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Abstract

We present a reformulation of the stochastic op-
timal control problem in terms of KL divergence
minimisation, not only providing a unifying per-
spective of previous approaches in this area, but
also demonstrating that the formalism leads to
novel practical approaches to the control problem.
Specifically, a natural relaxation of the dual formu-
lation gives rise to exact iterative solutions to the
finite and infinite horizon stochastic optimal con-
trol problem, while direct application of Bayesian
inference methods yields instances of risk sensitive
control.

1 Introduction

The primary aim of this work is of theoretical nature and illus-
trated in Fig. 1. Recently, a series of new algorithms for solv-
ing SOC problems has been proposed, which, in one way or
another, draw on the duality between SOC and probabilistic
inference. Figure 1 summarizes some exemplary work, rang-
ing from approaches utilising Expectation Maximization for
solving POMDPs to efficient Reinforcement Learning meth-
ods. Each of these algorithms demonstrates — in its specific
domain — the benefits of transferring methodologies from the
realm of probabilistic inference to solving SOC problems.

Our work first provides a common theoretical foundation
of these methods by showing that they are special cases
of a general duality. This is in the tradition of previ-
ous formulations of such a general duality [Kappen, 2005;
Todorov, 2009]. While the dual reformulation of SOC prob-
lems does not directly allow for analytical solutions, it leads
to iterative solutions that provide an alternative to the classi-
cal iterative SOC solvers. We introduce two classes of such
iterative solutions, W-Iterations and PPI.

In the case of W-learning we can prove global conver-
gence and derive model-free Reinforcement-Learning ver-
sions which are interestingly related to standard temporal dif-
ference learning. The existing methods eNAC [Peters and
Schaal, 20081, DPP [Azar et al., 2011] and REPS [Peters et
al., 2010] can be discussed as special cases of ¥-learning.

*The paper on which this extended abstract is based was the re-
cipient of the best paper runner-up award of 2012 Robotics: Science
and Systems [Rawlik ef al., 2012]
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Figure 1: Summary of relations between this work and previ-
ously proposed approaches.

Posterior policy iteration is a second type of iterative
solution, which directly allows for application of standard
Bayesian inference methods. The motivation here is to draw
on the rich variety of efficient approximate inference methods
for structured graphical models, e.g., to handle hierarchical,
hybrid or multi-agent systems. The existing methods AICO
of [Toussaint, 2009] and iLQG by [Li and Todorov, 2006],
but also risk sensitive control as described by [Marcus er al.,
1997] can be discussed as special cases of PPL

2 Preliminaries
2.1 Stochastic Optimal Control

We will consider control problems which can be modeled by a
Markov decision process (MDP). Using the standard formal-
ism, see also e.g., [Sutton and Barto, 1998], let z; € X be the
state and u; € U the control signals at times ¢t = 1,2,...,T.
To simplify the notation, we shall denote complete state and
control trajectories x1_ 7,ug.. 7 by Z,u. Let P(xiy1|xe, uy)
be the transition probability for moving from x; to x4 1 under
control u; and let C(x,u) > 0 be the cost incurred per stage



for choosing control « in state  at time ¢. Let policy m(u¢|x¢)
denote the conditional probability of choosing the control u,
given the state x;. In particular a deterministic policy is given
by a conditional delta distribution, i.e. 7(u¢|2) = dy,—r(a,)
for some function 7. The SOC problem consists of finding a
policy which minimises the expected cost 7 (), i.e., solving

> :ct,ut)] , (M

7% = argmin J () = argmm E,. [
™

t=0
where the expectation is taken with respect to
T
4x (. 1lwo) = m(uolwo) [ w(wsle) Plavslar ur) , @)
t=1

the distribution over trajectories under policy 7.

2.2 Inference Control Model

A Bayesian inference based approximation of the above con-
trol problem can be formulated [Toussaint, 2009] as illus-
trated in Fig. 2. In addition to the state and control variables
of classical SOC, a binary dynamic random task variable r,
is introduced and the task likelihood is related to the classi-
cal cost by choosing P(r; = 1|z, uy) = exp{—nC(z¢,us)},
where > 0 is some constant in analogy with the inverse
temperature of a Boltzmann distribution. For some given pol-
icy m and assuming the artificial observations ro. r = 1, we
denote the un-normalised posterior by p, (Z, @):

(T, 1) = P(Z,u|F = 1,xz0)
T
= Z_lqﬂ'(fa'a) HeXp{_nCt(iftaUt)} 9 (3)
t=0

with Z = P(T = 1]zo).

2.3 General Duality

While the Bayesian model has been employed successfully
for trajectory planning, see, e.g., [Toussaint, 2009], it’s gen-
eral relation to the classical SOC problem remained unclear.
Although a specific subset of SOC problems, studied by
[Kappen, 2005] and [Todorov, 2009], can be formulated in
a similar Bayesian model, as explicitly done by [Kappen et
al., 2009], we establish the formal correspondence between
the two formalisms in the general case.

In the following we will distinguish between the unknown
control policy 7 and a prior policy 7°. We derive statements
about the KL divergence KL (g |pyo) — intuitively we think
of g, as the controlled process which is not conditioned on
costs (as defined in (2)), and p,o as the posterior process,
which is conditioned on costs but generated via a potentially
uninformed policy 7¥ (as defined in (3)). The dual problem
will be to find a control policy 7 such that the controlled
process g, matches the posterior process po. The follow-
ing result establishes the basic relation between such a KL-
divergence and SOC:

Proposition 1. Let 7° and 7 be an arbitrary stochastic poli-
cies, then the following identities hold

KL(¢x|lpr0) =Z + 0T (7) + Eq, @) [KL (r]7°)] ()
=Z+ 77~7( ) QW(I ) [long ( ‘j)]
— Eqﬂ.(i) [H(ﬂ')] 5 (5)
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Figure 2: The graphical model of for the Bayesian formula-
tion of the control problem in the finite horizon case. In the
infinite horizon case we obtain a stochastic Markov process.

70).

Proof. n.b. proofs may be found in the full paper [Rawlik er
al., 2012]. O

where Z = log P(7 =1

The presented identities are interesting in several respects:
Equation (4) tells us that finding an unconstrained policy
7* = argmin, KL (¢.||pro) is a compromise between min-
imized expected costs 7 (7) and choosing 7 similar to the
prior policy 0. In particular, in the limit ) — oo the expected
cost term dominates and we retrieve a solution to the SOC
problem. Further, when choosing the prior policy 7° uni-
form the term Ey_(; ) [log 7°(@|Z)] in (5) becomes constant
and 7* is a compromise between minimized expected costs
nJ (m) and maximizing the policy’s entropy K,z [H(7)].
This hints at a relation to risk-sensitive control, which we will
discuss in more detail in Section 3.2.

The following corollary is a direct consequence of these
identities.

Corollary (General duality). Let 7° be an arbitrary
stochastic policy and D the set of deterministic policies, then
the problem
= argmin KL (qﬂ' (fa 'L_L) ”pTFO (fa ﬂ)) ) (6)
weD
is equivalent to the stochastic optimal control problem (1)
with cost per stage

R 1
Ce(xe,ur) = Ce(we, ug) — ;IIOg 7TO(Ut‘ﬂTft) .

3 Iterative Solutions

Although the above corollary provides the correspondence
between the SOC formulation and the computationally attrac-
tive inference control approach, due to the constraint 7 € D,
(6) remains as intractable as the classical formulation via the
Bellmann equation. However relaxation of this constraint to
allow minimisation over arbitrary stochastic policies provides
a closed form solution, and although it does not directly lead
to an optimal policy, we have the following result:

Proposition 2 (Monotonicity). For any m # 7°,

KL (qﬂ Hpﬂ'o) <KL (qﬂ'o ||p7r0) = j(ﬂ—) < \7(,”0) :
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Figure 3: Results from the Gridworld problem. (left) Evolu-
tion of the mean error in (9) averaged over 10 trials with error
bars indicating the s.d. (right) Optimal value function (white
low expected cost - black high expected cost) of the problem.
Obstacles are black and the target state is indicated by *.

Consequently, with some initial 70, the iteration

7" argmin KL (gx [pn) )

where 7 is an arbitrary! conditional distribution over u, gives
rise to a chain of stochastic policies with ever decreasing ex-
pected costs. Note that our discussion of equation (4) suggest
that the convergence rate of such an iteration increases with
7, as the expected cost term becomes more dominating.

Note however, that the conditions imposed by the above
result, in order to guarantee a policy improvement, are very
weak. By exploiting this, in addition to the iteration arising
from (7), we present in the following a relaxation, which sat-
isfies Proposition 2 and leads to practical algorithms for in-
finite horizon problems, and the related iteration of Bayesian
inference which leads to risk-sensitive control.

3.1 W-Iterations

We first examine specific instances of iterations of the form
(7). Specifically we show that in the finite horizon problem, a
closed form solutions to the iterates can be obtained. We sub-
sequently study a class of approximations to (7), which even-
tually allows us to extend the results of finite horizon case to
the the discounted infinite horizon setting. In summary we
obtain the following results. In both cases the iterates 7" +!
take the general form of a Boltzmann like distribution

7Tn+1(“t‘33t) = eXP{‘I’nH(CUt, ug) — @n+1($t)} ()
with energy ¥ and log partition function

T = 10g/ W )

Ut
where the specific update for the two cases take the forms

e Finite Horizon:

‘I’?H(fﬂta u) = log 7" (ug|ay) — nCe(xe, ut)
+Bay e, [“I/?If (xt-i-l)]

'n.b., assumptions have to be made to ensure the support of ¢ is
a subset of the support of prn»

e Discounted Infinite Horizon:

\Iﬂ”’l(x’ U) = logw"(u\x) - nct(x7u)

where 7 is the discount rate. We refer to these methods collec-
tively as W-Iterations and demonstrate that both of the above
cases enjoy convergence to the globally optimal policy.

For practical application of the above iterations we propose
Monte Carlo based evaluation of the required expectations
with in a Reinforcement Learning approach, additionally in-
troducing a suitable basis function expansion of ¥"+! for
problems with large or continuous state and control spaces.

Example

We illustrate the Reinforcement Learning algorithm on a
problem used by [Todorov, 20091, with finite state and action
spaces, which allows a tabular representation of W. The state
space is given by a N x N grid (see Fig. 3) with some obsta-
cles. The control can move the state to any adjacent ones not
occupied by an obstacle and the move succeeds with a prob-
ability of 0.8. Additionally, a set A C X of absorbing target
states was defined and the agent incurs a cost of 1 at all states
other than the target, i.e., C(x,u) = dy¢4 with § the Kro-
necker delta. The cost was not discounted. We benchmark
performance against tabular Q-learning [Sutton and Barto,
1998].

Both algorithms were given data from episodes generated
with controls sampled from an uninformed policy. Once a
target state was reached, or if the target wasn’t reached within
100 steps, the state was reset randomly. The learning rate for
Q-learning decayed as & = ¢/(c + k) with k the number
of transitions sampled and c a constant which was optimised
manually. Representative results are illustrated in Fig. 3. We
plot the approximation error

max, |7 (z) = J (z)|

max, J ()

ey = (9)

between the true value function 7, obtained by value itera-

tion, and it’s estimate J , which can be shown to be given by
¥ and max, Q(z,u) respectively. Both algorithms achieved
the same error at convergence, but the proposed algorithm
(U-learning) consistently required fewer samples than Q-
learning for convergence. We additionally considered a on-
line variant of W-learning where the controls are sampled
from the policy given by the current ¥, ie. w(u|z) =
exp{¥(x,u) — ¥(x)}. As expected, the online version out-
performed sampling using an uninformed policy.

3.2 Posterior Policy Iteration

Since our starting point was the relaxation of the relation be-
tween SOC and inference control, it is interesting to consider
sequential inference of the posterior policy, which is the nat-
ural iteration arising in the latter framework. Such an iter-
ation is of particular interest as posterior inference is a well
studied problem with a large range of approximate algorithms
[Bishop, 2006] which could be exploited for practical imple-
mentations.
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Figure 4: Results for model based approximate posterior policy iteration on the Cart-Pole swing-up task. (left) Schematic of
the pole on cart plant used in the experiments. (middle) Expected cost achieved by policies obtained for different values of the
parameter 7. Dashed line indicates expected cost of policy obtained using iLQG. All values estimated from 1000 trajectories
sampled using the respective policy. (right) Variance of the costs achieved by the same policies as for the expected costs of the

central plot.

Although unconstrained minimisation of the KL diver-
gence is achieved by the posterior, in our case, the specific
form of ¢, in (7) is, as can be seen in (2), restricted by the
prescribed system dynamics, leading to the W-Iterations pre-
sented in the previous section. Nonetheless, we may consider
the iteration

T = pan (i) (10)
which, as we show, will converge to the policy
1
7 = argmin —— log E,_ [exp{—nC/(Z,@)}] . an
™ n

The objective being minimized is exactly the risk sensitive
objective of [Marcus et al., 19971, which has been recently
also used in the path integral approach to SOC [Broek et al.,
2010]. In particular, note that for  — 0, we obtain the clas-
sical risk neutral controls, allowing near optimal policies for
arbitrary SOC problems to be computed by iterated Bayesian
inference.

The proposed iteration can be seen as a generalisation of
the AICO framework of [Toussaint, 2009] and our results
provide the previously lacking formal interpretation of this
formulation.

Example

We consider the classical Cart-Pole plant [Sutton and Barto,
19981, illustrated in Fig. 4, and consisting of a inverted pen-
dulum which is mounted on a cart and is controlled by ex-
erting forces on the latter. The task is the swing up task in
which the pendulum has to be moved from a hanging down
to an upright position and balanced. The per-step cost for this
task is given by

2

Co(wy,up) = wi6? + wa? + wsu; Vte[0,T], (12)

where w is a vector of weights. The time horizon was T = 3s,
but note that, since a cost is incurred in each time step for
pendulum positions away from rest in the upright position,
a rapid swing up followed by holding is encouraged. The
required solution to the inference problem arising from PPI
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was obtained using an extended Kalman filter, leading to an
linear policy solution.

In Fig. 4, we plot the expected costs and the cost variances,
both estimated by sampling under the obtained policies, for
different values of the parameter 7. For reference, we also
show the expected cost from the policy obtained using the
iLQG algorithm [Li and Todorov, 2006] which also computes
an approximately optimal linear policy. We first observe that
as predicted, n acts to control the risk seeking behaviour of
the policy, and for increasing values of 7 the cost variance in-
creases substantially. Furthermore, we note that the choice of
n = 1, which, as discussed, corresponds to the AICO setting,
leads to results substantially different from the case of classi-
cal (risk neutral) optimal control. However reducing n leads
rapidly to policies obtained by approximate inference which
exhibit similar performance to those obtained by classical ap-
proximate methods.

4 Conclusion

We have present a general relation between stochastic opti-
mal control problems and minimisation of KL divergences
of the form (6). This allowed us to derive iterative algo-
rithms for obtaining both risk neutral and risk sensitive op-
timal controls for finite and infinite horizon MDPs. In the
main paper [Rawlik er al., 2012] we show that these algo-
rithms enjoy guaranteed convergence to the global optimum
and also propose efficient implementations in the Reinforce-
ment Learning setting for both finite and continuous domains.
Further, we discuss the connections of our work to previ-
ous approaches in this area, highlighting that many of these
arise in our formulation as special cases which either require
restrictions on the class of problems (e.g., [Todorov, 2009;
Kappen et al., 2009]), or for which the relation to SOC was
previously unclear (e.g., [Toussaint, 2009]). Finally we pro-
vide experimental validation of our theoretical results.
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