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Israelachvili’s book is pretty famous; everyone has heard about it. Prof. Adam Cohen recom-
mended it to me. Unfortunately, it’s really boring. I only read the parts which had to do with
biology. The main points I took away from my cursory reading are as follows.

• Self-assembly is a process which depends intimately on geometry, temperature, and concen-
tration.

• Different biological molecules are shaped differently, so their self-assembled superstructures
take different geometries.

• Biological superstructures are highly dynamic (i.e. fluid mosaic model). Things are al-
ways falling off the superstructure, merging with the structure, or moving around inside the
structure.

Ch 19. Thermodynamic principles of self-assembly

Soft structures, i.e. those made of amphiphilic molecules, are fluid-like, like the “fluid mosaic
model.” Contrast this to, say, globular proteins or DNA, which are rigid. Amphiphilic structures
are soft because the forces that hold them together are weak: the relevant forces are H-bonds and
van der Waals, rather than covalent or ionic bonds.

Equilibrium condition for self-assembly

In thermal equilibrium, the chemical potential of all species must be the same. We claim this
leads to the following equilibrium condition:

Claim: In thermal equilibrium,

µ = µN = µ0
N +

kT

N
log(

XN

N
) = const = same for allN.

XN is the concentration of molecules in aggregates of number N . N tells us how many molecules
are in the aggregate. N = 1 corresponds to a monomer, N = 2 to a dimer, N = 3 to a trimer,
and so on. µ0

N is the free energy per molecule of an aggregate and is the most important quantity
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here. We will learn more about it later.
Proof : Let xN be the concentration of N -aggregate, which means XN = NxN . It takes N
molecules to make one N -aggregate. By the law of mass action,

N -aggregate creation rate = k1X
N
1 , N -aggregate dissociation rate = kNxN = kN

XN

N
.

The reason we write this in terms of XN instead of xN is that this allows us to use particle-number
conservation. Specifically, the equilibrium constant K is defined

K =
k1
kN

= e−N(µ0N−µ
0
1)/kT ,

and the result of equating reaction rates is

XN = N [X1e
(µ0N−µ

0
1)/kT ]N .

This is the same relation as above.

There is another constraint: conservation of total particle number. In other words, we should have
the same number of total particles regardless of what N -aggregates they happen to be in:

C =
∞∑
N=1

XN = const.

In real life, there will only be some values of N that give aggregates.

Forming aggregates (i.e. what is µ0N?)

Aggregates form only when there is a difference in the cohesive energies between molecules in the
aggregated and dispersed (monomer) states. From the above equilibrium condition,

µ0
1 + kT log(X1) = µ0

N +
kT

N
log(

XN

N
),

we see that XN will be appreciable, compared to X1, only if µ0
N < µ0

1. You can also see this from
XN = N [X1e

(µ0N−µ
0
1)/kT ]N and note that X1 < 1 (usually we work in mole fraction units, or volume

concentration units, but anyway, Xi never exceeds unity).

From the preceding discussion, we may say that, all things being equal (i.e. µ0
1 = µ0

N), molecules
prefer to be dispersed. This makes sense because of entropy. We have to lower the free energy of
the N -aggregate to make it thermodynamically plausible.

µ0
N for some simple structures: To get a better understanding of what this free energy is, let’s

look at some simple structures in low dimensions.

• 1D aggregates (rods, cylinders): A 1D aggregate could look like a chain of molecules. Let
−αkT be the monomer-monomer bond energy relative to isolated monomers in solution.
α > 0 so this is an attractive bond, i.e. the energy is negative. We can say that

αkT = µ0
1 − µ0

N for large N.
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For an N -aggregate, there are N − 1 bonds, so

Nµ0
N = −(N − 1)αkT =⇒ µ0

N = −(1− 1

N
)αkT.

The free energy decreases with N .

• 2D aggregates (discs, sheets): Consider a circular disk of molecules. The number N of
molecules goes as πR2, where R is the radius of the disk, and the number of unbonded
molecules on the circumference goes as R ∼

√
N . So,

µ0
N = µ0

∞ +
αkT√
N
.

The N−1/2 behavior comes from taking
√
N and dividing it by N , since we are looking for

a free energy per molecule.

• 3D aggregates (spheres, droplets): By similar arguments,

µ0
N = µ0

∞ +
αkT

N1/3
.

Let’s estimate α in terms of γ, the interfacial free energy per unit area (i.e. surface tension).
We can write

total free energy of sphere = Nµ0
∞ + 4πR2γ,

and matching with the above gives the estimate

α ≈ 4πr2γ

kT
,

where Nr3 = R3, so r is the effective radius of a molecule.

Critical micelle concentration

There is a critical micelle concentration (CMC), denoted (X1)crit, at which adding more
monomers results in the formation of more aggregates, leaving the monomer concentration roughly
unchanged at (X1)crit. You can think of (X1)crit as the solubility of monomers in the solution. Once
you put more than the CMC in solution, stuff piles up and you get a new phase separated from
the solvent. More on this later.

Claim: Let the bonding energy be αkT . In other words, let

µ0
1 − µ0

∞ = αkT,

where µ0
1 is the free energy of a lone molecule and µ0

∞ is the free energy of a molecule surrounded
by an infinite number of other molecules in aggregate. Then

(X1)crit = CMC ≈ e−α .

Reasoning: Depending on the dimensionality of the aggregate, we found above that

µ0
N = µ0

∞ + αkT/Np,
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where p depends on the kind of aggregate. This means that

µ0
1 − µ0

N = (µ0
1 − µ0

∞) + (µ0
∞ − µ0

N) = α(1−N−p)→ α, for largeN.

Using XN = N [X1e
(µ0N−µ

0
1)/kT ]N gives the approximate concentration

XN = N [X1e
α]N .

For X1e
α < 1, this makes sense. However, it doesn’t make sense for X1e

α > 1: the concentration
of particles in the large-N aggregates would increase with N ! So, we have an upper bound on X1.

How can we think about this? Mathematically, XN = N [X1e
α]N undergoes a very wild transition

when X1e
α ≈ 1. What I mean is, if you take X1e

α and change it from 0.99 to 0.995, the change
in XN will be very large. So this equation doesn’t break down, per se, it’s just that the input
(X1) needs to evolve only infinitesimally for the output (XN) to change a whole lot. Physically,
we can think of it like we “saturated” the solution. When you have a container of salt water and
stir enough salt into it, crystals start to form (not right away, you have to wait for it to reach
equilibrium). I guess a chemistry way of thinking about it is with Le Chatelier’s principle,

X1 + · · ·+X1 → NXN .

If you increase [X1], then [XN ] increases in response.

Infinite vs. finite aggregates: The creation of an infinite aggregate is called phase sep-
aration, like the separation of oil and water. The creation of a finite aggregate is called
micellization, like the creation of a free-floating phospholipid membrane. The former is much
more common than the latter. Why?

Let’s put the finite size-dependence back in to our formula for XN ; namely, expand eα(1−N
−p) ≈

eαe−αN
−p

. We get
XN = N [X1e

α]Ne−αN
1−p

,

which shows that XN decays with N . So, there are no big aggregates for p < 1, where p = 1/d
from above, where d is the dimension of the aggregate. Instead, if you keep putting monomers
in solution, they go to a whole different phase, like oil separating from water. In this new phase,
there is no notion of comparing µN and stuff like that. They are just not in contact (except at
the interface).

Nucleation: Now that we know that phase separation will happen, we need to ask how it happens.
Ignoring supersaturated solutions and the like, there are two basic kinds of nucleation processes,

• Coalescence: If the forces between the solute droplets are monotonically attractive, they just
run to each other and give their buddies a big hug.

• Ostwald ripening: This one is kind of complicated. Israelachvili says “individual solute
molecules are exchanged between the droplets by diffusion through the solvent.” Let’s try
to decode what he means.

First, there is a diffusion process occuring in the solvent, by which solute molecules can
travel to and from solute bubbles. You can think about this like the intermolecular forces
holding bubbles of solute together are not strong enough to prevent solute molecules from
escaping from the surface and traveling away, or coming in and lodging on the surface.
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If the long-range colloidal forces between the droplets are repulsive, which they often are,
the bubbles can’t just run to each other. The Laplace pressure of a bubble,

P (R) =
2γi
R
,

is greater for small bubbles than for large bubbles. So, solute tends to diffuse away from
small bubbles and towards the larger ones. Over time, the small droplets will disappear and
we will be left with the large droplets.

Size distributions

We would like to know why, when we look at a bunch of vesicles under a microscope, they are all
roughly the same size. If the distribution is narrow, it is called monodisperse; if it is wide, it is
called polydisperse. What controls this size, and what controls the standard deviation of size,
i.e. the polydispersity?

First, note this idea of polydispersity does not apply for p < 1. This is because there is an abrupt
phase transition to a single infinitely-sized aggregate and hence no concept of size distribution.
Heuristically, we can understand this by noting

XN = N [X1e
α]Ne−αN

1−p

decays exponentially with N , regardless of how close we are to the critical micelle concentration.

Figure 1: For p < 1, the distribution always looks like this.

However, for p = 1, the distribution goes as XN ∝ N near the CMC. So, these results apply to
1D structures like microtubules and chain-like aggregates. This gives us a nontrivial distribution
with a maximum for N > 1:

Figure 2: For p = 1 and X1 ≈ CMC, we get a nontrivial distribution.
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To solve for this distribution, note that for p = 1, we have XN = N [X1e
α]N . Enforcing C =∑

N XN and performing a sum gives us the mean. The result is Nmax =
√
Ceα. In fact, there is a

very interesting result

〈N〉 =

∑
N NXN∑
N XN

=
√

1 + 4Ceα.

Below the CMC, 〈N〉 ≈ 1. Above the CMC, 〈N〉 ≈ 2
√
Ceα = 2Nmax. Conclusion: the size of 1D

aggregates grows with the concentration of solute, C, at least above the CMC. We obtained this
result from thermodyanmic considerations only!

Ch 20. Soft and biological structures

The equilibrium structures of amphiphilic molecules are soft or fluid-like: the molecules are in
constant thermal motion within each aggregate. They twist and turn, diffuse in and out, etc.

The major forces that govern the self-assembly of amphiphiles are (1) the hydrophobic attraction,
which induces the molecules to associate and (2) the hydrophilic attraction, which preserves con-
tact with water. The first tends to decrease the interfacial area a per molecule exposed to the
aqueous phase; the second tends to increase it.

Optimal headgroup area

Consider the following diagram of a micelle (the packing factor is defined as V/a0lc, where lc is
the length of the tail:

Figure 3: Micelle with headgroup area a0, volume per amphiphile V , radius R.

Let’s write the interfacial free energy per molecule in this micelle. There is a contribution from
the surface tension and also a contribution (containing steric, hydration force, and electrostatic
double-layer terms) that can simply be written as ∝ a−1, proportional to inverse area. This is
because we expect the first term in any energy expansion to be inversely proportional to the surface
area, such as in the van der Waals equation of state. (Why? I need to think more about this.)

So, the total interfacial free energy per molecule is, to leading order,

µ0
N = γa+

K

a
=⇒ a0 =

√
K

γ
.
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a0 is the optimal surface area per molecule at the hydrocarbon-water interface. The interfacial
energy per molecule is

µ0
N = 2γa0 +

γ

a
(a− a0)2.

Heuristically, we can change a by squishing the same amount of molecules into a smaller sphere.

Packing

We still have to determine which structures are preferred, now that we know the optimal head
area. The preferred structure will depend on the packing factor v/a0lc, which depends on the
maximum length lc of a hydrocarbon chain.

In order of increasing packing factor, the preferred structures are: spherical micelles, ellipsoidal
micelles, cylindrical/rod-like micelles, vesicles and extended bilayers, “inverted” structures.

Let’s study some of the more important of these structures.

• Spherical micelles: For the spherical micelle to be a viable packing arrangement, the radius
of the micelle, R, must not exceed the critical chain length lc. That is because R > lc is
thermodynamically unfavorable because there would be “empty space” in the middle, and
what would it be filled by (not water!)? The number of hydrocarbons in the micelle gives
us a condition on the radius, R:

4πR2

a0
=

4πR3

3v
=⇒ R =

3v

a0
.

Because lc > R, this gives v/a0lc <
1

3
. Typically, lipis that form spherical micelles have

charged headgroups, since this leads to a large headgroup area, a0. If there are too many
micelles to be spherical, sometimes it deforms slightly and becomes elliptical.

• Cylindrical micelles have 1
3
< v/a0lc <

1
2
. There is an unfavorable end energy associated with

the hemispherical caps at the ends of the cylinders, so sometimes the cylindrical micelles
bend together to form a toroid! But, there are extra elastic energy costs associated with this
as well.

• Bilayers are typically made of hydrocarbons with more chains. For example, hydrocarbons
with only one CHCHCHCHCH chain tend to form micelles and cylindrical micelles. Hydro-
carbons with two CHCHCHCH chains tend to form bilayers, because there is more stuff to
pack inside and we would like more space to do so. Because these hydrocarbons (i.e. with
more chains) are much more hydrophobic on their tail ends, they are much less likely (i.e.
10−8 times as likely) to leave the bilayer and shoot out into the aqueous solution. They can,
however, trade places with their partners in the bilayer.

We can easily estimate the compressibility modulus ka of the bilayer. By definition,

∆E :=
1

2
k(a− a0)2/a0 = 2γ(a− a0).

The first = sign is a definition; the second = sign is just the definition of surface tension. I
multiplied γ by 2 because there are two layers. This gives k = 4γ.
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• Vesicles: Bilayers have an energy cost associated with the edges, where the phospholipids
have lower coordination. In vesicle, which is a bilayer closed on itself, there are no edges and
no problems (other than the curvature).

Critical radius: We would like to find the radius of the smallest vesicle that may be
formed without forcing the headgroup area a in the outer monolayer to exceed a0 (the
inner monolayer is safe because the headgroup area tends to decrease there). The result for
1/2 < v/a0lc < 1 is

Rc = lc
3 +

√
3(4v/a0lc − 1)

6(1− v/a0lc)
≈ lc

1− v/a0lc
.

Proof : Note that the aggregation number of a vesicle of radius R and bilayer thickness
t ≈ 2v/a is N = 4π(R2 − (R− t)2).
In the critical (i.e. boundary) case, we set 4πR2

c = a0 × N/2. This gives a self-consistent
quadratic equation for Rc; we may take t = 2lc. The solution of this equation is the above
critical radius.

Bending energies and elasticities

There is an energy cost associated with bending a membrane, due to three effects: (1) between
the headgroups (2) between the chains (3) betwen the heads and the aqueous solution.

Let R be the radius of curvature of the surface and let D be how far we are above the interface.
For example, D > 0 for head-head interactions and D < 0 for chain-chain repulsion. It’s not very
correct to assume a single D, i.e. since chains are extended objects, but typically we can find a
reasonable D that describes the numbers well. Often, only one of the three effects listed above is
important, and we can take D to describe that single effect. We add an additional contribution

∆µ0
N = (2γa0)(−D/R)

to the molecular free energy due to this curvature. This is because of changing geometry; recall

that the free energy per molecule was µ0
N = γa + K

a
=⇒ a0 =

√
K
γ

. Here, we’re concerned with

the Laplace bubble pressure, ∆P = 2 γ
R
. The extra energy of the molecules due to this pressure is

−force× distance = −(
2γ

R
a0)×D,

which is what we got. We know the sign is correct because if the relevant bonding center of the
molecule is “inside the bubble,” or D < 0, we expect it to be at higher energy because the interior
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of the buble is always at higher pressure. You can also think of this as a PV energy term, like in
a gas.

Hence, µ0
N = 2γa(1− D

R
) per molecule in a spherical vesicle. For cylindrical vesicles and such, the

geometry is a bit different.

For a spherical bilayer vesicle, we have to add two opposing contributions and worry about different
radii of curvature, etc. The result is

µ0
N = µ0

∞ −
γa0Dt

2R2
=⇒ ∆E

∆area
= −γDt

2R2
.

This D is positive if the headgroup repulsion dominates for both monolayers and is negative if the
tail-tail interactions dominate.

Generally, if D > 0, the vesicles will be smaller than if we had not accounted for the Laplace
bubble pressure correction. This is because it is now energetically favorable to have a small radius
R, as this drives down the free energy µ0

N . If D < 0, the vesicles will be larger.

Biological membranes

Most biological membranes are made of double-chained phospholipids or glycolipids, with 16-18
carbons per chain, one of which is unsaturated/branched. These ensure that (1) biological lipids
will self-assemble into thin bilayer membranes that can compartmentalize different areas of a cell
(2) have an extremely low CMC, so they remain intact even when there are not many other free
lipids insolution (2) because of unsaturation or branching, are fluid at physiological temperatures.

Interestingly, different kinds of lipids can pack together. This gives vesicles made of lipids of varying
composition different properties (i.e. small/large, spherical/cylindrical, etc). For example, adding
cholesterol, which is an inverted-cone lipid (v/a0lc > 1), increases the radius of bilayers, straightens
the hydrocarbon chains, and reduces their fluidity. This causes the stiffening of membranes.

Membrane proteins can float around in the lipid bilayer, in what Singer and Nicholson proposed
as the “fluid mosaic model.” Membrane-associated proteins are usually amphiphilic, which is why
they can live in the amphiphilic bilayer. Soluble proteins are typically hydrophilic on their entire
surface.

How does a cell maintain and regulate the structural integrity of its membranes? The answer
seems to be that the heterogeneous lipid mixture should be able to self-assemble into bilayers,
but individual species should not. This is a very precarious and intimate result of many energetic
conditions that have to be simultaneously satisfied.

Ch 21. Interactions of biological membranes and structures

Biomolecular assemblies generally cannot be described by such a simple free energy, µ0 = γa+ K
a
.

In fact, most biological membranes are never at equilibrium. So, we must consider the non-
equilibrium (i.e. dynamical) aspects of their interactions.
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Some more forces

We have already considered these forces or their corresponding energies: surface tension, curva-
ture, and the “other” part, K/a, which contained steric, hydration, and electrostatic double-layer
contributions.

Israelachvili considers some of these in more detail. I think it is intolerably boring, so let’s skip
it. Let’s get to some real biology.

Biospecific interactions

Some cell-cell contacts in signaling, for example, are totally specific for one and only one molecule.
Early models proposed a “lock-and-key” kind of picture; this has been updated to an “induced-fit”
model.

Some important points:

• The biospecific bonds are usually not very strong. They are just a little bit stronger than
H-bonds and much weaker than covalent bonds.

• Due to their weak bonding, biospecific bonding is short-lived. The molecule comes in, sits
on the surface, and detaches relatively quickly. However, the process is long enough for the
molecule to perform its function.

• Due to the exponential nature of thermal excitation e−βE, adding one or two more H-bonds
can exponentially increase the lifetime of the ligand-receptor (LR) bond. A site with only
four bonds may have lifetime of less than 1s; adding two more bonds may increase the
lifetime to hours!

• The specificity of the bond arrangement is due not to the strength of the bonding, but rather
the directionality.

Bioadhesion

Suppose we have two soap (or lipid) bubbles. Why could it be energetically favorable for them to
adhere and kiss each other on a flat circular surface? The answer is that this decreases the contact
area between the bubbles and air, thus reducing the energy cost of surface tension. However, this
is counteracted by the energy of bending.
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