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Goals of Class

• To provide a general introduction to the new field of network 
coding

• To provide sufficient tools to enable the participants to apply 
and develop network coding methods in diverse applications

• To place network coding in the context of traditional network 
operation



Outline

• Basics of networks, routing and network coding:
– Introduction to routing in traditional networks

• routing along shortest paths
• routing for recovery

– Introduction to concepts of network coding
• Algebraic foundations:

– Formal setup of linear network coding
– Algebraic formulation
– Algebraic min cut max flow condition
– The basic multicast theorem
– Other scenarios solvable with algebraic framework
– Delays in networks



Outline (contd)

• More multicast - constructing codes
– Coding gain is unbounded
– Construction based on algebraic system
– Construction based on flows
– Undirected networks



Outline (contd)

• Decentralized code construction and network coding for 
multicast with a cost criterion
– Randomized construction and its error behavior
– Performance of distributed randomized construction -

case studies
– Robustness of randomized methods
– Traditional methods based on flows - a review
– Trees for multicasting - a review
– Network coding with a cost criterion - flow-based 

methods for multicasting through linear programming
– Distributed operation - one approach
– A special case - wireless networks
– Sample ISPs



Outline(contd)

• Non-multicast:
– The algebraic difficulty
– Vector solutions vs. instantaneous
– Issue of linearity
– Is the non-multicast case interesting?



Outline(contd)

• Network coding for multicast - relation to compression and 
generalization of Slepian-Wolf
– Review of Slepian-Wolf
– Distributed network compression
– Error exponents
– Source-channel separation issues 
– Code construction for finite field multiple access networks

• Network coding for security and robustness
– Network coding for detecting attacks
– Network management requirements for robustness
– Centralized versus distributed network management

• New directions



Main topics

• Routing in networks operates in a manner akin to a 
transportation problem in which we seek to transport goods 
(data) in a cost-efficient fashion (multicast is a notable 
exception)

• Data is compressed and recovered at the edges
• Cost is defined according to a given cost of routes or by 

adjusting to the flows
• Current approaches do not generally make use of the fact that 

data (bits) are being transmitted



Shortest Paths

• Interior gateway protocol
• Option 1 (routing information protocol (RIP)):

– vector distance protocol: each gateway propagates a list of the 
networks it can reach and the distance to each network

– gateways use the list to compute new routes, then propagate 
their list of reachable networks

• Option 2 (open shortest path first (OSPF)):
– link-state protocol: each gateway propagates status of its 

individual connections to networks
– protocol delivers each link state message to all other 

participating gateways
– if new link state information arrives, then gateway recomputes 

next-hop along shortest path to each destination



OSPF

• OSPF has each gateway maintain a topology graph
• Each node is either a gateway or a network
• If a physical connection exists between two objects in an 

internet, the OSPF graph contains a pair of directed edges 
between the nodes representing the objects

• Note: gateways engage in active propagation of routing 
information while hosts acquire routing information passively 
and never propagate it



OSPF

• Weights can be asymmetric: w(i,j) need not be equal to w(j,i)
• All weights are positive
• Weights are assigned by the network manager
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Shortest Path Algorithms

• Shortest path between two nodes: length = weight
• Directed graphs (digraphs) (recall that MSTs were on undirected 

graphs), edges are called arcs and have a direction (i,j) ≠ (j,i)
• Shortest path problem: a directed path from A to B is a sequence of 

distinct nodes A, n1, n2, …, nk, B, where      (A, n1), (n1, n2),  …, 
(nk, B) are directed arcs - find the shortest such path

• Variants of the problem: find shortest path from an origin to all 
nodes or from all nodes to an origin

• Assumption: all cycles have non-negative length
• Three main algorithms:

– Dijsktra
– Bellman-Ford
– Floyd-Warshall



Bellman-Ford

• Allows negative lengths, but not negative cycles
• B-F works at looking at negative lengths from every node to 

node 1
• If arc (i,j) does not exist, we set d(i,j) to 
• We look at walks: consider the shortest walk from node i to 1 

after at most h arcs
• Algorithm:

– Dh+1(i) = minover all j[d(i,j) + Dh(i)]for all i other than 1
– we terminate when Dh+1(i) = Dh(i) 

• The Dh+1(i) are the lengths of the shortest path from i to 1 
with no more than h arcs in it



Bellman-Ford

• Let us show this by induction
– D1(i) = d(i,1)for every i other than 1, since one hop corresponds 

to having a single arc
– now suppose this holds for some h, let us show it for h+1: we 

assume that for all k ≤ h, Dk(i) is the length of the shortest walk 
from i to 1 with k arcs or fewer

– minover all j[d(i,j) + Dh(i)] allows up to h+1 arcs, but Dh(i) would 
have fewer than h arcs, so min[Dh(i), minover all j[d(i,j) + Dh(i)]] 
= Dh+1(i)

• Time complexity: A, where A is the number of arcs, for at most N-
1 nodes (note: A can be up to (N-1)2 )

• In practice, B-F still often performs better than Dijkstra (O(N2))



Distributed Asynchronous B-F

• The algorithms we investigated work well when we have a 
single centralized entity doing all the computation - what 
happens when we have a network that is operating in a 
distributed and asynchronous fashion?

• Let us call N(i) the set of nodes that are neighbors of node i
• At every time t, every node i other than 1 has available :

– Di
j(t): estimate of shortest distance of each neighbor node 

j in N(i) which was last communicated to node i
– Di(t): estimate of the shortest distance of node i which was 

last computed at node i using B-F



Distributed Asynchronous B-F

• D1(t) = 0  at all times
• Each node i has available link lengths d(i,j) for all j in N(i)
• Distance estimates change only at time t0, t1, .., tm, where tm

becomes infinitely large at m becomes infinitely large
• At these times:

– Di(t) = minj in N(i)[d(i,j) + Di
j(t)], but leaves estimate Di

j(t) 
for all j in N(i) unchanged

– node i receives from one or more neighbors their Dj, 
which becomes Di

j (all other Di
j are unchanged)

– node i is idle

OR

OR



Distributed Asynchronous B-F

• Assumptions:
– if there is a link (i,j), there is also a link (j,i)
– no negative length cycles
– nodes never stop updating estimates and receiving 

updated estimates
– old distance information is eventually purged
– distances are fixed

• Under those conditions:for any initial Di
j(t0), Di(t), for some 

tm, eventually all values Di(t) = Di for all t greater than tm



Failure recovery

• Often asynchronous distributed Bellman-Ford works even 
when there are changes, including failures

• However, the algorithm may take a long time to recover from 
a failure that is located on a shortest path, particularly if the 
alternate path is much longer than the original path (bad news 
phenomenon)

destination
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1
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Rerouting

• We have considered how to route when we have a static 
network, but we must also consider how to react when we 
have changes, in particular when we need to avoid a location 
because of failures or because of congestion

• Preplanned:
– fast (ms to ns)
– typically a large portion of the 

whole network is involved in 
re-routing

– traditionally combines self-
healing rings (SHRs) and 
diversity protection (DP) => 
constrains topology

– hard-wired
– all excess capacity is 

preplanned

• Dynamic:
– slow (s to mn)
– typically localized and 

distributed

– well-suited to mesh networks 
=> more flexibility in topology

– software approach
– uses real-time availability of 

spare capacity



Example of rerouting in the IP world

• Internet control message protocol (ICMP)
• Gateway generates ICMP error message, for instance for 

congestion
• ICMP redirect: “ipdirect” specifies a pointer to a buffer in which 

there is a packet, an interface number, pointer to a new route
• How do we get new route?

– First: check the interface is other than the one over which the 
packet arrives

– Second: run “rtget” (route get) to compute route to machine that 
sent datagram, returns a pointer to a structure describing the 
route

• If the failure or congestion is temporary, we may use flow control 
instead of a new route



Rerouting for ATM

• ATM is part datagram, part circuit oriented, so recovery 
methods span many different types

• Dynamic methods release connections and then seek ways of 
re-establishing them: not necessarily per VP or VC approach
– private network to network interface (PNNI) crankback
– distributed restoration algorithms (DRAs)

• Circuit-oriented methods often have preplanned component 
and work on a per VC, VP basis
– dedicated shared VPs, VCs or soft VPs, VCs



PNNI self-healing

• PNNI is how ATM switches talk to each other
• Around failure or congestion area, initiate crankback
• End equipment (CPE: customer premise equipment) initiates 

a new connection
• In phase 2 PNNI, automatic call rerouting, freeing up CPEs 

from having to instigate new calls, the ATM setup message 
includes a request for a fault-tolerant connection

NE NE NECPE CPE

Network element

Before failure



Connection re-establishment

NE NE NECPE CPE

Release messages Release messages

NE NE NECPE CPE

NE NE

New connection is established
Issue: the congestion may cascade, giving unstable conditions, which
cause an ATM storm



DRAs

NE NE

sender chooser

Help messages

New routes

NE NE

sender chooser

Help messages

New routes

sender

NE NE

sender

New routes

sender

chooser
Help messagesNE The DRAs have at least one end node

transmit help messages
to some nodes around them, usually
within a certain hop radius, and new 
routes, possible splitting flows, are 
selected and used



Circuit-oriented methods

• Circuit-oriented methods seek to replace a route with another 
one, whether end-to-end or over some portion that is affected 
by a failure

• Several issues arise:
– How do we perform recovery in a bandwidth-efficient 

manner
– How does recovery interface with network management
– What sort of granularity do we need
– What happens when a node rather than a link fails



Rings: Path and Link/Node Rerouting

UPSR: automatic path switching
on Unidirectional Path Switched Ring

BLSR: link/node rerouting on
Bidirectional Line Switched Ring



Path-based methods

• Live back-up

– backup bandwidth is dedicated
– only receiver is involved
– fast but bandwidth inefficient

• Failure triggered back-up

– backup bandwidth is shared
– sender and receiver are involved
– slow but bandwidth efficient

Before After

Before After



Rerouting as a code
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Rerouting as a code 

• Live path protection: we have an extra supervisory signal s 
=1 when the primary path is live, s =0 otherwise

• Failure-triggered path protection: the backup signal is 
multiplied by s

• Link recovery: 
– di,h = dk, i+ dh, i for the primary link (i, h) emanating from i, where (k, 

i) is the primary link into i and (h, i) is the secondary link into i
– for secondary link emanating from i, the code is di,k =di,h . si, h + di, h

di,h

i
dk, i

k h
di,k dh, i



Codes and routes

• In effect, every routing and rerouting scheme can be mapped 
to some type of code, which may involve the presence of a 
network management component

• Thus, removing the restrictions of routing can only improve 
performance - can we actively make use of this generality?



Network coding

• The canonical example
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Coding across the network - have I seen this before?

• Several source-based systems exist or have been proposed
• Routing diversity to average out the loss of packets over 

the network
• Access several mirror sites rather than single one
• The data is then coded across packets in order to withstand 

the loss of packets without incurring the loss of all packets
• Rather than select the “best” route, routes are diverse 

enough that congestion in one location will not bring down 
a whole stream

• This may be done with traditional Reed-Solomon erasure 
codes or with Tornado codes



The Digital Fountain approach

• Idea: have users tune in whenever they want, and receive data 
according to the bandwidth that is available at their location in 
the network – “fountain” because the data stream is always on 

• Create multicast layers: each layer has twice the bandwidth of the 
lower layer (think of progressively better resolution on images,
for instance), except for the first two layers

• If receiver stays at same layer throughout, and packet loss rate is 
low enough, then receiver can reconstruct source data before 
receiving any duplicate packets : "One-level property"

• Receivers can only subscribe to higher layer after seeing
asynchronization point (SP) in their own layer

• The frequency of SPs  is inversely proportional to layer 
bandwidth



Digital fountain

User 2

User 1

Multicast Layer 0

User 1 has finished layer 0
and has progressed to layer 1

Multicast layer 1

User 1 has finished 
layer 0
and has not yet 
progressed to layer 1



Network coding vs. Coding for networks

• The source-based approaches consider the networks as in 
effect channels with ergodic erasures or errors, and code over 
them, attempting to reduce excessive redundancy

• The data is expanded, not combined to adapt to topology and 
capacity

• Underlying coding for networks, traditional routing problems 
remain, which yield the virtual channel over which coding 
takes place

• Network coding subsumes all functions of routing - algebraic  
data manipulation and forwarding are fused



II — Algebraic Foundations of Network Coding

⇒

S

S

S
R

R

R

1

2

3

1

2

3

A network

⇒ A(I − F )−1BT = I



Why an “algebraic” characterization?

• Graph-theoretic proofs are cumbersome

• Generalizations are possible

• Equations are easier managed than graphs

• Powerful tools available
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Problem Description

S

S

S
R

R

R

1

2

3

1

2

3

A network

Vertices: V

Edges: E ⊆ V × V , e = (v, u) ∈ E

Edge capacity: C(e)

Network: G = (V, E)

Source nodes: {v1, v2, . . . , vN} ⊆ V

Sink nodes: {u1, u2, . . . , uK} ⊆ V
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µ input random processes at v:
� (v) = {X(v,1), X(v,2), . . . , X(v, µ(v)}

ν Output random processes at u:

� (u) = {Z(u,1), Z(u,2), . . . , Z(u, ν(u))}

Random processes on edges: Y (e)

A connection:
c = (v, u, � (v, u)), � (v, u) ⊆ � (v)

A connection is established if � (u) ⊃ � (v, u)

Set of connections: �

The pair (G, � ) defines a network coding problem .
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Is the problem (G, � ) solvable?

How do we find a solution?

This is fairly idealized (synchronization, protocol, dynamic

behaviour, error free,...) but gives insights into possible limits and

opportunities.

5



Is the problem (G, � ) solvable?

How do we find a solution?

This is fairly idealized (synchronization, protocol, dynamic

behaviour, error free operation,...) but gives insights into possible

limits and opportunities.
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An Example

Receiver 1 Receiver 2

Sender 1 Sender 2

[1] Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow”, IEEE-IT, vol. 46, pp. 1204-1216, 2000

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai “Linear Network Coding”,
preprint, 2000
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More Simplifications — Linear Network Codes

C(e) = 1 (links have the same capacity)
H(X(v, i)) = 1 (sources have the same rate)
The X(v, i) are mutually independent.
Vector symbols of length m elements in F2m.

(F2m is the finite field with m elements we can add, subtract, divide
and multiply elements in F2m without going crazy!)

This is necessary to define linear operations.

8



More Simplifications — Linear Network Codes

All operations at network nodes are linear!

e e
X(v,i)

Y(e )Y(e )
21

e3 Y(e )3

21

Y (e3) =
∑

i

αiX(v, i) +
∑

j=1,2

βjY (ej)



At a receiver (terminal) node:

e e
Y(e )Y(e )

n1

e3 3

n1

Z(e )

Z(v, j) =
n∑

j=1

εjY (ej).
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A simple example

e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2

Y (e1) = α1,e1X1 + α2,e1X2

Y (e2) = α1,e2X1 + α2,e2X2

Y (e3) = βe1,e3Y (e1)

Y (e4) = βe1,e4Y (e1)

Y (e5) = βe2,e5Y (e2) + βe3,e5Y (e3)

Z1 = εe4,1Y (e4) + εe5,1Y (e5)

Z2 = εe4,2Y (e4) + εe5,2Y (e5)
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e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2

In matrix form (after solving the linear system)
(

Z1

Z2

)

=

(
εe4,1 εe5,1

εe4,2 εe5,2

)

︸ ︷︷ ︸
B

(
βe1,e4

0
βe1,e3βe3,e5 βe2,e5

)

︸ ︷︷ ︸
G

(
α1,e1

α1,e2

α2,e1
α2,e2

)

︸ ︷︷ ︸
A

(
X1

X2

)

We define three matrices A, G, B

The main question becomes: Is G invertible?
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The transfer matrix

Let a matrix F be defined as an |E|×|E| matrix where fi,j is defined
as βei,ej, i.e. the coefficient with which Y (ei) is mixed into Yej .

e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2 F =








0 0 βe1,e3
βe1,e4

0
0 0 0 0 βe2,e5

0 0 0 0 βe3,e5

0 0 0 0 0
0 0 0 0 0








Summing the “path gains”:

P = I + F + F 2 + . . . = (I − F )−1 =








0 0 βe1,e3
βe1,e4

βe1,e3
βe3,e5

0 0 0 0 βe2,e5

0 0 0 0 βe3,e5

0 0 0 0 0
0 0 0 0 0








Observe that G = (I − F )−1 is polynomial
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A linear system

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input vector: xT = (X(v,1), X(v,2), . . . , X(v′, µ(v′)))

Output vector: zT = (Z(u,1), Z(u,2), . . . , Z(u′, ν(u′)))

Transfer matrix: M , z = Mx = B ·G · A x

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)
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z = Mx = B · (I − F T)−1
︸ ︷︷ ︸

GT

·A x

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

For acyclic networks the elements of G (and hence M)

are polynomial functions in variables ξ = (ξ1, ξ2, . . . , )

⇒ an algebraic characterization of flows....
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An algebraic Min-Cut Max-Flow condition

Let network be given with a source v and a sink v′ . The following
three statements are equivalent:

1. A point-to-point connection c = (v, v′, � (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

| � (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero
over the ring of polynomials F2[ξ]

3. ⇒We have to study the solution sets of polynomial equations.
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An innocent looking Lemma

Let F[X1, X2, . . . , Xn] be the ring of polynomials over an infinite

field F in variables X1, X2, . . . , Xn . For any non-zero element

f ∈ F[X1, X2, . . . , Xn] there exists an infinite set of n-tuples

(x1, x2, . . . , xn) ∈ Fn such that f(x1, x2, . . . , xn) 6= 0 .

(x6 − x4 − x2 + x) does not have have a non-solution in F2, F3, F4

but in F5 we have 26 − 24 − 22 + 2 = 46 ≡ 1(mod 5).
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An innocent looking Lemma

Let F[X1, X2, . . . , Xn] be the ring of polynomials over an infinite

field F in variables X1, X2, . . . , Xn . For any non-zero element

f ∈ F[X1, X2, . . . , Xn] there exists an infinite set of n-tuples
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Another Example:

v

v

v

v

4

1

3

2

v

v

v

v

4

1

3

2

X(v,1) 

X(v,2)

X(v,3)

Z(v’,1)

Z(v’,2)

Z(v’,3)

a) b)
e

e

e

ee

e

e1

4

3

2
6

5

7

� = (v1, v4, {X(v1,1), X(v,2), X(v1,3)})

A =





αe1,1 αe2,1 αe3,1

αe1,2 αe2,2 αe3,2

αe1,3 αe2,3 αe3,3



 , B =





εe5,1 εe5,2 εe5,3

εe6,1 εe6,2 εe6,3

εe7,1 εe7,2 εe7,3



 .

M = A





βe1,e5 βe1,e4βe4,e6 βe1,e4βe4,e7

βe2,e5
βe2,e4

βe4,e6
βe2,e4

βe4,e7

0 βe3,e6
βe3,e6



 BT .

det(M) = det(A)det(B)

(βe1,e5βe2,e4 − βe2,e5βe1,e5)(βe4,e6βe3,e7 − βe4,e7βe3,e6)

Choose the coefficients so that det(M) 6= 0!
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Multicast:
� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

Z Z
Z

Z

Z
Z
Z
Z
Z

11 12

13

21

23

22

31

32

33

1

X

X

X

2

3

Multicast network

� �� �� �� �
� �� �� �� �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� �� �� �� �
� �� �� �� �

� �� �� �� �
	 		 		 		 	


 

 

 

� �� �� � � � �� � �� � �� � �

        
� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �

A

(I−F)

=

B
−1

M

M is a | � (v)| × K| � (v)| matrix.
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Multicast:
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System Transfer matrix 

� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| ×K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

Find a solution of
∏

i mi(ξ) 6= 0
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The main Multicast Theorem:

Theorem Let (G, � ) be a multicast network coding problem. There

exists a linear network coding solution for (G, � ) over a finite field

F2m for some large enough m if and only if there exists a flow of

sufficient capacity between the source and each sink individually.

(We will see later how large m will have to be — it's not too bad)
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Other (derived) problems: Multisource — Multicast
� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}
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Other (derived) problems: Multisource — Multicast

Theorem Let a linear, acyclic, delay-free network G be given with a

set of desired connections � = {(vi, uj, � (vi)) : i = 0,1, . . . N, j =

1,2, . . . K} . The network problem (G, � ) is solvable if and only

if the Min-Cut Max-Flow bound is satisfied for any cut between all

source nodes {vi : i = 0,1, . . . N} and any sink node uj .
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Other (derived) problems: One source — Disjoint Muticasts
� = {(v, uj, � (v, uj)) : j = 1,2, . . . K}, � (v, uj) ∩ � (v, ui) = ∅

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� �� �� �� �
� �� �� �� �

����
�

����
�

� �� �� �� �
� �� �� �� �	 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 	


 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 


� �� �� �
� �� �� �

��


����
�

� � �� � �� � �� � �

� � �� � �� � �� � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

(I−F) B
−1

Z

X

X

Multicast network

X 1

X

X

2

3

4

5

A

=

M

=
?

24



One source — Disjoint Muticasts + Multicasts
� = {(v, uj, � (v, uj)) : j = 1,2, . . . K} ∪ {(v, u`, � (v)) : j = K + 1, K +

2, . . . K + N}, � (v, uj) ∩ � (v, ui) = ∅
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Multisource — Disjoint Muticasts + Multicast

Theorem Let a linear, acyclic, delay-free network G be given with a

set of desired connections � = {(v, uj, � (v, uj)) : j = 1,2, . . . K}∪

{(v, u`, � (v)) : j = K +1, K +2, . . . K +N} such that collection

of random processes � (v, uj), � (v, uj) are mutually disjoint for

i, j < K , i.e. � (v, uj) ∩ � (v, ui) = ∅ for i 6= j, i, j ≤ K . The

network problem is solvable if and only if the Min-Cut Max-Flow bound

is satisfied between v and the set of sink nodes {u1, u2, . . . , uK}

at a rate | � (v)| and between v and u`, ` > K also at a rate

| � (v)| .
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Other (derived) problems: Two level Multicasts
� = {(v, u1, � (v, u1))} ∪ {(v, u2, � (v)}

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �

� �� �� �� �
� �� �� �� �

� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �

(I−F) B
−1

A

X

X

X 1

X

X

2

3

4

5

27



Other (derived) problems: Two Level Multicast

Theorem(“Two-level multicast”) Let an acyclic network G be given

with a set of desired connections

� = {(v, u1, � (v, u1)), (v, u2, � (v))

The network problem is solvable if and only if the Min-Cut Max-Flow

bound is satisfied between v and u1 at a rate | � (v, u1)| and be-

tween v and u2 at a rate | � (v)|.

28



So far so good!

What about networks with cycles?

What about networks with delays?

What about robustness?

Do we really need network coding for multicast?

29



So far so good!

What about networks with cycles?

What about networks with delays?

What about robustness?

Do we really need network coding for multicast? YES

30



Robust multicast:

Links in the network may fail. (non-ergodic). Set of failure patterns: �

A network solution is static w.r.t. � if the operations in the network interior are
oblivious to the particular failure in � .

Theorem Let (G, � ) be a multicast network coding problem and let � be the set
of failure patterns such that the problem is solvable. There exists a common
static solution to all failure patterns in � .

Proof sketch: All we have to do is to guarantee that the product of all determi-
nants of all scenarios in � evaluates to a non zero value.

Theorem Let (G, � ) be a multicast network coding problem and let � be the set
of failure patterns such that the problem is solvable.. There exists a solution for
(G, � ) over a finite field F2m with m ≤ dlog2(| � |NR + 1)e.
...
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Linear Networks with Delays

We transmit random processes in a delay variable D on links, i.e.

X(v, j)(D) =
∞∑

`=0

X`(v, j)D`,

Z(v, j)(D) =
∞∑

`=0

Z`(v, j)D`,

Y (e)(D) =
∞∑

`=0

Y`(e)D
`.

Conceptually, we consider an entire sequence in D as one symbol and

work over the field of formal power series.
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(D)

(D)
(D)

(D)
e e

X(v,i)
Y(e )

21

e3 Y(e )

2

3

Y(e )1

Y (e3)(D) =
∑

i

αiDX(v, i)(D) +
∑

j=1,2

βjDY (ej)(D)

(other functions with memory are possible but not necessary)
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At a receiver (terminal) node we have to allow for “rational” func-
tions:

(D)

(D)(D)
e e

Y(e )
n1

e3 3

n

Z(e )

Y(e )1

Y (e)(D) =
∑∞

`=0 Y`(e)D
`, Z(v, j)(D) =

∑∞
`=0 Z`(v, j)D`

Z`(v, j) =
n∑

j=1

µ
∑

k=0

εj,kY`−k(ej) +
µ

∑

k=1

λkZ`−k(v, j)

or Z(v, j)(D) =
∑n

j=1
εj,k(D)

λ(D)
Y (ej)(D)
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The transfer matrix with delays

e

e

e

e

e

X
Z

X Z

1

2

1

2

3
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1

2 F =








0 0 Dβe1,e3 Dβe1,e4 0
0 0 0 0 Dβe2,e5

0 0 0 0 Dβe3,e5

0 0 0 0 0
0 0 0 0 0








Summing the “path gains”:

P = I+DF+D2F 2+. . . = (I−DF )−1 =








0 0 Dβe1,e3
Dβe1,e4

D2βe1,e3
βe3,e5

0 0 0 0 Dβe2,e5

0 0 0 0 Dβe3,e5

0 0 0 0 0
0 0 0 0 0








Observe that G = (I −DF )−1 is polynomial over F2(D).
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An algebraic Min-Cut Max-Flow condition with delays

Let network be given with a source v and a sink v′ . The following

three statements are equivalent:

1. A point-to-point connection c = (v, v′, � (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

| � (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero

over the ring of polynomials F2(D)[ξ] with coefficients from

the field of rational functions.
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It is only that....

We have to study the solution sets of polynomial equations over

F2(D).

At receiver nodes we have to allow for memory and the possibility

of implementing rational functions!

This is neccessary since now we have to invert a transfer matrix

which has as elements polynomials over F2(D).
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The transfer matrix with delays and cycles

e
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1

2

e6

F =










0 0 Dβe1,e3
Dβe1,e4

0 0
0 0 0 0 Dβe2,e5 0
0 0 0 0 Dβe3,e5

0
0 0 0 0 0 Dβe4,e6

0 0 0 0 0 Dβe5,e6

Dβe6,e1
Dβe6,e2

0 0 0 0










Summing the “path gains”:

P = I+DF+D2F 2+. . . = (I−DF )−1 =
(
6 × 6 matrix with rational coefficients

)

Now G = (I −DF )−1 is rational over F2(D).
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Delays and cycle - or really nothing has happened....

Let network be given with a source v and a sink v′ . The following

three statements are equivalent:

1. A point-to-point connection c = (v, v′, � (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

| � (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero

over the ring of polynomials F2(D)[ξ] with coefficients from

the field of rational functions.
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Multicast:
� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

Z Z
Z

Z

Z
Z
Z
Z
Z

11 12

13

21

23

22

31

32

33

1

X

X

X

2

3

Multicast network

� �� �� �� �
� �� �� �� �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� �� �� �� �
� �� �� �� �

� �� �� �� �
� �� �� �� �

� �� �� �
	 		 		 	 
 
 

 
 

 
 

 
 


� � �� � �� � �� � �
� �� �� �� �
    
� �� �� �� �
� �� �� �� �

A

(I−F)

=

B
−1

M

M is a | � (v)| × K| � (v)| matrix.
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Multicast:

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

M1 M M2 3Multicast network

Z Z
Z

Z

Z
Z
Z
Z
Z

11 12

13

21

23

22

31

32

33

1

X

X

X

2

3

System Transfer matrix 

� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| ×K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

Find a solution of
∏

i mi(ξ) 6= 0
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The main Multicast Theorem:

Theorem Let (G, � ) be a multicast network coding problem on a

graph which may have a cyclic structure. There exists a linear net-

work coding solution for (G, � ) over a finite field F2m for some

large enough m if and only if there exists a flow of sufficient ca-

pacity between the source and each sink individually.
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Theorems, Theorems.....
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Summary

• Connecting network information flow problems to algebraic equa-
tions yields powerful tools for analysis of networks.

• Multicast especially well suited for the approach since we have

to find “non solutions” to equations, which can easily be accom-

plished in large fields.

• Many network scenarios can be derived from the multicast setup.

• The general non multicast setup will be treated later (much less

is known).
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• Field size?

• How do we find solutions?

• Is network coding really helpful or just a singular occurrence?



III — More about the multicast

Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n



Questions

• Do we really need codes?

• What alphabet sizes do we need?

• How do we find solutions?

• Bidirectional links?

2



Do we really need codes?

Is the performance gap between the network coding solution and
routing, i.e. packing directed Steiner trees bounded ?

A simple example:
Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

Each receiver picks out one of

(

n

k

)

possible middle layer links

3



Do we really need codes?

n

k
transfer matrix for "cut"

Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

The transfer matrix from the transmitter to the “cut” has to sat-

isfy that k × k submatrix has full rank!

⇒ The field size is at least in the same order as n

(the MDS conjecture)
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A lower bound

Theorem There exist multicast problems with T receivers such that

the minimum field size required for a solution grows as O(
√

T) .

Theorem There exist multicast problems such that the gap between

routing and network coded strategies is arbitrarily large.
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How do we find solutions for the Multicast?
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� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| ×K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

The degree of each mi(ξ) is at most | � (v)|
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Multicast:

An algorithm to find a vector a such that F (a) 6= 0 for a polynomial

F .

Input: A polynomial F in indeterminates ξ1, ξ2, . . . , ξn, integers: i =

1, t = 1

Iteration:

1. Find the maximal degree δ of F in any variable ξj and let i be

the smallest number such that 2i > δ.

7



2. Find an element at in F2i such that F (ξ)|ξt=at
6= 0 and let

F ← F (ξ)|ξt=at
.

3. If t = n then halt, else t← t + 1, goto 2).

Output: (a1, a2, . . . , an).

The crucial step is 2) which is successful if the fieldsize is larger

than the degree of F .



Multicast:

Let (G, � ) be a multicast network coding problem with T receivers

and R symbols transmitted per time unit. There exists a solution

for (G, � ) over a finite field F2m with

m ≤ dlog2(TR + 1)e.

(A more careful analysis shows that a field F2m with m ≤ dlog2(T )e

or F ≥ T )
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Multicast:

For any multicast networking problem with T receivers there always

exists a solution over an alphabet which is at least as large as T .

Conversely:

There exist multicast networking problems with T receivers such

that the minimum alphabet size is bounded below by
√

T − o(1).

(In practice - just try the random approach...)
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A different approach...

S.-Y. R. Li, R. W. Yeung, and N. Cai. "Linear network coding". IEEE

Transactions on Information Theory , Februray, 2003

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L.

Tolhuizen, "Polynomial time algorithms for multicast network code

construction,"IEEE Transactions on Information Theory. Submit-

ted July 2003.

A flow based approach that carefully constructs a solution in poly-

nomial time.
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A different approach...

A solution for acyclic networks is constructed “one link at a time”

starting at the source.

Each flow to a receiver is being treated as a set of disjoint paths

with the set of edges that was processed last (the frontier set)

having to form a full rank matrix

11
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The algorithm of Jaggi, Sanders et al.

The frontier sets of a multicast to three receivers

[a b c]

[a b c]

[a’ b’ c’]
[a’’ b’’ c’’]

[a   b   c  ]
[a’  b’  c’ ]
[a’’ b’’ c’’]

has full rank
for all colors

A multicast network
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The algorithm of Jaggi, Sanders et al.

Theorem [Jaggi, Sanders, et al] Let (G, � ) be a multicast network

coding problem with E edges, R symbols to be transmitted simul-

taneously and T receivers. There exists a linear network coding

solution for (G, � ) over a finite field F if |F| > T . Moreover this

solution can be found in time O(E · T ·R(R + T )).

(In practice - still just try the random approach...)

The “link growth” algorithm can be modified such that it is applicable

to all the generalizations of the previous session.

25



The algorithm of Jaggi, Sanders et al.

Theorem [Jaggi, Sanders, et al] Let (G, � ) be a multicast network

coding problem with E edges, R symbols to be transmitted simul-

taneously and T receivers. There exists a linear network coding

solution for (G, � ) over a finite field F if |F| > T . Moreover this

solution can be found in time O(E · T ·R(R + T )).

(In practice - still just try the random approach...)

The “link growth” algorithm can be modified such that it is applicable

to all the generalizations of the previous session. Example: “Two-

Level Multicast”
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[001]

[100]

[010]

[100]

[100]

[010] [010]

[001] [001]

[010]

[100]
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[001]

[010]

[100]

[010] [010]

[001] [001]

[010]

[101]

[101] [101] [100]

full rank for all frontier sets
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[010]

[100]

[011] [010]

[001] [001]

[011]

[101]

[101] [101] [100]

[001]

[011]
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

[101]
[001] A= [100]

[010]

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[010]

[100]

[011] [001]

[111] 111]

[011]

[101]

[101]

[001]

[011]

[001]

[001]

[001]

[101]

[101]

[011]

[111]

[111][111]

[011]

[101]
[011]
[111]
[001]

[101] [001]

Reencode [a,b,c]  as A[abc]   such that  T
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An anlysis of random assignments is done in the next session.

The flow based algorithm is inherently more efficient than a pure

random assignment.

How do we pack flows with as much overlap as possible?

But first: The case of bidirectional links!

(Zongpeng Li, Baochun Li, Dan Jiang, Lap Chi Lau. "On Achieving

Optimal End-to-End Throughput in Data Networks: Theoretical and

Empirical Studies," Technical Report, University of Toronto, May

2004)
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Bidirectional links — A case where network coding does not help

a

b

a

a

b

a

b

a

a

b directional links: rate of transmission 0.5 symbols per time unit 

bi−directional links: Rate of transnmission is bounded by 6/7
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Bidirectional links

Steiner Tree Packing for Multicast Problems:

Find the set of all Steiner trees � , i.e. trees connecting all re-
ceivers with a source in a multicast group.

For a link e and T ∈ � :

I(e, T ) =

{

1 e is part of T

0 otherwise

The central problem: Find λ(T ) ∈ R+ maximizing
∑

T∈ �

λ(T ) such that
∑

T∈ �
λ(T )I(e, T ) ≤ C(e)

for all links e.
33



Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit 

With network coding: ?

Without network coding: ?

A case where network coding does help (even though it's not much)
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Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit 

With network coding: Two symbols per time unit (min cut)

Without network coding: ?

A case where network coding does help (even though it's not much)
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Bidirectional links

Packing the below trees yields
a rate of 1.5 symbols per time unit
(1.875 optimal [Li,Li,Lau])
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Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit 

With network coding: Two symbols per time unit (min cut)

Without network coding: 1.875symbols per time unit 

A case where network coding does help (even though it's not much)
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Bidirectional links

[Li,Li,Lau] The ratio between the multicast rates achievable with or

without network coding in bidirectional networks is bounded by a

factor of two.

(The point of network coding here is really complexity!)
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Bidirectional links

[Li,Li,Lau] The ratio between the multicast rates achievable with or

without network coding in bidirectional networks is bounded by a

factor of two.

(The point of network coding here is really complexity!)
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Bidirectional links - An Example

With network coding we achieve a capacity of 2 symbols per time

unit

Without network coding we achieve a throughput of 1.786 symbols

per unit time

This comes at a cost of optimizing over 119104 Steiner trees [Li,Li,Lau]
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Bidirectional links

He crucial step in a network coding solution for the multicast prob-

lem in bidirectional links is to find the best (bidirectional) flows

corresponding to each receiver. To this end we formalute a linear

program:

Each link e carries two flows (direction + and −) f
(`)
+ (e) and f

(`)
− (e)

due to receiver `.
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Maximize: f

Constraints for all `

f
(`)
+ (e) + f

(`)
− (e) ≤ c(e)

∑

f(`) flowing into reveiver `

f(`) = f

∑

f(`) flowing out of the source

f(`) = f

∑

f(`) flowing into node i

f(`) =
∑

f(`) flowing out of node i

f(`)
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Summary:

• For directed networks the “coding gain” is unbounded

• We “really” need codes

• The necessary multicast fieldsize is bounded as
√

T ≤ |F| ≤ T

• Two basic methods to find solutions: algebraic and recursively

assigning edges

• A natural method: “random assignment” (more about this shortly)
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• For bidirectional link the coding gain is bounded by 2

• The main advantage of network coding in complexity.

• More about linear programs shortly!



Decentralized code construction

and network coding for multicast

with a cost criterion

1



Overview

² Randomized construction and its error behavior

² Performance of distributed randomized construction - case

studies

² Traditional methods based on flows - a review

² Trees for multicasting - a review

² Network coding with a cost criterion - flow-based methods

for multicasting through linear programming

2



² Distributed operation - one approach

² A special case - wireless networks

² Sample ISPs



Linear network coding

iv source Xi
originating at v

@
@@R

Yj ¡
¡¡ª

Yk

?
Yl = a1,3Xi + f1,3Yj

+f2,3Yk

ī receiver ¯

@
@@R

Yj ¡
¡¡ª

Yk

?
output Zβ,i = bβi,kYj

+bβi,kYk

² Coefficients {ai,j, fl,j, b¯i,l
} give network-constrained transfer

matrices (A,F, {B¯}), a network code

² Matrix M¯ = A(I ¡ F )−1BT
¯ gives transfer function from

sources to outputs [KM01]:

[X1 X2 . . . Xr] M¯ = [Z¯,1 Z¯,2 . . . Z¯,r]
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ī receiver ¯

@
@@R

Yj ¡
¡¡ª

Yk

?
output Zβ,i = bβi,kYj

+bβi,kYk

² Coefficients {ai,j, fl,j, b¯i,l
} give network-constrained transfer

matrices (A,F, {B¯}), a network code

² Matrix M¯ = A(I ¡ F )−1BT
¯ gives transfer function from

sources to outputs [KM01]:

[X1 X2 . . . Xr] M¯ = [Z¯,1 Z¯,2 . . . Z¯,r]

5



Linear network coding for multicast

iv source Xi
originating at v

@
@@R

Yj ¡
¡¡ª

Yk

?
Yl = a1,3Xi + f1,3Yj

+f2,3Yk
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Feasibility and code construction

Determining feasibility

² min-cut max-flow bound satisfied for each receiver [ACLY00]

² transfer matrix A(I ¡ F )−1BT
¯ for each receiver β is non-

singular [KM01]

Constructing linear solutions

² Centralized

10



– Direct algebraic solution using transfer matrix of [KM01]

– Algorithms using subgraph consisting of flow solutions to

individual receivers [SET03, JCJ03]

² Decentralized

– A distributed randomized network coding approach [HKMKE03]



Randomized network coding

² Interior network nodes independently choose random linear

mappings from inputs to outputs

² Coefficients of aggregate effect communicated to receivers

² Receiver nodes can decode if they receive as many indepen-

dent linear combinations as the number of source processes

11
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dent linear combinations as the number of source processes
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Success probability

[HKMKE03, HMSEK03] For a feasible d-receiver multicast con-

nection problem on a network with

² independent or linearly correlated sources

² a network code in which code coefficients ai,j, fl,j for η links

are chosen independently and uniformly over Fq

the success probability is at least (1 ¡ d/q)η for q > d. Error

bound is of the order of the inverse of the field size, so error

probability decreases exponentially with codeword length

13



Proof outline

² Recall transfer matrix M¯ = A(I ¡ F )−1BT
¯ for each receiver

β must be non-singular

² We show an equivalent condition connected with bipartite

matching: the Edmonds matrices

[

A 0

I ¡ F BT
¯

]

(in the acyclic

delay-free case) or

[

A 0

I ¡DF BT
¯

]

(in the case with delays)

are non-singular

² This shows that if η links have random coefficients, the de-

terminant polynomial

14



– has maximum degree η in the random variables {ax,j, fi,j}

– is linear in each of these variables



Proof outline (cont’d)

² We want the product of the d receivers’ determinant poly-

nomials to be nonzero

² We can show inductively, using the Schwartz-Zippel Theo-

rem, that for any polynomial P ∈ F[ξ1, ξ2, . . . ] of degree · dη,

in which each ξi has exponent at most d, if ξ1, ξ2, . . . are

chosen independently and uniformly at random from Fq µ F,

then P = 0 with probability at most 1¡ (1¡ d/q)η for d < q

² Particular form of the determinant polynomials gives rise to

a tighter bound than the Schwartz-Zippel bound for general

polynomials of the same total degree

15



Utility of distributed network coding

² Decentralized scenarios

X 1X 1

X

X

2

2

��� ��� ��� ���
��������� ���	�	 
�
��� ���

� ��� ��� ���
��� ������ ��� ��� ��� ��� ��� ��� ���

������
������

Src

Receiver position ( 2,4) (4,4) (8,10) (10,10)

Randomized flooding upper bound 0.563 0.672 0.667 0.667

Randomized F26 lower bound 0.882 0.827 0.604 0.567
Coding F28 lower bound 0.969 0.954 0.882 0.868
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Running the LP on sample ISPs (Rocketfuel)

Telstra

Telstra, V= 108, E = 306
Ebone, V=88, E=323
Exodus, V=79, E=294

Ebone

Exodus



Another case study

• Results of Chou, Wu and Jain 2003
• Implemented event-driven simulator in C++
• Six ISP graphs from Rocketfuel project (UW)

– SprintLink: 89 nodes, 972 bidirectional edges
– Edge capacities: scaled to 1 Gbps / “cost”
– Edge latencies: speed of light x distance

• Sender: Seattle; Receivers: 20 arbitrary (5 shown)
– Broadcast capacity: 450 Mbps; Max 833 Kbps
– Union of maxflows: 89 nodes, 207 edges

• Sent 20000 packets in each experiment::
– field size: 216; generation size (group of packets):100; 

interleaving length: 100
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Tighter bounds on coding success probability

² Previous bound in terms of number of receivers and coding

links is very general

² Can obtain tighter bounds based on more specific network

characteristics

1



Tighter bounds on coding success probability

[HMSEK03]For a d-receiver multicast problem on an acyclic net-

work, coding success probability with field size q is lower bounded

by the probability that the connections remain feasible after

deleting each link of the original graph with probability d
q
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Multicasting

• Example: IEEE 802.1P and 802.1Q
• 802.1P: bridge specification for traffic class expediting, 

registration protocol, multicast group filters

bridge bridge bridge

GARP: generic attribute registration protocol, uses broadcasting

LAN2

LAN1

LAN2 LAN3



Multicasting

• GMRP: GARP for multicast
• allows users to join a multicast group

bridge bridge bridge

LAN2

LAN1

LAN2 LAN3



Multicasting

• 802.1Q: virtual local area networks (VLAN)s
• Every VLAN is a broadcast domain
• Manually (in general) setting up of VLANs through a switch

Switch



Minimum spanning tree

• Represent a network as graph: links are edges and nodes are 
vertices

• Weights w(i) may represent cost of sending down the link, 
cost of rental, delay/length

• Want to minimize sum of w(i)s to yield a minimum spanning 
tree (MST)

w(1) w(2)

w(3)

w(4)
w(5)

Two valid trees: tree 1 and tree 2

Fragment: a subtree

We can use fragments to build trees 
progressively

root



Augmenting a fragment

• Let us take a fragment F of an MST
• Adding a minimum weight link to F yields another MST 

fragment
• To see why: add that minimum weight link to the MST, 

creating a cycle, and then replace another link with it
• If all the weights are different, there exists a single MST

F

Minimum weight link



Algorithms relying on augmenting fragments

• Prim-Dijkstra: start from the root node and gradually 
augment it until all nodes are in the MST

• Kruskal: every node is a fragment and fragments are 
successively joined

• Example:

• The problem of performing multicast rather than broadcast is 
difficult - Steiner tree problem, NP-complete

1 2

4 6

7

3

8

910



Steiner Tree Problem

• The Steiner tree of some subset of the vertices of a graph G is a 
minimum-weight connected subgraph of G that includes all the 
vertices. It is always a tree. 

• The determination of a Steiner tree is NP-complete (both NP 
(verifiable in nondeterministic polynomial time) and NP-hard 
(any other NP-problem can be translated into this problem)) 
and hard even to approximate. There is 1.55-approximate 
algorithm (Robins and Zelikovski 2000), but approximation 
within 95/94 is known to be NP-hard (Chlebik and Chlebikova
2002). 

• Chlebik, M. and J.Chlebikova, J. "Approximation Hardness of the Steiner Tree Problem on Graphs." Proc. 
8th Scandinavian Workshop on Algorithm Theory (SWAT). Springer-Verlag, pp. 170-179, 2002. 

• Robins, G. and Zelikovski, A. "Improved Steiner Tree Approximation in Graphs." In Proc. 11th ACM-SIAM 
Symposium on Discrete Algorithms. pp. 770-779, 2000

• from Eric W. Weisstein. "Steiner Tree." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/SteinerTree



Steiner tree related problems 

• The Steiner packing problem is to find the maximum number 
of edge-disjoint subgraphs of a given graph G that connect a 
given set of required points, S.  Recently  an algorithm with 
an asymptotic approximation factor of |S|/4 has been found (K.
Jain, M. Mahdian, and M.R. Salavatipour, “Packing Steiner trees,” 14th ACM-SIAM Symposium 
on Discrete Algorithms (SODA), 2003)

• Insertion of buffers in Steiner trees (C. J. Alpert, M. Hrkic, J. Hu, A. B.
Kahng, J. Lillis, B. Liu, S. T. Quay, S. S. Sapatnekar, A. J. Sullivan, P. Villarrubia, “Buffered Steiner
trees for difficult instances”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, Volume: 21 Issue: 1 , January 2002, pp. 3-14; code available at 
http://ece.tamu.edu/~cnsze/GSRC/ctree.html)

• Dynamic Steiner tree problem and updates (rearrangeability 
issues). Recently polynomial time algorithms within a factor 
of 2 from the proven lower bound have been found (Piotr Berman
and Chris Coulston, “ On-line algorithms for Steiner tree problems”, in Proceedings of the Twenty-Ninth 
Annual ACM Symposium on Theory of Computing, pages 344-353, El Paso, Texas, 4-6 May 1997)



Routing based on flows - a review
• Tree-based methods concentrate on finding a path, taking into 

consideration cost but not actual flow (tree packing does so 
indirectly)

• What happens when we add capacity considerations?
• If we have circuits or virtual circuits, then we can create a 

topology that takes into account the presence of other users

• If we have a probabilistic description of traffic progression, then 
we could use dynamic programming

5 3

1
4

5

3 3
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Routing based on flows

• When we have packets or fine granularity virtual circuits 
(VCs), we can assume that we have roughly fluid flows

• We will try to optimize a cost function related to the flow 
F(i,j) (arrival rate in terms of of what we may be considering) 
on the link (i,j)

• A reasonable metric is 

where D is some monotonically increasing function that 
grows very sharply when F(i,j) approaches the link capacity

• These type of models are called flow models - they look only 
at mean flow, they do not consider higher moments

• Example (based on Kleinrock approximation)

j))D(F(i,
j)(i,
∑

j)F(i, j)d(i,
j)F(i,-j)C(i,

j)F(i,j))D(F(i, +=



Optimal flow routing problem

• For every OD pair w=(i,j), we are given the arrival rate r(w)
• We denote:

– W: the set of all OD pairs w
– P(w): a set of paths available for routing for OD pair w 

(possibly all paths)
– x(p): the flow of path p (in units per second)

..

.Networkr(w)

Origin of w Destination of w

x(1)

x(p)

x(1)

x(p)



Problem statement

• We want to choose the flows so that we minimize

exist sderivative
second andfirst  its that andconvex  is D that assume we

0 x(p)

in W  wpairs OD alfor  r(w)  x(p)

x(p)  j)F(i,
sconstraint  thesubject to

j))D(F(i,

P(w)in  p

j)(i, containing p paths all

j)(i,

≥

=

=

∑

∑

∑



Flow problem

• We can perform a substitution in the following manner: 
consider the cost 

D' sderivativecost link first   theare lengthslink when 
p oflength   theis  x(p)of derivative partial

x(p)D'
x(p)
D(x)

 sderivative partial heconsider t

x(p)DD(x)

ppath on  j)(i, links all j)(i, containing p paths all

j)(i, containing p paths allj)(i,

∑ ∑

∑∑
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Characterization of optimal flows

• A set of path flows x is optimal if the cost cannot be 
improved by making a feasible change of flow

• Consider shifting an increment δ from path p to path p’ of the 
OD pair w

• To a first order approximation, the change in cost is

..

.Networkr(w)

Origin of w Destination of w

x(p)

x(p’)

x(p)

x(p’)

δ

δδ
)x(p'

D(x)
x(p)
D(x)

∂
∂

+
∂
∂

−



Characterization of optimal flows

• Cost change due to shifting traffic from p to p’ must be 
detrimental in cost in the solution was optimal

• So

• This condition is the same as rewriting for all OD pairs that 
for the optimal flow x*, 

• So optimal path flows are positive only on paths that are 
shortest with respect to first derivative lengths

)x(p'
D(x)

x(p)
D(x)

∂
∂

≤
∂
∂

P(w)in  p' allfor  
)x(p'

D(x*)
x(p)

D(x*) ifonly  0  (p)*x
∂
∂

≤
∂
∂

>



Solutions

• The link lengths depend on the link flows
• The first derivative lengths depend on the unknown optimal path 

flows, so the problem is harder than a shortest path problem 
• Sometimes we can solve the problem using a closed form solution,

but generally more involved methods may be necessary

r
High capacity link C1

Low capacity link C2

possible are cases  twoso ,C  C
 x(i)- C

x(i)  D(x(i))t cos

21

i

≥

=



Solution example

• Case 1: all the flow goes along 1

• Case2 : Flow goes along both paths

( ) 211
2

2
1

1 CCCr
C
1

rC
C gives

P(w)in  p' allfor  
)x(p'

D(x*)
x(p)

D(x*)

−≤⇒≤
−

∂
∂

≤
∂
∂

( ) ( )22

2
2

1

1

x(2)C
C 

x(1)C
C 

−
≤

−

211 CCC − r

x*(1)
x*(2)



Solution methods

• In general finding solutions may be difficult and different 
types of methods may need to be applied

• Reduce cost while maintaining feasibility
• A common theme in the methods for improving solutions is 

to use minimum first derivative lengths and mix, in some 
way, the current solution with the solution using only 
minimum first derivative lengths (MFDLs)

• General problem:

0 x(p)
x(p)
D(x) :directionDescent 

in W wallfor 0x(p):yFeasibilit

P(w)in  p    in W w

P(w)in  p

≤∆
∂
∂

=∆
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Network Coding with a Cost Criterion

• We consider applying network coding in settings where there is
a cost associated with network use.

• Main results:

– We specify a linear optimization problem that determines
minimum-cost routing of single multicast connections.

– We describe a distributed algorithm for solving this
problem.

– We show how to apply our approach to the problem of
minimum-energy multicast in wireless networks with
omnidirectional antennas.

– For general connections, we specify a linear optimization
problem that promises a non-trivial cost improvement over
any solution without coding.

1



Multicast Connections

• For multicast problem where all sink nodes receive the same
data a set of connections is feasible if and only if the
connection rate satisfies the max-flow min-cut bound and can
be achieved using linear coding (ACLY00)

• Linear operations over a sufficiently large finite field on a
sufficiently long vector created from the source process
(LYC03, KM03, HKMK03, JSCEEJT03)

• How do we incorporate cost in this setting?

2



Model

• Directed graph G = (N,A)

• Each link (i, j) in A is associated with non-negative numbers
aij and cij , which are the cost per unit flow and the capacity of
the link, respectively

• The total cost of using a link is proportional to the flow on it
(we discuss generalizations later)

• Source node s in N produces data at a positive, real rate R to
transmit to a non-empty set of terminal nodes T in N .

3



Network coding for cost
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Network coding for cost

s
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Cost of trees = 26
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Network coding for cost

s

1 1

2 2

36 6

1 1

Cost of code = 23
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Network coding for cost

• Without coding, the problem of multicast is the Steiner tree
problem over dags, possibly with decompositions into several
trees

• An immediately attractive approach would be to overlay trees
to create codes, attempting to increase overlaps and counting
only once several uses of a link - code is built automatically

• Complexity is high and does not make use of distributed
random code construction, which works well in practice

• We have proposed a linear program statement of the problem
which is polynomial-time, and can be solved in a distributed
manner

8



A LP-based Solution [LMHK04]

minimize
∑

(i,j)∈A aijzij

subject to zij ≥ x
(t)
ij , ∀ (i, j) ∈ A, t ∈ T ,

∑
{j|(i,j)∈A} x

(t)
ij −

∑
{j|(j,i)∈A} x

(t)
ji =




R if i = s,

−R if i = t,

0 otherwise,

∀ i ∈ N , t ∈ T ,

cij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T .

(1)

9



A LP-based Solution

• The vector z is part of a feasible solution for the LP problem if
and only if there exists a network code that sets up a multicast
connection in the graph G at rate arbitrarily close to R from
source s to terminals in the set T and that puts a flow
arbitrarily close to zij on each link (i, j)

• Proof follows almost immediately from min-cut max-flow
necessary and sufficient conditions

• Polynomial-time

• Steiner-tree problem can be seen to be this problem with extra
integrality constraints

10



Usefulness of LP

• We can extend this approach to other types of cost functions,
for instant typical cost functions used to represent cost of
congestion

• Can use to obtain equivalence of distances in networks,
possibly extend minimum first derivative length approaches

• Concept of distances particularly useful for distributed routing
- does the same apply here?

11



A Distributed Approach

Consider the dual problem

maximize
∑

t∈T q(t)(p(t))

subject to
∑

t∈T p
(t)
ij = aij ∀ (i, j) ∈ A,

p
(t)
ij ≥ 0 ∀ (i, j) ∈ A, t ∈ T ,

(2)

where
q(t)(p(t)) = min

x(t)∈F (t)

∑

(i,j)∈A

p
(t)
ij x

(t)
ij , (3)

and F (t) is the bounded polyhedron of points x(t) satisfying the
conservation of flow constraints and capacity constraints

12



Subgradient Approach

• Consider a subgradient approach (NW99)

• Start with an iterate p[0] in the feasible set

• Solve subproblem (3) for each t in T to obtain x[n]

•
pij [n + 1] :=v∈Pij

∑

t∈T

(v(t) − (p(t)
ij [n] + θ[n]x(t)

ij [n]))2 (4)

for each (i, j) ∈ A, where Pij is the |T |-dimensional simplex

Pij =

{
v

∣∣∣∣∣
∑

t∈T

v(t) = aij , v ≥ 0

}
(5)

and θ[n] > 0 is an appropriate step size

• pij [n + 1] is set to be the Euclidean projection of
pij [n] + θ[n]xij [n] onto Pij

13



Step Size Selection

• u := pij [n] + θ[n]xij [n]

• We index the elements of T such that
u(t1) ≥ u(t2) ≥ . . . ≥ u(t|T |)

• Take k∗ to be the smallest k such that

1
k

(
aij −

tk∑
r=1

u(r)

)
≤ −u(tk+1) (6)

or set k∗ = |T | if no such k exists

• Projection is achieved by

p
(t)
ij [n + 1] =





u(t) + 1
k∗

(
aij −

∑tk∗
r=1 u(r)

)
if t ∈ {t1, . . . , tk∗},

0 otherwise.
(7)
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Distributed Approach - Bringing it Together

• Problem of recovering primal from approximation of dual

• Use approach of (SC96) for obtaining primal from subgradient
approximation to dual

• The conditions can be coalesced into a single algorithm to
iterate in a distributed fashion towards the correct cost

• There is inherent robustness to change of costs, as in classical
distributed Bellman-Ford approach to routing

15



Application - Wireless Networks

• Omnidirectional antennas - when transmitting from node i to
node j, we get transmission to all nodes whose distance from i

is less than that from i to j “for free”

• We consider energy efficiency

• We do not consider interference (bursty set-up, for instance)

• We impose an ordering ¹ on the set of outgoing links from
node i, such that (i, j) ¹ (i, k) if and only if aij ≤ aik

• Typically, the set of outgoing links from i will be the set of all
nodes within a certain, fixed radius of i and the cost aij of the
link between nodes i and j will be proportional to their
distance raised to some power α, where α ≥ 2

16



LP for Wireless Network

• Owing to the omnidirectionality of the antennas, flow can be
pushed from i to j by pushing it to any node k such that
(i, k) ∈ A and (i, k) º (i, j)

• Thus, the maximum flow x
(t)
ij that can be pushed for a given t

in T is
zij +

∑

{k|(i,k)∈A,(i,k)º(i,j)}\{j}
(zik − x

(t)
ik ) (8)

• Hence ∑

{k|(i,k)∈A,(i,k)º(i,j)}
(zik − x

(t)
ik ) ≥ 0 (9)

for all t ∈ T .
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LP for Wireless Network

minimize
∑

(i,j)∈A aijzij

subject to
∑
{k|(i,k)∈A,(i,k)º(i,j)}(zik − x

(t)
ik ) ≥ 0, ∀ (i, j) ∈ A′, t ∈ T ,

∑
{j|(i,j)∈A} x

(t)
ij −

∑
{j|(j,i)∈A} x

(t)
ji =




R if i = s,

−R if i = t,

0 otherwise,

∀ i ∈ N , t ∈ T ,

cij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,

(10)
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Beyond Optimality - Non-Multicast Connections

• M source processes X1, . . . , XM with rates R1, . . . , RM ,
respectively, which are generated at (possibly different) nodes
s1, . . . , sM in N

• Each sink t ∈ T demands a subset of the source process that
are generated in the network, which we specify with the set
D(t) ⊂ {1, . . . , M}

• Optimization may not be possible in the case of multiple
multicast - indeed the sufficiency of linearity is itself in question

• Can we at least present a solution for finding a low-cost
subgraph and a linear code that will perform no worse than
routing?
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Conclusions

• Network coding with a cost criterion naturally brings in
traditional cost approaches for efficient networking

• For multicast, we establish a LP that can be solved in a
distributed fashion

• For non-multicast, a LP approach can still perform at least as
well as routing, with an explicit code construction

• We propose an optimistic view of network coding to consider
the many possibilities afforded by it over routing, without
requiring the full knowledge of sufficiency conditions in the
non-multicast set-up
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VI — The non multicast case



Questions

• What do we know about the non-multicast case?

• Vector solutions versus instantaneous solutions.

• The issue of linearity!

• Is the non-multicast case interesting?

2



The algebraic setup

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input vector: xT = (X(v,1), X(v,2), . . . , X(v′, µ(v′)))

Output vector: zT = (Z(u,1), Z(u,2), . . . , Z(u′, ν(u′)))

Transfer matrix: M , z = Mx = B ·G · A x

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

3



z = Mx = B · (I − F T)−1
︸ ︷︷ ︸

GT

·A x

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

For acyclic networks the elements of G (and hence M)

are polynomial functions in variables ξ = (ξ1, ξ2, . . . , )

⇒ an algebraic characterization of flows....

4



General Problems (G, � )

general directed

network

N sources

K sinks

� = {(vi, uj, � (vi, uj))}

M =








M1,1 M1,2 . . . M1,K
M2,1 M2,2 M2,K

... ...
MN,1 MN,2 . . . MN,K








Mi,j corresponds to ci,j = (vi, uj, � (vi, uj)).
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Theorem [Generalized Min-Cut Max-Flow Condition] Let an acyclic,

delay-free scalar linear network problem (G, � ) be given and let

M = {Mi,j} be the corresponding transfer matrix relating the set

of input nodes to the set of output nodes. The network problem is

solvable if and only if there exists an assignment of numbers to ξ

such that

1. Mi,j = 0 for all pairs (vi, vj) of vertices such that

(vi, vj, � (vi, vj)) 6∈ � .

2. If � contains the connections

(vi1, vj, � (vi1, vj)), (vi2, vj, � (vi2, vj)), . . . , (vi`, vj, � (vi`, vj))

the determinant of
[

MT
i1,jM

T
i2,j, . . . , M

T
i`,j

]

is nonzero.
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The ideal of (G, � )

Entries in Mi,j that have to evaluate to zero: f1(ξ), f2(ξ), . . . , fL(ξ)

Determinants of submatrices that have to evaluate to nonzero val-

ues: g1(ξ), g2(ξ), . . . , gL′(ξ)

Ideal((G, � ))

= 〈f1(ξ), f2(ξ), . . . , fL(ξ),1− ξ0

L′
∏

i=1

gi(ξ)〉

Var((G, � )) = {(a1, a2, . . . , an) ∈ F̄
n :

f(a1, a2, . . . , an) = 0 ∀ f ∈ Ideal((G, � ))}.

7



The central Theorem

Theorem Let a scalar linear network problem (G, � ) be given. The

network problem is solvable if and only if Var((G, � ) is nonempty or

equivalently , the ideal Ideal((G, � )) is a proper ideal of F̄[ξ0, ξ], i.e

Ideal((G, � )) ( F2[ξ0, ξ].

8



So why is the gerenal case so much harder?

For the general case we need to find solutions to some system of

polynomial equations!

For the multicast case we need to find non solutions to some system

of polynomial equations!

Another way to phrase this is: In a multicast setup everybody wants

everything so the issue of interference is moot!

For the general case we may have carefully balanced solutions where

some unwanted information cancels out in clever ways.....

9



Vector solutions may help

A,B

A,A’ B,B’

A,B’ A’,B A’,B’

B,B’,B’,B’’’

A,B’ A’,B’

A,A’,A’’,A’’’

A’’’,B’’’A’’,B’’
A,B

A’’,B’’’
A’,B

A’’’,B’’
A,B

A,A’ B,B’

A,B’ A’,B A’,B’ A,B

A,A’ B,B’

A,B’ A’,B A’,B’

a) b) c)  d)  

In the general problem a time sharing combination of several solu-
tions which themselves both violate the constraints may be neces-
sary. (This cannot happen in the multicast case!)

Doubling the bandwidth more than doubles capacity! Tripling the
bandwidth does not work!

10



Vector solutions may help

From: A. Rasala-Lehman and E. Lehman, "Vector-Linear Network
Codes: Is the Model Broken", preprint, March 2004

Examples of networks that need vector length that are multiples of
k for any k.
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From: A. Rasala-Lehman and E. Lehman, "Vector-Linear Network

Codes: Is the Model Broken", preprint, March 2004

By combining networks requiring vector length that are multiples of

primes the following bound is derived:

Theorem There exist directed networks with O(n) nodes such that a

solution to the network coding problem requires at least an alphabet

size of 2(e

√
n1/3

)
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More strange news...

R. Dougherty, C. Freiling, and K. Zeger, "Insufficiency of Linear Cod-
ing in Network Information Flow", preprint, February 2004

This network is not solvable over any Galois field, including vector
versions thereof!

(still the network has a distinctly linear feel to it....)
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Non-multicast connections -use of cost criterion

• We propose a linear optimization problem whose minimum cost is no greater
than the minimum cost of any routing solution

• Moreover, feasible solutions correspond to network codes that perform lin-
ear operations on vectors created from the source processes

• Main idea: create a set partition of {1, . . . , M} that represents the sources
that can be mixed (combined linearly) on links going into i.

• Code construction steps through the nodes in topological order, examining
the outgoing links and defining global coding vectors on them.

14



Non-multicast connections -use of cost criterion

• For any node i, let T (i) denote the sinks that are accessible from i

• Let C(i) be a set partition of {1, . . . , M} that represents the sources that
can be mixed (combined linearly) on links going into i. For a given C ∈ C(i),
the sinks that receive a source process in C by way of link (j, i) in A (set of
arcs) either receive all the source processes in C or none at all.
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Non-multicast connections -use of cost criterion

minimize
∑

(i,j)∈A aijzij

subject to cij ≥ zij =
∑

C∈C(j) y
(C)
ij , ∀ (i, j) ∈ A,

y
(C)
ij ≥

∑

m∈C x
(t,m)
ij , ∀ (i, j) ∈ A, t ∈ T , C ∈ C(j),

x
(t,m)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T , m = 1, . . . , M,

∑

{j|(i,j)∈A}
x
(t,m)
ij −

∑

{j|(j,i)∈A}
x
(t,m)
ji =







Rm if v = sm and m ∈ D(t),

−Rm if m ∈ D(i),

0 otherwise,

∀ i ∈ A, t ∈ T , m = 1, . . . , M, (1)

where we define D(i) := ∅ for i in N \ T . Again, the optimization
problem can be easily modified to accommodate convex cost func-
tions.
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Is the non-multicast case interesting?

17



Summary:

The non multicast scenario exhibits far more subtleties than the

multicast setup. This is due to the fact that cancellations now need

to be carefully arranged.

There are some generalizations to vector solutions which can be

incorporated into the algebraic framework.

Not even the principle problem of linearity vs. nonlinear operation

is entirely clear.

From a practical point of view a non interacting arrangement of mul-

ticast is most interesting and robust.
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Network coding for multicast

relation to compression

and generalization of

Slepian-Wolf

1



Overview

² Review of Slepian-Wolf

² Distributed network compression

² Error exponents Source-channel separation issues

² Code construction for finite field multiple access networks

2



Distributed data compression

Consider two correlated sources (X, Y ) ∼ p(x, y) that must be

separately encoded for a user who wants to reconstruct both

What information transmission rates from each source allow de-

coding with arbitrarily small probability of error?

E.g.

X1

X2

..

H(X1)

..

H(X2| X1)

3



Distributed source code

A ((2nR1,2nR2), n) distributed source code for joint source (X, Y )

consists of encoder maps

f1 : Xn → {1,2, . . . ,2nR1}

f2 : Yn → {1,2, . . . ,2nR2}

and a decoder map

g : {1,2, . . . ,2nR1} £ {1,2, . . . ,2nR2} → Xn £ Yn

- Xn is mapped to f1(X
n)

- Y n is mapped to f2(Y
n)

- (R1, R2) is the rate pair of the code

4



Probability of error

P
(n)
e = Pr{g(f1(X

n), f2(Y
n)) 6= (Xn, Y n)}



Slepian-Wolf

Definitions:

A rate pair (R1, R2) is achievable if there exists a sequence of

((2nR1,2nR2), n) distributed source codes with probability of error

P
(n)
e → 0 as n→∞

achievable rate region - closure of the set of achievable rates

Slepian-Wolf Theorem:

5



For the distributed source coding problem for source (X, Y )

drawn i.i.d. ∼ p(x, y), the achievable rate region is

R1 ¸ H(X|Y )

R2 ¸ H(Y |X)

R1 + R2 ¸ H(X, Y )



Proof of achievability

Main idea: show that if the rate pair is in the Slepian-Wolf region,

we can use a random binning encoding scheme with typical set

decoding to obtain a probability of error that tends to zero

Coding scheme:

² Source X assigns every sourceword x ∈ X n randomly among

2nR1 bins, and source Y independently assigns every y ∈ Yn

randomly among 2nR2 bins

² Each sends the bin index corresponding to the message

6



² the receiver decodes correctly if there is exactly one jointly

typical sourceword pair corresponding to the received bin in-

dexes, otherwise it declares an error



Random binning for single source compression

An encoder that knows the typical set can compress a source X

to H(X)+ε without loss, by employing separate codes for typical

and atypical sequences

Random binning is a way to compress a source X to H(X) + ε

with asymptotically small probability of error without the encoder

knowing the typical set, as well as the decoder knows the typical

set

² the encoder maps each source sequence Xn uniformly at ran-

dom into one of 2nR bins

7



² the bin index, which is R bits long, forms the code

² the receiver decodes correctly if there is exactly one typical

sequence corresponding to the received bin index



Error analysis

An error occurs if:

a) the transmitted sourceword is not typical, i.e. event

E0 = {X /∈ A
(n)
ε }

b) there exists another typical sourceword in the same bin, i.e.event

E1 = {∃x′ 6= X : f(x′) = f(X),x′ ∈ A
(n)
ε }

Use union of events bound:

P
(n)
e = Pr(E0 ∪ E1)

· Pr(E0) + Pr(E1)

8



Error analysis continued

Pr(E0)→ 0 by the Asymptotic Equipartition Property (AEP)

Pr(E1) =
∑

x
Pr{∃x′ 6= x : f(x′) = f(x),

x
′ ∈ A

(n)
ε }

·
∑

x

∑

x′ 6= x

x′ ∈ A(n)
ε

Pr(f(x′) = f(x))

=
∑

x
|A

(n)
ε | 2

−nR

· 2−nR 2n(H(X)+ε)

→ 0 if R > H(X)

9



For sufficiently large n,

Pr(E0),Pr(E1) < ε

⇒ P
(n)
ε < 2ε



Jointly typical sequences

The set A
(n)
ε of jointly typical sequences is the set of sequences

(x,y) ∈ Xn £ Yn with probability:

2−n(H(X)+ε) · pX (x) · 2−n(H(X)−ε)

2−n(H(Y )+ε) · pY (y) · 2−n(H(Y )−ε)

2−n(H(X,Y )+ε) · pX,Y (x,y) · 2−n(H(X,Y )−ε)

for (X,Y) sequences of length n IID according to pX,Y(x,y) =
∏n

i=1 pX,Y (xi, yi)

Size of typical set:

|A
(n)
ε | · 2n(H(X,Y )+ε)
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Proof:

1 =
∑

p(x,y)

¸
∑

A
(n)
ε

p(x,y)

¸ |A
(n)
ε |2

−n(H(X,Y )+ε)



Conditionally typical sequences

The conditionally typical set A
(n)
ε (X|y) for a given typical y se-

quence is the set of x sequences that are jointly typical with the

given y sequence.

Size of conditionally typical set:

|A
(n)
ε (X|y)| · 2n(H(X|Y )+ε)

Proof:

11



For (x,y) ∈ A
(n)
ε (X, Y ),

p(y)
.
= 2−n(H(Y )±ε)

p(x,y)
.
= 2−n(H(X,Y )±ε)

⇒ p(x|y) =
p(x,y)

p(y)
.
= 2−n(H(X|Y )±2ε)

Hence

1 ¸
∑

x∈A
(n)
ε (X|y)

p(x|y)

¸ |A
(n)
ε |2

−n(H(X|Y )+2ε)



Proof of achievability – error analysis

Errors occur if:

a) the transmitted sourcewords are not jointly typical, i.e. event

E0 = {(X, Y ) /∈ A
(n)
ε }

b) there exists another pair of jointly typical sourcewords in the

same pair of bins, i.e. one or more of the following events

E1 = {∃x′ 6= X : f1(x
′) = f1(X), (x′,Y) ∈ A

(n)
ε }

E2 = {∃y′ 6= Y : f2(y
′) = f2(Y), (X,y′) ∈ A

(n)
ε }

E12 = {∃(x′,y′) : x
′ 6= X,y′ 6= Y, f1(x

′) = f1(X),

f2(y
′) = f2(Y), (x′,y′) ∈ A

(n)
ε }
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Use union of events bound:

P
(n)
e = Pr(E0 ∪ E1 ∪ E2 ∪ E12)

· Pr(E0) + Pr(E1) + Pr(E2) + Pr(E12)



Error analysis continued

Pr(E0)→ 0 by the AEP

Pr(E1) =
∑

(x,y)

Pr{∃x′ 6= x : f1(x
′) = f1(x),

(x′,y) ∈ A
(n)
ε }

·
∑

(x,y)

∑

x′ 6= x

(x′,y) ∈ A(n)
ε

Pr(f1(x
′) = f1(x))

=
∑

(x,y)

|A
(n)
ε (X|y)| 2−nR1

· 2−nR1 2n(H(X|Y )+2ε)

→ 0 if R1 > H(X|Y )
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Similarly,

Pr(E2) · 2−nR2 2n(H(Y |X)+2ε)

→ 0 if R2 > H(Y |X)

Pr(E12) · 2−n(R1+R2) 2n(H(X,Y )+ε)

→ 0 if R1 + R2 > H(X, Y )



Error analysis continued

Thus, if we are in the Slepian-Wolf rate region, for sufficiently

large n,

Pr(E0),Pr(E1),Pr(E2),Pr(E12) < ε

⇒ P
(n)
ε < 4ε

Since the average probability of error is less than 4ε, there exist

at least one code (f∗1, f∗2, g∗) with probability of error < 4ε.

Thus, there exists a sequence of codes with P
(n)
ε → 0.
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Model for distributed network compression

² arbitrary directed graph with integer capacity links

² discrete memoryless source processes with integer bit rates

² randomized linear network coding over vectors of bits in F2

² coefficients of overall combination transmitted to receivers

² receivers perform minimum entropy or maximum a posteriori

probability decoding

15



Distributed compression problem

Consider

² two sources of bit rates r1, r2, whose output values in each

unit time period are drawn i.i.d. from the same joint distri-

bution Q

² linear network coding in F2 over vectors of nr1 and nr2 bits

from each source respectively

Define

16



² m1 and m2 the minimum cut capacities between the receiver

and each source respectively

² m3 the minimum cut capacity between the receiver and both

sources

² L the maximum source-receiver path length



Theorem 1 The error probability at each receiver using mini-
mum entropy or maximum a posteriori probability decoding is at

most
∑3

i=1 pi
e, where

p1
e ≤ exp

{

− n min
X1,X2

µ

D(PX1X2
||Q)

+

∣
∣
∣
∣
m1(1−

1

n
logL)−H(X1|X2)

∣
∣
∣
∣

+ ¶

+ 22r1+r2 log(n + 1)

}

p2
e ≤ exp

{

− n min
X1,X2

µ

D(PX1X2
||Q)

+

∣
∣
∣
∣
m2(1−

1

n
logL)−H(X2|X1)

∣
∣
∣
∣

+ ¶

+ 2r1+2r2 log(n + 1)

}

p3
e ≤ exp

{

− n min
X1,X2

µ

D(PX1X2
||Q)

+

∣
∣
∣
∣
m3(1−

1

n
logL)−H(X1X2)

∣
∣
∣
∣

+ ¶

+ 22r1+2r2 log(n + 1)

}
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Distributed compression

² Redundancy is removed or added in different parts of the

network depending on available capacity

² Achieved without knowledge of source entropy rates at inte-

rior network nodes

² For the special case of a Slepian-Wolf source network con-

sisting of a link from each source to the receiver, the network

coding error exponents reduce to known error exponents for

linear Slepian-Wolf coding [Csi82]
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Proof outline

² Error probability ·
∑3

i=1 pi
e, where

– p1
e is the probability of correctly decoding X2 but not X1,

– p2
e is the probability of correctly decoding X1 but not X2

– p3
e is the probability of wrongly decoding X1, X2

² Proof approach using method of types similar to that in

[Csi82]

² Types Pxi, joint types Pxy are the empirical distributions of

elements in vectors xi
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Proof outline (cont’d)

Bound error probabilities by summing over

² sets of joint types

P
i
n =







{PX1X̃1X2X̃2
| X̃1 6= X1, X̃2 = X2} i = 1

{PX1X̃1X2X̃2
| X̃1 = X1, X̃2 6= X2} i = 2

{PX1X̃1X2X̃2
| X̃1 6= X1, X̃2 6= X2} i = 3

where Xi, X̃i ∈ F
nri
2

20



² sequences of each type

TX1X2
=

{

[ x y ] ∈ F
n(r1+r2)
2

∣
∣
∣ Pxy = PX1X2

}

TX̃1X̃2|X1X2
(xy) =

{

[ x̃ ỹ ] ∈ F
n(r1+r2)
2

∣
∣
∣

Px̃ỹxy = PX̃1X̃2X1X2

}



Proof outline (cont’d)

² Define

– Pi, i = 1,2, the probability that distinct (x,y), (x̃,y), where

x 6= x̃, at the receiver

– P3, the probability that (x,y), (x̃, ỹ), where x 6= x̃,y 6= ỹ,

are mapped to the same output at the receiver

² These probabilities can be calculated for a given network, or

bounded in terms of block length n and network parameters
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Proof outline (cont’d)

² A link with ¸ 1 nonzero incoming signal carries the zero

signal with probability 1
2nc, where c is the link capacity

² this is equal to the probability that a pair of distinct input

values are mapped to the same output on the link

² We can show by induction on the minimum cut capacities mi

that

Pi ·
µ

1¡ (1¡
1

2n
)L

¶mi

·
µ

L

2n

¶mi
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Proof outline (cont’d)

We substitute in

² cardinality bounds

|P1
n| < (n + 1)2

2r1+r2

|P2
n| < (n + 1)2

r1+2r2

|P3
n| < (n + 1)2

2r1+2r2

|TX1X2
| · exp{nH(X1X2)}

|TX̃1X̃2|X1X2
(xy)| · exp{nH(X̃1X̃2|X1X2)}

² probability of source vector of type (x,y) ∈ TX1X2

Qn(xy) = exp{¡n(D(PX1X2
||Q) + H(X1X2))}

23



Proof outline (cont’d)

and the decoding conditions

² minimum entropy decoder:

H(X̃1X̃2) · H(X1X2)

² maximum a posteriori probability decoder:

D(PX̃1X̃2
||Q) + H(X̃1X̃2) · D(PX1X2

||Q) + H(X1X2)

to obtain the result
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Conclusions

² Distributed randomized network coding can achieve distributed

compression of correlated sources

² Error exponents generalize results for linear Slepian Wolf cod-

ing

² Further work: investigation of non-uniform code distribu-

tions, other types of codes, and other decoding schemes
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Coding Theorem – Point to Point Communication

We can transmit the discrete source U with arbitrarily small error probability 
iff

);(sup)( YXICUH
XP

=<



Coding Theorem - Multiple-Access Communication

We can transmit the discrete source pair (U, V) with arbitrarily small error 
probability iff

);,(sup),( 21joint
21

YXXICVUH
XXP

=<



What if we do separate source-channel coding?

);,(sup),( 21separate
21

YXXICVUH
XX PP

=<

• No coordination needed between the two transmitters.
• Compression and channel coding are two separate operations.
• Input to channel encoders (W,Z) are independent.
• With this scheme, source can be reliably transmitted iff Slepian Wolf and 

Mutiple Access Regions overlap i.e.



Source-Channel Separation

• Source-channel separation holds when we do not lose 
optimality by doing the source coding and the channel 
coding separately.

• This happens when the mutual information between the 
inputs and output of the channel doesn’t increase if we 
increase the correlation between the channel inputs.

• Mathematically, the necessary and sufficient condition for 
source-channel separation to hold for a multiple-access 
channel is:

jointseparate CC =

);,(sup);,(sup 2121
2121
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XXXX PPP
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Example where source-channel separation fails [Cover]

• Inputs are from {0,1} whereas output is from 
{0,1,2}.

• Addition is over the reals.

• Source-channel separation fails for this multiple 
access channel.

• Correlation between the inputs increases the 
mutual information.

• Example: Source on the left cannot be reliably 
transmitted if we do separate source and channel 
coding but can be if it is directly transmitted over 
the channel.
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Multiple Access Channels over Finite Fields

• Inputs X1 and X2 are elements of GF(2k), k=1.
• Addition is over the same field as the inputs.
• Noise can be in the form of erasures or additive.
• Additive noise is also from the same field as the inputs.
• The output Y is an element from the same field but can also take on an additional Erasure 

symbol when noise is modeled in the form of erasures.



Modeling

• Data packets of length k bits can be considered as elements 
from GF(2k). Thus encoding/decoding of packets becomes 
encoding/decoding of elements from GF(2k). 

• Linear mixing of packets becomes addition of finite field 
elements.

• We use noise over finite fields to model lossy links.
• When lossy links cause packets to get corrupted and the 

receiver doesn’t know which packets are corrupted, we 
model the noise as additive and belonging to GF(2k). 

• If the receiver knows which packets are lost/corrupted, we 
model noise as erasures.

• We therefore have networks operating over finite fields.



Networks over Finite Fields

• Canonical Networks-
– Point to Point Networks
– Degraded Broadcast Networks
– Multiple Access Networks

• Questions-
– Is linear source coding optimal?
– Is linear channel coding optimal?
– Does source-channel separation hold?
– Are linear joint source-channel codes optimal?



Point to Point Networks

• Source-channel separation holds [Shannon].
• Linear source codes asymptotically achieve the source 

entropy  [Ancheta].
• Linear Channel / Joint source-channel codes achieve Shannon 

capacity [Elias]



Multiple Access Finite Field Channel 
(noise independent of inputs)

• ß is the probability of an erasure 
• Additions are over a finite field.
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When source-channel separation holds

Necessary and sufficient condition shown earlier

);,(sup);,(sup 2121
2121

YXXIYXXI
XXXX PPP

=

Source-channel separation holds for erasure finite field channels iff

Source-channel separation holds for additive noise finite field channel iff
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When source-channel separation holds

• Addition of independent finite field random elements over the same field 
corresponds to circular convolution of their pmfs.

• Thus, even if one of the elements being added is independent of the others 
and is uniformly distributed, the sum has a uniform pmf.

• If X1 and X2 are independent and uniformly distributed random variables 
from GF(2k):

kNXXH
kXXH

=⊕⊕
=⊕

)(
)(

21

21

• For a discrete random variable from a finite field of size 2k, maximum 
value that that the entropy function can take is k. Thus:

kYXXIYXXI
XXXX PPP
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Source-channel separation holds for the finite field erasure and additive noise 
channels when noise does not depend on inputs.



Separation when additive noise is input dependent

• We consider channels over a field size of 2 (binary). 
• Source-channel separation may not hold.
• Maximum loss due to separation failure is ½ bit per channel 

use.
• The probability that separation fails for a channel chosen 

uniformly and randomly from the ensemble of all channels of 
this class is bounded by 1/3.



Example of source-channel separation not holding

Consider the channel: Y = X1+X2+N.
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(The noise is input dependent.)

Source Channel separation fails!
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Definitions
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For any additive noise finite field channel:

• (a00,a01,a10,a11) characterizes a particular channel.
• Denote G(a00, a01, a10, a11) as a lower bound on the loss in capacity due 

to separation failure for a channel (note: not per source)

• 0 = G(a00, a01, a10, a11) = 1
• G(a00, a01, a10, a11) is not a convex/concave function (hard to analyze).
• Maximum loss due to separation failure:

2
1

),,,(max 11100100,,, 11100100

=αααα
αααα

G



Outline of Proof:
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Maximum loss in capacity due to separation failure
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• But the example we considered earlier had a loss due to separation 
failure as ½ bit per channel use.

• Hence, the maximum loss in capacity due to separation failing for a 
additive noise multiple access finite field channel with input dependent 
noise is ½ bit per channel use.



Optimality of Linear Multiple Access Channel Codes

• The multiple access capacity is equal to the corresponding single-
transmitter, single-receiver capacity.

• Time sharing achieves all points in the capacity region.
• We know that linear channel codes achieve all rates till capacity for the 

single-tansmitter, single-receiver network.
• But, time sharing between linear codes can itself be described as a linear 

multiple access channel code.
• Hence, linear multiple access channel codes achieve achieve all points in 

the capacity region and are optimal.



Optimality of joint source-channel codes for the multiple access 
channel (erasure/additive noise)

• We know that using linear source codes, 
we can compress the sources upto
H(U,V), i.e.        H(U,V) < R1 + R2.

• Linear multiple access channel codes
can be used to achieve all sum rates till 
capacity, i.e.    R1 + R2 < Cseparate.

• By combining the linear multiple access 
source and channel codes, we get a 
linear joint source-channel code that can 
transmit any source pair where H(U,V) 
< Cseparate.

• Any source pair (U,V) can be 
transmitted across a multiple access 
channel iff H(U,V) < Cjoint.

• But we have shown that source-channel 
separation hold , i.e Cjoint=Cseparate.

• Thus linear joint source-channel codes 
are optimal.

The linear joint encoders at the two 
transmitters do not need to coordinate



Code Construction
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Construction and Performance
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• It is sufficient to add redundancy at only one node.
• If the transmitter is allowed to code over the entire transmit vector, coding on 

the larger transmit vector gives the highest code rate.
• Code has the property of an optimal code - Achieves the maximum code rate 

and capacity and adds no redundancy to the smaller transmit vector.



When nodes become bursty

• The transmissions of nodes become bursty when they do not always have 
packets to transmit.

• We will model the transmissions as being a Bernoulli random process.

• Codewords now have an expected length and we look at the maximum 
expected code rate.



• a = pa/pb, ß = na/nb

• For bursty transmissions where information codewords have the same 
length, redundancy should be added at the less bursty transmitter



Network coding for security and

robustness

1



Outline

² Network coding for detecting attacks

² Network management requirements for robustness

² Centralized versus distributed network management

2



Byzantine security

² Robustness against faulty/malicious components with arbi-

trary behavior, e.g.

– dropping packets

– misdirecting packets

– sending spurious information

² Abstraction as Byzantine generals problem [LSP82]

² Byzantine robustness in networking [P88,MR97,KMM98,CL99]

3



Byzantine detection with network coding [HLKMEK04]

Distributed randomized network coding can be extended to de-

tect Byzantine behavior

² Small computational and communication overhead

– small number of hash bits included with each packet, cal-

culated as simple polynomial function of data

² Require only that a Byzantine attacker does not design and

supply modified packets with complete knowledge of other

nodes’ packets
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Byzantine modification detection scheme

² Suppose each packet contains θ data symbols x1, . . . , xθ and

φ · θ hash symbols y1, . . . , yφ

² Consider the function π(x1, . . . , xk) = x2
1 + ¢ ¢ ¢+ xk+1

k

² Set

yi = π(x(i−1)k+1, . . . , xik) for i = 1, . . . , φ¡ 1

yφ = π(x(φ−1)k+1, . . . , xθ)

where k =
⌈
θ
φ

⌉

is a design parameter trading off overhead against

detection probability

5



Detection probability

[HLKMEK04] If the receiver gets s genuine packets, then the

detection probability is at least 1¡
(
k+1
q

)s
.

² E.g. With 2% overhead (k = 50), code length=7, s = 5, the

detection probability is 98.9%.

² with 1% overhead (k = 100), code length=8, s = 5, the

detection probability is 99.0%.
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Analysis

² Let M be the matrix whose ith row mi represents the concate-

nation of the data and corresponding hash value for packet

i

² Suppose the receiver tries to decode using

– s unmodified packets, represented as Ca [M |I], where the

ith row of the coefficient matrix Ca is the vector of code

coefficients of the ith packet

– r¡s modified packets, represented by [CbM + V |Cb], where

V is an arbitrary matrix

7



Analysis (cont’d)

² Let C =

[

Ca

Cb

]

² Decoding is equivalent to pre-multiplying the matrix
[

CaM Ca

CbM + V Cb

]

with C−1, which gives
[

M + C−1

[

0

V

]

I

]

8



² For any Cb and V , since receiver decodes only with a full rank

set of packets, possible values of Ca are s.t. C is non-singular



Analysis (cont’d)

We can show that

² for each of ¸ s packets, the attacker knows only that the

decoded value will be one of qrank(V ) possibilities





mi +

rank(V )
∑

j=1

γi,jvj

∣
∣
∣
∣
∣
∣

γi,j ∈ Fq







² at most k + 1 out of the q vectors in a set {u + γv|γ ∈ Fq},
where u = (u1, . . . , uk+1) is a fixed length-(k +1) vector and

v = (v1, . . . , vk+1) a fixed nonzero length-(k + 1) vector, can

satisfy the property that the last element of the vector equals

the hash of the first k elements.
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Network mgt for link failure recovery [HMK02, HMK03]

² Structured schemes for link failure recovery, e.g. end-to-end

path protection, loopback, generalized loopback

² Network coding admits any solution feasible on surviving links

² Network management information directs network’s response

to different link failures

² Questions:

-How to quantify fundamental amount of information needed

10



to direct recovery?

-How do different types of recovery schemes compare in man-

agement overhead?



A theoretical framework for network management

² Network management information can be quantified by the
log of the number of different behaviors (codes) used [tbh]
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² Allowing general network coding solutions gives fundamental
limits on management information required
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Classes of failure recovery schemes considered

² Receiver-based schemes: only receivers change behavior un-

der different failure scenarios

² Network-wide schemes: any node may change behavior, in-

cludes receiver based schemes as a special case

² Linear schemes: linear operations at all nodes

² Nonlinear receiver-based schemes: nonlinear decoding at re-

ceivers

12



Need for network management

² A link h is called integral if there exists some subgraph of

the network on which the set of source-receiver connections

is feasible if and only if h has not failed.

² For any network connection problem with at least one inte-

gral link whose failure is recoverable, no single linear code

can cover the no-failure scenario and all recoverable failures

13
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Bounds on network management

Network management for single recoverable link, using network

parameters

² r, number of source processes transmitted in network;

² m, the number of links in a minimum cut between the source

nodes and receiver nodes;

² d, the number of receiver nodes;

² tmin, the minimum number of terminal links among all re-

ceivers.
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Some bounds

² Tight lower bounds on no. of linear codes for general case:

receiver-based

⌈
m

m−r

⌉

network-wide

⌈
m+1

m−r+1

⌉

• Tight upper bounds on no. of linear codes for the single-receiver:

receiver-
based

{
r + 1 for r = 1 or m− 1
r for 2 ≤ r ≤ m− 2

network-
wide

{
r + 1 for r = 1, r = 2 = m− 1
r for r = 2 ≤ m− 2,

r = 3, r = m− 1 ≥ 3
r − 1 for 4 ≤ r ≤ m− 2

15



• Upper bound on no. of linear codes for multicast: (r2 + 2)(r + 1)d−2

• Tight lower bounds for nonlinear receiver-based codes for multicast:

{
r for 1 < r = tmin − 1
1 for r = 1 or r ≤ tmin − 2


