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ABSTRACT 

Computer-Aided Engineering (CAE) refers to the 
use of computers to perform design calculations for 
determining an optimum shape and size for a variety of 
engineering applications. This modern concept of 
engineering management has led to important advances 
in the design and production of components used in 
aerospace, automotive, electronics and other industries 
throughout the world. 

CAE enables an engineer to test design ideas by 
simulating the function of the part on the computer. 
Finite Element Analysis (FEA) is one of these computer 
simulation techniques which is most accurate, versatile 
and comprehensive technique for solving complex 
design problems. FEA permits the analysis of these 
complex structures without the necessity of developing 
and applying complex equations. 

FEA program for non-linear stress analysis of 
elastomers is performed by utilizing two material models: 

* Mooney-Rivlin Model 
* Ogden Model 

The Mooney-Rivlin model is the most widely 
used model for elastomer analysis. The basic problem 
facing the design engineer is how to obtain the material 
coefficients needed to use these two models in FEA. As 
expected, the effectiveness of design analysis is directly 
related to the quality of the material input material 
coefficients. 

Akron Rubber Development Laboratory, Inc. 
(ARDL) has developed a reliable history of standard 
procedures for determination of these coefficients from 
experimental test data. This paper will discuss various 
testing techniques used for developing elastomer 
material constants. Also, the intent of this paper is to 
show how aging or service conditions can be 
incorporated to obtain material coefficients for elastomer 
parts. 

INTRODUCTION 

Computer Aided Engineering techniques, such 
as Finite Element Analysis, are increasingly used in the 
design of engineering rubber parts and components. 
These techniques are capable of solving complex 
structural problems which are not possible to solve by 
classical techniques. FEA also provides a way to 
achieve the desired force deflection characteristics and 
predict the geometry of the elastomeric part in use. FEA 
is a good tool for Failure Analysis, Failure Mode and 
Effect Analysis (FMEA). However, the accuracy and 
usefulness of solutions derived from the FEA depends 
on the accuracy of input material properties. 

Several constitutive theories based on strain 
energy density functions have been developed for 
polymer elastomeric materials. These theories can be 
used very effectively with FEA to analyze and design 
elastomer parts which undergo high non-linear 
viscoelastic deformation. Unfortunately, more 
complicated constitutive equations that have improved 
accuracy also use more terms or constants in the 
models. These increased number of material constants 
require more lab testing to develop the data necessary to 
give good "curve Dt" over a practical useful service 
stress-strain range. 
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Also, due to the complexities of the mathematical 
equations and the lack of standard general guidelines for 
characterizing the rubber material, it is not possible for a 
design engineer to make use of these constitutive 
equations. In the present paper, the test methods for 
developing the material constants for Mooney-Rivlin and 
Ogden Material Model is described. Also, the purpose of 
this paper is to show how we can incorporate aging or 
service conditions for evaluating material constants. 



THEORETICAL CONSIDERATION 

A major factor in using Finite Element Analysis to 
model the behavior of an elastomer in an engineering 
component is the use of a mathematical model that 
represents the actual behavior. It is beyond the scope of 
this research paper to fully explain all the available 
mathematical models. However, it is appropriate to 
comment on the major models due to the large effect of 
the mathematical models on FEA. 

A. Mooney-Rivlin Material Model 

The Mooney-Rivlin Material Model is the most 
widely used constitutive equation for Non-linear Finite 
Element Analysis modeling. The Mooney-Rivlin model 
states that elastic energy of an unstressed rubber 
material, isotropic and incompressible material, can be 
represented in terms of a strain-energy function W. 

II 

W = I Cuk (I,- 3/ ( I2-3 Y (I J -If (1) 
ijk=O 

Where 11, 12 and 13 are the three invariants of the Green 
deformation tensor and are given by the following. 

11= ...1,12 +A./ +A./ 
lz= ...1,12 ...1,22 + ...1,22 A./+ ...1,12 ...1,32 

13= ...1,12 ...1,2 2 ...1,32 

Where 1..1, t..2, and 1..3 are like principle extension ratios, 

extension ratio (A.) = Final Length = 1 + Strain (E) 
Original Length 

Where strain (E) = Current Length - Original Length 
Original Length 

As a result of the incompressibility condition 

(V=Constant) 13= 1, then the storable elastic energy of 

the network is only a function of 11 and 12. 

Equation (1) reduces to 

II 

W= Icu(I, -3 / (Ir3Y (2) 
tj=O 

1. Neo-Hookean Material Model 

Taking only the first terms of equation (2) 

In the case of uniaxial tension: 

(3) 

Where t1 = True stress (ratio of force to the current area) 

-3 
a 1 =2C1Q(1-A.) 

Where a 1 = Engineering stress (ratio of force to the 
original area) 

2. Mooney-Rivlin "Two Constant" Material Model 

(4) 

Taking only the first and second terms of equation (2) 

(5) 

(6) 

(7) 

For most polymers 0< c01 < 0.2 c10; and small strain: 

a, = 6(C01 +C10) E 
I 

\ 0 

In the case of pure shear: 

1 
a1 = 2(CIO +Col )(A.- ,t3) 

For small strain: 

a, = 8(C10 +C01 ) E 



In the case of biaxial extension: P.·1=A., A.2 =A.) 

(1 0) 

( 11) 

3. "Five-Constant" Strain Energy Model 

Five-constant was derived by James, Green and 
Simpson based on 3rd order deformation theory and the 
2nd order invariant theory of the Mooney-Rivlin equation 

by setting C12 = C21 = Co3 = 0 

• 3rd Order Deformation Theory: (Co2 = 0 and 

uniaxial tension case) 

This strain-energy function is incorporated into a number 
of finite element analysis codes. 

• 2nd Order Invariant Theory: (C3o = 0 and 

uniaxial tension case) 

Higher order strain-energy functions has better 
fit to experimental data. However, it is found that 
prediction beyond the range of input data may bring 
serious error in the modeling. 

B. Ogden Material Model 

The Ogden Material Model defines the strain­
energy density as a function which can be considered as 
separate functions in major principle stretches. 

For a simple tension, Engineering Stress (cr) can be 
expressed as 

0"1 = L C; LA"rl- A -(1-0.Sh,J] 
j 

(14) 

For a simple tension, the Ogden formulation can be 
expressed as, 

0" = L CJ [A,"rl - A -(l-0.51>,)] 
j 

(15) 

Where cr is the engineering stress (force per unit original 
area) and A. is the uniaxial stretch (1 + dULOI"igional). 

For a pure-shear case, the Ogden material model can be 
expressed as, 

0"= LCJ[Abrl_ A -( l+hJ) ] 
j 

(16) 

For an equi-biaxial tension, the Ogden material model 
can be expressed as, 

0" = L Ci.Ahrl- A -(1+2hj )] 

j 

(17) 

Any or all of the above three equations can be 
used to derive the Ogden coefficients Ci and bi. A more 
detailed discussion of Ogden material model is given in 
reference 3. 

The number of coefficients (C1, C2 , C3 , .. . )and .._ 
(b1, b2 , b3 , ... ) needed fit the cure depends on the amount 
of accuracy desired by the user. Generally, it is 
observed that three sets of coefficients are sufficient to fit 
the data for most elastomers. 

All the major FEA codes like ANSYS, ABAQUS, 
MSC/NASTRAN COSMOS/M and MARC need Mooney-
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Rivlin constants on Ogden constants as inputs to run a 
non-linear analysis. For a rubber-like material, 
homogeneous deformation modes suffice to determine 
the material constants. The FEA codes accept data from 
the following deformation modes: 

• Uniaxial tension (Figure 1) 
• Uniaxial compression (Figure 2) 
• Planar tension (Figure 3) 

Note: The wide planar shear sample is physically 
constrained to not pull-in at the edges by the clamps, 
so the sample will thin out but not draw-in during the 
elongation. This mode of testing will place the 
specimen in a pure shear mode up to 100% 
elongation. 



• Equi-biaxial tension (Figure 5) 
• Volumetric compression (Figure 6) 

These modes are shown in Figure 6. The most 
commonly performed experiments are uniaxial tension, 
uniaxial compression, planar tension and equi-biaxial 
tension. Combination of data from these four types of 
tests will result in good characterization of the behavior 
of the elastomer. The superposition of a tensile or 
compressive hydrostatic stress on a loaded, fully 
incompressible elastic body results in different stresses, 
but does not change the deformation. Figure 7 shows 
that different loading conditions are equivalent in their 
deformations, and therefore are equivalent in tests. 

• Uniaxial tension = Equi-biaxial compression 
• Uniaxial compression= Equi-biaxial tension (It 

maybe difficult this condition due to the experimental 
difficulty in performing a "true" uniaxial compression. 
Therefore, it is important to perform the equi-biaxial 
test for evaluating elastomer parts in compression) 

• Planar tension = Planar compression 
• The tensile and compression cases of the uniaxial 

and equi-biaxial modes are independent from each 
other. Therefore, uniaxial tension and uniaxial 
compression provide independent data. 

The following procedure summarizes the steps need to 
calculate the material coefficients: 

1. Run uniaxial tension, uniaxial compression, planar 
shear and biaxial tension tests for the test material. 
Perform the tests in slow speed to achieve a quasi­
static condition. 

2. Calculate the stress-strain data. 

3. For Mooney-Rivlin 2-point model, perform a linear 
regression analysis on the experimental stress-strain 
data. To determine coefficients for 5-point model 
and Ogden model, perform a non-linear regression 
analysis on the experimental stress-strain data. The 
number of coefficients needed to fit the experimental 
curve depends on the amount of accuracy desired 
by the user. 

EXPERIMENTAL 

The elastomer material evaluated were Silicone 
(PVMQ), Fluoroelastomer (FKM), and Hydrogenated 
Nitrile Rubber (HNBR). These rubber formulations were 
specifically compounded for gasket applications. The 
formulations are specified in Tables 1-3. 

Table 1 
Hydrogenated Nitrile Rubber (HNBR) 

Ingredient 
Zetpol 201 oa 
N-774 
PlastHall TOTM 
Ladox 911C (ZnO) 
Naugard 445 
Vanox ZMTI 
Dynamar PPA-790 
Saret SR-517 
Vui-Cup 40 KE 

a Zeon Chemicals 

phr 

100.0 
45.0 
5.0 
5.0 
1.5 
1.0 
1.0 
8.0 
8.0 

Table 2 
Fluoroelastomer (FKM) 

Ingredient phr 
FE 5640Qa 100.0 
MT Black (N990) 30.0 
MgO (Malite D) 3.0 
Ca(OHh 6.0 

a 3M Specialty Fluoropolymers Department 

Table 3 
Silicone (PVMQ) 

Ingredients 
Dow Corning 

24092-Va third Generation Silicone 
Catalyzed with STI V 

8 Dow Corning STI 

All three dpmpounds were aged in three different 
fluids for 168 Hrs. ?t 150°C to see the change in stress­
strain data. the three fluids were IRM-903, 5W-30 
Engine oil and Automatic Transmission Fluid. All 
measurements were conducted at room temperature. 

Measurements were made in uniaxial tension 
(Figure 1 ), uniaxial compression (Figure 2), planar 
tension (Figure 3), equi-biaxial (Figure 4), and volumetric 
compression (Figure 5). 

The uniaxial tension and planar shear tests were 
performed using a Monsanto T-2000 screw type machine 
with a Monsanto E5042 laser Extensometer. The use of 
a laser extensometer to measure strain, rather than 
crosshead displacement, eliminates measurement error 
from slippage at the grips. The uniaxial compression test 
was performed on a MTS 831 .20 Elastomer Test 



System, and was performed on a cylindrical test 
specimens lubricated with silicone oil. The equi-biaxial 
tension was performed on a Iwamoto Biaxial Stretcher. 
All test were performed at room temperature at a strain 
rate of 0.2 inches per minute. 

RESULTS AND DISCUSSION 

A comparison of the relative fit of linear model, 
Mooney-Rivlin models and Ogden model for tensile 
behavior of silicone rubber is shown in Figure 8. It is 
clear that linear equation follows the elastomeric 
behavior up to 10% strain level. The Mooney-Rivlin 
equations are a good fit up to 125% strain level. Ogden 
model showed the best fit with the measured tensile data 
over the full extension range. 

The pure shear behavior of a planar specimen is 
compared I figure 9. The linear equation showed good fit 
at low strains. Mooney-Rivlin and Ogden models 
showed better fit with the measured engineering shear 
stress values over the full strain range. 

The compression behavior of aged silicone 
rubber is compared using a equi-biaxial test shown in 
figure 10. The linear equation shows an acceptable fit 
only for very low strain values. Mooney-Rivlin equation 
yield a very good fit up to 40% strain. But, the Ogden 
model showed the best fit over the full strain range. 

The compression behavior of unaged and aged 
silicone rubber is shown in 
Figure 1. This plot illustrates the importance of aging 
studies for modeling 
elastomer components used in oil environments. Figure 
12 shows the compression behavior of FKM in SW-30 
Engine oil and Figure 13 shows the compression­
deflection behavior of HNBR in Automatic Transmission 
Fluid. 

CONCLUSION 

The test methodology for developing the material 
constants for Mooney-Rivlin and Ogden material models 
is shown from the viewpoint of a design/test engineer. 
Also demonstrated is how various aging techniques can 
be beneficially applied for obtaining material data which 
can be used for modeling elastomer parts in service. 

Ogden model shows the best experimental data 
strain level up to 100%. Both linear an non-linear 
showed reasonable correlation at low strains (up to 
10% ). Standardizing test parameters and test speed is 
very important for obtaining reproducible data. Before 
doing a complete FEA on the part, it maybe necessary 
to verify the selected model on a simple geometry such 
as o-ring or button through the preprocessor. 
Incorporating fluid aging studies in the FEA support 
testing is important for obtaining meaniful material 
coefficient. 
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Uniaxial Tension 

Displacement T 

Moving Crosshead 

Test Specimen 

Load Cell 

Figure 1 

• Measurement Temperature: Room Temperature 
• Specimen Size: ASTM Die "C, Dumbbell 
• Test Rate: 0.2 in. per ::rvfinute 



Uniaxial Compression 

,.,. __ ---
1 I 
I t 

Displacement Transducer 

Load Cell 

Figure 2 

• Measurement Temperature: Room Temperature 
• Specimen Size: ASTM Compression Set Button 
• Test Rate: 0.2 in. per :Minute 



Planar Shear 

Figure 3 

• Measurement Temperature: Room Temperature 
• Specimen Size: 3.00 in. x 0.5 in. x 0.06 in. thick 
• Test Rate: 0.2 in. per Minute 



Equi-Biaxial Tension 

Figure 4 

.. 
• Measurement Temperature: Room Temperature 
• Specimen Size: 5.0 in. x 5.0 in. x 0.05in. thick 
• Test Rate: 0.2 in. per Minute 



Volumetric Compression 

Rfgld piston 

cylinder 

Figure 5 

• Measurement Temperature: Room Temperature 
• Specimen Size: 0. 7 in.' diameter x 1.0 in. thickness 
• Procedure: Compression inside rigid container~ E= 3 x K(I-(2 x v)) 

E =Elastic Modulus; K =Bulk Modulus~ v =Poisson's Ratio 
• Test Rate: 0.2 in. per :Minute 



TENSION COMPRESSION 

UNIAXIAL TEST DATA 

J..,=Au= 1 + Eu, ~=~= 1/~ 

BIAXIAL TEST DATA 

J..,=~=Aa= 1 + Ee, ~= 1/ ~ 
' 

PLANAR TEST DATA 

VOLUMETRIC TEST DATA 

/ / 
·' 

Figure 6 

Schematic illustrations of deformation modes 
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Uniaxial tension 

Uniaxial compression 
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Hydrostatic compression 

Hydrostatic tension 

Figure 7 

Equibiaxial compression 

~ --cr vs- n 

Equibiaxial tension 

Schematic illustrations of equivalent defonnati9n modes through superposition of hydrostatic stress. 
The stresses ( cr1) shown in the figure are true stresses. 
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Figure 8 
Uniaxial Tension 
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Figure 9 
Planar (Pure) Shear 
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Figure 11 
Equi-Biaxial Tension 

800 Silicone; Aged in IRM 903 for 168 hrs. 
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Figure 12 
Equi-Biaxial Tension 

800 FKM; Aged in 5W-30_ En_gine Oil for 168 hrs. 
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Figure 13 
Equi-Biaxial Tension 

800 I HNBR; Aged in Automatic Transmission Fluid for 168 hrs. I 
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