbound train’s departure time from 20s to 100s. Through optimization and introducing 

regenerative energy recovery into the ATO algorithm, further reductions can be achieved 

for different synchronization times. The benefit of optimization is relatively small when 

the synchronization time is near 20s and 100s, while the optimization ratio reaches its 

peak (15.1%) at 80s. 

Train speed profiles at different synchronization tine have been shown in Figure 10 in 

the annex. After the departure of westbound train, the eastbound train gradually increases 

the braking ratio to provide regenerative energy for westbound train’s acceleration; while 
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the westbound train adjust its traction ratio according to the regenerative energy available 

on catenary so that the regenerative energy can be fully absorbed. However, this process 

causes time loss due to eastbound train’ early braking and westbound train’s partial 

traction. The longer this adjusting process goes, the more time is lost. To satisfy running 

time constraints, both trains must accelerate to a higher speed to compensate for this time 

loss, offsetting some benefits from reuse of regenerative energy. As the synchronization 

time increases, the position of the westbound train during acceleration is closer to the 

regenerative braking point of the eastbound train, and it is easier for the westbound train 

to adjust acceleration without compromising the time constraint. As more regenerative 

energy is able to be absorbed, the benefits of optimization increase as illustrated by the 

vertical distance between the two lines plotted in Figure 8. However, at some particular 

synchronization time (100s in this example), the eastbound train uses regenerative braking 

at the exact departure time of the westbound train and the regenerative energy can be 

easily absorbed by simply applying maximum acceleration under the default speed profile. 

Since further speed profile optimization cannot improve on this scenario facilitated by 

coincidental timing of maximum acceleration and braking, the basic and optimized energy 

consumption results converge at this point. 

 

  
Figure 8  System Energy Consumption at Different Synchronization Time 
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Figure 9 Optimization Ratio at Different Synchronization Time 

7 Conclusions 

In this paper, a mathematical energy consumption model of bi-directional trains 

running in the same power section has been established based on train operations and 

electrical theories. Genetic algorithms have been applied to generate an optimal speed 

profile for the second train to minimize energy consumption at the power substations. 

Improvements like dual search loops and adaptive probability are introduced to the GA 

formulation to ensure the efficiency and effectiveness of the algorithm.  

Simulation results show that, while respecting operational constraints, the genetic 

algorithm can successfully reduce total energy consumption and voltage fluctuation.  This 

is accomplished by increasing the use of regenerative braking energy produced by the 

earlier-departing train. This method can be used for multi-train-based ATO control 

algorithm design.  

Further investigation indicates that synchronization time plays an essential role in 

system energy consumption.  Under the same ATO control algorithm, considerable energy 

can be saved just by changing the synchronization time. In addition, by applying 

coordinated train control, different synchronization times have different optimization 

ratios.   

This research will help facilitate development of wayside train control system logic to 

provide off-line optimal train control profile before train departure from the station and 

reduce overall energy consumption by reusing the regenerative energy. When 

implemented, such an algorithm will provide rail transit operators with operational cost 

saving potentials with given synchronization time of current timetable. 
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ANNEX 

 

  
(a) Synchronization Time = 50s (b) Synchronization Time = 60s 

 
 

(c) Synchronization Time = 70s (d) Synchronization Time = 80s 

 

 

 

 

(e) Synchronization Time = 90s 

 

Figure 10 Train Speed Profiles at Different Synchronization Time 
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