
1

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Non-Functional Requirements

Acknowledgements:
Steve Easterbrook

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Non-Functional Requirements
(NFRs)

• Definitions
– Quality criteria; metrics
– Example NFRs

• Product-oriented Software Qualities
– Making quality criteria specific
– Catalogues of NFRs
– Example: Reliability

• Process-oriented Software Qualities
– Softgoal analysis for design tradeoffs

2

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

What are Non-functional Requirements?

• Functional vs. Non-Functional
– Functional requirements describe what the system

should do
• functions that can be captured in use cases
• behaviours that can be analyzed by drawing sequence

diagrams, statecharts, etc.
• … and probably trace to individual chunks of a program

– Non-functional requirements are global constraints on
a software system

• e.g. development costs, operational costs, performance,
reliability, maintainability, portability, robustness etc.

• Often known as software qualities, or just the “ilities”
• Usually cannot be implemented in a single module of a

program

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

NFRs
• The challenge of NFRs

– Hard to model
– Usually stated informally, and so are:

• often contradictory,
• difficult to enforce during development
• difficult to evaluate for the customer prior to delivery

– Hard to make them measurable requirements
• We’d like to state them in a way that we can measure how

well they’ve been met

3

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Example NFRs
• Interface requirements

– how will the new system interface with
its environment?

•User interfaces and “user-friendliness”
•Interfaces with other systems

• Performance requirements
– time/space bounds

•workloads, response time, throughput and
available storage space
•e.g. ”the system must handle 1,000
transactions per second"

– reliability
•the availability of components
•integrity of information maintained and
supplied to the system
•e.g. "system must have less than 1hr
downtime per three months"

– security
•E.g. permissible information flows, or who
can do what

– survivability
•E.g. system will need to survive fire,
natural catastrophes, etc

• Operating requirements
– physical constraints (size, weight),
– personnel availability & skill level
– accessibility for maintenance
– environmental conditions
– etc

• Lifecycle requirements
– “Future-proofing”

•Maintainability
•Enhanceability
•Portability
•expected market or product lifespan

– limits on development
•E.g development time limitations,
•resource availability
•methodological standards
•etc.

• Economic requirements
– e.g. restrictions on immediate and/or

long-term costs.

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Approaches to NFRs
• Product vs. Process?

– Product-oriented Approaches
• Focus on system (or software) quality
• Capture operational criteria for each requirement
• … so that we can measure it once the product is built

– Process-oriented Approaches
• Focus on how NFRs can be used in the design

process
• Analyze the interactions between NFRs and design

choices
• … so that we can make appropriate design decisions

4

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Approaches to NFRs
• Quantitative vs. Qualitative?

– Quantitative Approaches
• Find measurable scales for the quality attributes
• Calculate degree to which a design meets the

quality targets
– Qualitative Approaches

• Study various relationships between quality goals
• Reason about trade-offs etc.

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Software Qualities
• Think of an everyday object

– e.g. a chair - how would you measure it’s
“quality”?

• construction quality? (e.g. strength of the joints,…)
• aesthetic value? (e.g. elegance,…)
• fit for purpose? (e.g. comfortable,…)

• All quality measures are relative
– there is no absolute scale
– we can sometimes say A is better than B…

• … but it is usually hard to say how much better!

5

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Software Qualities
• For software:

– construction quality?
• software is not manufactured

– aesthetic value?
• but most of the software is invisible
• aesthetic value is a marginal concern (or is it…)

– fit for purpose?
• Need to understand the purpose

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Fitness
• Software quality is all about fitness to

purpose
– does it do what is needed?
– does it do it in the way that its users need it

to?
– does it do it reliably enough? fast enough?

safely enough? securely enough?
– will it be affordable? will it be ready when its

users need it?
– can it be changed as the needs change?

Source: Budgen, 1994, pp58-9

6

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Fitness
• Quality is not a measure of software in isolation

– it measures the relationship between software and its
application domain

• cannot measure this until you place the software into its
environment…

• …and the quality will be different in different environments!
– during design, we need to predicthow well the

software will fit its purpose
• we need good quality predictors (design analysis)

– during requirements analysis, we need to understand
how fitness-for-purpose will be measured

• What is the intended purpose?
• What quality factors will matter to the stakeholders?
• How should those factors be operationalized?

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Factors vs. Criteria
• Quality Factors

– These are customer-related concerns
• Examples: efficiency, integrity, reliability, correctness,

survivability, usability,...

• Design Criteria
– These are technical (development-oriented)

concerns such as anomaly management,
completeness, consistency, traceability,
visibility,...

7

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Quality Factors and Design Criteria are related

• Each factor depends on a number of
associated criteria:
– E.g. correctness depends on completeness,

consistency, traceability,...
– E.g. verifiability depends on modularity, self-

descriptiveness and simplicity
• During Analysis:

– Identify the relative importance of each quality factor
• From the customer’s point of view!

– Identify the design criteria on which these factors depend
– Make the requirements measurable

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Boehm’s NFR list

General
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

8

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

McCall’s NFR list

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability
generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Making Requirements Measurable

• We have to turn our vague ideas about quality into
measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design/Code Representations

(realization of the metrics)

usability

minutes
taken for
some user

task???

time taken
to learn

how to use?

complexity

count
procedure
calls???

information
flow between

modules?

reliability

run it and
count crashes
per hour???

mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

9

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Example Metrics
Quality Metric

Speed transactions/sec
response time
screen refresh time

Size Kbytes
number of RAM chips

Ease of Use training time
number of help frames

Reliability mean-time-to-failure,
probability of unavailability
rate of failure, availability

Robustness time to restart after failure
percentage of events causing failure

Portability percentage of target-dependent statements
number of target systems

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Example: Measuring Reliability
• Definition

– the ability of the system to behave
consistently in a user-acceptable manner
when operating within the environment for
which it was intended.

• Comments:
– Reliability can be defined in terms of a

percentage (say, 99.999%)
– This may have different meaning for different

applications:

10

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Concrete Examples
• Example Applications

– Telephone network: the entire network can
fail no more than, on average, 1hr per year,
but failures of individual switches can occur
much more frequently

– Patient monitoring system: the system may
fail for up to 1hr/year, but in those cases
doctors/nurses should be alerted of the
failure. More frequent failure of individual
components is not acceptable.

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Generalize
– Best we can do may be something like:

• "...No more than X bugs per 10KLOC may be
detected during integration and testing; no more
than Y bugs per 10KLOC may remain in the
system after delivery, as calculated by the Monte
Carlo seeding technique of appendix Z; the system
must be 100% operational 99.9% of the calendar
year during its first year of operation..."

11

© 2010-2021 Betty H.C. Cheng. This presentation is available free for non-commerci al use with attribution under a creative commons license.

Transition back to Modeling

