

OPTIMIZATION METHODS FOR DATA COMPRESSION

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Computer Science

James A. Storer Advisor

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Giovanni Motta

May 2002

 ii

This dissertation, directed and approved by Giovanni Motta's Committee, has been

accepted and approved by the Graduate Faculty of Brandeis University in partial

fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Dean of Arts and Sciences

Dissertation Committee

James A. Storer

Martin Cohn

Jordan Pollack

Bruno Carpentieri

 iii

To My Parents.

 iv

ACKNOWLEDGEMENTS

I wish to thank: Bruno Carpentieri, Martin Cohn, Antonella Di Lillo, Jordan Pollack,

Francesco Rizzo, James Storer for their support and collaboration.

I also thank Jeanne DeBaie, Myrna Fox, Julio Santana for making my life at Brandeis

easier and enjoyable.

 v

ABSTRACT

Optimization Methods for Data Compression

A dissertation presented to the Faculty of the

Graduate School of Arts and Sciences of Brandeis

University, Waltham, Massachusetts

by Giovanni Motta

Many data compression algorithms use ad–hoc techniques to compress data efficiently.
Only in very few cases, can data compressors be proved to achieve optimality on a
specific information source, and even in these cases, algorithms often use sub–optimal
procedures in their execution.

It is appropriate to ask whether the replacement of a sub–optimal strategy by an
optimal one in the execution of a given algorithm results in a substantial improvement of
its performance. Because of the differences between algorithms the answer to this
question is domain dependent and our investigation is based on a case–by–case analysis
of the effects of using an optimization procedure in a data compression algorithm.

The question that we want to answer is how and how much the replacement of a sub–
optimal strategy by an optimal one influences the performance of a data compression
algorithm. We analyze three algorithms, each in a different domain of data compression:
vector quantization, lossless image compression and video coding. Two algorithms are
new, introduced by us and one is a widely accepted and well–known standard in video
coding to which we apply a novel optimized rate control.

Besides the contributions consisting of the introduction of two new data compression
algorithms that improve the current state of the art, and the introduction of a novel rate
control algorithm suitable for video compression, this work is relevant for a number of
reasons:
• A measure of the improvement achievable by an optimal strategy provides powerful

insights about the best performance obtainable by a data compression algorithm;
• As we show in the case of low bit rate video compression, optimal algorithms can

frequently be simplified to provide effective heuristics;
• Existing and new heuristics can be carefully evaluated by comparing their complexity

and performance to the characteristics of an optimal solution;
• Since the empirical entropy of a “natural” data source is always unknown, optimal

data compression algorithms provide improved upper bounds on that measure.

 vi

CONTENTS

CONTENTS...VI

INTRODUCTION... 1

KEY TECHNOLOGIES IN DATA COMPRESSION.. 8
2.1 SIGNAL REPRESENTATION.. 11

2.1.1 Sampling .. 11
2.1.2 Quantization... 13

2.2 DIGITAL DATA FORMATS... 15
2.2.1 Audio Formats ... 15
2.2.2 Still Image Formats.. 16
2.2.3 Digital Video Formats ... 17

2.3 BASIC METHODS .. 20
2.3.1 Entropy Coding.. 20
2.3.2 Run Length Coding .. 21
2.3.3 Huffman Coding... 21
2.3.4 Arithmetic Coding.. 23
2.3.5 Golomb Coding.. 25
2.3.6 Textual Substitution Methods... 26
2.3.7 Statistical Methods... 28
2.3.8 Vector Quantization ... 29
2.3.9 Prediction... 30
2.3.10 Transform and Sub–Band Coding ... 33
2.3.11 Fractal Coding... 42

2.4 INTER BAND DECORRELATION... 42
2.4.1 Color Decorrelation... 44
2.4.2 Motion Compensation.. 47
2.4.3 Multi and Hyperspectral Images ... 49

2.5 QUALITY ASSESSMENT .. 51
2.5.1 Digital Images.. 53
2.5.2 Video .. 57

DATA COMPRESSION STANDARDS... 60

3.1 AUDIO.. 60
3.1.1 Pulse Code Modulation.. 60
3.1.2 MPEG Audio.. 60

 vii

3.2 SPEECH .. 65
3.2.1 A–law and µ–law ... 65
3.2.2 Differential PCM ... 67
3.2.3 LPC–10 (Linear Predictive Coding of 10th order).. 69
3.2.4 Codebook Excited Linear Prediction (CELP) ... 75

3.3 IMAGE .. 76
3.3.1 JPEG.. 76
3.3.2 JPEG–LS.. 79
3.3.3 JBIG ... 81
3.3.4 JPEG–2000.. 83
3.3.5 GIF... 84

3.4 VIDEO .. 85
3.4.1 H.261.. 85
3.4.2 MPEG–1 .. 87
3.4.3 H.263.. 91
3.4.4 MPEG–2 .. 97
3.4.5 MPEG–4 .. 103

TRELLIS CODED VECTOR RESIDUAL QUANTIZATION 105
4.1 BACKGROUND.. 105
4.2 INTRODUCTION TO THE PROBLEM .. 111
4.3 TRELLIS CODED VECTOR RESIDUAL QUANTIZATION (TCVRQ)............................ 115
4.4 NECESSARY CONDITION FOR THE OPTIMALITY OF A TCVRQ................................ 120
4.5 VITERBI ALGORITHM ... 126
4.6 EXPERIMENTAL RESULTS... 129

4.6.1 Gray–level Image Coding .. 130
4.6.2 Low Bit Rate Speech Coding.. 132
4.6.3 Random Sources... 136

LOSSLESS IMAGE CODING .. 139
5.1 BACKGROUND.. 139
5.2 ADAPTIVE LINEAR PREDICTION CODING.. 145
5.3 LEAST SQUARES MINIMIZATION .. 158

LOW BIT RATE VIDEO CODING ... 162
6.1 BACKGROUND.. 162
6.2 FRAME AND MACROBLOCK LAYER RATE CONTROLS .. 164
6.3 PROBLEM DESCRIPTION ... 166
6.4 OPTIMAL FRAME SKIPPING MINIMIZATION .. 170
6.5 EXPERIMENTAL RESULTS WITH THE OPTIMAL ALGORITHM 178
6.6 AN EFFICIENT SUB–OPTIMAL HEURISTIC... 182
6.7 UNRESTRICTED OPTIMIZATION .. 185

CONCLUSIONS ... 189

APPENDIX A.. 192

BIBLIOGRAPHY... 195

INTRODUCTION

Many data compression algorithms use ad–hoc techniques to compress data efficiently.

Although heuristics are derived from reasonable assumptions on the nature of the data

being compressed, it is frequently unknown how and how much these assumptions affect

compression.

In a very few cases data compressors can be proved to achieve entropy on specific

information sources; however, even in these cases, algorithms often use sub–optimal

procedures in their execution. An example is the well–known Lempel–Ziv data

compression algorithm (see Ziv and Lempel [1977, 1978], Storer [1988]). Although this

algorithm is provably optimal, in the sense that asymptotically it achieves entropy on

some information sources, the input string is greedily parsed while it is being

compressed. A paper by Horspool [1995] analyzes the performance of the greedy parsing

versus an optimal parsing in Lempel–Ziv compression and concludes that it is possible to

improve compression. While an optimal parsing will not change its asymptotical

behavior, in practice, the new algorithm will converge faster to the entropy and will be

more stable with respect to different data sources.

Fast convergence is a crucial issue since an algorithm that converges slowly to the

entropy is of little use on real data that are finite in nature and presented to the

compressor in the form of small files. Slow convergence is also a problem in adaptive

 2

algorithms since when the input is not stationary and changes its characteristics over

time, the algorithm has little time to capture and exploit the changing statistics.

Stability with respect different sources is also particularly important since it is a good

indication that the algorithm will work correctly on data sources that have not been

tested. Even when the algorithm is provably optimal on a theoretical data source there is

in general little or no indication of the performance degradation when compressing

natural data, so stability is a clue that the algorithm will work properly on most data.

For all these reasons, the problem of evaluating the effects of optimal data

compression strategies has been addressed in the past by a number of authors, frequently

resulting in interesting insights on algorithms or even suggesting better heuristics derived

from the simplification of the optimal solution.

Besides the previously mentioned work by Horspool, Lempel et al. [1973], Hartman

and Rodeh [1985], Katajainen and Raita [1987], Helfgott and Cohn [1997, 1998],

Apostolico and Lonardi [1998, 2000] also addressed issues arising in the optimal parsing

of sequences in text compression.

In lossy compression, bit allocation is a critical factor to achieve the best rate–

distortion trade–off and optimal bit allocation strategies have been explored by a number

of authors under different assumptions. Only to mention a few, the works by Hoang et al.

[1997, 1999], Ortega [1996] and Wu [1993] deal with the problem of allocating bits from

a finite bit pool to each coding unit so that the global coding quality is maximized. The

problem of rate–distortion optimization of various aspects of video coding has received

the attention of several authors like Rajala et al. [1992], Wiegand et al. [1995],

Carpentieri and Storer [1994b], Lee and Dickinson [1994], Ramchandran and Vetterli

 3

[1994], Nosratinia and Orchard [1996], Sullivan and Wiegand [1998], Flierl et al. [1998].

Relevant also is the work by Kozen, Minsky and Smith [1998] who present an algorithm

that optimally discards frames in an encoded video sequence in order to lower bit rate

while minimizing the gaps.

Even more effort has been put in deriving scalar and vector quantizers that are

optimal with respect some principle. Besides the seminal work on scalar quantization

conducted by Lloyd [1957] and Max [1960], a number of authors derived optimality

conditions for vector quantizers both unconstrained (Linde, Buzo and Gray [1980]) or

constrained with respect to one or more features. Gray [1984] and Gersho and Gray

[1992] present a comprehensive introduction to the subject while more recent results can

be found in Barnes [1989], Barnes and Frost [1990], Frost et al. [1991], Kossentini et al.

[1993], Wang and Moayeri [1992], Wu [1990]. Application specific rate–distortion

optimization of scalar quantizers is also an issue that has been widely studied. See for

example the work by Ratnakar and Livny [1995, 1996] on the optimization of the

quantization tables used in JPEG image compression.

While data coding methods, like vector quantization, apply to every kind of data and

achieve compression close to the source entropy, practical state–of–the art data

compression algorithms are instead strictly data dependent. The reasons that preclude

general methods like vector quantization from being used as efficient universal source

coders are the exponential complexity of building an optimal encoder and the speed with

which the source entropy is reached. Since input data are relatively short sequences,

vector quantizers don't have the time to fully exploit the existing redundancies. In

practice, compression methods used, for example, for video coding are completely

 4

different from the methods used in speech, audio or text compression and while a number

of techniques are shared by most compressors, in order to fully capture the redundancy

existing in the input signal, these methods are used or combined in very different ways.

For all these reasons, coherently with the trend existing in the literature in the field,

our investigation is based on a case–by–case analysis of the effects of using an

optimization procedure in a data compression algorithm. The question that we want to

answer is how and how much the replacement of a sub–optimal strategy by an optimal

one influences the performance of a data compression algorithm. With a case–by–case

approach we analyze three algorithms, each in a different domain of data compression:

vector quantization, lossless image compression and video coding. Two algorithms are

new, introduced by us and one is a widely accepted and well–known standard in video

coding to which we apply a novel optimized rate control. Although most of the

experiments that we report are mainly focused on three different flavors of digital image

compression (lossy, lossless and moving pictures), some of the algorithms are much more

general and cover broader areas of data compression. In particular the vector quantizer is

also analyzed in the framework of very low bit rate speech coding and in the compression

of random sources.

Besides the contributions consisting of the introduction of two new data compression

algorithms that improve the current state of the art, and the introduction of a novel rate

control algorithm suitable for video compression, this work is relevant for a number of

reasons:

• A measure of the improvement achievable by an optimal strategy provides powerful

insights about the best performance obtainable by a data compression algorithm;

 5

• As we show in the case of low bit rate video compression, optimal algorithms can

frequently be simplified to provide effective heuristics;

• Existing and new heuristics can be carefully evaluated by comparing their complexity

and performance to the characteristics of an optimal solution;

• Since the empirical entropy of a “natural” data source is always unknown, optimal

data compression algorithms provide improved upper bounds on that measure.

Since the work spans three different fields of data compression, the first two Chapters of

this thesis introduce the state of the art by presenting in Chapter 2 the key technologies

that are commonly used and in Chapter 3 by giving an overview of how these techniques

are used to compress audio, speech, image and video signals with the most important

compression standards.

In the Chapter 4 we address the problem of designing and analyzing a low complexity

vector quantizer whose codebook is designed both with optimal centroids and with a sub–

optimal stagewise design. A novel combination of residual and trellis quantization is

presented and compared to existing methods. Then we derive the necessary conditions on

the centroids in an optimal codebook that minimizes the mean square quantization error.

Because of the complexity involved, these conditions turn out to be not practical, so an

alternative sub–optimal codebook design is proposed. A number of experiments on

random sources, on direct coding of digital images and on very low bit rate coding of

linear prediction parameters in a speech codec are presented and compared to the current

state of the art. Both an exhaustive (optimal) and a Viterbi–based (sub–optimal) trellis

search are used and compared. We conclude that this novel Trellis Coded Vector

Residual Quantizer provides very good performance, in particular at low bit rates, and a

 6

computational complexity lower than other existing methods. In all cases, the

performance loss introduced by the Viterbi search is widely compensated by a lower

computational complexity.

In Chapter 5 we propose and study a new lossless image compression algorithm that

uses linear prediction and embedded context modeling. A linear predictor is computed for

each pixel by minimizing the square error in a set of causal neighbors. Two different

methods to determine the optimal linear predictor are compared and discussed. The

prediction error is entropy coded by using two different methods: arithmetic coding and

Golomb coding. Since the algorithm tries to exploit local statistics, the model for the

arithmetic encoder is based on a small number of samples and it may give no indication

of the probability of some error values. To overcome this lack of information, also called

the "zero probability" problem, we have successfully used the Laplacian approach. A

number of results on standard test images are presented and compared to state of the art

lossless image codecs. While pixel–by–pixel optimization is computationally expensive

and still far from being practical, the compression that we get is competitive with the

state of the art and the performance is stable on every image of the test set.

Chapter 6 addresses the problem of designing an optimal frame–rate control

algorithm that, embedded in a low bit rate video encoder, minimizes the number of

frames that are skipped during transmission buffer overflows. Overflows are due to the

attempt of matching video variability to the finite capacity of the transmission channel.

We present an optimal solution to this problem with an algorithm that is based on

dynamic programming. The rate control is tested in a H.263+ encoder by using video

sequences that have a high number of scene cuts. The optimal solution always allows the

 7

transmission of a much higher number of frames with slightly better quality and with the

same number of bits. The analysis of the pattern of the optimal solution suggests that

most of the gain depends on the skipping of the first frame of the new scene. Based on

this observation, a heuristic is developed and embedded in the H.263+ video encoder.

This enhancement entails no change in the standard or in the decoder. Experiments on the

test sequences show that this heuristic achieves most of the gain of the optimal solution

with a computational complexity that is substantially lower. Finally an unrestricted

version of the optimization problem is studied and proved to be NP–complete.

 8

KEY TECHNOLOGIES IN DATA COMPRESSION

Digital data compression aims at a space efficient representation of digital data. The need

for compression is mainly motivated by the increasingly large amount of data used by

current applications.

While the interest in the compression of digital data is relatively recent, the concept

of compression itself has been present in the analog world for a long time. Examples of

analog compression are PAL, NTSC and SECAM color systems, all employed to reduce

the full bandwidth R, G and B signals into a single 5.5 or 4.2 MHz channel suitable for

broadcast TV transmission.

In the following we describe compression methods that apply both to signals that are

digital in nature (like text) as well as signals that are obtained by digitization of a

sequence of analog measures.

Storage and transmission are the most common operations performed on digital data.

Which one of these two operations must be performed more efficiently is a decision that

sometimes affects the choice among the available compression methods. Transmission

and storage applications determine two classes (not necessarily disjoint) of compression

algorithms that have different requirements, characteristics and performance.

The transmission–storage duality is captured by the Rate–Distortion theory. An

encoder suitable for transmission must minimize the distortion while keeping the rate

 9

fixed (or by keeping its average close to a given threshold), a storage–oriented algorithm

typically minimizes the rate while achieving a given distortion.

This is not obviously a rigid rule and each compression algorithm has to tradeoff

among some strictly correlated parameters. Each of them can be increased (in some

extent) despite of one or more of the others (Bhaskaran and Konstantinides [1995]):

• Coding Efficiency: usually defined in terms of Compression Ratio, bits per

symbol, etc.;

• Signal Quality: measured by the Signal to Noise Ratio, with perception

motivated metrics or empirically assessed with subjective experiments;

• Coding Delay: measures both the delay introduced in the coding process and the

size of the encoding buffer required;

• Coder Complexity: expressed in terms of algorithmic complexity, number of

operations, memory space, or electrical power needed by a hardware

implementation of the encoder.

The relation between the first two parameters is modeled by the Rate–Distortion theory

(Gallager [1968], McEliece [1977], Cover and Thomas [1991]) and obeys well–known

bounds; the others two are typical of each implementation.

Compression is achieved by removing some information present in the signal. It is

possible to distinguish between two kinds of information that are commonly removed:

• Redundant information, that is statistical in nature and can be reconstructed by

observing other parts of the signal;

• Irrelevant information, that is not useful in the target application.

 10

Algorithms chosen to compress data that have to be used by humans, are frequently based

on the removal of irrelevant information that the user cannot perceive.

Another important difference between the two classes is that while statistical methods

that are used to remove redundancies can be lossless (the original signal can be

reconstructed from its compressed representation without any error) or lossy (some errors

are introduced in a controlled manner), the elimination of irrelevancies is an intrinsically

lossy process (Storer [1992]).

Methods that remove redundancies and irrelevancies are often combined. Figure 2.1

shows a typical configuration used by a video coder. The second stage removes the

irrelevant part of the signal by quantizing a transformation of the signal; the third stage

removes the remaining statistical redundancy by using, for example, a variable–length or

arithmetic encoder.

Signal
Transform

Quantization
 (Lossy)

Entropy Coding
 (Lossless)

Input Bitstream

Figure 2.1: Stages of a generic video encoder.

 11

2.1 Signal Representation

Digital signal compression is applied to signals that are discrete in nature or obtained

from the digitization of analog measures. A signal is usually described by a function

1 2(, ,...,)nf x x x of n independent variables, also called dimensions; a common

classification groups together signals having the same number of dimensions.

With this formalism, an audio signal is a one–dimensional function ()f t that

describes the air pressure acting on a transducer as a function of the time. An image is a

two–dimensional function (,)f x y describing the luminosity of a pixel in a scene as a

function of two spatial coordinates. A video signal, being a temporal sequence of images,

adds a temporal parameter to the image description thus becoming a function (, ,)f x y t .

Since in a digital signal both free variables and values of the function must be

discrete, when the signal originates from a sequence of analog measures, digitization

must be performed both in the time dimension (sampling) and in the values of the domain

(quantization). While from a theoretical point of view sampling and quantization can be

applied in any order, for technological reasons sampling is often performed first (Jayant

and Noll [1984]).

2.1.1 Sampling

Sampling is the process that converts a continuous time signal into a discrete time signal

by measuring its amplitude at regular time intervals. If the signal being sampled is band

 12

limited, i.e. if its frequency F is comprised between two frequencies minF and maxF , the

Sampling Theorem (Jayant and Noll [1984]) guarantees that a perfect reconstruction of

the original signal is possible only if the signal is sampled at regular intervals 1/ sT F=

where sF is the sampling frequency that must be greater than or equal twice the

bandwidth:

max min2 ()sF F F≥ ∗ − .

Formally, the Sampling Theorem states:

Sampling Theorem: For a sampling interval, T , there exists a critical frequency,

1
2SF
T

= , known as the Nyquist frequency. If the data under observation is band limited

to a frequency less than the Nyquist frequency then that function can be sampled and

represented, digitally, in a representation similar to the continuous limit as the sampling

interval tends to zero.

In other words, if a signal has a maximum frequency comprised between minF and maxF ,

no information is lost by sampling the signal at max min2 ()sF F F≥ ∗ − and a perfect

reconstruction of the original signal from its samples is always possible. When a signal is

sampled at a frequency lower than its Nyquist frequency, aliasing occurs and the

reconstructed signal will exhibit frequency components that were not present in the

original (see Fig. 2.2). In the frequency domain, aliasing causes part of the signal that

resides in a region greater than the critical frequency to be spuriously moved into a valid

region between zero (or DC) and the Nyquist frequency.

 13

1/Fm ax 1/Fs=2/3*Fm ax Original Signal

Aliased Signal

Figure 2.2: Aliasing in a signal sampled with max max

3 2
2SF F F= ≤

Time

In
te

ns
ity

Analog Signal Sampling Sampling + Quantization

Sampling Interval

Q
ua

nt
um

Figure 2.3: Sampling and Quantization of an analog signal.

2.1.2 Quantization

Discretization in the values of the domain is called quantization. This process

approximates a continuous–amplitude signal by a discrete–amplitude signal, while

minimizing a given distortion measure.

Unlike sampling, quantization is an intrinsically lossy process, and after the

quantization the original signal cannot be recovered without errors. In a quantized signal

each sample can be represented by the index of a value selected from a finite set. It is also

 14

common to perform quantization on a signal that already has discrete amplitude, meaning

with this a reduction in the number of the possible values that a sample can assume.

The simplest way to quantize a signal is one sample at a time, by using a uniform

division of the value interval. In this process, called uniform scalar quantization, the

value of each sample is divided by an interval (quantization step or quantum) and the

integer part of the result is encoded. If the samples are 1 2, , , ,nx x x… … and the

quantization interval is q , the quantizer determines ˆ int(/)i ix x q= and outputs the

corresponding code word (or index) for ˆix .

Better performance, at the cost of a greater complexity, can be obtained by

considering the signal statistics (non–uniform quantization) or by quantizing the signal in

blocks composed by a number of consecutive samples (Vector Quantization). See Gersho

and Gray [1992], Proakis and Manolakis [1996] for an extensive coverage of this topic.

 15

2.2 Digital Data Formats

In the following we introduce the most common digital data formats and discuss their

main characteristics.

2.2.1 Audio Formats

Sound is a wave of pressure differences that travels through the air, so sound can be

detected by measuring the pressure level at a specific location as a function of the time. A

transducer (as a microphone for example) is a device that converts air pressure

differences into variations of some electrical quantity. Its output can be considered a

continuous (or analog) signal and it is usually digitized with the techniques that we have

already discussed.

In audible signals, sampling is performed at frequencies that range from 96KHz for

high quality music to 8KHz for telephone quality speech.

Quantization can be performed by using linear intervals (as in linear Pulse Code

Modulation or PCM) or more appropriately with logarithmic intervals. The speech signal

that is transmitted over the digital telephone lines is frequently quantized by using

µ − law or A–law, two logarithmic scales that are designed to take advantage of the non–

linear sensitivity of the human ear.

 16

To represent complex sounds generated by multiple sources it is also possible to measure

the wave from two or more different space locations, generating in this way multiple

measures of the same event (stereophonic audio).

A full specification of a digital audio signal is characterized by the following four

parameters:

• Sampling rate: expressed in number of samples per second;

• Number of bits per sample: in general 8, 12, 16 or 24;

• Digitization law: linear, log, µ − law, A–Law, etc.;

• Number of channels: 1 for monaural, 2 for stereo, etc..

While most audio compression algorithms are designed to be general–purpose and work

independently on signal content and parameters, an interesting exception is constituted by

the class speech codecs. Speech is susceptible of a special treatment because it is possible

to model its source (the human vocal tract) thus making possible the design of model–

based algorithms that are capable of extremely high compression.

2.2.2 Still Image Formats

A gray–level image can be considered a two dimensional signal where a light intensity

(,)s x y is associated to each point (,)x y of a uniform sampling grid. Even in this case,

the considerations made in the previous section about sampling and quantization are still

valid. However, due to physical and technological limitation, image sampling is always

performed at a lower spatial resolution (with respect the original), so perfect

reconstruction cannot be usually achieved.

 17

A special class of gray–level images consists of images in which (,)s x y can only assume

two values, conventionally designated by zero and one. These images, called bi–level

images, are commonly generated by fax machines or by scanning high–contrast paper

documents. They are important because special algorithms have been designed for their

compression.

Color images are commonly described as three superimposed gray–level pictures,

also called color planes. Each pixel in a color plane represents the spatial measure of the

intensity of a primary color (for example Red, Green and Blue as in the common RGB

scheme). These representations are “hardware oriented” in the sense that they reflect the

representation used by color monitors, printers or photographic processes. From this

point of view a color picture is a three–channel, three–dimensional signal.

In natural images, where a strong correlation between the three channels is expected,

an alternative color representation can be used in order to exploit this correlation. This

representation, used by most image and video compression algorithms, will be briefly

described in a following section.

2.2.3 Digital Video Formats

Since a video signal can be viewed as a sequence of pictures, digital video combines the

temporal aspects of audio signals and the spatial characteristics of still pictures.

When the digital video originates from the sampling of analog broadcast television,

the differences existing between NTSC, PAL and SECAM national standards limit or

even preclude device interoperability. With the purpose of standardizing digital video

 18

format several representations have been defined; each standard specifies the following

three parameters:

• Spatial Sampling: the number of horizontal and vertical pixels (or lines) in a

picture;

• Temporal Sampling: the number of pictures per second and whether the signal is

interlaced (odd lines grouped and transmitted before even lines) or non–

interlaced;

• Color Sampling: how the color of each pixel is represented.

Here we review some common standard video formats:

• CCIR–601: the official sampling standard for the conversion of analog television

signals; it specifies a different spatial and temporal sampling for NTSC (the

United States National Television Systems Committee) and PAL (Phase

Alternating Line) television signals. The NTSC signal is sampled with 720x485

pixels and 30 frames/sec and the PAL signal is 720x576 at 25 frames/sec. Colors

are represented with in a color space called b rYC C . Color components are sub–

sampled with a scheme named 4:2:2 (see section on Color Decorrelation). CCIR–

601 uses interlaced scan. The vertical resolution for each field is one half of the

full resolution since each frame consists of two interlaced fields that are spatially

but not temporally adjacent.

• Source Input Format or SIF: specifies a spatial sampling of 360x240 pixels at

30 frames/sec for the NTSC video signal and 360x288 pixels at 25 frames/sec for

the PAL signal. The color sub–sampling for the b rYC C components follows the

format named 4:2:0.

 19

• Common Intermediate Format or CIF: proposed to bridge the differences

between the NTSC and PAL video formats. It uses progressive (non–interlaced)

scan, an image size of 352x288 pixels at 30 frames/sec and 4:2:0 color

subsampling for the b rYC C components. These values represent half the active

lines of a PAL television signal and the picture rate of the NTSC signal.

Therefore, when converting an analog signal to CIF, PAL systems need only to

perform a picture rate conversion and NTSC systems need only to perform a line–

number conversion. Multiples of the CIF format are also defined and usually

referred as SQCIF (128x96 pixels), QCIF or Quarter CIF (176x144 pixels), 4CIF

(704x576 pixels) and 16CIF (1408x1152 pixels).

 20

2.3 Basic Methods

Almost every “natural” information source exhibits some sort of correlation among its

samples. The following paragraphs introduce a number of basic data compression

techniques that are frequently combined to form state–of–the–art algorithms. Each of

these methods uses a slightly different approach to remove or reduce the amount of

correlation present in the signal. Some methods are based on assumptions on the nature

of this correlation, so their use is restricted to data sources that satisfy these assumptions.

2.3.1 Entropy Coding

Entropy coding exploits the fact that in a signal symbols may occur with different

frequencies and, when encoding source symbols one at a time, the a priori probability of

occurrence of a symbol may change depending on the past observations. In an English

text, for example, the letter “e” occurs with the highest frequency and the probability that

a letter is an “e” given that past three letters being “ th” is extremely high. On the

contrary, the probability of a “q” following “ th” is very low.

An entropy encoder uses these considerations by estimating for each symbol a

probability that is based on the past observations, then encodes highly probable symbols

with the shortest code words. This method, called variable–length coding, is the base of

most entropy coding algorithms (Storer [1988]).

 21

2.3.2 Run Length Coding

A simple lossless compression technique is Run Length Encoding (Golomb [1966]). RLE

is used when compressing scanned documents and faxes. These images alternate long

sequences of pixels having the same color. A sequence (or run) of contiguous pixels of

the same value is encoded by the pair (,)R L where R is the recurrent value and L is the

length of the run.

For example, the sequence of values “100000002200000011111... ” can be RL

encoded as “ (1,1)(0,7)(2,2)(0,6)(1,5)... ”. Uniquely decipherable codes (fixed length,

prefix, etc.) must be used to represent the pairs so that no ambiguity arises when

decoding the data stream. As previously introduced, a common application of RLE is the

encoding of bi–level images. On this kind of images, because the black and white runs

alternate, except for the first run, it is not even necessary to send the recurrent value R .

In fact, the CCITT Group 3 and 4 facsimile standards are mainly based on RLE (Sayood

[1996]). RLE is also used to encode the sequences of zeros present in the quantized DCT

coefficients in the JPEG standard (Pennebaker and Mitchell [1993]).

2.3.3 Huffman Coding

Huffman [1952] codes are an optimal way of assigning variable length code words to an

alphabet of symbols with a known probability distribution.

Starting from the symbol probabilities, a (binary) Huffman code is built by grouping

together the two symbols that have the smallest probabilities and assigning to the last bit

of the their code words a 0 and a 1 respectively. The construction is repeated by

 22

considering a new set of symbols in which the two symbols with the lowest probability

have been substituted by a super symbol having probability equal to the sum of the two

lowest probabilities. The construction stops when a single symbol with probability 1

remains.

This method builds bottom–up a binary tree in which each branch corresponds to a

bit. Every leaf of this tree corresponds to a symbol whose code word is obtained by the

sequence of bits along the path from the root to the leaf (See Fig. 2.4).

A

B

C

D

0 1

0

10

1Symbol Probability Code word

A 0.25 01
B 0.125 000
C 0.5 1
D 0.125 001

Figure 2.4: Construction of a Huffman code.

The code generated by this construction is optimal because the bit at every branch

distinguishes among two roughly equiprobable left and a right sub–trees. When the

probabilities are not powers of two, Huffman codes have some redundancy that arises

from the fact that it is not possible to partition the symbols so that all internal nodes in the

tree have perfectly equiprobable sub–trees (see Capocelli et al. [1986], Capocelli and De

Santis [1988, 1991], Johnsen [1980]). Encoding sequences rather than individual symbols

can reduce the redundancy introduced by this method.

Locating the symbols in the leaves only, guarantees that this construction always

results in a prefix (originally prefix free) code. In a prefix code no codeword is prefix of

another codeword; because of this property, any sequence of code words is

 23

instantaneously uniquely decodable (Gallager [1968]). So in a left–to–right decoding of

the bit stream it is always possible with no look ahead to determine where the code for

one symbol ends and the code for the next symbol begins.

Huffman codes can be generalized to non–binary trees (when the coding alphabet is

non binary) as well as to the case in which the probability distribution for the next symbol

depends on the previous symbols. Unfortunately, in this case the size of the data structure

that maintains the probabilities grows exponentially with the number of symbols.

When the symbol probabilities are not known or when the probabilities change over

time, this approach can be made adaptive by incrementally updating the data structure as

new symbols are processed. The updates reflect the probability distribution of symbols

seen thus far. This approach is used by the UNIX “compact” utility.

For further reading, see the original paper by Huffman [1952], Gallager [1978] and

the book by Storer [1988],

2.3.4 Arithmetic Coding

Arithmetic coding (Moffat, Neal and Witten [1995]) is an entropy coding method useful

to encode symbols with arbitrary probabilities provided by an adaptive model that will be

discussed shortly. The idea is to encode a data sequence as a single long binary number

that specifies a point on the real line between 0 and 1. This point represents the value of

the cumulative density function of the sequence. With this method, not only do less

frequent characters get shorter codes, but “fractions” of a bit can be assigned, avoiding in

this way the redundancy common to most Huffman codes.

 24

Both the encoder and decoder proceed incrementally by maintaining a coding interval

between the points low and high ; initially 1high = and 0low = . Each time a new

symbol s is read by the encoder or written by the decoder, they both refine the coding

interval by doing:

(() *)
(() *)

length high low
high low RIGHT s length
low low LEFT s length

= −
= +

= +

As more and more symbols are encoded, the leading digits of LEFT and RIGHT

become the same and can be transmitted to the decoder (See Fig. 2.5). Assuming binary

notation, if the current digit received by the decoder is the thi digit to the right of the

decimal point in the real number r formed by all of the digits received thus far, then the

interval from r to 2 ir −+ is a bounding interval and the LEFT and RIGHT ends of the

final interval will both begin with the digits of r .

A

B

C

A

B

C

A

B

C

A

B

C

0.0 0.00 0.490 0.5460

0.7

0.8

1.0

0.49

0.56

0.70

0.539

0.546

0.560

0.5558

0.5572

0.5600

Figure 2.5: Arithmetic encoding of the input “ABC”.

 25

Practical implementations are complicated by the use of limited precision arithmetic to

avoid expensive arithmetic operations and a number of methods have been devised to

overcome this problem (Witten, Neal and Cleary [1987]). For further reading, see the

books by Bell, Cleary, and Witten [1990] and Witten, Moffat and Cleary [1994].

2.3.5 Golomb Coding

Golomb [1966] codes were introduced to optimally encode the result of run–length

coding. These codes are optimal for exponentially decaying distributions of positive

integers and, when applicable, lead to encoding algorithms that are much more efficient

than other entropy coding methods (see Howard [1989]).

A Golomb code of parameter m encodes a positive integer n with a binary

representation of (mod)n m followed by a unary representation of the remaining most

significant bits of n and, finally, a stop bit.

A special case is the family of codes in which the parameter m is a power of two:

2km = . In this case, the modulus operation is particularly simple and the coding process

is even more efficient. In such a code the length of a code word is given by:

1
2k

nk  + +   

Several methods have been devised to estimate the parameter of an optimal Golomb code

from a sequence of observations. For a further discussion on this topic see for example

Seroussi and Weinberger [1997].

 26

In practice, Golomb codes are important because they are frequently used to encode

prediction errors. In most cases the probability of a prediction error ()e t can be modeled

by a symmetrical, zero centered, Laplacian distribution. Even in this case a Golomb code

can be used after the application of a mapping that rearranges error values into a positive

exponentially decaying distribution. One of these mappings can be found in LOCO–I and

in the lossless image compression standard JPEG–LS (Weinberger, Seroussi and Sapiro

[1996]):

()
2 () if () 0

()
2 () 1 otherwise.

e t e t
M e t

e t
⋅ ≥

=  ⋅ −

2.3.6 Textual Substitution Methods

In a textual substitution method, encoder and decoder cooperate to maintain identical

copies of a dictionary D that is constantly changing during the compression. The

encoder reads symbols from the input stream, matches these symbols with an entry of D ,

transmits a reference to this entry, and updates the dictionary with a method that depends

only on the current contents of D and on the current match. The index of the match in

the dictionary is the compressed text fragment.

Textual substitution methods are often referred to as “LZ–type” methods due to the

work of Lempel and Ziv [1976] and Ziv and Lempel [1977, 1978], where “LZ1–type” or

“LZ’77–type” methods are those based on matching to the preceding n characters and

“LZ2–type” (see also Storer and Szymanski [1978, 1982]) or “LZ’78–type” are those

based on a dynamic dictionary.

 27

In LZ’78, the dictionary consists of all substrings of the data most recently processed.

Compression starts by prepending a dummy string containing the entire alphabet, then the

method matches the longest possible prefix of unprocessed characters with a substring

that has occurred in the past. That prefix is encoded by sending a reference pointer to its

earlier location, its length and one additional character, called “innovation”, that is

encoded verbatim. The process repeats until the end of the file.

While LZ’77 uses the previously encoded text as a dictionary, LZ’78 maintains

instead an explicit structure that contains only previously cited phrases, each augmented

by one new character. Compression is achieved by citations of these dictionary entries.

Since not every location in the past may begin a citation, the cost of coding is reduced.

LZ’78 scans unprocessed data while searching for the longest prefix not in the dictionary.

That prefix is encoded as a dictionary index plus one innovation character, and then

inserted as a new dictionary entry. In 1984, Welch proposed a variation on LZ'78 that

was named LZW. In this variant the augmented string enters the dictionary as usual but

the encoding of the innovation character is deferred to the succeeding match.

Methods that use a dynamic dictionary take advantage of a trie data structure to

efficiently implement the pattern matching. For further reading see the book of Storer

[1988]. Practical implementation of textual substitution algorithms are, for example, the

UNIX “gzip” utility that employs the LZ’78 approach, the UNIX “compress” utility and

the V.42bis modem compression standard that employs the LZ’77 approach. Because any

difference between the dictionaries maintained by the encoder and the decoder will cause

a long (possibly infinite) sequence of errors, unless specific techniques are employed, this

method is very sensitive to transmission errors. Storer and Reif [1997] address the

 28

problem of error propagation in dictionary methods and show how a hashing based

solution can be used to prevent and limit error propagation.

2.3.7 Statistical Methods

Statistical compression methods develop a statistical model of the data being encoded.

Typically a common statistical method consists of a modeling stage followed by a coding

stage. The model assigns probabilities to the input symbols, and the coding stage

performs the actual coding with an assignment of symbols based on those probabilities.

The model can be either static or dynamic (adaptive). Most models are based on one

of the following two approaches.

• Frequency: The model assigns probabilities to the text symbols based on their

frequencies of occurrence, such that commonly occurring symbols are assigned

short codes. A static model uses fixed probabilities, while a dynamic model

modifies the probabilities and adapts to the text being compressed.

• Context: The model assigns probability by considering the context in which a

symbol appears. Contexts and symbol probabilities are determined from the data

already encoded. The context of a symbol is often composed by a number of

symbols preceding it and the method is said to “predict” the symbol based on that

context.

PPM, a sophisticated compression method originally developed by Cleary and Witten

[1984] and extended by Moffat [1990], is an example of context–based compression.

This method is based on an encoder that maintains an explicit statistical model of the

 29

data. The encoder inputs a new symbol, encodes it with an adaptive arithmetic encoder

that uses its estimated a priori probability.

2.3.8 Vector Quantization

Since Shannon [1948] determined its theoretical optimality, Vector Quantization (or VQ)

has been proved to be a powerful coding technique that is effective and independent of

the data source. It works by dividing the sequence of input symbols into blocks (or

vectors) of length n . Each vector is independently encoded by searching for the closest

match in a dictionary (codebook) of representative vectors. The codebook is common to

both encoder and decoder.

Formally, if x is an n –dimensional random vector in n\ , an N –levels Vector

Quantizer of n\ is a triple (, ,)Q A F P= where:

• 1 2{ , ,..., }NA y y y= is a finite indexed subset of n\ called codebook. Its elements

iy are the code vectors;

• 1 2{ , ,..., }NP S S S= is a partition of n\ and its equivalence classes (or cells) iS

satisfy:

N
n

i
i i

S
=

= ℜ∪ and i jS S∩ = ∅ for i j≠ ;

• : nF A→\ is a function that defines the relation between the codebook and the

partition as

() iF x y=
G if and only if ix S∈

G .

 30

Vector quantization is asymptotically optimal when the dimension of the vector

increases. Unfortunately the construction of the partition for the determination of the

optimal code vectors has been proved to be an NP–complete problem by Lin [1992].

Another drawback that limits its use is that the size of the codebook grows exponentially

with the dimension of the vector.

Many variations have been proposed to speed up the encoding and simplify the

codebook design, many based on trees or on a trellis data structure. For further reading

see the book of Gersho and Gray [1992].

In a Vector Quantizer, encoding and decoding are highly asymmetric. Searching for

the closest block in the dictionary (encoding) is computationally much more expensive

than retrieving the codeword associated to a given index (decoding). Even more

expensive is the dictionary design; fortunately this process is usually performed off–line.

In Constantinescu and Storer [1994, 1994b] the authors propose a method to perform VQ

with an on–line adaptive construction of the dictionary.

2.3.9 Prediction

A general paradigm in data compression is the concept of prediction. Prediction allows a

compact representation of data by encoding the error between the data itself and the

information extrapolated or “predicted” from past observations. If the predictor works

well, predicted samples are similar to the actual input and the prediction error is small or

negligible, and so it is easier to encode than the original data.

A specific realization of the source is compressed by predicting the value of each

sample from a finite number of past observations and sending to the decoder the

 31

difference between the actual sample and its predicted value. The decoder, that shares

with the encoder the prediction mechanism, can mimic encoder’s prediction, add it to the

error that has been sent by the encoder (See Fig. 2.6) and, finally, reconstruct the original

sample.

When prediction is used to perform lossy compression, in order to avoid error

propagation both encoder and decoder have to base the prediction on the encoded

samples. While encoded samples contain noise that has been introduced by the lossy

encoding, they constitute the only common knowledge between encoder and decoder.

Linear
Predictor

Linear
Predictor

Quantizer
x(n)

+

+
+

- ++
x(n)-x(n)~

x(n)~ x(n)+∆(n)~ ^

y(n)=x(n)+∆(n)~ ^∆(n)^ ∆(n)^

x(n)~

Figure 2.6: Predictor.

In the literature there is a distinction between backward and forward prediction, both

mechanisms being very common in data compression. In backward prediction, the value

of the current sample is predicted on the base of the past (encoded) observations. Since

the prediction is based on the output data, common to both encoder and decoder, there is

no need to send side information. Forward prediction instead, collects a number of input

samples, determines for this block of data a predictor that is optimal with respect to some

criteria and sends to the decoder both a parametric representation of the predictor and the

prediction errors. While forward prediction performs better than backward prediction in

 32

presence of rapid signal variations, a number of samples must be collected before the

prediction and this process introduces a delay that may be intolerable in some systems.

The most common kind of prediction, called Differential Pulse Code Modulation (or

DPCM), assumes that the current sample is identical to the previous. In this simple yet

effective method, the prediction error is the difference between the current sample and

the last encoded value.

Another common method, widely used in speech coding (Rabiner and Schafer

[1978]) and recently found also useful in image coding (Meyer and Tischer [1997, 1998,

2001], Motta, Storer and Carpentieri [1999, 2000], Wu, Barthel and Zhang [1998])

assumes a linear dependence between samples that are spatially or temporally adjacent.

The idea behind linear prediction is that a sample can be approximated by a linear

combination of past samples. Using this approach, the sample nx can be predicted as a

weighted sum of p previous samples (prediction of order p):

1

p

n k n k
k

x a x −
=

= ∑�

where 1 2, , , pa a a… are the prediction coefficients, optimized to reduce the error variance.

The prediction error is expressed as:

1

p

n n n n k n k
k

e x x x a x −
=

= − = − ∑�

LP has been extensively studied because it is an essential tool used in speech

compression, and a number of efficient algorithms have been designed to determine the

predictor’s coefficients.

 33

2.3.10 Transform and Sub–Band Coding

Transform coding designates a family of algorithms that are not compression methods in

the literal sense (some transformations even increase the size of their input), but are able

to enhance entropy coding by transforming the data into alternative representations that

are easier to compress.

In general the transformation exploits characteristics that are peculiar to the signal

and increases the performance of an entropy coder or allows a better control of the error

introduced by a lossy compressor.

In the case of lossless compression, transforms such as the Burrows–Wheeler

(Burrows and Wheeler [1994]) enhance some statistical properties of the data by

rearranging the sequence of symbols.

When compressing natural sources like audio, images or video for example, the

information that is relevant for a human user is often better described in the frequency

domain. Decomposing a signal into its frequency components allows the encoder to

prioritize the data and introduce error where the user is less likely to perceive it.

When the transformation is implemented in the form of a filter bank, transform

coding frequently takes the name of sub–band coding. In a sub–band coder the input

signal is separated by a filter bank into multiple streams, each containing components in a

particular interval of frequencies. Such streams are decimated (or sub–sampled) and

individually encoded. Division into bands allows the exploitation of phenomena that are

better described in the frequency domain, like, for example, the frequency masking.

More details can be found in Tsutsui et al. [1992], Woods [1991], Pennebaker and

Mitchell [1993].

 34

2.3.10.1 Discrete Cosine Transform

The human visual system processes information with mechanisms that work in the

frequency domain. In the eye, for example, detectors are connected with inhibiting

connections so that object contours (spatial high frequencies) are enhanced during

perception. Even the human auditory system acts as a filter bank in which the cochlea

decomposes sounds into critical bands, each centered on a different frequency. Because

of these reasons several time–to–frequency transforms have been used for the

compression and the analysis of digital signals. A few of them are variations of the

Fourier transform, a powerful tool used in analytic calculus to decompose a function in a

weighted sum of periodic functions having different periods and phases.

The frequency transform most used in data compression is the Discrete Cosine

Transform or DCT. DCT has the advantage of achieving good decorrelation of the signal

while requiring modest computation.

The discrete cosine transform of 2kn = samples of a real signal (0), (1), , (1)s s s n −…

is given by the sequence of n real numbers (0), (1), , (1)C C C n −… given by:

1

0

() (2 1)() ()cos
2

n

i
j

i j iC s s j
n n

δ π−

=

+ =  
 

∑

The sequence of numbers (0), (1), , (1)C C C n −… can be used to compute the original

signal via the inverse DCT given by:

1

0

() (2 1)() () cos
2

n

j
j

j i js i C s
n n

δ π−

=

+ =  
 

∑

 35

In both equations, for any integer 0m ≥ :

1 if 0
()

2 if 0
m

m
m

δ
=

=  >

When the signal is multi–dimensional, as in image coding for example, the transform

is applied along each dimension, one dimension at a time. Similarly to the Fourier

transform, the DCT decomposes a signal into a weighted sum of cosine functions having

different frequencies. Figure 2.7 shows the 64 base functions in which the bi–dimensional

DCT used in the JPEG image coding standard decomposes each 8 8× block of pixels.

Figure 2.7: Bi–dimensional 8x8 DCT basis function.

 36

2.3.10.2 Burrows–Wheeler Transform

A slightly expanding transform was proposed by M. Burrows and D. Wheeler in [1994].

When used on text data, it achieves performance comparable to the best available

methods. It works by dividing the data stream in blocks and then encoding each block

independently. Competitive performance is achieved only for blocks that contain more

than 10.000 samples.

For each block of length n , a matrix M whose rows contain the n possible

“rotations” is constructed (see Figure 2.8.1 for the method applied to a small string). The

rows of this matrix are sorted in lexicographic order (see Figure 2.8.2). The transformed

sequence is composed of the last column of the matrix augmented by the position of the

index in the matrix of the original string. This information is sufficient to recover the

original sequence via an inversion algorithm also described in Burrows and Wheeler

[1994].

The rotations place in the last column the letter immediately before the letters in the first

columns (contexts).

 When the matrix is sorted, similar contexts are grouped together and this results in

letters that have the same context being grouped together in the last column. See for

example Figure 2.8.2, where in the transformed sequence, four “A” and two “B” are

grouped together. Compression is achieved by encoding the transformed sequence with a

move–to–front coding and then by applying run length and entropy coding.

 37

A B R A C A D A B R A
B R A C A D A B R A A
R A C A D A B R A A B
A C A D A B R A A B R
C A D A B R A A B R A
A D A B R A A B R A C
D A B R A A B R A C A
A B R A A B R A C A D
B R A A B R A C A D A
R A A B R A C A D A B
A A B R A C A D A B R

Figure 2.8.1: Matrix M containing the rotations of the input string “ABRACADABRA”.

A A B R A C A D A B R
A B R A A B R A C A D
A B R A C A D A B R A
A C A D A B R A A B R
A D A B R A A B R A C
B R A A B R A C A D A
B R A C A D A B R A A
C A D A B R A A B R A
D A B R A A B R A C A
R A A B R A C A D A B
R A C A D A B R A A B

Figure 2.8.2: The matrix ' sort_rows()M M= . Transformed output is given by the

position of the input string in 'M (third row) followed by the string “RDARCAAAABB”.

While the matrix M makes the description of this transform simpler and is universally

used in the literature, a practical implementation, including the one presented in the

original paper, will not explicitly build this matrix.

Burrows–Wheeler transform and derived block sorting transforms have been proved

to be equivalent to some dictionary method like PPM*, described in Moffat [1990]. A

detailed study and some possible improvements on this algorithm are presented in

Fenwick [1996]. Sadakane [1998, 1999] and Balkenol, Kurtz and Shtarkov [1999] also

propose improved algorithms. A study of the optimality of the BWT can be found in

Effros [1999].

 38

One of the main problems presented by this transform is its sensitivity to errors. When a

single error is present a whole block is corrupted and cannot be decoded properly. An

error resilient variant has been proposed in Butterman and Memon [2001].

2.3.10.3 Wavelets

Another decomposition scheme that adopts transform coding is based on wavelet

functions. The basic idea of this coding scheme is to use as a base for the new

representation functions that have the best compromise between time and frequency

localization (Fourier and Cosine transform are not of this type).

Wavelets process data at different scale or resolution by using filter–bank

decomposition. Filtering uses versions of the same prototype function (“mother wavelet”

or “wavelet basis”) at different scales of resolution. A contracted version of the basis

function is used for the analysis in the time domain, while a stretched one is used for the

frequency domain.

Localization (both in time and frequency) means that it is always possible to find a

particular scale at which a specific detail of the signal may be outlined. It also means that

wavelet analysis reduces drastically the amplitude of the input signal. This feature is

really appealing for image compression since it means that most of the data is almost zero

and then easily compressible. For further reading, see Vetterli and Kovacevic [1995].

The lossy image compression standard JPEG–2000 is based on wavelet

decomposition.

 39

Figure 2.9: Wavelet decomposition used for image coding.

2.3.10.4 Overcomplete Basis

One of the most important features of the transformations that we have described so far is

that they use a basis that is “minimal” or “complete’ in the sense that every signal has a

unique representation in that space. While this results in fast analytical methods to find

that representation, depending on the basis, the result may lead to a better or worse

compression. It is well known for example that step functions have an infinite

representation in a Fourier–like basis; conversely a sinusoid has an infinite representation

in a basis that uses Haar wavelets (that look like step functions).

 40

A technique that has recently received attention from many researchers is based on a

decomposition into overcomplete bases. The rationale for the use of overcomplete

dictionaries is that non–uniqueness gives the possibility of choosing among many

representations the one that is most compressible, for example, the representation with

the fewest significant coefficients.

Several new decomposition methods have been proposed, including Method of

Frames (MOF), Matching Pursuit (MP), Basis Pursuit (BP) and for special dictionaries,

the Best Orthogonal Basis (BOB).

Matching Pursuit is a greedy algorithm proposed in Mallat and Zhang [1993]; it

decomposes a signal into a linear expansion of waveforms that are selected from an

overcomplete dictionary of functions. These functions are chosen in order to best match

the signal structure.

Matching pursuit decomposes a signal ()f t by using basis functions ()g tγ from a

dictionary G . At each step of the decomposition, the index γ that maximizes the

absolute value of the inner product (), ()p f t g tγ= is chosen. The value p is the

expansion coefficient of the dictionary function ()g tγ . The residual signal

() () ()R t f t p g tγ= − ∗ can be further expanded until a given number of coefficients is

determined or until the error falls below a given threshold. After M stages, the signal is

approximated by
1

ˆ () ()
n

M

n
n

f t p g tγ
=

= ∗∑ . If the dictionary is at least complete, the

convergence (but not the speed) of ˆ ()f t to ()f t is guaranteed.

Matching pursuit was used with very good results as an alternative of DCT transform

in low bit rate video coding by R. Neff and A. Zakhor [1995, 1997].

 41

In video coding applications, for example, the dictionary is composed of several scaled,

translated and modulated Gabor functions and it is used to encode the motion

compensated residual. Every function in the dictionary is compared with each part of the

image maximizing the absolute value of the inner product. The best function is selected,

the residual determined and the result eventually further encoded with the same method.

The computation can be very intensive, so techniques have been proposed to speed up

the search. In Neff [1994] and in Neff and Zakhor [1995, 1997] a dictionary of separable

Gabor functions is used, and an algorithm for a fast inner product is proposed. A heuristic

to speed up the search can be also a preprocessing of the signal to match only the parts of

the signal than have high energy. Matching pursuit shows very good performance and,

with respect the DCT based codecs, has the advantage that it is not “block based”, so the

blocking artifacts although still present, are less evident.

Another method that decompose a signal into an overcomplete dictionary, Basis

Pursuit (Chen [1995], Chen, Donoho and Saunders [1994, 1996]), uses a convex

optimization closely related to linear programming. It finds a signal representation where

the superimposition of dictionary elements is optimal with respect the smallest 1L norm

of coefficients among all such decompositions. Formally BP involves the solution of the

linear programming problem:

1
min αG subject to fγ γγ

α ϕ∗ =∑

BP in highly overcomplete dictionaries leads to complex large–scale optimization

problems that can be attacked only because of the recent advances in linear programming.

For example, the decomposition of a signal of length 8192 into wavelet packet dictionary

requires the solution of an equivalent linear program of size 8192 by 212992.

 42

2.3.11 Fractal Coding

Fractal based algorithms have very good performance and high compression ratios (32 to

1 is not unusual); their use is however limited by the intensive computation required.

Fractal coding can be described as a “self Vector Quantization”, where a vector is

encoded by applying a simple transformation to one of the vectors previously encoded.

Transformations frequently used are combinations of scaling, reflections and rotations of

another vectors.

Unlike vector quantization, fractal compressors do not maintain an explicit dictionary

and the search can be long and computationally intensive. Conceptually, each encoded

vector must be transformed in all the possible ways and compared with the current one to

determine the best match. Due to the fact that the vectors are allowed to have different

size, there is very little “blocking” noise and the perceived quality of the compressed

signal is usually very good. For further reading, see the books of Barnsley and Hurd

[1993] or Fisher [1995].

2.4 Inter Band Decorrelation

It is common to have data that are oversampled by taking measures of the same event

from several reference points that are different in time, space or frequency. When this

happens, the data are said to be constituted by “channels”, each carrying information on a

coherent set of measures. A typical example is the stereophonic audio signal in which, in

order to reconstruct the spatial position of the sound source, two microphones placed in

 43

two different spatial locations record the sound produced by the source. Since the

channels measure the same event, a large amount of information is common to the two

sets of measures and efficient compression methods can be designed to exploit this

feature.

A higher number of channels (twelve) are present in an electro cardiogram signal

(ECG or EKG) where each channel records the heart’s electrical activity from a probe

placed in a specific body area (Womble et al. [1977]). As it is possible to see in the

Figure 2.10, the twelve measures of an ECG are quite different one from the other while

showing strikingly common patterns.

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

60 12
Time (sec.)

Figure 2.10: The twelve channels of an EKG signal.

 44

Another case of multi channel data is constituted by color images; in digital color images

the same scene is represented with three measures of luminosity taken in three frequency

domains or “bands” (see Limb, Rubinstein and Thompson [1977] and Chau et al. [1991]).

A generalization is the case of multi and hyper spectral images that combine in the

same picture a number of readings (sometimes as many as 224) taken in narrow and

regularly spaced frequency bands (Markas and Reif [1993]). In some extent, even the

video signal can be included in the category of multi–channel data in the sense that in a

video signal several pictures of the same scene are taken at uniformly spaced time

intervals.

In these cases, since all channels represent measures of the same event, it is

reasonable to expect correlation between these measures. A number of techniques have

been designed in order to exploit this correlation to achieve higher compression. We will

discuss some of these techniques in the next paragraphs.

2.4.1 Color Decorrelation

Pixels in a color digital image are usually represented by a combination of three primary

colors; red, green and blue as in an RGB scheme for example. This representation is

“hardware oriented” in the sense that computer monitors generate the color image by

combining these three primary colors.

Being that the three signals are luminosity measures of the same point, some

correlation between their values is expected, and alternative representations have been

designed in order to take advantage of this correlation.

 45

When the color image is lossily encoded and destined to be used by human users in non–

critical applications, it is possible to take advantage of the variable sensitivity to colors of

the human visual system (Pennebaker and Mitchell [1993]). This is a method widely used

in the color schemes that have been developed for commercial TV broadcasting.

The scheme that was used at first in the PAL analog video and subsequently adopted

in CCIR–601 standard for digital video is named b rYC C (or YUV); the transformation

between RGB and b rYC C is a linear transformation which uses the following equations

(Gonzalez and Woods [1992]):

0.299 0.587 0.114

b

r

Y R G B
C B Y
C R Y

= ∗ + ∗ + ∗
= −
= −

This color representation divides the signals into a luminosity component Y and two

chrominance components bC and rC , so by using the lower sensitivity of the human eye

to color changes it is possible to achieve some compression by representing more

coarsely the chromatic information. The PAL standard, for example, allocates a different

bandwidth to each component: 5MHz are allocated to Y and 1.3 MHz to U and

V components (U and V are a scaled and filtered version of bC and rC). This

representation also has the advantage of being backward compatible with black and white

pictures and video. Extracting a black and white picture from a b rYC C color image is

equivalent to decoding the Y component only.

 46

Similarly, in digital video the chrominance components bC and rC are frequently sub–

sampled at a lower resolution than Y by following one of these conventions (Bhaskaran

and Konstantinides [1995]):

• 4:4:4 Represents the original signal. Each pixel is encoded as three bytes: one for

the luminance and two for the chrominance;

• 4:2:2 Color components are horizontally sub–sampled by a factor of 2. Each pixel

can be represented by using two bytes;

• 4:1:1 Color components are horizontally sub–sampled by a factor of 4;

• 4:2:0 Color components sub–sampled in both the horizontal and vertical

dimension by a factor of 2 between pixels.

R0 R1

R2 R3

Cb

Cb

Cr

Cr

Cb

Cr

Cb

Cr

Cb

Cr

G0 G1

G2 G3

B0 B1

B2 B3

Y0 Y1

Y2 Y3

Y0 Y1

Y2 Y3

Y0 Y1

Y4 Y5

Y2 Y3

Y6 Y7

4:4:4 4:2:2 4:1:1 4:2:0
Figure 2.11: Color Subsampling Formats.

 47

2.4.2 Motion Compensation

A particular kind of inter–band prediction used in video compression to exploit temporal

redundancies between consecutive frames is called “motion compensated prediction”. It

assumes that two consecutive video frames represent the same scene in which some

objects have been displaced because of their relative motion. So, instead of predicting the

current frame from the previous encoded one as in a DPCM scheme, the frame is divided

in blocks and each block is individually matched with the closest block in the previous

frame. This process is called “motion compensation” because a block is thought to be a

displaced version of a corresponding block in the past frame. The offset between the two

blocks is sent to the decoder as a “motion vector” and the difference is performed

between a block and its displaced match.

The decoder, which stores the past frame in a memory buffer, inverts the process by

applying the motion vectors to the past blocks and recovers the reference blocks that must

be added to the prediction error. No motion estimation is necessary on the decoder side.

The Block Matching Algorithm (BMA) that is traditionally used to perform the

motion compensation is a forward predictor that finds for each block the displacement

vector minimizing the Mean Absolute Difference (MAD) between the current block and a

displaced block in the previously encoded frame. In literature, quality improvements are

observed in DCT based codecs that match blocks by using different error measures like

the Geometric Mean of the DCT coefficient variance (Fuldseth and Ramstad [1995]) or

the Spectral Flatness of the DCT coefficients (Fuldseth and Ramstad [1995]).

Block matching motion compensation is the most computationally intensive task in a

DCT based codec. It is estimated that more than 60% of the coding time is spent in

 48

performing the motion compensation. Several fast methods have been proposed to speed

up block based motion compensation. Some of them use logarithmic or hierarchical

search (Jain and Jain [1981]) or, as in Mandal et al. [1996], they use a multi–resolution

approach suited for codecs based on the wavelet transform. Speed improvements are also

obtained by limiting the range of the motion vectors. Experiments presented in Bhaskaran

and Konstantinides [1995] show that for head and shoulders sequences, limiting the

range of the motion vectors in a diamond shaped region causes only a very small quality

loss in H.261 encoded sequences. Figure 2.11 shows the regions and the SNR achieved in

a H.261 encoder for increasing bit rates; the optimal searching region is highlighted.

41.50

40.00

39.50

39.00

38.50

38.00

37.50

37.00

41.00

40.50

[-15,15] [-8,8] [-6,6] [-4,4] [-2,2] No MC

Best Operating Point

1.5 Mbits/s, 30 fps

384 Kbits/s, 15 fps

128 Kbits/s, 10 fps

64 Kbits/s, 7.5 fps

Search Region

SN
R

 (d
B)

Figure 2.12: Search regions and quality improvements for typical H.261 encoding.

 49

A completely different approach based on backward motion estimation is presented in

Armitano, Florencio and Schafer [1996] with the name of “Motion Transform” (MT).

Working solely on information available at both encoder and decoder, backward motion

estimation has the advantage that it does not require the transmission of the motion

vectors. The authors show that with this method it is possible to increase the PSNR

quality of the reconstructed video by 2–4dB. The biggest drawback of the motion

transform is that it lacks compatibility with the existing standards and that both encoder

and decoder have to compute motion estimation.

2.4.3 Multi and Hyperspectral Images

In the last two decades, a technology consisting of the remote acquisition of high

definition images has been successfully used both in military and civilian applications to

recognize objects and classify materials on the earth’s surface. High definition images

can be acquired via a space borne platform or an air borne platform, transmitted to a base

station and elaborated.

If we want to use an image to recognize objects, very high resolution is necessary.

For example to recognize, let’s say a corn field, a picture that shows details of the corn

leaves is necessary. Such a picture would require the acquisition and elaboration of an

enormous amount of data. The approach followed by multispectral and hyperspectral

photography overcomes this problem by considering relatively large areas to be covered

by a single pixel (typically of the order of ten square meters), but instead of decomposing

the reflected light into three colors, it uses a wider spectrum ranging from infrared to

ultraviolet and a band decomposition counting tens to hundreds of very narrow bands.

 50

Since every material reflects sun light in its own peculiar way, the analysis of the

spectrum of its reflected light can be used to uniquely recognize it. When a more

sophisticated analysis is required, an increment in the spectrum resolution is technically

feasible since it only increases data by a linear amount.

In practice such measures are affected by a number of different errors that complicate

the interpretation of the image and the classification of a spectrum. For example, several

materials can be present in the area covered by a single pixel, so in general, a single pixel

will consist in a mixture (linear or non–linear) of several spectra. Clouds, shades, time of

the day, season and many other factors affect the reading by changing the properties of

the sunlight. Nevertheless, hyperspectral imagery has been used in the past with great

success and shows incredible promise of future applications.

Typical algorithms used on hyperspectral images consist of dimensionality reduction,

spectral unmixing, change detection, target detection and recognition. Since hyperspectral

images are acquired at great cost and destined to applications that are not necessarily

known at the time of the acquisition, particular care must be taken in order to assure that

relevant data are not lost during lossy compression and ad-hoc quality measures must be

used to insure a meaningful preservation of the quality.

 51

2.5 Quality Assessment

One of the main problems in lossy compression consists in the assessment of the quality

the compressed signal. Two main approaches can be taken to solve this problem, one

involving objective measures and the other relying on subjective assessments. The two

methodologies are not mutually exclusive and frequently are both used at different stages

of the compressor design. Quality of data that are destined to be used by human users,

like music, video or pictures can be assessed with subjective tests. First a reference

quality scale is chosen, like for example the Mean Opinion Score used in the evaluation

of digital speech, then a number of experts are asked to judge the quality of the

compressed data. While subjective methods are very reliable and, when applicable,

provide the best possible evaluation, the difficulty of conducting subjective tests and the

need for “automatic” assessment has led to a great interest in sophisticate objective

metrics that mimic closely the response of the human perceptual system.

Simpler objective measures have the advantage of being mathematically tractable and,

with their help novel compression algorithms can be easily evaluated and their

performance studied in great detail.

Objective distortion metrics are also used in “closed loop” encoders to control in real

time the quality of the compression and dynamically control the parameters of the

algorithm.

 52

If we indicate an N -samples signal with 0 () fss t s≤ ≤ , with 2
sσ its average variance

and with ˆ()s t the lossily compressed signal obtained after compression and

decompression, the most common distortion measures take the following forms:

Mean Absolute Error (MAE) or 1L :

1 ˆ() ()
t

MAE s t s t
N

= −∑

Mean Squared Error (MSE) or 2
2L :

[]21 ˆ() ()
t

MSE s t s t
N

= −∑

Root MSE (RMSE) or 2L :
RMSE MSE=

Signal to Noise Ratio (SNR):
2

() 1010 log s
dBSNR

MSE
σ

= ∗

Peak SNR (PSNR):
2

() 1010 log fs
dB

s
SNR

MSE
= ∗

Peak error or Maximum Absolute Distortion (MAD) or L∞ :

{ }() ˆmax () ()tMAD s t s t= −

Percentage Maximum Absolute Distortion (PMAD):

()

ˆ() ()
max 100

()t

s t s t
PMAD

s t
 −  = ∗ 
  

Most measures are derived from the Mean Squared Error because MSE has a simple

mathematical expression, is derivable and gives a good measure of random errors. MSE

and Signal to Noise Ratio capture an average behavior and very little can be said on the

 53

error that affects single samples. Because of these characteristics, MSE derived metrics

are more useful in the evaluation of high bit rate signals.

The Mean Absolute Error and the derived PMAD are mainly used when the encoding

must guarantee an error always smaller that a given threshold. Systems in this category

are frequently called “near lossless” and their main application is the compression of

scientific and medical data.

While these measures are widely used, it can easily be shown that they have little to

do with how the distortions are perceived by humans The reason of this poor correlation

between SNR and measures obtained via subjective observations is mostly due to the fact

that, unlike the human perceptual system, these measures are not sensitive to structured

or correlated errors. Structured errors, frequently present in encoded data are known to

degrade local features and perceived quality much more than random errors do. The

human perceptual system is more sensitive to structured patterns than to random noise

and more sophisticate methods have to be used to assess carefully the quality of

compressed digital audio, pictures and video. Some perceptually motivated methods that

are used to assess digital images and video will be discussed in the next sections.

2.5.1 Digital Images

In some applications the quality of the encoded picture is not very important, for

example, in off–line editing it can be necessary only to recognize the pictures to be able

to make cutting decisions. In others, especially in distribution and post–production,

quality is crucial and carefully supervised.

 54

The coding errors that are introduced by state of the art encoders are mostly

structured, and they are not easily modeled in terms of SNR or MSE. In particular at very

low bit rates, most coding schemes show visible artifacts that can impoverish the

perceived quality. Several artifacts commonly observed in low bit rate image

compression are:

• Blocking: Occurs in techniques that involve partitioning of the image into blocks

of the same size. It appears to be the major visual defect of coded images.

Blocking is caused by the coarse quantization of the low frequency components in

an area where the light intensity changes gradually. The high frequencies

introduced by the quantization error enhance block boundaries. Blocking artifacts

are commonly encountered in DCT–based, VQ and fractal–based compression

algorithms.

• Overall Smoothness or Blurring: Is a very common artifact present in the

conventional TV standards (NTSC, PAL or SECAM). It occurs also for digital

coding techniques at low bit rate and appears in different forms such as the edge

smoothness due to the loss of high frequency components, texture and color blur

due to loss of resolution. Although segmentation–based coding techniques claim

to preserve the major edge components in the image, they often smooth out

smaller edge components.

• Ringing Effect or Mosquito: The ringing effect is another common visual

distortion that is observable as periodic pseudo–edges around the original edges in

a DCT–compressed, sub–band or wavelet compressed image. It is also visible in

the textured region of compressed images where it appears as a distorted texture

 55

pattern. Ringing is caused by the improper truncation of high frequency

components. This artifact is also known as Gibbs effect.

• Texture Deviation: A distortion called texture deviation, is caused by loss of

fidelity in mid–frequency components, and appears as a granular noise or as the

“dirty window” effect. The human eye is less sensitive to texture deviation in

textured areas with transform–based coding, but texture deviation is often present

as an over smoothing of texture patterns, that turns out to be visually annoying.

• Geometrical Deformation: In model–based coding, objects in an image (a

human face, for example) are compressed by using a geometric model. This

compression approach, suitable for very low bit rate coding, may show

geometrical deformations, namely the synthesis procedure may change shape and

position of some crucial features and lead to perceptual inconsistency.

All these artifacts are also commonly encountered in video encoding. Many algorithms

were proposed to decrease the effects of these coding artifacts in transform–based codecs.

Most of them involve out–of–the–loop pre or post filtering (see for example Lai, Li and

Kuo [1995, 1996], Joung, Chong and Kim [1996] and Jacquin, Okada and Crouch

[1997]). The main advantage of this class of techniques is that, since they introduce only

a pre or post filtering of the signal, full compatibility with coding standards is preserved.

Their main drawback is that filtering is likely to produce unnecessary blurring of the

image.

More sophisticated techniques to reduce compression artifacts involve in–loop

perceptive measures to drive the bit allocation in standard algorithms. One of these

 56

methods is the Picture Quality Scale (or PQS), proposed by Miyahara, Kotani and Algazi

[1996] as an objective metric for still, achromatic pictures. PQS transforms the coding

error in five perceptually relevant signals 1 5,...,F F also called Distortion Factors and

combines them in a single numeric value by using a regression method. This value,

representative of the quality of the given image, is a very good approximation of the

Mean Opinion Score (MOS), a subjective scale widely used for the evaluation of the

image quality.

The factors considered in PQS are:

• Distortion Factor 1F : is the frequency weighted error defined by the CCIR 567

standard;

• Distortion Factor 2F : is an error obtained with a different frequency weighting

and includes a correction that takes in account Weber's law (see Carterette and

Friedman [1975]);

• Distortion Factor 3F : measures the horizontal and vertical block discontinuities

that are evident in most image coders;

• Distortion Factor 4F : measures errors that are spatially correlated. This factor

captures textured errors that are well–known to be easily perceived;

• Distortion Factor 5F : measures error in the vicinity of high contrast image

transitions because errors are more evident when located in high contrast zones.

Error indicators contribute to more than one factor, so it is necessary to use a principal

component analysis to decorrelate the distortion factors before composing them into a

single value that is representative of the global image quality.

 57

Power
 Law

Power
 Law

Edge Detection

Sa

WT V

 Summation
 and
Normalization

 Principal
Component
 Analysis PQS

Value

F1

F2

F3

F4

F5

f1(m,n)

f2(m,n)

f3(m,n)

f4(m,n)

f5(m,n)

MRA
Weights

+

Z1

Z2

Zj

b1

b2

bj

Factor 1

Factor 5

Factors
 2-4

+-

-+

Original

Encoded

ew(m,n)

.
.

.
.

.

Figure 2.13: PQS.

Figure 2.13 shows the system proposed in Miyahara et al. [1996]. PQS has been also by

Lu, Algazi and Estes [1996] to compare wavelet image coders and to improve the quality

of a high quality image codec. The main drawback of this system is due to the fact that it

is formulated for still achromatic pictures (so it is of little use in color imaging) and that

the distortion factors are determined from the whole image, so they do not represent local

distortions.

2.5.2 Video

The lack of perceptually motivated distortion measures is particularly relevant in video

coding, where a strong variability of the performance is usually observed. Large moving

objects, complex scenes and fast scene changing are all cause of extreme variability and

it is a well–known fact that no compression technique works well for all scene types

(Pearson [1997]).

 58

For example, it is well known that line interlacing, one of the earliest compression

methods, produces patterns on certain types of moving object. Color compression

schemes such YIQ and YUV used in NTSC or PAL exhibit severe cross–color effects in

high spatial–frequency areas. Block–based transform coding, as discussed earlier, has

been known to have difficulty with diagonal lines traversing a block. Fractal coding may

work spectacularly well with certain types of iterated structure but not so well with

others. Model–based coding does not work very well if new objects keep entering the

scene, etcetera. Code switching was proposed as a solution to the problem of variability

in video coding, nevertheless, a good criterion to drive the switch is still required.

The perception of a video sequence is a complex phenomenon that involves spatial

and temporal aspects. Besides all the static characteristics of the visual system (edge and

pattern sensitivity, masking, etc.), studies of viewer reaction to variable–quality video

have identified the end–section of the video sequence and the depth of the negative peaks

as being particularly influential in the evaluation of the quality (Pearson [1997]).

Van den Branden Lambrecht [1996] has proposed a metric specifically designed for

the assessment of video coding quality. This quality measure named Moving Pictures

Quality Metric (or MPQM) is based on a multi–channel model of the human spatio–

temporal vision and it has been parametrized for video coding applications. MPQM

decomposes the input signal in five frequency bands, three spatial directions and two

temporal bands. MPQM also takes in account perceptive phenomena as spatial and

temporal masking.

A block diagram for the proposed system is depicted in Figure 2.14; the input

sequence is coarsely segmented into uniform areas by looking at the variance of the

 59

elementary blocks. Both original and reconstructed video sequences are transformed by

using a perceptual decomposition. The signal is decomposed by a filter–bank in

perceptual components grouped in 5 frequency bands, 3 spatial directions and 2 temporal

bands. Contrast sensitivity and masking are calculated and the results are used to weight

the transformed decoded sequence.

X

 Original
Sequence

 Decoded
Sequence

 Perceptual
Decomposition

Masking

Pooling

Segmentation

 Perceptual
Components

Weights Masks

Metrics

 Perceptual
Decomposition

 Perceptual
Components

-+

Figure 2.14: MPQS.

Another method, mainly proposed for automatic assessment of video coding algorithms,

is Motion Picture Quality Scale or MPQS (van den Branden Lambrecht and Verscheure

[1996]). MPQS performs a simple segmentation on the original sequence, by dividing the

frames into uniform areas. By using the segmentation, the masked data are pooled

together to achieve a higher level of perception. A multi–measurement scheme is

proposed as output of the pooling and a global measure of the quality, and some detailed

metrics are computed. Measures evaluate quality of three basic components of images:

uniform areas, contours and textures.

MPQS was used with some modification in Verscheure and Garcia Adanez [1996] to

study the sensitivity to data loss on MPEG–2 coded video streams transmitted over an

ATM network and in Verscheure et al. [1996] to define a perceptual bit allocation

strategy for MPEG–2.

 60

DATA COMPRESSION STANDARDS

3.1 Audio

3.1.1 Pulse Code Modulation

Pulse Code Modulation (PCM) is the simplest form of waveform coding since it

compresses an analog signal by applying only sampling and quantization. It is widely

used both in high quality audio encoding and in speech coding. A popular PCM format is

the Compact Disc standard, where each channel of a stereophonic audio signal is sampled

at 44.1 KHz per channel, 16 bit per sample.

3.1.2 MPEG Audio

One of the tasks of the Movie Picture Expert standardization Group (MPEG) was the

definition of an audio coding standard suitable for perceptually “transparent” audio

compression at bit rates comprised between 128 Kb/s and 384 Kb/s. When the input is a

PCM stereo audio signal, sampled at 44.1 KHz, 16–b/sample (audio CD) this results in a

compression factor ranging between 4 and 12.

 61

Three layers of increasing delay, complexity and performance were defined in the

MPEG–1 audio coding standard: Layers I, II and III. Since each layer extends the

features of its predecessor, the layer organization retains backward compatibility. A

decoder that is fully compliant with the most complex Layer III, for example, must be

able to decode bitstreams created by Layer I and II encoders. However, in practice when

power consumption and cost efficiency are critical constraints, decoders compatible with

a single layer only are not uncommon. A good description of Layers I and II can be found

in Sayood [1996] and a more general discussion on the standard and the standardization

process is in Noll [1997].

MPEG–1 Layer III (also known with the nickname of MP3) provides the highest

compression and has recently increased its popularity due to the availability of

inexpensive hardware players supporting this file format. The computing power of

current microprocessors also makes feasible MP3 software–only encoders and decoders,

making this format the most popular choice for the exchange of audio files over the

Internet.

Layer III is a hybrid subband and transform coding; it uses a perceptually justified bit

allocation which exploits phenomena like frequency and temporal masking to achieve

high compression without compromising the final quality.

PCM inputs sampled at rates of 32, 44.1 and 48 KHz are supported both in mono and

stereo modes. Input bit rates match the common CD and DAT digital formats. Four

encoding modes are available: mono, stereo, dual and joint stereo, where the dual mode is

used to encode two channels that are not correlated, like for example a bilingual audio

track. More interesting is the joint stereo mode in which a modality called “intensity

 62

stereo coding” is used to exploit channel dependence. It is known that above 2 KHz and

within each critical band, the perception of a stereo image is mostly based on the signal

envelope and it is not influenced by the details of the temporal structure. This

phenomenon is used to reduce the bit rate by encoding subbands above 2KHz with a

signal L+R that is the composition of the left and right channels and a scale factor that

quantifies the channels’ relative intensities. The decoder reconstructs left and right

channels by multiplying the composite L+R signal by the appropriate scale factor. While

this results in two signals that have same spectral characterization, their different

intensity is sufficient to retain a stereoscopic image.

Other psychoacoustic phenomena are exploited within MPEG–1 audio standard. In

particular auditory masking is used to determine a perceptually transparent bit allocation

for each critical band and temporal masking is used to reduce pre–echoes introduced by

coarse quantization while in the presence of a sudden music attack. Since the input is

divided into frames and each frame is encoded independently, a frame that contains a

period of silence followed by a sudden attack (drums, for example) presents a peculiar

problem. After the frame is transformed in the frequency domain and its representation

quantized, the inverse transform spreads the quantization error uniformly in the time

domain and the period of silence preceding the attack may get corrupted by this noise.

When this condition is detected it is useful to reduce the size of the frame. This is not

sufficient to prevent errors, but if the frame is small enough, the noise introduced before

the attack is likely to be masked by it and the listener will not be able to perceive any

quality degradation.

 63

While Layers I and II are very similar (see Figure 3.1) and decompose input by using a

filter bank, the more complex Layer III combines a filter bank with a cascaded Modified

Discrete Cosine Transform (see Figure 3.2). In both cases, signal decomposition is

followed by a perceptual bit allocation and the frequency domain representation of the

input frame is quantized, each critical band having a different resolution. Bit allocation

starts with a bit pool that depends on the target bit rate and distributes the bits to the

single bands while trying to achieve a transparent quantization. Auditory masking is used

to determine if a signal present in a critical band masks (raises the auditory threshold of)

an adjacent band. When this happens, fewer bits are dedicated to the coding of the

masked signals and more bits are allocated to the masker, since this is likely not to result

in any audible error.

Analysis
Filterbank

Synthesis
Filterbank

 Masking
Thresholds

Signal-to-Mask
 Ratios

Scale/Factor
 Information

Mux

Demux

 Dynamic Bit
Allocation and
 Coder

Scaler and
Quantizer

FFT

Inverse Quantizer
 and Descaler

Dynamic Bit
 Decoder

 Digital
Channel

PCM
Input

PCM
Output

Figure 3.1: MPEG–1 Layers I and II.

 64

Analysis
Filterbank

 Masking
Thresholds

Mux

Demux

 Coding
 of Side
Information

Scaler and
Quantizer

FFT

 Inverse
Quantizer

and Descaler

 Digital
Channel

PCM
Input

PCM
Output

Huffman
 Coding

Synthesis
Filterbank

Huffman
Decoding

MDCT
with Dynamic
 Windowing

Inverse MDCT
 with Dynamic
 Windowing

 Decoding
 of Side
 Information

Rate and Distortion Control Loop

Figure 3.2: MPEG–1 Layer III.

Another feature of Layer III is the use of entropy coding based on static Huffman codes.

Perceptual coding makes MPEG–1 audio highly asymmetrical and the encoder is

generally more complex than the decoder. Like in other standards, standardization only

addresses the bitstream format and, for example, it does not cover any particular strategy

to perform this perceptual coding. This is done in order to leave room for encoder

improvements and it also allows the realization of very simple encoders that may not use

any psychoacoustic model at all.

MPEG–2 audio enhances MPEG–1 by adding a number of features that make the new

standard more flexible. Input sampling frequencies are extended to cover medium band

applications with 16, 22.05 and 24 KHz.

To support stereo surround, the number of channel is extended from a maximum of

two to a maximum of five high–quality, full–range channels (Left, Center, Right,

Surround Left and Surround Right) plus the possibility of connecting an additional

subwoofer in a configuration called 5.1. When used in this configuration, some backward

compatibility with MPEG–1 is retained (see Figure 3.3).

 65

Matrix

MPEG-1
Encoder

MPEG-2
Extension
 Encoder

M
ux

L

C

R

LS

RS

T1=L0

T2=R0

T3

T4
T5

MPEG-2
AAC

Encoder

L

C

R

LS

RS

T3

T4

T5

T2

T1

M
ux

(A) (B)
Figure 3.3: MPEG–2 backward compatible configuration (A) vs. AAC (B).

An advanced mode that is not backward compatible was also defined by the standard.

This mode, called Advanced Audio Coding or AAC, defines a number of tools arranged

in three different profiles, defined to cover typical applications with different quality

requirements and coding complexity. Tools include high-resolution filter banks,

preprocessing, prediction, and of course, perceptual coding. AAC is intended for both

consumer and professional applications and supports up to 46 channels while having as a

default, the mono/stereo mode and the 5.1 configuration described before.

3.2 Speech

3.2.1 A–law and µ–law

When PCM is used to encode the narrowband speech signal, a sampling frequency of 8

KHz is sufficient to achieve an intelligible reconstruction of the original. With a linear

quantizer, samples are individually represented with a precision of 12 bit and the

resulting bit rate is 96 Kbit/s. It has been found that a non–linear quantization at 8 bit per

 66

sample is able to encode speech signals with a quality that is almost indistinguishable

from a signal linearly quantized at 12 bit per sample.

The non–linear quantizers used in practice are, in general, logarithmic; this class of

quantizers is justified by two reasons:

• The response of the human hear is not proportional to the intensity of the stimulus

and low intensity signals are discriminated with higher accuracy;

• Speech samples are distributed according to a Gaussian distribution and choosing

a logarithmic step minimizes the average quantization error.

In the 1960s, two non–linear PCM codecs with a bit rate of 64 Kbit/s were standardized:

µ –law in the United Stated and A–law in Europe. Because of their simplicity, excellent

quality and very low delay, both methods are still widely used today in telephony.

If x is the value of a sample and xmax is the maximum value that a sample can

assume, the value of x quantized with the µ –law is given by:

 ˆ x = xmax

log e 1+
µ ⋅ x
xmax



 


 

log e 1+ µ()

where µ = 255 in the American and Japanese PCM standards.

Similarly, the sampled value for x when using the A–law is given by:

ˆ x =

A ⋅ x
xmax

1 + loge A
; if 0 ≤

x
xmax

≤
1
A

1 + loge
A ⋅ x
x max











1+ log e A
; if 1

A
≤

x
x max

≤ 1















where A = 87.56 for the European PCM standard.

 67

Normalized Input1 100
No

rm
al

ize
d

O
ut

pu
t A=87.56

A=2

A=1

µ=255

µ=5

µ=0

1 1

No
rm

al
ize

d
O

ut
pu

t

Normalized Input
Figure 3.4: µ –law vs. A–law for different µ and A parameters.

3.2.2 Differential PCM

In most signals, temporally adjacent samples are frequently correlated. Differential PCM

exploits this feature and achieves some compression by representing a signal as a

succession of differences ∆(n) = x (n)− ˜ x (n) between ˜ x (n) , a causal prediction of the

current sample, and x(n) , the actual sample value. If the prediction is accurate, then the

difference signal has lower variance than the original samples, and it will be accurately

quantized with fewer bits. The decoder reconstructs the signal by adding the quantized

differences to the predicted values (see Jayant and Noll [1984]).

The best predictor is defined to be the one that minimizes the mean square error, so

the best prediction for x(n) is equal to the conditional expectation of x(n) :

E X (n) | X (n −1),X (n − 2),...[].

This predictor is not practical because:

• The conditional probability distribution necessary to evaluate E will not in

general be available;

 68

• To maintain decoder synchronization without sending any side information, it is

necessary to base the prediction on the quantized values ˆ x (n − i) instead of the

original samples x(n − i) that are available only to the encoder.

Linear
Predictor

Linear
Predictor

Quantizer
x(n)

+

+
+

- ++
x(n)-x(n)~

x(n)~ x(n)+∆(n)~ ^

y(n)=x(n)+∆(n)~ ^∆(n)^ ∆(n)^

x(n)~

Figure 3.5: Closed–Loop DPCM.

These considerations lead to the definition of the “closed–loop” DPCM encoder depicted

in Figure 3.5, where the linear predictor of N –th order has the form:

 ˜ x (n) = hi ⋅ ˆ x (n − i)
i=1

N

∑

In the previous equation hi ,1 ≤ i ≤ N are the coefficients of the predictor. The basic

equations describing a DPCM are (see Figure 3.5):

∆(n) = x(n) − ˜ x (n)
ˆ ∆ (n) = ∆(n)− q(n)
y(n) = ˜ x (n) + ˆ ∆ (n)

where x(n) is the input, ∆(n) is the prediction error, q(n) is the error introduced by the

quantization, ˆ ∆ (n) is the quantized prediction error and y(n) is the decoder output.

In its simplest form, DPCM assumes that the current sample is equal to the sample

that has been previously encoded and quantized: ˜ x (n) = ˆ x (n −1) . This assumption is

 69

equivalent to setting ∆(n) = x (n)− ˆ x (n −1) with h1 = 1 and hi = 0 for every i > 1. In this

case the decoder acts as an “integrator”.

3.2.3 LPC–10 (Linear Predictive Coding of 10th order)

Linear Prediction is one of the most powerful and historically one of the most important

speech analysis techniques. The best low bit–rate speech codecs are based on linear

prediction. Before introducing the standard LPC–10, it is appropriate to review some of

the concepts underlying linear predictive coding. More details on this method can be

found in Rabiner and Schafer [1978], Makhoul [1975] and Gersho [1994].

The idea behind linear prediction is the approximation of a speech sample with a

linear combination of a number of past samples. Using this approach, the n –th sample sn

can be predicted as a weighted sum of p previous samples (linear prediction of order p):

 ˜ s n = ak ⋅ sn −k
k=1

p

∑

where a1 ,a2,...,a p are the prediction coefficients, optimized in order to reduce the error

variance. The prediction error is expressed by:

 en = sn − ˜ s n = sn − ak ⋅sn−k
k=1

p

∑

This equation represents the output of a system whose transfer function is:

 A(z) = 1− ak ⋅ z−k

k=1

p

∑

 70

This filter is frequently called “whitening” filter because it transforms the signal into

“white noise” by removing the correlation between samples (see Figure 3.6). Its inverse

H(z) , necessary to the decoder to “reshape” the residual error, is given by:

 H(z) =
1

A(z)
=

1

1 − ak ⋅ z−k

k=1

p

∑

The basic problem of linear prediction is the determination of the coefficients a1 ,a2,...,a p

directly from the samples in such a manner as to obtain a good estimate of the spectral

properties of the signal.

S(z) A(z) E(z) 1/A(z) S(z)

A(z) 1/A(z)

Inverse Filter LPC FilterResidual Signal
sn en sn

Figure 3.6: Linear Prediction effects in the frequency domain.

Several methods have been proposed for the efficient and accurate determination of the

LP coefficients. The best algorithms are based on the solution of a linear system of

equations that is obtained by taking the derivative of the error with respect to the

prediction coefficients. Because of the special form that this matrix assumes on a speech

signal, it is possible to solve the system of linear equation by using the Levinson and

Durbin recursive algorithm (Rabiner and Schafer [1978]). Levinson and Durbin recursion

 71

has several interesting properties, including a low computational complexity since it

requires only Ο(p2) operations instead of Ο(p3) operations required by other methods.

The reason linear prediction works so well in removing the correlation existing

between speech samples is that there is a close relation between the predictor coefficients

a1 ,a2,...,a p and a physical model of the human vocal tract.

Voice is produced by forcing a flow of air from the lungs into the vocal tract. During

the production of voiced sounds, air is forced through the vocal folds that vibrate at a

frequency comprised between 50 to 500 times per second. Voiceless sounds are produced

by the airflow being forced into some obstacle in the mouth, or exiting with a sudden

burst.

In both cases, it is the position of the vocal tract during the production of the sound

that controls the characteristics of the sound. The vocal tract acts as a resonator by

shaping an “excitation” signal while changing its position in time.

Glottis Lips

∆x
A5(t)

A1(t)
A10(t)

Figure 3.7: Vocal tract – Speech production model.

If we model the vocal tract as a concatenation of lossless tubes that have same length but

different diameters (see Figure 3.7), and assume that in a short time interval the tract

 72

doesn't change its shape, it is possible, starting from the speech signal, to find the

parameters of this model by using linear prediction (see Rabiner and Schafer [1978]).

In practice, linear prediction, when applied to a speech signal, provides both a good

spectral estimation of the input as well as the basis for a rudimental model–based coding.

Several low bit rate speech encoders rely on this model and implement a simplified

model–based encoding in which parameters of a physical representation of the source

model are estimated and transmitted to the decoder.

White Noise
 Generator

 Pulse
Generator

Vocal Tract
 Filter

Speech
Voiced/Unvoiced
 Switch

Figure 3.8: Hybrid codebook single–pulse excited voice synthesis.

LPC–10, which in the 1982 became a U.S. federal government standard (FS–1015) for

low bit rate speech coding, is an example of a compression method that uses linear

prediction. LPC–10 can compress speech down to 2400 bit/sec in real time by using only

very modest hardware requirements. Low bit rate speech coding is important in a number

of applications where it is necessary to preserve speaker identification even when highly

noisy transmission channels are used.

 73

To achieve its compression, LPC–10 assumes that, in a sufficiently short period of time

(22.5 ms.), the speech signal can be viewed as a stationary waveform, therefore, the input

speech is divided into segments having a duration of 22.5 ms. and linear prediction of

10 –th order is used to characterize the spectral properties of the speech segment. Since

LPC–10 uses a model similar to the one represented in Figure 3.8, three other

characteristics of the speech segment must be estimated and sent to the decoder: pitch

period, gain and voicing decision.

The 22.5 ms. segment is individually analyzed and converted into 54 bits of

information that describe the coefficients of the LP filter (41 bits), the pitch and the

voicing decision (7 bits), and the gain of the segment (5 bits). The remaining extra bit is

used for synchronization.

LPC–10 assumes that the input is an analog signal, so before digitizing it, the input is

filtered with a band–pass filter with cutoff frequencies of 100Hz and 3600Hz. Frequency

components lower than 100Hz are removed because they are primarily 60Hz humming

noise and little speech related information is found in that range. The upper cutoff

frequency ensures that there is no aliasing during the A/D conversion. The A/D output

goes to two separate places, a pre–emphasis filter and a pitch analysis buffer.

The pre–emphasis filter is a first order Finite Impulse Response (FIR) filter that has a

frequency response: H (z) = 1− 0.9375 ⋅ z−1 . Pre–emphasis boosts high frequencies and

lowers to 4 bit the precision necessary to achieve a stable reconstruction filter.

Gain and LP coefficients are calculated at the same time. The algorithm uses the

covariance method to estimate LP parameters, so the resulting system of equations is

solved with Cholesky decomposition. To extract pitch information, the signal from the

 74

A/D is low–pass filtered with a 4th order Butterworth filter having a cutoff frequency of

800Hz. The output from this filter then goes to a second order inverse filter and then is

fed into a voicing detector. The second order inverse filter helps the pitch extractor.

The voicing detector estimates if the current segment is voiced, unvoiced or a

transition by counting the number of zero crossings and analyzing energy and amplitude

of the signal. Unvoiced frames have more zero transitions than voiced frames because of

high frequency components. Furthermore voiced frames have much higher amplitudes

than unvoiced frames.

The pitch extractor is based upon an average magnitude difference function:

ADMF(τ) = sn − sn+τ
n =1

130

∑

In voiced frames AMDF has a clear global minimum at the pitch period of the frame; no

such minimum is present in unvoiced speech frames. The period τ in the formula is

changed to test 60 possible pitch values, ranging from 50 to 400 Hz.

Once the LP coefficients have been calculated and pitch, gain and voicing decisions

have been identified, results are organized into a particular sequence that depends on the

voicing type. Synthesis reconstructs the signal by reversing the process.

While in a LPC–10 codec, the general quality of the reconstructed signal is quite

good (for such a low bit rate), frequently the voice sounds buzzy and unnatural and some

jitter may be present. Voicing errors produce significant distortion and binary voicing

decision is sometimes poor. Also, due to the model based coding, LPC–10 only models

single–speaker speech, so background noise, multiple voices and music may produce

unpredictable results.

 75

3.2.4 Codebook Excited Linear Prediction (CELP)

In 1991 the American Department of Defense (DoD) standardized DoD CELP, a

4.8Kbit/s codec as Federal Standard 1016. DoD CELP is a hybrid codec that uses linear

prediction and vector quantization in an analysis–by–synthesis loop. Voicing decision is

implicit and handled with a pitch filter. A CELP encoder divides input speech into frames

that have duration of 30 ms. For each frame a pitch period M is determined and the

signal is passed through the pitch filter to remove this periodicity.

The residual signal is further divided into four sub–frames of 7.5 ms. each. For each

sub–frame the encoder calculates a set of 8 filter coefficients for a short–term synthesis

filter that models the vocal tract of the speaker (Figure 3.7). A gain is also computed to

normalize the residual energy. CELP’s most interesting feature is that the excitation for

the cascade of filters is determined by using an analysis–by–synthesis loop that tries each

vector in a codebook of 1024 pseudo random Gaussian vectors. These vectors are

individually fed into the filters and their output is compared to the original signal by

using a perceptive quality measure. The encoder then transmits to the decoder:

• Index of the best codeword;

• Gain;

• Vocal tract filter coefficients (every 7.5ms.);

• Pitch predictor coefficients (every 30 ms.).

The quality of the reconstructed speech is very good but real time encoding requires more

than 300 MFLOPS, so to run in real time, a dedicated DSP is necessary. At the present,

CELP is one of the most effective methods to obtain high quality speech at low bit rates.

 76

Mzβ −
1

p k
kk

a z−
=∑

+ ++ + -+ W(f)

S(n)

Gi

Ci(n)
i

Si(n)^

Figure 3.9: CELP decoder.

Many systems, like for example the cellular standard Global System for Mobile

communications (GSM), use simplified versions of CELP. GSM is basically a CELP–like

algorithm that encodes the residual directly, in order to avoid the expensive codebook

search. With this simplification, a GSM codec provides good quality speech at a rate of

13 Kbit/s (3 times bigger than CELP) while running in real time on small processors. A

good description of the GSM algorithm is given in Sayood [1996];

3.3 Image

3.3.1 JPEG

The Joint Photographic Expert Group (JPEG) developed and issued in 1990, a widely

used standard for color image compression. The standard was mainly targeted for

compressing natural gray level and color images. JPEG is a two–step transform–coding

algorithm: the first step is lossy and involves a DCT transformation followed by

quantization. This part is used to remove information that is perceptively irrelevant for a

 77

human user. The second step involves lossless entropy encoding to eliminate statistical

redundancies that could still be present in the transformed representation.

JPEG assumes a color image divided into color planes and compresses each color

plane independently. Color planes are represented in terms of luminosity (or Y

component) and two chrominance components Cb and Cr . As explained in precedence,

the YCbCr color representation takes advantage of the fact that the human visual system is

more sensitive to luminosity than to color changes. Following a color scheme named

“4:2:2”, each chrominance is sub sampled 2:1 both in the horizontal and vertical

dimension and 2:1 compression is obtained even before applying JPEG by halving the

resolution of the chrominance components.

Each color plane is further divided into blocks of 8x8 pixels. This size block was

determined to be best compromise between the computational effort necessary to

compute the Discrete Cosine Transform and the compression achieved (Pennebaker and

Mitchell [1993]). Each block is transformed into the frequency domain by using the

DCT; then the DCT coefficients are quantized with 64 different scalar quantizers, one for

each frequency. Only the lowest frequency component (DC component) has a slightly

different treatment from the other coefficients. The DC component of the previous block

is subtracted and the difference is the value being quantized. Quantization steps are stored

in a “quantization table” with 64 default values. Performance can be improved by

computing the table on an image–by–image basis (see for example Daly [1992] and

Ratnakar and Livny [1995, 1996]).

 78

The default table quantizes low frequencies more accurately than high frequencies

because, according to experiments made with the human visual system, the low

frequency components are better perceived.

Quantization results in an 8x8 matrix of small integers, several of them being zeros.

By using a zigzag pattern (see Figure 3.10), the matrix is scanned from the low to the

high frequencies and it is converted to a one–dimensional vector. Run–length encoding is

applied to compress the sequences of consecutive zeros. The result is further compressed

by using a Huffman or an arithmetic coder. According to the standard, the bit stream can

be organized in three different ways, each of them targeted to a specific application:

• Sequential encoding in which each image component is encoded in a single left–

to–right, top–to–bottom scan;

• Progressive encoding in which the image is encoded in multiple scans and,

during the decoding, the viewer may be able to see the image build up in multiple

coarse–to–clear passes (as in many pictures downloaded from the Internet);

• Hierarchical encoding in which the image is encoded at multiple resolutions so

that lower resolution versions may be accessed without first having to decompress

the whole image.

The quality and the size of a JPEG–compressed image depends on the quantization that is

JPEG’s lossy part. Scaling appropriately the quantization tables, it is possible to control

the size and the quality of the output. At very low bit rates (high compression) blocking

artifacts become evident. For further reading see Wallace [1990, 1991], Pennebaker and

Mitchell [1993]. The works by Bright and Mitchell [1999], Chang and Langdon [1991],

 79

Ramchandran and Vetterli [1994], Vander Kam and Wong [1994] and Schaefer [2001]

analyze some of the issues related to various aspects of JPEG encoding.

201

250

160

247

149

144

203

160

200

150

248

195

218

179

147

204

142

223

165

232

224

240

168

227

138

203

162

191

153

234

151

178

180

232

171

212134

198140

244

170

243

190

202

208

184

176

220

199

200

253

218

232

144

196

246

202

128

195

243

240

209

175

158

8x8 Image Block

529

-35

-89

-40

-11

-19

5

-4

-51

-14

-3

37

6

34

-30

-32

85

24

49

-12

32

-23

73

24

24

-24

1

-53

-35

61

36

15

-17

-10

43

-20

4

17

4

-57

10

-48

-30

-21

-50

51

30

-8

-52

-39

-26

-35

48

-16

-1

7

-19

-3

15

-14

7

-36

-13

53

DCT

72

49

24

18

14

14

12

16

92

64

35

22

17

13

12

11

95

78

55

37

22

16

14

10

98

87

64

56

29

24

19

16

112

103

81

68

51

40

26

24

100

121

104

109

87

57

58

40

103

120

113

103

80

69

60

51

99

101

92

77

62

56

55

61

Quantization Table

0

0

0

0

2

1

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-2

0

2

-2

-1

0

0

-6

0

0

0

0

2

-2

2

-2

-1

0

0

0

0

1

5

233

Quantized values and ZigZag Scanning
Figure 3.10: DCT, Quantization and zigzag scanning for a JPEG 8x8 image block.

3.3.2 JPEG–LS

JPEG was designed as a lossy image compression technique and the method was fine

tuned for a specific quality. When compressing images at the highest quality setting, the

size of the compressed image grows quickly and the results are not competitive even

when compared to general–purpose lossless coding methods. To overcome this problem,

the JPEG standardizing group decided to expand JPEG with a lossless mode that is not

DCT–based (see Pennebaker and Mitchell [1993] for a general description as well as the

more specific Langdon, Gulati, and Seiler [1992]). The lossless mode uses a predictive

 80

scheme that linearly combines three causal neighbors to predict a pixel. The prediction

error is then encoded by using a Huffman or arithmetic coder.

Lossless JPEG was not the result of a rigorous competitive evaluation as was the

selection of the DCT–based methods and its performance turned out to be not very

interesting. For this reason in 1994 the ISO/JPEG group issued a call for contribution for

a new standard for lossless and near–lossless compression of continuous tone images

from 2 to 16 bit per pixel. The standard, called JPEG–LS, combines various proposals,

even though the algorithm is heavily based on an algorithm proposed by the Hewlett

Packard Laboratories: LOCO–I (Weinberger, Seroussi and Sapiro [1996]).

X

Prediction

X

+
Limited Lenght

parameter
Golomb Code

- Lossless?

Error Quantization

no

yes

Error
Modeling

ê

Context Generation
Quantization
& Merging

X
e

& Mapping
Error Reduction

LL-Golomb Coder
stream

code

k

A[Q]

N[Q]

C[Q]

prediction correction

frequency of context Q

accumulated prediction
error magnitude in context Q

Figure 3.11: JPEG–LS encoder.

Figure 3.11 shows a schematic diagram of a JPEG–LS encoder. JPEG–LS is a predictive

coder that uses a fixed predictor and an error–feedback technique to cancel prediction

bias. The encoder stores for each class of prediction context the average of the past

prediction errors. After the prediction, the encoder classifies the current context and

subtracts to the prediction the past average errors in order to remove error bias. Prediction

 81

residuals are first mapped into an exponentially decreasing distribution having positive

values and then entropy coded with a Golomb code (Seroussi and Weinberger [1997]).

Besides a better prediction, the advantage of using error feedback is that errors in

different context may have different probability distributions and this information can be

used to normalize the error before entropy coding.

3.3.3 JBIG

The Joint Bi–level Image Experts Group (JBIG) defined in 1991 an innovative lossless

compression algorithm for bi–level images. It consists of a predictive coder that uses a

template of causal neighbor pixels to guess the value of the current pixel. The algorithm

concatenates the value of the template pixels to identify the context of the pixel that is

being predicted. The index of the context is used to choose the probability distribution

that models the arithmetic coder.

The “A” pixel in Figure 3.12 is an adaptive pixel. Its position is allowed to change as

the image is processed. The use of the adaptive pixel improves compression by

identifying repeated occurrences of the same block of information.

JBIG is also able to operate in progressive mode: an approximate version of the

original image is first transmitted and then improved as compression proceeds. This is

achieved by subdividing the image in layers, each of which is a representation of the

original image at a different resolution. The lowest resolution layer is called starting layer

and is the first to be coded. Then the other layers (differential layers) are encoded by

using information from the previous encoded layer. If the resolution reduction algorithm

 82

used by the progressive mode suits well the input image, this mode of operation is very

effective. In fact most of the pixels in the differential layers may be predicted with little

or no error and then very little information has to be encoded.

Progressive and sequential modes are completely compatible. This compatibility is

achieved by dividing the original image into horizontal stripes. Each stripe is coded

separately and then transmitted. An image that has been coded in the progressive mode

may be decoded in sequential mode by decoding each stripe sequentially, to its full

resolution, starting from the one on the top of the image. Progressive decoding may be

obtained by decoding one layer at a time.

x x x
x x x x
x x

A
?

x x x x
x x

A
?

x
x x

Three-Line Template Two-Line Template
Figure 3.12: JBIG prediction templates.

JBIG may also be successfully used when coding images with more than one bit–per–

pixel (grayscale or even color images). The image is decomposed into bit–planes (i.e. if

the image is 4–bpp, each pixel is represented by the binary string b3b2b1b0 the i –th bit–

plane stores only the bit bi of each pixel) and each plane is coded separately as a bi–level

image. In principle JBIG is also able to work with 255–bpp images, but in practice the

algorithm shows interesting performances for images with at most 8 bpp.

 83

For further reading, see Arps and Truong [1994] and Thompkins and Kossentini [1999]

for a description of JBIG2. Issues related to the design of the symbol dictionary are

addressed in Ye, Schilling, Cosman, and Ko [2000].

3.3.4 JPEG–2000

JPEG–2000 is a newly issued standard for digital image compression (Marcellin,

Gormish, Bilgin and Boliek [2000]). While having a rate distortion advantage over JPEG

it also provides a number of features that are highly desirable in current applications. For

example, JPEG–2000 allows extraction of images at different resolutions, regions of

interest and single components, all without requiring full decompression of the bitstream.

This feature is essential for editing purposes or when a compressed image must be

transmitted to a device that is not capable of full resolution.

The organization of the bitstream supports random spatial access to regions on the

image and allows a number of compressed domain processing like pan, zoom, rotation

and cropping.

The JPEG–2000 standardization started from Ricoh’s submission of the algorithm

CREW to the JPEG–LS standardization. Although LOCO–I (Weinberger, Seroussi and

Sapiro [1996]) was selected as the basis for JPEG–LS, CREW had such a rich and

interesting set of features that it motivated a new standardization effort. One of the most

relevant features is the use of an integer wavelet decomposition to transform the image.

 84

3.3.5 GIF

The Graphics Interchange Format was developed by CompuServe Information Services

in 1987 (GIF 87a) as an efficient, compressed graphics file format, which allows for

images to be sent between different computers. The most recent version is called GIF

89a. More than being a data compression method, GIF is a graphics file format that uses a

variant of LZW to compress the data.

Graphics data are compressed using a dynamic growing dictionary that starts with the

number of bit per pixel b , as a parameter. Bilevel images use b = 2 and images with

256 colors or gray levels use b = 8 . Intermediate values for b are also allowed.

The initial dictionary contains 2(b +1) entries and it doubles its size each time it fills up,

until it reaches a size of 212 = 4096 entries, where it remains static. When the dictionary is

full the encoder monitors the compression ratio and when it drops below a threshold, it

discards the current dictionary and starts with a fresh, new one. This event is signaled to

the decoder by transmitting a special symbol whose value is ESC = 2b .

Because of its lossless nature GIF performs well on synthetic or palletized images, i.e.

images with a small number of colors and not corrupted by noise. The compression of

natural images, in which the number of colors may be potentially big and sampling noise

is present, can be addressed by using a preprocessing that builds a color map and

artificially reduces the number of colors.

 85

3.4 Video

3.4.1 H.261

In the 1993 the ITU–T (International Telecommunication Union / Telecommunication

Standardization Sector) developed H.261, a video coding standard for audiovisual

services at bit rates multiple of 64 Kbit/s. This bit rate was chosen because of the

availability of ISDN (Integrated Services Digital Network) transmission lines that could

be allocated in multiples of 64Kbit/s. As a consequence of that choice, in older drafts,

H.261 is also referred as p ∗ 64Kbit/s.

H.261 is a coding standard targeted to videoconference and videophone applications

operating at bit rates between 64 Kbit/s and 2 Mbit/s (that is p ∗ 64 Kbit/s with

1 ≤ p ≤ 30). The coding algorithm combines interframe prediction, transform coding and

motion compensation. There are two operational modes, named interframe and

intraframe. Intraframe coding is a JPEG–like encoding where the input signal is directly

decomposed by the DCT. To improve error resilience, unlike in JPEG, the DC coefficient

is not differentially encoded. Intraframe mode is used when the interframe prediction is

not efficient, i.e. when a scene changes or when there is too much motion in the scene or,

periodically, to improve error resilience. Interframe coding is based on motion

compensated prediction that is followed by a DCT coding of the prediction error. Motion

vectors exploit temporal redundancy and help the codec to compensate for objects

moving in the scene. To remove any further redundancy, DCT coefficients and motion

vectors are variable length encoded with a static Huffman code.

 86

H.261 supports two picture resolutions, QCIF (Quarter Common Interchange Format)

and CIF (Common Interchange Format). This permits a single recommendation to cover

use in and between regions that use 625 and 525 line television standards.

In a H.261 encoder (see Figure 3.13), every input frame is de–interlaced, converted

from NTSC or PAL to CIF format, eventually noise filtered, preprocessed and stored into

the frame memory. De–interlaced frames are referred to as pictures.

Pictures are divided into blocks of 8 × 8 pixels. Four Y blocks, a Cb block and a Cr block

are grouped into a coding unit called macroblock. Macroblocks can be intra frame, inter

frame coded or eventually skipped with criteria that have not been defined by the

standard and may vary dynamically depending on the complexity of the input signal and

the output data rate constraints.

After the DCT coefficients are quantized and encoded with a Huffman coder, a

BCH(511,493) error correction code (McEliece [1977]) is used to protect the bit stream

and avoid error propagation in predictive coding. Finally the encoder inverts the DCT and

decodes and stores the current frame so that it can be used to perform the next prediction.

Since the prediction is based on the quantized output, this “closed–loop” coding keeps

track of the coding errors, monitors the quality of the transmitted image and keeps

encoder and decoder synchronized.

Output data rate is controlled dynamically by adjusting the quantization steps while

monitoring the capacity of an output buffer.

 87

 Frame
Memory

Mux DCT Quantizer

 Frame
Memory

+

+-

0

Entropy
Encoder

IDCT

 Inverse
Quantizer

 Motion
Estimation

 Motion
CompensationLoop Filter

Mux

Figure 3.13: H.261 video encoder.

3.4.2 MPEG–1

In 1988 the Moving Picture Experts Group (MPEG) was founded under ISO/SC2 to

standardize a coding algorithm targeted for digital storage of video at bit rates around 1.5

Mbit/s. A draft for the first MPEG–1 (formally known also as H.262) appeared in 1991

and a final version was issued in 1992. The MPEG–1 video algorithm was developed

with respect to the JPEG and H.261 standards and shares several common features with

the H.261, so that implementations supporting both standards are feasible.

The main difference between H.261 and MPEG–1 is in the fact that MPEG–1 was

primarily targeted for multimedia CD–ROM applications, so it required additional

functionality supported by both encoder and decoder. Among these additional features

there are frame based random access of video, fast forward/fast reverse (FF/FR) searches

through compressed bit streams, reverse playback of video and the possibility to edit the

compressed bit stream.

 88

 Frame
Memory DCT

IDCT

 Motion
Compensation

 Frame
Memory

 Motion
Estimation

Quantizer

 Inverse
Quantizer

Entropy
Encoder

+

+

-

Figure 3.14: MPEG–1 video encoder.

Its parameters were optimized for digital storage media, but the algorithm is intended to

be generic. Standardized encoding algorithms are “decoder standards”; this means that

the standard does not define the details of the encoding process but only the syntax of the

bit stream and, possibly, a suggested decoding process. Standards are also independent of

a particular application and therefore they mainly provide a “toolbox”. It’s up to the user

to decide which tools to select to suit a specific applications.

Figure 3.14 outlines the functions that are typically executed by an MPEG–1 encoder

that uses a hybrid DCT/Motion Compensated DPCM scheme very similar to the H.261

standard. Encoding may include preprocessing that performs format and color

conversion, de–interlacing, pre–filtering and subsampling; none of these operations is

specified by the standard.

 89

After the preprocessing, a format for the pictures is selected and the pictures are encoded

in the following modes:

• Intra frame coded (I–pictures): require no motion compensation, each

macroblock is DCT coded, the coefficients are linearized with a zig–zag scanning

and finally quantized. The encoding method for I–pictures, very close to the JPEG

standard, leads to a modest compression but since every macroblock in the picture

is independently coded and transmitted, this mode provides fast random access, a

functionality required in digital storage media.

• Inter frame coded or (P–pictures): are those coded by using motion

compensated prediction from a previous intra or inter coded picture. Macroblocks

in a P–picture can be motion compensated, intra coded or eventually skipped with

a functionality called “conditional replenishment”. Motion compensation and

conditional replenishment typically allow compression rates up to 3 times higher

than I–pictures. P–pictures can also be used as references for the motion–

compensated prediction.

• Bi–directionally predicted or (B–pictures): provide the highest degree of

compression, typically 10 times higher than the I–pictures. B–pictures are coded

using motion–compensated prediction from past and/or future I–pictures and P–

pictures. Since B–pictures are not used in the prediction, they can accommodate

more distortion, but because B–pictures depend on the future frames, their use

may introduce a substantial coding delay.

 90

• DC coded or (D–pictures): are DCT coded pictures in which only the DC

coefficient is quantized and transmitted. They were introduced to allow a fast

preview of the video sequence without a full decoding of the bit stream.

Even in MPEG–1 the output bit stream is Huffman coded. Because the size of

compressed video is inherently variable in nature, MPEG–1 uses an output buffer that

stores the variable bit stream generated in the encoder and provides the possibility of

transmitting the video stream at a constant bit rate.

A mechanism not specified by the standard monitors the output buffer and adjusts the

bit rate by adapting the quantizer steps. Coarse quantization of the DCT–coefficients

enables the storage or transmission of video with high compression ratios but, depending

on the level of quantization, it may result in significant coding artifacts. The efficiency of

the rate control algorithms heavily affects the visual quality of the video reconstructed at

the decoder.

I

1

B

2

B

3

P

4

B

5

B

6

P

7

I

8

I

1

B

2

B

3

P

4

B

5

B

6

P

7

I

8

(A)

(B)
Figure 3.15: Time dependency among I, P and B pictures.

 91

Figure 3.15 shows temporal dependences between I, P and B–pictures. The standard does

not suggest a specific interleaving between I, P and B pictures and many choices are

possible. Interleaving changes compression rate, quality and coding delay and the end

user is free to arrange the picture types in a video sequence with a high degree of

flexibility to suit diverse applications requirements.

A video sequence coded using I–pictures only (I, I, I, I, I, I, ...) allows the highest

degree of random access, FF/FR, editability and the lowest coding delay, but only

achieves a modest compression. This mode is sometimes referred to as M–JPEG (Motion

JPEG) because it substantially consists of a sequence of JPEG pictures. Regular I–picture

update and no B–pictures (i.e. I, P, P, P, P, P, P, I, P, P, P, P, ...) achieves moderate

compression and a certain degree of random access while retaining FF/FR functionality.

Incorporation of all three pictures types (like in I, B, B, P, B, B, P, B, B, I, B, B, P, ...),

achieves high compression and reasonable random access with some FF/FR functionality

but also increases significantly the coding delay that may not be tolerable in applications

like video telephony or video conferencing.

3.4.3 H.263

This Recommendation, issued in the 1996, specifies a coded representation that can be

used for compressing moving pictures at low bit rates. Even though H.263 was designed

for data rates lower than 64 Kbit/s, this limitation has been removed in the final draft. The

basic configuration of the coding algorithm is based on ITU–T Recommendation H.261

enriched by changes and optional encoding modes that improve performance and error

recovery.

 92

Like other video coding standards, H.263 is based on motion compensated inter–picture

prediction that exploits temporal redundancy and transform coding of the prediction error

that reduces spatial redundancy. The transmitted symbols are variable length coded.

The main differences between the H.261 and H.263 coding algorithms are listed

below:

• Half–pixel precision is used for motion compensation whereas H.261 only uses

full–pixel precision and a loop filter. Half–pixel MC is computed by interpolating

the image.

• Some parts of the hierarchical structure of the data stream are now optional, so the

codec can be configured for a lower data rate or to achieve better error protection.

• In addition to the basic video source coding algorithm, a number of negotiable

coding options are included for improved performance:

o Unrestricted Motion Vectors. In this mode motion vectors are allowed to

point outside the picture. Edge pixels are used for the prediction of the

missing pixels. This mode achieves a significant gain when there is

movement along the edge of the pictures, especially for small picture

formats. Additionally, this mode includes an extension of the motion

vector range so that larger motion vectors can be used. This mode is

especially useful to take into account camera movement (panning).

o Syntax–based Arithmetic Coding. In this mode arithmetic coding is used

instead of Huffman VLC coding. SNR and reconstructed frames will be

 93

the same, but generally 5–10% fewer bits are produced. This gain depends

of course on the sequence, the bit rate and other options used.

o Advanced prediction. This option means that overlapped block motion

compensation is used for the P–frames. Four 8 × 8 vectors instead of one

16 ×16 vector are used for some macroblocks in the picture, and motion

vectors are allowed to point outside the picture as in the UMV mode

described above. The encoder has to decide which type of vectors to use.

Four vectors use more bits, but give better prediction. The use of this

mode generally gives considerable subjective improvement because

overlapped motion compensation results in less blocking artifacts.

o Forward and backward frame prediction (or P–B frames mode). A PB–

frame consists of two pictures being coded as one unit. The name PB

comes from the name of picture types in MPEG where there are P–

pictures and B–pictures. A PB–frame consists of a P–picture that is

predicted from the last decoded P–picture and a B–picture that is predicted

from both the last decoded P–picture and the P–picture currently being

decoded. For relatively simple sequences, this mode nearly doubles the

frame rate without a substantial increase in the bit rate. For sequences with

a lot of motion, PB–frames do not work as well as B–pictures in MPEG.

This happens because there are no separate bi–directional vectors in

H.263; the forward vectors for the P–picture are scaled and added to a

small delta–vector. The advantage over MPEG is a low overhead for the

 94

B–picture part. This feature is useful in the low bit rate encoding of the

relatively simple sequences often generated by videophones.

These options can be used together or separately and are negotiable in the sense that the

decoder signals the encoder whether any of these options are available. If the encoder

supports them, it may decide to use one or more options to improve the quality of the

video sequence.

H.263 supports five resolutions: QCIF and CIF, already supported by H.261, and

SQCIF, 4CIF, and 16CIF. The support of 4CIF and 16CIF allows the codec to compete

with video coding standards, such as the MPEGs, targeted for a higher bit rate.

In a subsequent standardization attempt, H.263+ (H.263 Version2) was introduced as

a powerful enhancement of the existing H.263 standard. The improvements add the

following coding options to the basic algorithm:

• Reversible Variable Length Coding Mode (or RVLC): When this mode is used,

variable length coding is achieved by using special tables that contain reversible

codewords. Since RVLC allow decoding from both directions and provide

excellent error detection, if a packet is corrupted by an error, decoding may be

tried starting from the end of the packet and more uncorrupted data can be

extracted.

• Advanced Intra Coding Mode (AIC): allows prediction of the first row or the first

column of the coefficients of a transformed I block from blocks that have already

been encoded. Scanning can be performed in the usual zigzag or in an alternate

horizontal or vertical mode.

 95

• Deblocking Filter Mode (DF): introduces a deblocking filter in the coding loop.

This improves prediction and reduces blocking artifacts.

• Slice Structured Mode (SS): A slice structure is employed to group and transmit

macroblocks. The slice can have an arbitrary shape and contain a variable number

of macroblocks. Macroblocks can be transmitted in the usual sequential mode or

by using an arbitrary order.

• Supplemental Enhancing Information Mode (SEI): includes additional

information in the bitstream that can be used to support extended functionalities

like picture freeze, chroma keying, progressive refinement and video

segmentation.

• Improved PB Mode (IPB): Improves the PB mode by allowing backward, forward

and bi directional prediction in PB frames.

• Reference Picture Selection mode (RPS): Removes the limitation present in most

coders that the reference picture must be the previous one. This feature limits

error propagation because it allows the specification of a different reference

picture when the current reference has been damaged during the transmission.

• Temporal and SNR Scalable Modes: specify a syntax that allows the transmission

over a prioritized channel. The bitstream is divided into a base layer and into one

or more enhancement layers that improve temporal or spatial resolution or refine

the picture quality. Decoders not capable of full rendering may decode only part

of the bitstream.

 96

• Reference Picture Resampling (RPR): specifies a warping function that must be

applied to the reference picture before being used for prediction.

• Reduced Resolution Update Mode (RRU): allows the encoder to send update

information for a picture encoded at lower resolution while maintaining full

resolution for the reference frame.

• Independently Segmented Coding mode (ISD): Treats every segment as an

independent coding unit. No data dependency across segment boundaries is

allowed. It is helpful to prevent error propagation and improves error resiliency

and error recovery.

• Alternative Inter VLC Mode (AIV): specifies an alternative VLC table that is

optimized for small quantization steps in Intra block coding.

• Modified Quantization Mode (MQ): Improves the range of the quantization steps

that can be represented and allows representation of quantized coefficients outside

the range [–127,127]. These values are clipped to the boundaries in the basic

H.263.

These new coding models improve the performance and the flexibility of this standard so

that H.263+ is regarded today as state of the art low bit rate video coding. H.263+ also

constitutes the very low bit rate core of MPEG–4. Details on H.263+ can be found in the

standard draft or in Erol, Gallant, Cote and Kossentini [1998].

 97

3.4.4 MPEG–2

Studies on MPEG–2 started in 1990 with the initial target to issue a coding standard for

TV–pictures with CCIR Rec. 601 resolution at data rates below 10 Kbit/s. In 1992 the

scope of MPEG–2 was enlarged to suit coding of HDTV thus making an initially planned

MPEG–3 phase redundant.

Basically MPEG–2 can be seen as a superset of the MPEG–1 and since it was

designed to be backward compatible to MPEG–1. Every MPEG–2 compatible decoder

must be able to decode a valid MPEG–1 bit stream. Several video coding algorithms

were integrated into a single syntax to meet the diverse applications requirements. New

coding features were added by MPEG–2 in order to achieve sufficient functionality and

quality. Specific prediction modes were developed to support efficient coding of

interlaced video. In addition scalable video coding extensions were introduced to provide

additional functionality, such as embedded coding of digital TV and HDTV as well as

graceful quality degradation in the presence of transmission errors.

A hierarchy of “Profiles”, describing functionalities, and “Levels”, describing

resolutions, was introduced in order to allow low–complexity implementation in products

that do not require the wide range of video input formats supported by the standard (e.g.

SIF to HDTV resolutions).

As a general rule, each profile (see Table 3.2) defines a new set of algorithms added

to the algorithms in the profile below and a level (see Table 3.1) specifies the range of the

parameters that are supported by the implementation (image size, frame rate and bit

rates). The MPEG–2 core algorithm at MAIN profile features non–scalable coding of

both progressive and interlaced video sources.

 98

Level Parameters

High 1920 samples/line
1152 lines/frame
60 frames/s
80 Mbit/s

High 1440 1440 samples/line
1152 lines/frame
60 frames/s
60 Mbit/s

Main 720 samples/line
576 lines/frame
30 frames/s
15 Mbit/s

Low 352 samples/line
288 lines/frame
30 frames/s
4 Mbit/s

Table 3.1: Upper Bound of Parameters at Each Level.

Five profiles and four levels create a grid of 20 possible combinations. The variations

are so wide that it is not practical to build a universal encoder or decoder. So far only the

11 combinations showed in Table 3.3 have been implemented. Interest is generally

focused on the Main profile, Main level, sometime written as “MP@ML”, which covers

broadcast television formats up to 720 pixels x 576 lines at 30 frames/sec and with 4:2:0

subsampling.

MPEG–2 as defined in the MAIN Profile, is a straightforward extension of MPEG–1

that accommodates coding of interlaced video. As well as MPEG–1, MPEG–2 coding is

based on the general hybrid DCT/DPCM coding scheme previously described,

incorporating macroblock based motion compensation and coding modes for conditional

replenishment of skipped macroblocks. The concept of I–pictures, P–pictures and B–

pictures is fully retained in MPEG–2 to achieve efficient motion prediction and to assist

 99

random access functionality. The algorithm defined in the MPEG–2 SIMPLE Profile is

targeted to transmission systems and it is basically identical to the MAIN Profile, except

that no B–pictures are allowed. This keeps the coding delay low and simplifies the

decoder that does not need any additional memory to store the past frames.

Profile Functionalities

High Supports all functionality provided by the Spatial Scalable
Profile plus the provision to support:

o 4:2:2 YUV–representation for improved quality
Spatial
Scalable

Supports all functionality provided by the SNR Scalable
Profile plus algorithms for:

o Spatial scalable coding (2 layers allowed);
o 4:0:0 YUV–representation.

SNR
Scalable

Supports all functionality provided by the Main profile plus
algorithms for:

o SNR scalable coding (2 layers allowed);
o 4:2:0 YUV–representation.

Main Non–scalable coding algorithm supporting functionality for:
o Coding of interlaced video;
o Random access;
o B–picture prediction modes;
o 4:2:0 YUV–representation.

Simple Includes all functionality provided by the Main profile but
does not support:

o B–picture prediction;
o 4:2:0 YUV–representation.

Table 3.2: Algorithms and Functionalities Supported With Each Profile.

 Low Main High 1440 High

Simple X
Main X X X X
SNR Scalable X X
Spatial Scalable X
High X X X

Table 3.3: Combinations Implemented.

MPEG–2 also introduces the concept of Field and Frame Pictures to accommodate

coding of progressive and interlaced video via a frame and a field prediction mode. When

 100

the field prediction mode is used, two fields of a frame are coded separately and the DCT

is applied to each macroblock on a field basis. Alternatively, lines of top and bottom

fields are interlaced to form a frame that is encoded in the frame prediction mode as in

MPEG–1. Field and frame pictures can be freely mixed into a single video sequence.

Analogously, a distinction between motion compensated field and frame prediction

mode was introduced in MPEG–2 to efficiently encode field pictures and frame pictures.

Inter–field prediction from the decoded field in the same picture is preferred if no motion

occurs between fields. In a field picture all predictions are field predictions. Also, a new

motion compensation mode based on 16x8 blocks was introduced to efficiently explore

temporal redundancies between fields. MPEG–2 has specified additional YCbCr

chrominance subsampling formats to support applications that require the highest video

quality. Next to the 4:2:0 format already supported by MPEG–1, the specification of

MPEG–2 is extended to 4:2:2 format defining a “Studio Profile”, written as

“ 422P@ML ”, suitable for studio video coding.

Scalable coding was introduced to provide interoperability between different services

and to flexibly support receivers with different display capabilities. Scalable coding

allows subsets of the layered bit stream to be decoded independently to display video at

lower spatial or temporal resolution or with lower quality. MPEG–2 standardized three

scalable coding schemes each of them targeted to assist applications with particular

requirements:

• Spatial Scalability: supports displays with different spatial resolutions at the

receiver; a lower spatial resolution video can be reconstructed from the base layer.

Multiple resolution support is of particular interest for compatibility between

 101

Standard (SDTV) and High Definition Television (HDTV), in which it is highly

desirable to have a HDTV bitstream that is backward compatible with SDTV.

Other important applications for scalable coding include video database browsing

and multi–resolution playback of video in multimedia environments where

receivers are either not capable or not willing to reconstruct the full resolution

video. The algorithm is based on a pyramidal approach for progressive image

coding.

• SNR Scalability: is a tool developed to provide graceful degradation of the video

quality in prioritized transmission media. If the base layer can be protected from

transmission errors, a version of the video with gracefully reduced quality can be

obtained by decoding the base layer signal only. The algorithm used to achieve

graceful degradation is based on a frequency (DCT–domain) scalability

technique. At the base layer the DCT coefficients are coarsely quantized and

transmitted to achieve moderate image quality at reduced bit rate. The

enhancement layer encodes and transmits the difference between the non–

quantized DCT–coefficients and the quantized coefficients from the base layer

with a refined quantization step size. At the decoder the highest quality video

signal is reconstructed by decoding both the lower and the higher layer bitstreams.

It is also possible to use this tool to obtain video with lower spatial resolution at

the receiver. If the decoder selects the lowest N ∗ N DCT coefficients from the

base layer bit stream, a non–standard inverse DCT of size N ∗ N can be used to

reconstruct the video at a reduced spatial resolution.

 102

• Temporal Scalability: it was developed with an aim similar to spatial scalability.

This tool also supports stereoscopic video with a layered bit stream suitable for

receivers that have stereoscopic display capabilities. Layering is achieved by

providing a prediction of one of the images of the stereoscopic video (the left

view, in general) in the enhancement layer. The prediction is based on coded

images from the opposite view that is transmitted in the base layer.

Scalability tools can be combined together into a single hybrid codec.

ENHANCEMENT
 ENCODER

ENHANCEMENT
 DECODER

BASE LAYER
 ENCODER

BASE LAYER
 DECODER

Video In

Low Resolution

 Enhancement
Layer Bitstream

Base Layer
Bitstream

Low Resolution
 Video

High Resolution
 Video

DOWNSCALING

Spatial or
Temporal

UPSCALING

Spatial or
Temporal

UPSCALING

Spatial or
Temporal

Figure 3.16: Scalable Coding

Figure 3.16 depicts a multiscale video coding scheme where two layers are provided,

each layer supporting video at a different resolution. This representation can be achieved

by downscaling the input video signal into a lower resolution video (down sampling

spatially or temporally). The downscaled version is encoded into a base layer bit stream

with reduced bit rate. The up scaled reconstructed base layer video (up sampled spatially

or temporally) is used as a prediction for the coding of the original input video signal.

 103

Prediction error is encoded into an enhancement layer bit stream. A downscaled video

signal can be reconstructed by decoding the base layer bit stream only.

3.4.5 MPEG–4

MPEG group officially initiated the MPEG–4 standardization phase in 1994 with the

mandate to standardize algorithms and tools for coding and flexible representation of

audio–visual data for Multimedia applications.

Bit rates targeted for the MPEG–4 video standard range between 5–64 Kbit/s for

mobile or PSTN (Public Switched Telephone Network) video applications and up to 2

Mbit/s for TV/film applications so that this new standard will supersede MPEG–1 and

MPEG–2 for most applications.

Seven new video coding functionalities have been defined which support the MPEG–

4 focus and which provide the main requirements for the work in the MPEG video group.

In particular MPEG–4 addresses the need for:

• Universal accessibility and robustness in error prone environments;

• High interactive functionality;

• Coding of natural and synthetic data;

• Compression efficiency;

One of the most innovative features consists in the definition of Video Object Planes

(VOPs) that are units coded independently and possibly with different algorithms.

 104

DCT

IDCT

 Motion
 Estimation

 Frame
Memory

 Shape
 Coding

Quantizer

 Inverse
Quantizer

 Video
Multiplex

+

+

-
Motion Picture
 Coding

Sw
itc

h

Pred. 1

Pred. 3

Pred. 2

Figure 3.17: MPEG–4.

Figure 3.17 shows a scheme of an MPEG–4 system where the possibility of encoding

separate objects and multiplex the result in a single bitstream is made evident.

The decoder reconstructs the objects by using for each of them the proper decoding

algorithm and a composer assembles the final scene. A scene is composed by one or more

Video Object Planes with an arbitrary shape, also transmitted to the decoder. VOPs can

be individually manipulated, edited or replaced. VOPs derive from separate objects that

have to be composed in a single scene or determined by a segmentation algorithm. To

improve compression ratio, bitstream can also refer to a library of video objects available

both at the encoder and decoder sides. Another interesting feature is the possibility of

using the Sprite Coding Technology, in which an object moving on a relatively still

background is encoded as a separate VOP. A good introduction to MPEG–4 features can

be found in Sikora [1997].

 105

TRELLIS CODED VECTOR RESIDUAL
QUANTIZATION

4.1 Background

Vector Quantization (or in short VQ) is one of the oldest and most general source coding

techniques. Shannon [1948, 1959] proved in his “Source Coding Theorem” that VQ has

the property of achieving asymptotically the best theoretical performance on every data

source.

Vector quantization can be seen as a generalization of scalar quantization to a multi

dimensional input. A vector quantizer is often defined as a set of two functions:

• An encoding function : nE →\ ` that maps n –dimensional vectors from the

Euclidean space n\ to integer indices;

• A decoding function : nD →` \ that maps every index to one of a set of

representative n –dimensional vectors that we will call reconstruction levels or

centroids.

By means of these two functions, an n –dimensional vector can be approximated by one

of a small set of vectors carefully selected in order to minimize the average distortion

 106

introduced in the approximation. A quantizer achieves lossy compression by mapping

multiple inputs into the same index, so the mapping is intrinsically non–reversible.

Before discussing the peculiarity of vector quantization, it is helpful to introduce

some background concepts by making reference to the simpler Scalar Quantizer (or SQ).

A scalar quantizer can be formally defined in the following manner:

Definition 4.1: Let x be a random point on the real line \ ; an N –level Scalar Quantizer

(or SQ) of \ is a triple (,Q,)Q A P= where:

1. 1 2{ , ,..., }NA y y y= is a finite indexed subset of \ called codebook;

2. 1 2{ , ,..., }NP S S S= is a partition of \ . Equivalence classes (or cells) jS of P

satisfy:

1

N

j
j

S
=

= \∪ ,

 for j kS S j k= ∅ ≠∩ ;

3. Q : Aℜ6 is a mapping that defines the relationship between the codebook and

partitions such that:

Q() if and only if j jx y x S= ∈ .

The encoder function ()E x associates to x the integer index i such that () iQ x y= and

the decoder ()D i associates the integer i to the i –th centroid iy . Quantization is carried

out by composing the two functions E and D as:

ˆ(()) iD E x y x= =

and x̂ is said to be the quantized representation of x .

 107

When measuring the distortion introduced by a scalar quantizer, the squared quantization

error is frequently assumed to be a good distortion metric both for its relevance and for its

mathematical tractability:

 () ()2ˆ ˆ,d x x x x= − .

With this choice, the total distortion expressed in term of mean squared error equals to:

()
1

2

1
() ()j

j

N x

MSE jx
j

D x y f x d x
−=

= −∑∫

where ()f x is the probability density function of the input X and the partition jS of an

N –level scalar quantizer that has codebook 1 2{ , ,..., }NA y y y= , codeword jy and

boundaries 1jx − and jx .

The average distortion MSED that the quantizer achieves on a given input distribution

depends on the partition boundaries and on the codebook entries. Figure 4.1 compares a

uniform and a non–uniform quantizer; in the former, the real line is partitioned in

equally–sized intervals. In the figure, the abscissa represents a point on the real line \

and the ordinate shows the reconstruction levels. Which quantizer best fits a given input

source depends both on the input statistics and on the distortion measure being

minimized.

If we focus on the minimization of MSED , it is possible, given the number of levels

and the input distribution, to derive the necessary conditions for the optimality of a non–

uniform scalar quantizer. A quantizer that satisfies both conditions is called a Lloyd–Max

quantizer since this type of quantizer was first derived by Lloyd [1957] in an unpublished

paper and later by Max [1960].

 108

y1

y2

y3

y4

y5

y6

y7

y8

x1 x2 x3 x4 x5 x6 x7 x8

y1

y2

y3

y4

y5

y6

y7

y8

x1 x2 x3 x4 x5 x6 x7 x8

Figure 4.1: Uniform vs. Non–Uniform scalar quantizer.

The partitions of an N –level scalar quantizer that minimizes the mean squared error

must have boundaries that satisfy:

1

2
j j

j

y y
x ++

= where 1 1j N≤ ≤ − ,

0 , Nx x= −∞ = ∞ .

And its centroids necessarily satisfy:

1

1

() ()

() ()

j

j

j

j

x

x
j x

x

x f x d x
y

f x d x
−

−

=
∫
∫

 where 1 j N≤ ≤ .

Since the scalar quantizer encodes input symbols one by one, this method is unable to

exploit inter–symbol dependence and, unless the input source is memoryless, the

achievable compression is relatively poor. To take advantage of existing inter symbol

correlation, it is possible to group a number of input symbols together and treat this block

 109

(or vector) as a single coding unit. This is the approach that is taken by a vector

quantizer.

A vector quantizer works as a scalar one but it groups and encodes vectors instead of

scalars. While the dimension of the vector grows, a VQ is able to capture more and more

inter symbol dependence and this results in a coding that is theoretically optimal in the

sense that, fixing the distortion, it achieves the lowest possible rate.

Shannon's theorem proves the existence of such a quantizer with asymptotically

optimal performance; unfortunately the proof is probabilistic in nature and, while

demonstrating the existence of the quantizer, doesn’t suggest any method to construct it.

Further investigation (Lin [1992]) showed that, given the input distribution and the

distortion measure being minimized, the design of an optimal codebook is an NP–

complete problem.

At the present, the best practical solution for the design of unstructured vector

quantizers is to use the codebook design method introduced by Linde, Buzo and Gray

[1980]. This method, known as Generalized Lloyd Algorithm (or LBG from the authors’

names) uses a generalization of the Lloyd–Max optimality condition previously described

to design a locally optimal codebook with no natural order or structure. LBG algorithm

also improves the Lloyd–Max conditions in two important ways:

• First, it designs the codebook starting from a set of input samples and not from the

input distribution that may not be available or analytically hard to express;

• Second, it solves the problem of specifying partition boundaries (very hard in a

high dimensional space) by observing that the nearest–neighbor encoding rule

always generates a Voronoi (or Dirichlet) partition.

 110

LBG takes as input a training set { }1 2, , , LT x x x= … of n –dimensional vectors generated

by the source. Then N vectors in T are randomly chosen to constitute the tentative

centroids and by using these centroids, the corresponding Voronoi partition boundaries

are determined. After the initialization, the algorithm iteratively refines the centroids and

the partition boundaries by using optimality conditions similar to the ones described in

the scalar case. Every iteration reduces the total distortion making the quantization error

closer to a local minimum. While several stopping criteria are used, it is common to

iterate the process until the reconstruction error on the training set is below a given

threshold or until there is no further improvement. A number of modifications have been

proposed in literature to speed up the convergence, see for example the paper by

Kaukoranta et al. [1999].

Since the quantizer can be interpreted as the composition of an encoding function E

and a decoding function D , the LBG algorithm can be seen as a process that optimizes in

turn encoder and decoder until no further improvement is possible. The refinement of the

Voronoi partition has the property of reducing the encoding error and the new set of

centroids improves the decoding error.

LBG generates an unstructured, locally optimal vector quantizer. As a consequence of

this lack of structure, the memory needed to store the codebook grows exponentially with

the dimension of the vector. Furthermore, while the nearest-neighbor encoding rule

avoids the explicit specification of the partition boundaries, encoding a source vector

requires an exhaustive search in the dictionary to locate the centroid that minimizes the

distortion. In the following, we will refer to this kind of vector quantizer as Exhaustive

 111

Search Vector Quantizer (or ESVQ). The performance of an ESVQ provides an upper

bound on the performance practically achievable by a VQ.

The interested reader will find further details and an exhaustive discussion on vector

quantization in the excellent book by Gersho and Gray [1992].

4.2 Introduction to the Problem

To encode an information source with a VQ, a suitable codebook must be first designed

by means of LBG or similar algorithm. Then, to represent each vector, the encoder must

perform an exhaustive search in the codebook, locate the closest code vector and send its

index to the decoder. The decoder, which shares with the encoder the knowledge of the

codebook entries, decodes the index by retrieving the code word associated to it. From

this description it is clear how codebook design, encoding and decoding are highly

asymmetrical processes. The design of the codebook for an ESVQ is the most time

consuming process, so this procedure is usually performed off–line. Then, due to the

search, the encoding turns out to be much more expensive that the decoding.

Even if a conventional ESVQ requires exponentially growing computational and

memory resources, the quality achieved by this type of VQ is frequently desirable in

applications where only a limited amount of resources is available.

Several authors have proposed a number of alternatives to speed up codebook design; one

of the most recent and interesting is due to Kaukoranta, Franti and Nevalainen [1999].

The method they propose, monitors cells activity during the LBG execution and performs

 112

the computation only on the active ones. If one or more cells do not show any sign of

change, the program does not compute new centroids and partition boundaries for that

cell.

An alternative to the off–line construction of the codebook has been proposed by

Constantinescu and Storer [1994] and Constantinescu [1995]. With a method similar to

dictionary compression, the codebook starts with a default configuration and it is

adaptively changed as the data are being compressed. This method called Adaptive

Vector Quantization or in short AVQ, also changes dynamically the dimension of the

vectors in the codebook. Recent experiments on variations of AVQ described in Rizzo,

Storer and Carpentieri [1999, 2001] and Rizzo and Storer [2001] show that, on some

information sources, AVQ exhibits asymptotically optimal compression and on several

test images, outperforms image compression standards like JPEG.

When off–line construction is possible or desirable, imposing a structure to the VQ

codebook is a practical method to speed up the nearest neighbor search. A structured VQ

allows the use of fast search algorithms while marginally compromising compression.

y1 y2 y3 y4 y5 y6 y7 y8

y1(1) y2(1)

y1(2) y2(2)
y3(2) y4(2)

Figure 4.2: Tree Vector Quantizer.

One approach that is often used is to structure the codebook as a tree. The search starts by

comparing the input vector to the code vectors in the first level codebook. Once the

 113

closest match is located the search continues in the codebook associated to that code

vector. The process is repeated until one of the leaves is reached (see Figure 4.2). In a

Tree Vector Quantizer the search is performed in time ()log NΟ while the memory

necessary to store the codebook and the vectors along the tree doubles. Tree VQs have

been extensively studied, for instance by Wu [1990], Lin and Storer [1993] and Lin,

Storer and Cohn [1991, 1992].

Source Q0(x0) Q1(x1) x2x0 x1x0
^

+ -
x1
^

- +

Figure 4.3: Residual Vector Quantizer.

Another solution that speeds up the search without increasing memory usage is the

Residual Vector Quantizer depicted in Figure 4.3 and described in Barnes [1989], Barnes

and Frost [1990], Frost, Barnes and Xu [1991]. In a residual quantizer a vector is encoded

in multiple stages, through successive approximations. At every stage the nearest

neighbor is found and subtracted to the vector. The quantization error vector (or residual)

is sent to the next stage for a similar encoding. In a residual VQ, instead of a single index,

the encoding consists of a sequence of indices, each one specifying a reconstruction level

for each stage. The decoder retrieves the code words corresponding to the index sequence

and adds them together in order to reconstruct the input.

Both being based on successive approximation, tree and residual structured vector

quantizers allow progressive encoding. This means that the decoder can stop decoding

 114

the sequence of indices at any time, resulting in a worse approximation of the input

vector. Progressive transmission finds use in prioritized transmission channels and in

scalable coding. Some applications of VQ to progressive encoding can be found, for

example, in the work of Riskin [1990] and Kossentini, Smith and Barnes [1992].

The trellis is another structure that has been found particularly effective in organizing

the encoding process. Works by Viterbi and Omura [1974], Colm Stewart [1981] and

Ungerboeck [1982] pioneered the use of trellises in source coding and proved that

trellises can be effectively used to take advantage of inter symbol dependencies. Trellis

structured quantizers were first introduced and studied by Fischer, Marcellin and Wang

[1991]. Other papers addressing various issues both in scalar and vector trellis

quantization are Marcellin [1990], Marcellin and Fischer [1990], Fischer and Wang

[1991], Laroia and Farvardin [1994], Wang and Moayeri [1992]. Jafarkhani and Tarokh

[1998] addressed the problem of successive refinable coding with trellis quantizers.

The following section introduces a novel combination of residual and trellis vector

quantization named Trellis Coded Vector Residual Quantizer (or TCVRQ). This

quantizer, presented first in Motta and Carpentieri [1997], is a sub–optimal vector

quantizer that, by combining residual quantization with a trellis graph, exhibits the

memory savings typical of residual quantization while allowing a “virtual increase” of the

quantization levels typical of the trellis based VQs.

 115

4.3 Trellis Coded Vector Residual Quantization (TCVRQ)

TCVRQ has been first proposed in Motta and Carpentieri [1997] as a general–purpose

sub–optimal VQ with low computational costs and small memory requirement that,

despite its good performance, permits considerable memory savings when compared to

traditional vector quantizers. In the same paper a greedy method for computing

quantization levels has been outlined, and the performances of the TCVRQ have been

experimentally analyzed.

In the following we will give a formal description of this quantizer, then present the

greedy extension of the LBG that can be used to design the quantization levels.

Definition 4.2: Let x be a random vector in the n –dimensional Euclidean space n\ ; an

N –level Exhaustive Search Vector Quantizer (or ESVQ) of n\ is a triple (,Q,)Q A P=

where:

1. 1 2{ , ,..., }NA y y y= is a finite indexed subset of n\ called codebook; iy are called

code vectors.

2. 1 2{ , ,..., }NP S S S= is a partition of n\ . The equivalence classes jS of P satisfy:

1

N
n

j
j

S
=

= \∪ ,

 for j kS S j k= ∅ ≠∩ ;

3. Q : n A→\ is a mapping that defines the relationship existing between codebook

and partitions: Q() if and only if j jx y x S= ∈ .

 116

Q (2)

x

1

Q (K)

Stage (1) Stage (2)

Q (1)
2

Q (1)
1

0

Q (1)
3

0

Q (2)
2

Q (2)
3

2

3

1

0

3

2

1

0
Q (K-1)

Q (K-1)

Q (K-1)

Q (K-1)

Stage (K-1) Stage (K)

Q (K)

Q (K)

Q (K)

Q (1) Q (2)

Figure 4.4: A K–stage Trellis Coded Vector Residual Quantizer; each node of the trellis
is associated with an ESVQ that encodes the quantization error of the previous stage.

Equivalence classes and code vectors are designed so that the mean squared error

introduced during the quantization is minimum. MSE has been chosen because it has a

simple mathematical expression that can be easily minimized and gives a good measure

of the random error introduced in the compression. However results can be generalized to

other metrics (see for example Barnes [1989]).

Definition 4.3: A Residual Quantizer consists of a finite sequence of ESVQs

1 2, ,..., KQ Q Q such that 1Q quantizes the input 1x x= and each , 1iQ i K< ≤ encodes the

error (or residual) 1 1Q()i i ix x x− −= − of the previous quantizer 1, 1iQ i K− < ≤ .

The output is obtained by summing the code words:

1
Q ()

K

i i
i

y x
=

= ∑

 117

Definition 4.4: A multistage (or layered) K –stage graph is a pair (,)G V E= with the

following properties:

1. 1 2{ , ,..., }nV v v v= is a finite set of vertices such that:

1

K

k
k

V V
=

=∪ , for 1kV V k K⊂ ≤ ≤ and

 for ,1 ,i jV V i j i j K= ∅ ≠ ≤ ≤∩ ;

2. 1{(,) : , ,1 }i j i k j kE v v v V v V k K+= ∈ ∈ ≤ < is a finite set of edges.

According to the definition, a trellis is a multistage graph since it can be divided into

layers and edges that connect the nodes from one layer to the next.

The trellis coded residual quantizer associates a residual quantizer to each node of a

trellis. Since each layer of this graph is not fully connected to the next layer (as, for

example, in the trellis described in Ungerboeck [1982]), not every sequence of residual

quantizers is allowed and, by designing the residual quantizers appropriately, a bit saving

can be achieved for each stage.

Each encoded vector is fully specified by the path on the graph and by the indexes of

the code words of the quantizers in nodes along the path.

When we use, for example, the trellis showed in the Figure 4.4 and each Q ()i j is

a N –level RVQ, an output vector is specified by 1K + bit to encode the path and

2log ()K N⋅ bit for the code vectors indices. In a residual quantizer that achieves the

same bit rate, each stage has 4N levels and 2log (4)K N⋅ bit are necessary and the trellis

configuration allows a “virtual doubling” of the available quantization levels.

 118

A formal definition of the TCVRQ is the following:

Definition 4.5: A Trellis Coded Vector Residual Quantizer is a pair (,)T G Q= where:

1. (,)G V E= is a Trellis multistage graph with V n= and K stages;

2. 1 1(, ,...,)nQ Q Q Q= is a finite set of ESVQs, V Q= and each iQ Q∈ is

associated to the vertex iv V∈ ;

3. The ESVQ iQ encodes the residual of jQ if and only if (,)i jv v E∈ .

With reference to Figure 4.4, TCVR quantization of an input vector starts from the nodes

of the first layer. The vector is encoded with the four quantizers present in the first stage

nodes. The four code vectors resulting from the quantization are subtracted from the input

and four possible residuals propagate to the next stage. Nodes at the second stage have

two entering edges, each carrying a residual. Quantization is performed on both residuals

and the one that can be better encoded (in the sense that current quantization will

generate a smaller error) is quantized and its residual propagated again. Quantization

ends at the last stage, where the path and the code vectors that generated the smaller

residual are selected.

This method uses an approach similar to Viterbi search algorithm (Viterbi and Omura

[1974]) and, in this specific framework, is not optimal. It is well known that the partitions

generated by a residual quantizer are not necessarily disjoint. This also happens with our

TCVRQ. The Viterbi search algorithm will exclude at every step one half of the paths

because they do not look promising. Unfortunately this does not mean that they cannot

generate a quantization error that is smaller than the one generated by the selected paths.

 119

When computing power is not an issue, a full search can be used on the trellis, or, as a

compromise between a Viterbi and a full search, an M–search algorithm that keeps

“alive” several paths instead of only four.

Once the trellis structure has been chosen, the design of the codebooks associated to

the node quantizers is the next problem.

A greedy codebook design was proposed in Motta and Carpentieri [1997, 1997b].

This method is based on an extension of the LBG algorithm (Linde, Buzo and Gray

[1980]). The design of the quantization levels for the ESVQs associated to each node of

the trellis is performed stage by stage, sequentially from stage 1 to stage K , by training

the LBG on the residuals generated through the entering edges.

Obviously this design is not optimal; nevertheless since it respects the structure of the

quantizer, for a small number of stages it is sufficient to achieve competitive

performance. When the number of stages increases, both greedy design and Viterbi

search show their weakness. Partitions generated by TCVRQ overlaps and two different

paths may encode equally well the same input, resulting in a waste of coding space.

We also note that, increasing of the number of stages, the performance degrade

gracefully. This is mainly due to the nature of the residual structure in which the energy

of the coding error decreases quickly with the number of stages.

 120

4.4 Necessary Condition for the Optimality of a TCVRQ

Necessary conditions for the minimum distortion of a quantizer are generally determined

by taking the derivative of the distortion function with respect to the partition boundaries

while keeping the centroids fixed and then by taking the derivative of the distortion with

respect to the centroids while keeping the partition boundaries fixed.

This technique has been widely used in literature since the unpublished report written

by Lloyd [1957] and the paper by to Max [1960] where the necessary conditions for the

optimality of a scalar quantizer are derived.

Unfortunately, this method cannot be applied directly to the determination of similar

optimality conditions in the case or a TCVRQ. The distortion introduced by a TCVRQ on

the coding of a vector 1x takes the form:

() 1

1

1 1 1
,...,

1

ˆ, ... , () P

n P n

P
p p

p
D d Q dF

=∈ℜ ∈ℜ

 
=  

 
∑∫ ∫ X X

x x

x x x x

where the sum is performed along the winning path.

In general, the joint probability density function 1,..., PdF
X X

 is not known and, because

of the residual structure, it depends, in a complicate fashion, on the sequence of

codebooks and boundaries.

In his Ph.D. Thesis, Barnes [1989] proposes a very general approach to the solution

of this problem. He starts by defining a quantizer that is not residual but that, by

construction, is completely equivalent to the RQ that must be analyzed. In Barnes [1989]

 121

the name of “Equivalent Quantizer” is used, while in Barnes and Frost [1993] the same

concept is used with the name of “Direct Sum Quantizer”.

The basic idea is to construct an ESVQ that has partitions and code vectors derived from

a residual quantizer. Optimality conditions for this ESVQ can be derived with the

technique described before and then transformed in the corresponding optimality

conditions for the original quantizer.

Definition 4.6: A Direct Sum (or Equivalent) Quantizer is a triple (, ,)e e eA Q P consisting

of:

1. A direct sum codebook A whose elements are the set of all the possible sums of

stage wise code vectors taken along all the possible paths, one vector from each

stage 1 2e PA A A A= + + +… . There are
1

Pe p
p

N A
=

= ∏ direct sum code vectors

in A . Direct sum code vectors are indexed by P –tuples 1 2(, , ,)P Pj j j=j … and

can be written as
1

() p

P
e P p

j
p=

= ∑y j y .

2. A direct sum partition eP is the collection of the direct sum cells. The Pj –th

direct sum cell is the subset ()e P nS ⊂ ℜj such that all 1 ()e PS∈x j are mapped by

the corresponding residual quantizer into ()e Py j , that is

1

1
() : () ()

P
e P p p e p

p
S Q

=

 
= = 

 
∑j x x y j .

3. The direct sum mapping :e n eQ A→\ is defined as 1() ()e e PQ =x y j if and only

if 1 ()e PS∈x j .

 122

The average distortion of the direct sum quantizer is given in terms of the known source

probability density function 1F
X

 and so its minimization is substantially easier:

() 1
1 1 1 1ˆ, , ()eD d Q dF =  ∫ X

x x x x

By construction, the direct sum single stage quantizer defined before produces the

same representation of the source input 1x as does the corresponding TCVRQ. So the

two distortions must be equal and we can minimize the distortion of a TCVRQ by

minimizing the distortion of its equivalent direct sum quantizer.

1

1
() ()

P
e p p

p
Q x Q

=

= ∑ x .

It is necessary to observe that in general, TCVRQ partitions, as well as the direct sum

cells of its equivalent quantizer, are not disjoint. Because of this reason, the codeword

must be specified by giving both the path along the trellis and the indices of the code

vectors selected along the coding path.

Theorem 4.1: For a given TCVRQ and for a given random variable 1X with probability

density function 1F
X

, let the partitions { }1 2, , , PP P P… and all the codebooks except Aρ

with {1, , }Pρ ∈ … be fixed, then the kρ

ρy quanta in Aρ that minimize the mean squared

error must satisfy:

()n
k

P P
k kS

f S d
ρρ ρρ ρ
ρ

ρ ρ ρ ρξ ξ ξ
ℜ Ξ ∈

= ∈∫ x
y x

for every {1, , }p P∈ … and {0, , 1}k N ρ
ρ ∈ −… .

 123

Proof: The proof is based on the condition for the optimality of a residual quantizer

proved in Barnes [1989] and Barnes and Frost [1993].

For a given random variable 1X with probability density function 1F
X

we want to find a

set of code vectors that locally minimizes the distortion:

1 1

2 21 1 1 1 1 1 1

all ()

() () () ()
n

P e P

e e P
mse

S

D Q f d f d   = − = −   ∑∫ ∫X X
j j

x x x x x y j x x
\

while keeping the equivalent partitions eP (or the TCVRQ partitions { }1 2, , , PP P P…)

fixed. If we assume that all the codebook, except Aρ with {1, , }Pρ ∈ … , are held fixed,

then mseD can be minimized with respect each code vector kρ

ρy in Aρ by setting the partial

derivative of mseD with respect the direct sum code vectors that contain kρ

ρy in theirs sum.

Using the distortion formulated in terms of the component code vectors and setting its

partial derivative equal to zero gives:

1
1 1 1

()

()() () 0
e P

P

e P
e P

mse S
k

D f d
ρ

ρ

 ∂ = − =   ∂  
∑∫ Xj
j

y jx y j x x
y

If we indicate with { }:P
kH j k

ρ

ρ ρ
ρ= =j the set of indices ()1 2, , , , ,P Pj j j jρ=j … … that

have ρ –th component equal to kρ , then the partial derivative assumes value:

1, if ()
0, otherwise

Pe P
k

k

Hy
y

ρ

ρ

ρ

ρ

 ∈∂
= 

∂ 

jj

 124

Solving with respect to kρ

ρy gives the result:

1

1

1 1 1

() 1

1 1

()

()

()

pP e P
k

P e P
k

P
p
jH S p

p
k

H S

f d

f d

ρ
ρ

ρ
ρ
ρ

ρρ

∈
=
≠

∈

 
 

− 
 
 =

∑ ∑∫

∑ ∫

Xj j

Xj j

x y x x

y
x x

The expression
1

p

P
p
j

p
p ρ

=
≠

∑ y represents a codeword from which the ρ –th node along the path

has been removed. We indicate this quantity as () ()
1

p

P
P e P p

j j
p
p

g y ρ
ρ ρ

ρ
=
≠

= − = ∑j j y y

Defining an indicator function ()e PS j
I

 as:

1

()

1, if ()
0, otherwise

e P

e P

S j

S j
I

 ∈
= 



x

it is possible to rewrite the expression for kρ
y and interchange the order of summation and

integration:

() 1

1

1 1 1
()

1 1
()

()

()

e Pn
P

k

e Pn
P

k

P
S j

H

k

S j
H

I g f d

I f d

ρ
ρ

ρ

ρ
ρ

ρ

∈

∈

 − 
=

∑∫

∑∫

X
j

X
j

x j x x

y
x x

\

\

For each
Pj define for all

1 ()e PS∈x j the “grafted” residual values ()1 Pgρ ρξ = −x j
.

The cell ()PGρ j contains all grafted residuals
ρξ formed from the

1 ()e PS∈x j . Its

indicator function is defined as:

()

1, if ()
0, otherwise

P

P

G

G
I ρ

ρ ρξ ∈
= 


j

j

 125

Using the relation between ρξ and 1x we can change the variable of integration:

1

1

()

()

()

()

Pn
P

k

Pn
P

k

P
G

H

k P
G

H

I f g d

I f g d

ρ
ρ
ρ

ρ
ρ

ρ
ρ

ρ ρ ρ ρ

ρ ρ ρ

ξ ξ ξ

ξ ξ

∈

∈

 + 
=

 + 

∑∫

∑∫

j X
j

j X
j

j

y
j

\

\

Expanding the probability density function 1 ()Pf g ρ ρξ + X
j as a sum of conditional

probability density functions:

()1 1 1

1
1 1

0
() () Prob

k

N
P P

k kH
k

f g f g H H
ρ

ρ ρ ρ
ρρ

ρ ρ ρ ρ ρ ρξ ξ
−

∈
=

  + = + ∈ ∈   ∑X X x
j j x x

Expressing the conditioning in terms of the ρ –th causal residual ρx we obtain:

()1 1

1

0
() () Prob

k

N
P P

k kS
k

f g f g S S
ρ

ρρ ρ ρ
ρρ

ρ ρ ρ ρ ρ ρ ρ ρξ ξ
−

∈
=

  + = + ∈ ∈   ∑X X x
j j x x

This expression can be substitute to the sum common to numerator and denominator in

the previous expression for kρ
y giving:

()

()

1 1

1

1

() ()
0

()
all

() () Prob

() Prob

P P
kP P

k k

P
P k

N
P P

k kG X G S
kH H

P P
k kG S

I f g I f g S S

I f g S S

ρ

ρ ρ ρρ ρ ρ
ρ ρ ρ ρ
ρ ρ

ρ ρρ ρ ρ
ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ξ ξ

ξ

−

∈
=∈ ∈

∈

  + = + ∈ ∈   

 = + ∈ ∈ 

∑ ∑ ∑

∑

j j X x
j j

j X x
j

j j x x

j x x

Dividing both sides by ()Prob kS
ρ

ρ ρ∈x :

() ()1()
all

() ProbP
k P k

P P
k k kGS S

f S I f g S Sρρ ρρ ρ ρρ ρ ρ
ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρξ ξ
Ξ ∈ ∈

 ∈ = + ∈ ∈ ∑ jx X x
j

x j x x

 126

Since () ()1Prob Probk kS H
ρ ρ

ρ ρ ρ∈ = ∈x x we can express the last equation as:

() ()
1()

1

()

Prob

P
kP

k

k

P
G S

HP
kS

k

I f g

f S
H

ρ ρρ
ρ ρ
ρ

ρρ ρ ρ
ρ

ρ

ρ ρ

ρ ρ

ρ

ξ

ξ
∈

∈

Ξ ∈

 + 
∈ =

∈

∑ j X x
j

x

j

x
x

The substitution of the last three relations in the expression for
k ρy completes the proof

by giving:

()n
k

P P
k kS

f S d
ρρ ρρ ρ
ρ

ρ ρ ρ ρξ ξ ξ
Ξ ∈

= ∈∫ x
y x

\

4.5 Viterbi Algorithm

The algorithm that has been used to encode a vector is based on the method introduced by

Viterbi [1967] to decode error correcting convolutional codes. Two years after its

introduction, Omura [1969] recognized that the Viterbi algorithm is equivalent to the

dynamic programming solution of the problem of finding the shortest path through a

weighted graph, so in the following, we will use “shortest” as a synonym of “minimum

cost” path.

The regular, multi stage structure of a trellis allows an efficient implementation of

this algorithm with a minimum book keeping and since its introduction it has been the

core of most error correcting decoding algorithms.

Viterbi algorithm works by finding the shortest path on a trellis whose edges have

been labeled with an additive cost metric. Starting from an initial node, a simple

 127

computation is carried out stage by stage to determine the shortest path ending in the

nodes belonging to the current stage. Each processed node is labeled with the shortest

path and with its corresponding cost. These partial solutions are sometimes called

“survivor” paths.

Let’s suppose that a node i
jn of the i –th stage has two entering edges (,)h j and

(,)k j leaving the nodes 1i
hn − and 1i

kn − in the stage 1i − and that the edges are respectively

labeled with costs ,h jW and ,k jW (see Figure 4.5). If the algorithm has already processed

the (1)i − –th stage, then the nodes 1i
hn − and 1i

kn − are labeled with the survivor paths

1 1(,)i i
h hPATH COST− − and 1 1(,)i i

k kPATH COST− − . Then the survivor path for the node i
jn

will be computed as ,((,),)i i
t t t jPATH t j COST W∗ + where

{ }
()1

,
,

argmin i
y y j

y h k
t COST W−

∈
= + .

The operator “∗ ” is used to indicate the concatenation of a new edge to a path.

Stage i-1 Stage i

,h jW

,k jW

1i
hn −

1i
kn −

i
jn

1 1(,)i i
h hPATH COST− −

1 1(,)i i
k kPATH COST− −

Figure 4.5: Viterbi algorithm

 128

Since all paths start in a node 0n and end in a node Nn , it is easy to prove that, under the

assumption of an additive metric, Viterbi algorithm labels the ending node with the

minimum cost path. The proof is carried out by induction, where the inductive step

assumes that the nodes 1i
hn − and 1i

kn − are labeled with the minimum cost paths starting in

0n and ending in 1i
hn − and 1i

kn − respectively. Since the only way to reach the node i
jn is

through the edges (,)h j and (,)k j , every path starting in 0n and ending in i
jn cannot be

shorter than ,((,),)i i
t t t jPATH t j COST W∗ + where

{ }
()1

,
,

argmin i
y y j

y h k
t COST W−

∈
= + . The

initial node 0n is labeled with an empty path of cost zero.

The TCVRQ uses a variant of this algorithm to implement a greedy search of the

representative code vector that scores a minimum reconstruction error for a given input.

The input is fed to the quantizer through the initial node, then the metric of each of the

out edges is computed. The metrics is the minimum error achieved by the small

exhaustive search vector quantizer associated to the node. The node is then labeled with

the quantization residual vector plus the edge information and the index of the code

vector selected in the node ESVQ. The computation is performed stage by stage, until the

ending node contains the survivor residual (and so its mean squared error with the input)

and the sequence of edges and code vector indices. This sequence is the information that,

stored or sent to the decoder, allows a reconstruction of the input.

Since the metric is computed on the fly and depends on the quantization choices

performed at early stages, not every combination of code vectors is examined. While this

has the advantage of drastically reducing the computing time, the search is clearly sub

optimal. In practice, the ESVQs that are associated to each node have code vectors of

 129

decreasing energy. Meaning that, because of the residual structure, the contribution of the

first stages to the final error is more relevant. This is enough to guarantee that in practice

this search achieves a quantization error that is very close to the one achieved in the case

of an exhaustive search that considers all the possible sums of code vectors along the

trellis.

4.6 Experimental Results

Vector quantization is a compression technique that can be used alone or it can be

combined with other methods to form a complex data compression system. To assess the

performance of the TCVRQ we ran three series of experiments. The first set of

experiments deals with natural data and involves direct quantization of gray–level still

images. In these experiments we used the greedy codebook design outlined before and

Viterbi.

An area in which powerful yet simple vector quantizers are extremely useful is low

bit rate speech coding; works by Juang and Gray Jr. [1982], Makoul, Roucos, and Gish

[1985], Paliwal and Atal [1991] and Bhattacharya, LeBlanc, Mahmoud, and Cuperman

[1992] all stress that efficient vector quantization is a key problem in speech coding.

Because of this, the second set of experiments assesses the performance of a TCVRQ

with a greedy designed codebook and Viterbi search when used to encode linear

prediction parameters in a low bit rate speech codec.

 130

The third series of experiments, performed on theoretical random sources, compares the

performance of the Viterbi search versus the performance of a more complex and time–

consuming full trellis search.

4.6.1 Gray–level Image Coding

TCVRQ performance has been assessed on natural data sources with several experiments

that encoded directly several gray–level images taken from a standard data set. Results in

quantizing these images were compared to those obtained by ESVQ.

The image set was composed of 28 standard gray–level images, 512x512 pixels, 256

gray levels. Images were downloaded from “ftp//links.uwaterloo.ca/pub/BragZone” and

are also available from several other web sites that collect reference images used in data

compression.

The set was partitioned into a training set, consisting of 12 images and a test set

counting 16 images. The pixels in the training set images were partitioned in vectors of

3x3 and 4x4 pixels.

Following the convention present in the literature, error was measured as Signal to

Quantization Noise Ratio (or SQNR) and expressed in dB:

()
()

2

10 2
ˆ(,) 10 log

ˆ
X

SQNR X X
X X

σ

σ
= ⋅

−

 131

Exhaustive Search Vector Quantizer
Trellis Coded Vector Residual Quantizer

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
8

9

10

11

12

13

14

15

16

17

18

S
Q

N
R

 (
dB

)

bits per pixel

Test Set (16 Images)

Exhaustive Search Vector Quantizer
Trellis Coded Vector Residual Quantizer

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
10

11

12

13

14

15

16

17

18

19

S
Q

N
R

 (
dB

)

bits per pixel

Training Set (12 Images)

Figure 4.6: SQNR for TCVRQ and ESVQ compared for different bit–rates and for

images in the training (left) and in the test sets (right).

Trellis Coded Vector Residual Quantizer

Exhaustive Search Vector Quantizer

Tree Vector Quantizer (Fixed Rate)

Tree Vector Quantizer (Variable Rate)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
6

7

8

9

10

11

12

13

14

15

16

bits per pixel

S
Q

N
R

 (
dB

)

Test Set (16 Images)

Trellis Coded Vector Residual Quantizer

Exhaustive Search Vector Quantizer

Tree Vector Quantizer (Fixed Rate)

Tree Vector Quantizer (Variable Rate)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
8

9

10

11

12

13

14

15

16

17

bits per pixel

S
Q

N
R

 (
dB

)

Training Set (12 Images)

Figure 4.7: Performance of the TCVRQ compared to J. Goldschneider's VQ package.

Figure 4.6 shows that, when used in the direct quantization of gray–level still images,

TCVRQ performs very close to a locally optimal ESVQ. For low bit rates, ranging from

0.3 to 1 bit per pixel, TCVRQ quantization error is very close to the optimum while we

gain in terms of speed and memory. Increasing the bit rate by increasing the number of

stages tests the limits of the greedy search and codebook design. Since partitions overlap,

 132

similar code vectors gets associated to different code words resulting in an inefficient use

of the coding space.

TCVRQ was also tested, on the same set of images, with another popular VQ

package, written by J. Goldschneider and freely available on Internet at the ftp address:

“ftp://isdl.ee.washington.edu/pub/VQ/code”. This package consists of two different kinds

of tree quantizers that achieve fixed and variable rate and an ESVQ that performs full

search on the codebook generated for the tree quantizers.

As it is shown in Figure 4.7, for low bit rates, trellis coded vector quantization

outperforms tree–structured quantization in terms of SQNR. It is also important to note

that, due to their structure, tree quantizers use twice the memory of an ESVQ with the

same number of levels and so their memory usage grows exponentially with the vector

size. In contrast, TCVRQ only uses an amount of memory that grows linearly with the

vector dimension.

4.6.2 Low Bit Rate Speech Coding

The fact that the TCVRQ is a general–purpose VQ, with low computational costs and

small memory requirements makes this quantizer suitable for low bit–rate speech coding

applications. High quality, low bit–rate speech codecs are necessary when speech signal

have to be encoded on a narrow–band channel while preserving both voice intelligibility

and speaker identification.

 133

V/UV Decision
Pitch Estimation

 LP Analysis
(Burg Method)

 Error
Estimation

Stochastic
Codebook

Single-Pulse
 Generator

Synthesis

LP Parameters

Excitation

V/UV DecisionV/UV

Speech

Pitch Period

 Trellis Coded
Vector Residual

Quantizer
Figure 4.8: The low bit rate speech codec used in our experiments.

We have also experimentally evaluated the performances of TCVR quantization when

used in a low bit–rate Linear Prediction based speech codec. We used the low bit–rate

speech codec depicted in Figure 4.8. This low bit rate speech codec, originally proposed

in Motta [1993], improves upon a scheme previously introduced by Atal and Remde

[1982].

The codec is a hybrid single–pulse codebook excited codec where the voice signal,

sampled at 8 KHz with 16 bit per sample, is analyzed by using linear prediction. The

signal is divided in frames of 80 consecutive samples and every frame is classified as

“Voiced” or “Unvoiced” by thresholding the peak of the autocorrelation. For voiced

frames, the period of the main pitch is also estimated.

Depending on their voiced/unvoiced classification, frames are synthesized at 2400 bit

per second by using a single–pulse or a stochastic excitation vector. If the frame is

voiced, number and positions of the pulses are computed with a dynamic programming

algorithm that minimizes the squared error between the original and the reconstructed

 134

signal. Unvoiced frames are synthesized in a CELP like manner, by choosing in closed

loop the excitation signal in a stochastic codebook that minimizes the reconstruction

error.

The TCVRQ is used to quantize linear prediction parameters that are represented in

terms of Line Spectrum Frequencies (see Rabiner and Schafer [1978]). In this kind of

codec, it is well known that the quantizer design is critical and the quality of the

synthesized signal strongly depends on accurate quantization of the linear prediction

parameters. LSFs were encoded at bit rates between 1.9 – 2.4 bit per parameter with a

TCVRQ in a 10–stages trellis configuration.

The quantizer was trained on LSFs derived from a set of 76 sentences pronounced by

different speakers of both sexes in the most common European languages: English,

French, Dutch, German, Greek, Spanish, Italian.

The test set was composed by 12 English sentences spoken by one male and one

female speaker. Used sentences are phonetically rich and well known to be hard to

encode:

• “Why were you away a year Roy ?” (Voiced);

• “Nanny may know my meaning” (Nasals);

• “The little blanket lies around on the floor” (Plosives);

• “His vicious father has seizures” (Fricatives);

• “The problem with swimming is that you can drown” (Voiced Fricatives);

• “Which tea–party did Baker go to ?” (Plosives and Unvoiced Stops).

 135

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Cepstral Distance (in dB)

Average = 1.057 dB

 > 2dB = 2.792 %

 > 3dB = 0 %

Figure 4.9: Cepstral Distance obtained quantizing the LP coefficients of the test set with

a rate of 2.4 bit per parameter.

Low bit rate speech quality cannot be measured by using signal to noise ratio. SQNR

gives an unreliable measure that is poorly correlated to the mean opinion score assessed

by human listeners. Much more informative is the use of a spectral measure known in

literature as Cepstral Distance. Based on the work by Bogert, Healy and Tukey [1963],

the cepstral distance is a perceptually motivated metric widely used to assess low bit rate

speech coding (see Rabiner and Schafer [1978] and Gersho [1994]).

 Figure 4.9 shows the distribution of the cepstral distance between the original and the

quantized linear prediction parameters. The histogram shows that the average CD

obtained on the test set is approximately 1 dB and the percentage of frames with a CD

greater than 2 dB is reasonably small. These results satisfy the conditions for a

transparent quantization expressed in Paliwan and Atal [1991]. This has been also

 136

verified by informal listening tests that confirmed that the TCVRQ is capable of

performing transparent quantization with 1.9 – 2.4 bit per linear prediction parameter.

4.6.3 Random Sources

Degradation introduced by the non–optimal Viterbi search was assessed on a number of

random sources. Random sources are commonly used in literature to evaluate scalar and

vector quantizers since they can model natural data in a controlled manner.

The sources generate data according to the distributions: Uniform, Gaussian (0,1)N ,

Laplacian (0,1)L , Bimodal () 0.3 (1,1) 0.7 (1,1)f x N L= ⋅ − + ⋅ and Gauss–Markov with

coefficients 1 1.515a = and 2 0.752a = − . Random sources with these parameters were

also used in Marcellin [1987] and Barnes [1989].

 The Gauss–Markov source is the only one in this group that is not memoryless.

Bps Uniform Gauss Laplace Bimodal Markov
0.3 1.24 1.17 1.18 2.20 4.40
0.6 2.80 2.52 2.58 4.16 7.63
0.9 4.56 3.95 4.03 6.50 10.19
1.2 5.89 5.19 5.21 7.80 12.20
1.5 7.23 6.49 6.43 9.03 13.98
1.8 8.70 7.84 7.67 10.32 15.51
2.1 10.00 9.11 8.85 11.46 16.86
2.4 11.31 10.38 10.05 12.57 18.10
2.7 12.70 11.70 11.22 13.68 19.27
3.0 13.99 12.96 12.37 14.75 20.39

Table 4.1: TCVRQ on random data sources, Viterbi search. SNR expressed in dB.

 137

Bps Uniform Gauss Laplace Bimodal Markov
0.3 1.24 1.17 1.18 2.87 4.40
0.6 2.82 2.54 2.63 5.41 7.77
0.9 4.64 4.04 4.19 7.46 10.48
1.2 6.26 5.55 5.57 8.86 12.77
1.5 7.82 7.11 7.02 10.26 14.72
1.8 9.44 8.75 8.53 11.74 16.49
2.1 11.08 10.35 10.01 13.10 18.19
2.4 12.77 11.98 11.48 14.51 19.61

Table 4.2: TCVRQ on random data sources, full trellis search. SNR expressed in dB.

Bps Uniform Gauss Laplace Bimodal Markov
0.9 5.59 4.74 5.04 7.64 11.47
1.2 8.13 7.20 7.47 10.27 14.62

Table 4.3: Reference ESVQ on random data sources. SNR expressed in dB.

Exploitation of the inter symbol dependence is evident in the Tables 4.1, 4.2 and 4.3.

 Quantization error on the Gauss–Markov source is always significantly better than

the other sources at any bit rate. In these experiments random data are first generated,

then grouped in vectors of ten values and quantized. The trellis has always the same

number of levels per stage; higher bit rate is achieved by increasing the number of stages.

Tables 4.1 and 4.2 show the SNR in dB introduced by the trellis coded vector quantizer

with Viterbi and with a full codebook search and, as a reference, the error introduced by

an exhaustive search vector quantizer whose codebook was designed with LBG

algorithm.

Table 4.3 shows reference results obtained on the same sources by the exhaustive

search vector quantizer. Not every point is present in the Table 4.3 due to the complexity

of the ESVQ and TCVRQ with full search. Nonetheless it is possible to observe that the

 138

performance of the TCVRQ is close to that of the ESVQ and the degradation introduced

by the Viterbi algorithm increases slowly with the number of stages.

 139

LOSSLESS IMAGE CODING

5.1 Background

Most applications of image compression deal with images that will be used in

frameworks that do not require extreme fidelity. If a photographic picture is compressed

by using JPEG or JPEG–2000, two state of the art lossy compression algorithms, most

viewers will not be able to perceive any quality degradation from the original. There are

also situations like the transmission of a picture over a low bandwidth channel like the

Internet, where high compression is much more desirable than an exact reproduction of

the original.

One of the main drawbacks of the lossy compression algorithms that are commonly

used for image compression is that, while the overall quality of the picture can be

controlled to some extent, nothing can be said about the error that affect single pixels.

This is not sufficient in applications, like medical imaging for example, where

uncontrolled distortion in a portion of the image may change significantly the

interpretation of the data. In these cases, it is necessary to use lossless compression

algorithms, i.e. algorithms in which the compression is reversible and no information is

lost in the coding process.

 140

During JPEG standardization, which was mainly focused on the lossy compression of

natural images, the committee felt the need for a lossless coding mode that could

complete the standard. After evaluating few proposals, a lossless method based on the use

of a set of fixed predictors was added to the draft. However, it was immediately clear that

the lossless mode added to JPEG was not adequate, so the committee decided to issue a

Call for Contributions for a new lossless standard that was named ISO/IEC JTC 1.29.12,

also known as lossless JPEG or JPEG–LS. In the same call for contribution, the need for

a near–lossless mode was also anticipated. In near–lossless mode, some error can be

introduced in the coding process but it must be possible to specify a tight upper bound on

the maximum error that is introduced on each pixel. Immediately after the call for

contributions, the field of gray–level lossless image compression received a renewed

attention from many researchers in the data compression community because the design

of an efficient lossless compressor turned out to be a challenging task.

The contributions that were submitted were all effective in compressing images,

while keeping low the computational complexity and the memory requirements. On the

other hand, most of them used ad–hoc heuristics and, even if further improvements

appeared unlikely, it was not completely clear how much their compression was close to

the entropy of the image.

The best proposal in terms of compression ratio was the Adaptive Lossless Image

Codec (CALIC) presented by Wu and Memon [1996, 1997], however due to its higher

complexity, LOCO–I, proposed by Weinberger, Seroussi and Sapiro [1996] was selected

as the core of the final draft.

 141

In a subsequent paper [1996] Wu discussed some of the experiments performed during

the development of CALIC and concluded that:

• Linear prediction is not effective in capturing edges and fast transitions in image

luminosity;

• Global optimization seems unable to improve the performance of CALIC;

• CALIC achieves a data rate extremely close to the image entropy.

Contrarily to Wu’s findings, Meyer and Tischer [1997, 1998] were able to design TMW,

a lossless coding algorithm that, on the same standard test images, improves upon

CALIC’s compression. Even if TMW has a computational complexity several orders of

magnitude greater than CALIC, the results were anyway surprising because TMW uses a

two–pass global optimization and a blending of multiple linear predictors. In a TMW

compressed file the encoded data are preceded by a header that contains the parameters of

the model determined in the fist pass of the encoding.

The results achieved by TMW re–opened the question regarding the effectiveness of

linear prediction in lossless image coding. In a following paper Wu, Barthel and Zhang

[1998b] studied linear predictors optimized on a pixel–by–pixel basis and concluded that

single–pass linear prediction can be used to achieve good compression in gray–level

images. Also Meyer and Tischer [2001] have recently proposed a simple algorithm based

on single–pass linear prediction that is able to improve upon CALIC’s results.

Most literature dealing with lossless image compression focuses on continuous tones

gray–level images. This is not a loss of generality since both color and color–mapped

images can be preprocessed and then compresses as if they were gray–level images. In

lossless compression, standard color transformations like YUV cannot be used because

 142

of their lossy nature, so to compress color images, the color planes must be first

decorrelated with the help of a lossless color transform and then each color component

can be treated as a stand alone gray–level image. Papers that address more sophisticated

approaches, like the ones by Wu, Wai–Kim Choi and Memon [1998] and Barequet and

Feder [1999], show that the gain derived from a more sophisticated decorrelation is often

marginal. Even color–mapped images (frequently called “synthetic” because most of

them are computer generated), when not compressed by means of ad–hoc algorithms

(Ausbeck [1998]), can be treated as gray–level continuous tone images after reordering

and compacting the indices representing the colors. More details on the actual state of the

art in lossless image coding can be found in Carpentieri, Weinberger and Seroussi [2000].

The compression of continuous tone gray–level images being general enough, we

concentrate our attention on the compression of this particular data type. The images

target of our investigation are discrete bi–dimensional signals, representation of natural

scenes, in which an integer number measuring the brightness of the pixel is associated to

a pair of spatial coordinates. Pixel values typically fall in the ranges [0 – 31], [0 – 255] or

[0 – 4095], requiring respectively 4, 8 and 12 bits for the encoding of each pixel. While

images that are 8 bit per pixel are common in literature, 12 or even 16 bit per pixel are the

preferred choice when dealing with medical or scientific imagery.

The compression method that we propose and study here is based on a single step,

adaptive linear prediction combined with a classification mechanism. The predictor is

optimized on a pixel–by–pixel basis on a training set that is selected by the classifier in

order to maximize the similarity of the samples with the context of the pixel being

predicted. This method allows the combination of context–based coding and prediction.

 143

Preliminary results on the application of this method were presented and discussed in

Motta, Storer and Carpentieri [1999, 2000b]. This algorithm, that we called ALPC,

acronym for Adaptive Linear Prediction and Classification, uses a set of linear predictors

from which, for every pixel, one predictor is selected and refined with a an optimization

procedure. The refinement uses samples taken from a causal window. Not all samples in

the causal window are used to refine the predictor. The classification selects a fraction of

samples that have a context (set of causal neighbors) closer to the context of the pixel

being encoded. This classification limits the computational complexity and improves

prediction. The size of the causal window used in the classification controls the locality

of the adaptation. Large windows result in a more general predictor, while small windows

follow more closely the local statistics of the image.

Given the backward adaptation and the lossless nature of the compression, the

decoder is able to perform the same steps and derive an identical refined predictor.

Finally, entropy coding is used to represent the prediction error efficiently.

Preliminary studies on this method were based on a Gradient Descend minimization

while the best results were obtained with an improved version that optimizes the

predictor with a Least Squares minimization.

Independently on the minimization procedure, the algorithm bases the prediction on a

causal context centered on the current pixels. Missing context pixels encountered during

the compression of the image borders are set to a default value.

The context consists of all the pixels that have a Manhattan Distance smaller then a

given constant. Manhattan distance between two points p and 'p having respectively

coordinates (,)x y and (', ')x y is defined as: (, ') ' 'M p p x x y y= − + − .

 144

31

3

22

1

2

2

3

3

3

3

X

Figure 5.1: Context formed by pixels with Manhattan distance of three or less.

for every pixel (,)p x y in the input image do begin
Collect the pixels in , ()x y pW R and their context

Determine n centroids 1 ,..., nC C by applying LBG on

the contexts in , ()x y pW R

Let 1 ,..., nK K be the corresponding clusters

Classify collected pixels with respect to the clusters
Classify the context of the current pixel (,)p x y ;

let k be the index of the cluster
Let iP be the predictor that achieves smallest error

on kK among the predictors 1,..., nP P

Refine the predictor iP on the pixels in kK

Use the refined predictor iP′ to predict (,)p x y

Encode the prediction error (,)e x y with an entropy encoder
end

Figure 5.2: Pseudocode description of the adaptive prediction.

A context that uses pixels having Manhattan distance of three or less from the current

pixel is depicted in Figure 5.1. Distances of two or less and three or less achieve good

compression and suffice to the characterization of the relation between a pixel and its

context. Larger contexts increase the amount of computation while resulting in little or no

improvement on the set of standard test images that we used.

 145

In our work, we addressed the problem of gray–level lossless image compression

exclusively from the point of view of the achievable compression ratio, without being

concerned about computational complexity or memory requirements.

5.2 Adaptive Linear Prediction Coding

A pseudocode description of ALPC is given in Figure 5.2. The input image is traversed in

raster scan order (top to bottom and left to right) and encoded in a single pass. The

luminosity of each pixel (,)p x y is predicted according to a weighted sum of its context.

The result is rounded to the nearest integer. If a context of size six is used (pixels at a

distance (, ') 2M p p ≤ from p) the equation of the prediction (,)p x y� takes the form:

0 1 2

3 4 5

(,) ((, 1) (1, 1) (, 1)
(1, 1) (2,) (1,))

p x y round w p x y w p x y w p x y
w p x y w p x y w p x y

= ⋅ − + ⋅ − − + ⋅ − +
+ ⋅ + − + ⋅ − + ⋅ −

�

Since the weights are adaptive, the order of the pixels in this equation is not relevant and

we can rewrite the equation as:

' (,) 2

(,)
i i

i i
p M p p

p x y round w p
∋ ≤

 
= ⋅ 

 
∑�

The context of (,)p x y has a fixed shape and only the weights iw are allowed to adapt

during the encoding. After the prediction, the residual (,)e x y of the pixel (,)p x y is

calculated by subtracting the prediction from the current pixel:

(,) (,) (,)e x y p x y p x y= − �

 146

Current Pixel
 and Context

2Rp+1

Rp+1

Encoded
 Pixels

Window Wx,y(Rp)

Figure 5.3: Prediction window , ()x y pW R of radius pR centered on (,)p x y .

If the pixels assume values in the range [0, , 1]α −… then the prediction error will be in

the alphabet [1, , 1]α α− + −… . Since the prediction is based on previously encoded

pixels, the decoder knows their exact value. This information can be used to reduce the

range of the prediction error with a mapping called Modulo Reduction. Modulo reduction,

described in Weinberger, Seroussi and Sapiro [1996], is commonly used in lossless

encoders like, for example, JPEG–LS. It allows a better entropy coding and, when the

error distribution is shaped like a Laplacian, this mapping doesn’t change significantly

the distribution. Modulo reduction has been used in the version of ALPC that refines the

predictor with the least squares minimization and it is not necessary when modulo and

sign of the prediction error are encoded separately.

Before encoding a pixel, the predictor’s weights iw are adaptively changed in order

to model local characteristics of the image. The optimal predictor for the pixel being

 147

encoded is defined as the one that minimizes the energy of the prediction error on all

samples in the causal window , ()x y pW R of radius pR and centered on (,)p x y :

() ()
,

2

(', ') ()

min (,) min (', ')
i i

x y p
w w p x y W R

E x y e x y
∈

 
=   

 
∑

Adaptation uses a backward predictor. Backward prediction was preferred because it does

not require any side information to be sent to the decoder. On the other hand, it also has

as the well–known drawback of having poor performance in the presence of edges. This

problem is partially mitigated by the use of the classification because classification

selects in the window , ()x y pW R a subset of pixels that have a context most similar to the

context of the current pixel. The predictor is further refined only on these pixels.

The radius pR of the window , ()x y pW R (see Figure 5.3) is one of the essential

features of ALPC. Its value affects the prediction quality because if pR is too small, only

a few samples are in the window and the predictor “overspecializes”, making big errors

in the presence of edges. On the other hand, too many samples in the window (pR too

big) tend to generate predictors that are not specific enough to remove local variations in

the image. Our algorithm keeps pR constant and equal for all the images, however it is

possible to design algorithms that adaptively change the window radius to follow the

characteristics of the image.

As anticipated, optimization only refines the predictor on a subset of the samples

collected in the window. The rationale is that we want the predictors' weights to be

representative of the relation existing between the context and the pixel being encoded.

By discarding samples that have a context that is “too different” from the one of the

 148

current pixel, we can specialize the prediction and follow fine periodic patterns in the

window.

This approach is completely different from the ones commonly found in the literature

that use a simple pixel predictor and compensate the poor prediction with a sophisticated

entropy coding that models the error distribution according to the context in which it

occurs (see for example LOCO–I, Weinberger, Seroussi and Sapiro [1996]).

ALPC’s classification unifies contextual encoding and prediction into a single step.

Samples are grouped into clusters of pixels with a similar context by using a modified

Generalized Lloyd Algorithm (Linde, Buzo and Gray [1980]). This classification method,

although not optimal in our framework, is able to improve the performance of the basic

adaptive predictor.

Once the samples in the window are classified, a representative centroid is

determined for each cluster. The cluster of pixels with the minimum squared error

between the corresponding centroid and the context of the current pixel is selected. The

algorithm then chooses from the pool of available predictors the one that achieves the

lowest prediction error on the centroid of the selected cluster.

Before being used, this predictor is refined with a Gradient Descend optimization on

the samples in the selected cluster. Gradient descend is a successive refinement algorithm

that at every step changes the predictor weights until the prediction error drops below a

given threshold. At each step t of the optimization process, the weights iw of the

predictor are changed according to:

(1) ()i i
i

Ew t w t
w

µ ∂
+ = − ⋅

∂

 149

where E is the error energy and µ a small constant.

When the number of samples in the window is small, for example when (,)p x y is

close to the top or to the left border of the image, a default fixed predictor is used and the

gradient descend optimization is not applied. Our implementation uses the classic “planar

predictor” (Weinberger, Seroussi and Sapiro [1996]) as a default:

(,) (1,) (1, 1) (, 1)defp x y p x y p x y p x y= − − − − + −�

The predictor with the refined weights is stored and used in the next iterations.

Because of the refining process, predictor initialization is not an issue and 1,..., nP P can be

initialized with random values without compromising the performance. Better

initializations, which use for example the predictors in JPEG–LS, only result in a slightly

faster convergence of the gradient descend. Reinitializing the predictors for every pixel,

instead of using the previous refined weights, results in a slower convergence, and doesn't

improve compression.

In the literature, (see, for example, Howard [1989]) it is commonly assumed that the

error generated during the prediction of images can be closely approximated by a

Laplacian distribution. Even in our case, adaptive linear prediction generates a skewed

Laplacian–like distribution, centered on zero and with long tails.

Prediction error is encoded with an Arithmetic Encoder (Witten, Neal and Cleary

[1987]). Arithmetic encoding divides the coding step into the determination of a

probabilistic model for the source and in the entropy coding based on that model. This

results in a very general framework allowing an easy adaptation of the model. ALPC

determines the probability distribution of the error in a causal window centered on the

current pixel and similar to the one we used in the prediction step.

 150

During the experiments, we observed that 95% of the errors are concentrated in an

interval [, ,]−∆ ∆… substantially narrower than the error range [, ,]Min Max… . Typical

values for ∆ are in the range [8, , 20]… while Min and Max span, in general, the range

[1, , 1]α α− + −… . Since we determine the error distribution in a window, only a small

number of samples are collected for each pixel and the distribution tails that have low

probability, are not represented properly.

This problem, known as Zero Probability (see Witten [1991]) consists in the proper

modeling of symbols that, because of their low probability of occurrence, have never

been observed before. The solution that we used consists in dividing the errors in two

sets: the “typical” errors that fall in the range [, ,]−∆ ∆… , and the “non–typical” errors,

which fall outside of that range. A non–typical error is coded by using an alternative

model and its code is preceded by a special “escape” symbol that is not in the alphabet.

When the decoder receives the escape symbol, it switches to the alternative model to

decode the non–typical error that follows in the bit stream.

The parameter ∆ , as well as Min and Max are determined by an off–line

observation of the errors. Sending these parameters to the decoder has a cost that is

negligible from the point of view of the compressed file size.

Errors are also encoded by separating magnitude and sign. This method has the

advantage of pooling together positive and negative magnitudes in the symmetrical

distribution and provides better modeling when only a few samples are in the window.

The error sign has no correlation with the error magnitude, and two different probabilistic

models are used for the encoding.

 151

Our implementation uses an arithmetic encoder that switches between four different

models:

• ACM_P A model for the parameters. It is used only to transmit the header

of the compressed file and the global parameters (, , ,)eMin Max R∆ ;

• ACM_M Used to encode the magnitude of the typical errors. It has symbols

in the range [0, ,]∆… plus an extra symbol (1)∆ + that represents the escape;

• ACM_E An adaptive model used to encode the magnitude of the non–

typical errors. It has symbols in the range ()1, ,max ,Min Max ∆ + … ;

• ACM_S Used to encode the error sign. It has the symbols { }0,1 used to

represent positive and negative errors.

Unlike the other three models, ACM_M is not automatically updated and the probability

distribution for the magnitude of the prediction error (,)e x y is determined each time by

collecting the previously encoded error magnitudes in a window , e()x yW R or radius eR .

Since the error is distributed according to a Laplacian distribution, we have also

experimented with a Golomb entropy encoder. The parameter that characterizes the

encoder is determined in the causal window , ()x y eW R as well.

The compression was assessed on set of continuous tones gray–level images digitized

at a resolution of 8 bit per pixel (256 gray levels). The test set includes the nine, 720x576,

images that compose the test set used in the JPEG–LS standardization. These and the

other images that are widely used in the existing data compression literature allow a

 152

comparison with existing algorithms. Thumbnails of the images used in the experiments

are shown in Appendix A.

2.50

3.00

3.50

4.00

4.50

5.00

5.50

ba loon barb barb2 board boa ts g irl go ld hotel zelda

Image

bi
t p

er
 p

ix
el

LOCO-I (Error Entropy a fter Context Modeling)
LOCO-I (Entropy of the Pred ic tion Error)
2 Pred ic tors, Rp=10, Sing le Adap tive AC

Figure 5.4: Comparisons with the entropy of the prediction error in LOCO–I.

Predictors 1 2 4 6 8
Baloon 154275 150407 150625 150221 150298
Barb 227631 223936 224767 225219 225912
Barb2 250222 250674 254582 256896 258557
Board 193059 190022 190504 190244 190597
Boats 210229 208018 209408 209536 210549
Girl 204001 202004 202326 202390 202605
Gold 235682 237375 238728 239413 240352
Hotel 236037 236916 239224 240000 240733
Zelda 195052 193828 194535 195172 195503
Tot.(bytes) 19061881893180190469919090911915106

Table 5.1: Compressed File Size vs. Number of Predictors. Results shown for a window
of radius 6pR = , error is coded by using a single adaptive arithmetic encoder.

 153

Rp 6 8 10 12 14
Baloon 150407 149923 149858 150019 150277
Barb 223936 223507 224552 225373 226136
Barb2 250674 249361 246147 247031 246265
Board 190022 190319 190911 191709 192509
Boats 208018 206630 206147 206214 206481
Girl 202004 201189 201085 201410 201728
Gold 237375 235329 234229 234048 234034
Hotel 236916 235562 235856 236182 236559
Zelda 193828 193041 192840 192911 193111
Tot. (bytes) 1893180 1884861 1881625 1884897 1887100

Table 5.2: Compressed File Size vs. window radius pR . The number of predictors used
is 2; prediction error is entropy encoded by using a single adaptive arithmetic encoder.

Re 6 8 10 12 14 16 18 20
Baloon 147518 147227 147235 147341 147479 147620 147780 147885
Barb 218411 216678 216082 215906 215961 216135 216370 216600
Barb2 237523 234714 233303 232696 232455 232399 232473 232637
Board 187058 186351 186171 186187 186303 186467 186646 186800
Boats 203837 202168 201585 201446 201504 201623 201775 201943
Girl 198050 197243 197013 197040 197143 197245 197356 197465
Gold 232617 230619 229706 229284 229111 229026 229012 229053
Hotel 231125 229259 228623 228441 228491 228627 228785 228949
Zelda 190311 189246 188798 188576 188489 188461 188469 188500
Tot.(bytes) 18464501833505 1828516 1826917 18269361827603 18286661829832

Table 5.3: Compressed File Size vs. error window radius eR . The number of predictors is
2 and 10pR = . Modulo and sign of the prediction error are encoded separately.

 154

2.50

3.00

3.50

4.00

4.50

5.00

baloon barb barb2 board boats girl gold hotel zelda

Image File

bi
t p

er
 p

ix
el

LOCO-I
UCM
SUNSET
CALIC
TWM
ALPC (P=2, Rp=10)

Figure 5.5: Graphical representation of the data in Table 5.5.

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

Figure 5.6: Magnitude (left column) and sign (right column) of the prediction error in
two images of the Test Set. Images are "board" (top row) and "hotel" (bottom row).

 155

 GR AC GR–W AC–W
Airplane 3.80 3.81 3.66 3.62
Airport 6.65 6.65 6.69 6.60
Crowd 4.31 4.21 3.98 4.03
Goldhill 4.71 4.70 4.69 4.66
Hursley 4.79 4.77 4.54 4.55
Lake 5.07 5.11 4.97 4.93
Landsat 4.16 4.14 4.09 4.04
Lax 5.84 5.83 5.81 5.75
Lena 4.18 4.21 4.12 4.05
Lenna 4.05 4.09 3.97 3.91
Mandrill 5.76 5.79 5.73 5.65
Milkdrop 3.71 3.66 3.64 3.57
Mri 3.49 3.48 3.25 3.13
Mskull 2.78 2.57 2.62 2.26
Peppers 4.27 4.25 4.22 4.16
Woman1 4.65 4.64 4.52 4.49
Woman2 3.26 3.28 3.14 3.06
Xray 2.63 2.63 2.52 2.56
Average 4.45 4.43 4.35 4.28

Table 5.4: Comparison between four entropy coding methods: Golomb–Rice coding
(GR), Arithmetic Coding (AC), Golomb–Rice with the model in a window , ()x y eW R

(GR–W), Arithmetic Coding with the model in a window , ()x y eW R (AC–W). Results are
shown in bit per pixel. Test images are 512x512 (except mri and xray that are 256x256),

8 bit/pixel.

 CALIC LOCO sunset UCM TMW ALPC
Baloon 2.78 2.90 2.89 2.81 2.60 2.84
Barb 4.31 4.69 4.64 4.44 4.24 4.16
Barb2 4.46 4.69 4.71 4.57 3.83 4.48
Board 3.51 3.68 3.72 3.57 3.27 3.59
Boats 3.78 3.93 3.99 3.85 3.53 3.89
Girls 3.72 3.93 3.90 3.81 3.47 3.80
Gold 4.35 4.48 4.60 4.45 4.22 4.42
Hotel 4.18 4.38 4.48 4.28 4.01 4.41
Zelda 3.69 3.89 3.79 3.80 3.50 3.64
Average 3.88 4.06 4.08 3.95 3.63 3.91

Table 5.5: Compression results (in bit per pixel). Test images are 720x756, 8 bit/pixel.
The number of predictors, refined with the gradient descend, is 2 and 10pR = . Entropy

encoding is performed with an arithmetic coder and the model is determined in a window
of radius 10eR = .

 156

 CALIC LOCO ALPC
Airplane 3.54 3.61 3.62
Airport 6.55 6.71 6.60
Crowd 3.76 3.91 4.03
Goldhill 4.63 4.71 4.66
Hursley 4.39 4.43 4.55
Lake 4.90 4.98 4.93
Landsat 3.99 4.08 4.04
Lax 5.63 5.78 5.75
Lena 4.11 4.25 4.05
Lenna 3.94 4.07 3.91
Mandrill 5.74 5.89 5.65
Milkdrop 3.56 3.63 3.57
Mri 3.15 3.36 3.13
Mskull 2.16 2.23 2.26
Peppers 4.20 4.29 4.16
Woman1 4.54 4.67 4.49
Woman2 3.20 3.20 3.06
Xray 2.59 2.46 2.56
Average 4.26 4.36 4.28

Table 5.6: Final compression results (in bit per pixel). Test images are 512x512 (except
mri and xray that are 256x256), 8 bit/pixel. ALPC uses two predictors optimized with the
gradient descend and 10pR = . Entropy encoding is performed with an arithmetic coder

and the model is determined in a window of radius 10eR = .

Figure 5.4 compares the entropy of the prediction error achieved by our adaptive

predictor with the prediction error achieved by the fixed predictor used in LOCO–I. The

results were obtained by using 2 predictors and by optimizing the predictors in a window

of radius 10pR = . For comparison also the overall performance of LOCO–I, after the

context modeling is reported. Understandably our adaptive linear predictor is more

powerful than the fixed predictor used in LOCO–I. However, as it is evident from Figure

5.6, adaptive prediction does not have enough power to capture edges and sharp

transitions, present for example in the picture “hotel”.

 157

Tables 5.1, 5.2 and 5.3 summarize the experiments we made in order to understand the

sensitivity of the algorithm to its parameters. In these experiments, we measured the

variations on the compressed file size when only one of the parameters changes.

In Table 5.1, the number of predictor is changed while keeping the window radius

6pR = . In Table 5.2, compression performance is evaluated with respect to the changes

in the window size.

Experiments described in Tables 5.1 and 5.2, were performed using a simple adaptive

arithmetic coder that gives a close approximation of the first order entropy of the

prediction error.

Table 5.3 reports experiments when the number of predictors is kept fixed to 2,

10pR = and the performance is evaluated encoding the prediction error with the multiple

model arithmetic encoder described before. Results are reported for value of Re, (size of

the window in which the model is determined), varying between 6 and 20. Table 5.4

reports experiments made by replacing arithmetic coding with computationally less

intensive Golomb coding.

Comparisons with some popular lossless image codecs are reported in Tables 5.5 and

5.6 and Figure 5.5. Results show that ALPC achieves good performance on the majority

of the images in the test set. The cases in which CALIC maintains its superiority confirm

that linear prediction, may not be adequate to model image edginess. On the other hand,

unlike CALIC, ALPC doesn't use any special mode to encode high contrast image zones,

and our results are slightly penalized by images like “hotel” that have high contrast

regions. A closer look to the magnitude and sign of the prediction error for “board” and

 158

“hotel” (two images in the test set), shows that most edges in the original image are still

present in the prediction error (see Figure 5.6).

5.3 Least Squares Minimization

Optimizing the predictor with the gradient descend has the disadvantage of having slow,

image dependent, convergence. In their papers, Meyer and Tischer [2001], Wu, Barthel

and Zhang [1998] proposed prediction algorithms based on least square optimization.

Unlike in speech coding, when predicting images it is not possible to use Levinson–

Durbin recursion to solve the system of equations to derive the predictor, so least squares

minimization is a simple and viable alternative.

To find the best predictor for the pixel (,)p x y we start selecting and collecting from

a causal window , ()x y pW R a set of pixels ip and their contexts ic . The order in which the

context pixels are arranged in the column vector ic is not important as long as it is

consistent for every vector. A matrix iA and a vector ib are computed as:

T
i i iA c c= ⋅

i i ib p c= ⋅ .

Finally, matrices iA and the vectors ib are added together to form ,x yA and ,x yb as in:

,x y i
i

A A= ∑

,x y i
i

b b= ∑

 159

The predictor’s weights ,x yw that minimize the expectation of the squared errors are

obtained by solving the system of equations:

, , ,x y x y x yA w b= ⋅

A substantial speed up can be achieved by pre–computing the matrices iA associated

with every pixel.

For the solution of the system of the equations , , ,x y x y x yA w b= ⋅ we have used the Gnu

Scientific Library, a standard library available on UNIX platforms under the GNU

license.

When only a small number of samples are present in the window, the predictor

overspecializes and its weights assume values that can be very large. It is also possible

that the matrix ,x yA is singular. In these cases, the default predictor is used instead.

Substituting in ALPC gradient descend with least squares minimization results in a

much faster procedure. This allows, in turn, to experiment with bigger windows. In order

to improve ALPC compression we have also experimented with different classification

methods. Since the contexts that we want to use for the predictor computation must be

similar to the current context, we select a fraction of contexts in the window , ()x y pW R

that have smallest Euclidean distance from the current context.

When calculating the Euclidean distance, it is possible to give different importance to

the pixels in the context by weighing appropriately the corresponding difference. The set

of weights that gave better results are directly proportional to the existing correlation

between the pixel being encoded and the pixel in the context.

 160

ALPC bpp TMW Glicbawls CALIC G.Descend L.Squares
AIRPLANE 3.54 3.62 3.602

Airport 6.55 6.60 6.632
Ballon 2.60 2.64 2.78 2.84 2.748
Barb2 4.24 4.31 4.46 4.48 4.417
Barb 3.83 3.92 4.31 4.16 4.007
Board 3.27 3.39 3.51 3.59 3.484
Boats 3.53 3.63 3.78 3.89 3.775
Crowd 3.76 4.03 3.971
Girl 3.47 3.59 3.72 3.80 3.688
Gold 4.22 4.28 4.35 4.42 4.392
Goldhill 4.63 4.66 4.635
Hotel 4.01 4.18 4.18 4.41 4.336
Hursleyhouse 4.39 4.55 4.548
Lake 4.90 4.93 4.876
Landsat 3.99 4.04 4.039
Lax 5.63 5.75 5.780
Lena 4.11 4.05 4.030
Lenna 3.94 3.91 3.880
Mandrill 5.74 5.65 5.683
Milkdrop 3.56 3.57 3.560
Mri 3.15 3.13 2.826
Mskull 2.16 2.26 2.254
Peppers 4.20 4.16 4.161
Woman1 4.54 4.49 4.508
Woman2 3.20 3.06 3.032
Xray 2.59 2.56 2.452
Zelda 3.50 3.54 3.69 3.64 3.603

TOTAL 3.630 3.720 4.206 4.240 4.189
Table 5.7: Final compression results (in bit per pixel). The increment in performance

observed in ALPC with the least squares minimization is mostly due to the possibility of
using a context of bigger size.

Table 5.7 summarizes the results obtained by the improved algorithm on the set of test

images. As it is possible to see, when using least squares and the new classification, our

algorithm improves upon CALIC on most images in the test set.

 161

This suggests that, since ALPC combines linear prediction and classification, with a more

sophisticated encoding of the prediction error, our algorithm can be even more

competitive and finally achieve compression ratio even comparable to TMW.

 162

LOW BIT RATE VIDEO CODING

6.1 Background

Current state of the art video compression systems such as H.261, H.263, MPEG–1 and

MPEG–2 are hybrid encoders combining motion compensated prediction with block

based discrete cosine transform (DCT) coding. Each video frame is first partitioned into

macroblocks. Then each macroblock is encoded as a motion compensated difference with

respect to a previously encoded macroblock (Inter frame coding or P–mode) or by direct

quantization of its discrete cosine transform coefficients (Intra coding or I–mode). While

matching a preset bit rate, the encoder tries to maximize the peak signal to noise ratio

(PSNR) of the encoded video sequence.

Since inter and intra coding of the same macroblock result in different rate/distortion

performance, most encoders use an empirical method to decide whether a macroblock

should be inter or intra coded. A common heuristic compares the absolute value of the

motion compensated prediction error with a fixed threshold; when the prediction error is

below the threshold, motion compensated prediction is chosen over intra coding.

Unfortunately, due to the high variability of the video signal, it may be hard not to exceed

the target bit rate. An output buffer amortizes small discontinuities in the final bit rate

however, when the buffer capacity is exceeded, video encoders are forced to skip frames

 163

in order to match the required rate without compromising the quality of the individual

frames.

In current video encoding standards, a two-layer rate control strategy keeps the

coding rate as close as possible to a preset target. The macroblock layer operates at the

lower level. Given the number of bits available for the coding of the current frame and

some statistics on the most recently encoded macroblocks, it decides how to allocate the

available bits to the macroblocks in the current frame. Depending on the frame

complexity, the encoding may use more bits than the bits originally allocated, so a

higher–level frame layer rate control monitors the output buffer and decides whether to

skip one or more frames to allocate time for the transmission of the buffer content. Both

layers have been widely studied and optimization issues relative to rate control

algorithms have been considered by a number of authors.

Kozen, Minsky and Smith [1998] use a linear programming approach to determine

the optimal temporal down sampling in an MPEG encoded sequence. Their algorithm

discards a fixed number of frames while minimizing the interval of non–playable frames

due to frame dependency. Wiegand, Lightstone, George Campbell and Mitra [1995]

present a dynamic programming algorithm that jointly optimizes frame type selection and

quantization steps in the framework of the H.263 video coding. In their work,

optimization is performed on each macroblock on a frame–by–frame basis. Experimental

results show consistent improvement upon existing methods.

Lee and Dickinson [1994] address a similar problem in the framework of MPEG

encoding, where each group of frames is isolated and both frame type selection and

quantization steps are jointly optimized with a combination of dynamic programming and

 164

Lagrange optimization. Unfortunately, their experiments show very little improvement,

probably because they use a simplified approach that restricts the number of possible

quantization steps to a very small set of values.

Sullivan and Wiegand [1998] and Wiegand and Andrews [1998] present a

macroblock rate control that is based on rate–distortion optimization. Their approach

constitutes the basis for the H.263+ Test Model Near–Term Version 11 (or TMN–11, see

Wenger at al. [1999]). The optimization, based on Lagrange multipliers, shows consistent

improvements even when the multiplier is kept constant in order to reduce the

computational complexity.

In the following we address the problem of designing a frame layer control algorithm

that can be used to minimize the number of skipped frames in a low bit rate video

sequence. We assume that the video sequence is encoded at constant bit rate by any of the

standard video encoders, like the ones in the MPEG family. As we will see, the reduction

of skipped frames allows more frames to be transmitted without increasing the bit rate

and, surprisingly, without compromising the per-frame average final SNR. The visual

quality also improves because the jerkiness associated to the skips is reduced as well.

6.2 Frame and Macroblock Layer Rate Controls

As mentioned in the previous section, rate control is generally organized into two levels

or layers: frame and macroblock. The frame layer works at the highest level. A

transmission buffer is monitored after the transmission of each frame. When this buffer

 165

exceeds a preset threshold because the encoding of the last frames has used more bits

than the bits that were originally allocated, the encoding of one or more video frames are

skipped while the encoder waits for the buffer to empty.

An example of such strategy is the frame layer rate control described in the Test

Model Near–Term Version 8 (see Gardos [1997]). This algorithm is characterized by the

following parameters:

• B′ , the number of bits occupied by the previous encoded frame;

• R , the target bit–rate in bits per second;

• F , the number of frames per second;

• M , the threshold for frame skipping, typically M R F= (M R is the maximum

buffer delay);

• A, a constant, usually set to 0.1A = . Used to define the target buffer delay to be

A M⋅ seconds.

After encoding a frame, the number of bits in the buffer W is updated as

()max 0, W W B M′= + − and the number of frames that must be skipped after that is

computed as:

Skip=1
While(W M>) {

()max 0,W W M= −
Skip++

}

 166

Then the control is transferred to the macroblock layer that decides the number of bits

that should be allocated to the next frame and divides these bits among the individual

macroblocks.

The target number of bits is computed as B M= − ∆ , where

 if

 otherwise.

W W A M
F
W A M

 > ⋅∆ = 
 − ⋅

The target bit number B is distributed among the macroblocks of the current frame with

an adaptive algorithm that, monitoring the variance of the macroblocks, determines the

quantization step that is likely to achieve the target bit rate. The statistics are updated

after the encoding of each macroblock. Encoding of the first macroblock in the frame

uses model parameters of the last encoded frame. A detailed description of this algorithm

can be found in Gardos [1995].

6.3 Problem Description

Our interest is in minimizing the number of skipped frames in a low bit rate video

sequence encoded at constant bit rate by any of the standard hybrid video encoders, like

for example, the standards belonging to the MPEG family.

Frame skipping generally happens in proximity of a scene change. When a new scene

starts, motion compensated prediction is unable to predict the first frame of the new scene

from the past and the channel capacity is easily exceeded. In the following, we consider a

scene change to be when the prediction model fails, because the frame is completely

 167

different from the previous one or because it may simply contain too much movement to

be efficiently predicted.

A scene change causes most macroblocks to be intra coded, and this results in a frame

encoded with more bits than the target bit rate. In turn, transmitting a frame exceptionally

large requires a time higher than the time available for a single frame. In order to match

the capacity of the channel and to keep the sequence time-synchronized, the encoder is

forced to wait for its transmission and skip the encoding of a few subsequent frames.

The increment in rate observed during a scene change is illustrated in Figure 6.1,

which shows the bit rate for the 900 frames contained in the test sequence Std100.qcif

used in our experiments. The scene changes in this sequence were artificially generated

by concatenating scenes extracted from a number of standard test sequences.

Figure 6.1: Bit rate for Frames 1 to 900 of the sequence Std100.qcif. Frames are

numbered starting at 0; Frame 0, which is not shown, goes to about 17,500.

0 100 200 300 400 500 600 700 800 900
0

2,000

4,000

6,000

8,000

10,000

 168

0 5 10 15 20 25 30 35 40 45 500

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

PSNR per frame (times 100)
bits per frame

Figure 6.2: Sequence of 50 frames across a scene cut in one of the files used in our

experiments (Claire.qcif 80–100 followed by Carphone.qcif 1–29) encoded at 32 Kbit/s
with TMN–8 rate control; the bits per frame and the corresponding PSNR per frame are

shown.

Frame No. n-5 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 N+5 n+6 n+7 …
Encode n-5 n-4 n-3 n-2 n-1 n skip n+4 skip n+6 n+7 …
Transmit n-5 n-4 n-3 n-2 n-1 n n+4 n+6 n+7 ...
Display ... n-5 n-4 n-3 n-2 n-1 N n+4 n+6 n+7

Figure 6.3: Encoding, transmitting and decoding/displaying a sequence of frames with a
H.263+ encoder using TMN–8 rate control. The sequence contains a scene cut between

frames 1n − and n .

Except for the first frame of the sequence, which is always encoded in intra mode (its size

is not depicted in Figure 6.1), frames are encoded by using the inter mode in which

individual macroblocks can be inter or intra coded.

The sequence has been encoded with the public domain Telnor/UBC H.263+ encoder

(Cote, Erol, Gallant and Kossentini [1998]) that uses the rate control suggested by the

 169

Test Model Near–Term Version 8 (or in short TMN–8) and described in Gardos [1997].

There is no loss of generality in experimenting with TMN–8 based encoder since even

more recent test models, like TMN–10 and TMN–11 that use a rate optimized bit

allocation, exhibit the same kind of behavior in the presence of scene changes. For a

detailed description of the test models, see Gardos [1997, 1998] and Wenger et al. [1999].

Figures 6.2 and 6.3 provide a closer look at the bit-rates during the encoding of a

scene change with H.263+. If we focus our attention around the scene change (frame n

in Figure 6.3) we note that, because of the number of I–macroblocks, this frame takes a

considerable time to be transmitted (3 additional time slots in our example). Meanwhile,

while waiting for a complete reception of frame n , the decoder keeps showing frame

1n − on the decoder screen. In order to match the channel bit rate and to maintain

synchronization with the original sequence, the encoder is forced to skip a number of

frames while waiting for the transmission of frame n , and, because of this skipping, the

next frame to be encoded will be frame 4n + : in this example, transmission of frame n

requires skipping 3 frames.

In general, after a scene cut, there will be some number 0k ≥ such that:

1. There are k extra units of time in which frame 1n − is frozen on the screen

(3k = in Figure 6.3);

2. There is a “jerk” between frame n and frame 1n k+ + ;

3. Since frames n and 1n k+ + are not contiguous in time and frame 1n k+ + is

predicted from frame n , it is likely that a large prediction error generates a frame

1n k+ + that is too big to be sent in one unit of time (frame 4n + in Figure 6.3).

 170

This “chain effect” may force the encoder to skip frame 2n k+ + too, before

encoding frame 3n k+ + .

By maximizing the number of transmitted frames (or equivalently by minimizing the

number of skipped frames) we reduce the coding artifacts described in points 2 and 3. In

doing this, we want to perform the best possible selection of the first frame that should be

encoded immediately after the termination of a scene (frame 1n − in Figure 6.3). Of

course this is only possible if the encoder has some look–ahead capability and the

encoding is not done in real–time. Since the decoder is not aware that this optimization

has taken place, the decoding process remains completely unaffected and full

compatibility with standard decoders is maintained. This is all that matters for many

interesting and useful applications, like for example video distribution, where a powerful

encoder creates off–line a video stream that is broadcasted to many real time decoders.

6.4 Optimal Frame Skipping Minimization

We address the problem of designing an optimal frame layer rate control algorithm that

minimizes the number of frames skipped in a constant, low bit–rate video encoder.

Minimizing the number of skipped frames improves the overall quality of the encoded

video and reduces the jerkiness associated to the skips. The problem is to maximize the

number of video frames that can be sent on a finite capacity channel in a given amount of

time. Each frame, except the first, is predicted from the previous encoded frame, called

its “anchor” frame. Frames are encoded and transmitted in strict temporal order. A buffer

 171

will store the portion of encoded stream that is waiting to be transmitted over the fixed

capacity channel. When the buffer is almost full (i.e. it holds a number of bits greater

than a fixed threshold), new frames cannot be encoded until these bits are transmitted,

and some of the frames must be skipped.

The solution we propose is a dynamic programming algorithm that can be used in

low–bandwidth applications in which the encoder has some look–ahead capability. For a

given bit rate, its asymptotic time complexity is linear in the number of frames being

encoded. Although this optimization requires additional encoding complexity, there is no

change in decoding complexity (in fact, no change to the decoder at all). Possible areas

that can benefit of this algorithm are video broadcasting, off–line video coding, wireless

video transmission, video distribution over IP, etc.

Definition 6.1: An instance of this optimization problem, that we indicate with the name

MAX_TRANS, is given by:

• n : which represents the number of frames in the video sequence 0 1 1, , , nf f f −… ;

• M : the channel capacity, expressed in bits per frame;

• 0B : the number of bits contained in the coding buffer before encoding the first

frame of the sequence. We use iB to indicate the buffer content before the

encoding of the frame if ;

• 0A : which represents the “distance” to the most recent (encoded) anchor frame. In

general iA is the distance to the anchor frame of if . 0 0A = if no previous frame

has been encoded;

 172

• [][]iC i A : the cost function which counts the number of bits necessary to the

transmission of the frame if when
ii Af − is the most recent encoded frame

preceding if (anchor frame).

A solution to this problem takes the form of a sequence of n binary decisions

0 1 1, , , nd d d −… where:

1 if the frame is transmitted
0 if the frame is skipped

i
i

i

f
d

f


= 


The goal is the maximization of the number of transmitted frames, or equivalently:

1

0

n

i
i

Maximize D d
−

=

= ∑

While satisfying the capacity constraint:

1

0
0

[][]
n

i i
i

B d C i A n M
−

=

+ ⋅ ≤ ⋅∑

The maximization is also subject to the following two conditions:

1. If at the time i the buffer iB holds a number of bits greater than or equal to

M then the frame if cannot be transmitted:

0, , 1 0i ii n B M d∀ = − ≥ ⇒ =… .

2. If the frame i is transmitted, being predicted from its anchor frame
ii Af − ,

then:

[][] [][]
i ii i i A i i A iM A B B C i A A C i A− −⋅ + ≥ + − + .

 173

This condition states that the [][]iC i A bits necessary to encode the frame if are

transmitted, M bits at the time, starting from the time 1ii A− + when the buffer has a

content of [][]
i ii A i i AB C i A A− −+ − bits. The bits that are not transmitted are stored in the

buffer whose content, at time i , is iB . The inequality holds because the buffer,

decremented by M units for each frame, cannot assume negative values.

In order to solve this problem with a dynamic programming algorithm, it is first

necessary to verify that the problem has an optimal substructure (see Cormen, Leiserson

and Rivest [1990]), i.e. that an optimal solution of a problem instance contains optimal

solutions for embedded instances.

Theorem 6.1 (Optimal Substructure): Let 0 1 1, , , nS d d d −= … be a sequence of decisions

with cost
1

0

n

i
i

D d
−

=

= ∑ and such that
1

0
0

[][]
n

i i
i

B d C i A n M
−

=

+ ⋅ ≤ ⋅∑ . If 0 1 1, , , nS d d d −= … is an

optimal solution of the problem instance ()0 0, , , ,I n M A B C= , then for every integer

0, , 1k n= −… , the sequence of decisions 1 1, , ,k k k nS d d d+ −= … , having cost
1n

k i
i k

D d
−

=

= ∑ ,

is an optimal solution of the problem instance (), , , ,k k kI n k M A B C= − .

Proof: The theorem is proved by contradiction. Let’s suppose that the problem instance

(), , , ,k k kI n k M A B C= − admits a solution 1 1' , ' , , 'k k k nS d d d+ −′ = … having cost

1

' '
n

k i
i k

D d
−

=

= ∑ greater than kD and satisfying
1

[][] ()
n

k i i
i k

B d C i A n k M
−

=

′+ ⋅ ≤ − ⋅∑ .

The solution obtained by concatenating the first 1k − decisions in S with the n k−

decisions in '
kS is a solution of the problem instance ()0 0, , , ,I n M A B C= that has a cost:

 174

1 1

0
'' ' '

k n

i i k k
i i k

D d d D D D D
− −

= =

= + = − + >∑ ∑

and satisfies

1 1

0
0

[][] [][] ()
k n

i i k i i
i i k

B d C i A B d C i A k M n k M n M
− −

= =

′+ ⋅ + + ⋅ ≤ ⋅ + − ⋅ = ⋅∑ ∑ .

This contradicts the assumption that 0 1 1, , , nS d d d −= … is an optimal solution for the

problem instance I . Therefore, the thesis holds.

The second condition that must hold in order to apply dynamic programming is the

presence of overlapping subproblems. It is possible to verify that this condition is

satisfied by our problem since the encoding of a subsequence of frames depends only on

the anchor frame and on the initial buffer content 0B . In synthesis, every solution of the

instance ()0 0, , , ,I n M A B C= that at time k has anchor frame
kk Af − and a buffer content

of kB , shares the subproblem (), , , ,k k kI n k M A B C= − .

Given the previous considerations, it is possible to solve an instance I of the problem

with a dynamic programming approach that, going from frame 0f to frame 1nf − ,

determines the sequence of decisions 0 1 1, , , nd d d −… by tabulating intermediate results for

different anchor frames and for the corresponding buffer contents. At time k , for every

anchor frame
kk Af − and buffer content kB , our algorithm extends the optimal solution of

the subproblem (), , , ,k k kI n k M A B C= − which is assumed to be known.

Figure 6.4 describes the algorithm in C-style pseudocode. The function performing

the optimization is DP_optimize, while Find_Solution is called after it and

determines, from the pointer matrix, the optimal sequence of decisions D .

 175

DP_optimize(C, n, A, M) {
 for(i=0; i<n; i++) {
 for(j=0; (j<=A) and (j<=i); j++) {
 if(j==0) { // I frame - only used to start sequence
 T[i][j] = 1
 B[i][j] = MAX(0, C[i][0] – M * (i+1))
 P[i][j] = -1
 } else { // P frame
 prev = i-j
 max_T = max_P = -1
 max_B = +Inf
 for(k=0; (k<=A) and (k<=prev); k++) {
 res = MAX(0, B[prev][k] - M * (j-1))
 if ((res<M) and (T[prev][k]>0) and
 ((T[prev][k]>max_T) or
 ((T[prev][k]==max_T) and (res<max_B)))) {
 max_T = T[prev][k]
 max_B = res
 max_P = k
 }
 }
 if(max_P >= 0) {
 T[i][j] = max_T + 1
 res = MAX(0, B[prev][max_P] - M * (j-1))
 B[i][j] = MAX(0, res + C[i][j] - M)
 P[i][j] = max_P
 }
 }
 }
 }
}

Find_solution(T, P, n, A) {
 for(i=n-A; i<n; i++) {
 for(j=0; (j<=A) and (j<=i); j++)
 if(T[i][j] > max) {
 max = T[i][j]
 max_i = i
 max_j = j
 }
 }
 i = max_i
 j = max_j
 // Back to the beginning...
 D[i] = 1
 do {
 old_i = i
 i -= MAX(1, j)
 j = P[old_i][j]
 D[i] = 1
 } while(P[i][j] != -1)
}

Figure 6.4: Pseudo code description of the dynamic programming optimization
algorithm.

 176

Function parameters are the number of frames n , the cost matrix C , the value

0, , 1
max ii n

A A
= −

=
…

 and the number of bits per frame M . The value A , which depends on the

transmission rate, is computed from the cost matrix as
0 , 1
max [][] /
i j n

A C i j M
≤ ≤ −

 =   
 and

represents the maximum number of frames that can be skipped during the transmission.

The algorithm stores solutions to subproblems into three matrices T , B and P , filled

columnwise, from left to right. For every pair (,)kk A the matrices store the solution of a

subproblem in which:

• [][]kT k A is the number of transmitted frames;

• [][]kB k A is the corresponding buffer content;

• [][]kP k A is a pointer to the row in which the column kk A− achieves the

highest number of transmitted frames. This pointer is necessary since there

may be more than one row of T with the same number of transmitted frames.

Finally, the matrix P is used by the helper function Find_solution to determine the

optimal sequence of decisions D .

Figure 6.6 shows a sample execution of the two functions on a random cost matrix

C . For simplicity, this example has 15n = frames, 10M = bits per frame and the

maximum number of skipped frames is 5A = . Shaded entries correspond to the optimal

decisions taken by the dynamic program.

 177

0 0 0 0 0 32 28 43 38 31 35 40 41 45 44
0 0 0 0 32 30 25 33 34 27 29 34 32 40 38
0 0 0 24 30 41 24 32 28 21 25 31 28 34 35
0 0 23 17 23 32 19 28 23 18 21 26 24 28 31
0 22 19 21 18 20 15 22 18 13 18 20 16 16 15

40 30 30 44 25 15 30 50 29 36 58 50 40 34 27

0 0 0 0 0 22 18 33 28 21 25 30 31 35 34
0 0 0 0 22 20 15 23 24 17 19 24 22 30 28
0 0 0 0 20 31 14 22 20 11 17 21 18 24 25
0 0 0 7 13 22 14 18 17 15 18 17 22 25 29
0 0 0 11 15 10 5 17 8 11 8 18 6 12 5

30 10 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 2 2 3 4 4 5 5 6 6
0 0 0 0 2 2 2 3 4 4 5 5 6 6 7
0 0 0 0 2 2 3 4 4 5 5 6 6 7 7
0 0 0 2 2 3 4 3 5 4 6 6 7 7 7
0 0 0 2 3 2 2 3 2 3 2 3 2 3 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 2 2 3 2 3
0 0 0 0 0 0 0 1 1 2 2 3 2 3 2
0 0 0 0 0 0 1 1 2 2 3 2 3 2 2
0 0 0 0 0 2 1 1 2 1 2 3 2 2 3
0 0 0 0 2 0 0 1 0 1 0 1 0 1 0

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 1 0 1 1 0 1 0 1 0 1 0 1 0 0

Cost Matrix C[][]

Buffer Matrix B[][]

Number of Transmitted Frames T[][]

Pointers Matrix P[][]

Decision Vector D[]

Figure 6.6: Sample execution of the dynamic programming optimization on a random

cost matrix C . Algorithm parameters are the number of frames 15n = , the number of

bits per frame 10M = and the maximum number of skipped frames 5A = .

When applied to the video sequences used in our experiments, typical parameters for a 32

Kb/s encoding at 30 fps are 3100 5800n≤ ≤ , 32768 / 30M = and 40 60A≤ ≤ .

Given the cost matrix, the time complexity of DP_optimize is 2()n AΟ ⋅ . The

value
0, , 1
max ii n

A A
= −

=
…

 is a constant computed in linear time from the first row of the cost

 178

matrix and it doesn’t depend on the number of frames. Find_solution examines

2()AΟ matrix entries to locate the maximum value in the last A columns of T then it

performs ()nΟ operations to construct the sequence of decisions. So, the asymptotic

complexity of this algorithm grows linearly with the number of frames n .

6.5 Experimental Results with the Optimal Algorithm

In solving the optimization problem with the dynamic programming approach, we have

assumed that the cost function C , expressed in the form of a bi–dimensional matrix, is

known. We have also assumed that the cost of predicting kf from its anchor frame
kk Af − ,

namely [][]kC k A , is independent on how
kk Af − was compressed (so long as the quality of

kk Af − is equal to a predefined target quality).

Although reasonable, the tightness of these approximations depends on the

macroblock rate control. If we embed the proposed frame rate control in an existing video

encoder, the way the macroblock level rate control is implemented may determine

differences in the resulting costs. In the TMN–8, for example, the bit pool available for

the current frame is allocated to each macroblock in a strict sequential fashion. A variable

representing the variance of the previously encoded macroblocks determines the amount

of bits that can be allocated. Since the value of this variable is preserved from one frame

to the successive, the exact cost of encoding a frame may be influenced by the coding

history and not only by its anchor frame.

 179

To overcome this problem, without replacing the macroblock rate control used by the

H.263+ encoder, we have used an iterative algorithm to compute the cost matrix C . This

iterative algorithm starts from an empty matrix C having all entries equal to zero, then it

applies the dynamic program to the matrix and encodes the sequence by following as

close as possible the decisions. Due to the unfeasibility of this solution (which assumes

costs lower than the actual ones) the encoder will be forced to perform a number of extra

skips.

The encoding determines a sequence of costs that are used to update C . The process

is repeated on the new cost matrix until the sequence of decisions suggested by the

dynamic program is admissible, i.e. compatible with real encoding. While the

computation of the cost matrix is susceptible of other approaches (for example the entire

replacement of the macroblock rate control) our solution has the advantage that only a

fraction of the entries of the cost matrix are actually computed.

In order to assess the performance of our solution, a set of representative video

sequences was be selected. Video sequences used by standard committees for algorithm

testing are common, however these files are not challenging because they are short

(generally less than 200 frames) and contain only one scene. To test our methods on a set

of video sequences with multiple scenes, six test sequences were generated by continuous

sampling of television commercials (sequences Commercials_0 trough Commercials_5)

at 30 frames per second with a QCIF resolution. Two othrt sequences, Std.qcif and

Std100.qcif were artificially generated by concatenating nine standard sequences:

Claire.qcif, Carphone.qcif, Foreman.qcif, Grandma.qcif, Miss_am.qcif, Mthr_dotr.qcif,

Salesman.qcif, Suzie.qcif and Trevor.qcif.

 180

Figure 6.6: The top strip shows a sample frame from each of the files forming Std.qcif
and Std100.qcif; the bottom strips show sample frames from the commercials in the

sequences Commercials_0.qcif.

The test sequence Std.qcif consists of the simple concatenation of the nine video

sequences while Std100.qcif exhibits more scene cuts because the previous standard files

are concatenated by alternating blocks of 100 frames. Despite the limited number of

scene cuts present in Std.qcif and Std100.qcif, they were added to the test set to provide a

standard reference.

Sample frames from the set of test sequences are illustrated in Figure 6.6.

The proposed frame layer rate control was evaluated by embedding it into the

Telnor/UBC H.263+ framework, with the TMN–8 macroblock layer rate control. H.263+

was selected because it is currently regarded as state of the art low bit rate video

compression (and our target is to address low bandwidth applications). The Telnor/UBC

encoder is publicly available in source code and it is used to evaluate the proposals that

the committee members bring to the standard; the core of this encoder provides the kernel

for the MPEG–4 low bit rate video coding. There is no loss of generality in restricting

experimentation to a single encoder since our algorithms can be adapted to every hybrid

video encoder.

 181

Skipped Frames Bit Rate (in Kb/s) PSNR_Y (in dB) Sequence n TMN–8 Optimal TMN–8 Optimal TMN–8 Optimal
Commercials_0 4250 1782 1597 32.31 32.22 27.97 28.00
Commercials_1 5900 2151 1858 32.27 32.15 27.04 27.05
Commercials_2 4100 1063 940 32.55 32.54 28.83 28.84
Commercials_3 5000 1099 936 32.13 32.01 29.06 29.07
Commercials_4 4800 1897 1697 32.44 32.11 28.46 28.54
Commercials_5 3100 1386 1275 32.77 32.59 27.72 27.71
Std 4000 204 177 32.54 32.55 32.60 32.61
Std100 4000 396 343 32.57 32.60 31.74 31.76

Table 6.1: Optimal frame rate control. Number of skipped frames and PSNR in

experimental results for sequences encoded at 32 Kb/s.

Table 6.1 compares the results obtained on the 32 Kb/s encoding of the video sequences

with the TMN–8 rate control and a frame rate control based on the proposed dynamic

programming algorithm. The standard and the optimized frame control methods are

compared in terms of number of skipped frames, final bit rate and average Peak Signal to

Noise Ration (PSNR) on the Y component.

As evident from the Table, the optimal frame rate control skips consistently fewer

frames, while accurately achieving the target bit rate and, even more important, without

compromising the per-frame or the overall quality of the video sequence. The average

PSNR is calculated including all transmitted frames. So, while the final figures are

comparable, the results listed for the optimal rate control refer to the transmission of a

higher number of frames. As we also verified with an informal subjective assessment, the

higher number of frames, transmitted at the same average PSNR, results in a higher

overall visual quality.

 182

6.6 An efficient sub–optimal heuristic

A careful analysis of the optimal decision sequences shows that most of the gain of our

algorithm derives from a drastic reduction of the “chain effect” described previously (see

point 3, Section 6.3). Motivated by this finding, we also experimented with a simple

heuristic that proved to be very effective.

When a scene change occurs, instead of transmitting the first frame of the new scene,

this heuristic skips the beginning of the new scene and transmits only the last frame

skipped by the standard H.263+/TMN–8 encoder. This has the advantage of reducing

both the jerk and the gap to the next encoded frame. Most of the time, the shorter distance

prediction is able to avoid the extra skip outlined in Figure 6.3.

Figure 6.7 shows how this simple strategy works on the same sequence of frames

described in Figure 6.3. As it can be seen from Figure 6.7, frame 3n + is encoded instead

of frame n and, because 4n + is now predicted from the closer 3n + frame, no

additional frame skipping is necessary. Figure 6.8 depicts the resulting improved

encoding of the scene cut.

This approach is easy to implement and reduces the computation to at most two

encodings of each frame. The application of this heuristic to the test sequences indicates

that this new strategy performs almost optimally. Experiments on encoding the test

sequences at 32 Kb/s show that an encoder that uses the heuristic frame rate control,

consistently outperforms a TMN–8 encoder while improving the visual quality. Scenes

are essentially left unchanged and a small gain in PSNR is also observed. Similar results

(with smaller gains) are also obtained on the same sequences when encoded at 64 Kb/s.

 183

Frame No. n-5 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 …
Encode n-5 n-4 n-3 n-2 n-1 skip n+3 n+4 n+5 n+6 n+7 …
Transmit n-5 n-4 n-3 n-2 n-1 n+3 n+4 n+5 n+6 n+7 ...
Display ... n-5 n-4 n-3 n-2 n-1 n+3 n+4 n+5 n+6 n+7

Figure 6.7: Encoding, transmitting and decoding/displaying a sequence of frames with
the proposed heuristic frame rate control. The sequence contains a scene cut between the

frames n-1 and n.

0 5 10 15 20 25 30 35 40 45 50
0

1,000

2000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

PSNR Y per frame (x 100)
bits per frame

Figure 6.8: Sequence of 50 frames across a scene cut in one of the files used in our

experiments (Claire.qcif 80-100 followed by Carphone.qcif 1-29) encoded at 32 Kbit/s
with heuristic rate control. Bits per frame and the corresponding PSNR per frame are

shown.

Table 6.2 compares the results obtained encoding at 32 Kb/s the test video sequences

with the TMN–8 rate control, with the heuristic suggested before and with a frame rate

control based on the dynamic programming algorithm. The frame control methods are

compared in terms of number of skipped frames, final bit rate and PSNR on the Y

component.

 184

0

500

1000

1500

2000

2500

commercials commercials1 commercials2 commercials3 commercials4 commercials5 std std100

TMN-8

Heuristic

Optimal

Figure 6.9: Number of frames skipped when encoding the video sequence at 32 Kbit/s
with TMN–8, heuristic and optimal frame rate controls.

Skipped Frames Bit Rate (in Kb/s) PSNR_Y (in dB) Sequence N TMN–8 Heuristic Optimal TMN–8 Heuristic Optimal TMN–8 Heuristic Optimal
Commercials_0 4250 1782 1605 1597 32.31 32.12 32.22 27.97 27.99 28.00
Commercials_1 5900 2151 1866 1858 32.27 32.00 32.15 27.04 27.05 27.05
Commercials_2 4100 1063 947 940 32.55 32.55 32.54 28.83 28.84 28.84
Commercials_3 5000 1099 985 936 32.13 31.96 32.01 29.06 29.09 29.07
Commercials_4 4800 1897 1700 1697 32.44 32.13 32.11 28.46 28.52 28.54
Commercials_5 3100 1386 1282 1275 32.77 32.57 32.59 27.72 27.70 27.71
Std 4000 204 196 177 32.54 32.63 32.55 32.60 32.60 32.61
Std100 4000 396 376 343 32.57 32.64 32.60 31.74 31.75 31.76

Table 6.2: TMN–8, heuristic and optimal frame rate controls. Coding results at 32 Kb/s.

From the Table 6.2 and from Figure 6.9 is clear how the optimal frame rate control skips

consistently fewer frames than the heuristic, while accurately achieving the target bit rate

and, even more important, without compromising the quality of the video sequence. The

small difference between heuristic and optimal algorithm confirms that most of the gain

comes from encoding a frame after the scene cut that is closer to the next scene.

 185

As described in precedence, PSNR is averaged on each transmitted frame, so the results

listed for heuristic and optimal frame control are achieved by spending the same amount

of bits of the TMN–8 rate control, but they refer to a consistently higher number of

frames.

6.7 Unrestricted Optimization

In the previous section, we have considered a maximization problem MAX_TRANS

characterized by two conditions which imply that a frame if with 0 i n≤ ≤ can be

transmitted immediately after the transmission of its anchor frame
ii Af − is completed (even

if this happens at a smaller than i) and that the transmission of if must be completed at

some time greater than or equal to i , and before starting the next frame. While these two

conditions guarantee that frames are temporally aligned within a range of

0 , 1
max [][] /
i j n

C i j M
≤ ≤ −

 ±   
, they may also be a source of inefficiency.

For example, consider a section of the video sequence having k consecutive frames

1, , ,h h h kf f f+ +… each with a cost of at most iM − ∆ bits. Even if the encoder skips no

frame in that time interval, residual buffer space
1

1

k

h i
i

R
−

+
=

≥ ∆∑ will be wasted. The sum of

the residuals extends up to the residual generated by 1h kf + − because the last residual h k+∆

may be used for the transmission of the frames following h kf + .

 186

For this reason, it may be interesting to consider a slightly different version of our

MAX_TRANS optimization problem that is not restricted by these conditions. We prove

that the unrestricted version of the optimization problem MAX_TRANS is NP–complete.

Definition 6.2: Let ()0 0, , , ,uI n M A B C= be an instance of the unrestricted optimization

problem MAX_TRANS_U. The problem consists in finding a sequence of decisions

0 1 1, , ,u nS d d d −= … such that
1

0

n

u i
i

D d
−

=

= ∑ is maximized and
1

0
0

[][] .
n

i i
i

B d C i A n M
−

=

+ ⋅ ≤ ⋅∑

A video sequence that is encoded with a solution of the problem MAX_TRANS_U can

still be decoded by a standard decoder, provided that the video frames are time aligned

before being displayed. The value uD of the unrestricted solution uS provides an upper

bound on the value of the solution S because uD D≤ .

Definition 6.3: An instance of the unrestricted decision problem MAX_TRANS_UD is

given by ()0 0, , , ,udI n M A B C= and a value goal K +∈\ . The problem consists in

determining if there exists a sequence of decisions 0 1 1, , ,ud nS d d d −= … such that:

1 1

0
0 0

[][] and .
n n

i i ud i
i i

B d C i A n M D d K
− −

= =

+ ⋅ ≤ ⋅ = ≥∑ ∑

Given a value K +∈\ , solving MAX_TRANS_U provides a solution for the

corresponding decision formulation in polynomial time by comparing the sum of the

decisions uD with K . This implies that solving MAX_TRANS_U is at least as hard as

solving MAX_TRANS_UD, its formulation in terms of a decision problem, or, in other

words, that MAX_TRANS_U is NP–complete if MAX_TRANS_UD is.

 187

Definition 6.4: An instance of the problem LONGEST PATH is a graph (,)G V E= and

a positive integer K V≤ . The problem consists in determining if there is in the graph G

a simple path (that is, a path encountering no vertex more than once) with K or more

edges (Garey and Johnson [1979]).

Given that LONGEST PATH is a known NP–complete problem we want to prove the

following:

Theorem 6.2: The problem MAX_TRANS_UD is NP–complete.

Proof: To prove that the MAX_TRANS_UD is NP–complete we have to prove that:

a) MAX_TRANS_UD ∈ NP;

b) A known NP–complete problem Π transforms to MAX_TRANS_UD. This

means that there is a transformation T , computable in polynomial time by a

deterministic Turing machine that transforms every instance of Π in an instance

of MAX_TRANS_UD.

Part (a) is true because a non–deterministic Turing machine can compute the solution of

the problem MAX_TRANS_UD in polynomial time by analyzing every possible

sequence of decisions and selecting one that satisfies the conditions:

1 1

0
0 0

[][] and .
n n

i i ud i
i i

B d C i A n M D d K
− −

= =

+ ⋅ ≤ ⋅ = ≥∑ ∑

Part (b) is proved by restriction, i.e. by showing that the problem MAX_TRANS_UD

contains an instance of the problem LONGEST PATH that is known to be NP–complete.

 188

Given an instance (,)G V E= and K V≤ of the problem LONGEST PATH, we can

construct an instance of the problem MAX_TRANS_UD as following:

1. n V= ;

2. 1M = ;

3. 0 1A = − ;

4. 0 0B = ;

5.
1 if (,)

[][]
0 otherwise

i i jV V E
C i j − ∈

= 


6. K has same meaning and assumes the same value in both problems.

The construction can be done in polynomial time and it transforms every instance of

LONGEST PATH in an instance of MAX_TRANS_UD. It is also evident how deciding

MAX_TRANS_UD decides the existence of a simple path in G with K or more edges.

 189

CONCLUSIONS

Coherently with the trend existing in the literature in the field, our investigation has been

based on a case–by–case analysis of the effects of using an optimization procedure in a

data compression algorithm. The problem that we have addressed is how and how much

the replacement of a sub–optimal strategy by an optimal one influences the performance

of a data compression algorithm. We have analyzed three algorithms, each in a different

domain of data compression. We introduced two novel algorithms that improve the

current state of the art in the fields of low bit rate vector quantization and lossless image

coding. We have also proposed and studied a new frame layer bit rate control algorithm

compatible with the existing video compression standards.

Although most of the experiments that we have reported are focused on different

applications of digital image compression (lossy, lossless and moving pictures), some of

the algorithms are much more general and cover broader areas of data compression. For

example, the trellis coded vector residual quantizer has been applied with success to the

compression of speech at very low bit rate and to the compression of random sources.

For the TCVRQ, we have proposed two methods for the design of the codebook: one is

based on the optimality conditions that we have derived; the other, a greedy algorithm, is

a simplified heuristic that shows remarkable performance.

 190

The lossless image compression algorithm that we have introduced uses linear prediction

and embedded context modeling. Two different methods to determine the optimal linear

predictor have been compared and discussed. Several alternatives for the entropy coding

of the prediction error have been explored successfully. The burden of performing pixel–

by–pixel optimization is well compensated by the competitive performance that we were

able to achieve. During our investigation, a number of ideas arose on possible

improvements; the most promising dynamically adapts the context window to the image

contents.

Finally, the problem of designing an optimal rate control algorithm suitable for low

bit rate video encoding has been addressed. The proposed scheme minimizes the number

of skipped frames and prevents buffer overflows. We present both an optimal procedure

and a simplified heuristic based on the insights gathered during the evaluation of the

optimal solution. When used in the H.263+ video encoder this heuristic achieves

performance extremely close to the optimal but with a much lower computational

complexity. Finally, an unrestricted version of the optimization problem has been studied

and proved to be NP–complete.

Besides the aforementioned contributions, this work is relevant for a number of

reasons:

• A measure of the improvement achievable by an optimal strategy provides powerful

insights about the best performance obtainable by a data compression algorithm;

• As we show in the case of low bit rate video compression, optimal algorithms can

frequently be simplified to provide effective heuristics;

 191

• Existing and new heuristics can be carefully evaluated by comparing their complexity

and performance to the characteristics of an optimal solution;

• Since the empirical entropy of a “natural” data source is always unknown, optimal

data compression algorithms provide improved upper bounds on that measure.

 192

APPENDIX A

Thumbnails of the images used in the lossless image compression experiments.

Airplane Airport Ballon

Barb2 Barb Board

Boats Crowd Girl

 193

Gold Goldhill Hotel

Hursleyhouse Lake Landsat

Lax Lena Lenna

Mandrill Milkdrop Mri

Mskull Peppers Woman1

 194

Woman2 Xray Zelda

 195

BIBLIOGRAPHY

I. Abdelqader, S. Rajala and W. Snyder [1993]. “Motion Estimation from Noisy Image Data”,
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, V: 209–212.

G. Abousleman [1995]. “Compression of Hyperspectral Imagery Using Hybrid DPCM/DCT and
Entropy–Constrained Trellis Coded Quantization”, Proc. Data Compression Conference, IEEE
Computer Society Press, 322–331.

B. Andrews, P. Chou, M. Effros, R. Gray [1993]. “A Mean–Removed Variation of Weighted
Universal Vector Quantization for Image Coding”, Proc. Data Compression Conference, IEEE
Computer Society Press, 302–309.

A. Apostolico and S. Lonardi [1998]. “Some Theory and Practice of Greedy Off–Line Textual
Substitution”, Proc. Data Compression Conference, IEEE Computer Society Press, 119–128.

A. Apostolico and S. Lonardi [2000]. “Compression of Biological Sequences by Greedy Off–
Line Textual Substitution”, Proc. Data Compression Conference, IEEE Computer Society Press,
143–152.

R. Armitano, D. Florencio, R. Schafer [1996]. The Motion Transform: A New Motion
Compensation Technique, Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, IV: 2295–2298.

R. Armitano, R. Schafer, F. Kitson, V. Bhaskaran [1997]. “Robust Block-Matching Motion–
Estimation Technique for Noisy Sources”, Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, Munich, Germany, 2685–2688.

Z. Arnavut and S. Magliveras [1997]. “Block Sorting and Compression”, Proc. Data
Compression Conference, IEEE Computer Society Press, 181–190.

Z. Arnavut [1997]. “A Remapping Technique Based on Permutations for Lossless Compression
of Multispectral Images”, Proc. Data Compression Conference, IEEE Computer Society Press,
407–416.

R. Arnold and T. Bell [1997]. “A Corpus for the Evaluation of Lossless Compression
Algorithms”, Proc. Data Compression Conference, IEEE Computer Society Press, 201–210.

R. Arps [1974]. “Bibliography on Digital Graphic Image Compression and Quality”, IEEE Trans.
on Information Theory, IT–20:1, 120–122.

 196

R. Arps [1980]. “Bibliography on Binary Image Compression”, Proc. of the IEEE, 68:7, 922–
924.

R. Arps and T. Truong [1994]. “Comparison of International Standards for Lossless Still Image
Compression”, Special Issue on Data Compression, J. Storer Editor, Proc. of the IEEE 82:6, 889–
899.

P. Assuncao, M. Ghanbari [1997]. “Transcoding of MPEG–2 Video in the Frequency Domain”,
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich,
Germany, 2633–2636.

B. Atal [1986]. “High–quality speech at low bit rates: multi–pulse and stochastically excited
linear predictive coders”, Proc. Int. Conf. Acoustics Speech, Signal Process., Tokyo, 1681–1684.

B. Atal, V. Cuperman, and A. Gersho [1991]. Advances in Speech Coding, Kluwer Academic
Press.

B. Atal and J. Remde [1982]. “A new model of LPC excitation for producing natural–sounding
speech at low bit rates”, Proc. IEEE Int. Conf. Acoustics., Speech, Signal Processing, vol. 1,
Paris, 614–617.

B. Atal and M. Schroeder [1979]. “Predictive coding of speech signals and subjective error
criteria”, IEEE Trans. in Signal Processing, ASSP–27, no 3, 247–254.

P. Ausbeck Jr. [1998]. “Context Models for Palette Images”, Proc. Data Compression
Conference, IEEE Computer Society Press, 309–318.

E. Ayanoglu and R. Gray [1986]. “The design of predictive trellis waveform coders using the
generalized Lloyd algorithm”, IEEE Trans. Comm. , COM–34, 1073–1080.

B. Balkenhol, S. Kurtz, and Y. Shtarkov [1999]. “Modification of the Burrows and Wheeler Data
Compression Algorithm”, Proc. Data Compression Conference, IEEE Computer Society Press,
188–197.

R. Barequet and M. Feder [1999]. “Siclic: A Simple Inter–Color Lossless Image Coder”, Proc.
Data Compression Conference, IEEE Computer Society Press, 501–510.

C. Barnes [1989]. Residual Vector Quantizers, Ph.D. Dissertation, Brigham Young University.

C. Barnes [1994]. “A New Multiple Path Search Technique for Residual Vector Quantizers”,
Proc. Data Compression Conference, IEEE Computer Society Press, 42–51.

C. Barnes and R. Frost [1990]. “Necessary conditions for the optimality of residual vector
quantizers”, Proc. IEEE International Symposium on Information Theory.

R. Bascri, J. Mathews [1992]. “Vector Quantization of Images Using Visual Masking Functions”,
Proc. IEEE ICASSP Conference, San Francisco, CA, 365–368.

B. Beferull–Lozano and A. Ortega [2001]. “Construction of Low Complexity Regular Quantizers
for Overcomplete Expansions in R^N”, Proc. Data Compression Conference, IEEE Computer
Society Press, 193–202.

 197

B. Belzer, J. Villasenor [1996]. “Symmetric Trellis Coded Vector Quantization”, Proc. Data
Compression Conference, IEEE Computer Society Press, 13–22.

D. Belinskaya, S. DeAgostino, and J. Storer [1995]. “Near Optimal Compression with Respect to
a Static Dictionary on a Practical Massively Parallel Architecture”, Proc. Data Compression
Conference, IEEE Computer Society Press, 172–181.

T. Bell, J. Cleary, and I. Witten [1990]. Text Compression, Prentice–Hall.

T. Bell, I. Witten, and J. Cleary [1989]. “Modeling for Text Compression”, ACM Computing
Surveys 21:4, 557–591.

B. Belzer, J. Villasenor [1996]. “Symmetric Trellis Coded Vector Quantization”, Proc. Data
Compression Conference, IEEE Computer Society Press, 13–22.

V. Bhaskaran and K. Konstantinides [1995]. Image and Video Compression Standards, Kluwer
Academic Press.

B. Bhattacharya, W. LeBlanc, S. Mahmoud, and V. Cuperman [1992]. “Tree searched multi–
stage vector quantization of LPC parameters for b/s speech coding” Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing vol. 1, San Francisco, California, 105–108.

A. Brandenburg and G. Stoll [1992]. “The ISO/MPEG–audio codec: A generic standard for
coding of high quality digital audio”, 92nd Audio Engineering Society Convention, Vienna,
preprint no. 3336.

K. Brandenburg, H. Gerhauser, D. Seitzer, and T. Sporer [1990]. “Transform coding of high
quality digital audio at low bit rates — algorithms and implementations” Proc. IEEE
International Conference on Communications, vol. 3, 932–6.

M. Bright and J. Mitchell [1999]. “Multi–Generation JPEG Images”, Proc. Data Compression
Conference, IEEE Computer Society Press, 517.

A. Brinkmann, J. I. Ronda, A. Pacheco and N. Garcia [1998]. “Adaptive Prediction Models for
Optimization of Video Encoding”, Proc. of the Visual Communications and Image Processing
1998, San Jose'.

H. Brunk and N. Farvardin [1996]. “Fixed–Rate Successively Refinable Scalar Quantizers”, Proc.
Data Compression Conference, IEEE Computer Society Press, 250–259.

H. Brunk and N. Farvardin [1998]. “Embedded Trellis Coded Quantization”, Proc. Data
Compression Conference, IEEE Computer Society Press, 93–102.

M. Burrows and D. Wheeler [1994]. “A Block–Sorting Lossless Data Compression Algorithm”,
SRC Research Report, Digital Equipment Corporation Systems Research Center, Palo Alto, CA.

L. Butterman and N. Memon [2001]. “Error–Resilient Block Sorting”, Proc. Data Compression
Conference, IEEE Computer Society Press, 487.

 198

A. Cafforio and F. Rocca [1983]. “The Differential Model for Motion Estimation”, Image
Sequence Processing and Dynamic Scene Analysis (T. Huang, editor), Springer–Verlag, New
York, NY.

J. Campbell, Jr., T. Tremain, and V. Welch [1991]. “The DOD 4.8 KBPS standard (proposed
federal standard 1016)”, Advances in Speech Coding (B. Atal, V. Cuperman, and A. Gersho,
editors), Kluwer Academic Press, 121–133.

R. Capocelli and A. De Santis [1988]. “Tight upper bounds on the redundancy of Huffman
codes”, Proc. IEEE International Symposium on Information Theory, Kobe, Japan; also in IEEE
Trans. Inform. Theory IT–35:5 (1989).

R. Capocelli and A. De Santis [1991]. “A note on D–ary Huffman codes”, IEEE Trans. Inform.
Theory IT–37:1.

R. Capocelli and A. De Santis [1991]. “New Bounds on the Redundancy of Huffman Code”,
IEEE Trans. on Information Theory IT–37, 1095–1104.

R. Capocelli, R. Giancarlo, and I. Taneja [1986]. “Bounds on the redundancy of Huffman codes”,
IEEE Trans. on Information Theory IT–32:6, 854–857.

B. Carpentieri [1994c]. “Split–Merge Displacement Estimation for Video Compression”, Ph.D.
Dissertation, Computer Science Department, Brandeis University, Waltham, MA.

B. Carpentieri and J. Storer [1992]. “A Split–Merge Parallel Block Matching Algorithm for
Video Displacement Estimation”, Proc. Data Compression Conference, IEEE Computer Society
Press, 239–248.

B. Carpentieri and J. Storer [1993]. “A Video Coder Based on Split–Merge Displacement
Estimation”, Proc. Data Compression Conference, 492.

B. Carpentieri and J. Storer [1993]. “Split Merge Displacement Estimated Video Compression”,
Proc. 7th International Conference on Image Analysis and Processing, Bari, Italy.

B. Carpentieri and J. Storer [1994]. “Split–Merge Video Displacement Estimation”, Proc. of the
IEEE 82:6, 940–947.

B. Carpentieri and J. Storer [1994b]. “Optimal Inter–Frame Alignment for Video Compression”,
International Journal of Foundations of Computer Science 5:2, 65–177.

B. Carpentieri and J. Storer [1995]. “Classification of Objects in a Video Sequence”, Proc. SPIE
Symposium on Electronic Imaging, San Jose, CA.

B. Carpentieri and J. Storer [1996]. “A Video Coder Based on Split–Merge Displacement
Estimation”, Journal of Visual Communication and Visual Representation 7:2, 137–143, 1996.

B. Carpentieri, M. Weinberger and G. Seroussi [2000]. “Lossless Compression of Continuous–
Tone Images”, Proc. of the IEEE, Special Issue on Lossless Data Compression, Nov. 2000,
Vol.88, No.11, 1797-1809.

 199

W. Chan [1992]. “The Design of Generalized Product–Code Vector Quantizers”, Proc. IEEE
ICASSP Conference, San Francisco, CA, 389–392.

M. Chang and G. Langdon [1991]. “Effects of Coefficient Coding on JPEG Baseline Image
Compression”, Proc. Data Compression Conference, IEEE Computer Society Press, 430.

P. Chang and R. Gray [1986]. “Gradient Algorithms for Designing Predictive VQs”, IEEE ASSP–
34, 957–971.

W. Chau, S. Wong, X. Yang, and S. Wan [1991]. “On the Selection of Color Basis for Image
Compression”, Proc. Data Compression Conference, IEEE Computer Society Press, 441.

W. Chen and W. Pratt [1984]. “Scene adaptive coder”, IEEE Trans. Comm. 32, 225.

M. Chen, a. Wilson [1996]. Rate–Distortion Optimal Motion Estimation algorithm for Video
Coding, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, IV:
2096–2099.

P. Chou, T. Lookabaugh, and R. Gray [1989]. “Entropy–constrained vector quantization”, IEEE
Trans. Acoustics, Speech, Signal Process. 37:1, 31–42.

P. Chou, S. Mehrotra, and A. Wang [1999]. “Multiple Description Decoding of Overcomplete
Expansions Using Projections onto Convex Sets”, Proc. Data Compression Conference, IEEE
Computer Society Press, 72–81.

R. Clarke [1999]. Digital Compression of Still Images and Video, Academic Press.

J. Cleary and I. Witten [1984]. “Data Compression Using Adaptive Coding and Partial String
Matching”, IEEE Trans. on Communications 32:4, 396–402.

J. Cleary, W. Teahan, and I. Witten [1995]. “Unbounded Length Contexts for PPM”, Proc. Data
Compression Conference, IEEE Computer Society Press, 52–61.

M. Cohn [1988]. “Performance of Lempel–Ziv Compressors with Deferred Innovation”, Proc.
1988 NASA Conference on Scientific Data Compression, IEEE Computer Society Press, 377–
389.

M. Cohn [1989]. “Bounds for lossy text compression” Proc. Informationstheorie, Mathematische
Forschungsinstitut Wolfach.

M. Cohn [1992]. “Ziv–Lempel Compressors with Deferred–Innovation”, Image and Text
Compression, Kluwer Academic Press, 145–158.

M. Cohn, R. Khazan [1996]. “Parsing with Suffix and Prefix Dictionaries”, Proc. Data
Compression Conference, IEEE Computer Society Press, 180–189.

L. Colm Stewart [1981]. Trellis Data Compression, Xerox, Palo Alto Research Center.

C. Constantinescu [1995]. Single–Pass Adaptive Vector Quantization, Ph.D. Dissertation,
Brandeis University.

 200

C. Constantinescu and J. Storer [1994]. “On–Line Adaptive Vector Quantization with Variable
Size Codebook Entries”, Information Processing and Management 30:6, 745–758; an extended
abstract of this paper also appeared in Proc. Data Compression Conference, IEEE Computer
Society Press, 32–41.

C. Constantinescu and J. Storer [1994b]. “Improved Techniques for Single–Pass Adaptive Vector
Quantization”, Proc. of the IEEE, 82:6, 933–939.

C. Constantinescu and J. Storer [1995]. “Application of Single–Pass Adaptive VQ to Bilevel
Images”, Proc. Data Compression Conference, 423.

G. Cormack and R. Horspool [1984]. “Algorithms for Adaptive Huffman Codes”, Information
Processing Letters 18, 159–165.

T. Cormen, C. Leiserson and R. Rivest [1990]. “Introduction to Algorithms”, McGraw–Hill,
1990.

 G. Côté, B. Erol, M. Gallant and F. Kossentini [1998]. “H.263+: Video Coding at Low Bit
Rates”, IEEE Trans. on Circuits and Systems for Video Technology, Vol.8, o.7.

G. Côté, M. Gallant and F. Kossentini [1998b]. “Description and Results for Rate–Distortion
Based Quantization”, Doc. ITU–T/SG16/Q15–D–51.

T. Cover and J. Thomas [1991]. Elements of Information Theory, Wiley.

D. Crowe [1992]. “Objective quality assessment”, Digest, IEE Colloquium on Speech Coding —
Techniques and Applications, London, 5/1–5/4.

S. Daly [1992]. “Incorporation of Imaging System and Visual Parameters into JPEG Quantization
Tables”, Proc. Data Compression Conference, IEEE Computer Society Press, 410.

A. Das and A. Gersho [1995]. “Variable Dimension Spectral Coding of Speech at 2400 bps and
Below with Phonetic Classification”, Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 492–495.

Y. Dehery, M. Lever, and P. Urcun [1991]. “A MUSICAM source codec for digital audio
broadcasting and storage”, Proc. IEEE Int. Conf. Acoustics, Speech, Signal Proc, vol. 1, 3605–9.

A. DeJaco, W. Gardner, P. Jacobs and C. Lee [1993]. “QCELP: the North American CDMA
digital cellular variable rate speech coding standard”, Proc. IEEE Workshop on Speech Coding
for Telecommunications, 5–6.

C. Derviaux, F. Coudoux, M. Gazalet, P. Corlay [1997]. “A Postprocessing Technique for Block
Effect Elimination Using a Perceptual Distortion Measure”, Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, Munich, Germany, 3001–3004.

M. Effros [1999]. “Universal Lossless Source Coding with the Burrows Wheeler Transform”,
Proc. Data Compression Conference, IEEE Computer Society Press, 178–187.

N. Ekstrand [1996]. “Lossless Compression of Grayscale Images via Context Tree Weighting”,
Proc. Data Compression Conference, IEEE Computer Society Press, 132–139.

 201

P. Elias [1970]. “Bounds on performance of optimum quantizers”, IEEE Trans. on Information
Theory IT–16, 172–184.

B. Erol, M. Gallant, G. Cote and F. Kossentini [1998]. “The H.263+ Video Coding Standard:
Complexity and Performance”, Proc. Data Compression Conference, IEEE Computer Society
Press, 259–268.

M. Feder and A. Singer [1998]. “Universal Data Compression and Linear Prediction”, Proc. Data
Compression Conference, IEEE Computer Society Press, 511–520.

P. Fenwick [1996]. “The Burrows–Wheeler Transform for Block Sorting Text Compression:
Principles and Improvements”, The Computer Journal 39:9, 731–740.

T. Fischer, M. Marcellin and M. Wang [1991b]. “Trellis Coded Vector Quantization”, IEEE
Trans. on Information Theory, IT–37, 1551–1566.

T. Fischer and M. Wang [1991]. “Entropy–Constrained Trellis Coded Quantization”, Proc. Data
Compression Conference, IEEE Computer Society Press, 103–112.

Y. Fisher, Ed. [1994]. Fractal Encoding – Theory and Applications to Digital Images, Springer–
Verlag.

Y. Fisher, Ed. [1995]. Fractal Image Compression: Theory and Application, Springer–Verlag.

J. Flanagan, M. Schroeder, B. Atal, R. Crochiere, N. Jayant, and J. Tribolet [1979]. “Speech
Coding”, IEEE Trans. on Communications, COM–27:4, 710–737.

M. Flierl, T. Wiegand and B. Girod [1998]. “A Locally Optimal Design Algorithm for Block–
Based Multi–Hypothesis Motion–Compensated Prediction”, Proc. Data Compression
Conference, IEEE Computer Society Press, 239–248.

S. Forchhammer, X. Wu, and J. Andersen [2001]. “Lossless Image Data Sequence Compression
Using Optimal Context Quantization”, Proc. Data Compression Conference, IEEE Computer
Society Press, 53–62.

R. Frost, C. Barnes, and F. Xu [1991]. “Design and Performance of Residual Quantizers”, Proc.
Data Compression Conference, IEEE Computer Society Press, 129–138.

M. Garey and D. Johnson [1979]. “Computers and Intractability - A Guide To The
Theory of NP-completeness”, Freeman Pub.,1979.

R. Gallager [1968]. Information Theory and Reliable Communication, Wiley.

R. Gallager [1978]. “Variations on a Theme by Huffman”, IEEE Trans. on Information Theory
24:6, 668–674.

T. Gardos [1997]. “Video Codec Test Model, Near–Term, Version 8 (TMN–8)”, Doc. ITU–
T/SG16/Q15–D65d1.

T. Gardos [1998]. “Video Codec Test Model, Near–Term, Version 9 (TMN–9)”, Doc. ITU–
T/SG16/Q15–A–59.

 202

A. Gersho [1994]. “Advances in Speech and Audio Compression”, Special Issue on Data
Compression, J. Storer ed., Proc. of the IEEE 82:6, 900–918.

A. Gersho and R. Gray [1992]. Vector Quantization and Signal Compression, Kluwer Academic
Press.

S. Golomb [1966]. “Run–Length Encoding”, IEEE Trans. on Information Theory 12, 399–401.

R. Gonzalez and P. Wintz [1987]. Digital Image Processing, Addison–Wesley.

R. Gonzalez and R. Woods [1992]. Digital Image Processing, Addison–Wesley.

U. Graef [1999]. “Sorted Sliding Window Compression”, Proc. Data Compression Conference,
IEEE Computer Society Press, 527.

R. Gray [1984]. “Vector quantization”, IEEE ASSP Magazine 1, 4–29.

A. Gray, Jr. and J. Markel [1976]. “Distance measures for speech processing”, IEEE Trans. on
Acoustics, Speech, and Signal Processing, ASSP–24:5, 380–391.

R. Gray, P. Cosman, and E. Riskin [1992]. “Image Compression and Vector Quantization”, in
Image and Text Compression, Kluwer Academic Press.

A. Hartman and M. Rodeh [1985]. “Optimal Parsing of Strings”, Combinatorial Algorithms on
Words, Springer–Verlag (A. Apostolico and Z. Galil, editors), 155–167.

B. Haskell, A. Puri, and A. Netravali [1997]. Digital Video: An Introduction to MPEG–2,
Chapman and Hall.

H. Helfgott and M. Cohn [1997]. “On Maximal Parsing of Strings”, Proc. Data Compression
Conference, IEEE Computer Society Press, 291–299.

H. Helfgott and M. Cohn [1998]. “Linear Time Construction of Optimal Context Trees”, Proc.
Data Compression Conference, IEEE Computer Society Press, 369–377.

J. Herre, E. Eberlein, H. Schott, and K. Brandenburg [1992]. “Advanced audio measurement
system using psychoacoustics properties” 92nd Audio Engineering Society Convention Vienna,
3321.

D. T. Hoang [1997]. Fast and Efficient Algorithms for Text and Video Compression, Ph.D.
Dissertation, Department of Computer Science, Brown University.

D. Hoang [1999]. “Real–Time VBR Rate Control of MPEG Video Based Upon Lexicographic
Bit Allocation”, Proc. Data Compression Conference, IEEE Computer Society Press, 374–383.

D. Hoang, E. Linzer, and J. Vitter [1997]. “A Lexicographic Framework for MPEG Rate
Control”, Proc. Data Compression Conference, IEEE Computer Society Press, 101–110.

D. Hoang, P. Long, and J. Vitter [1994]. “Explicit Bit Minimization for Motion–Compensated
Video Coding”, Proc. Data Compression Conference, IEEE Computer Society Press, 175–184.

 203

D. Hoang, P. Long, J. Vitter [1996]. “Efficient Cost Measures for Motion Compensation at Low
Bit Rates”, Proc. Data Compression Conference, IEEE Computer Society Press, 102–111.

R. Horspool [1995]. “The Effect of Non–Greedy Parsing in Ziv–Lempel Compression Methods”,
Proc. Data Compression Conference, IEEE Computer Society Press, 302–311.

P. Howard [1989]. Design and Analysis of Efficient Lossless Compression Systems, Ph.D.
Dissertation, Computer Science Dept., Brown University, Providence, RI.

P. Howard, J. Vitter [1993]. “Fast and Efficient Lossless Image Compression”, Proc. Data
Compression Conference, IEEE Computer Society Press, 351–360.

D. Huffman [1952]. “A Method for the Construction of Minimum–Redundancy Codes”, Proc. of
the IRE 40, 1098–1101.

I. Ismaeil, A. Docef, F. Kossentini, and R. Ward [1999]. “Motion Estimation Using Long Term
Motion Vector Prediction”, Proc. Data Compression Conference, IEEE Computer Society Press,
531.

A. Jacquin, H. Okada, and P. Crouch [1997]. “Content–Adaptive Postfiltering for Very Low Bit
Rate Video”, Proc. Data Compression Conference, IEEE Computer Society Press, 111–121.

H. Jafarkhani and V. Tarokh [1998]. “Successfully Refinable Trellis Coded Quantization”, Proc.
Data Compression Conference, IEEE Computer Society Press, 83–92.

J. Jain and A. Jain [1981]. “Displacement Measurement and its Applications in Interframe Image
Coding”, IEEE Trans. on Communications COM–29:12, 1799–1808.

N. Jayant and P. Noll [1984]. Digital Coding of Waveforms: Principles and Applications to
Speech and Video, Prentice–Hall.

O. Johnsen [1980]. “On the Redundancy of Binary Huffman Codes”, IEEE Trans. on Information
Theory 26:2, 220–222.

K. Joo, D. Gschwind, T. Bose [1996]. ADPCM Encoding of Images Using a Conjugate Gradient
Based Adaptive Algorithm, Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, IV: 1942–1945.

B. Juang and A. Gray, Jr. [1982]. “Multiple stage vector quantization for speech coding”, Proc.
Int. Conf. Acoustics, Speech and Signal Processing, Vol. 1, Paris, 597–600.

 J. Kari and M. Gavrilescu [1998]. “Intensity Controlled Motion Compensation”, Proc. Data
Compression Conference, IEEE Computer Society Press, 249–258.

J. Katajainen and T. Raita [1987]. “An Analysis of the Longest Match and the Greedy Heuristics
for Text Encoding”, Technical Report, Department of Computer Science, University of Turku,
Turku, Finland.

J. Katto and M. Ohta [1995]. “Mathematical Analysis of MPEG Compression Capability and its
Applications to Rate Control”, Proc. of the ICIP95, Washington D.C..

 204

T. Kaukoranta, P. Franti, and O. Nevalainen [1999]. “Reduced Comparison Search for the Exact
GLA”, Proc. Data Compression Conference, IEEE Computer Society Press, 33–41.

A. Kess and S. Reichenbach [1997]. “Capturing Global Redundancy to Improve Compression of
Large Images”, Proc. Data Compression Conference, IEEE Computer Society Press, 62–71.

A. Kondoz [1994]. Digital Speech, Wiley.

F. Kossentini, M. Smith, C. Barnes [1992]. “Image Coding with Variable Rate RVQ”, Proc.
IEEE ICASSP Conference, San Francisco, CA, 369–372.

F. Kossentini, M. Smith and C. Barnes [1993]. “Entropy–Constrained Residual Vector
Quantization”, Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, V: 598.

D. Kozen, Y. Minsky, and B. Smith [1998]. “Efficient Algorithms for Optimal Video
Transmission”, Proc. Data Compression Conference, IEEE Computer Society Press, 229–238.

A. Lan and J. Hwang [1997]. “Scene Context Dependent Reference Frame Placement for MPEG
Video Coding”, Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, Munich, Germany, 2997–3000.

G. Langdon [1991]. “Sunset: A Hardware–Oriented Algorithm for Lossless Compression of Gray
Scale Images”, SPIE Medical Imaging V: Image Capture, Formatting, and Display 1444, 272–
282.

G. Langdon, A. Gulati, and E. Seiler [1992]. “On the JPEG Context Model for Lossless Image
Compression”, Proc. Data Compression Conference, IEEE Computer Society Press, 172–180.

R. Laroia and N. Farvadin [1994]. “Trellis–based scalar–vector quantizers for memoryless
sources”, IEEE Trans. on Information Theory, IT–40, No.3.

D. Le Gall [1991]. “MPEG: A video compression standard for multimedia applications”,
Communications of the ACM 34:4, 46–58.

J. Lee and B.W. Dickinson [1994]. “Joint Optimization of Frame Type Selection and Bit
Allocation for MPEG Video Encoders”, Proc. of the ICIP94, Vol.2.

D. Lelewer and D. Hirschberg [1987]. “Data Compression”, ACM Computing Surveys 19:3, 261–
296.

A. Lempel, S. Even, and M. Cohn [1973]. “An Algorithm for Optimal Prefix Parsing of a
Noiseless and Memoryless Channel”, IEEE Trans. on Information Theory 19:2, 208–214.

A. Lempel and J. Ziv [1976]. “On the Complexity of Finite Sequences”, IEEE Trans. on
Information Theory 22:1, 75–81.

A. Li, S. Kittitornkun, Y. Hu, D. Park, and J. Villasenor [2000]. “Data Partitioning and
Reversible Variable Length Codes for Robust Video Communications”, Proc. Data Compression
Conference, IEEE Computer Society Press, 460–469.

 205

J. Lin [1992]. Vector Quantization for Image Compression: Algorithms and Performance, Ph.D.
Dissertation, Computer Science Dept. Brandeis University, MA.

J. Lin and J. Storer [1993]. “Design and Performance of Tree–Structured Vector Quantizers”,
Proc. Data Compression Conference, IEEE Computer Society Press, 292–301.

J. Lin and J. Vitter [1992]. “Nearly Optimal Vector Quantization via Linear Programming”, Proc.
Data Compression Conference, IEEE Computer Society Press, 22–31.

K. Lin and R. Gray [2001]. “Video Residual Coding Using SPIHT and Dependent Optimization”,
Proc. Data Compression Conference, IEEE Computer Society Press, 113–122.

K. Lin and R. Gray [2001]. “Rate–Distortion Optimization for the SPHIT Encoder”, Proc. Data
Compression Conference, IEEE Computer Society Press, 123–132.

J. Lin, J. Storer, and M. Cohn [1991]. “On the Complexity of Optimal Tree Pruning for Source
Coding”, Proc. Data Compression Conference, IEEE Computer Society Press, 63–72.

J. Lin, J. Storer, and M. Cohn [1992]. “Optimal Pruning for Tree–Structured Vector
Quantization”, Information Processing and Management 28:6, 723–733.

Y. Linde, A. Buzo, and R. Gray [1980]. “An algorithm for vector quantizer design”, IEEE Trans.
on Communications 28, 84–95.

E. Linzer, P. Tiwari, M. Zubair [1996]. High Performance algorithms for Motion Estimation for
MPEG Encoder, Proc. IEEE International Conference on

S. Lloyd [1957]. “Least Squares Quantization in PCM”, Bell Laboratories Technical Note, 1957.

M. Luttrell, J. Wen, J. D. Villasenor and J. H. Park [1998]. “Simulation Results for Adaptive
Quantization Using Trellis Based R–D Information”, Doc. ITU–T/SG16/Q15–E–21.

J. Markel and A. Gray, Jr. [1976]. Linear Prediction of Speech, Springer–Verlag.

J. Makhoul [1975]. “Linear prediction: A tutorial review”, Proc. IEEE 63, 561–580.

J. Makhoul, S. Roucos, and H. Gish [1985]. “Vector Quantization in Speech Coding”, Proc. of
the IEEE 73:11, 1551–1588.

H. Malvar [2001]. “Fast Adaptive Encoder for Bi–Level Images”, Proc. Data Compression
Conference, IEEE Computer Society Press, 253–262.

M. Marcellin [1990]. “Transform coding of images using trellis coded quantization”, Proc.
International Conference on Acoustics, Speech and Signal Process. , 2241–2244.

M. Marcellin and T. Fischer [1990]. “Trellis coded quantization of memoryless and Gauss–
Markov sources”, IEEE Trans. on Communications, COM–38, 82–93.

M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek [2000]. “An Overview of JPEG–2000”,
Proc. Data Compression Conference, IEEE Computer Society Press, 523–541.

 206

T. Markas and J. Reif [1993]. “Multispectral Image Compression Algorithms”, Proc. Data
Compression Conference, IEEE Computer Society Press, 391–400.

J. Max [1960]. “Quantizing for Minimum Distortion”, IRE Trans. in Information Theory, IT-6(2),
7-12, 1960.

R. McEliece [1977]. The Theory of Information and Coding, Addison–Wesley.

B. Meyer and P. Tischer [1997]. “TMW — a New Method for Lossless Image Compression”,
International Picture Coding Symposium PCS97 Conference Proc..

B. Meyer and P. Tischer [1998]. “Extending TMW for Near Lossless Compression of Greyscale
Images”, Proc. Data Compression Conference, IEEE Computer Society Press, 458–470.

B. Meyer and P. Tischer [2001]. “Glicbawls – Grey Level Image Compression By Adaptive
Weighted Least Squares”, Proc. Data Compression Conference, IEEE Computer Society Press,
503.

B. Meyer and P. Tischer [2001]. “TMW–Lego — An Object Oriented Image Modeling
Framework “, Proc. Data Compression Conference, IEEE Computer Society Press, 504.

J. Mitchell, W. Pennebaker, C. Fogg, and D. LeGall [1997]. MPEG Video Compression Standard,
Chapman and Hall.

A. Moffat, R. Neal, and I. Witten [1995]. “Arithmetic Coding Revisited”, Proc. Data
Compression Conference, IEEE Computer Society Press, 202–211.

A. Moffat [1990]. “Implementing the PPM Data Compression Scheme”, IEEE Trans. on
Communications 38:11, 1917–1921.

G. Motta [1993]. Compressione della Voce a 2.4 Kbit/s, Technical Report, CEFRIEL –
Politecnico di Milano.

G. Motta, B. Carpentieri [1997]. “A New Trellis Vector Residual Quantizer: Applications to
Image Coding”, Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, Munich, Germany, 2929–2932.

G. Motta and B. Carpentieri [1997b]. “Trellis Vector Residual Quantization”, Proc. International
Conference on Signal Processing Applications and Technology (ICSPAT97).

G. Motta, J. Storer and B. Carpentieri [1999]. “Adaptive Linear Prediction Lossless Coding”,
Proc. Data Compression Conference, IEEE Computer Society Press, 491–500.

G. Motta, J. Storer, and B. Carpentieri [2000]. “Improving Scene Cut Quality for Real–Time
Video Decoding”, Proc. Data Compression Conference, IEEE Computer Society Press, 470–479.

G. Motta, J. Storer, and B. Carpentieri [2000b]. “Lossless Image Coding via Adaptive Linear
Prediction and Classification”, Proc. on the IEEE, Special Issue on Lossless Compression, Nov.
2000, Vol.88, No.11, 1790-1896.

A. Nosratinia, M. Orchard [1996]. Optimal Warping Prediction for Video Coding, Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, IV: 1986–1989.

 207

K. Oehler and R. Gray [1993]. “Mean–Gain–Shape Vector Quantization”, Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, V: 241–244.

A. V. Oppenheim, R. W. Schafer, J. R. Buck [2000]. Discrete–Time Signal Processing, Prentice–
Hall.

A. Ortega [1996]. “Optimal Bit Allocation under Multiple Rate Constraints”, Proc. Data
Compression Conference, IEEE Computer Society Press, 349–358.

K. Paliwal and B. Atal [1991]. “Efficient Vector Quantization of LPC Parameters at
2.4KBits/Frame”, IEEE Int. Conf. on Acoustics, Speech., Signal Processing, 661–664.

K. Panusopone, K. Rao [1997]. “Efficient Motion Estimation for Block Based Video
Compression”, Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, Munich, Germany, 2677–2680.

W. Pennebaker and J. Mitchell [1993]. JPEG Still Image Data Compression Standard, Van
Nostrand Reinhold.

W. Pennebaker, J. Mitchell, G. Langdon and R. Arps [1988]. “An overview of the basic
principles of the Q–coder”, IBM Journal of Research and Development, 32:6, 717–726.

J. G. Proakis and D. G. Manolakis [1996]. Digital Signal Processing: Principles, Algorithms, and
Applications, Prentice Hall.

L. Rabiner and R. Schafer [1978]. Digital Processing of Speech Signals, Prentice–Hall.

M. Rabbani and P. Jones [1991]. Digital Image Compression Techniques, SPIE Optical Eng.
Press.

S. Rajala, I. Abdelqader, G. Bilbro, W. Snyder [1992]. “Motion Estimation Optimization”, Proc.
IEEE ICASSP Conference, San Francisco, CA, 253–256.

K. Ramchandran and M. Vetterli [1994]. “Syntax–Constrained Encoder Optimization Using
Adaptive Quantization Thresholding for JPEG/MPEG Coders”, Proc. Data Compression
Conference, IEEE Computer Society Press, 146–155.

K. Rao and P. Yip [1990]. Discrete Cosine Transform – Algorithms, Advantages, Applications,
Academic Press.

V. Ratnakar and M. Livny [1995]. “RD–OPT: An Efficient Algorithm for Optimizing DCT
Quantization Tables”, Proc. Data Compression Conference, IEEE Computer Society Press, 332–
342.

V. Ratnakar and M. Livny [1996]. “Extending RD–OPT with Global Thresholding for JPEG
Optimization”, Proc. Data Compression Conference, IEEE Computer Society Press, 379–386.

T. Reed, V. Algazi, G. Ford, and I. Hussain [1992]. “Perceptually Based Coding of Monochrome
and Color Still Images”, Proc. Data Compression Conference, IEEE Computer Society Press,
142–151.

 208

H. Reeve and J. Lim [1984]. “Reduction of blocking effects in image coding”, Optical
Engineering 23:1, 34–37.

J. Reif and J. Storer [1998]. “Optimal Lossless Compression of a Class of Dynamic Sources”,
Proc. Data Compression Conference, IEEE Computer Society Press, 501–510.

J. Ribas–Corbera and S. Lei [1997]. “A Quantizer Control Tool for Achieving Target Bit Rates
Accurately”, Doc. LBC–97–071.

J. Ribas–Corbera and S. Lei [1997b]. “Rate–Control for Low–Delay Video Communications”,
Doc. ITU–T/SG16/Q15–A–20.

E. Riskin [1990]. Variable Rate Vector Quantization of Images, Ph.D. Dissertation, Stanford
University, CA.

J. Rissanen [1983]. “A Universal Data Compression System”, IEEE Trans. on Information
Theory 29:5, 656–664.

J. Rissanen and G. Langdon [1981]. “Universal Modeling and Coding”, IEEE Trans. on
Information Theory 27:1, 12–23.

F. Rizzo and J. Storer [2001]. “Overlap in Adaptive Vector Quantization”, Proc. Data
Compression Conference, IEEE Computer Society Press, 401–410.

F. Rizzo, J. Storer and B. Carpentieri [1999]. “Experiments with Single–Pass Adaptive Vector
Quantization”, Proc. Data Compression Conference, IEEE Computer Society Press, 546.

F. Rizzo, J. Storer and B. Carpentieri [2001]. “LZ-based Image Compression”, Information
Sciences, 135 (2001), 107-122.

J. Ronda, F. Jaureguizar and N. Garcia [1996]. “Overflow–Free Video Coders: Properties and
Optimal Control Design”, Visual Communications and Image Processing 1996, Proc. SPIE Vol.
2727.

J. Ronda, F. Jaureguizar and N. Garcia [1996b]. “Buffer–Constrained Coding of Video Sequences
with Quasi–Constant Quality”, Proc. of the ICIP96, Lausanne.

J. Ronda, M. Eckert, S. Rieke, F. Jaureguizar and A. Pacheco [1998]. “Advanced Rate Control for
MPEG–4 Coders”, Proc. of the Visual Communications and Image Processing '98, San Jose'.

D. Salomon [1997]. Data Compression: The Complete Reference, Springer–Verlag.

K. Sayood [1996]. Introduction to Data Compression, Morgan Kaufmann Publishers.

G. Schaefer [2001]. “JPEG Compressed Domain Image Retrieval by Colour and Texture”, Proc.
Data Compression Conference, IEEE Computer Society Press, 514.

M. Schroeder and B. Atal [1985]. “Code–Excited Linear Prediction (CELP) High Quality Speech
at Very Low Bit Rate”. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 937–
940.

 209

G. Seroussi and M. Weinberger [1997]. “On Adaptive Strategies for Extended Family of
Golomb–Type Codes”, Proc. Data Compression Conference, IEEE Computer Society Press,
131–140.

C. Shannon [1948]. “A mathematical theory of communication”, Bell Syst. Tech. J. 27, 379–423,
623–656; also in The Mathematical Theory of Communication, C. Shannon and W. Weaver,
University of Illinois Press, Urbana, IL (1949).

C. Shannon [1959]. “Coding Theorems for a Discrete Source with a Fidelity Criterion”, Proc.
IRE National Conference, 142–163; also in Key Papers in the Development of Information
Theory (D. Slepian, editor), IEEE Press, New York, NY (1973).

T. Sikora [1997]. “MPEG Digital Audio and Video Coding Standards”, IEEE Signal Processing
Magazine (September), 58–81.

H. Song, J. Kim and C. C. Jay Kuo [1998]. “Real–Time Motion–Based Frame Rate Control
Algorithm for H.263+”, Doc: ITU–T/SG16/Q15–F–14.

H. Song, J. Kim and C. C. Jay Kuo [1999]. “Performance Analysis of Real–Time Encoding
Frame Rate Control Proposal”, Doc: ITU–T/SG16/Q15–G–22.

J. Storer [1977]. “NP–Completeness Results Concerning Data Compression”, Technical Report
234, Dept. of Electrical Engineering and Computer Science, Princeton University, Princeton, NJ.

J. Storer [1979]. “Data Compression: Methods and Complexity Issues”, Ph.D. Thesis, Dept. of
Electrical Engineering and Computer Science, Princeton University Princeton, NJ.

J. Storer [1983]. “An Abstract Theory of Data Compression”, Theoretical Computer Science 24
221–237; see also “Toward an Abstract Theory of Data Compression”, Proc. Twelfth Annual
Conference on Information Sciences and Systems, The Johns Hopkins University, Baltimore,
MD, 391–399 (1978).

J. A. Storer [1988]. Data Compression: Methods and Theory, Computer Science Press (a
subsidiary of W. H. Freeman Press).

J. A. Storer, Ed. [1992]. Image and Text Compression, Kluwer Academic Press.

J. Storer and H. Helfgott [1997]. “Lossless Image Compression by Block Matching”, The
Computer Journal 40:2/3, 137–145.

J. Storer and J. Reif [1995]. “Error Resilient Optimal Data Compression”, SIAM Journal of
Computing 26:4, 934–939.

J. Storer and J. Reif [1997]. “Low–Cost Prevention of Error Propagation for Data Compression
with Dynamic Dictionaries”, Proc. Data Compression Conference, IEEE Computer Society
Press, 171–180.

J. Storer and T. Szymanski [1978]. “The Macro Model for Data Compression”, Proc. Tenth
Annual ACM Symposium on the Theory of Computing, San Diego, CA, 30–39.

 210

J. Storer and T. Szymanski [1982]. “Data Compression Via Textual Substitution”, Journal of the
ACM, 29:4 928–951.

G. Sullivan and T. Wiegand [1998]. “Rate–Distortion Optimization for Video Compression”,
Draft for submission to IEEE Signal Processing Magazine, Nov. 1998 issue.

P. Tai, C. Liu and J. Wang [2001]. “Complexity–Distortion Optimal Search Algorithm for Block
Motion Estimation”, Proc. Data Compression Conference, IEEE Computer Society Press, 519.

W. Teahan, J. Cleary [1996]. “The Entropy of English Using PPM–Based Models”, Proceedings
Data Compression Conference, IEEE Computer Society Press, 53–62.

D. Thompkins and F. Kossentini [1999]. “Lossless JBIG2 Coding Performance”, Proc. Data
Compression Conference, IEEE Computer Society Press, 553.

P. Tivari, E. Viscito [1996]. A Parallel MPEG2 Video Encoder with Look–Ahead Rate Control,
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, IV: 1994–
1997.

T. Tremain [1982]. “The government standard linear predictive coding algorithm: LPC–10”,
IEEE Trans. Acoustics, Speech and Signal Processing, ASSP–36:9, 40–49.

K. Tsutsui, H. Suzuki, O. Shimoyoshi, M Sonohara, K. Agagiri, and R. Heddle [1992]. “ATRAC;
Adaptive Transform. Acoustics coding for MiniDisc”, Conf. Rec. Audio Engineering Society
Convention San Francisco.

G. Ungerboeck [1982]. “Channel coding with multilevel/phase signals”, IEEE Trans. on
Information Theory, IT–28, 55–67.

R. Vander Kam and P. Wong [1994]. “Customized JPEG Compression for Grayscale Printing”,
Proc. Data Compression Conference, IEEE Computer Society Press, 156–165.

A. Vetterli and J. Kovacevic [1995]. Wavelets and Subband Coding, Prentice–Hall.

A. Viterbi and J. Omura [1974]. “Trellis encoding of memoryless discrete–time sources with a
fidelity criterion”, IEEE Trans. on Information Theory IT–20, 325–332.

E. Wallace [1990]. “Overview of the jpeg (iso/ccitt) Still Image Compression Standard”, SPIE
Image Processing Algorithms and Techniques 1244, 220–223.

G. Wallace [1991]. “The JPEG: Still Picture Compression Standard”, Communications of the
ACM 34:4, 31–44.

H. Wang and N. Moayeri [1992]. “Trellis Coded Vector Quantization”, IEEE Trans. on
Communications, Vol.28, N.8.

S. Wang, A. Sekey, and A. Gersho [1992]. “An objective measure for predicting subjective
quality of speech coders”, IEEE J. Selected Areas in Communications, vol. 10 819–829.

M. Weinberger and G. Seroussi [1999]. “From LOCO–I to the JPEG-LS Standard”, Technical
Report, Information Theory Group, HP Laboratories Palo Alto, HPL-1999-3, Jan 1999.

 211

M. Weinberger, G. Seroussi, G. Sapiro [1996]. “LOCO–I: A Low Complexity, Context–Based,
Lossless Image Compression Algorithm”, Proc. Data Compression Conference, IEEE Computer
Society Press, 140–149.

M. Weinberger, J. Ziv, and A. Lempel [1991]. “On the Optimal Asymptotic Performance of
Universal Ordering and Discrimination of Individual Sequences”, Proc. Data Compression
Conference, IEEE Computer Society Press, 239–246.

J. Wen and J. Villasenor [1998]. “Reversible Variable Length Codes for Efficient and Robust
Image and Video Coding”, Proc. Data Compression Conference, IEEE Computer Society Press,
471–480.

S. Wenger, G. Côté, M. Gallant and F. Kossentini [1999]. “Video Codec Test Model, Near–Term,
Version 11 (TMN–11) Rev.2”, Doc. ITU–T/SG16/Q15–G–16 rev 2.

T. Wiegand and B. Andrews [1998]. “An Improved H.263 Coder Using Rate–Distortion
Optimization”, Doc. ITU–T/SG16/Q15–D–13.

T. Wiegand, M. Lightstone, D. Mukherjee T. George Campbell and S. K. Mitra [1995]. “Rate–
Distortion Optimal Model Selection for Very Low Bit Rate Video Coding and the Emerging
H.263 Standard”, IEEE Trans. on Circuits and Systems for Video Technology.

D. Wilson, M. Ghanbari [1997]. “Optimisation of Two–Layer SNR Scalability for MPEG–2
Video”, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,
Munich, Germany, 2637–2640.

I. Witten and T. Bell [1991]. “The Zero Frequency Problem: Estimating the Probability of Novel
Events in Adaptive Text Compression “, IEEE Trans. on Information Theory, 37(4), 1085-1094.

I. Witten, A. Moffat, and T. Bell [1994]. Managing Gigabytes, Van Nostrand Reinhold.

I. Witten, R. Neal, and J. Cleary [1987]. “Arithmetic Coding for Data Compression”,
Communications of the ACM 30:6, 520–540.

J. Woods [1991]. Subband Image Coding, Kluwer Academic Press.

X. Wu [1990]. “A tree–structured locally optimal vector quantizer”, Proc. Tenth International
Conference on Pattern Recognition, Atlantic City, NJ, 176–181.

X. Wu [1993]. “Globally Optimal Bit Allocation”, Proc. Data Compression Conference, IEEE
Computer Society Press, 22–31.

X. Wu [1996]. “An Algorithm Study on Lossless Image Compression”, Proc. Data Compression
Conference, IEEE Computer Society Press, 150–159.

X. Wu [1996b]. “Lossless Compression of Continuous–Tone Images Via Context Selection,
Quantization, and Modeling”, IEEE Trans. on Image Processing.

X. Wu, K. Barthel and W. Zhang [1998b]. “Piecewise 2D Autoregression for Predictive Image
Coding”, International Conference on Image Processing Conference Proc., Vol.3.

 212

X. Wu, N. Memon [1996]. CALIC — A Context–based, Adaptive, Lossless Image Codec, Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, IV: 1890–1893.

X. Wu and N. Memon [1997]. “Context–based, Adaptive, Lossless Image Codec”, IEEE Trans.
on Communications, Vol.45, No.4.

X. Wu, Wai–Kin Choi and N. Memon [1998]. “Lossless Interframe Image Compression via
Context Modeling”, Proc. Data Compression Conference, IEEE Computer Society Press, 378–
387.

Y. Ye, D. Schilling, P. Cosman, and H. Ko [2000]. “Symbol dictionary design for the JBIG2
standard”, Proc. Data Compression Conference, IEEE Computer Society Press, 33–42.

K. Zhang, M. Bober, J. Kittler [1996]. Video Coding Using Affine Motion Compensated
Prediction, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,
IV: 1978–1981.

J. Ziv and A. Lempel [1977]. “A Universal Algorithm for Sequential Data Compression”, IEEE
Trans. on Information Theory, 23:3, 337–343.

J. Ziv and A. Lempel [1978]. “Compression of Individual Sequences Via Variable–Rate Coding”,
IEEE Trans. on Information Theory, 24:5, 530–536.

