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ABSTRACT 
 

Optimization Methods for Data Compression 
 

A dissertation presented to the Faculty of the 
 

Graduate School of Arts and Sciences of Brandeis 
 

University, Waltham, Massachusetts 
 

by Giovanni Motta 
 

Many data compression algorithms use ad–hoc techniques to compress data efficiently. 
Only in very few cases, can data compressors be proved to achieve optimality on a 
specific information source, and even in these cases, algorithms often use sub–optimal 
procedures in their execution. 

It is appropriate to ask whether the replacement of a sub–optimal strategy by an 
optimal one in the execution of a given algorithm results in a substantial improvement of 
its performance. Because of the differences between algorithms the answer to this 
question is domain dependent and our investigation is based on a case–by–case analysis 
of the effects of using an optimization procedure in a data compression algorithm. 

The question that we want to answer is how and how much the replacement of a sub–
optimal strategy by an optimal one influences the performance of a data compression 
algorithm. We analyze three algorithms, each in a different domain of data compression: 
vector quantization, lossless image compression and video coding. Two algorithms are 
new, introduced by us and one is a widely accepted and well–known standard in video 
coding to which we apply a novel optimized rate control. 

Besides the contributions consisting of the introduction of two new data compression 
algorithms that improve the current state of the art, and the introduction of a novel rate 
control algorithm suitable for video compression, this work is relevant for a number of 
reasons: 
• A measure of the improvement achievable by an optimal strategy provides powerful 

insights about the best performance obtainable by a data compression algorithm; 
• As we show in the case of low bit rate video compression, optimal algorithms can 

frequently be simplified to provide effective heuristics; 
• Existing and new heuristics can be carefully evaluated by comparing their complexity 

and performance to the characteristics of an optimal solution;  
• Since the empirical entropy of a “natural” data source is always unknown, optimal 

data compression algorithms provide improved upper bounds on that measure. 
 

 



 vi 
 

CONTENTS 

CONTENTS.....................................................................................................................VI 

INTRODUCTION............................................................................................................. 1 

KEY TECHNOLOGIES IN DATA COMPRESSION.................................................. 8 
2.1 SIGNAL REPRESENTATION........................................................................................ 11 

2.1.1 Sampling .......................................................................................................... 11 
2.1.2 Quantization..................................................................................................... 13 

2.2 DIGITAL DATA FORMATS......................................................................................... 15 
2.2.1 Audio Formats ................................................................................................. 15 
2.2.2 Still Image Formats.......................................................................................... 16 
2.2.3 Digital Video Formats ..................................................................................... 17 

2.3 BASIC METHODS ...................................................................................................... 20 
2.3.1 Entropy Coding................................................................................................ 20 
2.3.2 Run Length Coding .......................................................................................... 21 
2.3.3 Huffman Coding............................................................................................... 21 
2.3.4 Arithmetic Coding............................................................................................ 23 
2.3.5 Golomb Coding................................................................................................ 25 
2.3.6 Textual Substitution Methods........................................................................... 26 
2.3.7 Statistical Methods........................................................................................... 28 
2.3.8 Vector Quantization ......................................................................................... 29 
2.3.9 Prediction......................................................................................................... 30 
2.3.10 Transform and Sub–Band Coding ................................................................. 33 
2.3.11 Fractal Coding............................................................................................... 42 

2.4 INTER BAND DECORRELATION................................................................................. 42 
2.4.1 Color Decorrelation......................................................................................... 44 
2.4.2 Motion Compensation...................................................................................... 47 
2.4.3 Multi and Hyperspectral Images ..................................................................... 49 

2.5 QUALITY ASSESSMENT ............................................................................................ 51 
2.5.1 Digital Images.................................................................................................. 53 
2.5.2 Video ................................................................................................................ 57 

DATA COMPRESSION STANDARDS....................................................................... 60 

3.1 AUDIO...................................................................................................................... 60 
3.1.1 Pulse Code Modulation.................................................................................... 60 
3.1.2 MPEG Audio.................................................................................................... 60 



 vii 
 

3.2 SPEECH .................................................................................................................... 65 
3.2.1 A–law and µ–law ............................................................................................. 65 
3.2.2 Differential PCM ............................................................................................. 67 
3.2.3 LPC–10 (Linear Predictive Coding of 10th order).......................................... 69 
3.2.4 Codebook Excited Linear Prediction (CELP) ................................................. 75 

3.3 IMAGE ...................................................................................................................... 76 
3.3.1 JPEG................................................................................................................ 76 
3.3.2 JPEG–LS.......................................................................................................... 79 
3.3.3 JBIG ................................................................................................................. 81 
3.3.4 JPEG–2000...................................................................................................... 83 
3.3.5 GIF................................................................................................................... 84 

3.4 VIDEO ...................................................................................................................... 85 
3.4.1 H.261................................................................................................................ 85 
3.4.2 MPEG–1 .......................................................................................................... 87 
3.4.3 H.263................................................................................................................ 91 
3.4.4 MPEG–2 .......................................................................................................... 97 
3.4.5 MPEG–4 ........................................................................................................ 103 

TRELLIS CODED VECTOR RESIDUAL QUANTIZATION ............................... 105 
4.1 BACKGROUND........................................................................................................ 105 
4.2 INTRODUCTION TO THE PROBLEM .......................................................................... 111 
4.3 TRELLIS CODED VECTOR RESIDUAL QUANTIZATION (TCVRQ)............................ 115 
4.4 NECESSARY CONDITION FOR THE OPTIMALITY OF A TCVRQ................................ 120 
4.5 VITERBI ALGORITHM ............................................................................................. 126 
4.6 EXPERIMENTAL RESULTS....................................................................................... 129 

4.6.1 Gray–level Image Coding .............................................................................. 130 
4.6.2 Low Bit Rate Speech Coding.......................................................................... 132 
4.6.3 Random Sources............................................................................................. 136 

LOSSLESS IMAGE CODING .................................................................................... 139 
5.1 BACKGROUND........................................................................................................ 139 
5.2 ADAPTIVE LINEAR PREDICTION CODING................................................................ 145 
5.3 LEAST SQUARES MINIMIZATION ............................................................................ 158 

LOW BIT RATE VIDEO CODING ........................................................................... 162 
6.1 BACKGROUND........................................................................................................ 162 
6.2 FRAME AND MACROBLOCK LAYER RATE CONTROLS ............................................ 164 
6.3 PROBLEM DESCRIPTION ......................................................................................... 166 
6.4 OPTIMAL FRAME SKIPPING MINIMIZATION ............................................................ 170 
6.5 EXPERIMENTAL RESULTS WITH THE OPTIMAL ALGORITHM ................................... 178 
6.6 AN EFFICIENT SUB–OPTIMAL HEURISTIC................................................................. 182 
6.7 UNRESTRICTED OPTIMIZATION .............................................................................. 185 

CONCLUSIONS ........................................................................................................... 189 

APPENDIX A................................................................................................................ 192 

BIBLIOGRAPHY......................................................................................................... 195 



 

INTRODUCTION 

Many data compression algorithms use ad–hoc techniques to compress data efficiently. 

Although heuristics are derived from reasonable assumptions on the nature of the data 

being compressed, it is frequently unknown how and how much these assumptions affect 

compression. 

In a very few cases data compressors can be proved to achieve entropy on specific 

information sources; however, even in these cases, algorithms often use sub–optimal 

procedures in their execution. An example is the well–known Lempel–Ziv data 

compression algorithm (see Ziv and Lempel [1977, 1978], Storer [1988]). Although this 

algorithm is provably optimal, in the sense that asymptotically it achieves entropy on 

some information sources, the input string is greedily parsed while it is being 

compressed. A paper by Horspool [1995] analyzes the performance of the greedy parsing 

versus an optimal parsing in Lempel–Ziv compression and concludes that it is possible to 

improve compression. While an optimal parsing will not change its asymptotical 

behavior, in practice, the new algorithm will converge faster to the entropy and will be 

more stable with respect to different data sources. 

Fast convergence is a crucial issue since an algorithm that converges slowly to the 

entropy is of little use on real data that are finite in nature and presented to the 

compressor in the form of small files. Slow convergence is also a problem in adaptive 
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algorithms since when the input is not stationary and changes its characteristics over 

time, the algorithm has little time to capture and exploit the changing statistics. 

Stability with respect different sources is also particularly important since it is a good 

indication that the algorithm will work correctly on data sources that have not been 

tested. Even when the algorithm is provably optimal on a theoretical data source there is 

in general little or no indication of the performance degradation when compressing 

natural data, so stability is a clue that the algorithm will work properly on most data. 

For all these reasons, the problem of evaluating the effects of optimal data 

compression strategies has been addressed in the past by a number of authors, frequently 

resulting in interesting insights on algorithms or even suggesting better heuristics derived 

from the simplification of the optimal solution. 

Besides the previously mentioned work by Horspool, Lempel et al. [1973], Hartman 

and Rodeh [1985], Katajainen and Raita [1987], Helfgott and Cohn [1997, 1998], 

Apostolico and Lonardi [1998, 2000] also addressed issues arising in the optimal parsing 

of sequences in text compression. 

In lossy compression, bit allocation is a critical factor to achieve the best rate–

distortion trade–off and optimal bit allocation strategies have been explored by a number 

of authors under different assumptions. Only to mention a few, the works by Hoang et al. 

[1997, 1999], Ortega [1996] and Wu [1993] deal with the problem of allocating bits from 

a finite bit pool to each coding unit so that the global coding quality is maximized. The 

problem of rate–distortion optimization of various aspects of video coding has received 

the attention of several authors like Rajala et al. [1992], Wiegand et al. [1995], 

Carpentieri and Storer [1994b], Lee and Dickinson [1994], Ramchandran and Vetterli 
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[1994], Nosratinia and Orchard [1996], Sullivan and Wiegand [1998], Flierl et al. [1998]. 

Relevant also is the work by Kozen, Minsky and Smith [1998] who present an algorithm 

that optimally discards frames in an encoded video sequence in order to lower bit rate 

while minimizing the gaps. 

Even more effort has been put in deriving scalar and vector quantizers that are 

optimal with respect some principle. Besides the seminal work on scalar quantization 

conducted by Lloyd [1957] and Max [1960], a number of authors derived optimality 

conditions for vector quantizers both unconstrained (Linde, Buzo and Gray [1980]) or 

constrained with respect to one or more features. Gray [1984] and Gersho and Gray 

[1992] present a comprehensive introduction to the subject while more recent results can 

be found in Barnes [1989], Barnes and Frost [1990], Frost et al. [1991], Kossentini et al. 

[1993], Wang and Moayeri [1992], Wu [1990]. Application specific rate–distortion 

optimization of scalar quantizers is also an issue that has been widely studied. See for 

example the work by Ratnakar and Livny [1995, 1996] on the optimization of the 

quantization tables used in JPEG image compression. 

While data coding methods, like vector quantization, apply to every kind of data and 

achieve compression close to the source entropy, practical state–of–the art data 

compression algorithms are instead strictly data dependent. The reasons that preclude 

general methods like vector quantization from being used as efficient universal source 

coders are the exponential complexity of building an optimal encoder and the speed with 

which the source entropy is reached. Since input data are relatively short sequences, 

vector quantizers don't have the time to fully exploit the existing redundancies. In 

practice, compression methods used, for example, for video coding are completely 
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different from the methods used in speech, audio or text compression and while a number 

of techniques are shared by most compressors, in order to fully capture the redundancy 

existing in the input signal, these methods are used or combined in very different ways. 

For all these reasons, coherently with the trend existing in the literature in the field, 

our investigation is based on a case–by–case analysis of the effects of using an 

optimization procedure in a data compression algorithm. The question that we want to 

answer is how and how much the replacement of a sub–optimal strategy by an optimal 

one influences the performance of a data compression algorithm. With a case–by–case 

approach we analyze three algorithms, each in a different domain of data compression: 

vector quantization, lossless image compression and video coding. Two algorithms are 

new, introduced by us and one is a widely accepted and well–known standard in video 

coding to which we apply a novel optimized rate control. Although most of the 

experiments that we report are mainly focused on three different flavors of digital image 

compression (lossy, lossless and moving pictures), some of the algorithms are much more 

general and cover broader areas of data compression. In particular the vector quantizer is 

also analyzed in the framework of very low bit rate speech coding and in the compression 

of random sources.   

Besides the contributions consisting of the introduction of two new data compression 

algorithms that improve the current state of the art, and the introduction of a novel rate 

control algorithm suitable for video compression, this work is relevant for a number of 

reasons: 

• A measure of the improvement achievable by an optimal strategy provides powerful 

insights about the best performance obtainable by a data compression algorithm; 
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• As we show in the case of low bit rate video compression, optimal algorithms can 

frequently be simplified to provide effective heuristics; 

• Existing and new heuristics can be carefully evaluated by comparing their complexity 

and performance to the characteristics of an optimal solution;  

• Since the empirical entropy of a “natural” data source is always unknown, optimal 

data compression algorithms provide improved upper bounds on that measure. 

Since the work spans three different fields of data compression, the first two Chapters of 

this thesis introduce the state of the art by presenting in Chapter 2 the key technologies 

that are commonly used and in Chapter 3 by giving an overview of how these techniques 

are used to compress audio, speech, image and video signals with the most important 

compression standards. 

In the Chapter 4 we address the problem of designing and analyzing a low complexity 

vector quantizer whose codebook is designed both with optimal centroids and with a sub–

optimal stagewise design. A novel combination of residual and trellis quantization is 

presented and compared to existing methods. Then we derive the necessary conditions on 

the centroids in an optimal codebook that minimizes the mean square quantization error. 

Because of the complexity involved, these conditions turn out to be not practical, so an 

alternative sub–optimal codebook design is proposed. A number of experiments on 

random sources, on direct coding of digital images and on very low bit rate coding of 

linear prediction parameters in a speech codec are presented and compared to the current 

state of the art. Both an exhaustive (optimal) and a Viterbi–based (sub–optimal) trellis 

search are used and compared. We conclude that this novel Trellis Coded Vector 

Residual Quantizer provides very good performance, in particular at low bit rates, and a 
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computational complexity lower than other existing methods. In all cases, the 

performance loss introduced by the Viterbi search is widely compensated by a lower 

computational complexity.   

In Chapter 5 we propose and study a new lossless image compression algorithm that 

uses linear prediction and embedded context modeling. A linear predictor is computed for 

each pixel by minimizing the square error in a set of causal neighbors. Two different 

methods to determine the optimal linear predictor are compared and discussed. The 

prediction error is entropy coded by using two different methods: arithmetic coding and 

Golomb coding. Since the algorithm tries to exploit local statistics, the model for the 

arithmetic encoder is based on a small number of samples and it may give no indication 

of the probability of some error values. To overcome this lack of information, also called 

the "zero probability" problem, we have successfully used the Laplacian approach. A 

number of results on standard test images are presented and compared to state of the art 

lossless image codecs. While pixel–by–pixel optimization is computationally expensive 

and still far from being practical, the compression that we get is competitive with the 

state of the art and the performance is stable on every image of the test set.  

Chapter 6 addresses the problem of designing an optimal frame–rate control 

algorithm that, embedded in a low bit rate video encoder, minimizes the number of 

frames that are skipped during transmission buffer overflows. Overflows are due to the 

attempt of matching video variability to the finite capacity of the transmission channel. 

We present an optimal solution to this problem with an algorithm that is based on 

dynamic programming. The rate control is tested in a H.263+ encoder by using video 

sequences that have a high number of scene cuts. The optimal solution always allows the 
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transmission of a much higher number of frames with slightly better quality and with the 

same number of bits. The analysis of the pattern of the optimal solution suggests that 

most of the gain depends on the skipping of the first frame of the new scene. Based on 

this observation, a heuristic is developed and embedded in the H.263+ video encoder. 

This enhancement entails no change in the standard or in the decoder. Experiments on the 

test sequences show that this heuristic achieves most of the gain of the optimal solution 

with a computational complexity that is substantially lower. Finally an unrestricted 

version of the optimization problem is studied and proved to be NP–complete. 
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KEY TECHNOLOGIES IN DATA COMPRESSION 

Digital data compression aims at a space efficient representation of digital data. The need 

for compression is mainly motivated by the increasingly large amount of data used by 

current applications. 

While the interest in the compression of digital data is relatively recent, the concept 

of compression itself has been present in the analog world for a long time. Examples of 

analog compression are PAL, NTSC and SECAM color systems, all employed to reduce 

the full bandwidth R, G and B signals into a single 5.5 or 4.2 MHz channel suitable for 

broadcast TV transmission. 

In the following we describe compression methods that apply both to signals that are 

digital in nature (like text) as well as signals that are obtained by digitization of a 

sequence of analog measures. 

Storage and transmission are the most common operations performed on digital data. 

Which one of these two operations must be performed more efficiently is a decision that 

sometimes affects the choice among the available compression methods. Transmission 

and storage applications determine two classes (not necessarily disjoint) of compression 

algorithms that have different requirements, characteristics and performance. 

The transmission–storage duality is captured by the Rate–Distortion theory. An 

encoder suitable for transmission must minimize the distortion while keeping the rate 
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fixed (or by keeping its average close to a given threshold), a storage–oriented algorithm 

typically minimizes the rate while achieving a given distortion. 

This is not obviously a rigid rule and each compression algorithm has to tradeoff 

among some strictly correlated parameters. Each of them can be increased (in some 

extent) despite of one or more of the others (Bhaskaran and Konstantinides [1995]): 

• Coding Efficiency: usually defined in terms of Compression Ratio, bits per 

symbol, etc.; 

• Signal Quality: measured by the Signal to Noise Ratio, with perception 

motivated metrics or empirically assessed with subjective experiments; 

• Coding Delay: measures both the delay introduced in the coding process and the 

size of the encoding buffer required; 

• Coder Complexity: expressed in terms of algorithmic complexity, number of 

operations, memory space, or electrical power needed by a hardware 

implementation of the encoder. 

The relation between the first two parameters is modeled by the Rate–Distortion theory 

(Gallager [1968], McEliece [1977], Cover and Thomas [1991]) and obeys well–known 

bounds; the others two are typical of each implementation. 

Compression is achieved by removing some information present in the signal. It is 

possible to distinguish between two kinds of information that are commonly removed: 

• Redundant information, that is statistical in nature and can be reconstructed by 

observing other parts of the signal;  

• Irrelevant information, that is not useful in the target application. 
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Algorithms chosen to compress data that have to be used by humans, are frequently based 

on the removal of irrelevant information that the user cannot perceive. 

Another important difference between the two classes is that while statistical methods 

that are used to remove redundancies can be lossless (the original signal can be 

reconstructed from its compressed representation without any error) or lossy (some errors 

are introduced in a controlled manner), the elimination of irrelevancies is an intrinsically 

lossy process (Storer [1992]). 

Methods that remove redundancies and irrelevancies are often combined. Figure 2.1 

shows a typical configuration used by a video coder. The second stage removes the 

irrelevant part of the signal by quantizing a transformation of the signal; the third stage 

removes the remaining statistical redundancy by using, for example, a variable–length or 

arithmetic encoder. 

 

Signal
Transform

Quantization
    (Lossy)

Entropy Coding
   (Lossless)

Input Bitstream

 
Figure 2.1: Stages of a generic video encoder. 
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2.1 Signal Representation 

Digital signal compression is applied to signals that are discrete in nature or obtained 

from the digitization of analog measures. A signal is usually described by a function 

1 2( , ,..., )nf x x x  of n  independent variables, also called dimensions; a common 

classification groups together signals having the same number of dimensions. 

With this formalism, an audio signal is a one–dimensional function ( )f t  that 

describes the air pressure acting on a transducer as a function of the time. An image is a 

two–dimensional function ( , )f x y  describing the luminosity of a pixel in a scene as a 

function of two spatial coordinates. A video signal, being a temporal sequence of images, 

adds a temporal parameter to the image description thus becoming a function ( , , )f x y t . 

Since in a digital signal both free variables and values of the function must be 

discrete, when the signal originates from a sequence of analog measures, digitization 

must be performed both in the time dimension (sampling) and in the values of the domain 

(quantization). While from a theoretical point of view sampling and quantization can be 

applied in any order, for technological reasons sampling is often performed first (Jayant 

and Noll [1984]). 

2.1.1 Sampling 

Sampling is the process that converts a continuous time signal into a discrete time signal 

by measuring its amplitude at regular time intervals. If the signal being sampled is band 
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limited, i.e. if its frequency F  is comprised between two frequencies minF  and maxF , the 

Sampling Theorem (Jayant and Noll [1984]) guarantees that a perfect reconstruction of 

the original signal is possible only if the signal is sampled at regular intervals 1/ sT F=  

where sF  is the sampling frequency that must be greater than or equal twice the 

bandwidth: 

max min2 ( )sF F F≥ ∗ − . 

Formally, the Sampling Theorem states: 

Sampling Theorem: For a sampling interval, T , there exists a critical frequency, 

1
2SF
T

= , known as the Nyquist frequency. If the data under observation is band limited 

to a frequency less than the Nyquist frequency then that function can be sampled and 

represented, digitally, in a representation similar to the continuous limit as the sampling 

interval tends to zero. 

 

In other words, if a signal has a maximum frequency comprised between minF  and maxF , 

no information is lost by sampling the signal at max min2 ( )sF F F≥ ∗ −  and a perfect 

reconstruction of the original signal from its samples is always possible. When a signal is 

sampled at a frequency lower than its Nyquist frequency, aliasing occurs and the 

reconstructed signal will exhibit frequency components that were not present in the 

original (see Fig. 2.2). In the frequency domain, aliasing causes part of the signal that 

resides in a region greater than the critical frequency to be spuriously moved into a valid 

region between zero (or DC) and the Nyquist frequency. 
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1/Fm ax 1/Fs=2/3*Fm ax Original Signal

Aliased Signal

 
Figure 2.2: Aliasing in a signal sampled with max max

3 2
2SF F F= ≤  
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Figure 2.3: Sampling and Quantization of an analog signal. 

2.1.2 Quantization 

Discretization in the values of the domain is called quantization. This process 

approximates a continuous–amplitude signal by a discrete–amplitude signal, while 

minimizing a given distortion measure. 

Unlike sampling, quantization is an intrinsically lossy process, and after the 

quantization the original signal cannot be recovered without errors. In a quantized signal 

each sample can be represented by the index of a value selected from a finite set. It is also 
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common to perform quantization on a signal that already has discrete amplitude, meaning 

with this a reduction in the number of the possible values that a sample can assume. 

The simplest way to quantize a signal is one sample at a time, by using a uniform 

division of the value interval. In this process, called uniform scalar quantization, the 

value of each sample is divided by an interval (quantization step or quantum) and the 

integer part of the result is encoded. If the samples are 1 2, , , ,nx x x… …  and the 

quantization interval is q , the quantizer determines ˆ int( / )i ix x q=  and outputs the 

corresponding code word (or index) for ˆix . 

Better performance, at the cost of a greater complexity, can be obtained by 

considering the signal statistics (non–uniform quantization) or by quantizing the signal in 

blocks composed by a number of consecutive samples (Vector Quantization). See Gersho 

and Gray [1992], Proakis and Manolakis [1996] for an extensive coverage of this topic. 
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2.2 Digital Data Formats 

 

In the following we introduce the most common digital data formats and discuss their 

main characteristics. 

2.2.1 Audio Formats 

Sound is a wave of pressure differences that travels through the air, so sound can be 

detected by measuring the pressure level at a specific location as a function of the time. A 

transducer (as a microphone for example) is a device that converts air pressure 

differences into variations of some electrical quantity. Its output can be considered a 

continuous (or analog) signal and it is usually digitized with the techniques that we have 

already discussed. 

In audible signals, sampling is performed at frequencies that range from 96KHz for 

high quality music to 8KHz for telephone quality speech. 

Quantization can be performed by using linear intervals (as in linear Pulse Code 

Modulation or PCM) or more appropriately with logarithmic intervals. The speech signal 

that is transmitted over the digital telephone lines is frequently quantized by using 

µ − law or A–law, two logarithmic scales that are designed to take advantage of the non–

linear sensitivity of the human ear. 



 16 
 

To represent complex sounds generated by multiple sources it is also possible to measure 

the wave from two or more different space locations, generating in this way multiple 

measures of the same event (stereophonic audio).  

A full specification of a digital audio signal is characterized by the following four 

parameters: 

• Sampling rate: expressed in number of samples per second;  

• Number of bits per sample: in general 8, 12, 16 or 24;  

• Digitization law: linear, log, µ − law, A–Law, etc.;  

• Number of channels: 1 for monaural, 2 for stereo, etc.. 

While most audio compression algorithms are designed to be general–purpose and work 

independently on signal content and parameters, an interesting exception is constituted by 

the class speech codecs. Speech is susceptible of a special treatment because it is possible 

to model its source (the human vocal tract) thus making possible the design of model–

based algorithms that are capable of extremely high compression. 

2.2.2 Still Image Formats 

A gray–level image can be considered a two dimensional signal where a light intensity 

( , )s x y  is associated to each point ( , )x y  of a uniform sampling grid. Even in this case, 

the considerations made in the previous section about sampling and quantization are still 

valid. However, due to physical and technological limitation, image sampling is always 

performed at a lower spatial resolution (with respect the original), so perfect 

reconstruction cannot be usually achieved. 
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A special class of gray–level images consists of images in which ( , )s x y  can only assume 

two values, conventionally designated by zero and one. These images, called bi–level 

images, are commonly generated by fax machines or by scanning high–contrast paper 

documents. They are important because special algorithms have been designed for their 

compression. 

Color images are commonly described as three superimposed gray–level pictures, 

also called color planes. Each pixel in a color plane represents the spatial measure of the 

intensity of a primary color (for example Red, Green and Blue as in the common RGB 

scheme). These representations are “hardware oriented” in the sense that they reflect the 

representation used by color monitors, printers or photographic processes. From this 

point of view a color picture is a three–channel, three–dimensional signal. 

In natural images, where a strong correlation between the three channels is expected, 

an alternative color representation can be used in order to exploit this correlation. This 

representation, used by most image and video compression algorithms, will be briefly 

described in a following section. 

2.2.3 Digital Video Formats 

Since a video signal can be viewed as a sequence of pictures, digital video combines the 

temporal aspects of audio signals and the spatial characteristics of still pictures. 

When the digital video originates from the sampling of analog broadcast television, 

the differences existing between NTSC, PAL and SECAM national standards limit or 

even preclude device interoperability. With the purpose of standardizing digital video 



 18 
 

format several representations have been defined; each standard specifies the following 

three parameters: 

• Spatial Sampling: the number of horizontal and vertical pixels (or lines) in a 

picture; 

• Temporal Sampling: the number of pictures per second and whether the signal is 

interlaced (odd lines grouped and transmitted before even lines) or non–

interlaced; 

• Color Sampling: how the color of each pixel is represented. 

Here we review some common standard video formats: 

• CCIR–601: the official sampling standard for the conversion of analog television 

signals; it specifies a different spatial and temporal sampling for NTSC (the 

United States National Television Systems Committee) and PAL (Phase 

Alternating Line) television signals. The NTSC signal is sampled with 720x485 

pixels and 30 frames/sec and the PAL signal is 720x576 at 25 frames/sec. Colors 

are represented with in a color space called b rYC C . Color components are sub–

sampled with a scheme named 4:2:2 (see section on Color Decorrelation). CCIR–

601 uses interlaced scan. The vertical resolution for each field is one half of the 

full resolution since each frame consists of two interlaced fields that are spatially 

but not temporally adjacent. 

• Source Input Format or SIF: specifies a spatial sampling of 360x240 pixels at 

30 frames/sec for the NTSC video signal and 360x288 pixels at 25 frames/sec for 

the PAL signal. The color sub–sampling for the b rYC C  components follows the 

format named 4:2:0. 
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• Common Intermediate Format or CIF: proposed to bridge the differences 

between the NTSC and PAL video formats. It uses progressive (non–interlaced) 

scan, an image size of 352x288 pixels at 30 frames/sec and 4:2:0 color 

subsampling for the b rYC C  components. These values represent half the active 

lines of a PAL television signal and the picture rate of the NTSC signal. 

Therefore, when converting an analog signal to CIF, PAL systems need only to 

perform a picture rate conversion and NTSC systems need only to perform a line–

number conversion. Multiples of the CIF format are also defined and usually 

referred as SQCIF (128x96 pixels), QCIF or Quarter CIF (176x144 pixels), 4CIF 

(704x576 pixels) and 16CIF (1408x1152 pixels). 
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2.3 Basic Methods 

Almost every “natural” information source exhibits some sort of correlation among its 

samples. The following paragraphs introduce a number of basic data compression 

techniques that are frequently combined to form state–of–the–art algorithms. Each of 

these methods uses a slightly different approach to remove or reduce the amount of 

correlation present in the signal. Some methods are based on assumptions on the nature 

of this correlation, so their use is restricted to data sources that satisfy these assumptions. 

2.3.1 Entropy Coding 

Entropy coding exploits the fact that in a signal symbols may occur with different 

frequencies and, when encoding source symbols one at a time, the a priori probability of 

occurrence of a symbol may change depending on the past observations. In an English 

text, for example, the letter “e” occurs with the highest frequency and the probability that 

a letter is an “e” given that past three letters being “ th” is extremely high. On the 

contrary, the probability of a “q” following “ th” is very low. 

An entropy encoder uses these considerations by estimating for each symbol a 

probability that is based on the past observations, then encodes highly probable symbols 

with the shortest code words. This method, called variable–length coding, is the base of 

most entropy coding algorithms (Storer [1988]). 
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2.3.2 Run Length Coding 

A simple lossless compression technique is Run Length Encoding (Golomb [1966]). RLE 

is used when compressing scanned documents and faxes. These images alternate long 

sequences of pixels having the same color. A sequence (or run) of contiguous pixels of 

the same value is encoded by the pair ( , )R L  where R  is the recurrent value and L  is the 

length of the run. 

For example, the sequence of values “100000002200000011111... ” can be RL 

encoded as “ (1,1)(0,7)(2,2)(0,6)(1,5)... ”. Uniquely decipherable codes (fixed length, 

prefix, etc.) must be used to represent the pairs so that no ambiguity arises when 

decoding the data stream. As previously introduced, a common application of RLE is the 

encoding of bi–level images. On this kind of images, because the black and white runs 

alternate, except for the first run, it is not even necessary to send the recurrent value R . 

In fact, the CCITT Group 3 and 4 facsimile standards are mainly based on RLE (Sayood 

[1996]). RLE is also used to encode the sequences of zeros present in the quantized DCT 

coefficients in the JPEG standard (Pennebaker and Mitchell [1993]). 

2.3.3 Huffman Coding 

Huffman [1952] codes are an optimal way of assigning variable length code words to an 

alphabet of symbols with a known probability distribution. 

Starting from the symbol probabilities, a (binary) Huffman code is built by grouping 

together the two symbols that have the smallest probabilities and assigning to the last bit 

of the their code words a 0 and a 1 respectively. The construction is repeated by 
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considering a new set of symbols in which the two symbols with the lowest probability 

have been substituted by a super symbol having probability equal to the sum of the two 

lowest probabilities. The construction stops when a single symbol with probability 1 

remains. 

This method builds bottom–up a binary tree in which each branch corresponds to a 

bit. Every leaf of this tree corresponds to a symbol whose code word is obtained by the 

sequence of bits along the path from the root to the leaf (See Fig. 2.4). 

 

A

B

C

D

0 1

0

10

1Symbol Probability Code word

A 0.25 01
B 0.125 000
C 0.5 1
D 0.125 001

 
Figure 2.4: Construction of a Huffman code. 

The code generated by this construction is optimal because the bit at every branch 

distinguishes among two roughly equiprobable left and a right sub–trees. When the 

probabilities are not powers of two, Huffman codes have some redundancy that arises 

from the fact that it is not possible to partition the symbols so that all internal nodes in the 

tree have perfectly equiprobable sub–trees (see Capocelli et al. [1986], Capocelli and De 

Santis [1988, 1991], Johnsen [1980]). Encoding sequences rather than individual symbols 

can reduce the redundancy introduced by this method. 

Locating the symbols in the leaves only, guarantees that this construction always 

results in a prefix (originally prefix free) code. In a prefix code no codeword is prefix of 

another codeword; because of this property, any sequence of code words is 
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instantaneously uniquely decodable (Gallager [1968]). So in a left–to–right decoding of 

the bit stream it is always possible with no look ahead to determine where the code for 

one symbol ends and the code for the next symbol begins. 

Huffman codes can be generalized to non–binary trees (when the coding alphabet is 

non binary) as well as to the case in which the probability distribution for the next symbol 

depends on the previous symbols. Unfortunately, in this case the size of the data structure 

that maintains the probabilities grows exponentially with the number of symbols. 

When the symbol probabilities are not known or when the probabilities change over 

time, this approach can be made adaptive by incrementally updating the data structure as 

new symbols are processed. The updates reflect the probability distribution of symbols 

seen thus far. This approach is used by the UNIX “compact” utility. 

For further reading, see the original paper by Huffman [1952], Gallager [1978] and 

the book by Storer [1988], 

2.3.4 Arithmetic Coding 

Arithmetic coding (Moffat, Neal and Witten [1995]) is an entropy coding method useful 

to encode symbols with arbitrary probabilities provided by an adaptive model that will be 

discussed shortly. The idea is to encode a data sequence as a single long binary number 

that specifies a point on the real line between 0 and 1. This point represents the value of 

the cumulative density function of the sequence. With this method, not only do less 

frequent characters get shorter codes, but “fractions” of a bit can be assigned, avoiding in 

this way the redundancy common to most Huffman codes. 
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Both the encoder and decoder proceed incrementally by maintaining a coding interval 

between the points low  and high ; initially 1high =  and 0low = . Each time a new 

symbol s  is read by the encoder or written by the decoder, they both refine the coding 

interval by doing: 

( ( ) * )
( ( ) * )

length high low
high low RIGHT s length
low low LEFT s length

= −
= +

= +
 

As more and more symbols are encoded, the leading digits of LEFT  and RIGHT  

become the same and can be transmitted to the decoder (See Fig. 2.5). Assuming binary 

notation, if the current digit received by the decoder is the thi  digit to the right of the 

decimal point in the real number r  formed by all of the digits received thus far, then the 

interval from r  to 2 ir −+  is a bounding interval and the LEFT  and RIGHT  ends of the 

final interval will both begin with the digits of r . 

A

B

C

A

B

C

A

B

C

A

B

C

0.0 0.00 0.490 0.5460

0.7

0.8

1.0

0.49

0.56

0.70

0.539

0.546

0.560

0.5558

0.5572

0.5600  

Figure 2.5: Arithmetic encoding of the input “ABC”. 
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Practical implementations are complicated by the use of limited precision arithmetic to 

avoid expensive arithmetic operations and a number of methods have been devised to 

overcome this problem (Witten, Neal and Cleary [1987]). For further reading, see the 

books by Bell, Cleary, and Witten [1990] and Witten, Moffat and Cleary [1994]. 

2.3.5 Golomb Coding 

Golomb [1966] codes were introduced to optimally encode the result of run–length 

coding. These codes are optimal for exponentially decaying distributions of positive 

integers and, when applicable, lead to encoding algorithms that are much more efficient 

than other entropy coding methods (see Howard [1989]).  

A Golomb code of parameter m  encodes a positive integer n  with a binary 

representation of ( mod )n m  followed by a unary representation of the remaining most 

significant bits of n  and, finally, a stop bit. 

A special case is the family of codes in which the parameter m  is a power of two: 

2km = . In this case, the modulus operation is particularly simple and the coding process 

is even more efficient. In such a code the length of a code word is given by: 

1
2k

nk  + +   
 

Several methods have been devised to estimate the parameter of an optimal Golomb code 

from a sequence of observations. For a further discussion on this topic see for example 

Seroussi and Weinberger [1997]. 
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In practice, Golomb codes are important because they are frequently used to encode 

prediction errors. In most cases the probability of a prediction error ( )e t  can be modeled 

by a symmetrical, zero centered, Laplacian distribution. Even in this case a Golomb code 

can be used after the application of a mapping that rearranges error values into a positive 

exponentially decaying distribution. One of these mappings can be found in LOCO–I and 

in the lossless image compression standard JPEG–LS (Weinberger, Seroussi and Sapiro 

[1996]): 

( )
2 ( )                if ( ) 0

( )
2 ( ) 1          otherwise.

e t e t
M e t

e t
⋅ ≥

=  ⋅ −
 

2.3.6 Textual Substitution Methods 

In a textual substitution method, encoder and decoder cooperate to maintain identical 

copies of a dictionary D  that is constantly changing during the compression. The 

encoder reads symbols from the input stream, matches these symbols with an entry of D , 

transmits a reference to this entry, and updates the dictionary with a method that depends 

only on the current contents of D  and on the current match. The index of the match in 

the dictionary is the compressed text fragment. 

Textual substitution methods are often referred to as “LZ–type” methods due to the 

work of Lempel and Ziv [1976] and Ziv and Lempel [1977, 1978], where “LZ1–type” or 

“LZ’77–type” methods are those based on matching to the preceding n characters and 

“LZ2–type” (see also Storer and Szymanski [1978, 1982]) or “LZ’78–type” are those 

based on a dynamic dictionary.  
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In LZ’78, the dictionary consists of all substrings of the data most recently processed. 

Compression starts by prepending a dummy string containing the entire alphabet, then the 

method matches the longest possible prefix of unprocessed characters with a substring 

that has occurred in the past. That prefix is encoded by sending a reference pointer to its 

earlier location, its length and one additional character, called “innovation”, that is 

encoded verbatim. The process repeats until the end of the file. 

While LZ’77 uses the previously encoded text as a dictionary, LZ’78 maintains 

instead an explicit structure that contains only previously cited phrases, each augmented 

by one new character. Compression is achieved by citations of these dictionary entries. 

Since not every location in the past may begin a citation, the cost of coding is reduced. 

LZ’78 scans unprocessed data while searching for the longest prefix not in the dictionary. 

That prefix is encoded as a dictionary index plus one innovation character, and then 

inserted as a new dictionary entry. In 1984, Welch proposed a variation on LZ'78 that 

was named LZW. In this variant the augmented string enters the dictionary as usual but 

the encoding of the innovation character is deferred to the succeeding match. 

Methods that use a dynamic dictionary take advantage of a trie data structure to 

efficiently implement the pattern matching. For further reading see the book of Storer 

[1988]. Practical implementation of textual substitution algorithms are, for example, the 

UNIX “gzip” utility that employs the LZ’78 approach, the UNIX “compress” utility and 

the V.42bis modem compression standard that employs the LZ’77 approach. Because any 

difference between the dictionaries maintained by the encoder and the decoder will cause 

a long (possibly infinite) sequence of errors, unless specific techniques are employed, this 

method is very sensitive to transmission errors. Storer and Reif [1997] address the 
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problem of error propagation in dictionary methods and show how a hashing based 

solution can be used to prevent and limit error propagation. 

2.3.7 Statistical Methods 

Statistical compression methods develop a statistical model of the data being encoded. 

Typically a common statistical method consists of a modeling stage followed by a coding 

stage. The model assigns probabilities to the input symbols, and the coding stage 

performs the actual coding with an assignment of symbols based on those probabilities. 

The model can be either static or dynamic (adaptive). Most models are based on one 

of the following two approaches. 

• Frequency: The model assigns probabilities to the text symbols based on their 

frequencies of occurrence, such that commonly occurring symbols are assigned 

short codes. A static model uses fixed probabilities, while a dynamic model 

modifies the probabilities and adapts to the text being compressed. 

• Context: The model assigns probability by considering the context in which a 

symbol appears. Contexts and symbol probabilities are determined from the data 

already encoded. The context of a symbol is often composed by a number of 

symbols preceding it and the method is said to “predict” the symbol based on that 

context.  

PPM, a sophisticated compression method originally developed by Cleary and Witten 

[1984] and extended by Moffat [1990], is an example of context–based compression. 

This method is based on an encoder that maintains an explicit statistical model of the 



 29 
 

data. The encoder inputs a new symbol, encodes it with an adaptive arithmetic encoder 

that uses its estimated a priori probability. 

2.3.8 Vector Quantization 

Since Shannon [1948] determined its theoretical optimality, Vector Quantization (or VQ) 

has been proved to be a powerful coding technique that is effective and independent of 

the data source. It works by dividing the sequence of input symbols into blocks (or 

vectors) of length n . Each vector is independently encoded by searching for the closest 

match in a dictionary (codebook) of representative vectors. The codebook is common to 

both encoder and decoder. 

Formally, if x  is an n –dimensional random vector in n\ , an N –levels Vector 

Quantizer of n\ is a triple ( , , )Q A F P=  where: 

• 1 2{ , ,..., }NA y y y=  is a finite indexed subset of n\ called codebook. Its elements 

iy  are the code vectors; 

• 1 2{ , ,..., }NP S S S=  is a partition of n\  and its equivalence classes (or cells) iS  

satisfy: 

N
n

i
i i

S
=

= ℜ∪ and i jS S∩ = ∅ for i j≠ ; 

• : nF A→\  is a function that defines the relation between the codebook and the 

partition as 

( ) iF x y=
G  if and only if ix S∈

G . 
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Vector quantization is asymptotically optimal when the dimension of the vector 

increases. Unfortunately the construction of the partition for the determination of the 

optimal code vectors has been proved to be an NP–complete problem by Lin [1992]. 

Another drawback that limits its use is that the size of the codebook grows exponentially 

with the dimension of the vector.  

Many variations have been proposed to speed up the encoding and simplify the 

codebook design, many based on trees or on a trellis data structure. For further reading 

see the book of Gersho and Gray [1992]. 

In a Vector Quantizer, encoding and decoding are highly asymmetric. Searching for 

the closest block in the dictionary (encoding) is computationally much more expensive 

than retrieving the codeword associated to a given index (decoding). Even more 

expensive is the dictionary design; fortunately this process is usually performed off–line. 

In Constantinescu and Storer [1994, 1994b] the authors propose a method to perform VQ 

with an on–line adaptive construction of the dictionary. 

2.3.9 Prediction  

A general paradigm in data compression is the concept of prediction. Prediction allows a 

compact representation of data by encoding the error between the data itself and the 

information extrapolated or “predicted” from past observations. If the predictor works 

well, predicted samples are similar to the actual input and the prediction error is small or 

negligible, and so it is easier to encode than the original data. 

A specific realization of the source is compressed by predicting the value of each 

sample from a finite number of past observations and sending to the decoder the 
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difference between the actual sample and its predicted value. The decoder, that shares 

with the encoder the prediction mechanism, can mimic encoder’s prediction, add it to the 

error that has been sent by the encoder (See Fig. 2.6) and, finally, reconstruct the original 

sample. 

When prediction is used to perform lossy compression, in order to avoid error 

propagation both encoder and decoder have to base the prediction on the encoded 

samples. While encoded samples contain noise that has been introduced by the lossy 

encoding, they constitute the only common knowledge between encoder and decoder. 

 

Linear
Predictor

Linear
Predictor

Quantizer
x(n)

+

+
+

- ++
x(n)-x(n)~

x(n)~ x(n)+∆(n)~ ^

y(n)=x(n)+∆(n)~ ^∆(n)^ ∆(n)^

x(n)~

 
Figure 2.6: Predictor. 

 

In the literature there is a distinction between backward and forward prediction, both 

mechanisms being very common in data compression. In backward prediction, the value 

of the current sample is predicted on the base of the past (encoded) observations. Since 

the prediction is based on the output data, common to both encoder and decoder, there is 

no need to send side information. Forward prediction instead, collects a number of input 

samples, determines for this block of data a predictor that is optimal with respect to some 

criteria and sends to the decoder both a parametric representation of the predictor and the 

prediction errors. While forward prediction performs better than backward prediction in 
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presence of rapid signal variations, a number of samples must be collected before the 

prediction and this process introduces a delay that may be intolerable in some systems. 

The most common kind of prediction, called Differential Pulse Code Modulation (or 

DPCM), assumes that the current sample is identical to the previous. In this simple yet 

effective method, the prediction error is the difference between the current sample and 

the last encoded value. 

Another common method, widely used in speech coding (Rabiner and Schafer 

[1978]) and recently found also useful in image coding (Meyer and Tischer [1997, 1998, 

2001], Motta, Storer and Carpentieri [1999, 2000], Wu, Barthel and Zhang [1998]) 

assumes a linear dependence between samples that are spatially or temporally adjacent. 

The idea behind linear prediction is that a sample can be approximated by a linear 

combination of past samples. Using this approach, the sample nx  can be predicted as a 

weighted sum of p  previous samples (prediction of order p ): 

1

p

n k n k
k

x a x −
=

= ∑�  

where 1 2, , , pa a a…  are the prediction coefficients, optimized to reduce the error variance. 

The prediction error is expressed as: 

1

p

n n n n k n k
k

e x x x a x −
=

= − = − ∑�  

LP has been extensively studied because it is an essential tool used in speech 

compression, and a number of efficient algorithms have been designed to determine the 

predictor’s coefficients. 
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2.3.10 Transform and Sub–Band Coding 

Transform coding designates a family of algorithms that are not compression methods in 

the literal sense (some transformations even increase the size of their input), but are able 

to enhance entropy coding by transforming the data into alternative representations that 

are easier to compress. 

In general the transformation exploits characteristics that are peculiar to the signal 

and increases the performance of an entropy coder or allows a better control of the error 

introduced by a lossy compressor. 

In the case of lossless compression, transforms such as the Burrows–Wheeler 

(Burrows and Wheeler [1994]) enhance some statistical properties of the data by 

rearranging the sequence of symbols. 

When compressing natural sources like audio, images or video for example, the 

information that is relevant for a human user is often better described in the frequency 

domain. Decomposing a signal into its frequency components allows the encoder to 

prioritize the data and introduce error where the user is less likely to perceive it. 

When the transformation is implemented in the form of a filter bank, transform 

coding frequently takes the name of sub–band coding. In a sub–band coder the input 

signal is separated by a filter bank into multiple streams, each containing components in a 

particular interval of frequencies. Such streams are decimated (or sub–sampled) and 

individually encoded. Division into bands allows the exploitation of phenomena that are 

better described in the frequency domain, like, for example, the frequency masking.  

More details can be found in Tsutsui et al. [1992], Woods [1991], Pennebaker and 

Mitchell [1993].  
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2.3.10.1 Discrete Cosine Transform 

The human visual system processes information with mechanisms that work in the 

frequency domain. In the eye, for example, detectors are connected with inhibiting 

connections so that object contours (spatial high frequencies) are enhanced during 

perception. Even the human auditory system acts as a filter bank in which the cochlea 

decomposes sounds into critical bands, each centered on a different frequency. Because 

of these reasons several time–to–frequency transforms have been used for the 

compression and the analysis of digital signals. A few of them are variations of the 

Fourier transform, a powerful tool used in analytic calculus to decompose a function in a 

weighted sum of periodic functions having different periods and phases. 

The frequency transform most used in data compression is the Discrete Cosine 

Transform or DCT. DCT has the advantage of achieving good decorrelation of the signal 

while requiring modest computation. 

The discrete cosine transform of 2kn =  samples of a real signal (0), (1), , ( 1)s s s n −…  

is given by the sequence of n  real numbers (0), (1), , ( 1)C C C n −…  given by: 

1

0

( ) (2 1)( ) ( )cos
2

n

i
j

i j iC s s j
n n

δ π−

=

+ =  
 

∑  

The sequence of numbers (0), (1), , ( 1)C C C n −…  can be used to compute the original 

signal via the inverse DCT given by: 

1

0

( ) (2 1)( ) ( ) cos
2

n

j
j

j i js i C s
n n

δ π−

=

+ =  
 

∑  
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In both equations, for any integer 0m ≥ : 

1  if 0
( )

2 if 0
m

m
m

δ
=

=  >
 

When the signal is multi–dimensional, as in image coding for example, the transform 

is applied along each dimension, one dimension at a time. Similarly to the Fourier 

transform, the DCT decomposes a signal into a weighted sum of cosine functions having 

different frequencies. Figure 2.7 shows the 64 base functions in which the bi–dimensional 

DCT used in the JPEG image coding standard decomposes each 8 8×  block of pixels. 

 

 

 
Figure 2.7: Bi–dimensional 8x8 DCT basis function. 
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2.3.10.2 Burrows–Wheeler Transform 

A slightly expanding transform was proposed by M. Burrows and D. Wheeler in [1994]. 

When used on text data, it achieves performance comparable to the best available 

methods. It works by dividing the data stream in blocks and then encoding each block 

independently. Competitive performance is achieved only for blocks that contain more 

than 10.000 samples. 

For each block of length n , a matrix M  whose rows contain the n  possible 

“rotations” is constructed (see Figure 2.8.1 for the method applied to a small string). The 

rows of this matrix are sorted in lexicographic order (see Figure 2.8.2). The transformed 

sequence is composed of the last column of the matrix augmented by the position of the 

index in the matrix of the original string. This information is sufficient to recover the 

original sequence via an inversion algorithm also described in Burrows and Wheeler 

[1994]. 

The rotations place in the last column the letter immediately before the letters in the first 

columns (contexts). 

 When the matrix is sorted, similar contexts are grouped together and this results in 

letters that have the same context being grouped together in the last column. See for 

example Figure 2.8.2, where in the transformed sequence, four “A” and two “B” are 

grouped together. Compression is achieved by encoding the transformed sequence with a 

move–to–front coding and then by applying run length and entropy coding. 
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A B R A C A D A B R A 
B R A C A D A B R A A 
R A C A D A B R A A B 
A C A D A B R A A B R 
C A D A B R A A B R A 
A D A B R A A B R A C 
D A B R A A B R A C A 
A B R A A B R A C A D 
B R A A B R A C A D A 
R A A B R A C A D A B 
A A B R A C A D A B R 

 
Figure 2.8.1: Matrix M containing the rotations of the input string “ABRACADABRA”. 

 
A A B R A C A D A B R 
A B R A A B R A C A D 
A B R A C A D A B R A 
A C A D A B R A A B R 
A D A B R A A B R A C 
B R A A B R A C A D A 
B R A C A D A B R A A 
C A D A B R A A B R A 
D A B R A A B R A C A 
R A A B R A C A D A B 
R A C A D A B R A A B 

 
Figure 2.8.2: The matrix ' sort_rows( )M M= . Transformed output is given by the 

position of the input string in 'M  (third row) followed by the string “RDARCAAAABB”. 

 

While the matrix M  makes the description of this transform simpler and is universally 

used in the literature, a practical implementation, including the one presented in the 

original paper, will not explicitly build this matrix. 

Burrows–Wheeler transform and derived block sorting transforms have been proved 

to be equivalent to some dictionary method like PPM*, described in Moffat [1990]. A 

detailed study and some possible improvements on this algorithm are presented in 

Fenwick [1996]. Sadakane [1998, 1999] and Balkenol, Kurtz and Shtarkov [1999] also 

propose improved algorithms. A study of the optimality of the BWT can be found in 

Effros [1999]. 
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One of the main problems presented by this transform is its sensitivity to errors. When a 

single error is present a whole block is corrupted and cannot be decoded properly. An 

error resilient variant has been proposed in Butterman and Memon [2001]. 

2.3.10.3 Wavelets 

Another decomposition scheme that adopts transform coding is based on wavelet 

functions. The basic idea of this coding scheme is to use as a base for the new 

representation functions that have the best compromise between time and frequency 

localization (Fourier and Cosine transform are not of this type). 

Wavelets process data at different scale or resolution by using filter–bank 

decomposition. Filtering uses versions of the same prototype function (“mother wavelet” 

or “wavelet basis”) at different scales of resolution. A contracted version of the basis 

function is used for the analysis in the time domain, while a stretched one is used for the 

frequency domain. 

Localization (both in time and frequency) means that it is always possible to find a 

particular scale at which a specific detail of the signal may be outlined. It also means that 

wavelet analysis reduces drastically the amplitude of the input signal. This feature is 

really appealing for image compression since it means that most of the data is almost zero 

and then easily compressible. For further reading, see Vetterli and Kovacevic [1995]. 

The lossy image compression standard JPEG–2000 is based on wavelet 

decomposition. 
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Figure 2.9: Wavelet decomposition used for image coding. 

2.3.10.4 Overcomplete Basis 

One of the most important features of the transformations that we have described so far is 

that they use a basis that is “minimal” or “complete’ in the sense that every signal has a 

unique representation in that space. While this results in fast analytical methods to find 

that representation, depending on the basis, the result may lead to a better or worse 

compression. It is well known for example that step functions have an infinite 

representation in a Fourier–like basis; conversely a sinusoid has an infinite representation 

in a basis that uses Haar wavelets (that look like step functions).  
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A technique that has recently received attention from many researchers is based on a 

decomposition into overcomplete bases. The rationale for the use of overcomplete 

dictionaries is that non–uniqueness gives the possibility of choosing among many 

representations the one that is most compressible, for example, the representation with 

the fewest significant coefficients. 

Several new decomposition methods have been proposed, including Method of 

Frames (MOF), Matching Pursuit (MP), Basis Pursuit (BP) and for special dictionaries, 

the Best Orthogonal Basis (BOB). 

Matching Pursuit is a greedy algorithm proposed in Mallat and Zhang [1993]; it 

decomposes a signal into a linear expansion of waveforms that are selected from an 

overcomplete dictionary of functions. These functions are chosen in order to best match 

the signal structure. 

Matching pursuit decomposes a signal ( )f t  by using basis functions ( )g tγ  from a 

dictionary G . At each step of the decomposition, the index γ  that maximizes the 

absolute value of the inner product ( ), ( )p f t g tγ=  is chosen. The value p  is the 

expansion coefficient of the dictionary function ( )g tγ . The residual signal 

( ) ( ) ( )R t f t p g tγ= − ∗  can be further expanded until a given number of coefficients is 

determined or until the error falls below a given threshold. After M  stages, the signal is 

approximated by 
1

ˆ ( ) ( )
n

M

n
n

f t p g tγ
=

= ∗∑ . If the dictionary is at least complete, the 

convergence (but not the speed) of ˆ ( )f t  to ( )f t  is guaranteed. 

Matching pursuit was used with very good results as an alternative of DCT transform 

in low bit rate video coding by R. Neff and A. Zakhor [1995, 1997]. 
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In video coding applications, for example, the dictionary is composed of several scaled, 

translated and modulated Gabor functions and it is used to encode the motion 

compensated residual. Every function in the dictionary is compared with each part of the 

image maximizing the absolute value of the inner product. The best function is selected, 

the residual determined and the result eventually further encoded with the same method. 

The computation can be very intensive, so techniques have been proposed to speed up 

the search. In Neff [1994] and in Neff and Zakhor [1995, 1997] a dictionary of separable 

Gabor functions is used, and an algorithm for a fast inner product is proposed. A heuristic 

to speed up the search can be also a preprocessing of the signal to match only the parts of 

the signal than have high energy. Matching pursuit shows very good performance and, 

with respect the DCT based codecs, has the advantage that it is not “block based”, so the 

blocking artifacts although still present, are less evident. 

Another method that decompose a signal into an overcomplete dictionary, Basis 

Pursuit (Chen [1995], Chen, Donoho and Saunders [1994, 1996]), uses a convex 

optimization closely related to linear programming. It finds a signal representation where 

the superimposition of dictionary elements is optimal with respect the smallest 1L  norm 

of coefficients among all such decompositions. Formally BP involves the solution of the 

linear programming problem: 

1
min αG  subject to fγ γγ

α ϕ∗ =∑  

BP in highly overcomplete dictionaries leads to complex large–scale optimization 

problems that can be attacked only because of the recent advances in linear programming. 

For example, the decomposition of a signal of length 8192 into wavelet packet dictionary 

requires the solution of an equivalent linear program of size 8192 by 212992. 
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2.3.11 Fractal Coding 

Fractal based algorithms have very good performance and high compression ratios (32 to 

1 is not unusual); their use is however limited by the intensive computation required. 

Fractal coding can be described as a “self Vector Quantization”, where a vector is 

encoded by applying a simple transformation to one of the vectors previously encoded. 

Transformations frequently used are combinations of scaling, reflections and rotations of 

another vectors. 

Unlike vector quantization, fractal compressors do not maintain an explicit dictionary 

and the search can be long and computationally intensive. Conceptually, each encoded 

vector must be transformed in all the possible ways and compared with the current one to 

determine the best match. Due to the fact that the vectors are allowed to have different 

size, there is very little “blocking” noise and the perceived quality of the compressed 

signal is usually very good. For further reading, see the books of Barnsley and Hurd 

[1993] or Fisher [1995]. 

 

2.4 Inter Band Decorrelation 

It is common to have data that are oversampled by taking measures of the same event 

from several reference points that are different in time, space or frequency. When this 

happens, the data are said to be constituted by “channels”, each carrying information on a 

coherent set of measures. A typical example is the stereophonic audio signal in which, in 

order to reconstruct the spatial position of the sound source, two microphones placed in 
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two different spatial locations record the sound produced by the source. Since the 

channels measure the same event, a large amount of information is common to the two 

sets of measures and efficient compression methods can be designed to exploit this 

feature.  

A higher number of channels (twelve) are present in an electro cardiogram signal 

(ECG or EKG) where each channel records the heart’s electrical activity from a probe 

placed in a specific body area (Womble et al. [1977]). As it is possible to see in the 

Figure 2.10, the twelve measures of an ECG are quite different one from the other while 

showing strikingly common patterns.  
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Figure 2.10: The twelve channels of an EKG signal. 
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Another case of multi channel data is constituted by color images; in digital color images 

the same scene is represented with three measures of luminosity taken in three frequency 

domains or “bands” (see Limb, Rubinstein and Thompson [1977] and Chau et al. [1991]). 

A generalization is the case of multi and hyper spectral images that combine in the 

same picture a number of readings (sometimes as many as 224) taken in narrow and 

regularly spaced frequency bands (Markas and Reif [1993]). In some extent, even the 

video signal can be included in the category of multi–channel data in the sense that in a 

video signal several pictures of the same scene are taken at uniformly spaced time 

intervals. 

In these cases, since all channels represent measures of the same event, it is 

reasonable to expect correlation between these measures. A number of techniques have 

been designed in order to exploit this correlation to achieve higher compression. We will 

discuss some of these techniques in the next paragraphs. 

2.4.1 Color Decorrelation 

Pixels in a color digital image are usually represented by a combination of three primary 

colors; red, green and blue as in an RGB scheme for example. This representation is 

“hardware oriented” in the sense that computer monitors generate the color image by 

combining these three primary colors. 

Being that the three signals are luminosity measures of the same point, some 

correlation between their values is expected, and alternative representations have been 

designed in order to take advantage of this correlation. 
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When the color image is lossily encoded and destined to be used by human users in non–

critical applications, it is possible to take advantage of the variable sensitivity to colors of 

the human visual system (Pennebaker and Mitchell [1993]). This is a method widely used 

in the color schemes that have been developed for commercial TV broadcasting.  

The scheme that was used at first in the PAL analog video and subsequently adopted 

in CCIR–601 standard for digital video is named b rYC C  (or YUV); the transformation 

between RGB and b rYC C  is a linear transformation which uses the following equations 

(Gonzalez and Woods [1992]): 

 
0.299 0.587 0.114

b

r

Y R G B
C B Y
C R Y

= ∗ + ∗ + ∗
= −
= −

 

This color representation divides the signals into a luminosity component Y  and two 

chrominance components bC  and rC , so by using the lower sensitivity of the human eye 

to color changes it is possible to achieve some compression by representing more 

coarsely the chromatic information. The PAL standard, for example, allocates a different 

bandwidth to each component: 5MHz are allocated to Y  and 1.3 MHz to U  and 

V components (U  and V are a scaled and filtered version of bC  and rC ). This 

representation also has the advantage of being backward compatible with black and white 

pictures and video. Extracting a black and white picture from a b rYC C  color image is 

equivalent to decoding the Y  component only. 
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Similarly, in digital video the chrominance components bC  and rC  are frequently sub–

sampled at a lower resolution than Y  by following one of these conventions (Bhaskaran 

and Konstantinides [1995]): 

• 4:4:4 Represents the original signal. Each pixel is encoded as three bytes: one for 

the luminance and two for the chrominance; 

• 4:2:2 Color components are horizontally sub–sampled by a factor of 2. Each pixel 

can be represented by using two bytes; 

• 4:1:1 Color components are horizontally sub–sampled by a factor of 4; 

• 4:2:0 Color components sub–sampled in both the horizontal and vertical 

dimension by a factor of 2 between pixels. 
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Figure 2.11: Color Subsampling Formats. 
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2.4.2 Motion Compensation 

A particular kind of inter–band prediction used in video compression to exploit temporal 

redundancies between consecutive frames is called “motion compensated prediction”. It 

assumes that two consecutive video frames represent the same scene in which some 

objects have been displaced because of their relative motion. So, instead of predicting the 

current frame from the previous encoded one as in a DPCM scheme, the frame is divided 

in blocks and each block is individually matched with the closest block in the previous 

frame. This process is called “motion compensation” because a block is thought to be a 

displaced version of a corresponding block in the past frame. The offset between the two 

blocks is sent to the decoder as a “motion vector” and the difference is performed 

between a block and its displaced match. 

The decoder, which stores the past frame in a memory buffer, inverts the process by 

applying the motion vectors to the past blocks and recovers the reference blocks that must 

be added to the prediction error. No motion estimation is necessary on the decoder side. 

The Block Matching Algorithm (BMA) that is traditionally used to perform the 

motion compensation is a forward predictor that finds for each block the displacement 

vector minimizing the Mean Absolute Difference (MAD) between the current block and a 

displaced block in the previously encoded frame. In literature, quality improvements are 

observed in DCT based codecs that match blocks by using different error measures like 

the Geometric Mean of the DCT coefficient variance (Fuldseth and Ramstad [1995]) or 

the Spectral Flatness of the DCT coefficients (Fuldseth and Ramstad [1995]). 

Block matching motion compensation is the most computationally intensive task in a 

DCT based codec. It is estimated that more than 60% of the coding time is spent in 
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performing the motion compensation. Several fast methods have been proposed to speed 

up block based motion compensation. Some of them use logarithmic or hierarchical 

search (Jain and Jain [1981]) or, as in Mandal et al. [1996], they use a multi–resolution 

approach suited for codecs based on the wavelet transform. Speed improvements are also 

obtained by limiting the range of the motion vectors. Experiments presented in Bhaskaran 

and Konstantinides  [1995] show that for head and shoulders sequences, limiting the 

range of the motion vectors in a diamond shaped region causes only a very small quality 

loss in H.261 encoded sequences. Figure 2.11 shows the regions and the SNR achieved in 

a H.261 encoder for increasing bit rates; the optimal searching region is highlighted. 
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Figure 2.12: Search regions and quality improvements for typical H.261 encoding. 
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A completely different approach based on backward motion estimation is presented in 

Armitano, Florencio and Schafer  [1996] with the name of “Motion Transform” (MT). 

Working solely on information available at both encoder and decoder, backward motion 

estimation has the advantage that it does not require the transmission of the motion 

vectors. The authors show that with this method it is possible to increase the PSNR 

quality of the reconstructed video by 2–4dB. The biggest drawback of the motion 

transform is that it lacks compatibility with the existing standards and that both encoder 

and decoder have to compute motion estimation. 

2.4.3 Multi and Hyperspectral Images 

In the last two decades, a technology consisting of the remote acquisition of high 

definition images has been successfully used both in military and civilian applications to 

recognize objects and classify materials on the earth’s surface. High definition images 

can be acquired via a space borne platform or an air borne platform, transmitted to a base 

station and elaborated. 

If we want to use an image to recognize objects, very high resolution is necessary. 

For example to recognize, let’s say a corn field, a picture that shows details of the corn 

leaves is necessary. Such a picture would require the acquisition and elaboration of an 

enormous amount of data. The approach followed by multispectral and hyperspectral 

photography overcomes this problem by considering relatively large areas to be covered 

by a single pixel (typically of the order of ten square meters), but instead of decomposing 

the reflected light into three colors, it uses a wider spectrum ranging from infrared to 

ultraviolet and a band decomposition counting tens to hundreds of very narrow bands.  
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Since every material reflects sun light in its own peculiar way, the analysis of the 

spectrum of its reflected light can be used to uniquely recognize it. When a more 

sophisticated analysis is required, an increment in the spectrum resolution is technically 

feasible since it only increases data by a linear amount. 

In practice such measures are affected by a number of different errors that complicate 

the interpretation of the image and the classification of a spectrum. For example, several 

materials can be present in the area covered by a single pixel, so in general, a single pixel 

will consist in a mixture (linear or non–linear) of several spectra. Clouds, shades, time of 

the day, season and many other factors affect the reading by changing the properties of 

the sunlight. Nevertheless, hyperspectral imagery has been used in the past with great 

success and shows incredible promise of future applications. 

Typical algorithms used on hyperspectral images consist of dimensionality reduction, 

spectral unmixing, change detection, target detection and recognition. Since hyperspectral 

images are acquired at great cost and destined to applications that are not necessarily 

known at the time of the acquisition, particular care must be taken in order to assure that 

relevant data are not lost during lossy compression and ad-hoc quality measures must be 

used to insure a meaningful preservation of the quality.  
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2.5 Quality Assessment 

One of the main problems in lossy compression consists in the assessment of the quality 

the compressed signal. Two main approaches can be taken to solve this problem, one 

involving objective measures and the other relying on subjective assessments. The two 

methodologies are not mutually exclusive and frequently are both used at different stages 

of the compressor design. Quality of data that are destined to be used by human users, 

like music, video or pictures can be assessed with subjective tests. First a reference 

quality scale is chosen, like for example the Mean Opinion Score used in the evaluation 

of digital speech, then a number of experts are asked to judge the quality of the 

compressed data. While subjective methods are very reliable and, when applicable, 

provide the best possible evaluation, the difficulty of conducting subjective tests and the 

need for “automatic” assessment has led to a great interest in sophisticate objective 

metrics that mimic closely the response of the human perceptual system. 

Simpler objective measures have the advantage of being mathematically tractable and, 

with their help novel compression algorithms can be easily evaluated and their 

performance studied in great detail. 

Objective distortion metrics are also used in “closed loop” encoders to control in real 

time the quality of the compression and dynamically control the parameters of the 

algorithm. 
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If we indicate an N -samples signal with 0 ( ) fss t s≤ ≤ , with 2
sσ  its average variance 

and with ˆ( )s t  the lossily compressed signal obtained after compression and 

decompression, the most common distortion measures take the following forms: 

Mean Absolute Error (MAE) or 1L : 

1 ˆ( ) ( )
t

MAE s t s t
N

= −∑  

Mean Squared Error (MSE) or 2
2L :  

[ ]21 ˆ( ) ( )
t

MSE s t s t
N

= −∑  

Root MSE (RMSE) or 2L : 
RMSE MSE=  

Signal to Noise Ratio (SNR): 
2

( ) 1010 log s
dBSNR

MSE
σ

= ∗  

Peak SNR (PSNR): 
2

( ) 1010 log fs
dB

s
SNR

MSE
= ∗  

Peak error or Maximum Absolute Distortion (MAD) or L∞ : 

{ }( ) ˆmax ( ) ( )tMAD s t s t= −  

Percentage Maximum Absolute Distortion (PMAD): 

( )

ˆ( ) ( )
max 100

( )t

s t s t
PMAD

s t
 −  = ∗ 
  

 

Most measures are derived from the Mean Squared Error because MSE has a simple 

mathematical expression, is derivable and gives a good measure of random errors. MSE 

and Signal to Noise Ratio capture an average behavior and very little can be said on the 
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error that affects single samples. Because of these characteristics, MSE derived metrics 

are more useful in the evaluation of high bit rate signals. 

The Mean Absolute Error and the derived PMAD are mainly used when the encoding 

must guarantee an error always smaller that a given threshold. Systems in this category 

are frequently called “near lossless” and their main application is the compression of 

scientific and medical data. 

While these measures are widely used, it can easily be shown that they have little to 

do with how the distortions are perceived by humans The reason of this poor correlation 

between SNR and measures obtained via subjective observations is mostly due to the fact 

that, unlike the human perceptual system, these measures are not sensitive to structured 

or correlated errors. Structured errors, frequently present in encoded data are known to 

degrade local features and perceived quality much more than random errors do. The 

human perceptual system is more sensitive to structured patterns than to random noise 

and more sophisticate methods have to be used to assess carefully the quality of 

compressed digital audio, pictures and video. Some perceptually motivated methods that 

are used to assess digital images and video will be discussed in the next sections. 

2.5.1 Digital Images 

In some applications the quality of the encoded picture is not very important, for 

example, in off–line editing it can be necessary only to recognize the pictures to be able 

to make cutting decisions. In others, especially in distribution and post–production, 

quality is crucial and carefully supervised. 
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The coding errors that are introduced by state of the art encoders are mostly 

structured, and they are not easily modeled in terms of SNR or MSE. In particular at very 

low bit rates, most coding schemes show visible artifacts that can impoverish the 

perceived quality. Several artifacts commonly observed in low bit rate image 

compression are: 

• Blocking: Occurs in techniques that involve partitioning of the image into blocks 

of the same size. It appears to be the major visual defect of coded images. 

Blocking is caused by the coarse quantization of the low frequency components in 

an area where the light intensity changes gradually. The high frequencies 

introduced by the quantization error enhance block boundaries. Blocking artifacts 

are commonly encountered in DCT–based, VQ and fractal–based compression 

algorithms. 

• Overall Smoothness or Blurring: Is a very common artifact present in the 

conventional TV standards (NTSC, PAL or SECAM). It occurs also for digital 

coding techniques at low bit rate and appears in different forms such as the edge 

smoothness due to the loss of high frequency components, texture and color blur 

due to loss of resolution. Although segmentation–based coding techniques claim 

to preserve the major edge components in the image, they often smooth out 

smaller edge components. 

• Ringing Effect or Mosquito: The ringing effect is another common visual 

distortion that is observable as periodic pseudo–edges around the original edges in 

a DCT–compressed, sub–band or wavelet compressed image. It is also visible in 

the textured region of compressed images where it appears as a distorted texture 
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pattern. Ringing is caused by the improper truncation of high frequency 

components. This artifact is also known as Gibbs effect. 

• Texture Deviation: A distortion called texture deviation, is caused by loss of 

fidelity in mid–frequency components, and appears as a granular noise or as the 

“dirty window” effect. The human eye is less sensitive to texture deviation in 

textured areas with transform–based coding, but texture deviation is often present 

as an over smoothing of texture patterns, that turns out to be visually annoying. 

• Geometrical Deformation: In model–based coding, objects in an image (a 

human face, for example) are compressed by using a geometric model. This 

compression approach, suitable for very low bit rate coding, may show 

geometrical deformations, namely the synthesis procedure may change shape and 

position of some crucial features and lead to perceptual inconsistency. 

 

All these artifacts are also commonly encountered in video encoding. Many algorithms 

were proposed to decrease the effects of these coding artifacts in transform–based codecs. 

Most of them involve out–of–the–loop pre or post filtering (see for example Lai, Li and 

Kuo [1995, 1996], Joung, Chong and Kim [1996] and Jacquin, Okada and Crouch 

[1997]). The main advantage of this class of techniques is that, since they introduce only 

a pre or post filtering of the signal, full compatibility with coding standards is preserved. 

Their main drawback is that filtering is likely to produce unnecessary blurring of the 

image. 

More sophisticated techniques to reduce compression artifacts involve in–loop 

perceptive measures to drive the bit allocation in standard algorithms. One of these 
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methods is the Picture Quality Scale (or PQS), proposed by Miyahara, Kotani and Algazi 

[1996] as an objective metric for still, achromatic pictures. PQS transforms the coding 

error in five perceptually relevant signals 1 5,...,F F  also called Distortion Factors and 

combines them in a single numeric value by using a regression method. This value, 

representative of the quality of the given image, is a very good approximation of the 

Mean Opinion Score (MOS), a subjective scale widely used for the evaluation of the 

image quality. 

The factors considered in PQS are: 

• Distortion Factor 1F : is the frequency weighted error defined by the CCIR 567 

standard; 

• Distortion Factor 2F : is an error obtained with a different frequency weighting 

and includes a correction that takes in account Weber's law (see Carterette and 

Friedman [1975]); 

• Distortion Factor 3F : measures the horizontal and vertical block discontinuities 

that are evident in most image coders; 

• Distortion Factor 4F : measures errors that are spatially correlated. This factor 

captures textured errors that are well–known to be easily perceived; 

• Distortion Factor 5F : measures error in the vicinity of high contrast image 

transitions because errors are more evident when located in high contrast zones. 

Error indicators contribute to more than one factor, so it is necessary to use a principal 

component analysis to decorrelate the distortion factors before composing them into a 

single value that is representative of the global image quality. 
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Figure 2.13: PQS. 

 

Figure 2.13 shows the system proposed in Miyahara et al. [1996]. PQS has been also by 

Lu, Algazi and Estes [1996] to compare wavelet image coders and to improve the quality 

of a high quality image codec. The main drawback of this system is due to the fact that it 

is formulated for still achromatic pictures (so it is of little use in color imaging) and that 

the distortion factors are determined from the whole image, so they do not represent local 

distortions. 

2.5.2 Video 

The lack of perceptually motivated distortion measures is particularly relevant in video 

coding, where a strong variability of the performance is usually observed. Large moving 

objects, complex scenes and fast scene changing are all cause of extreme variability and 

it is a well–known fact that no compression technique works well for all scene types 

(Pearson [1997]). 
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For example, it is well known that line interlacing, one of the earliest compression 

methods, produces patterns on certain types of moving object. Color compression 

schemes such YIQ and YUV used in NTSC or PAL exhibit severe cross–color effects in 

high spatial–frequency areas. Block–based transform coding, as discussed earlier, has 

been known to have difficulty with diagonal lines traversing a block. Fractal coding may 

work spectacularly well with certain types of iterated structure but not so well with 

others. Model–based coding does not work very well if new objects keep entering the 

scene, etcetera. Code switching was proposed as a solution to the problem of variability 

in video coding, nevertheless, a good criterion to drive the switch is still required. 

The perception of a video sequence is a complex phenomenon that involves spatial 

and temporal aspects. Besides all the static characteristics of the visual system (edge and 

pattern sensitivity, masking, etc.), studies of viewer reaction to variable–quality video 

have identified the end–section of the video sequence and the depth of the negative peaks 

as being particularly influential in the evaluation of the quality (Pearson [1997]). 

Van den Branden Lambrecht [1996] has proposed a metric specifically designed for 

the assessment of video coding quality. This quality measure named Moving Pictures 

Quality Metric (or MPQM) is based on a multi–channel model of the human spatio–

temporal vision and it has been parametrized for video coding applications. MPQM 

decomposes the input signal in five frequency bands, three spatial directions and two 

temporal bands. MPQM also takes in account perceptive phenomena as spatial and 

temporal masking. 

A block diagram for the proposed system is depicted in Figure 2.14; the input 

sequence is coarsely segmented into uniform areas by looking at the variance of the 
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elementary blocks. Both original and reconstructed video sequences are transformed by 

using a perceptual decomposition. The signal is decomposed by a filter–bank in 

perceptual components grouped in 5 frequency bands, 3 spatial directions and 2 temporal 

bands. Contrast sensitivity and masking are calculated and the results are used to weight 

the transformed decoded sequence. 
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Figure 2.14: MPQS. 

Another method, mainly proposed for automatic assessment of video coding algorithms, 

is Motion Picture Quality Scale or MPQS (van den Branden Lambrecht and Verscheure 

[1996]). MPQS performs a simple segmentation on the original sequence, by dividing the 

frames into uniform areas. By using the segmentation, the masked data are pooled 

together to achieve a higher level of perception. A multi–measurement scheme is 

proposed as output of the pooling and a global measure of the quality, and some detailed 

metrics are computed. Measures evaluate quality of three basic components of images: 

uniform areas, contours and textures. 

MPQS was used with some modification in Verscheure and Garcia Adanez [1996] to 

study the sensitivity to data loss on MPEG–2 coded video streams transmitted over an 

ATM network and in Verscheure et al. [1996] to define a perceptual bit allocation 

strategy for MPEG–2. 
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DATA COMPRESSION STANDARDS 

3.1 Audio 

3.1.1 Pulse Code Modulation 

Pulse Code Modulation (PCM) is the simplest form of waveform coding since it 

compresses an analog signal by applying only sampling and quantization. It is widely 

used both in high quality audio encoding and in speech coding. A popular PCM format is 

the Compact Disc standard, where each channel of a stereophonic audio signal is sampled 

at 44.1 KHz per channel, 16 bit per sample. 

3.1.2 MPEG Audio 

One of the tasks of the Movie Picture Expert standardization Group (MPEG) was the 

definition of an audio coding standard suitable for perceptually “transparent” audio 

compression at bit rates comprised between 128 Kb/s and 384 Kb/s. When the input is a 

PCM stereo audio signal, sampled at 44.1 KHz, 16–b/sample (audio CD) this results in a 

compression factor ranging between 4 and 12.  
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Three layers of increasing delay, complexity and performance were defined in the 

MPEG–1 audio coding standard: Layers I, II and III. Since each layer extends the 

features of its predecessor, the layer organization retains backward compatibility. A 

decoder that is fully compliant with the most complex Layer III, for example, must be 

able to decode bitstreams created by Layer I and II encoders. However, in practice when 

power consumption and cost efficiency are critical constraints, decoders compatible with 

a single layer only are not uncommon. A good description of Layers I and II can be found 

in Sayood [1996] and a more general discussion on the standard and the standardization 

process is in Noll [1997]. 

MPEG–1 Layer III (also known with the nickname of MP3) provides the highest 

compression and has recently increased its popularity due to the availability of 

inexpensive hardware players supporting this file format. The computing power of 

current microprocessors also makes feasible MP3 software–only encoders and decoders, 

making this format the most popular choice for the exchange of audio files over the 

Internet. 

Layer III is a hybrid subband and transform coding; it uses a perceptually justified bit 

allocation which exploits phenomena like frequency and temporal masking to achieve 

high compression without compromising the final quality. 

PCM inputs sampled at rates of 32, 44.1 and 48 KHz are supported both in mono and 

stereo modes. Input bit rates match the common CD and DAT digital formats. Four 

encoding modes are available: mono, stereo, dual and joint stereo, where the dual mode is 

used to encode two channels that are not correlated, like for example a bilingual audio 

track. More interesting is the joint stereo mode in which a modality called “intensity 
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stereo coding” is used to exploit channel dependence. It is known that above 2 KHz and 

within each critical band, the perception of a stereo image is mostly based on the signal 

envelope and it is not influenced by the details of the temporal structure. This 

phenomenon is used to reduce the bit rate by encoding subbands above 2KHz with a 

signal L+R that is the composition of the left and right channels and a scale factor that 

quantifies the channels’ relative intensities. The decoder reconstructs left and right 

channels by multiplying the composite L+R signal by the appropriate scale factor. While 

this results in two signals that have same spectral characterization, their different 

intensity is sufficient to retain a stereoscopic image. 

Other psychoacoustic phenomena are exploited within MPEG–1 audio standard. In 

particular auditory masking is used to determine a perceptually transparent bit allocation 

for each critical band and temporal masking is used to reduce pre–echoes introduced by 

coarse quantization while in the presence of a sudden music attack. Since the input is 

divided into frames and each frame is encoded independently, a frame that contains a 

period of silence followed by a sudden attack (drums, for example) presents a peculiar 

problem. After the frame is transformed in the frequency domain and its representation 

quantized, the inverse transform spreads the quantization error uniformly in the time 

domain and the period of silence preceding the attack may get corrupted by this noise. 

When this condition is detected it is useful to reduce the size of the frame. This is not 

sufficient to prevent errors, but if the frame is small enough, the noise introduced before 

the attack is likely to be masked by it and the listener will not be able to perceive any 

quality degradation. 
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While Layers I and II are very similar (see Figure 3.1) and decompose input by using a 

filter bank, the more complex Layer III combines a filter bank with a cascaded Modified 

Discrete Cosine Transform (see Figure 3.2). In both cases, signal decomposition is 

followed by a perceptual bit allocation and the frequency domain representation of the 

input frame is quantized, each critical band having a different resolution. Bit allocation 

starts with a bit pool that depends on the target bit rate and distributes the bits to the 

single bands while trying to achieve a transparent quantization. Auditory masking is used 

to determine if a signal present in a critical band masks (raises the auditory threshold of) 

an adjacent band. When this happens, fewer bits are dedicated to the coding of the 

masked signals and more bits are allocated to the masker, since this is likely not to result 

in any audible error.  
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Figure 3.1: MPEG–1 Layers I and II. 
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Another feature of Layer III is the use of entropy coding based on static Huffman codes. 

Perceptual coding makes MPEG–1 audio highly asymmetrical and the encoder is 

generally more complex than the decoder. Like in other standards, standardization only 

addresses the bitstream format and, for example, it does not cover any particular strategy 

to perform this perceptual coding. This is done in order to leave room for encoder 

improvements and it also allows the realization of very simple encoders that may not use 

any psychoacoustic model at all. 

MPEG–2 audio enhances MPEG–1 by adding a number of features that make the new 

standard more flexible. Input sampling frequencies are extended to cover medium band 

applications with 16, 22.05 and 24 KHz. 

To support stereo surround, the number of channel is extended from a maximum of 

two to a maximum of five high–quality, full–range channels (Left, Center, Right, 

Surround Left and Surround Right) plus the possibility of connecting an additional 

subwoofer in a configuration called 5.1. When used in this configuration, some backward 

compatibility with MPEG–1 is retained (see Figure 3.3).  
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Figure 3.3: MPEG–2 backward compatible configuration (A) vs. AAC (B). 

 

An advanced mode that is not backward compatible was also defined by the standard. 

This mode, called Advanced Audio Coding or AAC, defines a number of tools arranged 

in three different profiles, defined to cover typical applications with different quality 

requirements and coding complexity. Tools include high-resolution filter banks, 

preprocessing, prediction, and of course, perceptual coding. AAC is intended for both 

consumer and professional applications and supports up to 46 channels while having as a 

default, the mono/stereo mode and the 5.1 configuration described before.  

 

3.2 Speech 

3.2.1 A–law and µ–law 

When PCM is used to encode the narrowband speech signal, a sampling frequency of 8 

KHz is sufficient to achieve an intelligible reconstruction of the original. With a linear 

quantizer, samples are individually represented with a precision of 12 bit and the 

resulting bit rate is 96 Kbit/s. It has been found that a non–linear quantization at 8 bit per 
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sample is able to encode speech signals with a quality that is almost indistinguishable 

from a signal linearly quantized at 12 bit per sample.  

The non–linear quantizers used in practice are, in general, logarithmic; this class of 

quantizers is justified by two reasons: 

• The response of the human hear is not proportional to the intensity of the stimulus 

and low intensity signals are discriminated with higher accuracy; 

• Speech samples are distributed according to a Gaussian distribution and choosing 

a logarithmic step minimizes the average quantization error. 

In the 1960s, two non–linear PCM codecs with a bit rate of 64 Kbit/s were standardized: 

µ –law in the United Stated and A–law in Europe. Because of their simplicity, excellent 

quality and very low delay, both methods are still widely used today in telephony. 

If x  is the value of a sample and xmax  is the maximum value that a sample can 

assume, the value of x  quantized with the µ –law is given by: 

 ˆ x = xmax

log e 1+
µ ⋅ x
xmax

 

  
 

  

log e 1+ µ( )  

where µ = 255 in the American and Japanese PCM standards. 

Similarly, the sampled value for x  when using the A–law is given by: 

ˆ x =

A ⋅ x
xmax

1 + loge A
; if 0 ≤

x
xmax

≤
1
A

1 + loge
A ⋅ x
x max

 

 
 

 

 
 

1+ log e A
; if 1

A
≤

x
x max

≤ 1

 

 

 
 
 

 

 
 
 

 

where A = 87.56  for the European PCM standard. 
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Figure 3.4: µ –law vs. A–law for different µ  and A parameters. 

3.2.2 Differential PCM 

In most signals, temporally adjacent samples are frequently correlated. Differential PCM 

exploits this feature and achieves some compression by representing a signal as a 

succession of differences ∆( n) = x (n)− ˜ x (n)  between ˜ x (n) , a causal prediction of the 

current sample, and x(n) , the actual sample value. If the prediction is accurate, then the 

difference signal has lower variance than the original samples, and it will be accurately 

quantized with fewer bits. The decoder reconstructs the signal by adding the quantized 

differences to the predicted values (see Jayant and Noll [1984]). 

The best predictor is defined to be the one that minimizes the mean square error, so 

the best prediction for x(n)  is equal to the conditional expectation of x(n) : 

E X (n) | X (n −1),X (n − 2),...[ ]. 

This predictor is not practical because: 

• The conditional probability distribution necessary to evaluate E  will not in 

general be available; 
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• To maintain decoder synchronization without sending any side information, it is 

necessary to base the prediction on the quantized values ˆ x (n − i)  instead of the 

original samples x(n − i)  that are available only to the encoder. 
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Figure 3.5: Closed–Loop DPCM. 

 

These considerations lead to the definition of the “closed–loop” DPCM encoder depicted 

in Figure 3.5, where the linear predictor of N –th order has the form: 

 ˜ x (n) = hi ⋅ ˆ x (n − i)
i=1

N

∑  

In the previous equation hi ,1 ≤ i ≤ N  are the coefficients of the predictor. The basic 

equations describing a DPCM are (see Figure 3.5): 

 
∆(n) = x(n) − ˜ x (n)
ˆ ∆ (n) = ∆(n)− q(n)
y(n) = ˜ x (n) + ˆ ∆ (n)

 

where x(n)  is the input, ∆(n)  is the prediction error, q(n)  is the error introduced by the 

quantization, ˆ ∆ (n)  is the quantized prediction error and y(n)  is the decoder output. 

In its simplest form, DPCM assumes that the current sample is equal to the sample 

that has been previously encoded and quantized: ˜ x (n) = ˆ x (n −1) . This assumption is 
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equivalent to setting ∆(n) = x (n)− ˆ x (n −1)  with h1 = 1 and hi = 0 for every i > 1. In this 

case the decoder acts as an “integrator”. 

3.2.3 LPC–10 (Linear Predictive Coding of 10th order) 

Linear Prediction is one of the most powerful and historically one of the most important 

speech analysis techniques. The best low bit–rate speech codecs are based on linear 

prediction. Before introducing the standard LPC–10, it is appropriate to review some of 

the concepts underlying linear predictive coding. More details on this method can be 

found in Rabiner and Schafer [1978], Makhoul [1975] and Gersho [1994]. 

The idea behind linear prediction is the approximation of a speech sample with a 

linear combination of a number of past samples. Using this approach, the n –th sample sn  

can be predicted as a weighted sum of p previous samples (linear prediction of order p): 

 ˜ s n = ak ⋅ sn −k
k=1

p

∑  

where a1 ,a2,...,a p  are the prediction coefficients, optimized in order to reduce the error 

variance. The prediction error is expressed by: 

 en = sn − ˜ s n = sn − ak ⋅sn−k
k=1

p

∑  

This equation represents the output of a system whose transfer function is: 

 A(z) = 1− ak ⋅ z−k

k=1

p

∑  
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This filter is frequently called “whitening” filter because it transforms the signal into 

“white noise” by removing the correlation between samples (see Figure 3.6). Its inverse 

H(z) , necessary to the decoder to “reshape” the residual error, is given by: 

 H(z) =
1

A(z)
=

1

1 − ak ⋅ z−k

k=1

p

∑
 

The basic problem of linear prediction is the determination of the coefficients a1 ,a2,...,a p  

directly from the samples in such a manner as to obtain a good estimate of the spectral 

properties of the signal. 

 

S(z) A(z) E(z) 1/A(z) S(z)

A(z) 1/A(z)

Inverse Filter LPC FilterResidual Signal
sn en sn

Figure 3.6: Linear Prediction effects in the frequency domain. 
 

 

Several methods have been proposed for the efficient and accurate determination of the 

LP coefficients. The best algorithms are based on the solution of a linear system of 

equations that is obtained by taking the derivative of the error with respect to the 

prediction coefficients. Because of the special form that this matrix assumes on a speech 

signal, it is possible to solve the system of linear equation by using the Levinson and 

Durbin recursive algorithm (Rabiner and Schafer [1978]). Levinson and Durbin recursion 
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has several interesting properties, including a low computational complexity since it 

requires only Ο(p2 )  operations instead of Ο(p3 )  operations required by other methods. 

The reason linear prediction works so well in removing the correlation existing 

between speech samples is that there is a close relation between the predictor coefficients 

a1 ,a2,...,a p  and a physical model of the human vocal tract. 

Voice is produced by forcing a flow of air from the lungs into the vocal tract. During 

the production of voiced sounds, air is forced through the vocal folds that vibrate at a 

frequency comprised between 50 to 500 times per second. Voiceless sounds are produced 

by the airflow being forced into some obstacle in the mouth, or exiting with a sudden 

burst. 

In both cases, it is the position of the vocal tract during the production of the sound 

that controls the characteristics of the sound. The vocal tract acts as a resonator by 

shaping an “excitation” signal while changing its position in time. 
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Figure 3.7: Vocal tract – Speech production model. 

 

If we model the vocal tract as a concatenation of lossless tubes that have same length but 

different diameters (see Figure 3.7), and assume that in a short time interval the tract 
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doesn't change its shape, it is possible, starting from the speech signal, to find the 

parameters of this model by using linear prediction (see Rabiner and Schafer [1978]). 

In practice, linear prediction, when applied to a speech signal, provides both a good 

spectral estimation of the input as well as the basis for a rudimental model–based coding.  

Several low bit rate speech encoders rely on this model and implement a simplified 

model–based encoding in which parameters of a physical representation of the source 

model are estimated and transmitted to the decoder. 
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Figure 3.8: Hybrid codebook single–pulse excited voice synthesis. 

 

LPC–10, which in the 1982 became a U.S. federal government standard (FS–1015) for 

low bit rate speech coding, is an example of a compression method that uses linear 

prediction. LPC–10 can compress speech down to 2400 bit/sec in real time by using only 

very modest hardware requirements. Low bit rate speech coding is important in a number 

of applications where it is necessary to preserve speaker identification even when highly 

noisy transmission channels are used. 
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To achieve its compression, LPC–10 assumes that, in a sufficiently short period of time 

(22.5 ms.), the speech signal can be viewed as a stationary waveform, therefore, the input 

speech is divided into segments having a duration of 22.5 ms. and linear prediction of 

10 –th order is used to characterize the spectral properties of the speech segment. Since 

LPC–10 uses a model similar to the one represented in Figure 3.8, three other 

characteristics of the speech segment must be estimated and sent to the decoder: pitch 

period, gain and voicing decision. 

The 22.5 ms. segment is individually analyzed and converted into 54 bits of 

information that describe the coefficients of the LP filter (41 bits), the pitch and the 

voicing decision (7 bits), and the gain of the segment (5 bits). The remaining extra bit is 

used for synchronization. 

LPC–10 assumes that the input is an analog signal, so before digitizing it, the input is 

filtered with a band–pass filter with cutoff frequencies of 100Hz and 3600Hz. Frequency 

components lower than 100Hz are removed because they are primarily 60Hz humming 

noise and little speech related information is found in that range. The upper cutoff 

frequency ensures that there is no aliasing during the A/D conversion. The A/D output 

goes to two separate places, a pre–emphasis filter and a pitch analysis buffer. 

The pre–emphasis filter is a first order Finite Impulse Response (FIR) filter that has a 

frequency response: H (z) = 1− 0.9375 ⋅ z−1 . Pre–emphasis boosts high frequencies and 

lowers to 4 bit the precision necessary to achieve a stable reconstruction filter. 

Gain and LP coefficients are calculated at the same time. The algorithm uses the 

covariance method to estimate LP parameters, so the resulting system of equations is 

solved with Cholesky decomposition. To extract pitch information, the signal from the 
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A/D is low–pass filtered with a 4th order Butterworth filter having a cutoff frequency of 

800Hz. The output from this filter then goes to a second order inverse filter and then is 

fed into a voicing detector. The second order inverse filter helps the pitch extractor.  

The voicing detector estimates if the current segment is voiced, unvoiced or a 

transition by counting the number of zero crossings and analyzing energy and amplitude 

of the signal. Unvoiced frames have more zero transitions than voiced frames because of 

high frequency components. Furthermore voiced frames have much higher amplitudes 

than unvoiced frames. 

The pitch extractor is based upon an average magnitude difference function: 

ADMF(τ ) = sn − sn+τ
n =1

130

∑  

In voiced frames AMDF has a clear global minimum at the pitch period of the frame; no 

such minimum is present in unvoiced speech frames. The period τ  in the formula is 

changed to test 60 possible pitch values, ranging from 50 to 400 Hz.  

Once the LP coefficients have been calculated and pitch, gain and voicing decisions 

have been identified, results are organized into a particular sequence that depends on the 

voicing type. Synthesis reconstructs the signal by reversing the process. 

While in a LPC–10 codec, the general quality of the reconstructed signal is quite 

good (for such a low bit rate), frequently the voice sounds buzzy and unnatural and some 

jitter may be present. Voicing errors produce significant distortion and binary voicing 

decision is sometimes poor. Also, due to the model based coding, LPC–10 only models 

single–speaker speech, so background noise, multiple voices and music may produce 

unpredictable results. 
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3.2.4 Codebook Excited Linear Prediction (CELP) 

In 1991 the American Department of Defense (DoD) standardized DoD CELP, a 

4.8Kbit/s codec as Federal Standard 1016. DoD CELP is a hybrid codec that uses linear 

prediction and vector quantization in an analysis–by–synthesis loop. Voicing decision is 

implicit and handled with a pitch filter. A CELP encoder divides input speech into frames 

that have duration of 30 ms. For each frame a pitch period M  is determined and the 

signal is passed through the pitch filter to remove this periodicity. 

The residual signal is further divided into four sub–frames of 7.5 ms. each. For each 

sub–frame the encoder calculates a set of 8 filter coefficients for a short–term synthesis 

filter that models the vocal tract of the speaker (Figure 3.7). A gain is also computed to 

normalize the residual energy. CELP’s most interesting feature is that the excitation for 

the cascade of filters is determined by using an analysis–by–synthesis loop that tries each 

vector in a codebook of 1024 pseudo random Gaussian vectors. These vectors are 

individually fed into the filters and their output is compared to the original signal by 

using a perceptive quality measure. The encoder then transmits to the decoder: 

• Index of the best codeword; 

• Gain; 

• Vocal tract filter coefficients (every 7.5ms.); 

• Pitch predictor coefficients (every 30 ms.). 

The quality of the reconstructed speech is very good but real time encoding requires more 

than 300 MFLOPS, so to run in real time, a dedicated DSP is necessary. At the present, 

CELP is one of the most effective methods to obtain high quality speech at low bit rates. 



 76 
 

Mzβ −
1

p k
kk

a z−
=∑

+ ++ + -+ W(f)

S(n)

Gi

Ci(n)
i

Si(n)^

 
Figure 3.9: CELP decoder. 

 

Many systems, like for example the cellular standard Global System for Mobile 

communications (GSM), use simplified versions of CELP. GSM is basically a CELP–like 

algorithm that encodes the residual directly, in order to avoid the expensive codebook 

search. With this simplification, a GSM codec provides good quality speech at a rate of 

13 Kbit/s (3 times bigger than CELP) while running in real time on small processors. A 

good description of the GSM algorithm is given in Sayood [1996]; 

 

3.3 Image 

3.3.1 JPEG 

The Joint Photographic Expert Group (JPEG) developed and issued in 1990, a widely 

used standard for color image compression. The standard was mainly targeted for 

compressing natural gray level and color images.  JPEG is a two–step transform–coding 

algorithm: the first step is lossy and involves a DCT transformation followed by 

quantization. This part is used to remove information that is perceptively irrelevant for a 
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human user. The second step involves lossless entropy encoding to eliminate statistical 

redundancies that could still be present in the transformed representation. 

JPEG assumes a color image divided into color planes and compresses each color 

plane independently. Color planes are represented in terms of luminosity (or Y  

component) and two chrominance components Cb  and Cr . As explained in precedence, 

the YCbCr  color representation takes advantage of the fact that the human visual system is 

more sensitive to luminosity than to color changes. Following a color scheme named 

“4:2:2”, each chrominance is sub sampled 2:1 both in the horizontal and vertical 

dimension and 2:1 compression is obtained even before applying JPEG by halving the 

resolution of the chrominance components. 

Each color plane is further divided into blocks of 8x8 pixels. This size block was 

determined to be best compromise between the computational effort necessary to 

compute the Discrete Cosine Transform and the compression achieved (Pennebaker and 

Mitchell [1993]). Each block is transformed into the frequency domain by using the 

DCT; then the DCT coefficients are quantized with 64 different scalar quantizers, one for 

each frequency. Only the lowest frequency component (DC component) has a slightly 

different treatment from the other coefficients. The DC component of the previous block 

is subtracted and the difference is the value being quantized. Quantization steps are stored 

in a “quantization table” with 64 default values. Performance can be improved by 

computing the table on an image–by–image basis (see for example Daly [1992] and 

Ratnakar and Livny [1995, 1996]). 
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The default table quantizes low frequencies more accurately than high frequencies 

because, according to experiments made with the human visual system, the low 

frequency components are better perceived. 

Quantization results in an 8x8 matrix of small integers, several of them being zeros. 

By using a zigzag pattern (see Figure 3.10), the matrix is scanned from the low to the 

high frequencies and it is converted to a one–dimensional vector. Run–length encoding is 

applied to compress the sequences of consecutive zeros. The result is further compressed 

by using a Huffman or an arithmetic coder. According to the standard, the bit stream can 

be organized in three different ways, each of them targeted to a specific application:  

• Sequential encoding in which each image component is encoded in a single left–

to–right, top–to–bottom scan; 

• Progressive encoding in which the image is encoded in multiple scans and, 

during the decoding, the viewer may be able to see the image build up in multiple 

coarse–to–clear passes (as in many pictures downloaded from the Internet);  

• Hierarchical encoding in which the image is encoded at multiple resolutions so 

that lower resolution versions may be accessed without first having to decompress 

the whole image. 

The quality and the size of a JPEG–compressed image depends on the quantization that is 

JPEG’s lossy part. Scaling appropriately the quantization tables, it is possible to control 

the size and the quality of the output. At very low bit rates (high compression) blocking 

artifacts become evident. For further reading see Wallace [1990, 1991], Pennebaker and 

Mitchell [1993]. The works by Bright and Mitchell [1999], Chang and Langdon [1991], 
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Ramchandran and Vetterli [1994], Vander Kam and Wong [1994] and Schaefer [2001] 

analyze some of the issues related to various aspects of JPEG encoding. 

 

201

250

160

247

149

144

203

160

200

150

248

195

218

179

147

204

142

223

165

232

224

240

168

227

138

203

162

191

153

234

151

178

180

232

171

212134

198140

244

170

243

190

202

208

184

176

220

199

200

253

218

232

144

196

246

202

128

195

243

240

209

175

158

8x8 Image Block

529

-35

-89

-40

-11

-19

5

-4

-51

-14

-3

37

6

34

-30

-32

85

24

49

-12

32

-23

73

24

24

-24

1

-53

-35

61

36

15

-17

-10

43

-20

4

17

4

-57

10

-48

-30

-21

-50

51

30

-8

-52

-39

-26

-35

48

-16

-1

7

-19

-3

15

-14

7

-36

-13

53

DCT

72

49

24

18

14

14

12

16

92

64

35

22

17

13

12

11

95

78

55

37

22

16

14

10

98

87

64

56

29

24

19

16

112

103

81

68

51

40

26

24

100

121

104

109

87

57

58

40

103

120

113

103

80

69

60

51

99

101

92

77

62

56

55

61

Quantization Table

0

0

0

0

2

1

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-2

0

2

-2

-1

0

0

-6

0

0

0

0

2

-2

2

-2

-1

0

0

0

0

1

5

233

Quantized values and ZigZag Scanning  
Figure 3.10: DCT, Quantization and zigzag scanning for a JPEG 8x8 image block. 

3.3.2 JPEG–LS 

JPEG was designed as a lossy image compression technique and the method was fine 

tuned for a specific quality. When compressing images at the highest quality setting, the 

size of the compressed image grows quickly and the results are not competitive even 

when compared to general–purpose lossless coding methods. To overcome this problem, 

the JPEG standardizing group decided to expand JPEG with a lossless mode that is not 

DCT–based (see Pennebaker and Mitchell [1993] for a general description as well as the 

more specific Langdon, Gulati, and Seiler [1992]). The lossless mode uses a predictive 
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scheme that linearly combines three causal neighbors to predict a pixel. The prediction 

error is then encoded by using a Huffman or arithmetic coder. 

Lossless JPEG was not the result of a rigorous competitive evaluation as was the 

selection of the DCT–based methods and its performance turned out to be not very 

interesting. For this reason in 1994 the ISO/JPEG group issued a call for contribution for 

a new standard for lossless and near–lossless compression of continuous tone images 

from 2 to 16 bit per pixel. The standard, called JPEG–LS, combines various proposals, 

even though the algorithm is heavily based on an algorithm proposed by the Hewlett 

Packard Laboratories: LOCO–I (Weinberger, Seroussi and Sapiro [1996]).  
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ê

Context Generation
Quantization
& Merging

X
e

& Mapping
Error Reduction

LL-Golomb Coder
stream

code

k

A[Q]

N[Q]

C[Q]

prediction correction

frequency of context Q

accumulated prediction
error magnitude in context Q

 
 

Figure 3.11: JPEG–LS encoder. 

 

Figure 3.11 shows a schematic diagram of a JPEG–LS encoder. JPEG–LS is a predictive 

coder that uses a fixed predictor and an error–feedback technique to cancel prediction 

bias. The encoder stores for each class of prediction context the average of the past 

prediction errors. After the prediction, the encoder classifies the current context and 

subtracts to the prediction the past average errors in order to remove error bias. Prediction 
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residuals are first mapped into an exponentially decreasing distribution having positive 

values and then entropy coded with a Golomb code (Seroussi and Weinberger [1997]). 

Besides a better prediction, the advantage of using error feedback is that errors in 

different context may have different probability distributions and this information can be 

used to normalize the error before entropy coding. 

3.3.3 JBIG 

The Joint Bi–level Image Experts Group (JBIG) defined in 1991 an innovative lossless 

compression algorithm for bi–level images. It consists of a predictive coder that uses a 

template of causal neighbor pixels to guess the value of the current pixel. The algorithm 

concatenates the value of the template pixels to identify the context of the pixel that is 

being predicted. The index of the context is used to choose the probability distribution 

that models the arithmetic coder. 

The “A” pixel in Figure 3.12 is an adaptive pixel. Its position is allowed to change as 

the image is processed. The use of the adaptive pixel improves compression by 

identifying repeated occurrences of the same block of information. 

JBIG is also able to operate in progressive mode: an approximate version of the 

original image is first transmitted and then improved as compression proceeds. This is 

achieved by subdividing the image in layers, each of which is a representation of the 

original image at a different resolution. The lowest resolution layer is called starting layer 

and is the first to be coded. Then the other layers (differential layers) are encoded by 

using information from the previous encoded layer. If the resolution reduction algorithm 
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used by the progressive mode suits well the input image, this mode of operation is very 

effective. In fact most of the pixels in the differential layers may be predicted with little 

or no error and then very little information has to be encoded. 

Progressive and sequential modes are completely compatible. This compatibility is 

achieved by dividing the original image into horizontal stripes. Each stripe is coded 

separately and then transmitted. An image that has been coded in the progressive mode 

may be decoded in sequential mode by decoding each stripe sequentially, to its full 

resolution, starting from the one on the top of the image. Progressive decoding may be 

obtained by decoding one layer at a time.  
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Figure 3.12: JBIG prediction templates. 

 

JBIG may also be successfully used when coding images with more than one bit–per–

pixel (grayscale or even color images). The image is decomposed into bit–planes (i.e. if 

the image is 4–bpp, each pixel is represented by the binary string b3b2b1b0  the i –th bit–

plane stores only the bit bi  of each pixel) and each plane is coded separately as a bi–level 

image. In principle JBIG is also able to work with 255–bpp images, but in practice the 

algorithm shows interesting performances for images with at most 8 bpp.  
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For further reading, see Arps and Truong [1994] and Thompkins and Kossentini [1999] 

for a description of JBIG2. Issues related to the design of the symbol dictionary are 

addressed in Ye, Schilling, Cosman, and Ko [2000]. 

 

3.3.4 JPEG–2000 

JPEG–2000 is a newly issued standard for digital image compression (Marcellin, 

Gormish, Bilgin and Boliek [2000]). While having a rate distortion advantage over JPEG 

it also provides a number of features that are highly desirable in current applications. For 

example, JPEG–2000 allows extraction of images at different resolutions, regions of 

interest and single components, all without requiring full decompression of the bitstream. 

This feature is essential for editing purposes or when a compressed image must be 

transmitted to a device that is not capable of full resolution. 

The organization of the bitstream supports random spatial access to regions on the 

image and allows a number of compressed domain processing like pan, zoom, rotation 

and cropping. 

The JPEG–2000 standardization started from Ricoh’s submission of the algorithm 

CREW to the JPEG–LS standardization. Although LOCO–I (Weinberger, Seroussi and 

Sapiro [1996]) was selected as the basis for JPEG–LS, CREW had such a rich and 

interesting set of features that it motivated a new standardization effort. One of the most 

relevant features is the use of an integer wavelet decomposition to transform the image.  
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3.3.5 GIF 

The Graphics Interchange Format was developed by CompuServe Information Services 

in 1987 (GIF 87a) as an efficient, compressed graphics file format, which allows for 

images to be sent between different computers. The most recent version is called GIF 

89a. More than being a data compression method, GIF is a graphics file format that uses a 

variant of LZW to compress the data.  

Graphics data are compressed using a dynamic growing dictionary that starts with the 

number of bit per pixel b , as a parameter. Bilevel images use b = 2  and images with 

256 colors or gray levels use b = 8 . Intermediate values for b  are also allowed.  

The initial dictionary contains 2(b +1)  entries and it doubles its size each time it fills up, 

until it reaches a size of 212 = 4096 entries, where it remains static. When the dictionary is 

full the encoder monitors the compression ratio and when it drops below a threshold, it 

discards the current dictionary and starts with a fresh, new one. This event is signaled to 

the decoder by transmitting a special symbol whose value is ESC = 2b . 

Because of its lossless nature GIF performs well on synthetic or palletized images, i.e. 

images with a small number of colors and not corrupted by noise. The compression of 

natural images, in which the number of colors may be potentially big and sampling noise 

is present, can be addressed by using a preprocessing that builds a color map and 

artificially reduces the number of colors.  
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3.4 Video  

3.4.1 H.261 

In the 1993 the ITU–T (International Telecommunication Union / Telecommunication 

Standardization Sector) developed H.261, a video coding standard for audiovisual 

services at bit rates multiple of 64 Kbit/s. This bit rate was chosen because of the 

availability of ISDN (Integrated Services Digital Network) transmission lines that could 

be allocated in multiples of 64Kbit/s. As a consequence of that choice, in older drafts, 

H.261 is also referred as p ∗ 64Kbit/s. 

H.261 is a coding standard targeted to videoconference and videophone applications 

operating at bit rates between 64 Kbit/s and 2 Mbit/s (that is p ∗ 64 Kbit/s with 

1 ≤ p ≤ 30). The coding algorithm combines interframe prediction, transform coding and 

motion compensation. There are two operational modes, named interframe and 

intraframe. Intraframe coding is a JPEG–like encoding where the input signal is directly 

decomposed by the DCT. To improve error resilience, unlike in JPEG, the DC coefficient 

is not differentially encoded. Intraframe mode is used when the interframe prediction is 

not efficient, i.e. when a scene changes or when there is too much motion in the scene or, 

periodically, to improve error resilience. Interframe coding is based on motion 

compensated prediction that is followed by a DCT coding of the prediction error. Motion 

vectors exploit temporal redundancy and help the codec to compensate for objects 

moving in the scene. To remove any further redundancy, DCT coefficients and motion 

vectors are variable length encoded with a static Huffman code. 
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H.261 supports two picture resolutions, QCIF (Quarter Common Interchange Format) 

and CIF (Common Interchange Format). This permits a single recommendation to cover 

use in and between regions that use 625 and 525 line television standards. 

In a H.261 encoder (see Figure 3.13), every input frame is de–interlaced, converted 

from NTSC or PAL to CIF format, eventually noise filtered, preprocessed and stored into 

the frame memory. De–interlaced frames are referred to as pictures. 

Pictures are divided into blocks of 8 × 8  pixels. Four Y  blocks, a Cb  block and a Cr  block 

are grouped into a coding unit called macroblock. Macroblocks can be intra frame, inter 

frame coded or eventually skipped with criteria that have not been defined by the 

standard and may vary dynamically depending on the complexity of the input signal and 

the output data rate constraints. 

After the DCT coefficients are quantized and encoded with a Huffman coder, a 

BCH(511,493) error correction code (McEliece [1977]) is used to protect the bit stream 

and avoid error propagation in predictive coding. Finally the encoder inverts the DCT and 

decodes and stores the current frame so that it can be used to perform the next prediction. 

Since the prediction is based on the quantized output, this “closed–loop” coding keeps 

track of the coding errors, monitors the quality of the transmitted image and keeps 

encoder and decoder synchronized. 

Output data rate is controlled dynamically by adjusting the quantization steps while 

monitoring the capacity of an output buffer.  
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Figure 3.13: H.261 video encoder. 

3.4.2 MPEG–1 

In 1988 the Moving Picture Experts Group (MPEG) was founded under ISO/SC2 to 

standardize a coding algorithm targeted for digital storage of video at bit rates around 1.5 

Mbit/s. A draft for the first MPEG–1 (formally known also as H.262) appeared in 1991 

and a final version was issued in 1992. The MPEG–1 video algorithm was developed 

with respect to the JPEG and H.261 standards and shares several common features with 

the H.261, so that implementations supporting both standards are feasible. 

The main difference between H.261 and MPEG–1 is in the fact that MPEG–1 was 

primarily targeted for multimedia CD–ROM applications, so it required additional 

functionality supported by both encoder and decoder. Among these additional features 

there are frame based random access of video, fast forward/fast reverse (FF/FR) searches 

through compressed bit streams, reverse playback of video and the possibility to edit the 

compressed bit stream. 



 88 
 

 Frame
Memory DCT

IDCT

      Motion
Compensation

 Frame
Memory

   Motion
Estimation

Quantizer

  Inverse
Quantizer

Entropy
Encoder

+

+

-

 
Figure 3.14: MPEG–1 video encoder. 

 

 

Its parameters were optimized for digital storage media, but the algorithm is intended to 

be generic. Standardized encoding algorithms are “decoder standards”; this means that 

the standard does not define the details of the encoding process but only the syntax of the 

bit stream and, possibly, a suggested decoding process. Standards are also independent of 

a particular application and therefore they mainly provide a “toolbox”. It’s up to the user 

to decide which tools to select to suit a specific applications. 

Figure 3.14 outlines the functions that are typically executed by an MPEG–1 encoder 

that uses a hybrid DCT/Motion Compensated DPCM scheme very similar to the H.261 

standard. Encoding may include preprocessing that performs format and color 

conversion, de–interlacing, pre–filtering and subsampling; none of these operations is 

specified by the standard. 
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After the preprocessing, a format for the pictures is selected and the pictures are encoded 

in the following modes: 

• Intra frame coded (I–pictures): require no motion compensation, each 

macroblock is DCT coded, the coefficients are linearized with a zig–zag scanning 

and finally quantized. The encoding method for I–pictures, very close to the JPEG 

standard, leads to a modest compression but since every macroblock in the picture 

is independently coded and transmitted, this mode provides fast random access, a 

functionality required in digital storage media. 

• Inter frame coded or (P–pictures): are those coded by using motion 

compensated prediction from a previous intra or inter coded picture. Macroblocks 

in a P–picture can be motion compensated, intra coded or eventually skipped with 

a functionality called “conditional replenishment”. Motion compensation and 

conditional replenishment typically allow compression rates up to 3 times higher 

than I–pictures. P–pictures can also be used as references for the motion–

compensated prediction. 

• Bi–directionally predicted or (B–pictures): provide the highest degree of 

compression, typically 10 times higher than the I–pictures. B–pictures are coded 

using motion–compensated prediction from past and/or future I–pictures and P–

pictures. Since B–pictures are not used in the prediction, they can accommodate 

more distortion, but because B–pictures depend on the future frames, their use 

may introduce a substantial coding delay. 
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• DC coded or (D–pictures): are DCT coded pictures in which only the DC 

coefficient is quantized and transmitted. They were introduced to allow a fast 

preview of the video sequence without a full decoding of the bit stream.  

Even in MPEG–1 the output bit stream is Huffman coded. Because the size of 

compressed video is inherently variable in nature, MPEG–1 uses an output buffer that 

stores the variable bit stream generated in the encoder and provides the possibility of 

transmitting the video stream at a constant bit rate. 

A mechanism not specified by the standard monitors the output buffer and adjusts the 

bit rate by adapting the quantizer steps. Coarse quantization of the DCT–coefficients 

enables the storage or transmission of video with high compression ratios but, depending 

on the level of quantization, it may result in significant coding artifacts. The efficiency of 

the rate control algorithms heavily affects the visual quality of the video reconstructed at 

the decoder. 
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Figure 3.15: Time dependency among I, P and B pictures. 
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Figure 3.15 shows temporal dependences between I, P and B–pictures. The standard does 

not suggest a specific interleaving between I, P and B pictures and many choices are 

possible. Interleaving changes compression rate, quality and coding delay and the end 

user is free to arrange the picture types in a video sequence with a high degree of 

flexibility to suit diverse applications requirements.  

A video sequence coded using I–pictures only (I, I, I, I, I, I, ...) allows the highest 

degree of random access, FF/FR, editability and the lowest coding delay, but only 

achieves a modest compression. This mode is sometimes referred to as M–JPEG (Motion 

JPEG) because it substantially consists of a sequence of JPEG pictures. Regular I–picture 

update and no B–pictures (i.e. I, P, P, P, P, P, P, I, P, P, P, P, ...) achieves moderate 

compression and a certain degree of random access while retaining FF/FR functionality. 

Incorporation of all three pictures types (like in I, B, B, P, B, B, P, B, B, I, B, B, P, ...), 

achieves high compression and reasonable random access with some FF/FR functionality 

but also increases significantly the coding delay that may not be tolerable in applications 

like video telephony or video conferencing. 

3.4.3 H.263 

This Recommendation, issued in the 1996, specifies a coded representation that can be 

used for compressing moving pictures at low bit rates. Even though H.263 was designed 

for data rates lower than 64 Kbit/s, this limitation has been removed in the final draft. The 

basic configuration of the coding algorithm is based on ITU–T Recommendation H.261 

enriched by changes and optional encoding modes that improve performance and error 

recovery. 
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Like other video coding standards, H.263 is based on motion compensated inter–picture 

prediction that exploits temporal redundancy and transform coding of the prediction error 

that reduces spatial redundancy. The transmitted symbols are variable length coded. 

The main differences between the H.261 and H.263 coding algorithms are listed 

below: 

• Half–pixel precision is used for motion compensation whereas H.261 only uses 

full–pixel precision and a loop filter. Half–pixel MC is computed by interpolating 

the image. 

• Some parts of the hierarchical structure of the data stream are now optional, so the 

codec can be configured for a lower data rate or to achieve better error protection. 

• In addition to the basic video source coding algorithm, a number of negotiable 

coding options are included for improved performance: 

o Unrestricted Motion Vectors. In this mode motion vectors are allowed to 

point outside the picture. Edge pixels are used for the prediction of the 

missing pixels. This mode achieves a significant gain when there is 

movement along the edge of the pictures, especially for small picture 

formats. Additionally, this mode includes an extension of the motion 

vector range so that larger motion vectors can be used. This mode is 

especially useful to take into account camera movement (panning).  

o Syntax–based Arithmetic Coding. In this mode arithmetic coding is used 

instead of Huffman VLC coding. SNR and reconstructed frames will be 
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the same, but generally 5–10% fewer bits are produced. This gain depends 

of course on the sequence, the bit rate and other options used. 

o  Advanced prediction. This option means that overlapped block motion 

compensation is used for the P–frames. Four 8 × 8 vectors instead of one 

16 ×16 vector are used for some macroblocks in the picture, and motion 

vectors are allowed to point outside the picture as in the UMV mode 

described above. The encoder has to decide which type of vectors to use. 

Four vectors use more bits, but give better prediction. The use of this 

mode generally gives considerable subjective improvement because 

overlapped motion compensation results in less blocking artifacts.  

o Forward and backward frame prediction (or P–B frames mode). A PB–

frame consists of two pictures being coded as one unit. The name PB 

comes from the name of picture types in MPEG where there are P–

pictures and B–pictures. A PB–frame consists of a P–picture that is 

predicted from the last decoded P–picture and a B–picture that is predicted 

from both the last decoded P–picture and the P–picture currently being 

decoded. For relatively simple sequences, this mode nearly doubles the 

frame rate without a substantial increase in the bit rate. For sequences with 

a lot of motion, PB–frames do not work as well as B–pictures in MPEG. 

This happens because there are no separate bi–directional vectors in 

H.263; the forward vectors for the P–picture are scaled and added to a 

small delta–vector. The advantage over MPEG is a low overhead for the 
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B–picture part. This feature is useful in the low bit rate encoding of the 

relatively simple sequences often generated by videophones. 

These options can be used together or separately and are negotiable in the sense that the 

decoder signals the encoder whether any of these options are available. If the encoder 

supports them, it may decide to use one or more options to improve the quality of the 

video sequence. 

H.263 supports five resolutions: QCIF and CIF, already supported by H.261, and 

SQCIF, 4CIF, and 16CIF. The support of 4CIF and 16CIF allows the codec to compete 

with video coding standards, such as the MPEGs, targeted for a higher bit rate. 

In a subsequent standardization attempt, H.263+ (H.263 Version2) was introduced as 

a powerful enhancement of the existing H.263 standard. The improvements add the 

following coding options to the basic algorithm: 

• Reversible Variable Length Coding Mode (or RVLC):  When this mode is used, 

variable length coding is achieved by using special tables that contain reversible 

codewords. Since RVLC allow decoding from both directions and provide 

excellent error detection, if a packet is corrupted by an error, decoding may be 

tried starting from the end of the packet and more uncorrupted data can be 

extracted.  

• Advanced Intra Coding Mode (AIC): allows prediction of the first row or the first 

column of the coefficients of a transformed I block from blocks that have already 

been encoded. Scanning can be performed in the usual zigzag or in an alternate 

horizontal or vertical mode. 
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• Deblocking Filter Mode (DF): introduces a deblocking filter in the coding loop. 

This improves prediction and reduces blocking artifacts. 

• Slice Structured Mode (SS): A slice structure is employed to group and transmit 

macroblocks. The slice can have an arbitrary shape and contain a variable number 

of macroblocks. Macroblocks can be transmitted in the usual sequential mode or 

by using an arbitrary order. 

• Supplemental Enhancing Information Mode (SEI): includes additional 

information in the bitstream that can be used to support extended functionalities 

like picture freeze, chroma keying, progressive refinement and video 

segmentation. 

• Improved PB Mode (IPB): Improves the PB mode by allowing backward, forward 

and bi directional prediction in PB frames. 

• Reference Picture Selection mode (RPS): Removes the limitation present in most 

coders that the reference picture must be the previous one. This feature limits 

error propagation because it allows the specification of a different reference 

picture when the current reference has been damaged during the transmission. 

• Temporal and SNR Scalable Modes: specify a syntax that allows the transmission 

over a prioritized channel. The bitstream is divided into a base layer and into one 

or more enhancement layers that improve temporal or spatial resolution or refine 

the picture quality. Decoders not capable of full rendering may decode only part 

of the bitstream. 
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• Reference Picture Resampling (RPR): specifies a warping function that must be 

applied to the reference picture before being used for prediction. 

• Reduced Resolution Update Mode (RRU): allows the encoder to send update 

information for a picture encoded at lower resolution while maintaining full 

resolution for the reference frame. 

• Independently Segmented Coding mode (ISD): Treats every segment as an 

independent coding unit. No data dependency across segment boundaries is 

allowed. It is helpful to prevent error propagation and improves error resiliency 

and error recovery. 

• Alternative Inter VLC Mode (AIV): specifies an alternative VLC table that is 

optimized for small quantization steps in Intra block coding. 

• Modified Quantization Mode (MQ): Improves the range of the quantization steps 

that can be represented and allows representation of quantized coefficients outside 

the range [–127,127]. These values are clipped to the boundaries in the basic 

H.263. 

These new coding models improve the performance and the flexibility of this standard so 

that H.263+ is regarded today as state of the art low bit rate video coding. H.263+ also 

constitutes the very low bit rate core of MPEG–4. Details on H.263+ can be found in the 

standard draft or in Erol, Gallant, Cote and Kossentini [1998]. 
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3.4.4 MPEG–2 

Studies on MPEG–2 started in 1990 with the initial target to issue a coding standard for 

TV–pictures with CCIR Rec. 601 resolution at data rates below 10 Kbit/s. In 1992 the 

scope of MPEG–2 was enlarged to suit coding of HDTV thus making an initially planned 

MPEG–3 phase redundant. 

Basically MPEG–2 can be seen as a superset of the MPEG–1 and since it was 

designed to be backward compatible to MPEG–1. Every MPEG–2 compatible decoder 

must be able to decode a valid MPEG–1 bit stream. Several video coding algorithms 

were integrated into a single syntax to meet the diverse applications requirements. New 

coding features were added by MPEG–2 in order to achieve sufficient functionality and 

quality. Specific prediction modes were developed to support efficient coding of 

interlaced video. In addition scalable video coding extensions were introduced to provide 

additional functionality, such as embedded coding of digital TV and HDTV as well as 

graceful quality degradation in the presence of transmission errors. 

A hierarchy of “Profiles”, describing functionalities, and “Levels”, describing 

resolutions, was introduced in order to allow low–complexity implementation in products 

that do not require the wide range of video input formats supported by the standard (e.g. 

SIF to HDTV resolutions). 

As a general rule, each profile (see Table 3.2) defines a new set of algorithms added 

to the algorithms in the profile below and a level (see Table 3.1) specifies the range of the 

parameters that are supported by the implementation (image size, frame rate and bit 

rates). The MPEG–2 core algorithm at MAIN profile features non–scalable coding of 

both progressive and interlaced video sources. 
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Level Parameters 

High 1920 samples/line
1152 lines/frame 
60 frames/s 
80 Mbit/s 

High 1440 1440 samples/line
1152 lines/frame 
60 frames/s 
60 Mbit/s 

Main 720 samples/line 
576 lines/frame 
30 frames/s 
15 Mbit/s 

Low 352 samples/line 
288 lines/frame 
30 frames/s 
4 Mbit/s 

Table 3.1: Upper Bound of Parameters at Each Level. 

 

Five profiles and four levels create a grid of 20 possible combinations. The variations 

are so wide that it is not practical to build a universal encoder or decoder. So far only the 

11 combinations showed in Table 3.3 have been implemented. Interest is generally 

focused on the Main profile, Main level, sometime written as “MP@ML”, which covers 

broadcast television formats up to 720 pixels x 576 lines at 30 frames/sec and with 4:2:0 

subsampling. 

MPEG–2 as defined in the MAIN Profile, is a straightforward extension of MPEG–1 

that accommodates coding of interlaced video. As well as MPEG–1, MPEG–2 coding is 

based on the general hybrid DCT/DPCM coding scheme previously described, 

incorporating macroblock based motion compensation and coding modes for conditional 

replenishment of skipped macroblocks. The concept of I–pictures, P–pictures and B–

pictures is fully retained in MPEG–2 to achieve efficient motion prediction and to assist 
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random access functionality. The algorithm defined in the MPEG–2 SIMPLE Profile is 

targeted to transmission systems and it is basically identical to the MAIN Profile, except 

that no B–pictures are allowed. This keeps the coding delay low and simplifies the 

decoder that does not need any additional memory to store the past frames. 

 
Profile Functionalities 

High Supports all functionality provided by the Spatial Scalable 
Profile plus the provision to support: 

o 4:2:2 YUV–representation for improved quality 
Spatial 
Scalable 

Supports all functionality provided by the SNR Scalable 
Profile plus algorithms for: 

o Spatial scalable coding (2 layers allowed); 
o 4:0:0 YUV–representation. 

SNR 
Scalable 

Supports all functionality provided by the Main profile plus 
algorithms for: 

o SNR scalable coding (2 layers allowed); 
o 4:2:0 YUV–representation. 

Main Non–scalable coding algorithm supporting functionality for: 
o Coding of interlaced video; 
o Random access; 
o B–picture prediction modes; 
o 4:2:0 YUV–representation. 

Simple Includes all functionality provided by the Main profile but 
does not support: 

o B–picture prediction; 
o 4:2:0 YUV–representation. 

Table 3.2: Algorithms and Functionalities Supported With Each Profile. 

 
 Low Main High 1440 High 

Simple  X   
Main X X X X 
SNR Scalable X X   
Spatial Scalable   X  
High  X X X 

Table 3.3: Combinations Implemented. 

 

MPEG–2 also introduces the concept of Field and Frame Pictures to accommodate 

coding of progressive and interlaced video via a frame and a field prediction mode. When 
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the field prediction mode is used, two fields of a frame are coded separately and the DCT 

is applied to each macroblock on a field basis. Alternatively, lines of top and bottom 

fields are interlaced to form a frame that is encoded in the frame prediction mode as in 

MPEG–1. Field and frame pictures can be freely mixed into a single video sequence. 

Analogously, a distinction between motion compensated field and frame prediction 

mode was introduced in MPEG–2 to efficiently encode field pictures and frame pictures. 

Inter–field prediction from the decoded field in the same picture is preferred if no motion 

occurs between fields. In a field picture all predictions are field predictions. Also, a new 

motion compensation mode based on 16x8 blocks was introduced to efficiently explore 

temporal redundancies between fields. MPEG–2 has specified additional YCbCr  

chrominance subsampling formats to support applications that require the highest video 

quality. Next to the 4:2:0 format already supported by MPEG–1, the specification of 

MPEG–2 is extended to 4:2:2 format defining a “Studio Profile”, written as 

“ 422P@ML ”, suitable for studio video coding. 

Scalable coding was introduced to provide interoperability between different services 

and to flexibly support receivers with different display capabilities. Scalable coding 

allows subsets of the layered bit stream to be decoded independently to display video at 

lower spatial or temporal resolution or with lower quality. MPEG–2 standardized three 

scalable coding schemes each of them targeted to assist applications with particular 

requirements: 

• Spatial Scalability: supports displays with different spatial resolutions at the 

receiver; a lower spatial resolution video can be reconstructed from the base layer. 

Multiple resolution support is of particular interest for compatibility between  
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Standard (SDTV) and High Definition Television (HDTV), in which it is highly 

desirable to have a HDTV bitstream that is backward compatible with SDTV. 

Other important applications for scalable coding include video database browsing 

and multi–resolution playback of video in multimedia environments where 

receivers are either not capable or not willing to reconstruct the full resolution 

video. The algorithm is based on a pyramidal approach for progressive image 

coding. 

• SNR Scalability: is a tool developed to provide graceful degradation of the video 

quality in prioritized transmission media. If the base layer can be protected from 

transmission errors, a version of the video with gracefully reduced quality can be 

obtained by decoding the base layer signal only. The algorithm used to achieve 

graceful degradation is based on a frequency (DCT–domain) scalability 

technique. At the base layer the DCT coefficients are coarsely quantized and 

transmitted to achieve moderate image quality at reduced bit rate. The 

enhancement layer encodes and transmits the difference between the non–

quantized DCT–coefficients and the quantized coefficients from the base layer 

with a refined quantization step size. At the decoder the highest quality video 

signal is reconstructed by decoding both the lower and the higher layer bitstreams. 

It is also possible to use this tool to obtain video with lower spatial resolution at 

the receiver. If the decoder selects the lowest N ∗ N  DCT coefficients from the 

base layer bit stream, a non–standard inverse DCT of size N ∗ N  can be used to 

reconstruct the video at a reduced spatial resolution. 
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• Temporal Scalability: it was developed with an aim similar to spatial scalability. 

This tool also supports stereoscopic video with a layered bit stream suitable for 

receivers that have stereoscopic display capabilities. Layering is achieved by 

providing a prediction of one of the images of the stereoscopic video (the left 

view, in general) in the enhancement layer. The prediction is based on coded 

images from the opposite view that is transmitted in the base layer.  

Scalability tools can be combined together into a single hybrid codec. 
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Figure 3.16: Scalable Coding 

 
 

Figure 3.16 depicts a multiscale video coding scheme where two layers are provided, 

each layer supporting video at a different resolution. This representation can be achieved 

by downscaling the input video signal into a lower resolution video (down sampling 

spatially or temporally). The downscaled version is encoded into a base layer bit stream 

with reduced bit rate. The up scaled reconstructed base layer video (up sampled spatially 

or temporally) is used as a prediction for the coding of the original input video signal. 
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Prediction error is encoded into an enhancement layer bit stream. A downscaled video 

signal can be reconstructed by decoding the base layer bit stream only. 

3.4.5 MPEG–4 

MPEG group officially initiated the MPEG–4 standardization phase in 1994 with the 

mandate to standardize algorithms and tools for coding and flexible representation of 

audio–visual data for Multimedia applications. 

Bit rates targeted for the MPEG–4 video standard range between 5–64 Kbit/s for 

mobile or PSTN (Public Switched Telephone Network) video applications and up to 2 

Mbit/s for TV/film applications so that this new standard will supersede MPEG–1 and 

MPEG–2 for most applications. 

Seven new video coding functionalities have been defined which support the MPEG–

4 focus and which provide the main requirements for the work in the MPEG video group. 

In particular MPEG–4 addresses the need for: 

• Universal accessibility and robustness in error prone environments; 

• High interactive functionality; 

• Coding of natural and synthetic data; 

• Compression efficiency; 

One of the most innovative features consists in the definition of Video Object Planes 

(VOPs) that are units coded independently and possibly with different algorithms.  
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Figure 3.17: MPEG–4. 

 

Figure 3.17 shows a scheme of an MPEG–4 system where the possibility of encoding 

separate objects and multiplex the result in a single bitstream is made evident.  

The decoder reconstructs the objects by using for each of them the proper decoding 

algorithm and a composer assembles the final scene. A scene is composed by one or more 

Video Object Planes with an arbitrary shape, also transmitted to the decoder. VOPs can 

be individually manipulated, edited or replaced. VOPs derive from separate objects that 

have to be composed in a single scene or determined by a segmentation algorithm. To 

improve compression ratio, bitstream can also refer to a library of video objects available 

both at the encoder and decoder sides. Another interesting feature is the possibility of 

using the Sprite Coding Technology, in which an object moving on a relatively still 

background is encoded as a separate VOP. A good introduction to MPEG–4 features can 

be found in Sikora [1997]. 
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TRELLIS CODED VECTOR RESIDUAL 
QUANTIZATION 

4.1 Background 

Vector Quantization (or in short VQ) is one of the oldest and most general source coding 

techniques. Shannon [1948, 1959] proved in his “Source Coding Theorem” that VQ has 

the property of achieving asymptotically the best theoretical performance on every data 

source. 

Vector quantization can be seen as a generalization of scalar quantization to a multi 

dimensional input. A vector quantizer is often defined as a set of two functions: 

• An encoding function : nE →\ `  that maps n –dimensional vectors from the 

Euclidean space n\  to integer indices; 

• A decoding function : nD →` \  that maps every index to one of a set of 

representative n –dimensional vectors that we will call reconstruction levels or 

centroids. 

By means of these two functions, an n –dimensional vector can be approximated by one 

of a small set of vectors carefully selected in order to minimize the average distortion 
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introduced in the approximation. A quantizer achieves lossy compression by mapping 

multiple inputs into the same index, so the mapping is intrinsically non–reversible.  

Before discussing the peculiarity of vector quantization, it is helpful to introduce 

some background concepts by making reference to the simpler Scalar Quantizer (or SQ). 

A scalar quantizer can be formally defined in the following manner: 

Definition 4.1: Let x  be a random point on the real line \ ; an N –level Scalar Quantizer  

(or SQ) of \  is a triple ( ,Q, )Q A P=  where: 

1. 1 2{ , ,..., }NA y y y=  is a finite indexed subset of \  called codebook; 

2. 1 2{ , ,..., }NP S S S=  is a partition of \ . Equivalence classes (or cells) jS  of P  

satisfy: 

1

N

j
j

S
=

= \∪ ,  

 for j kS S j k= ∅ ≠∩ ; 

3. Q : Aℜ6  is a mapping that defines the relationship between the codebook and 

partitions such that:  

Q( )   if and only if j jx y x S= ∈ . 

The encoder function ( )E x  associates to x  the integer index i  such that ( ) iQ x y=  and 

the decoder ( )D i  associates the integer i  to the i –th centroid iy . Quantization is carried 

out by composing the two functions E  and D  as: 

ˆ( ( )) iD E x y x= =  

and x̂  is said to be the quantized representation of x .  
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When measuring the distortion introduced by a scalar quantizer, the squared quantization 

error is frequently assumed to be a good distortion metric both for its relevance and for its 

mathematical tractability: 

 ( ) ( )2ˆ ˆ,d x x x x= − . 

With this choice, the total distortion expressed in term of mean squared error equals to: 

( )
1

2

1
( ) ( )j

j

N x

MSE jx
j

D x y f x d x
−=

= −∑∫  

where ( )f x  is the probability density function of the input X  and the partition jS  of an 

N –level scalar quantizer that has codebook 1 2{ , ,..., }NA y y y= , codeword jy  and 

boundaries 1jx −  and jx . 

The average distortion MSED  that the quantizer achieves on a given input distribution 

depends on the partition boundaries and on the codebook entries. Figure 4.1 compares a 

uniform and a non–uniform quantizer; in the former, the real line is partitioned in 

equally–sized intervals. In the figure, the abscissa represents a point on the real line \  

and the ordinate shows the reconstruction levels. Which quantizer best fits a given input 

source depends both on the input statistics and on the distortion measure being 

minimized. 

If we focus on the minimization of MSED , it is possible, given the number of levels 

and the input distribution, to derive the necessary conditions for the optimality of a non–

uniform scalar quantizer. A quantizer that satisfies both conditions is called a Lloyd–Max 

quantizer since this type of quantizer was first derived by Lloyd [1957] in an unpublished 

paper and later by Max [1960]. 
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Figure 4.1: Uniform vs. Non–Uniform scalar quantizer. 

 

The partitions of an N –level scalar quantizer that minimizes the mean squared error 

must have boundaries that satisfy: 

1

2
j j

j

y y
x ++

=     where 1 1j N≤ ≤ − , 

0 ,    Nx x= −∞ = ∞ . 

And its centroids necessarily satisfy: 

1

1

( ) ( )

( ) ( )

j

j

j

j

x

x
j x

x

x f x d x
y

f x d x
−

−

=
∫
∫

    where 1 j N≤ ≤ . 

Since the scalar quantizer encodes input symbols one by one, this method is unable to 

exploit inter–symbol dependence and, unless the input source is memoryless, the 

achievable compression is relatively poor. To take advantage of existing inter symbol 

correlation, it is possible to group a number of input symbols together and treat this block 
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(or vector) as a single coding unit. This is the approach that is taken by a vector 

quantizer. 

A vector quantizer works as a scalar one but it groups and encodes vectors instead of 

scalars. While the dimension of the vector grows, a VQ is able to capture more and more 

inter symbol dependence and this results in a coding that is theoretically optimal in the 

sense that, fixing the distortion, it achieves the lowest possible rate. 

Shannon's theorem proves the existence of such a quantizer with asymptotically 

optimal performance; unfortunately the proof is probabilistic in nature and, while 

demonstrating the existence of the quantizer, doesn’t suggest any method to construct it. 

Further investigation (Lin [1992]) showed that, given the input distribution and the 

distortion measure being minimized, the design of an optimal codebook is an NP–

complete problem. 

At the present, the best practical solution for the design of unstructured vector 

quantizers is to use the codebook design method introduced by Linde, Buzo and Gray 

[1980]. This method, known as Generalized Lloyd Algorithm (or LBG from the authors’ 

names) uses a generalization of the Lloyd–Max optimality condition previously described 

to design a locally optimal codebook with no natural order or structure. LBG algorithm 

also improves the Lloyd–Max conditions in two important ways: 

• First, it designs the codebook starting from a set of input samples and not from the 

input distribution that may not be available or analytically hard to express; 

• Second, it solves the problem of specifying partition boundaries (very hard in a 

high dimensional space) by observing that the nearest–neighbor encoding rule 

always generates a Voronoi (or Dirichlet) partition. 
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LBG takes as input a training set { }1 2, , , LT x x x= …  of n –dimensional vectors generated 

by the source. Then N  vectors in T  are randomly chosen to constitute the tentative 

centroids and by using these centroids, the corresponding Voronoi partition boundaries 

are determined. After the initialization, the algorithm iteratively refines the centroids and 

the partition boundaries by using optimality conditions similar to the ones described in 

the scalar case. Every iteration reduces the total distortion making the quantization error 

closer to a local minimum. While several stopping criteria are used, it is common to 

iterate the process until the reconstruction error on the training set is below a given 

threshold or until there is no further improvement. A number of modifications have been 

proposed in literature to speed up the convergence, see for example the paper by 

Kaukoranta et al. [1999]. 

Since the quantizer can be interpreted as the composition of an encoding function E  

and a decoding function D , the LBG algorithm can be seen as a process that optimizes in 

turn encoder and decoder until no further improvement is possible. The refinement of the 

Voronoi partition has the property of reducing the encoding error and the new set of 

centroids improves the decoding error. 

LBG generates an unstructured, locally optimal vector quantizer. As a consequence of 

this lack of structure, the memory needed to store the codebook grows exponentially with 

the dimension of the vector. Furthermore, while the nearest-neighbor encoding rule 

avoids the explicit specification of the partition boundaries, encoding a source vector 

requires an exhaustive search in the dictionary to locate the centroid that minimizes the 

distortion. In the following, we will refer to this kind of vector quantizer as Exhaustive 
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Search Vector Quantizer (or ESVQ). The performance of an ESVQ provides an upper 

bound on the performance practically achievable by a VQ. 

The interested reader will find further details and an exhaustive discussion on vector 

quantization in the excellent book by Gersho and Gray [1992]. 

 

4.2 Introduction to the Problem 

To encode an information source with a VQ, a suitable codebook must be first designed 

by means of LBG or similar algorithm. Then, to represent each vector, the encoder must 

perform an exhaustive search in the codebook, locate the closest code vector and send its 

index to the decoder. The decoder, which shares with the encoder the knowledge of the 

codebook entries, decodes the index by retrieving the code word associated to it. From 

this description it is clear how codebook design, encoding and decoding are highly 

asymmetrical processes. The design of the codebook for an ESVQ is the most time 

consuming process, so this procedure is usually performed off–line. Then, due to the 

search, the encoding turns out to be much more expensive that the decoding. 

Even if a conventional ESVQ requires exponentially growing computational and 

memory resources, the quality achieved by this type of VQ is frequently desirable in 

applications where only a limited amount of resources is available. 

Several authors have proposed a number of alternatives to speed up codebook design; one 

of the most recent and interesting is due to Kaukoranta, Franti and Nevalainen [1999]. 

The method they propose, monitors cells activity during the LBG execution and performs 
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the computation only on the active ones. If one or more cells do not show any sign of 

change, the program does not compute new centroids and partition boundaries for that 

cell. 

An alternative to the off–line construction of the codebook has been proposed by 

Constantinescu and Storer [1994] and Constantinescu [1995]. With a method similar to 

dictionary compression, the codebook starts with a default configuration and it is 

adaptively changed as the data are being compressed. This method called Adaptive 

Vector Quantization or in short AVQ, also changes dynamically the dimension of the 

vectors in the codebook. Recent experiments on variations of AVQ described in Rizzo, 

Storer and Carpentieri [1999, 2001] and Rizzo and Storer [2001] show that, on some 

information sources, AVQ exhibits asymptotically optimal compression and on several 

test images, outperforms image compression standards like JPEG. 

When off–line construction is possible or desirable, imposing a structure to the VQ 

codebook is a practical method to speed up the nearest neighbor search. A structured VQ 

allows the use of fast search algorithms while marginally compromising compression. 

 
y1 y2 y3 y4 y5 y6 y7 y8

y1(1) y2(1)

y1(2) y2(2)
y3(2) y4(2)

 

Figure 4.2: Tree Vector Quantizer. 

One approach that is often used is to structure the codebook as a tree. The search starts by 

comparing the input vector to the code vectors in the first level codebook. Once the 
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closest match is located the search continues in the codebook associated to that code 

vector. The process is repeated until one of the leaves is reached (see Figure 4.2). In a 

Tree Vector Quantizer the search is performed in time ( )log NΟ  while the memory 

necessary to store the codebook and the vectors along the tree doubles. Tree VQs have 

been extensively studied, for instance by Wu [1990], Lin and Storer [1993] and Lin, 

Storer and Cohn [1991, 1992]. 

 

Source Q0(x0) Q1(x1) x2x0 x1x0
^

+ -
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Figure 4.3: Residual Vector Quantizer. 

 

Another solution that speeds up the search without increasing memory usage is the 

Residual Vector Quantizer depicted in Figure 4.3 and described in Barnes [1989], Barnes 

and Frost [1990], Frost, Barnes and Xu [1991]. In a residual quantizer a vector is encoded 

in multiple stages, through successive approximations. At every stage the nearest 

neighbor is found and subtracted to the vector. The quantization error vector (or residual) 

is sent to the next stage for a similar encoding. In a residual VQ, instead of a single index, 

the encoding consists of a sequence of indices, each one specifying a reconstruction level 

for each stage. The decoder retrieves the code words corresponding to the index sequence 

and adds them together in order to reconstruct the input. 

Both being based on successive approximation, tree and residual structured vector 

quantizers allow progressive encoding. This means that the decoder can stop decoding 
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the sequence of indices at any time, resulting in a worse approximation of the input 

vector. Progressive transmission finds use in prioritized transmission channels and in 

scalable coding. Some applications of VQ to progressive encoding can be found, for 

example, in the work of Riskin [1990] and Kossentini, Smith and Barnes [1992]. 

The trellis is another structure that has been found particularly effective in organizing 

the encoding process. Works by Viterbi and Omura [1974], Colm Stewart [1981] and 

Ungerboeck [1982] pioneered the use of trellises in source coding and proved that 

trellises can be effectively used to take advantage of inter symbol dependencies. Trellis 

structured quantizers were first introduced and studied by Fischer, Marcellin and Wang 

[1991]. Other papers addressing various issues both in scalar and vector trellis 

quantization are Marcellin [1990], Marcellin and Fischer [1990], Fischer and Wang 

[1991], Laroia and Farvardin [1994], Wang and Moayeri [1992]. Jafarkhani and Tarokh 

[1998] addressed the problem of successive refinable coding with trellis quantizers. 

The following section introduces a novel combination of residual and trellis vector 

quantization named Trellis Coded Vector Residual Quantizer (or TCVRQ). This 

quantizer, presented first in Motta and Carpentieri [1997], is a sub–optimal vector 

quantizer that, by combining residual quantization with a trellis graph, exhibits the 

memory savings typical of residual quantization while allowing a “virtual increase” of the 

quantization levels typical of the trellis based VQs. 
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4.3 Trellis Coded Vector Residual Quantization (TCVRQ) 

TCVRQ has been first proposed in Motta and Carpentieri [1997] as a general–purpose 

sub–optimal VQ with low computational costs and small memory requirement that, 

despite its good performance, permits considerable memory savings when compared to 

traditional vector quantizers. In the same paper a greedy method for computing 

quantization levels has been outlined, and the performances of the TCVRQ have been 

experimentally analyzed. 

In the following we will give a formal description of this quantizer, then present the 

greedy extension of the LBG that can be used to design the quantization levels. 

Definition 4.2: Let x  be a random vector in the n –dimensional Euclidean space n\ ; an 

N –level Exhaustive Search Vector Quantizer  (or ESVQ) of n\  is a triple ( ,Q, )Q A P=  

where: 

1. 1 2{ , ,..., }NA y y y=  is a finite indexed subset of n\  called codebook; iy  are called 

code vectors. 

2. 1 2{ , ,..., }NP S S S=  is a partition of n\ . The equivalence classes jS  of P  satisfy: 

1

N
n

j
j

S
=

= \∪ , 

 for j kS S j k= ∅ ≠∩ ; 

3. Q : n A→\  is a mapping that defines the relationship existing between codebook 

and partitions: Q( )  if and only if j jx y x S= ∈ .  
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Figure 4.4: A K–stage Trellis Coded Vector Residual Quantizer; each node of the trellis 
is associated with an ESVQ that encodes the quantization error of the previous stage. 

 

Equivalence classes and code vectors are designed so that the mean squared error 

introduced during the quantization is minimum. MSE has been chosen because it has a 

simple mathematical expression that can be easily minimized and gives a good measure 

of the random error introduced in the compression. However results can be generalized to 

other metrics (see for example Barnes [1989]).  

 

Definition 4.3: A Residual Quantizer consists of a finite sequence of ESVQs 

1 2, ,..., KQ Q Q  such that 1Q  quantizes the input 1x x=  and each ,  1iQ i K< ≤  encodes the 

error (or residual) 1 1Q( )i i ix x x− −= −  of the previous quantizer 1,  1iQ i K− < ≤ . 

The output is obtained by summing the code words: 

1
Q ( )

K

i i
i

y x
=

= ∑  
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Definition 4.4: A multistage (or layered) K –stage graph is a pair ( , )G V E=  with the 

following properties: 

1. 1 2{ , ,..., }nV v v v=  is a finite set of vertices such that: 

1

K

k
k

V V
=

=∪ ,    for   1kV V k K⊂ ≤ ≤  and  

   for   ,1 ,i jV V i j i j K= ∅ ≠ ≤ ≤∩ ; 

2. 1{( , ) : , ,1 }i j i k j kE v v v V v V k K+= ∈ ∈ ≤ <  is a finite set of edges. 

According to the definition, a trellis is a multistage graph since it can be divided into 

layers and edges that connect the nodes from one layer to the next.  

The trellis coded residual quantizer associates a residual quantizer to each node of a 

trellis. Since each layer of this graph is not fully connected to the next layer (as, for 

example, in the trellis described in Ungerboeck [1982]), not every sequence of residual 

quantizers is allowed and, by designing the residual quantizers appropriately, a bit saving 

can be achieved for each stage. 

Each encoded vector is fully specified by the path on the graph and by the indexes of 

the code words of the quantizers in nodes along the path.  

When we use, for example, the trellis showed in the Figure 4.4 and each Q ( )i j  is 

a N –level RVQ, an output vector is specified by 1K +  bit to encode the path and 

2log ( )K N⋅  bit for the code vectors indices. In a residual quantizer that achieves the 

same bit rate, each stage has 4N  levels and 2log (4 )K N⋅  bit are necessary and the trellis 

configuration allows a “virtual doubling” of the available quantization levels. 
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A formal definition of the TCVRQ is the following: 

Definition 4.5: A Trellis Coded Vector Residual Quantizer is a pair ( , )T G Q=  where: 

1. ( , )G V E=  is a Trellis multistage graph with V n=  and K  stages; 

2. 1 1( , ,..., )nQ Q Q Q=  is a finite set of ESVQs, V Q=  and each iQ Q∈  is 

associated to the vertex iv V∈ ; 

3. The ESVQ iQ  encodes the residual of jQ  if and only if ( , )i jv v E∈ . 

With reference to Figure 4.4, TCVR quantization of an input vector starts from the nodes 

of the first layer. The vector is encoded with the four quantizers present in the first stage 

nodes. The four code vectors resulting from the quantization are subtracted from the input 

and four possible residuals propagate to the next stage. Nodes at the second stage have 

two entering edges, each carrying a residual. Quantization is performed on both residuals 

and the one that can be better encoded (in the sense that current quantization will 

generate a smaller error) is quantized and its residual propagated again. Quantization 

ends at the last stage, where the path and the code vectors that generated the smaller 

residual are selected.  

This method uses an approach similar to Viterbi search algorithm (Viterbi and Omura 

[1974]) and, in this specific framework, is not optimal. It is well known that the partitions 

generated by a residual quantizer are not necessarily disjoint. This also happens with our 

TCVRQ. The Viterbi search algorithm will exclude at every step one half of the paths 

because they do not look promising. Unfortunately this does not mean that they cannot 

generate a quantization error that is smaller than the one generated by the selected paths. 
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When computing power is not an issue, a full search can be used on the trellis, or, as a 

compromise between a Viterbi and a full search, an M–search algorithm that keeps 

“alive” several paths instead of only four.  

Once the trellis structure has been chosen, the design of the codebooks associated to 

the node quantizers is the next problem. 

A greedy codebook design was proposed in Motta and Carpentieri [1997, 1997b]. 

This method is based on an extension of the LBG algorithm (Linde, Buzo and Gray 

[1980]). The design of the quantization levels for the ESVQs associated to each node of 

the trellis is performed stage by stage, sequentially from stage 1 to stage K , by training 

the LBG on the residuals generated through the entering edges. 

Obviously this design is not optimal; nevertheless since it respects the structure of the 

quantizer, for a small number of stages it is sufficient to achieve competitive 

performance. When the number of stages increases, both greedy design and Viterbi 

search show their weakness. Partitions generated by TCVRQ overlaps and two different 

paths may encode equally well the same input, resulting in a waste of coding space. 

We also note that, increasing of the number of stages, the performance degrade 

gracefully. This is mainly due to the nature of the residual structure in which the energy 

of the coding error decreases quickly with the number of stages. 
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4.4 Necessary Condition for the Optimality of a TCVRQ 

Necessary conditions for the minimum distortion of a quantizer are generally determined 

by taking the derivative of the distortion function with respect to the partition boundaries 

while keeping the centroids fixed and then by taking the derivative of the distortion with 

respect to the centroids while keeping the partition boundaries fixed. 

This technique has been widely used in literature since the unpublished report written 

by Lloyd [1957] and the paper by to Max [1960] where the necessary conditions for the 

optimality of a scalar quantizer are derived. 

Unfortunately, this method cannot be applied directly to the determination of similar 

optimality conditions in the case or a TCVRQ. The distortion introduced by a TCVRQ on 

the coding of a vector 1x  takes the form: 

( ) 1

1

1 1 1
,...,

1

ˆ, ... , ( )  P

n P n

P
p p

p
D d Q dF

=∈ℜ ∈ℜ

 
=  

 
∑∫ ∫ X X

x x

x x x x  

 

where the sum is performed along the winning path. 

In general, the joint probability density function 1,..., PdF
X X

 is not known and, because 

of the residual structure, it depends, in a complicate fashion, on the sequence of 

codebooks and boundaries. 

In his Ph.D. Thesis, Barnes [1989] proposes a very general approach to the solution 

of this problem. He starts by defining a quantizer that is not residual but that, by 

construction, is completely equivalent to the RQ that must be analyzed. In Barnes [1989] 
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the name of “Equivalent Quantizer” is used, while in Barnes and Frost [1993] the same 

concept is used with the name of  “Direct Sum Quantizer”. 

The basic idea is to construct an ESVQ that has partitions and code vectors derived from 

a residual quantizer. Optimality conditions for this ESVQ can be derived with the 

technique described before and then transformed in the corresponding optimality 

conditions for the original quantizer. 

 

Definition 4.6: A Direct Sum (or Equivalent) Quantizer is a triple ( , , )e e eA Q P  consisting 

of: 

1. A direct sum codebook A  whose elements are the set of all the possible sums of 

stage wise code vectors taken along all the possible paths, one vector from each 

stage 1 2e PA A A A= + + +… . There are 
1

Pe p
p

N A
=

= ∏  direct sum code vectors 

in A . Direct sum code vectors are indexed by P –tuples 1 2( , , , )P Pj j j=j …  and 

can be written as 
1

( ) p

P
e P p

j
p=

= ∑y j y . 

2. A direct sum partition eP  is the collection of the direct sum cells. The Pj –th 

direct sum cell is the subset ( )e P nS ⊂ ℜj  such that all 1 ( )e PS∈x j  are mapped by 

the corresponding residual quantizer into ( )e Py j , that is 

1

1
( ) : ( ) ( )

P
e P p p e p

p
S Q

=

 
= = 

 
∑j x x y j . 

3. The direct sum mapping :e n eQ A→\  is defined as 1( ) ( )e e PQ =x y j  if and only 

if 1 ( )e PS∈x j .  
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The average distortion of the direct sum quantizer is given in terms of the known source 

probability density function 1F
X

 and so its minimization is substantially easier: 

( ) 1
1 1 1 1ˆ, , ( )eD d Q dF =  ∫ X

x x x x  
 

By construction, the direct sum single stage quantizer defined before produces the 

same representation of the source input 1x  as does the corresponding TCVRQ. So the 

two distortions must be equal and we can minimize the distortion of a TCVRQ by 

minimizing the distortion of its equivalent direct sum quantizer.  

1

1
( ) ( )

P
e p p

p
Q x Q

=

= ∑ x . 

It is necessary to observe that in general, TCVRQ partitions, as well as the direct sum 

cells of its equivalent quantizer, are not disjoint. Because of this reason, the codeword 

must be specified by giving both the path along the trellis and the indices of the code 

vectors selected along the coding path. 

 

Theorem 4.1: For a given TCVRQ and for a given random variable 1X  with probability 

density function 1F
X

, let the partitions { }1 2, , , PP P P…  and all the codebooks except Aρ  

with {1, , }Pρ ∈ …  be fixed, then the kρ

ρy  quanta in Aρ  that minimize the mean squared 

error must satisfy: 

( )n
k

P P
k kS

f S d
ρρ ρρ ρ
ρ

ρ ρ ρ ρξ ξ ξ
ℜ Ξ ∈

= ∈∫ x
y x  

for every {1, , }p P∈ …  and {0, , 1}k N ρ
ρ ∈ −… . 
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Proof: The proof is based on the condition for the optimality of a residual quantizer 

proved in Barnes [1989] and Barnes and Frost [1993].  

For a given random variable 1X  with probability density function 1F
X

we want to find a 

set of code vectors that locally minimizes the distortion: 

1 1

2 21 1 1 1 1 1 1

all ( )

( ) ( ) ( ) ( )
n

P e P

e e P
mse

S

D Q f d f d   = − = −   ∑∫ ∫X X
j j

x x x x x y j x x
\

 

while keeping the equivalent partitions eP  (or the TCVRQ partitions { }1 2, , , PP P P… ) 

fixed. If we assume that all the codebook, except Aρ  with {1, , }Pρ ∈ … , are held fixed, 

then mseD  can be minimized with respect each code vector kρ

ρy in Aρ  by setting the partial 

derivative of mseD with respect the direct sum code vectors that contain kρ

ρy  in theirs sum. 

Using the distortion formulated in terms of the component code vectors and setting its 

partial derivative equal to zero gives: 

1
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If we indicate with { }:P
kH j k

ρ

ρ ρ
ρ= =j  the set of indices ( )1 2, , , , ,P Pj j j jρ=j … …  that 

have ρ –th component equal to kρ , then the partial derivative assumes value:  
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Solving with respect to kρ

ρy  gives the result: 

1

1

1 1 1

( ) 1

1 1
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The expression 
1

p

P
p
j

p
p ρ

=
≠

∑ y  represents a codeword from which the ρ –th node along the path 

has been removed. We indicate this quantity as ( ) ( )
1

p

P
P e P p

j j
p
p

g y ρ
ρ ρ

ρ
=
≠

= − = ∑j j y y  

Defining an indicator function ( )e PS j
I

 as: 
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0, otherwise
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it is possible to rewrite the expression for kρ
y and interchange the order of summation and 

integration: 
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For each 
Pj define for all 

1 ( )e PS∈x j  the “grafted” residual values ( )1 Pgρ ρξ = −x j
. 

The cell ( )PGρ j  contains all grafted residuals 
ρξ  formed from the

1 ( )e PS∈x j . Its 

indicator function is defined as: 

( )

1, if ( )
0, otherwise
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Using the relation between ρξ  and 1x  we can change the variable of integration: 
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Expanding the probability density function 1 ( )Pf g ρ ρξ + X
j  as a sum of conditional 

probability density functions: 
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Expressing the conditioning in terms of the ρ –th causal residual ρx we obtain: 
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This expression can be substitute to the sum common to numerator and denominator in 

the previous expression for kρ
y  giving: 
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Dividing both sides by ( )Prob kS
ρ

ρ ρ∈x : 
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Since ( ) ( )1Prob Probk kS H
ρ ρ

ρ ρ ρ∈ = ∈x x  we can express the last equation as: 

( ) ( )
1( )

1

( )  

Prob

P
kP

k

k

P
G S

HP
kS

k

I f g

f S
H

ρ ρρ
ρ ρ
ρ

ρρ ρ ρ
ρ

ρ

ρ ρ

ρ ρ

ρ

ξ

ξ
∈

∈

Ξ ∈

 + 
∈ =

∈

∑ j X x
j

x

j

x
x

 

 

The substitution of the last three relations in the expression for 
k ρy completes the proof 

by giving: 
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4.5 Viterbi Algorithm 

The algorithm that has been used to encode a vector is based on the method introduced by 

Viterbi [1967] to decode error correcting convolutional codes. Two years after its 

introduction, Omura [1969] recognized that the Viterbi algorithm is equivalent to the 

dynamic programming solution of the problem of finding the shortest path through a 

weighted graph, so in the following, we will use “shortest” as a synonym of “minimum 

cost” path. 

The regular, multi stage structure of a trellis allows an efficient implementation of 

this algorithm with a minimum book keeping and since its introduction it has been the 

core of most error correcting decoding algorithms. 

Viterbi algorithm works by finding the shortest path on a trellis whose edges have 

been labeled with an additive cost metric. Starting from an initial node, a simple 
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computation is carried out stage by stage to determine the shortest path ending in the 

nodes belonging to the current stage. Each processed node is labeled with the shortest 

path and with its corresponding cost. These partial solutions are sometimes called 

“survivor” paths. 

Let’s suppose that a node i
jn  of the i –th stage has two entering edges ( , )h j  and 

( , )k j  leaving the nodes 1i
hn −  and 1i

kn −  in the stage 1i −  and that the edges are respectively 

labeled with costs ,h jW  and ,k jW  (see Figure 4.5). If the algorithm has already processed 

the ( 1)i − –th stage, then the nodes 1i
hn −  and 1i

kn −  are labeled with the survivor paths 

1 1( , )i i
h hPATH COST− −  and 1 1( , )i i

k kPATH COST− − . Then the survivor path for the node i
jn  

will be computed as ,( ( , ), )i i
t t t jPATH t j COST W∗ +  where 

{ }
( )1

,
,

argmin i
y y j

y h k
t COST W−

∈
= + . 

The operator “∗ ” is used to indicate the concatenation of a new edge to a path. 

 

 

 

Stage i-1 Stage i

,h jW

,k jW

1i
hn −

1i
kn −

i
jn

1 1( , )i i
h hPATH COST− −

1 1( , )i i
k kPATH COST− −

 
Figure 4.5: Viterbi algorithm 
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Since all paths start in a node 0n  and end in a node Nn , it is easy to prove that, under the 

assumption of an additive metric, Viterbi algorithm labels the ending node with the 

minimum cost path. The proof is carried out by induction, where the inductive step 

assumes that the nodes 1i
hn −  and 1i

kn −  are labeled with the minimum cost paths starting in 

0n  and ending in 1i
hn −  and 1i

kn −  respectively. Since the only way to reach the node i
jn  is 

through the edges ( , )h j  and ( , )k j , every path starting in 0n  and ending in i
jn  cannot be 

shorter than ,( ( , ), )i i
t t t jPATH t j COST W∗ +  where 

{ }
( )1

,
,

argmin i
y y j

y h k
t COST W−

∈
= + . The 

initial node 0n  is labeled with an empty path of cost zero. 

The TCVRQ uses a variant of this algorithm to implement a greedy search of the 

representative code vector that scores a minimum reconstruction error for a given input. 

The input is fed to the quantizer through the initial node, then the metric of each of the 

out edges is computed. The metrics is the minimum error achieved by the small 

exhaustive search vector quantizer associated to the node. The node is then labeled with 

the quantization residual vector plus the edge information and the index of the code 

vector selected in the node ESVQ. The computation is performed stage by stage, until the 

ending node contains the survivor residual (and so its mean squared error with the input) 

and the sequence of edges and code vector indices. This sequence is the information that, 

stored or sent to the decoder, allows a reconstruction of the input. 

Since the metric is computed on the fly and depends on the quantization choices 

performed at early stages, not every combination of code vectors is examined. While this 

has the advantage of drastically reducing the computing time, the search is clearly sub 

optimal. In practice, the ESVQs that are associated to each node have code vectors of 
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decreasing energy. Meaning that, because of the residual structure, the contribution of the 

first stages to the final error is more relevant. This is enough to guarantee that in practice 

this search achieves a quantization error that is very close to the one achieved in the case 

of an exhaustive search that considers all the possible sums of code vectors along the 

trellis. 

 

4.6 Experimental Results 

Vector quantization is a compression technique that can be used alone or it can be 

combined with other methods to form a complex data compression system. To assess the 

performance of the TCVRQ we ran three series of experiments. The first set of 

experiments deals with natural data and involves direct quantization of gray–level still 

images. In these experiments we used the greedy codebook design outlined before and 

Viterbi.  

An area in which powerful yet simple vector quantizers are extremely useful is low 

bit rate speech coding; works by Juang and Gray Jr. [1982], Makoul, Roucos, and Gish 

[1985], Paliwal and Atal [1991] and Bhattacharya, LeBlanc, Mahmoud, and Cuperman 

[1992] all stress that efficient vector quantization is a key problem in speech coding. 

Because of this, the second set of experiments assesses the performance of a TCVRQ 

with a greedy designed codebook and Viterbi search when used to encode linear 

prediction parameters in a low bit rate speech codec.  
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The third series of experiments, performed on theoretical random sources, compares the 

performance of the Viterbi search versus the performance of a more complex and time–

consuming full trellis search.  

4.6.1 Gray–level Image Coding 

TCVRQ performance has been assessed on natural data sources with several experiments 

that encoded directly several gray–level images taken from a standard data set. Results in 

quantizing these images were compared to those obtained by ESVQ.  

The image set was composed of 28 standard gray–level images, 512x512 pixels, 256 

gray levels. Images were downloaded from “ftp//links.uwaterloo.ca/pub/BragZone” and 

are also available from several other web sites that collect reference images used in data 

compression. 

The set was partitioned into a training set, consisting of 12 images and a test set 

counting 16 images. The pixels in the training set images were partitioned in vectors of 

3x3 and 4x4 pixels.  

Following the convention present in the literature, error was measured as Signal to 

Quantization Noise Ratio (or SQNR) and expressed in dB: 

( )
( )

2

10 2
ˆ( , ) 10 log

ˆ
X

SQNR X X
X X

σ

σ
= ⋅

−
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Figure 4.6: SQNR for TCVRQ and ESVQ compared for different bit–rates and for 

images in the training (left) and in the test sets (right). 
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Figure 4.7: Performance of the TCVRQ compared to J. Goldschneider's VQ package. 

 
 
Figure 4.6 shows that, when used in the direct quantization of gray–level still images, 

TCVRQ performs very close to a locally optimal ESVQ. For low bit rates, ranging from 

0.3 to 1 bit per pixel, TCVRQ quantization error is very close to the optimum while we 

gain in terms of speed and memory. Increasing the bit rate by increasing the number of 

stages tests the limits of the greedy search and codebook design. Since partitions overlap, 
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similar code vectors gets associated to different code words resulting in an inefficient use 

of the coding space. 

TCVRQ was also tested, on the same set of images, with another popular VQ 

package, written by J. Goldschneider and freely available on Internet at the ftp address: 

“ftp://isdl.ee.washington.edu/pub/VQ/code”. This package consists of two different kinds 

of tree quantizers that achieve fixed and variable rate and an ESVQ that performs full 

search on the codebook generated for the tree quantizers. 

As it is shown in Figure 4.7, for low bit rates, trellis coded vector quantization 

outperforms tree–structured quantization in terms of SQNR. It is also important to note 

that, due to their structure, tree quantizers use twice the memory of an ESVQ with the 

same number of levels and so their memory usage grows exponentially with the vector 

size. In contrast, TCVRQ only uses an amount of memory that grows linearly with the 

vector dimension. 

4.6.2 Low Bit Rate Speech Coding 

The fact that the TCVRQ is a general–purpose VQ, with low computational costs and 

small memory requirements makes this quantizer suitable for low bit–rate speech coding 

applications. High quality, low bit–rate speech codecs are necessary when speech signal 

have to be encoded on a narrow–band channel while preserving both voice intelligibility 

and speaker identification. 
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Figure 4.8: The low bit rate speech codec used in our experiments. 

 
 

We have also experimentally evaluated the performances of TCVR quantization when 

used in a low bit–rate Linear Prediction based speech codec. We used the low bit–rate 

speech codec depicted in Figure 4.8. This low bit rate speech codec, originally proposed 

in Motta [1993], improves upon a scheme previously introduced by Atal and Remde 

[1982]. 

The codec is a hybrid single–pulse codebook excited codec where the voice signal, 

sampled at 8 KHz with 16 bit per sample, is analyzed by using linear prediction. The 

signal is divided in frames of 80 consecutive samples and every frame is classified as 

“Voiced” or “Unvoiced” by thresholding the peak of the autocorrelation. For voiced 

frames, the period of the main pitch is also estimated. 

Depending on their voiced/unvoiced classification, frames are synthesized at 2400 bit 

per second by using a single–pulse or a stochastic excitation vector. If the frame is 

voiced, number and positions of the pulses are computed with a dynamic programming 

algorithm that minimizes the squared error between the original and the reconstructed 
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signal. Unvoiced frames are synthesized in a CELP like manner, by choosing in closed 

loop the excitation signal in a stochastic codebook that minimizes the reconstruction 

error. 

The TCVRQ is used to quantize linear prediction parameters that are represented in 

terms of Line Spectrum Frequencies  (see Rabiner and Schafer [1978]). In this kind of 

codec, it is well known that the quantizer design is critical and the quality of the 

synthesized signal strongly depends on accurate quantization of the linear prediction 

parameters. LSFs were encoded at bit rates between 1.9 – 2.4 bit per parameter with a 

TCVRQ in a 10–stages trellis configuration. 

The quantizer was trained on LSFs derived from a set of 76 sentences pronounced by 

different speakers of both sexes in the most common European languages: English, 

French, Dutch, German, Greek, Spanish, Italian. 

The test set was composed by 12 English sentences spoken by one male and one 

female speaker. Used sentences are phonetically rich and well known to be hard to 

encode: 

• “Why were you away a year Roy ?” (Voiced); 

• “Nanny may know my meaning” (Nasals); 

• “The little blanket lies around on the floor” (Plosives); 

• “His vicious father has seizures” (Fricatives); 

• “The problem with swimming is that you can drown” (Voiced Fricatives); 

• “Which tea–party did Baker go to ?” (Plosives and Unvoiced Stops). 
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Figure 4.9: Cepstral Distance obtained quantizing the LP coefficients of the test set with 

a rate of 2.4 bit per parameter. 

 

Low bit rate speech quality cannot be measured by using signal to noise ratio. SQNR 

gives an unreliable measure that is poorly correlated to the mean opinion score assessed 

by human listeners. Much more informative is the use of a spectral measure known in 

literature as Cepstral Distance. Based on the work by Bogert, Healy and Tukey [1963], 

the cepstral distance is a perceptually motivated metric widely used to assess low bit rate 

speech coding (see Rabiner and Schafer [1978] and Gersho [1994]). 

 Figure 4.9 shows the distribution of the cepstral distance between the original and the 

quantized linear prediction parameters. The histogram shows that the average CD 

obtained on the test set is approximately 1 dB and the percentage of frames with a CD 

greater than 2 dB is reasonably small. These results satisfy the conditions for a 

transparent quantization expressed in Paliwan and Atal [1991]. This has been also 
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verified by informal listening tests that confirmed that the TCVRQ is capable of 

performing transparent quantization with 1.9 – 2.4 bit per linear prediction parameter.  

4.6.3 Random Sources 

Degradation introduced by the non–optimal Viterbi search was assessed on a number of 

random sources. Random sources are commonly used in literature to evaluate scalar and 

vector quantizers since they can model natural data in a controlled manner. 

The sources generate data according to the distributions: Uniform, Gaussian (0,1)N , 

Laplacian (0,1)L , Bimodal ( ) 0.3 ( 1,1) 0.7 (1,1)f x N L= ⋅ − + ⋅  and Gauss–Markov with 

coefficients 1 1.515a =  and 2 0.752a = − . Random sources with these parameters were 

also used in Marcellin [1987] and Barnes [1989]. 

 The Gauss–Markov source is the only one in this group that is not memoryless. 

 

Bps Uniform Gauss Laplace Bimodal Markov 
0.3 1.24 1.17 1.18 2.20 4.40 
0.6 2.80 2.52 2.58 4.16 7.63 
0.9 4.56 3.95 4.03 6.50 10.19 
1.2 5.89 5.19 5.21 7.80 12.20 
1.5 7.23 6.49 6.43 9.03 13.98 
1.8 8.70 7.84 7.67 10.32 15.51 
2.1 10.00 9.11 8.85 11.46 16.86 
2.4 11.31 10.38 10.05 12.57 18.10 
2.7 12.70 11.70 11.22 13.68 19.27 
3.0 13.99 12.96 12.37 14.75 20.39 

Table 4.1: TCVRQ on random data sources, Viterbi search. SNR expressed in dB. 
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Bps Uniform Gauss Laplace Bimodal Markov 
0.3 1.24 1.17 1.18 2.87 4.40 
0.6 2.82 2.54 2.63 5.41 7.77 
0.9 4.64 4.04 4.19 7.46 10.48 
1.2 6.26 5.55 5.57 8.86 12.77 
1.5 7.82 7.11 7.02 10.26 14.72 
1.8 9.44 8.75 8.53 11.74 16.49 
2.1 11.08 10.35 10.01 13.10 18.19 
2.4 12.77 11.98 11.48 14.51 19.61 

Table 4.2: TCVRQ on random data sources, full trellis search. SNR expressed in dB. 

 

Bps Uniform Gauss Laplace Bimodal Markov 
0.9 5.59 4.74 5.04 7.64 11.47 
1.2 8.13 7.20 7.47 10.27 14.62 

Table 4.3: Reference ESVQ on random data sources. SNR expressed in dB. 

 

Exploitation of the inter symbol dependence is evident in the Tables 4.1, 4.2 and 4.3. 

 Quantization error on the Gauss–Markov source is always significantly better than 

the other sources at any bit rate. In these experiments random data are first generated, 

then grouped in vectors of ten values and quantized. The trellis has always the same 

number of levels per stage; higher bit rate is achieved by increasing the number of stages. 

Tables 4.1 and 4.2 show the SNR in dB introduced by the trellis coded vector quantizer 

with Viterbi and with a full codebook search and, as a reference, the error introduced by 

an exhaustive search vector quantizer whose codebook was designed with LBG 

algorithm. 

Table 4.3 shows reference results obtained on the same sources by the exhaustive 

search vector quantizer. Not every point is present in the Table 4.3 due to the complexity 

of the ESVQ and TCVRQ with full search. Nonetheless it is possible to observe that the 
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performance of the TCVRQ is close to that of the ESVQ and the degradation introduced 

by the Viterbi algorithm increases slowly with the number of stages. 



 139 
 

LOSSLESS IMAGE CODING 

5.1 Background 

Most applications of image compression deal with images that will be used in 

frameworks that do not require extreme fidelity. If a photographic picture is compressed 

by using JPEG or JPEG–2000, two state of the art lossy compression algorithms, most 

viewers will not be able to perceive any quality degradation from the original. There are 

also situations like the transmission of a picture over a low bandwidth channel like the 

Internet, where high compression is much more desirable than an exact reproduction of 

the original. 

One of the main drawbacks of the lossy compression algorithms that are commonly 

used for image compression is that, while the overall quality of the picture can be 

controlled to some extent, nothing can be said about the error that affect single pixels. 

This is not sufficient in applications, like medical imaging for example, where 

uncontrolled distortion in a portion of the image may change significantly the 

interpretation of the data. In these cases, it is necessary to use lossless compression 

algorithms, i.e. algorithms in which the compression is reversible and no information is 

lost in the coding process.  
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During JPEG standardization, which was mainly focused on the lossy compression of 

natural images, the committee felt the need for a lossless coding mode that could 

complete the standard. After evaluating few proposals, a lossless method based on the use 

of a set of fixed predictors was added to the draft. However, it was immediately clear that 

the lossless mode added to JPEG was not adequate, so the committee decided to issue a 

Call for Contributions for a new lossless standard that was named ISO/IEC JTC 1.29.12, 

also known as lossless JPEG or JPEG–LS. In the same call for contribution, the need for 

a near–lossless mode was also anticipated. In near–lossless mode, some error can be 

introduced in the coding process but it must be possible to specify a tight upper bound on 

the maximum error that is introduced on each pixel. Immediately after the call for 

contributions, the field of gray–level lossless image compression received a renewed 

attention from many researchers in the data compression community because the design 

of an efficient lossless compressor turned out to be a challenging task. 

The contributions that were submitted were all effective in compressing images, 

while keeping low the computational complexity and the memory requirements. On the 

other hand, most of them used ad–hoc heuristics and, even if further improvements 

appeared unlikely, it was not completely clear how much their compression was close to 

the entropy of the image. 

The best proposal in terms of compression ratio was the Adaptive Lossless Image 

Codec (CALIC) presented by Wu and Memon  [1996, 1997], however due to its higher 

complexity, LOCO–I, proposed by Weinberger, Seroussi and Sapiro [1996] was selected 

as the core of the final draft.  



 141 
 

In a subsequent paper [1996] Wu discussed some of the experiments performed during 

the development of CALIC and concluded that:  

• Linear prediction is not effective in capturing edges and fast transitions in image 

luminosity; 

• Global optimization seems unable to improve the performance of CALIC; 

• CALIC achieves a data rate extremely close to the image entropy. 

Contrarily to Wu’s findings, Meyer and Tischer [1997, 1998] were able to design TMW, 

a lossless coding algorithm that, on the same standard test images, improves upon 

CALIC’s compression. Even if TMW has a computational complexity several orders of 

magnitude greater than CALIC, the results were anyway surprising because TMW uses a 

two–pass global optimization and a blending of multiple linear predictors. In a TMW 

compressed file the encoded data are preceded by a header that contains the parameters of 

the model determined in the fist pass of the encoding. 

The results achieved by TMW re–opened the question regarding the effectiveness of 

linear prediction in lossless image coding. In a following paper Wu, Barthel and Zhang 

[1998b] studied linear predictors optimized on a pixel–by–pixel basis and concluded that 

single–pass linear prediction can be used to achieve good compression in gray–level 

images. Also Meyer and Tischer [2001] have recently proposed a simple algorithm based 

on single–pass linear prediction that is able to improve upon CALIC’s results. 

Most literature dealing with lossless image compression focuses on continuous tones 

gray–level images. This is not a loss of generality since both color and color–mapped 

images can be preprocessed and then compresses as if they were gray–level images. In 

lossless compression, standard color transformations like YUV  cannot be used because 
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of their lossy nature, so to compress color images, the color planes must be first 

decorrelated with the help of a lossless color transform and then each color component 

can be treated as a stand alone gray–level image. Papers that address more sophisticated 

approaches, like the ones by Wu, Wai–Kim Choi and Memon [1998] and Barequet and 

Feder [1999], show that the gain derived from a more sophisticated decorrelation is often 

marginal. Even color–mapped images (frequently called “synthetic” because most of 

them are computer generated), when not compressed by means of ad–hoc algorithms 

(Ausbeck [1998]), can be treated as gray–level continuous tone images after reordering 

and compacting the indices representing the colors. More details on the actual state of the 

art in lossless image coding can be found in Carpentieri, Weinberger and Seroussi [2000]. 

The compression of continuous tone gray–level images being general enough, we 

concentrate our attention on the compression of this particular data type. The images 

target of our investigation are discrete bi–dimensional signals, representation of natural 

scenes, in which an integer number measuring the brightness of the pixel is associated to 

a pair of spatial coordinates. Pixel values typically fall in the ranges [0 – 31], [0 – 255] or 

[0 – 4095], requiring respectively 4, 8 and 12 bits for the encoding of each pixel. While 

images that are 8 bit per pixel are common in literature, 12 or even 16 bit per pixel are the 

preferred choice when dealing with medical or scientific imagery. 

The compression method that we propose and study here is based on a single step, 

adaptive linear prediction combined with a classification mechanism. The predictor is 

optimized on a pixel–by–pixel basis on a training set that is selected by the classifier in 

order to maximize the similarity of the samples with the context of the pixel being 

predicted. This method allows the combination of context–based coding and prediction. 
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Preliminary results on the application of this method were presented and discussed in 

Motta, Storer and Carpentieri [1999, 2000b]. This algorithm, that we called ALPC, 

acronym for Adaptive Linear Prediction and Classification, uses a set of linear predictors 

from which, for every pixel, one predictor is selected and refined with a an optimization 

procedure. The refinement uses samples taken from a causal window. Not all samples in 

the causal window are used to refine the predictor. The classification selects a fraction of 

samples that have a context (set of causal neighbors) closer to the context of the pixel 

being encoded. This classification limits the computational complexity and improves 

prediction. The size of the causal window used in the classification controls the locality 

of the adaptation. Large windows result in a more general predictor, while small windows 

follow more closely the local statistics of the image. 

Given the backward adaptation and the lossless nature of the compression, the 

decoder is able to perform the same steps and derive an identical refined predictor. 

Finally, entropy coding is used to represent the prediction error efficiently. 

Preliminary studies on this method were based on a Gradient Descend minimization 

while the best results were obtained with an improved version that optimizes the 

predictor with a Least Squares minimization.  

Independently on the minimization procedure, the algorithm bases the prediction on a 

causal context centered on the current pixels. Missing context pixels encountered during 

the compression of the image borders are set to a default value.  

The context consists of all the pixels that have a Manhattan Distance smaller then a 

given constant. Manhattan distance between two points p  and 'p  having respectively 

coordinates ( , )x y  and ( ', ')x y  is defined as: ( , ') ' 'M p p x x y y= − + − . 
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Figure 5.1: Context formed by pixels with Manhattan distance of three or less. 

 

for every pixel ( , )p x y  in the input image do begin 
Collect the pixels in , ( )x y pW R  and their context 

Determine n  centroids 1 ,..., nC C  by applying LBG on  

the contexts in , ( )x y pW R  

Let 1 ,..., nK K  be the corresponding clusters 

Classify collected pixels with respect to the clusters 
Classify the context of the current pixel ( , )p x y ;  

let k  be the index of the cluster 
Let iP  be the predictor that achieves smallest error 

on kK  among the predictors 1,..., nP P  

Refine the predictor iP  on the pixels in kK  

Use the refined predictor iP′  to predict ( , )p x y  

Encode the prediction error ( , )e x y  with an entropy encoder 
end 

 
Figure 5.2: Pseudocode description of the adaptive prediction. 

 

A context that uses pixels having Manhattan distance of three or less from the current 

pixel is depicted in Figure 5.1. Distances of two or less and three or less achieve good 

compression and suffice to the characterization of the relation between a pixel and its 

context. Larger contexts increase the amount of computation while resulting in little or no 

improvement on the set of standard test images that we used. 
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In our work, we addressed the problem of gray–level lossless image compression 

exclusively from the point of view of the achievable compression ratio, without being 

concerned about computational complexity or memory requirements. 

 

5.2 Adaptive Linear Prediction Coding 

A pseudocode description of ALPC is given in Figure 5.2. The input image is traversed in 

raster scan order (top to bottom and left to right) and encoded in a single pass. The 

luminosity of each pixel ( , )p x y  is predicted according to a weighted sum of its context. 

The result is rounded to the nearest integer. If a context of size six is used (pixels at a 

distance ( , ') 2M p p ≤  from p ) the equation of the prediction ( , )p x y�  takes the form: 

0 1 2

3 4 5

( , ) ( ( , 1) ( 1, 1) ( , 1)
( 1, 1) ( 2, ) ( 1, ))

p x y round w p x y w p x y w p x y
w p x y w p x y w p x y

= ⋅ − + ⋅ − − + ⋅ − +
+ ⋅ + − + ⋅ − + ⋅ −

�
 

Since the weights are adaptive, the order of the pixels in this equation is not relevant and 

we can rewrite the equation as: 

'  ( , ) 2

( , )
i i

i i
p M p p

p x y round w p
∋ ≤

 
= ⋅ 

 
∑�  

The context of ( , )p x y  has a fixed shape and only the weights iw  are allowed to adapt 

during the encoding. After the prediction, the residual ( , )e x y  of the pixel ( , )p x y  is 

calculated by subtracting the prediction from the current pixel: 

( , ) ( , ) ( , )e x y p x y p x y= − �  
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Figure 5.3: Prediction window , ( )x y pW R  of radius pR  centered on ( , )p x y . 

 

If the pixels assume values in the range [0, , 1]α −…  then the prediction error will be in 

the alphabet [ 1, , 1]α α− + −… . Since the prediction is based on previously encoded 

pixels, the decoder knows their exact value. This information can be used to reduce the 

range of the prediction error with a mapping called Modulo Reduction. Modulo reduction, 

described in Weinberger, Seroussi and Sapiro [1996], is commonly used in lossless 

encoders like, for example, JPEG–LS. It allows a better entropy coding and, when the 

error distribution is shaped like a Laplacian, this mapping doesn’t change significantly 

the distribution. Modulo reduction has been used in the version of ALPC that refines the 

predictor with the least squares minimization and it is not necessary when modulo and 

sign of the prediction error are encoded separately.  

Before encoding a pixel, the predictor’s weights iw  are adaptively changed in order 

to model local characteristics of the image. The optimal predictor for the pixel being 
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encoded is defined as the one that minimizes the energy of the prediction error on all 

samples in the causal window , ( )x y pW R  of radius pR  and centered on ( , )p x y : 

( ) ( )
,

2

( ', ') ( )

min ( , ) min ( ', ')
i i

x y p
w w p x y W R

E x y e x y
∈

 
=   

 
∑  

Adaptation uses a backward predictor. Backward prediction was preferred because it does 

not require any side information to be sent to the decoder. On the other hand, it also has 

as the well–known drawback of having poor performance in the presence of edges. This 

problem is partially mitigated by the use of the classification because classification 

selects in the window , ( )x y pW R  a subset of pixels that have a context most similar to the 

context of the current pixel. The predictor is further refined only on these pixels. 

The radius pR  of the window , ( )x y pW R  (see Figure 5.3) is one of the essential 

features of ALPC.  Its value affects the prediction quality because if pR  is too small, only 

a few samples are in the window and the predictor “overspecializes”, making big errors 

in the presence of edges. On the other hand, too many samples in the window ( pR  too 

big) tend to generate predictors that are not specific enough to remove local variations in 

the image. Our algorithm keeps pR  constant and equal for all the images, however it is 

possible to design algorithms that adaptively change the window radius to follow the 

characteristics of the image. 

As anticipated, optimization only refines the predictor on a subset of the samples 

collected in the window. The rationale is that we want the predictors' weights to be 

representative of the relation existing between the context and the pixel being encoded. 

By discarding samples that have a context that is “too different” from the one of the 
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current pixel, we can specialize the prediction and follow fine periodic patterns in the 

window. 

This approach is completely different from the ones commonly found in the literature 

that use a simple pixel predictor and compensate the poor prediction with a sophisticated 

entropy coding that models the error distribution according to the context in which it 

occurs (see for example LOCO–I, Weinberger, Seroussi and Sapiro [1996]).  

ALPC’s classification unifies contextual encoding and prediction into a single step. 

Samples are grouped into clusters of pixels with a similar context by using a modified 

Generalized Lloyd Algorithm (Linde, Buzo and Gray [1980]). This classification method, 

although not optimal in our framework, is able to improve the performance of the basic 

adaptive predictor. 

Once the samples in the window are classified, a representative centroid is 

determined for each cluster. The cluster of pixels with the minimum squared error 

between the corresponding centroid and the context of the current pixel is selected. The 

algorithm then chooses from the pool of available predictors the one that achieves the 

lowest prediction error on the centroid of the selected cluster.  

Before being used, this predictor is refined with a Gradient Descend optimization on 

the samples in the selected cluster. Gradient descend is a successive refinement algorithm 

that at every step changes the predictor weights until the prediction error drops below a 

given threshold. At each step t  of the optimization process, the weights iw  of the 

predictor are changed according to: 

( 1) ( )i i
i

Ew t w t
w

µ ∂
+ = − ⋅

∂
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where E  is the error energy and µ  a small constant. 

When the number of samples in the window is small, for example when ( , )p x y  is 

close to the top or to the left border of the image, a default fixed predictor is used and the 

gradient descend optimization is not applied. Our implementation uses the classic “planar 

predictor” (Weinberger, Seroussi and Sapiro [1996]) as a default: 

( , ) ( 1, ) ( 1, 1) ( , 1)defp x y p x y p x y p x y= − − − − + −�  

The predictor with the refined weights is stored and used in the next iterations. 

Because of the refining process, predictor initialization is not an issue and 1,..., nP P  can be 

initialized with random values without compromising the performance. Better 

initializations, which use for example the predictors in JPEG–LS, only result in a slightly 

faster convergence of the gradient descend. Reinitializing the predictors for every pixel, 

instead of using the previous refined weights, results in a slower convergence, and doesn't 

improve compression. 

In the literature, (see, for example, Howard [1989]) it is commonly assumed that the 

error generated during the prediction of images can be closely approximated by a 

Laplacian distribution. Even in our case, adaptive linear prediction generates a skewed 

Laplacian–like distribution, centered on zero and with long tails. 

Prediction error is encoded with an Arithmetic Encoder (Witten, Neal and Cleary 

[1987]). Arithmetic encoding divides the coding step into the determination of a 

probabilistic model for the source and in the entropy coding based on that model. This 

results in a very general framework allowing an easy adaptation of the model. ALPC 

determines the probability distribution of the error in a causal window centered on the 

current pixel and similar to the one we used in the prediction step. 
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During the experiments, we observed that 95% of the errors are concentrated in an 

interval [ , , ]−∆ ∆…  substantially narrower than the error range [ , , ]Min Max… . Typical 

values for ∆  are in the range [8, , 20]…  while Min  and Max  span, in general, the range 

[ 1, , 1]α α− + −… . Since we determine the error distribution in a window, only a small 

number of samples are collected for each pixel and the distribution tails that have low 

probability, are not represented properly.  

This problem, known as Zero Probability (see Witten [1991]) consists in the proper 

modeling of symbols that, because of their low probability of occurrence, have never 

been observed before. The solution that we used consists in dividing the errors in two 

sets: the “typical” errors that fall in the range [ , , ]−∆ ∆… , and the “non–typical” errors, 

which fall outside of that range. A non–typical error is coded by using an alternative 

model and its code is preceded by a special “escape” symbol that is not in the alphabet. 

When the decoder receives the escape symbol, it switches to the alternative model to 

decode the non–typical error that follows in the bit stream. 

The parameter ∆ , as well as Min  and Max  are determined by an off–line 

observation of the errors. Sending these parameters to the decoder has a cost that is 

negligible from the point of view of the compressed file size.  

Errors are also encoded by separating magnitude and sign. This method has the 

advantage of pooling together positive and negative magnitudes in the symmetrical 

distribution and provides better modeling when only a few samples are in the window. 

The error sign has no correlation with the error magnitude, and two different probabilistic 

models are used for the encoding. 
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Our implementation uses an arithmetic encoder that switches between four different 

models: 

• ACM_P A model for the parameters. It is used only to transmit the header 

of the compressed file and the global parameters ( , , , )eMin Max R∆ ; 

• ACM_M Used to encode the magnitude of the typical errors. It has symbols 

in the range [0, , ]∆…  plus an extra symbol ( 1)∆ +  that represents the escape; 

• ACM_E An adaptive model used to encode the magnitude of the non–

typical errors. It has symbols in the range ( )1, ,max ,Min Max ∆ + … ; 

• ACM_S Used to encode the error sign. It has the symbols { }0,1  used to 

represent positive and negative errors. 

Unlike the other three models, ACM_M is not automatically updated and the probability 

distribution for the magnitude of the prediction error ( , )e x y  is determined each time by 

collecting the previously encoded error magnitudes in a window , e( )x yW R  or radius eR .  

Since the error is distributed according to a Laplacian distribution, we have also 

experimented with a Golomb entropy encoder. The parameter that characterizes the 

encoder is determined in the causal window , ( )x y eW R  as well. 

The compression was assessed on set of continuous tones gray–level images digitized 

at a resolution of 8 bit per pixel (256 gray levels). The test set includes the nine, 720x576, 

images that compose the test set used in the JPEG–LS standardization. These and the 

other images that are widely used in the existing data compression literature allow a 
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comparison with existing algorithms. Thumbnails of the images used in the experiments 

are shown in Appendix A. 
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Figure 5.4: Comparisons with the entropy of the prediction error in LOCO–I. 

 
 

Predictors 1 2 4 6 8 
Baloon 154275 150407 150625 150221 150298
Barb 227631 223936 224767 225219 225912
Barb2 250222 250674 254582 256896 258557
Board 193059 190022 190504 190244 190597
Boats 210229 208018 209408 209536 210549
Girl 204001 202004 202326 202390 202605
Gold 235682 237375 238728 239413 240352
Hotel 236037 236916 239224 240000 240733
Zelda 195052 193828 194535 195172 195503
Tot.(bytes) 19061881893180190469919090911915106

Table 5.1: Compressed File Size vs. Number of Predictors. Results shown for a window 
of radius 6pR = , error is coded by using a single adaptive arithmetic encoder. 
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Rp 6 8 10 12 14 
Baloon 150407 149923 149858 150019 150277 
Barb 223936 223507 224552 225373 226136 
Barb2 250674 249361 246147 247031 246265 
Board 190022 190319 190911 191709 192509 
Boats 208018 206630 206147 206214 206481 
Girl 202004 201189 201085 201410 201728 
Gold 237375 235329 234229 234048 234034 
Hotel 236916 235562 235856 236182 236559 
Zelda 193828 193041 192840 192911 193111 
Tot. (bytes) 1893180 1884861 1881625 1884897 1887100 

Table 5.2: Compressed File Size vs. window radius pR . The number of predictors used 
is 2; prediction error is entropy encoded by using a single adaptive arithmetic encoder. 

 

 

 
 

Re 6 8 10 12 14 16 18 20 
Baloon 147518 147227 147235 147341 147479 147620 147780 147885
Barb 218411 216678 216082 215906 215961 216135 216370 216600
Barb2 237523 234714 233303 232696 232455 232399 232473 232637
Board 187058 186351 186171 186187 186303 186467 186646 186800
Boats 203837 202168 201585 201446 201504 201623 201775 201943
Girl 198050 197243 197013 197040 197143 197245 197356 197465
Gold 232617 230619 229706 229284 229111 229026 229012 229053
Hotel 231125 229259 228623 228441 228491 228627 228785 228949
Zelda 190311 189246 188798 188576 188489 188461 188469 188500
Tot.(bytes) 18464501833505 1828516 1826917 18269361827603 18286661829832

Table 5.3: Compressed File Size vs. error window radius eR . The number of predictors is 
2 and 10pR = . Modulo and sign of the prediction error are encoded separately. 
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Figure 5.5: Graphical representation of the data in Table 5.5. 
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Figure 5.6: Magnitude (left column) and sign (right column) of the prediction error in 
two images of the Test Set. Images are "board" (top row) and "hotel" (bottom row). 
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 GR AC GR–W AC–W 
Airplane 3.80 3.81 3.66 3.62 
Airport 6.65 6.65 6.69 6.60 
Crowd 4.31 4.21 3.98 4.03 
Goldhill 4.71 4.70 4.69 4.66 
Hursley 4.79 4.77 4.54 4.55 
Lake 5.07 5.11 4.97 4.93 
Landsat 4.16 4.14 4.09 4.04 
Lax 5.84 5.83 5.81 5.75 
Lena 4.18 4.21 4.12 4.05 
Lenna 4.05 4.09 3.97 3.91 
Mandrill 5.76 5.79 5.73 5.65 
Milkdrop 3.71 3.66 3.64 3.57 
Mri 3.49 3.48 3.25 3.13 
Mskull 2.78 2.57 2.62 2.26 
Peppers 4.27 4.25 4.22 4.16 
Woman1 4.65 4.64 4.52 4.49 
Woman2 3.26 3.28 3.14 3.06 
Xray 2.63 2.63 2.52 2.56 
Average 4.45 4.43 4.35 4.28 

Table 5.4: Comparison between four entropy coding methods: Golomb–Rice coding 
(GR), Arithmetic Coding (AC), Golomb–Rice with the model in a window , ( )x y eW R  

(GR–W), Arithmetic Coding with the model in a window , ( )x y eW R  (AC–W). Results are 
shown in bit per pixel. Test images are 512x512 (except mri and xray that are 256x256), 

8 bit/pixel. 

 
 CALIC LOCO sunset UCM TMW ALPC 
Baloon 2.78 2.90 2.89 2.81 2.60 2.84 
Barb 4.31 4.69 4.64 4.44 4.24 4.16 
Barb2 4.46 4.69 4.71 4.57 3.83 4.48 
Board 3.51 3.68 3.72 3.57 3.27 3.59 
Boats 3.78 3.93 3.99 3.85 3.53 3.89 
Girls 3.72 3.93 3.90 3.81 3.47 3.80 
Gold 4.35 4.48 4.60 4.45 4.22 4.42 
Hotel 4.18 4.38 4.48 4.28 4.01 4.41 
Zelda 3.69 3.89 3.79 3.80 3.50 3.64 
Average 3.88 4.06 4.08 3.95 3.63 3.91 

Table 5.5: Compression results (in bit per pixel). Test images are 720x756, 8 bit/pixel. 
The number of predictors, refined with the gradient descend, is 2 and 10pR = . Entropy 

encoding is performed with an arithmetic coder and the model is determined in a window 
of radius 10eR = . 
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 CALIC LOCO ALPC
Airplane 3.54 3.61 3.62 
Airport 6.55 6.71 6.60 
Crowd 3.76 3.91 4.03 
Goldhill 4.63 4.71 4.66 
Hursley 4.39 4.43 4.55 
Lake 4.90 4.98 4.93 
Landsat 3.99 4.08 4.04 
Lax 5.63 5.78 5.75 
Lena 4.11 4.25 4.05 
Lenna 3.94 4.07 3.91 
Mandrill 5.74 5.89 5.65 
Milkdrop 3.56 3.63 3.57 
Mri 3.15 3.36 3.13 
Mskull 2.16 2.23 2.26 
Peppers 4.20 4.29 4.16 
Woman1 4.54 4.67 4.49 
Woman2 3.20 3.20 3.06 
Xray 2.59 2.46 2.56 
Average 4.26 4.36 4.28 

Table 5.6: Final compression results (in bit per pixel). Test images are 512x512 (except 
mri and xray that are 256x256), 8 bit/pixel. ALPC uses two predictors optimized with the 
gradient descend and 10pR = . Entropy encoding is performed with an arithmetic coder 

and the model is determined in a window of radius 10eR = . 

 

 

Figure 5.4 compares the entropy of the prediction error achieved by our adaptive 

predictor with the prediction error achieved by the fixed predictor used in LOCO–I. The 

results were obtained by using 2 predictors and by optimizing the predictors in a window 

of radius 10pR = . For comparison also the overall performance of LOCO–I, after the 

context modeling is reported. Understandably our adaptive linear predictor is more 

powerful than the fixed predictor used in LOCO–I. However, as it is evident from Figure 

5.6, adaptive prediction does not have enough power to capture edges and sharp 

transitions, present for example in the picture “hotel”.  
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Tables 5.1, 5.2 and 5.3 summarize the experiments we made in order to understand the 

sensitivity of the algorithm to its parameters. In these experiments, we measured the 

variations on the compressed file size when only one of the parameters changes. 

In Table 5.1, the number of predictor is changed while keeping the window radius 

6pR = . In Table 5.2, compression performance is evaluated with respect to the changes 

in the window size. 

Experiments described in Tables 5.1 and 5.2, were performed using a simple adaptive 

arithmetic coder that gives a close approximation of the first order entropy of the 

prediction error.  

Table 5.3 reports experiments when the number of predictors is kept fixed to 2, 

10pR =  and the performance is evaluated encoding the prediction error with the multiple 

model arithmetic encoder described before. Results are reported for value of Re, (size of 

the window in which the model is determined), varying between 6 and 20. Table 5.4 

reports experiments made by replacing arithmetic coding with computationally less 

intensive Golomb coding. 

Comparisons with some popular lossless image codecs are reported in Tables 5.5 and 

5.6 and Figure 5.5. Results show that ALPC achieves good performance on the majority 

of the images in the test set.  The cases in which CALIC maintains its superiority confirm 

that linear prediction, may not be adequate to model image edginess. On the other hand, 

unlike CALIC, ALPC doesn't use any special mode to encode high contrast image zones, 

and our results are slightly penalized by images like “hotel” that have high contrast 

regions. A closer look to the magnitude and sign of the prediction error for “board” and 
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“hotel” (two images in the test set), shows that most edges in the original image are still 

present in the prediction error (see Figure 5.6). 

 

5.3 Least Squares Minimization 

Optimizing the predictor with the gradient descend has the disadvantage of having slow, 

image dependent, convergence. In their papers, Meyer and Tischer [2001], Wu, Barthel 

and Zhang [1998] proposed prediction algorithms based on least square optimization. 

Unlike in speech coding, when predicting images it is not possible to use Levinson–

Durbin recursion to solve the system of equations to derive the predictor, so least squares 

minimization is a simple and viable alternative. 

To find the best predictor for the pixel ( , )p x y  we start selecting and collecting from 

a causal window , ( )x y pW R  a set of pixels ip  and their contexts ic . The order in which the 

context pixels are arranged in the column vector ic  is not important as long as it is 

consistent for every vector. A matrix iA  and a vector ib  are computed as: 

T
i i iA c c= ⋅  

i i ib p c= ⋅ . 

Finally, matrices iA  and the vectors ib  are added together to form ,x yA  and ,x yb  as in: 

,x y i
i

A A= ∑  

,x y i
i

b b= ∑  
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The predictor’s weights ,x yw  that minimize the expectation of the squared errors are 

obtained by solving the system of equations: 

, , ,x y x y x yA w b= ⋅  

A substantial speed up can be achieved by pre–computing the matrices iA  associated 

with every pixel. 

For the solution of the system of the equations , , ,x y x y x yA w b= ⋅  we have used the Gnu 

Scientific Library, a standard library available on UNIX platforms under the GNU 

license. 

When only a small number of samples are present in the window, the predictor 

overspecializes and its weights assume values that can be very large. It is also possible 

that the matrix ,x yA  is singular. In these cases, the default predictor is used instead. 

Substituting in ALPC gradient descend with least squares minimization results in a 

much faster procedure. This allows, in turn, to experiment with bigger windows. In order 

to improve ALPC compression we have also experimented with different classification 

methods. Since the contexts that we want to use for the predictor computation must be 

similar to the current context, we select a fraction of contexts in the window , ( )x y pW R  

that have smallest Euclidean distance from the current context. 

When calculating the Euclidean distance, it is possible to give different importance to 

the pixels in the context by weighing appropriately the corresponding difference. The set 

of weights that gave better results are directly proportional to the existing correlation 

between the pixel being encoded and the pixel in the context. 
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ALPC bpp TMW Glicbawls CALIC G.Descend L.Squares
AIRPLANE   3.54 3.62 3.602

Airport   6.55 6.60 6.632
Ballon 2.60 2.64 2.78 2.84 2.748
Barb2 4.24 4.31 4.46 4.48 4.417
Barb 3.83 3.92 4.31 4.16 4.007
Board 3.27 3.39 3.51 3.59 3.484
Boats 3.53 3.63 3.78 3.89 3.775
Crowd   3.76 4.03 3.971
Girl 3.47 3.59 3.72 3.80 3.688
Gold 4.22 4.28 4.35 4.42 4.392
Goldhill   4.63 4.66 4.635
Hotel 4.01 4.18 4.18 4.41 4.336
Hursleyhouse  4.39 4.55 4.548
Lake   4.90 4.93 4.876
Landsat   3.99 4.04 4.039
Lax   5.63 5.75 5.780
Lena   4.11 4.05 4.030
Lenna   3.94 3.91 3.880
Mandrill   5.74 5.65 5.683
Milkdrop   3.56 3.57 3.560
Mri   3.15 3.13 2.826
Mskull   2.16 2.26 2.254
Peppers   4.20 4.16 4.161
Woman1   4.54 4.49 4.508
Woman2   3.20 3.06 3.032
Xray   2.59 2.56 2.452
Zelda 3.50 3.54 3.69 3.64 3.603

TOTAL 3.630 3.720 4.206 4.240 4.189
Table 5.7: Final compression results (in bit per pixel). The increment in performance 

observed in ALPC with the least squares minimization is mostly due to the possibility of 
using a context of bigger size. 

 

 

Table 5.7 summarizes the results obtained by the improved algorithm on the set of test 

images. As it is possible to see, when using least squares and the new classification, our 

algorithm improves upon CALIC on most images in the test set. 



 161 
 

This suggests that, since ALPC combines linear prediction and classification, with a more 

sophisticated encoding of the prediction error, our algorithm can be even more 

competitive and finally achieve compression ratio even comparable to TMW. 
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LOW BIT RATE VIDEO CODING 

6.1 Background 

Current state of the art video compression systems such as H.261, H.263, MPEG–1 and 

MPEG–2 are hybrid encoders combining motion compensated prediction with block 

based discrete cosine transform (DCT) coding. Each video frame is first partitioned into 

macroblocks. Then each macroblock is encoded as a motion compensated difference with 

respect to a previously encoded macroblock (Inter frame coding or P–mode) or by direct 

quantization of its discrete cosine transform coefficients (Intra coding or I–mode). While 

matching a preset bit rate, the encoder tries to maximize the peak signal to noise ratio 

(PSNR) of the encoded video sequence. 

Since inter and intra coding of the same macroblock result in different rate/distortion 

performance, most encoders use an empirical method to decide whether a macroblock 

should be inter or intra coded. A common heuristic compares the absolute value of the 

motion compensated prediction error with a fixed threshold; when the prediction error is 

below the threshold, motion compensated prediction is chosen over intra coding. 

Unfortunately, due to the high variability of the video signal, it may be hard not to exceed 

the target bit rate. An output buffer amortizes small discontinuities in the final bit rate 

however, when the buffer capacity is exceeded, video encoders are forced to skip frames 
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in order to match the required rate without compromising the quality of the individual 

frames.  

In current video encoding standards, a two-layer rate control strategy keeps the 

coding rate as close as possible to a preset target. The macroblock layer operates at the 

lower level. Given the number of bits available for the coding of the current frame and 

some statistics on the most recently encoded macroblocks, it decides how to allocate the 

available bits to the macroblocks in the current frame. Depending on the frame 

complexity, the encoding may use more bits than the bits originally allocated, so a 

higher–level frame layer rate control monitors the output buffer and decides whether to 

skip one or more frames to allocate time for the transmission of the buffer content. Both 

layers have been widely studied and optimization issues relative to rate control 

algorithms have been considered by a number of authors.  

Kozen, Minsky and Smith [1998] use a linear programming approach to determine 

the optimal temporal down sampling in an MPEG encoded sequence. Their algorithm 

discards a fixed number of frames while minimizing the interval of non–playable frames 

due to frame dependency. Wiegand, Lightstone, George Campbell and Mitra [1995] 

present a dynamic programming algorithm that jointly optimizes frame type selection and 

quantization steps in the framework of the H.263 video coding. In their work, 

optimization is performed on each macroblock on a frame–by–frame basis. Experimental 

results show consistent improvement upon existing methods. 

Lee and Dickinson [1994] address a similar problem in the framework of MPEG 

encoding, where each group of frames is isolated and both frame type selection and 

quantization steps are jointly optimized with a combination of dynamic programming and 
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Lagrange optimization. Unfortunately, their experiments show very little improvement, 

probably because they use a simplified approach that restricts the number of possible 

quantization steps to a very small set of values.  

Sullivan and Wiegand [1998] and Wiegand and Andrews [1998] present a 

macroblock rate control that is based on rate–distortion optimization. Their approach 

constitutes the basis for the H.263+ Test Model Near–Term Version 11 (or TMN–11, see 

Wenger at al. [1999]). The optimization, based on Lagrange multipliers, shows consistent 

improvements even when the multiplier is kept constant in order to reduce the 

computational complexity. 

In the following we address the problem of designing a frame layer control algorithm 

that can be used to minimize the number of skipped frames in a low bit rate video 

sequence. We assume that the video sequence is encoded at constant bit rate by any of the 

standard video encoders, like the ones in the MPEG family. As we will see, the reduction 

of skipped frames allows more frames to be transmitted without increasing the bit rate 

and, surprisingly, without compromising the per-frame average final SNR. The visual 

quality also improves because the jerkiness associated to the skips is reduced as well.  

 

6.2 Frame and Macroblock Layer Rate Controls  

As mentioned in the previous section, rate control is generally organized into two levels 

or layers: frame and macroblock. The frame layer works at the highest level. A 

transmission buffer is monitored after the transmission of each frame. When this buffer 
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exceeds a preset threshold because the encoding of the last frames has used more bits 

than the bits that were originally allocated, the encoding of one or more video frames are 

skipped while the encoder waits for the buffer to empty. 

An example of such strategy is the frame layer rate control described in the Test 

Model Near–Term Version 8 (see Gardos [1997]). This algorithm is characterized by the 

following parameters: 

• B′ , the number of bits occupied by the previous encoded frame; 

• R , the target bit–rate in bits per second; 

• F , the number of frames per second; 

• M , the threshold for frame skipping, typically M R F=  ( M R  is the maximum 

buffer delay); 

• A, a constant, usually set to 0.1A = . Used to define the target buffer delay to be 

A M⋅  seconds. 

After encoding a frame, the number of bits in the buffer W  is updated as 

( )max 0,  W W B M′= + −  and the number of frames that must be skipped after that is 

computed as: 

Skip=1 
While(W M> ) { 

( )max 0,W W M= −  
Skip++ 

} 
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Then the control is transferred to the macroblock layer that decides the number of bits 

that should be allocated to the next frame and divides these bits among the individual 

macroblocks. 

The target number of bits is computed as B M= − ∆ , where 

           if   

    otherwise.

W W A M
F
W A M

 > ⋅∆ = 
 − ⋅

 

The target bit number B  is distributed among the macroblocks of the current frame with 

an adaptive algorithm that, monitoring the variance of the macroblocks, determines the 

quantization step that is likely to achieve the target bit rate. The statistics are updated 

after the encoding of each macroblock. Encoding of the first macroblock in the frame 

uses model parameters of the last encoded frame. A detailed description of this algorithm 

can be found in Gardos [1995]. 

 

6.3 Problem Description 

Our interest is in minimizing the number of skipped frames in a low bit rate video 

sequence encoded at constant bit rate by any of the standard hybrid video encoders, like 

for example, the standards belonging to the MPEG family. 

Frame skipping generally happens in proximity of a scene change. When a new scene 

starts, motion compensated prediction is unable to predict the first frame of the new scene 

from the past and the channel capacity is easily exceeded. In the following, we consider a 

scene change to be when the prediction model fails, because the frame is completely 
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different from the previous one or because it may simply contain too much movement to 

be efficiently predicted.  

A scene change causes most macroblocks to be intra coded, and this results in a frame 

encoded with more bits than the target bit rate. In turn, transmitting a frame exceptionally 

large requires a time higher than the time available for a single frame. In order to match 

the capacity of the channel and to keep the sequence time-synchronized, the encoder is 

forced to wait for its transmission and skip the encoding of a few subsequent frames. 

The increment in rate observed during a scene change is illustrated in Figure 6.1, 

which shows the bit rate for the 900 frames contained in the test sequence Std100.qcif 

used in our experiments. The scene changes in this sequence were artificially generated 

by concatenating scenes extracted from a number of standard test sequences.  

 

 
Figure 6.1: Bit rate for Frames 1 to 900 of the sequence Std100.qcif. Frames are 

numbered starting at 0; Frame 0, which is not shown, goes to about 17,500. 
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Figure 6.2: Sequence of 50 frames across a scene cut in one of the files used in our 

experiments (Claire.qcif 80–100 followed by Carphone.qcif 1–29) encoded at 32 Kbit/s 
with TMN–8 rate control; the bits per frame and the corresponding PSNR per frame are 

shown. 
 

 
Frame No. n-5 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 N+5 n+6 n+7 … 
Encode n-5 n-4 n-3 n-2 n-1 n skip n+4 skip n+6 n+7 … 
Transmit n-5 n-4 n-3 n-2 n-1 n n+4 n+6 n+7 ... 
Display ... n-5 n-4 n-3 n-2 n-1 N n+4 n+6 n+7 
 
Figure 6.3: Encoding, transmitting and decoding/displaying a sequence of frames with a 
H.263+ encoder using TMN–8 rate control. The sequence contains a scene cut between 

frames 1n −  and n . 
 

 

Except for the first frame of the sequence, which is always encoded in intra mode (its size 

is not depicted in Figure 6.1), frames are encoded by using the inter mode in which 

individual macroblocks can be inter or intra coded. 

The sequence has been encoded with the public domain Telnor/UBC H.263+ encoder 

(Cote, Erol, Gallant and Kossentini [1998]) that uses the rate control suggested by the 
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Test Model Near–Term Version 8 (or in short TMN–8) and described in Gardos [1997]. 

There is no loss of generality in experimenting with TMN–8 based encoder since even 

more recent test models, like TMN–10 and TMN–11 that use a rate optimized bit 

allocation, exhibit the same kind of behavior in the presence of scene changes. For a 

detailed description of the test models, see Gardos [1997, 1998] and Wenger et al. [1999]. 

Figures 6.2 and 6.3 provide a closer look at the bit-rates during the encoding of a 

scene change with H.263+. If we focus our attention around the scene change (frame n  

in Figure 6.3) we note that, because of the number of I–macroblocks, this frame takes a 

considerable time to be transmitted (3 additional time slots in our example). Meanwhile, 

while waiting for a complete reception of frame n , the decoder keeps showing frame 

1n −  on the decoder screen. In order to match the channel bit rate and to maintain 

synchronization with the original sequence, the encoder is forced to skip a number of 

frames while waiting for the transmission of frame n , and, because of this skipping, the 

next frame to be encoded will be frame 4n + : in this example, transmission of frame n  

requires skipping 3 frames. 

In general, after a scene cut, there will be some number 0k ≥  such that: 

1. There are k  extra units of time in which frame 1n −  is frozen on the screen 

( 3k =  in Figure 6.3); 

2. There is a “jerk” between frame n  and frame 1n k+ + ; 

3. Since frames n  and 1n k+ +  are not contiguous in time and frame 1n k+ +  is 

predicted from frame n , it is likely that a large prediction error generates a frame 

1n k+ +  that is too big to be sent in one unit of time (frame 4n +  in Figure 6.3). 
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This “chain effect” may force the encoder to skip frame 2n k+ +  too, before 

encoding frame 3n k+ + . 

By maximizing the number of transmitted frames (or equivalently by minimizing the 

number of skipped frames) we reduce the coding artifacts described in points 2 and 3. In 

doing this, we want to perform the best possible selection of the first frame that should be 

encoded immediately after the termination of a scene (frame 1n −  in Figure 6.3). Of 

course this is only possible if the encoder has some look–ahead capability and the 

encoding is not done in real–time. Since the decoder is not aware that this optimization 

has taken place, the decoding process remains completely unaffected and full 

compatibility with standard decoders is maintained. This is all that matters for many 

interesting and useful applications, like for example video distribution, where a powerful 

encoder creates off–line a video stream that is broadcasted to many real time decoders. 

 

6.4 Optimal Frame Skipping Minimization 

We address the problem of designing an optimal frame layer rate control algorithm that 

minimizes the number of frames skipped in a constant, low bit–rate video encoder. 

Minimizing the number of skipped frames improves the overall quality of the encoded 

video and reduces the jerkiness associated to the skips. The problem is to maximize the 

number of video frames that can be sent on a finite capacity channel in a given amount of 

time. Each frame, except the first, is predicted from the previous encoded frame, called 

its “anchor” frame. Frames are encoded and transmitted in strict temporal order. A buffer 
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will store the portion of encoded stream that is waiting to be transmitted over the fixed 

capacity channel. When the buffer is almost full (i.e. it holds a number of bits greater 

than a fixed threshold), new frames cannot be encoded until these bits are transmitted, 

and some of the frames must be skipped. 

The solution we propose is a dynamic programming algorithm that can be used in 

low–bandwidth applications in which the encoder has some look–ahead capability. For a 

given bit rate, its asymptotic time complexity is linear in the number of frames being 

encoded. Although this optimization requires additional encoding complexity, there is no 

change in decoding complexity (in fact, no change to the decoder at all). Possible areas 

that can benefit of this algorithm are video broadcasting, off–line video coding, wireless 

video transmission, video distribution over IP, etc. 

 

Definition 6.1: An instance of this optimization problem, that we indicate with the name 

MAX_TRANS, is given by: 

• n : which represents the number of frames in the video sequence 0 1 1, , , nf f f −… ; 

• M : the channel capacity, expressed in bits per frame; 

• 0B : the number of bits contained in the coding buffer before encoding the first 

frame of the sequence. We use iB  to indicate the buffer content before the 

encoding of the frame if ; 

• 0A : which represents the “distance” to the most recent (encoded) anchor frame. In 

general iA  is the distance to the anchor frame of if . 0 0A =  if no previous frame 

has been encoded; 
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• [ ][ ]iC i A : the cost function which counts the number of bits necessary to the 

transmission of the frame if  when 
ii Af −  is the most recent encoded frame 

preceding if  (anchor frame). 

 

A solution to this problem takes the form of a sequence of n  binary decisions 

0 1 1, , , nd d d −…  where: 

1 if the frame  is transmitted
0 if the frame  is skipped     

i
i

i

f
d

f


= 


 

The goal is the maximization of  the number of transmitted frames, or equivalently: 

1

0

   
n

i
i

Maximize D d
−

=

= ∑  

While satisfying the capacity constraint: 

1

0
0

[ ][ ]
n

i i
i

B d C i A n M
−

=

+ ⋅ ≤ ⋅∑  

The maximization is also subject to the following two conditions: 

1. If at the time i  the buffer iB  holds a number of bits greater than or equal to 

M  then the frame if  cannot be transmitted: 

0, , 1    0i ii n B M d∀ = − ≥ ⇒ =… . 

2. If the frame i  is transmitted, being predicted from its anchor frame 
ii Af − , 

then:  

[ ][ ] [ ][ ]
i ii i i A i i A iM A B B C i A A C i A− −⋅ + ≥ + − + . 
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This condition states that the [ ][ ]iC i A  bits necessary to encode the frame if  are 

transmitted, M  bits at the time, starting from the time 1ii A− +  when the buffer has a 

content of [ ][ ]
i ii A i i AB C i A A− −+ −  bits. The bits that are not transmitted are stored in the 

buffer whose content, at time i , is iB . The inequality holds because the buffer, 

decremented by M  units for each frame, cannot assume negative values. 

In order to solve this problem with a dynamic programming algorithm, it is first 

necessary to verify that the problem has an optimal substructure (see Cormen, Leiserson 

and Rivest [1990]), i.e. that an optimal solution of a problem instance contains optimal 

solutions for embedded instances. 

 
Theorem 6.1 (Optimal Substructure): Let 0 1 1, , , nS d d d −= …  be a sequence of decisions 

with cost 
1

0

n

i
i

D d
−

=

= ∑  and such that 
1

0
0

[ ][ ]
n

i i
i

B d C i A n M
−

=

+ ⋅ ≤ ⋅∑ . If 0 1 1, , , nS d d d −= …  is an 

optimal solution of the problem instance ( )0 0, , , ,I n M A B C= , then for every integer 

0, , 1k n= −… , the sequence of decisions 1 1, , ,k k k nS d d d+ −= … , having cost 
1n

k i
i k

D d
−

=

= ∑ , 

is an optimal solution of the problem instance ( ), , , ,k k kI n k M A B C= − . 

Proof: The theorem is proved by contradiction. Let’s suppose that the problem instance 

( ), , , ,k k kI n k M A B C= −  admits a solution 1 1' , ' , , 'k k k nS d d d+ −′ = …  having cost 

1

' '
n

k i
i k

D d
−

=

= ∑  greater than kD  and satisfying 
1

[ ][ ] ( )
n

k i i
i k

B d C i A n k M
−

=

′+ ⋅ ≤ − ⋅∑ .  

The solution obtained by concatenating the first 1k −  decisions in S  with the n k−  

decisions in '
kS  is a solution of the problem instance ( )0 0, , , ,I n M A B C=  that has a cost: 
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1 1

0
'' ' '

k n

i i k k
i i k

D d d D D D D
− −

= =

= + = − + >∑ ∑  

and satisfies 

1 1

0
0

[ ][ ] [ ][ ] ( )
k n

i i k i i
i i k

B d C i A B d C i A k M n k M n M
− −

= =

′+ ⋅ + + ⋅ ≤ ⋅ + − ⋅ = ⋅∑ ∑ . 

This contradicts the assumption that 0 1 1, , , nS d d d −= …  is an optimal solution for the 

problem instance I . Therefore, the thesis holds.  

 

The second condition that must hold in order to apply dynamic programming is the 

presence of overlapping subproblems. It is possible to verify that this condition is 

satisfied by our problem since the encoding of a subsequence of frames depends only on 

the anchor frame and on the initial buffer content 0B . In synthesis, every solution of the 

instance ( )0 0, , , ,I n M A B C=  that at time k  has anchor frame 
kk Af −  and a buffer content 

of kB , shares the subproblem ( ), , , ,k k kI n k M A B C= − . 

Given the previous considerations, it is possible to solve an instance I  of the problem 

with a dynamic programming approach that, going from frame 0f  to frame 1nf − , 

determines the sequence of decisions 0 1 1, , , nd d d −…  by tabulating intermediate results for 

different anchor frames and for the corresponding buffer contents. At time k , for every 

anchor frame 
kk Af −  and buffer content kB , our algorithm extends the optimal solution of 

the subproblem ( ), , , ,k k kI n k M A B C= −  which is assumed to be known. 

Figure 6.4 describes the algorithm in C-style pseudocode. The function performing 

the optimization is DP_optimize, while Find_Solution is called after it and 

determines, from the pointer matrix, the optimal sequence of decisions D .  
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DP_optimize(C, n, A, M) { 
    for(i=0; i<n; i++) { 
        for(j=0; (j<=A) and (j<=i); j++) {    
            if(j==0) {        // I frame - only used to start sequence 
       T[i][j] = 1 
       B[i][j] = MAX(0, C[i][0] – M * (i+1)) 
       P[i][j] = -1 
  } else {          // P frame 
       prev = i-j 
       max_T = max_P = -1 
       max_B = +Inf 
       for(k=0; (k<=A) and (k<=prev); k++) { 
            res = MAX(0, B[prev][k] - M * (j-1)) 
            if ((res<M) and (T[prev][k]>0) and 
                          ((T[prev][k]>max_T) or 
                 ((T[prev][k]==max_T) and (res<max_B)))) { 
            max_T = T[prev][k] 
            max_B = res 
                 max_P = k 
       }  
       } 
       if(max_P >= 0) { 
                 T[i][j] = max_T + 1 
       res = MAX(0, B[prev][max_P] - M * (j-1)) 
       B[i][j] = MAX(0, res + C[i][j] - M) 
       P[i][j] = max_P 
       } 
            } 
        }   
    } 
} 
 
 
Find_solution(T, P, n, A) { 
    for(i=n-A; i<n; i++) { 
        for(j=0; (j<=A) and (j<=i); j++) 
            if(T[i][j] > max) { 
                max = T[i][j] 
      max_i = i 
      max_j = j 
  } 
    } 
    i = max_i 
    j = max_j 
    // Back to the beginning... 
    D[i] = 1 
    do { 
        old_i = i 
        i -= MAX(1, j) 
        j = P[old_i][j] 
        D[i] = 1 
    } while(P[i][j] != -1) 
} 
 

Figure 6.4: Pseudo code description of the dynamic programming optimization 
algorithm. 
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Function parameters are the number of frames n , the cost matrix C , the value 

0, , 1
max ii n

A A
= −

=
…

 and the number of bits per frame M . The value A , which depends on the 

transmission rate, is computed from the cost matrix as 
0 , 1
max [ ][ ] /
i j n

A C i j M
≤ ≤ −

 =   
 and 

represents the maximum number of frames that can be skipped during the transmission. 

The algorithm stores solutions to subproblems into three matrices T , B  and P , filled 

columnwise, from left to right. For every pair ( , )kk A  the matrices store the solution of a 

subproblem in which: 

• [ ][ ]kT k A  is the number of transmitted frames; 

• [ ][ ]kB k A  is the corresponding buffer content; 

• [ ][ ]kP k A  is a pointer to the row in which the column kk A−  achieves the 

highest number of transmitted frames. This pointer is necessary since there 

may be more than one row of T  with the same number of transmitted frames. 

Finally, the matrix P  is used by the helper function Find_solution to determine the 

optimal sequence of decisions D .  

Figure 6.6 shows a sample execution of the two functions on a random cost matrix 

C . For simplicity, this example has 15n =  frames, 10M =  bits per frame and the 

maximum number of skipped frames is 5A = . Shaded entries correspond to the optimal 

decisions taken by the dynamic program. 
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0 0 0 0 0 32 28 43 38 31 35 40 41 45 44
0 0 0 0 32 30 25 33 34 27 29 34 32 40 38
0 0 0 24 30 41 24 32 28 21 25 31 28 34 35
0 0 23 17 23 32 19 28 23 18 21 26 24 28 31
0 22 19 21 18 20 15 22 18 13 18 20 16 16 15

40 30 30 44 25 15 30 50 29 36 58 50 40 34 27

0 0 0 0 0 22 18 33 28 21 25 30 31 35 34
0 0 0 0 22 20 15 23 24 17 19 24 22 30 28
0 0 0 0 20 31 14 22 20 11 17 21 18 24 25
0 0 0 7 13 22 14 18 17 15 18 17 22 25 29
0 0 0 11 15 10 5 17 8 11 8 18 6 12 5

30 10 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 2 2 3 4 4 5 5 6 6
0 0 0 0 2 2 2 3 4 4 5 5 6 6 7
0 0 0 0 2 2 3 4 4 5 5 6 6 7 7
0 0 0 2 2 3 4 3 5 4 6 6 7 7 7
0 0 0 2 3 2 2 3 2 3 2 3 2 3 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 2 2 3 2 3
0 0 0 0 0 0 0 1 1 2 2 3 2 3 2
0 0 0 0 0 0 1 1 2 2 3 2 3 2 2
0 0 0 0 0 2 1 1 2 1 2 3 2 2 3
0 0 0 0 2 0 0 1 0 1 0 1 0 1 0

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 1 0 1 1 0 1 0 1 0 1 0 1 0 0

Cost Matrix C[ ][ ]

Buffer Matrix B[ ][ ]

Number of Transmitted Frames T[ ][ ]

Pointers Matrix P[ ][ ]

Decision Vector D[ ]  
 

Figure 6.6: Sample execution of the dynamic programming optimization on a random 

cost matrix C . Algorithm parameters are the number of frames 15n = , the number of 

bits per frame 10M =  and the maximum number of skipped frames 5A = . 

 

When applied to the video sequences used in our experiments, typical parameters for a 32 

Kb/s encoding at 30 fps are 3100 5800n≤ ≤ , 32768 / 30M =  and 40 60A≤ ≤ . 

Given the cost matrix, the time complexity of DP_optimize is 2( )n AΟ ⋅ . The 

value 
0, , 1
max ii n

A A
= −

=
…

 is a constant computed in linear time from the first row of the cost 



 178 
 

matrix and it doesn’t depend on the number of frames. Find_solution examines 

2( )AΟ  matrix entries to locate the maximum value in the last A  columns of T  then it 

performs ( )nΟ  operations to construct the sequence of decisions. So, the asymptotic 

complexity of this algorithm grows linearly with the number of frames n . 

 

 

6.5 Experimental Results with the Optimal Algorithm 

In solving the optimization problem with the dynamic programming approach, we have 

assumed that the cost function C , expressed in the form of a bi–dimensional matrix, is 

known. We have also assumed that the cost of predicting kf  from its anchor frame 
kk Af − , 

namely [ ][ ]kC k A , is independent on how 
kk Af −  was compressed (so long as the quality of 

kk Af −  is equal to a predefined target quality). 

Although reasonable, the tightness of these approximations depends on the 

macroblock rate control. If we embed the proposed frame rate control in an existing video 

encoder, the way the macroblock level rate control is implemented may determine 

differences in the resulting costs. In the TMN–8, for example, the bit pool available for 

the current frame is allocated to each macroblock in a strict sequential fashion. A variable 

representing the variance of the previously encoded macroblocks determines the amount 

of bits that can be allocated. Since the value of this variable is preserved from one frame 

to the successive, the exact cost of encoding a frame may be influenced by the coding 

history and not only by its anchor frame. 
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To overcome this problem, without replacing the macroblock rate control used by the 

H.263+ encoder, we have used an iterative algorithm to compute the cost matrix C . This 

iterative algorithm starts from an empty matrix C  having all entries equal to zero, then it 

applies the dynamic program to the matrix and encodes the sequence by following as 

close as possible the decisions. Due to the unfeasibility of this solution (which assumes 

costs lower than the actual ones) the encoder will be forced to perform a number of extra 

skips. 

The encoding determines a sequence of costs that are used to update C . The process 

is repeated on the new cost matrix until the sequence of decisions suggested by the 

dynamic program is admissible, i.e. compatible with real encoding. While the 

computation of the cost matrix is susceptible of other approaches (for example the entire 

replacement of the macroblock rate control) our solution has the advantage that only a 

fraction of the entries of the cost matrix are actually computed. 

In order to assess the performance of our solution, a set of representative video 

sequences was be selected. Video sequences used by standard committees for algorithm 

testing are common, however these files are not challenging because they are short 

(generally less than 200 frames) and contain only one scene. To test our methods on a set 

of video sequences with multiple scenes, six test sequences were generated by continuous 

sampling of television commercials (sequences Commercials_0 trough Commercials_5) 

at 30 frames per second with a QCIF resolution. Two othrt sequences, Std.qcif and 

Std100.qcif were artificially generated by concatenating nine standard sequences: 

Claire.qcif, Carphone.qcif, Foreman.qcif, Grandma.qcif, Miss_am.qcif, Mthr_dotr.qcif, 

Salesman.qcif, Suzie.qcif and Trevor.qcif.  
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Figure 6.6: The top strip shows a sample frame from each of the files forming Std.qcif 
and Std100.qcif; the bottom strips show sample frames from the commercials in the 

sequences Commercials_0.qcif. 
 

 

The test sequence Std.qcif consists of the simple concatenation of the nine video 

sequences while Std100.qcif exhibits more scene cuts because the previous standard files 

are concatenated by alternating blocks of 100 frames. Despite the limited number of 

scene cuts present in Std.qcif and Std100.qcif, they were added to the test set to provide a 

standard reference.  

Sample frames from the set of test sequences are illustrated in Figure 6.6. 

The proposed frame layer rate control was evaluated by embedding it into the 

Telnor/UBC H.263+ framework, with the TMN–8 macroblock layer rate control. H.263+ 

was selected because it is currently regarded as state of the art low bit rate video 

compression (and our target is to address low bandwidth applications). The Telnor/UBC 

encoder is publicly available in source code and it is used to evaluate the proposals that 

the committee members bring to the standard; the core of this encoder provides the kernel 

for the MPEG–4 low bit rate video coding. There is no loss of generality in restricting 

experimentation to a single encoder since our algorithms can be adapted to every hybrid 

video encoder. 
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Skipped Frames Bit Rate (in Kb/s) PSNR_Y (in dB) Sequence n TMN–8 Optimal TMN–8 Optimal TMN–8 Optimal
Commercials_0 4250 1782 1597 32.31 32.22 27.97 28.00 
Commercials_1 5900 2151 1858 32.27 32.15 27.04 27.05 
Commercials_2 4100 1063 940 32.55 32.54 28.83 28.84 
Commercials_3 5000 1099 936 32.13 32.01 29.06 29.07 
Commercials_4 4800 1897 1697 32.44 32.11 28.46 28.54 
Commercials_5 3100 1386 1275 32.77 32.59 27.72 27.71 
Std 4000 204 177 32.54 32.55 32.60 32.61 
Std100 4000 396 343 32.57 32.60 31.74 31.76 

 
Table 6.1: Optimal frame rate control. Number of skipped frames and PSNR in 

experimental results for sequences encoded at 32 Kb/s. 
 
 

Table 6.1 compares the results obtained on the 32 Kb/s encoding of the video sequences 

with the TMN–8 rate control and a frame rate control based on the proposed dynamic 

programming algorithm. The standard and the optimized frame control methods are 

compared in terms of number of skipped frames, final bit rate and average Peak Signal to 

Noise Ration (PSNR) on the Y component. 

As evident from the Table, the optimal frame rate control skips consistently fewer 

frames, while accurately achieving the target bit rate and, even more important, without 

compromising the per-frame or the overall quality of the video sequence. The average 

PSNR is calculated including all transmitted frames. So, while the final figures are 

comparable, the results listed for the optimal rate control refer to the transmission of a 

higher number of frames. As we also verified with an informal subjective assessment, the 

higher number of frames, transmitted at the same average PSNR, results in a higher 

overall visual quality.  
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6.6 An efficient sub–optimal heuristic 

A careful analysis of the optimal decision sequences shows that most of the gain of our 

algorithm derives from a drastic reduction of the “chain effect” described previously (see 

point 3, Section 6.3). Motivated by this finding, we also experimented with a simple 

heuristic that proved to be very effective. 

When a scene change occurs, instead of transmitting the first frame of the new scene, 

this heuristic skips the beginning of the new scene and transmits only the last frame 

skipped by the standard H.263+/TMN–8 encoder. This has the advantage of reducing 

both the jerk and the gap to the next encoded frame. Most of the time, the shorter distance 

prediction is able to avoid the extra skip outlined in Figure 6.3.  

Figure 6.7 shows how this simple strategy works on the same sequence of frames 

described in Figure 6.3. As it can be seen from Figure 6.7, frame 3n +  is encoded instead 

of frame n  and, because 4n +  is now predicted from the closer 3n +  frame, no 

additional frame skipping is necessary. Figure 6.8 depicts the resulting improved 

encoding of the scene cut. 

This approach is easy to implement and reduces the computation to at most two 

encodings of each frame. The application of this heuristic to the test sequences indicates 

that this new strategy performs almost optimally. Experiments on encoding the test 

sequences at 32 Kb/s show that an encoder that uses the heuristic frame rate control, 

consistently outperforms a TMN–8 encoder while improving the visual quality. Scenes 

are essentially left unchanged and a small gain in PSNR is also observed. Similar results 

(with smaller gains) are also obtained on the same sequences when encoded at 64 Kb/s. 
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Frame No. n-5 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 … 
Encode n-5 n-4 n-3 n-2 n-1 skip n+3 n+4 n+5 n+6 n+7 … 
Transmit n-5 n-4 n-3 n-2 n-1 n+3 n+4 n+5 n+6 n+7 ... 
Display ... n-5 n-4 n-3 n-2 n-1 n+3 n+4 n+5 n+6 n+7 
 

Figure 6.7: Encoding, transmitting and decoding/displaying a sequence of frames with 
the proposed heuristic frame rate control. The sequence contains a scene cut between the 

frames n-1 and n. 
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Figure 6.8: Sequence of 50 frames across a scene cut in one of the files used in our 

experiments (Claire.qcif 80-100 followed by Carphone.qcif 1-29) encoded at 32 Kbit/s 
with heuristic rate control. Bits per frame and the corresponding PSNR per frame are 

shown. 
 

Table 6.2 compares the results obtained encoding at 32 Kb/s the test video sequences 

with the TMN–8 rate control, with the heuristic suggested before and with a frame rate 

control based on the dynamic programming algorithm. The frame control methods are 

compared in terms of number of skipped frames, final bit rate and PSNR on the Y 

component. 
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Figure 6.9: Number of frames skipped when encoding the video sequence at 32 Kbit/s 
with TMN–8, heuristic and optimal frame rate controls. 

 
 

Skipped Frames Bit Rate (in Kb/s) PSNR_Y (in dB) Sequence N TMN–8 Heuristic Optimal TMN–8 Heuristic Optimal TMN–8 Heuristic Optimal
Commercials_0 4250 1782 1605 1597 32.31 32.12 32.22 27.97 27.99 28.00 
Commercials_1 5900 2151 1866 1858 32.27 32.00 32.15 27.04 27.05 27.05 
Commercials_2 4100 1063 947 940 32.55 32.55 32.54 28.83 28.84 28.84 
Commercials_3 5000 1099 985 936 32.13 31.96 32.01 29.06 29.09 29.07 
Commercials_4 4800 1897 1700 1697 32.44 32.13 32.11 28.46 28.52 28.54 
Commercials_5 3100 1386 1282 1275 32.77 32.57 32.59 27.72 27.70 27.71 
Std 4000 204 196 177 32.54 32.63 32.55 32.60 32.60 32.61 
Std100 4000 396 376 343 32.57 32.64 32.60 31.74 31.75 31.76 
 
Table 6.2: TMN–8, heuristic and optimal frame rate controls. Coding results at 32 Kb/s. 

 
 

From the Table 6.2 and from Figure 6.9 is clear how the optimal frame rate control skips 

consistently fewer frames than the heuristic, while accurately achieving the target bit rate 

and, even more important, without compromising the quality of the video sequence. The 

small difference between heuristic and optimal algorithm confirms that most of the gain 

comes from encoding a frame after the scene cut that is closer to the next scene. 
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As described in precedence, PSNR is averaged on each transmitted frame, so the results 

listed for heuristic and optimal frame control are achieved by spending the same amount 

of bits of the TMN–8 rate control, but they refer to a consistently higher number of 

frames.  

6.7 Unrestricted Optimization 

In the previous section, we have considered a maximization problem MAX_TRANS 

characterized by two conditions which imply that a frame if  with 0 i n≤ ≤  can be 

transmitted immediately after the transmission of its anchor frame
ii Af − is completed (even 

if this happens at a smaller than i ) and that the transmission of if  must be completed at 

some time greater than or equal to i , and before starting the next frame. While these two 

conditions guarantee that frames are temporally aligned within a range of 

0 , 1
max [ ][ ] /
i j n

C i j M
≤ ≤ −

 ±   
, they may also be a source of inefficiency.  

For example, consider a section of the video sequence having k  consecutive frames 

1, , ,h h h kf f f+ +…  each with a cost of at most iM − ∆  bits. Even if the encoder skips no 

frame in that time interval, residual buffer space 
1

1

k

h i
i

R
−

+
=

≥ ∆∑  will be wasted. The sum of 

the residuals extends up to the residual generated by 1h kf + −  because the last residual h k+∆  

may be used for the transmission of the frames following h kf + . 
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For this reason, it may be interesting to consider a slightly different version of our 

MAX_TRANS optimization problem that is not restricted by these conditions. We prove 

that the unrestricted version of the optimization problem MAX_TRANS is NP–complete. 

 
Definition 6.2: Let ( )0 0, , , ,uI n M A B C=  be an instance of the unrestricted optimization 

problem MAX_TRANS_U. The problem consists in finding a sequence of decisions 

0 1 1, , ,u nS d d d −= …  such that 
1

0

n

u i
i

D d
−

=

= ∑  is maximized and 
1

0
0

[ ][ ] .
n

i i
i

B d C i A n M
−

=

+ ⋅ ≤ ⋅∑  

A video sequence that is encoded with a solution of the problem MAX_TRANS_U can 

still be decoded by a standard decoder, provided that the video frames are time aligned 

before being displayed. The value uD  of the unrestricted solution uS  provides an upper 

bound on the value of the solution S  because uD D≤ . 

 
Definition 6.3: An instance of the unrestricted decision problem MAX_TRANS_UD is 

given by ( )0 0, , , ,udI n M A B C=  and a value goal K +∈\ . The problem consists in 

determining if there exists a sequence of decisions 0 1 1, , ,ud nS d d d −= …  such that: 

1 1

0
0 0

[ ][ ]       and      .
n n

i i ud i
i i

B d C i A n M D d K
− −

= =

+ ⋅ ≤ ⋅ = ≥∑ ∑  

 

Given a value K +∈\ , solving MAX_TRANS_U provides a solution for the 

corresponding decision formulation in polynomial time by comparing the sum of the 

decisions uD  with K . This implies that solving MAX_TRANS_U is at least as hard as 

solving MAX_TRANS_UD, its formulation in terms of a decision problem, or, in other 

words, that MAX_TRANS_U is NP–complete if MAX_TRANS_UD is. 
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Definition 6.4: An instance of the problem LONGEST PATH is a graph ( , )G V E=  and 

a positive integer K V≤ . The problem consists in determining if there is in the graph G  

a simple path (that is, a path encountering no vertex more than once) with K  or more 

edges (Garey and Johnson [1979]).  

 

Given that LONGEST PATH is a known NP–complete problem we want to prove the 

following: 

 
Theorem 6.2: The problem MAX_TRANS_UD is NP–complete. 

Proof: To prove that the MAX_TRANS_UD is NP–complete we have to prove that: 

a) MAX_TRANS_UD ∈  NP; 

b) A known NP–complete problem Π  transforms to MAX_TRANS_UD. This 

means that there is a transformation T , computable in polynomial time by a 

deterministic Turing machine that transforms every instance of Π  in an instance 

of MAX_TRANS_UD.    

Part (a) is true because a non–deterministic Turing machine can compute the solution of 

the problem MAX_TRANS_UD in polynomial time by analyzing every possible 

sequence of decisions and selecting one that satisfies the conditions:   

1 1

0
0 0

[ ][ ]       and      .
n n

i i ud i
i i

B d C i A n M D d K
− −

= =

+ ⋅ ≤ ⋅ = ≥∑ ∑  

Part (b) is proved by restriction, i.e. by showing that the problem MAX_TRANS_UD 

contains an instance of the problem LONGEST PATH that is known to be NP–complete. 
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Given an instance ( , )G V E=  and K V≤  of the problem LONGEST PATH, we can 

construct an instance of the problem MAX_TRANS_UD as following: 

1. n V= ; 

2. 1M = ; 

3. 0 1A = − ; 

4. 0 0B = ; 

5. 
1      if      ( , )

[ ][ ]
0      otherwise             

i i jV V E
C i j − ∈

= 


 

6. K  has same meaning and assumes the same value in both problems.  

The construction can be done in polynomial time and it transforms every instance of 

LONGEST PATH in an instance of MAX_TRANS_UD. It is also evident how deciding 

MAX_TRANS_UD decides the existence of a simple path in G  with K  or more edges. 
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CONCLUSIONS 

Coherently with the trend existing in the literature in the field, our investigation has been 

based on a case–by–case analysis of the effects of using an optimization procedure in a 

data compression algorithm. The problem that we have addressed is how and how much 

the replacement of a sub–optimal strategy by an optimal one influences the performance 

of a data compression algorithm. We have analyzed three algorithms, each in a different 

domain of data compression. We introduced two novel algorithms that improve the 

current state of the art in the fields of low bit rate vector quantization and lossless image 

coding. We have also proposed and studied a new frame layer bit rate control algorithm 

compatible with the existing video compression standards. 

Although most of the experiments that we have reported are focused on different 

applications of digital image compression (lossy, lossless and moving pictures), some of 

the algorithms are much more general and cover broader areas of data compression. For 

example, the trellis coded vector residual quantizer has been applied with success to the 

compression of speech at very low bit rate and to the compression of random sources.  

For the TCVRQ, we have proposed two methods for the design of the codebook: one is 

based on the optimality conditions that we have derived; the other, a greedy algorithm, is 

a simplified heuristic that shows remarkable performance. 
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The lossless image compression algorithm that we have introduced uses linear prediction 

and embedded context modeling. Two different methods to determine the optimal linear 

predictor have been compared and discussed. Several alternatives for the entropy coding 

of the prediction error have been explored successfully. The burden of performing pixel–

by–pixel optimization is well compensated by the competitive performance that we were 

able to achieve. During our investigation, a number of ideas arose on possible 

improvements; the most promising dynamically adapts the context window to the image 

contents. 

Finally, the problem of designing an optimal rate control algorithm suitable for low 

bit rate video encoding has been addressed. The proposed scheme minimizes the number 

of skipped frames and prevents buffer overflows. We present both an optimal procedure 

and a simplified heuristic based on the insights gathered during the evaluation of the 

optimal solution. When used in the H.263+ video encoder this heuristic achieves 

performance extremely close to the optimal but with a much lower computational 

complexity. Finally, an unrestricted version of the optimization problem has been studied 

and proved to be NP–complete. 

Besides the aforementioned contributions, this work is relevant for a number of 

reasons: 

• A measure of the improvement achievable by an optimal strategy provides powerful 

insights about the best performance obtainable by a data compression algorithm; 

• As we show in the case of low bit rate video compression, optimal algorithms can 

frequently be simplified to provide effective heuristics; 
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• Existing and new heuristics can be carefully evaluated by comparing their complexity 

and performance to the characteristics of an optimal solution;  

• Since the empirical entropy of a “natural” data source is always unknown, optimal 

data compression algorithms provide improved upper bounds on that measure. 
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APPENDIX A 

Thumbnails of the images used in the lossless image compression experiments. 
 
 

   
Airplane Airport Ballon 

   

   
Barb2 Barb Board 

 

   
Boats Crowd Girl 
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Gold Goldhill Hotel 

   
 

   
Hursleyhouse Lake Landsat 

   

   
Lax Lena Lenna 

   

  

 

Mandrill Milkdrop Mri 
 

   
Mskull Peppers Woman1 
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Woman2 Xray Zelda 
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