GCSE (9-1) Compułer Science Teacher's Workbook

for OCR J276
Readings, questions and answers for both theory exams

4th Edition

Axsỉed ak'seed

Axsied is producing many new products to support Computer Science for both OCR and other exam boards.

Be the first to find out about new products, information and free resources.

Stay up to date at www.axsied.com/update
For more information and to download free resources visit www.axsied.com today

Exam-related

NEA-related

GCSE Compułer Science (9-1) Teacher's Workbook

for OCR J276
Readings, questions and answers for both theory exams

Acknowledgements

Cover image: Aleksei Vasileika, Fotolia

The publishers are grateful to the following for permission to reproduce photographs and other material:

Photographs and screenshots: R1 Hive thermostat, Emre Nacigil, David Jones; R2,A2 Engilbert Legaspi, Menno Groenmen, Marin Myftiu, Igor Dugonjic; R7,Q7,A7 A Carlos Herrera, Cierpki; R17 Wryls; R34 Jean Scheijen;

Screenshots of Microsoft products used with permission from Microsoft.

Disclaimer

No part of this publication has been endorsed by OCR in any way. Where OCR is used within the publication or title, it is only to acknowledge the source of topics being covered. No implication of endorsement should be derived from this.

Examples, exercises, questions and answers have all been written to cover material within the OCR GCSE Computer Science syllabus. These have not been written or endorsed by OCR. Due to the nature of the question types they should be supplemented by teacher and examination board written questions. Whilst every effort has been made to ensure that these and all contents of this book are accurate and correct, the publisher cannot be held liable for any omissions or inaccuracies contained herein.

Related products

The student version of this book may be purchased as a physical copy with ISBN: 978-1-911518-06-8

To order copies:
Web: www.axsied.com
Email: sales@axsied.com
Phone: +44 (0)3302 234750

The publisher welcomes comments and suggestions regarding future editions of both this and other publications. Please contact support@axsied.com.
© James Franklin 2017. All rights reserved.

First, second and third and fourth editions published by Axsied in 2013, 2014, 2016 \& 2017.

Apart from the permitted terms of any license purchased from the publisher, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or held within any information storage and retrieval system or otherwise without permission in writing from the publisher.

This workbook contains all readings, questions and answers for all the topics covered in OCR GCSE (9-1) Computer Science (J276) theory exams. This is the teacher's workbook which contains the answers to all questions. A companion student's workbook does not contain the answers and is suitable for sharing with students if you wish to set worksheets as a homework or test. You may share this version of the book with students if you wish them to independently study or revise the material. The books may be uploaded to a VLE - be very careful that this is behind a password so that only students or teachers from your institution can access the material.

Each of the readings is contained on one page and faces one page of questions. This allows them to be photocopied or printed easily either together or separately. All pages are in black and white to allow printing or photocopying where colour is not available.

Each question page contains easier questions on the left and harder questions on the right. There are 10 marks available on each side making a total of 20 marks for each sheet. Calculating percentages is therefore made easy. Learners who find the topic or subject difficult could be asked to complete just the left hand side making the sheets perfect for differentiation.

Each topic is numbered. The first section of the book is for readings and questions. The second section of the book is for answers. These are labelled with R, Q and A as in the following table.

Crosswords are also available to cover the programming topics of the course. These are labelled C and S for crosswords and solutions respectively.

When answering questions, boxes require a tick and circles need to be filled in. Any answer that has a circle to be filled in must only have one answer that is correct. An answer that has squares will have two or more answers that need to be ticked. This is to help prevent learners from making accidental mistakes by not realising how many boxes or circles should be ticked. You may wish to explain this when giving out worksheets.

\begin{tabular}{|c|c|}
\hline Example \& Note

\hline \begin{tabular}{l}
2. Logic gates can only take what two values as inputs? Tick two boxes.

B

$\square 1$

日A x Nil
\end{tabular} \& Boxes require two or more ticks as indicated in the question

\hline 1. Hard disks and CD drives are both examples of what type of storage?
Magnetic storage Primary storage
Optical storage Secondary storage \& Circles require one circle to be filled in

\hline
\end{tabular}

The second section of the book contains answers to all questions. All answers should be easy to mark as either correct or incorrect. There are no partial marks to make marking easier and suitable for peer marking. As longer written answers cannot be assessed this way, the questions should be supplemented with questions from previous exam papers or appropriate essay type questions.

A progress sheet is included in the following page. You may wish to give each of your students a copy of this so that they are able record their progress and results. You may wish to have them stick the sheet into the front of their books or folders if they are given any.

In general, if a student has understood the topic they should be expected to get at least 80% on each of the sheets.

Progress

This progress sheet allows you to record your mark out of 20, or a percentage, for each worksheet you complete.

Crosswords (marked out of 10)

1	2	3	4	5	6	7	8

Revision Sheet

This sheet can be used for revision. Once you have reviewed each topic either tick the box, or if you have worked on the questions write down your result. Make a note of any topics which you are uncertain of so that you can ask your teacher.

1	2	3	4	5	6	7	8	9	10

11	12	13	14	15	16	17	18	19

| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |

61	62	63	64	65	66	67	68	69	70

Section 1
 Readings \& Questions

Computer Systems (J276/01)

1	Computer Systems	p. 1
2	Computer Architecture	p. 3
3	The CPU	p. 5
4	The CPU 2	p. 7
5	Coding Instructions	p. 9
6	RAM, ROM \& Virtual Memory	p. 11
7	Storage Technologies \& Media	p. 13
8	Storage Devices	p. 15
9	Network Classifications \& Server Types	p. 17
10	The Internet	p. 19
11	The Internet 2	p. 21
12	Network Types	p. 23
13	Network Hardware	p. 25
14	Network Topologies	p. 27
15	Network Protocols	p. 29
16	Network Communication	p. 31
17	Ethernet \& Network Layers	p. 33
18	Wi-Fi \& Network Performance	p. 35
19	Computer Security - Methods of Attack	p. 37
20	Computer Security - Methods of Attack 2	p. 39
21	Computer Security - Malware	p. 41
22	Computer Security - Malware 2	p. 43
23	Computer Security - People	p. 45
24	Operating Systems	p. 47
25	Utility Software	p. 49
26	Legislation	p. 51
27	Ethics, Culture \& the Environment	p. 53
28	Open Source and Proprietary Software	p. 55

Computational Thinking, Algorithms and Programming (J276/02)

29	Decomposition	p. 57
30	Abstraction	p. 59
31	Algorithmic Thinking	p. 61
32	Linear \& Binary Searches	p. 63
33	Sorting 1 - Bubble Sort	p. 65
34	Sorting 2 - Insertion Sort	p. 67

38 Assignment, Variables, Constants \& Sequences 39 Data Types 40 Inputs, Outputs \& Casting 41 Numeric Operations
IF Statements \& Boolean OperatorsNested IF \& SWITCH-CASE statementsp. 85
WHILE, DO-UNTIL Loops p. 87
FOR Loops p. 89
Arrays p. 91
2D Arrays p. 93
String Manipulation p. 95
p. 97
File Operations p. 99
p. 101
p. 103p. 105

Crosswords

1	Assignment, Variables, Constants \& Sequences (R38)	p. 155
2	Data Types (R39)	p. 156
3	Numeric Operations (R41)	p. 157
4	IF Statements \& Boolean Operators (R42)	p. 158
5	Nested IF, CASE-SELECT, WHILE, REPEAT \& FOR loops,	
	Arrays (R43-R46)	p. 159
6	String Manipulation (R48-R49)	p. 160
7	File Operations (R50)	p. 161
8	Procedures \& Functions (R51-R52)	p. 162

Answers

Section 2

Answers

Computer Systems (J276/01)

Computer Systems	p. 163
Computer Architecture	p. 164
The CPU	p. 165
The CPU 2	p. 166
Coding Instructions	p. 167
RAM, ROM \& Virtual Memory	p. 168
Storage Technologies \& Media	p. 169
Storage Devices	p. 170
Network Classifications \& Server Types	p. 171
The Internet	p. 172
The Internet 2	p. 173
Network Types	p. 174
Network Hardware	p. 175
Network Topologies	p. 176
Network Protocols	p. 177
Network Communication	p. 178
Ethernet \& Network Layers	p. 179
Wi-Fi \& Network Performance	p. 180
Computer Security - Methods of Attack	p. 181
Computer Security - Methods of Attack 2	p. 182
Computer Security - Malware	p. 183
Computer Security - Malware 2	p. 184
Computer Security - People	p. 185
Operating Systems	p. 186
Utility Software	p. 187
Legislation	p. 188
Ethics, Culture \& the Environment	p. 189
Open Source and Proprietary Software	p. 190

35
 35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

31 Algorithmic Thinking
p. 192

32 Linear \& Binary Searches
p. 193
p. 194

Sorting 1 - Bubble Sort
p. 195

Sorting 2 - Insertion Sort
p. 196

Sorting 3 - Merge Sort	p. 197
Flow Diagrams 1	p. 198
Flow Diagrams 2	p. 199
Assignment, Variables, Constants \& Sequences	p. 200
Data Types	p. 201
Inputs, Outputs \& Casting	p. 202
Numeric Operations	p. 203
IF Statements \& Boolean Operators	p. 204
Nested IF \& SWITCH-CASE statements	p. 205
WHILE, DO-UNTIL Loops	p. 206
FOR Loops	p. 207
Arrays	p. 208
2D Arrays	p. 209
String Manipulation	p. 210
String Manipulation 2	p. 211
File Operations	p. 212
Procedures	p. 213
Functions	p. 214
Databases	p. 215
SQL	p. 216
Authentication, Misuse \& Contingencies	p. 217
Validation \& Verification	p. 218
Comments \& Readability	p. 219
Errors \& Testing	p. 220
Computing Units	p. 221
Binary	p. 222
Binary to Denary Conversions	p. 223
Denary to Binary Conversions	p. 224
Binary Addition	p. 225
Hexadecimal to Denary Conversions	p. 226
Denary to Hexadecimal Conversions	p. 227
Hexadecimal and Binary Conversions	p. 228
Binary Shifts	p. 229
Logic Gates	p. 230
Character Sets - ASCII	p. 231
Character Sets - Unicode	p. 232
Images \& Pixels	p. 233
Image Size	p. 234
Digitising Sound	p. 235
Compression \& Internet File Formats	p. 236
Assemblers, Compilers \& Interpreters	p. 237
IDEs	p. 238
Records	p. 239

p. 198
p. 199
p. 200
p. 201
p. 202
p. 204
p. 205
p. 206
p. 207
p. 208
p. 209
p. 210
p. 211
p. 213
p. 214
p. 215
p. 216
p. 217
p. 219
p. 220
p. 221
p. 222
p. 223
p. 224
p. 225
p. 226
p. 228
p. 229
p. 230
p. 231
p. 232
p. 234
p. 235
p. 236
p. 238
p. 239

Crossword Solutions

1	Assignment, Variables, Constants \& Sequences (R38)	p. 240
2	Data Types (R39)	p. 241
3	Numeric Operations (R41)	p. 242
4	IF Statements \& Boolean Operators (R42)	p. 243
5	Nested IF, CASE-SELECT, WHILE, REPEAT \& FOR loops,	
	Arrays (R43-R46)	p. 244
6	String Manipulation (R47-R48)	p. 245
7	File Operations	p. 246
8	Procedures \& Functions	p. 247

The CPU (Central Processing Unit) is responsible for the processing of data in the computer. Most computers today use a Von Neumann architecture.

The CPU fetches the next instruction to be processed from memory (RAM), decodes the instruction and then executes it. This is known as the fetchexecute cycle.

The CPU contains a control unit
 which coordinates the timing of the units and the flow of data in the CPU. It is responsible for fetching and decoding instructions and also managing their execution on the processor.

A CPU contains a very small amount of storage called registers. In a 64 bit processor, each register will store just 64 bits. The Arithmetic Logic Unit (ALU) is responsible for arithmetic operations like addition and subtraction. It is also responsible for logical operations such as the comparison of two numbers.

Cache is very similar to RAM (Random Access Memory). It is faster and more expensive to produce. A small amount of level 1 cache is placed next to the control unit for instructions and next to the ALU and registers for data. As the level 1 cache only stores a very small amount of data, if the CPU needs some data that isn't in level 1 cache then it will try the level $\mathbf{2}$ cache. This process continues through level $\mathbf{3}$ cache and finally to RAM. A computer may have 6 GB of RAM but only $6 M B$ of level 3 cache.

A dual core processor has two cores. Each core can process data in parallel (at the same time). The cores normally have a shared area of level 3 cache. Processors can have four cores (quad core processors) or more. Processors that have more than one core are known as multi-core processors.

CPUs have a clock speed. This is the number of fetch-execute cycles that they can carry out per second. It is usually measured in megahertz

(MHz) or gigahertz (GHz). A typical CPU today will have a speed of $4 \mathrm{GHz}-4$ billion cycles per second.

Question: A quad core processor has a clock speed of 2.8 GHz . How many operations will it carry out per second?

Answer: 2.8 billion * $4=\mathbf{1 1 . 2}$ billion operations per second.

1. What type of computer architecture do most computers use today?
2. The main processing component in a computer is known as what?
3. In the fetch-execute cycle, an instruction is fetched then executed. What happens between these two steps?
4. Match the parts of a CPU on the left to what they do on the right.

Timing of the parts of the CPU
Arithmetic and logical operations
5. Match the units on the left to their meanings on the right

[3]
6. A processor states that it is dual core. How many cores does it have?
\qquad cores
7. For each description below, what part of the CPU do they describe?

Description	CPU part
A type of memory on the processor that stores only a few bytes of data for each one	
Responsible for arithmetic and logical operations	
Needed to coordinate timing and data flow in the processor	
An intermediate type of memory between registers and RAM	

8. A dual core processor has a clock speed of 1.7 GHz . How many operations will it carry out per second? operations per second

9. Fill in the text below with the words beneath.

A CPU will make use of very small areas of memory called \qquad which operate at the same speed as the processor. The CPU can also read from, and write to, RAM. This operates at a \qquad speed. Processors can also contain \qquad This operates at a speed that is faster than RAM. By increasing the amount of cache, a computer will work \qquad as it will have to make fewer accesses to RAM.
faster cache slower registers
10. A CPU that contains more than one core is known as what type of processor?
\qquad processor

Wi-Fi Channels and Frequency

Wi-Fi is a trademarked name for the IEEE 802.11 standard. Wi-Fi works at the microwave frequencies of 2.4 GHz and 5 GHz . The frequencies used for the 802.11 g standard are shown above. Each Wi-Fi Access Point (AP) operates on a specific channel which uses 22 MHz of bandwidth. If your neighbour's access point uses the same channel then your network will slow down. Although the channels overlap, if you use channels far enough apart then they will not interfere - e.g. your neighbour uses channel 1 and you use channel 6 . The newer 802.11 ac standard uses the 5 GHz frequency. This is less crowded and therefore has less interference.

Wi-Fi Encryption

Encryption encodes communication so that only those who have the password to decrypt it can do so. As Wi-Fi communications go through the air, it is essential that they are encrypted so that other users cannot read them. Wi-Fi uses a number of methods to encrypt the data. WEP (Wired Equivalent Privacy) is an older standard of encryption which can be cracked in minutes. This has been replaced by Wi-Fi Protected Access (WPA and WPA2). WPA2 is the most secure of these. Home Wi-Fi uses a Pre-Shared Key (PSK) which users type into their device or computer. The device then uses this key to encrypt and decrypt information which it sends over Wi-Fi.

Network performance

The performance of a network is the service quality which the user experiences. There are a number of aspects which we measure the performance of:

- Bandwidth - the maximum rate of transfer of data
- Throughput - the actual rate of transfer of data through the network
- Latency - the delay taken from a packet being sent from the sender to being decoded by the receiver
- Jitter - the amount of change in the delay of packets
- Packet loss - the percentage of packets which are corrupted and don't correctly arrive with the receiver.

A number of factors can cause a network to underperform. Many users trying to use the same switch or hub at the same time will cause the network to slow down. This is called network congestion. A physical break in a major wire on the Internet will also slow down the network as this will cause congestion on the other routes. Power failures, switch or server failures and viruses or malware attacks can all affect network performance.

The performance of Wi-Fi networks is negatively affected by many factors. Physical obstructions such as walls, interference from other devices on the same frequency, the channel being shared by many other devices, the signal strength not being strong enough and the size of the antenna will all reduce the performance of a Wi-Fi network.

1. Match the acronyms on the left to their meanings on the right.

```
|---------------------- I
```

Wireless Protected Access
Wired Equivalent Privacy
2. Wi-Fi operates on different channels. What is a channel? Fill in one circle.
O It is the encryption method used
O It is the frequency which the devices will communicate at
O It is the power signal used when transmitting
O It is another name for the device
3. Which of the following will reduce the performance of a Wi-Fi network? Tick four boxes.
A concrete wall
\square Size of antenna InterferenceThe size of the AP
\square The processor speedSignal strength
4. To prevent other users reading our Wi-Fi communications we encode them so each device can only read them with a password. What is this process called?
5. Which IEEE standard deals with Wi-Fi? \qquad
6. Your neighbours use channels 1 and 11 on their wireless networks (802.11g). What channel would be best for you to use? \qquad
7. Your wireless network has a low throughput. You are currently using the older 802.11 n standard. Which standard would improve your network performance? Fill in one circle.

O 802.11g
O 802.11ac
8. You upgrade your Wi-Fi Access Point to a faster standard but experience no difference in throughput. Which of the following reasons is most likely? Fill in one circle.

O The standards all have the same throughput
O You haven't changed the angle of the antenna
O You need to upgrade all devices which connect to the AP
9. Complete the text below using the words beneath.

Networks have a number of performance issues. If you are unable to watch video on the network this is due to there not being enough
\qquad . Sometimes you can watch video, but there is a delay of several seconds before a simple web page is received. This is due to the between your computer and the server. On a poor quality connection a high \qquad will occur and packets will need to be resent. If packets are delayed by different amounts when they go through the network then there is a high \qquad on the network.

jitter packet loss bandwidth latency

10. A Wi-Fi connection uses 802.11 g on channel 6 . What is the minimum and maximum frequency which it will be using? From \qquad to \qquad

R 38

Computer programs are normally written in high level languages that are close to how humans think rather than computers．

In computer programs we often want to store values．For instance，we may want to store a player＇s name or score in a game．The values that we store might need to change in the program so we store them in variables（as the values can vary）．

A variable is an identifier（name）that points to a memory location in RAM which stores a value that can change when the program is run．

The rules as to how we write computer code are known as syntax．Here we will use syntax that is not for a specific language but is easy to understand no matter what language you decide to actually program in．

Putting a value into a variable is known as assignment．If we do this when the variable is first set up， it is known as initialisation．

> Syntax for assignment

Example of assignment

score $=17$

The＝symbol is NOT an equals symbol．It is the assignment operator in this situation．For the above example we say that＂the variable score is assigned the value 17＂．

In general，variables are written with no spaces and in lowercase．They can be written with an underscore separating words，which is known as snake case．Alternatively，words can be joined with each word starting with a capital letter，and this is known as camel case．

Example snake case variable names	Example camel case names
player＿name	playerName
player＿score	playerScore
number＿of＿enemies	numberOfEnemies

The following code will set up three variables．The variable names，pointers，memory locations and values in RAM are shown on the right as they would be at the end of the three lines of code running．

```
-----ーー-ーーーーーーーーーーーーーーーーーーーー-
playerName = "Tony" 
numberOfEnemies = 7
Lines of code which execute one after the other，like the above program，are known as a sequence．
If the following assignment were made to playerScore then the value 0 in memory would become replaced by 10 ．
```

```
r------------------------------
```

r------------------------------
playerScore = 10

```


If we want to store a value that doesn＇t change while the program is running then we store it in a constant．Constants are normally written with capital letters，e．g．MAX＿NUMBER＿OF＿PLAYERS

\footnotetext{

const VAT＿RATE \(=20\)
}

\section*{Assignment, Variables, Constants \& Sequences - Questions}

\section*{Q 38}
1. Match the words on the left to their meanings on the right.

A number, string or character
\[
\begin{aligned}
& \text { An identifier that points to a } \\
& \text { value that doesn't change }
\end{aligned}
\]
constant
An identifier that points to a value that can change
2. For each of the following, tick whether they are likely to be a variable name, constant name or value. Tick once per row.
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
Variable \\
name
\end{tabular} & \begin{tabular}{l} 
Constant \\
name
\end{tabular} & Value \\
\hline playerName & & & \\
\hline "smith" & & & \\
\hline PI & & & \\
\hline 3.14 & & & \\
\hline
\end{tabular}
3. Variable names should be clear and indicate what they will be holding. Which of the following are the best choices for variable names? Tick three boxes.
\begin{tabular}{lll}
\(\square\) a & \(\square\) p \(\quad \square\) player & \(\square\) playerName \\
\(\square\) t & \(\square\) time \(\quad \square\) timeTaken & \(\square\) tT \\
\(\square\) s & \(\square\) p_s & \(\square\) playerScore
\end{tabular}\(\quad \square\) player score
[3]
\(\overline{10}\)
4. The rules of the language are known as what? Fill in one circle.
\[
\begin{array}{ll}
\text { O Semantics } & \text { O Syntax } \\
\text { O Compilation } & \text { O Highlighting }
\end{array}
\]
5. Label each part of syntax in the line of code below.

6. Look at the code on the right.
a) What type of programming structure is used? Fill in one circle.
O ConstantsSelection O Equality
player1 = "Turing"
player2 = "Babbage"
yearBorn1 \(=1912\)
yearBorn2 \(=1791\)
score1 \(=27\)
score2 \(=31\)
score1 = score1 +5
_-_-_-_-_-_-_-_-_-_-_
b) Complete the diagram on the right, showing the values that will be stored in memory when the program has finished running. The first two have already

been completed.
[1]
[4]
c) Complete the line of code below so that score1 is increased by 1.
score1 = \(\qquad\) \(+1\)


In everyday Maths we use the denary system of counting which is also known as base 10. Look at how it works for the number 217 :
\begin{tabular}{|lll|}
\hline 100 & 10 & 1 \\
\hline 2 & 1 & 7 \\
\hline
\end{tabular}

The number 217 means:
2*100 +
1*10 +
7*1
217
Each column to the left has the value of 10 times the previous column.

Computers use binary which can contain only 0 or 1 . This is also known as base 2 . Each column to the left has 2 times the value of the previous column. To convert the number 11011001 from binary to denary do the following process:
1. Put the column titles in for each column:
\begin{tabular}{|llllllll|}
\hline 128 & \(\mathbf{6 4}\) & 32 & \(\mathbf{1 6}\) & \(\mathbf{8}\) & \(\mathbf{4}\) & \(\mathbf{2}\) & \(\mathbf{1}\) \\
\hline 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
2. Add each of the column titles with a 1 in it:
\(=128+64+16+8+1=\underline{217}\)

We can add a subscript to numbers to show which base we are using. We also put a space after every four digits of binary to make it easier to read. For example:
\(217_{10}=11011001_{2}\)
This means 217 in base 10 equals 11011001 in base 2.

We can place as many leading zeros to a number as we like. So \(0001=1\). Because computers store numbers of a certain length, like 8 bits, we often use leading zeros. 32 stored as an 8 bit number would be:
\begin{tabular}{|llllllll|}
\hline 128 & \(\mathbf{6 4}\) & \(\mathbf{3 2}\) & \(\mathbf{1 6}\) & \(\mathbf{8}\) & \(\mathbf{4}\) & \(\mathbf{2}\) & \(\mathbf{1}\) \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\(32_{10}=00100000\) as an 8 bit number

\section*{Binary to Denary Conversions - Questions}
1. Match the binary numbers on the left to the denary numbers on the right.

[4]
2. Convert the following numbers from binary to denary.
a) 100
b) 110
c) 00000110
d) 00010000 \(\qquad\)
e) 00100100 \(\qquad\)
f) 11111111 \(\qquad\)
3. What is the maximum number in denary that can be stored in a 4 bit number? \(\qquad\)
4. What is the maximum number in denary that can be stored in an 8 bit number? \(\qquad\)[1]
5. What is the range of denary numbers that an 8 bit number can store?
\(\qquad\) ~ \(\qquad\)
6. What does the 2 in the number \(10110110_{2}\) mean? Fill in one circle

O It is in base 10
O It is in base 2
O It is a mistake
O Multiply the number by 2
7. Convert the following numbers from binary to denary.
a) 01010101
b) 10101010
c) 00001111 \(\qquad\)[1]
d) 11110000 \(\qquad\)[1]
e) 11010010 \(\qquad\)[1]
f) 00101101 \(\qquad\)

Computers only store 0s and 1s. Humans, though, want to read and write with letters of the alphabet. We therefore need a way of converting letters, known as characters, into binary.

To do this we use a character set. This is a set of characters along with the binary code that represents each one.

A common character set is ASCII, pronounced ASS-KEY. It stands for American Standard Code for Information Interchange. ASCII was developed in the late 1960s and so many of the characters are obsolete today. It uses 7 bits to encode up to 128 characters. Extended ASCII uses \(\mathbf{8}\) bits (1 byte) to encode up to 256 characters (from 0~255).

The following table shows some of the ASCII and extended ASCII character set.
ASCII from 32~111
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Binary & Char & Binary & Char & Binary & Char & Binary & Char & Binary & Char \\
\hline 00100000 & Space & 00110000 & 0 & 01000000 & © & 01010000 & P & 01100000 & \\
\hline 00100001 & ! & 00110001 & 1 & 01000001 & A & 01010001 & Q & 01100001 & a \\
\hline 00100010 & " & 00110010 & 2 & 01000010 & B & 01010010 & R & 01100010 & b \\
\hline 00100011 & \# & 00110011 & 3 & 01000011 & C & 01010011 & S & 01100011 & c \\
\hline 00100100 & \$ & 00110100 & 4 & 01000100 & D & 01010100 & T & 01100100 & d \\
\hline 00100101 & \% & 00110101 & 5 & 01000101 & E & 01010101 & U & 01100101 & e \\
\hline 00100110 & \& & 00110110 & 6 & 01000110 & F & 01010110 & V & 01100110 & f \\
\hline 00100111 & , & 00110111 & 7 & 01000111 & G & 01010111 & W & 01100111 & 9 \\
\hline 00101000 & ( & 00111000 & 8 & 01001000 & H & 01011000 & X & 01101000 & h \\
\hline 00101001 & ) & 00111001 & 9 & 01001001 & I & 01011001 & Y & 01101001 & i \\
\hline 00101010 & * & 00111010 & : & 01001010 & J & 01011010 & Z & 01101010 & j \\
\hline 00101011 & + & 00111011 & ; & 01001011 & K & 01011011 & [ & 01101011 & k \\
\hline 00101100 & , & 00111100 & < & 01001100 & L & 01011100 & \(\backslash\) & 01101100 & 1 \\
\hline 00101101 & - & 00111101 & \(=\) & 01001101 & M & 01011101 & ] & 01101101 & m \\
\hline 00101110 & - & 00111110 & \(>\) & 01001110 & N & 01011110 & \(\wedge\) & 01101110 & n \\
\hline 00101111 & / & 00111111 & ? & 01001111 & 0 & 01011111 & & 01101111 & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Binary } & Char \\
\hline \(0111 \quad 0000\) & p \\
\hline \(0111 \quad 0001\) & q \\
\hline 0111 & 0010 & r \\
\hline 0111 & 0011 & s \\
\hline 0111 & 0100 & t \\
\hline 0111 & 0101 & u \\
\hline 0111 & 0110 & v \\
\hline 0111 & 0111 & w \\
\hline 0111 & 1000 & x \\
\hline 0111 & 1001 & Y \\
\hline 0111 & 1010 & z \\
\hline 0111 & 1011 & \{ \\
\hline 0111 & 1100 & l \\
\hline 0111 & 1101 & \(\}\) \\
\hline 0111 & 1110 & \(\sim\) \\
\hline 0111 & 1111 & DEL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multirow[b]{6}{*}{Extended ASCII} & Binary & Char \\
\hline & & 11101000 & è \\
\hline & & 11101001 & é \\
\hline & & 11101010 & ê \\
\hline & & 11101011 & ë \\
\hline & & 11101100 & ì \\
\hline \multirow[t]{11}{*}{ASCII from 112~127} & from & 11101101 & í \\
\hline & 232~247 & 11101110 & 1 \\
\hline & & 11101111 & İ \\
\hline & & 11110000 & ठ \\
\hline & & 11110001 & ก̃ \\
\hline & & 11110010 & ò \\
\hline & & 11110011 & ó \\
\hline & & 11110100 & ô \\
\hline & & 11110101 & õ \\
\hline & & 11110110 & ö \\
\hline & & 11110111 & \(\div\) \\
\hline
\end{tabular}

Notice that uppercase letters have a lower binary number than lowercase letters. This means that in programming it is often true to say that \(\mathrm{A}<\mathrm{a}\) or \(\mathrm{c}<\mathrm{d}\).

Question: What is the binary value of " \(K\) " in ASCII? Answer: 01001011

Question: Convert "Happy Birthday!" into binary using ASCII.
\[
\begin{array}{ll}
\text { Answer: } & 0100100001100001011100000111000001111001001000000100001001101001 \\
& 01110010011101000110100001100100011000010111100100100001
\end{array}
\]
(The spaces here would not be stored by the computer, it would just be one long sequence of 0s and 1s)
1. What does ASCII stand for?
2. A letter, number or punctuation on a computer when used as text is called what? Fill in one circle.
OA symbol
OA text item
O A character
O An ASCII
3. Computers store and use 1 s and 0 s in storage devices and RAM. They need to have a way of mapping a character to a binary number that represents it. What do they use? Fill in one circle.
O A text translator
OA text set O A character table
O A character set
4. Convert the following ASCII characters to the binary code that represents them:
a) A
b) d
c) <
d) Space \(\qquad\)
5. Convert the following binary into the ASCII characters which it represents:
a) 01010010
b) 01110100
\(\qquad\)
c) 00111001 \(\qquad\)

Character Sets - ASCII - Questions
6. How many bits does Extended ASCII use? \(\qquad\) bits[1]
7. How many characters can Extended ASCII contain? ___ chars
8. Convert the following ASCII characters to binary:
a) At
b) The
c) Cat
d) \(5^{*} 1=\)
e) \(2 b \mid\) !
9. Convert the following binary in 8 bit ASCII to the characters that it represents:

010010010111010001100000011100110010000001110011 011001010110001101110010011001010111010000101110
10. Which of the following will be false? Fill in one circle.
\[
\begin{array}{ll}
O A>a & O g<h \\
O F<f & O t>H
\end{array}
\]
11. You need to design a character set that includes all uppercase letters, all lowercase letters, numbers and the space character. What is the minimum number of bits that you could use for the character set?
\(\qquad\) bits

\section*{Character Sets - Unicode - Reading}

The older character sets of ASCII and extended ASCII use 8 bits. Unicode is another character set that maps binary combinations to characters.

The problem with ASCII is that it has a maximum of 256 characters that it can store. Japanese people need to know over 2000 characters and the Chinese alphabet contains around 50000 characters. Therefore the character sets need to have more bits to store them. Unicode is an international system of storing these characters.

Unicode currently stores over 100000 characters. There is a 16 bit (2 byte) version of Unicode which contains \(65536\left(2^{16}\right)\) characters. A 32 bit ( 4 byte) version can store over 4 billion ( \(2^{32}\) ) characters, far more than required for every language in the world.

The following table shows a sample of characters available in Unicode. The black lines in the table show sections of the character set which have been left out.


Question: What is the binary in Unicode that represents the letter D?
Answer: 0000000001000100

Question: What letter does the hexadecimal 3069 represent in Unicode?
Answer: と
1. What is the benefit of using the Unicode character set over ASCII? Fill in one circle.

O It takes up less storage space \(O\) It stores more characters O There is no advantage

O It is a common character set
[1]
2. How many characters can be stored in 16 bit Unicode?
\(\qquad\) characters
3. 32 bit Unicode can store how many characters? Fill in one circle.
O Approximately 3 billion
O 16777216
\[
\begin{aligned}
& \mathrm{O} 2^{24} \\
& \mathrm{O} 2^{32}
\end{aligned}
\]
4. Convert the following characters to the denary number in Unicode:
a) E
b) C
c) 3
d) \(d\) \(\qquad\)
5. What characters are represented by the following binary in the Unicode character set?
a) 0000000000110100 \(\qquad\)
b) 0000001110110010 \(\qquad\)
c) 0000000000100010 \(\qquad\)
6. What is the binary used in Unicode to represent the following characters?
a) な \(\qquad\)
b) \(\varepsilon\) \(\qquad\)
c) \(\gamma\)
7. What is the hexadecimal used in Unicode to represent the following characters?
a)
b) \(\qquad\)
8. What is the hexadecimal used in Unicode to represent the following sequences of characters?
a) AH
b) 67
c) cab \(\qquad\)
9. What is the binary code used to represent the following characters?
a) \(e\)
b) M \(\qquad\)

\section*{R 71}

Images need to be stored and processed using binary. The simplest image format is for an image to be stored as a bitmap image. Bitmap images are made up of picture elements called pixels. These contain a mapping of the colour of each pixel to bits.

Black and white images have two colours (black and white) which can be stored with 1 bit per pixel.


Images that have different shades of gray are called grayscale images. We can use more bits to store the level of gray each pixel will have. The number of bits used for each pixel is called the colour depth.


Full colour images store 8 bits for each of red, green and blue colours (RGB). These correspond to the sub-pixels on a computer display. This allows for \(2^{24}\) (about 16.8 million) different colours. These can be written as 6 digits of hexadecimal. For example, FFFFFF is white and FFOOOO is red.

\section*{Images \& Pixels - Questions}

\section*{Q 71}
1. A bitmap file contains the binary on the left below. 1 is white and 0 is black. Colour in each of the squares. What is the letter that is revealed?
0000
0111
0111
0000


Letter revealed: \(\qquad\)
2. Pixels are named after what? Fill in one circle.
\begin{tabular}{ll} 
O Picture Elements & O Part Elements \\
O Picture Cells & O Picture Hex Elements
\end{tabular}
3. A black and white image will require how many bits per pixel?

Number of bits: \(\qquad\)
4. The number of bits per pixel is called what?
5. A grayscale image is stored using the following colour depth. For each, state how many colours (shades of gray) will be available.
a) 1 bit
b) 2 bits
c) 4 bits
d) 8 bits
e) 16 bits
6. A grayscale image contains 1024 pixels. 4 colours (shades of gray) have been used. How much storage space will the data for this image require?

Space required: \(\qquad\) bytes
7. As you increase the colour depth what happens to the image quality? Fill in one circle.
O It makes no difference
O It improves
O You cannot change it
8. A bitmap file contains the binary on the left below. 11 is white, 10 is gray, 01 is light gray and 00 is black. Colour in each of the squares. What is the letter that is revealed?

> 11111111
> 11101011
> 11111111
> 11000000

Letter revealed: \(\qquad\)

9. An colour image has a 24 bit colour depth. Its dimensions are \(1024 \times 768\). How much storage space will be taken up with the data for the image? Space required: \(\qquad\) megabytes
10. A school logo requires 5 different colours. How many bits will be required for each pixel? Bits required: \(\qquad\)
11. Computer displays use 3 colours for each pixel. What are they? Colour 1: \(\qquad\) Colour 2: \(\qquad\) Colour 3: \(\qquad\)
12. A web designer wishes to use 24 bit colour for their images. How many colours will be available for them to use?
colours
13. What do each of the following colours represent in hexadecimal?
a) FFFFFF
b) 0000 FF
c) 00FFOO
d) 555555 \(\qquad\)


\section*{Assignment, Variables, Constants \& Sequences - Crossword}

\section*{Across}

2 Languages such as C, Java, Python; closer to how humans think \((4,5)\)
6 A method of having each word in a variable name separated by an underscore. E.g. player_name \((5,4)\)

8 A value that doesn't change when the program is run (8)
9 The actual data which is stored in a variable. E.g. 9 or ' \(g\) ' (5)
10 What happens when you first put a value into a variable (14)

\section*{Down}

1 Instructions executed one after the other (8)
3 The process where a value is placed into a variable. E.g. score \(=7\) (10)

4 A variable name or constant name is also known as this (10)
5 A way of writing variable names where each word starts with a capital. E.g. PlayerName \((5,4)\)

7 An identifier which points to a location in memory which stores a value which can be changed when the program is run (8)
1. What type of computer architecture do most computers use today? Von Neumann architecture
2. The main processing component in a computer is known as what? CPU / Central Processing Unit
3. In the fetch-execute cycle, an instruction is fetched then executed.

What happens between these two steps?
Decode
4. Match the parts of a CPU on the left to what they do on the right.

5. Match the units on the left to their meanings on the right

6. A processor states that it is dual core. How many cores does it have? 2 cores
7. For each description below, what part of the CPU do they describe?
\begin{tabular}{|l|l|}
\hline Description & CPU part \\
\hline \begin{tabular}{l} 
A type of memory on the processor \\
that stores only a few bytes of data \\
for each one
\end{tabular} & Registers \\
\hline \begin{tabular}{l} 
Responsible for arithmetic and \\
logical operations
\end{tabular} & ALU \\
\hline \begin{tabular}{l} 
Needed to coordinate timing and \\
data flow in the processor
\end{tabular} & Control unit \\
\hline \begin{tabular}{l} 
An intermediate type of memory \\
between registers and RAM
\end{tabular} & Cache \\
\hline
\end{tabular}
8. A dual core processor has a clock speed of 1.7 GHz . How many operations will it carry out per second?
\(1.7 * 2=3.4\) operations per second
9. Fill in the text below with the words beneath.

A CPU will make use of very small areas of memory called registers which operate at the same speed as the processor. The CPU can also read from, and write to, RAM. This operates at a slower _ speed. Processors can also contain cache . This operates at a speed that is faster than RAM. By increasing the amount of cache, a computer will work \(\qquad\) as it will have to make fewer accesses to RAM.
faster cache slower registers
10. A CPU that contains more than one core is known as what type of processor?
multi-core processor
1. Match the acronyms on the left to their meanings on the right.

2. Wi-Fi operates on different channels. What is a channel? Fill in one circle.
O It is the encryption method used
O It is the frequency which the devices will communicate at
O It is the power signal used when transmitting
O It is another name for the device
3. Which of the following will reduce the performance of a Wi-Fi network? Tick four boxes.
\begin{tabular}{ll}
\(\square\) A concrete wall \(\quad \square\) Size of antenna & \(\square\) The size of the AP \\
\(\square\) The processor speed \\
\(\square\)
\end{tabular}
4. To prevent other users reading our Wi-Fi communications we encode them so each device can only read them with a password. What is this process called?
\(\qquad\)
5. Which IEEE standard deals with Wi-Fi? 802.11
6. Your neighbours use channels 1 and 11 on their wireless networks ( 802.11 g ). What would channel would be best for you to use? \(\qquad\) 6
7. Your wireless network has a low throughput. You are currently using the older 802.11 n standard. Which standard would improve your network performance? Fill in one circle.

O 802.11g
802.11ac
8. You upgrade your Wi-Fi Access Point to a faster standard but experience no difference in throughput. Which of the following reasons is most likely? Fill in one circle.

O The standards all have the same throughput
O You haven't changed the angle of the antenna
You need to upgrade all devices which connect to the AP
9. Complete the text below using the words beneath.

Networks have a number of performance issues. If you are unable to watch video on the network this is due to there not being enough bandwidth. Sometimes you can watch video, but there is a delay of several seconds before a simple web page is received. This is due to the latency between your computer and the server. On a poor
quality connection a high packet loss \(\qquad\) will occur and packets will need to be resent. If packets are delayed by different amounts when they go through the network then there is a high jitter \(\qquad\) on the network.
10. A Wi-Fi connection uses 802.11 g on channel 6 . What is the minimum and maximum frequency which it will be using?
\[
\text { From } \quad 2.426 \mathrm{GHz}
\]
to 2.448 GHz

\section*{Assignment, Variables, Constants \& Sequences - Answers}
1. Match the words on the left to their meanings on the right.

2. For each of the following, tick whether they are likely to be a variable name, constant name or value. Tick once per row.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{l} 
Variable \\
name
\end{tabular} & \begin{tabular}{l} 
Constant \\
name
\end{tabular} & Value \\
\hline playerName & \(\checkmark\) & & \\
\hline "smith" & & & \(\checkmark\) \\
\hline PI & & \(\checkmark\) & \\
\hline 3.14 & & & \(\checkmark\) \\
\hline
\end{tabular}
3. Variable names should be clear and indicate what they will be holding. Which of the following are the best choices for variable names? Tick three boxes.
\begin{tabular}{llll}
\(\square \mathrm{a}\) & \(\square\) p & \(\square\) player & \(\square\) playerName \\
\(\square\) t & \(\square\) time \\
\(\square\) timeTaken & \(\square\) tT \\
\(\square\) & \(\square\) p_s & \(\square\) playerScore & \(\square\) player score
\end{tabular}
[3]
\(\overline{10}\)
4. The rules of the language are known as what? Fill in one circle.
\[
\begin{array}{ll}
\text { O Semantics } & \text { O Syntax } \\
\text { O Compilation } & \text { O Highlighting }
\end{array}
\]
5. Label each part of syntax in the line of code below.

\(\frac{\text { Variable name }}{\text { /identifier }} \quad \begin{aligned} & \text { Assignment } \\ & \text { (operator) }\end{aligned}\)
6. Look at the code on the right.
a) What type of programming structure is used? Fill in one circle.Constants
O Selection
Sequence
O Equality
player1 = "Turing"
player2 \(=\) "Babbage"
yearBorn1 \(=1912\)
yearBorn2 \(=1791\)
score1 \(=27\)
score2 \(=31\)
score1 \(=\) score1 +5
_-_-_-_-_-_-_-_-_-_
b) Complete the diagram on the right, showing the values that will be stored in memory when the program has finished running. The first two have already been completed.
c) Complete the line of code below so that score 1 is increased by 1.
```

score1 = score1 + 1 +-------------

```
1. Match the binary numbers on the left to the denary numbers on the right.

[4]
2. Convert the following numbers from binary to denary.
\begin{tabular}{ll}
\cline { 2 - 2 } a) 100 & \(\mathbf{4}\) \\
b) 110 & 6 \\
c) 00000110 & 6 \\
d) 00010000 & \(\mathbf{6}\) \\
e) 00100100 & 36 \\
f) 11111111 & \(\mathbf{2 5 5}\) \\
\hline
\end{tabular}
3. What is the maximum number in denary that can be stored in a 4 bit number? \(\qquad\) 15
4. What is the maximum number in denary that can be stored in an 8 bit number? \(\qquad\) 255
5. What is the range of denary numbers that an 8 bit number can store?
\(\qquad\) ~ \(\qquad\) 255
6. What does the 2 in the number \(10110110_{2}\) mean? Fill in one circle.

O It is in base 10
( It is in base 2
O It is a mistake
O Multiply the number by 2
7. Convert the following numbers from binary to denary.
\[
\text { a) } 01010101 \quad 85
\]
\(\qquad\)
c) 00001111 15
d) 11110000 \(\qquad\)
e) \(11010010 \quad 210\)
f) 00101101 45
1. What does ASCII stand for?

American Standard Code for Information Interchange
2. A letter, number or punctuation on a computer when used as text is called what? Fill in one circle.
OA symbol
- A character
OA text item
O An ASCII
3. Computers store and use 1 s and 0 s in storage devices and RAM. They need to have a way of mapping a character to a binary number that represents it. What do they use? Fill in one circle.
O A text translator
OA text set
O A character table
- A character set
4. Convert the following ASCII characters to the binary code that represents them:
\begin{tabular}{lll} 
a) & A & \(\mathbf{0 1 0 0 0 0 0 1}\) \\
b) & d & \(\mathbf{0 1 1 0 0 1 0 0}\) \\
c) & \(<\) & \(\mathbf{0 0 1 1} 1100\) \\
d) & Space & \(\mathbf{0 0 1 0 0 0 0 0}\)
\end{tabular}
5. Convert the following binary into the ASCII characters which it represents:
a) 01010010
b) 01110100
c) 00111001 \(\qquad\)
6. How many bits does Extended ASCII use?
7. How many characters can Extended ASCII contain?
8. Convert the following ASCII characters to binary:

8
\(\qquad\) char chars [1] (from 0 to 255 allows for \(\mathbf{2 5 6}\) chars)
a) At

0100000101110100
b) The
c) Cat
d) \(5 * 1=\)
e) \(2 b \mid\) !
\begin{tabular}{l}
\hline 010101000110100001100101 \\
\hline 010000110110000101110100 \\
\hline 00110101001010100011000100111101 \\
\hline 00110010011000100111110000100001 \\
\hline
\end{tabular}
9. Convert the following binary in 8 bit ASCII to the characters that it represents:

010010010111010001100000011100110010000001110011 011001010110001101110010011001010111010000101110

It's secret
10. Which of the following will be false? Fill in one circle.
O \(A>a\)
\(O g<h\)
\(O F<f \quad O t>H\)
11. You need to design a character set that includes all uppercase letters, all lowercase letters, numbers and the space character. What is the minimum number of bits that you could use for the character set?
\(\qquad\)
6 bit bits
(26 lowercase+
26 uppercase+
10 digits+
1 space+
=63 characters
6 bits will allow from 0~63
i.e. 64 characters - one more than we need)
1. What is the benefit of using the Unicode character set over ASCII? Fill in one circle.

> O It takes up less storage space
> It stores more characters O There is no advantage
> O It is a common character set
[1]
2. How many characters can be stored in 16 bit Unicode?

65536 characters
3. 32 bit Unicode can store how many characters? Fill in one circle.
O Approximately 3 billion
O 16777216
O \(2^{24}\)
- \(2^{32}\)
4. Convert the following characters to the denary number in Unicode:
a) E
b) C
c) 3
d) d

5. What characters are represented by the following binary in the Unicode character set?
a) 0000000000110100
4
b) 0000001110110010
\(\beta\)
"
[3]
6. What is the binary used in Unicode to represent the following characters?
a) \(\quad 0011000001101010\)
b) \(\varepsilon 1111110000101001\)
c) \(\gamma \quad \underline{0000001110110011}\)
7. What is the hexadecimal used in Unicode to represent the following characters?
\(\qquad\)
b)

8. What is the hexadecimal used in Unicode to represent the following sequences of characters?
\begin{tabular}{ll} 
a) AH & 00410048 \\
b) 67 & \(\mathbf{0 0 3 6 0 0 3 7}\) \\
c) cab & \(\mathbf{0 0 6 3 0 0 6 1 0 0 6 2}\)
\end{tabular}
9. What is the binary code used to represent the following characters?
a) \(e\)
0000000001100101 (next in sequence after ' \(d\) ')
b) M
0000000001001101 ( 5 after ' \(\mathrm{H}^{\prime}\) )
1. A bitmap file contains the binary on the left below. 1 is white and 0 is black. Colour in each of the squares. What is the letter that is revealed?
0000
0111
0111
0000

Letter revealed: \(\qquad\) C
2. Pixels are named after what? Fill in one circle.
\begin{tabular}{ll} 
O Picture Elements & O Part Elements \\
O Picture Cells & O Picture Hex Elements
\end{tabular}
3. A black and white image will require how many bits per pixel?

Number of bits: 1 _
4. The number of bits per pixel is called what? Colour depth
5. A grayscale image is stored using the following colour depth. For each, state how many colours (shades of gray) will be available.
a) 1 bit
b) 2 bits
c) 4 bits
d) 8 bits
e) 16 bits
_
6. A grayscale image contains 1024 pixels. 4 colours (shades of gray) have been used. How much storage space will the data for this image require? 2 bits * 1024 pixels \(=2048\) bits \(/ 8\)
Space required: \(\qquad\) bytes
7. As you increase the colour depth what happens to the image quality? Fill in one circle.
O It makes no differenceIt improves
O It gets worse
O You cannot change it
8. A bitmap file contains the binary on the left below. 11 is white, 10 is gray, 01 is light gray and 00 is black. Colour in each of the squares. What is the letter that is revealed?
11111111
11101011
11111111
11000000

Letter revealed: \(\qquad\) P

9. An colour image has a 24 bit colour depth. Its dimensions are \(1024 \times 768\). How much storage space will be taken up with the data for the image? Space required: \(\quad \mathbf{2 . 2 5}\) megabytes
\(1024 * 768 * 24 / 8=2359296\) bytes \(/(1024 * 1024)=2.25 \mathrm{MB}\)
10. A school logo requires 5 different colours. How many bits will be required for each pixel? Bits required: 3
(This allows for 8 colours)
11. Computer displays use 3 colours for each pixel. What are they? Colour 1: Red Colour 2: Green Colour 3: Blue
12. A web designer wishes to use 24 bit colour for their images. How many colours will be available for them to use?

16777216 colours
13. What do each of the following colours represent in hexadecimal?
\begin{tabular}{lll} 
a) & FFFFFF & White \\
b) & 0000 FF & Blue \\
c) & \(00 F F 00\) & Green \\
d) & 555555 & Gray / Dark gray
\end{tabular}

\section*{Assignment, Variables, Constants \& Sequences - Solution}


\section*{Across}

2 Languages such as C, Java, Python; closer to how humans think \((4,5)\)
6 A method of having each word in a variable name separated by an underscore. E.g. player_name \((5,4)\)

8 A value that doesn't change when the program is run (8)
9 The actual data which is stored in a variable. E.g. 9 or ' g ' (5)
10 What happens when you first put a value into a variable (14)

\section*{Down}

1 Instructions executed one after the other (8)
3 The process where a value is placed into a variable. E.g. score \(=7\) (10)

4 A variable name or constant name is also known as this (10)
5 A way of making variable names where each word starts with a capital. E.g. PlayerName \((5,4)\)

7 An identifier which points to a location in memory which stores a value which can be changed when the program is run (8)

Across: \(\mathbf{2}\) High Level, 6 Snake Case, 8 Constant, 9 Value, 10 Initialisation. Down: \(\mathbf{1}\) Sequence, \(\mathbf{3}\) Assignment, 4 Identifier, \(\mathbf{5}\) Camel Case, \(\mathbf{7}\) Variable.

\section*{GCSE (9-1) Compułer Science Teacher's Workbook for OCR J276}

The essential resource for any teacher of GCSE (9-1) Computer Science. Containing 76 topics, it covers all the theory essential for both exams J276/01 \& J276/02. The teacher version contains all answers along with useful explanations.

Perfect for cover lessons, homeworks, lesson activities or revision.
- 77 concise readings explaining each topic
- 77 corresponding question pages
- 77 matching answer pages
- Calculations or explanations of answers given to assist teachers
- 8 crosswords and solutions covering the programming theory

The PDF book comes with a full site-licence for your school or college, allowing any teacher to print or copy as much as they wish.```

