

Multilingual Computing with SAS ® 9.4
Technical Paper

 Multilingual Computing with SAS® 9.4

Content provider for Multilingual Computing with SAS® 9.4 was Manfred Kiefer, Principal Domain Specialist in the Software

Globalization Division.

i

Multilingual Computing with SAS ® 9.4

Table of Contents

Introduction 1

Installing and Configuring the SAS System 1

New TrueType fonts 3

Language of Metadata 4

Change the locale of a deployment 4

Working with Multi-byte Data 4

Reading and Writing Data 5

External Files ... 5

SAS Libraries ... 5

(R)DBMS Tables .. 8

Language Switching 11

Making Your SAS Code Locale-Sensitive 16

Multilingual Support in SAS ® Visual Analytics 17

Conclusion 21

Acknowledgments 21

References 22

Appendix 22

Glossary 24

Multilingual Computing with SAS® 9.4

1

Multilingual Computing with SAS ® 9.4

Introduction

Multilingual data, that is, data coming from a variety of regions, should usually be stored and processed in Unicode. SAS
supports Unicode as session encoding in the form of UTF-8. This is the ideal solution for making your SAS applications
useable in many languages. To a certain extent, you can use multiple languages with other encodings as long as those
languages use a compatible encoding, that is an encoding that supports all those languages. This works for example with
Windows or UNIX Latin1 that have support for many Western European languages. However, z/OS using EBCDIC with
its huge variety of code pages is not well suited for handling multilingual data because even Western European languages
use several incompatible code pages.

Regarding the use of Unicode Server, you need to evaluate the pros (such as one single repository for all possible locales,
or a seamless handling of data across all platforms) and cons (such as increased storage space, or special functions
needed for data manipulation). You might come to the conclusion that a legacy encoding would suffice for processing your
data. If not, Unicode Server is the right choice. How to work with multilingual data in a legacy environment is also
explained farther down in the text.

Installing and Configuring the SAS System

In SAS 9.4, you can:
• select the language for the SAS Deployment Wizard and SAS products1
• select Regional Settings that apply to the SASFoundation locale and the language of SAS metadata
• set the locale to the correct value for SASFoundation and Java rich clients if it was set incorrectly
• set your Java rich clients to run an English User Interface with a non-English SAS server.

Beginning with 9.4, the ENCODING system option is set explicitly in the configuration file for single-byte languages and
Unicode support. It is not set for double-byte languages.
The SAS Deployment Wizard allows the user to decide which set of languages to install for the SAS products that are
listed.
Three images are automatically deployed for SAS on all Windows and UNIX machines:

• ‘English’ is a single-byte SAS image that displays an English User Interface and English messages by default.
The LOCALE and ENCODING options for the English image are set to match the Regional settings or, if the
Regional Settings selection is an Asian language, it sets LOCALE and ENCODING to support en_US.

• ‘English with DBCS’ is a double-byte SAS image that displays English User Interface and English SAS messages
by default. This image supports languages that require a double-byte character set, such as Chinese. If a double-
byte language is selected later in the Regional Settings dialog, the LOCALE option in the ‘English with DBCS
support’ config file is set to match. Otherwise, the LOCALE defaults to ja_JP.

• ‘Unicode Support’ is installed for all Windows and UNIX deployments, even if the SAS server is not configured for
Unicode support. The ENCODING option is set to utf-8. The LOCALE of the Unicode server is set to match the
Regional Settings locale selection.

The SAS Deployment Wizard (SDW) prompts the user for the available localizations to install.
If you have chosen to install any of the localized SAS images, you will find a folder under !SASROOT\nls for each. The
folders are named with a SAS specific , two character language code; for example ‘fr’ for French. Each contains its own
configuration file with a LOCALE option value set to match the localization. For example, the configuration file for French
(fr) has a LOCALE value with a French language code.

On Windows for each localization that is installed, a nls\xx sasv9.cfg file is created where ‘xx’ represents the SAS specific,
two character language code . In addition to creating a config file for each installed localization, a config file is also created
for English with DBCS as well as UTF-8 (u8).

On UNIX, start-up scripts files are created for all installed languages. The default "sas" start-up script has a link to the

1 The selection might fail if an Asian language (e.g. Chinese or Japanese) was used as SDW interface language when running SDW on an English OS. This
will be fixed in a later release of SAS.

Multilingual Computing with SAS® 9.4

2

Multilingual Computing with SAS® 9.4

default language. In order to change the default language, the user simply changes this link to point to the appropriate
language script. For example, sas_en invokes the English version of SAS 9.4 Foundation. SAS 9.4 Foundation also
creates a separate configuration file for each language installed (including English). These language-specific configuration
files are !SASROOT/nls/<lang>/sasv9.cfg for each respective language. An additional configuration file that is language
independent is !SASROOT/sasv9.cfg. This master configuration file in !SASROOT is used by all languages in addition to
the language-specific files in !SASROOT/nls/<lang>/.

You need to check whether the fonts for the languages that you need (e.g. Chinese or Korean) are available in the
/usr/share/fonts directory. If not, then you need to install those fonts. Usually, there are GUI tools to accomplish this, for
both the host side and the X server. Several online resources exist on explaining how to install and use TrueType fonts
with the X Window system.

To allow SAS Java client applications, such as SAS® Data Integration Studio, to display Unicode characters that you may
have to modify the font configuration file(s) that the Java Runtime Environment (JRE) uses. The SAS provided JRE should
have the mapping to the SAS fonts and it should be able to display all characters correctly. However, a Vendor supplied
JRE might not have valid mappings for some locales. Therefore, as long as using a vendor JRE, you might have to modify
it.

JRE uses font configuration files to map logical font names to physical fonts. For further reference and documentation, see
Java SE Documentation. To support Unicode display, ‘jre/lib/font.properties’ might have to be modified and the languages’
fonts need to be added to each section. There are different properties files based on the platform. An example is shown in
the appendix.

On z/OS media is available in several encoded versions, which support different locales and regions. The encoding used
by SAS must be compatible with the encoding of the i nstalled media . If an incompatible encoding is set, then the
following warning is displayed in the SAS log:

WARNING: There is an incompatibility between session encoding and the SASHELP encoding. When such a mismatch
occurs, some features might not behave as expected. For additional information, contact your Site Administrator.

NOTE: SAS on z/OS does not support UTF-8 as session encoding.

A dialog box in the SAS Deployment Wizard allows the installer to select the locale to use for SAS software being installed
on your system. The selected locale is set as the value of the SAS LOCALE system option in the configuration file used to
initialize the SAS System.

Beginning in 9.4, the ENCODING system option is set explicitly in the configuration file for all images except the DBW0
image.

The path encoding, set in the TKMVSENV file, must also match the explicit or implicit ENCODING option, or must be set
to the “compiler” encoding, open_ed-1047. The locale and encodings are specified in the TKMVSENV file that sets the
environment variables for the SAS environment.

For example, if you have selected German_Germany from the locales selector for a W3 installation, then the configuration
file and TKMVSENV file is updated accordingly to your selection:

CONFIG(ENW3):
ENCODING=open_ed-1141
LOCALE=de_DE TKMVSENV(TKMVENW3):
set TKOPT_ENV_ENCODING=open_ed-1141
set TKOPT_ENV_ENCODING_PATH=open_ed-1141
set TKOPT_ENV_LOCALE=de_DE

3

Multilingual Computing with SAS ® 9.4

New TrueType fonts

For 9.4, the font licensing agreement with Monotype Imaging has been updated to include two new fonts: Arial Unicode
MS and Times New Roman Uni. These two new fonts replace the eight Unicode fonts Monotype Sans WT (J,K,SC,TC)
and Thorndale Duospace WT (J,K,SC,TC).

Font Name Languages Supported Font Description

Arial Unicode MS Arabic, Armenian, Basic Latin,
Bengali, Bopomofo,Cyrillic,
Devanagari, Georgian, Greek and
Coptic, Gujarati,Gurmukhi, Hangul
Jamo, Hebrew, Hiragana, Kanbun,
Kannada,Katakana, Lao, Malayalam,
Oriya, Tamil, Telugu,Oriya, Tamil,
Telugu, Thai,Tibetan.

sans-serif

Times New Roman Uni Arabic, Basic Latin, Bopomofo,
Cyrillic,Devanagari,Georgian, Greek
and Coptic,Gujarati, Hangul
Jamo,Hebrew, Hiragana, Kanbun,
Katakana, Lao, Mongolian,Tamil,
Telugu, Thai, Tibetan.

serif

Table 1: Multilingual Unicode TrueType Fonts

For Asian languages the Sim Hei, SimSun, and NSimSun fonts are replaced by CSongGB18030C-Light,
CSongGB18030C-LightHWL, MYingHei_18030_C-Medium, and MYingHei_18030_C-MediumHWL.

Language Supported Font Name Character Set
Japanese MS Gothic, MS UI Gothic, MS

PGothic
Shift JIS

 MS Mincho, MS PMincho Shift JIS
Korean Gulim, GulimChe, Dotum, DotumChe KSC5601
 Batang, BatangChe, Gungsuh,

GungsuhChe
KSC5601

Simplified Chinese CSongGB18030C-Light
CSongGB18030C-LightHWL
MYingHei_18030_C-Medium
MYingHei_18030_C-MediumHWL

GB18030 and
GB2312

Traditional Chinese HeiT Big5
 MingLiU, MingLiU_HKSCS,

PMingLiU
Big5

Table 2: Asian Monolingual TrueType Fonts

The fonts that are supplied by SAS and the fonts that are already installed on Windows are automatically registered in the
SAS registry when you install SAS. Fonts already installed on UNIX and z/OS must be registered manually in the SAS
registry after you install SAS.

Multilingual Computing with SAS® 9.4

4

Multilingual Computing with SAS® 9.4

Language of Metadata

The language of the locale selected in the SDW for SAS products is used as the language of metadata properties set
during deployment. The locale data contains a primary language and, for some locales, it also contain a secondary
language. (See the example below.)
If the properties are not available for the primary language, metadata uses the secondary language, if available. If no
secondary language is provided for the locale or the data for the secondary language is not available, English is used.
For example, the primary SAS 2-byte language code for French (Canada) is 'fc' and the secondary language is 'fr'. The
SDW tries to use 'fc' properties first. If not available, it uses 'fr'. Finally, if those are not available it uses 'en'.

Change the locale of a deployment

The Locale Setup Manager (LSM) was provided in early SAS9 to allow customers to change the locale for Java vertical
products on Windows. The Locale Setup Manager for 9.4 has been moved into the SAS Deployment Manager (SDM) and
is available customers on Windows and UNIX.
The enhanced SAS Deployment Manager addresses two specific requirements:

• Users who choose the wrong locale during deployment can set the correct one in their SASFoundation
configuration and all Java rich clients installed on the machine.

• Users who allowed the locale to default to the OS setting, but want the client User Interface to be English can use
SAS Deployment Manager to set this right.

They just need to select all products listed and choose the new locale. What happens when a new locale is selected for
all products:

• The Deployment registry is updated.
• The SASFoundation config file is updated to use the selected locale. Java rich client ini files are updated with

language and country settings that match the locale.

Working with Multi-byte Data

The SAS System provides many string functions and call routines that can be used to manipulate characters and strings.
The original SAS string-handling functions assume the size of a character is always one byte, which is true with a single-
byte encoding. However, this assumption is not correct with a double-byte or multi-byte encoding. For example, UTF-8 is a
variable-width multi-byte encoding. One character in the UTF-8 encoding can be 1 byte, 2 bytes, 3 bytes, or even 4 bytes.
Using the original SAS string-handling functions with double or multi-byte data can lead to unexpected behavior, such as
data truncation.
To resolve issues these string functions can cause for multi-byte data, SAS provides a set of string functions, called K
functions, which do not make assumptions about the size of a character in a string. To use K functions, you need to
understand the difference between byte-based offset and character-based offset.
A byte-based offset assumes that the starting position specified for a character is the byte position of that character in the
string. For single-byte data, since one character is always one byte in length, you can assume that the second character in
the string begins in byte two of the string. However, if the data in the string is multi-byte, the data in the second byte can
be one of the following, depending on the data and encoding of the data:

• the second character in the string,
• the second byte of a 2-byte character,
• or the first byte of the first multi-byte character in the string.

A byte-based length represents the number of bytes in the string.
A character-based offset assumes that the position specified is the position of the character in the string. For all
encodings, a character-based position of 2 is always the second character in the string. You cannot assume that you know
the size of the characters in the string. A character-based length represents the number of characters in the string.
K functions use a character-based offset or length, which does not take into consideration the byte position of the
character in the string. K functions can be used for processing single-byte and multi-byte data in SAS. A complete list of K
functions and documentation on their use can be found in the SAS 9.4 National Language Support (NLS): Reference

5

Multilingual Computing with SAS ® 9.4

Guide. There are some compatibility issues to consider when you use K functions. For example, while the original TRIM
function does correctly process multi-byte characters, it does not remove double-byte blanks so that there are some
behavior differences. For details about these differences refer to “Internationalization Compatibility for SAS String
Functions” in the SAS 9.4 National Language Support (NLS): Reference Guide.
Before replacing all of the original SAS string-handling functions with K functions, however, examine your SAS code. If the
string function processes data that only contains single-byte characters, there is no need to use K functions. For example,
strings containing XML tags do not require the use of K functions. Knowing the character data that in your SAS programs
and how it is processed can save unnecessary updates to your SAS code.

Reading and Writing Data

Data can be read from and written to:
• External files
• SAS libraries
• DBMS tables.
In each case, it is important to know about the particular encoding of the source. Let us take a closer look at how the
encoding of source data is determined.

External Files

SAS reads and writes external files using the current session encoding. This means that the system assumes that the
external file uses the same encoding as the SAS session. An external file can contain only character data or a mixture of
character and binary data. In either case, the encoding for the character data in the external file can be different from the
SAS session encoding.
When a file contains only character data and its encoding is different from the SAS session encoding, use the
ENCODING= option on the FILENAME, INFILE, or FILE statement to tell SAS what the file encoding is so that SAS can
transcode the data from its original encoding to the current SAS session encoding; for example:

filename extfile 'external-file' encoding=wlatin1;
data contacts;
infile extfile;
length name $ 20 first $ 20;
input name first;
run;

See the SAS 9.4 National Language Support Reference Guide for details about using the ENCODING= option. When an
external file contains a mix of character and binary data, you must use the KCVT function or the KPROPDATA function to
convert individual fields from the file encoding to the session encoding. See the SAS 9.4 National Language Support
Reference Guide for details about using the KCVT or KPROPDATA functions.

SAS Libraries

SAS 9 data sets have an ENCODING attribute. When the data set encoding is different from the session encoding, the
cross-environment data access (CEDA) facility automatically transcodes character data when it is read and when it is
saved. Data sets from earlier releases do not have an encoding attribute, so you must specify the encoding of the
incoming data with the ENCODING= DATA step option or the INENCODING= LIBNAME option. Note: If there is no
encoding information in the data set, the session encoding is assumed.

If your session encoding is UTF-8, you need to increase variable lengths to prevent truncation during transcoding of the
data to UTF-8. UTF-8 characters can require up to 4 bytes of memory. The length of your variables depends on the
characters that are contained in your data. If your data consists of Asian characters, you need to consider multiplying the
number of characters by 4. However, for other data, 2.5 is a reasonable expansion. The CVP engine provides an easy
way to convert your files and avoid truncation problems. CVP is an engine that must be specified in the LIBNAME
statement on the input data, so truncation does not occur during transcoding. By specifying the CVP engine, the default

Multilingual Computing with SAS® 9.4

6

Multilingual Computing with SAS® 9.4

expansion is 1.5 times the current variable length. There are options to specifically set the expansion. See SAS Help for
information about CVPMultiplier, CVPBytes, and CVPEngine.

Generally, it makes sense to read in or write to data only with an encoding that is compatible to the SAS session encoding
- otherwise you get transcoding errors. In some cases, it can be appropriate to bypass transcoding errors so that users
can finish their SAS jobs. In SAS 9.4 the new object spawner option 'ignoretranscodeerror' allows IOM servers to ignore
transcoding failures. However, this option should be used under the direction of Tech Support in cases where customers
are unable to correct transcoding issues with their data.

As mentioned, it does not make sense to transcode characters that are not representable in a particular encoding. If you
know your data, you can subset them by encoding and transcode accordingly. If there is no “language tag” in the data
that would allow creating subsets per language or language group, any character that is not compatible with the target
encoding is replaced by the default replacement character, which is 0x1a for ASCII-based encodings2. For example, if you
have a UTF-8 data set with French, Greek, Hindi, and other characters in it, and you want to transcode those to WLATIN1,
this would work for characters from French and other Western European languages. For all other characters that you run
into transcoding errors and the code fails.

Figure 1: Multilingual UTF-8 data set

ERROR: Some character data was lost during transcoding in the data set WORK.COUNTRIES_LT1. Either

 the data contains characters that are not representable in the new encoding or truncation

 occurred during transcoding.

NOTE: The DATA step has been abnormally terminated.

NOTE: The SAS System stopped processing this step because of errors.

To avoid the error, you might tag the output data file with an encoding attribute of “ASCIIANY”. This works, however, all
Greek and Hindi characters, for example, is replaced by default replacement characters. And the conversion does not
even work for Western European characters:

2 For EBCDIC the substitution character is 0x3F; UTF-8 uses 0xEFBFBD, UTF-16 0xFFFD, and UTF-32 0x0000FFFD.

7

Multilingual Computing with SAS ® 9.4

Figure 2: Multilingual "ASCIIANY" data set

However, here is a trick that enables you to do this. Provided you do not mind to see question marks for characters that
you do not need, you can run the macro listed below. It uses the KPROPDATA function. This function removes or
converts unprintable characters. The macro code enables you to transcode from and to any encoding; by default
characters that are not representable in the target encoding are converted to question marks. KPROPDATA also enables
you to select other options if characters are found in the data that are not supported by the encoding. For example, the
characters can be preserved by converting them to Unicode escape (\Uxxxx) or NCR format. Or, you could instruct
KPROPDATA to substitute a space. Expected input is the source and target data sets, and optionally the from and to
encodings. If you omit from encoding specification, the session encoding is used. If both from and to encoding is omitted,
then it copies data by just filtering binary data.
NOTE: If you select UESC or NCR as a substitution format, you need to adjust the column length to accommodate the
extra bytes that might be needed to represent those characters.

%macro sas_iconv_dataset(in,out,from=UNDEFINED,to=U NDEFINED,sub='?',file_opt=);
data &out(encoding=asciiany);
set ∈
array cc (*) _character_;
do _N_=1 to dim(cc);
 cc(_N_)=kpropdata(cc(_N_),&sub,"&from","&to");
 end;
run;
%let lib=%scan(&out,1,%str(.));%let mem=%scan(&out, 2,%str(.));
%if %length(&mem) = 0 %then %do;%let mem=&lib; %let lib=work;%end;
proc datasets lib=&lib nolist;
modify &mem / correctencoding=&to;
run;
quit;
%mend;
%sas_iconv_dataset(WORK.countries,WORK.countrieslt1 ,from=utf-8,to=wlatin1);

Multilingual Computing with SAS® 9.4

8

Multilingual Computing with SAS® 9.4

Figure 3: Multilingual data set after KPROPDATA

(R)DBMS Tables

SAS/ACCESS® software enables SAS to share data with Oracle, DB2, and other relational database management
systems (RDBMS). SAS can read and write data to a database management system (DBMS) in exactly the same way as
reading from or writing to a SAS library.
Transcoding from the database (server) encoding to the client (application session) encoding is usually determined by the
OS locale where the client is installed. However, some of the RDBMS clients do not depend on the OS and can be
configured differently. This is also true for SAS. The trick, then, is to make sure that the server knows the client’s
encoding. In any case, as long as the SAS session enc oding is equivalent to the RDBMS client encoding val ue,
there is no data loss.
Each RDBMS client software application has its own way of being configured with the client application encoding. Client
variables ensure that the transcoding from the database encoding to the client’s encoding works correctly. See the
following table for illustration.

RDBMS RDBMS client variable(s) Example
DB2 DB2CODEPAGE DB2CODEPAGE 1208
Greenplum Windows: no options needed

UNIX: IANAAppCodePage
IANAAppCodePage=106

Hadoop No options needed;
The default value of the JRE
Options file.encoding is UTF8 in
a SAS Unicode session. If this
value is changed, it should be
modified as UTF8. Run proc
javainfo all;run;to check this
value in the log.

Microsoft SQL Server No options are needed; only
nchar/nvarchar column is
needed

MySQL names
or
character_set_client

set names 'UTF8'
or
set character_set_client=utf-8

9

Multilingual Computing with SAS ® 9.4

character_set_connection
character_set_results

set character_set_connection=utf-8
set character_set_results=utf-8

Netezza No options are needed; only
nchar/nvarchar column is
needed

OLE DB No options needed
Oracle NLS_LANG NLS_LANG=American_America.AL32UTF8
PostgreSQL Windows: no options needed

UNIX: PGCLIENTENCODING
PGCLIENTENCODING=UTF8

Sybase locale locale = default, us_english, utf8
Teradata charset_id

charset_type
charset_id=UTF8
charset_type=N

Vertica No options needed.
SAS/ACCESS handles the
transcoding automatically

Table 3: Client Variable Values of various RDBMSes

Transcoding might fail if the source and target encodings are not (fully) compatible (that is, the destination encoding does
not support all of the characters of the source encoding).

There are a couple of other attributes that you need to observe: which (character) data type the particular variables have
and how variable lengths are defined. Most database management systems use the following data types to hold textual
data: CHAR, VARCHAR, NCHAR, and NVARCHAR. NCHAR and NVARCHAR are used to store Unicode data; CHAR
and VARCHAR are used to store non-Unicode character data. If your application was designed for one language or
language group using the CHAR/VARCHAR data type is fine. But if working with multilingual data or if the server encoding
is not compatible with the user data (encoding), Unicode data types, such as NCHAR/NVARCHAR are recommended.

Calculating column lengths in bytes is called BYTE semantics; measuring the lengths in characters is called CHARACTER
semantics. Depending on the data type, most database management systems support either BYTE or CHARACTER
semantics. Oracle is the only RDBMS that supports both BYTE and CHARACTER semantics. See the following table for
illustration.

RDBMS Data type Encoding
of data

Length
semantics

Notes

DB2 Character
data

CHAR ASCII3 Byte Under the UNICODE database these
data types can store UTF-8 data. VARCHAR

LONG
VARCHAR
GRAPHIC KANJI Byte Under the UNICODE database these

data types can store UCS-2 data. LONG
GRAPHIC

National
Character
data

not applicable not
applicable

not
applicable

Greenplum Character
Data

CHAR Latin1,
Shift-JIS,
UTF-8.

Character Character data types should be
equivalent to PostgreSQL which the
length semantics is character-based and
can store Unicode data

VARCHAR
TEXT

National
Character
data

CHAR UTF-8 Character . UTF-8 CHAR is equivalent to NCHAR
VARCHAR
TEXT

Microsoft
SQL Server

Character
Data

CHAR Latin1,
Shift-JIS,
UTF-8 .

Byte
VARCHAR
TEXT
NCHAR UTF-16 Character
NVARCHAR

3 ASCII here means any ASCII-based encoding such as Latin1 or Shift-JIS.

Multilingual Computing with SAS® 9.4

10

Multilingual Computing with SAS® 9.4

National
Character
data

NTEXT

MySQL Character
data

CHAR LATIN,
Shift-JIS,

Byte /
Character

In MySQL 4.1 or later, length is based
on Character semantics. VARCHAR

TEXT
MEDIUMTEXT
LONGTEXT

National
Character
data

NCHAR UTF-8 Character
NVARCHAR

Netezza Character
data

CHAR Latin94 Byte
VARCHAR

National
Character
data

NCHAR UTF-85 Character

NVARCHAR

Oracle Character
data

CHAR Latin1,
Shift-JIS,
UTF-8, .

Byte With
NLS_LENGTH_SEMANTICS=CHAR the
length semantics becomes character.

VARCHAR2
CLOB
LONG
VARCHAR

National
Character
data

NCHAR UTF-16 Character
NVARCHAR2
NCLOB

PostgreSQL Character
data

CHAR Latin1,
Shift-JIS,

Character
VARCHAR
TEXT

National
Character
data

CHAR UTF-8 Character UTF-8 CHAR is equivalent to NCHAR
VARCHAR
TEXT

Sybase Character
data

CHAR Latin1,
Shift-JIS,
UTF-8

Byte
VARCHAR
TEXT

National
Character
data

NCHAR UTF-8 Character
NVARCHAR
UNICHAR UTF-16 available from ASE12.5
UNIVARCHAR

Table 4: Data types and length semantics

The length semantics determine whether the length of a column is specified in bytes or in characters. For example, a
definition of CHAR(3) in CHARACTER semantics means 3 character in length. In BYTE semantics, it means 3 bytes in
length. This is not an issue for single-byte encodings where a character is always 1 byte. However, this difference does
become an issue with multi-byte encodings where a character is not always equivalent to a byte.

Data truncation might occur when the destination data buffer is shorter than needed. In a (R)DBMS client/server
environment, this might happen for two reasons:

• Data expansion due to transcoding. For example, when transcoding WLATIN1 data to UTF-8, some WLATIN1
characters are converted to 2 or 3-byte UTF-8 characters. Therefore, the caller needs to provide a buffer three
times the size of the original buffer.

• Difference of length semantics between the (R)DBMS server and the client application. An example is the
difference between NCHAR data and SAS character data. SAS/ACCESS products map the SAS character data
type to DBMS data type when reading/writing data. SAS always uses BYTE LENGTH SEMANTICS while the
length semantics of NCHAR is CHARACTER.

4 The char/varchar data type only supports the ISO Latin-9 encoding.
5 The ANSI SQL standard nchar/nvarchar data type supports Unicode using the UTF-8 encoding.

11

Multilingual Computing with SAS ® 9.4

Language Switching

The language switching feature enables you to produce multilingual reports on the fly by switching languages during the
same SAS session. This feature is particularly interesting with a Unicode server, which can support many different
languages. The language switching feature takes advantage of the existing localizations where SAS products have been
localized, or translated into different languages. Localization of these products involves translating various components
such as the message files system, ODS templates, SAS registry files, and other files. Language switching also affects the
results of locale sensitive formats, supplied by SAS, as well as some features SAS enables you to customize to produce
locale-specific results.
Language switching was introduced in SAS 9.2 for the Unicode server. In SAS 9.4 it can also be used with legacy
encodings. For this purpose several new options were implemented:

• LOGLANGCHG Option. This option enables the language of message switching in SAS log output. If
LOGLANGCHG is specified, the language of SAS log depends on LSWLANG or LOCALE= option. LSWLANG
has the higher priority. If LSWLANG is set to a valid SAS language, SAS log output is controlled by the value of
LSWLANG; otherwise, LOCALE= option determines the language of SAS log.

• ODSLANGCHG Option. This option enables the language of message switching in SAS ODS output. If
ODSLANGCHG is ON, the language of ODS output depends on LSWLANG option or LOCALE= option.
LSWLANG has the higher priority. If LSWLANG is set to a valid SAS language, ODS output is controlled by the
value of LSWLANG; otherwise, LOCALE= option determines the language of ODS output.

• LSWLANG Option. It specifies the language of messages if LOGLANGCHG or ODSLANGCHG is ON. The
default setting of LSWLANG is the string “LOCALE”, which means the LOCALE= option determines the language
for switching. The setting of LSWLANG= option also needs to be compatible with SAS session encoding,
otherwise its value is ignored.

• LOGLANGENG Option. It is a toggle option that overrides LOGLANGCHG and LSWLANG and sets them to
LOGLANGCHG=ON, LSWLANG=”EN”. As result, the LOG output is in English, and NL Format output has no
change. This option does change the setting of ODSLANGCHG. If ODSLANGCHG=OFF, the system message
language for ODS output is determined by SAS configuration: If ODSLANGCHG=ON, all messages are in
English because of the LSWLANG setting.

• LOCALELANGCHG Option. LOGCALELANGCHG= option was introduced in SAS 9.2, and acts an alias of
ODSLANGCHG in SAS 9.4.

Please note that language switching in a legacy environment only makes sense with languages that use the same
encoding. For example, Western European languages such as French, German, Italian, Spanish, and Swedish all
share the Latin1 character repertoire; Central and Eastern European languages such as Czech, Hungarian and Polish
share the Latin2 character repertoire. Hence, in a legacy environment, you can switch between French and German,
or between Hungarian and Polish but not between French and Polish. Switching between Asian (CJK) languages in a
legacy environment does not make sense at all. Of course, in a Unicode server (UTF-8) session, you can switch
between any languages.

NOTE: Language switching is not supported on z/OS .

In order to use the language switching feature, in the SAS program examples below, the SAS System has been
started with the following options at start-up: sas –lswlang locale –odslangchg –nologlangchg

This means that the LOCALE= option determines the language for switching and the language of ODS output. The
language of SAS log is the one used at system start.
Let us suppose that we create lists of customers from a Latin2 marketing campaign database. Depending on the
users’ preferred language that we create separate lists of Hungarian and Polish-speaking customers. For output, we
sort these lists according to local language conventions using SORTSEQ=LINGUISTIC.

/* -- -------------------
 Create subsets of the data
 -- ------------------- */
proc sql;
create table polish as
select customer_ID, name, first, gender, marital_st atus, street, zip, city from
t.new_contacts where country_e = 'Poland';
create table hungarian as
select customer_ID, name, first, gender, marital_st atus, street, zip, city from
t.new_contacts where country_e = 'Hungary';
quit;

Multilingual Computing with SAS® 9.4

12

Multilingual Computing with SAS® 9.4

/* -- -------------------
 label variables in different languages
 -- ------------------- */
data polish;
 set polish;
 label customer_ID='Id_klienta';
 label gender='Płe ć';
 label marital_status='Stan cywilny';
 label name='Nazwisko';
 label first='Imi ę';
 label street='Ulica i nr domu';
 label city='Miasto';
 label zip='Kod pocztowy';
run;
data hungarian;
 set hungarian;
 label customer_ID='Vásárlóazonosító';
 label gender='Nem (F/N)';
 label marital_status='Családi állapot';
 label name='Vezetéknév';
 label first='Keresztnév';
 label street='Utca/tér, házszám';
 label city='Város';
 label zip='Irányítószám';
run;

/* -- -------------------
 Run the SORT Procedure and create PDF output
 -- ------------------- */
ods pdf file='c:\temp\polish.pdf';
options locale=pl_PL dflang=locale;
TITLE;
TITLE1 "Lista klientów ";
TITLE2 "w porz ądku alfabetycznym";
FOOTNOTE;
FOOTNOTE1 "Wygenerowane przez System SAS dnia %TRIM (%QSYSFUNC(DATE(), NLDATE20.)) o
godz %SYSFUNC(TIME(), NLTIME10.)";
proc sort data=polish sortseq=linguistic;
 by name;
run;
proc print data=polish label noobs; run;
RUN; QUIT;
TITLE; FOOTNOTE;
/* -- -------------------
 DTRESET specifies that SAS update the date and t ime in the titles
 of the SAS log and the listing file.
 -- ------------------- */
OPTIONS DTRESET;
/* -- -------------------
 Run the SORT Procedure and create PDF output
 -- ------------------- */
ods pdf file='c:\temp\hungarian.pdf';
options locale=hu_HU dflang=locale;
TITLE;
TITLE1 "A vásárlók névsora ";
TITLE2 "ábécésorrendben";
FOOTNOTE;
FOOTNOTE1 "Készült SAS rendszeren, dátum: %TRIM(%QS YSFUNC(DATE(), NLDATE20.)),
id ıpont: %SYSFUNC(TIME(), NLTIME10.)";
proc sort data=hungarian sortseq=linguistic;
 by name;
run;

13

Multilingual Computing with SAS ® 9.4

proc print data=hungarian label noobs; run;
RUN; QUIT;
TITLE; FOOTNOTE;
ods pdf close;

Output looks like the following:

Table 5: Language Switching with PDF output

If you want to create output using the localized SAS components such as ODS templates from the FREQ procedure
you need to make sure the appropriate catalogs are available. This means you have to update the SAS config file
and insert the path to the localized sashelp6; e.g.:
-SASHELP (
 "!SASCFG\SASCFG"
 "!SASROOT\nls\fr\sashelp"
 "!SASROOT\nls\it\sashelp"
 "!SASROOT\nls\de\sashelp"
 "!SASROOT\core\sashelp"
This enables you to use the localized files for French, Italian and German, for example.
To evaluate a Latin1 marketing campaign database statistically with PROC FREQ, for example, you could run the
code below that is creating separate output for French, German and Italian-speaking customers in Switzerland:
/* -- -------------------
 Create subsets of the data
 -- ------------------- */

proc sql;
create table french as
select customer_ID, name, first, gender, marital_st atus, street, zip, city from
t.swiss where lang = 'fra';
create table german as
select customer_ID, name, first, gender, marital_st atus, street, zip, city from
t.swiss where lang = 'deu';
create table italian as

6 No update for the SAS configuration file is needed when using SAS Unicode server.

Multilingual Computing with SAS® 9.4

14

Multilingual Computing with SAS® 9.4

select customer_ID, name, first, gender, street, ma rital_status, zip, city from
t.swiss where lang = 'ita';
quit;

/* -- -------------------
 label variables in different languages
 -- ------------------- */
data french;
 set french;
 label customer_ID='Numéro de client';
 label name='Nom';
 label first='Prénom';
 label gender='Sexe';
 label marital_status='État civil';
 label street='Adresse';
 label city='Lieu';
 label zip='CP';
run;

data german;
 set german;
 label customer_ID='Kundennummer';
 label name='Name';
 label first='Vorname';
 label gender='Geschlecht';
 label marital_status='Familienstand';
 label street='Strasse';
 label city='Ort';
 label zip='PLZ';
run;

data italian;
 set italian;
 label customer_ID='Numero del cliente';
 label name='Nome';
 label first='Cognome';
 label gender='Sesso';
 label marital_status='Stato civile';
 label street='Strada';
 label city='Città';
 label zip='CAP';
run;
/* -- -------------------
 Create PDF output
 -- ------------------- */
ods pdf file='c:\temp\french.pdf';
options locale=fr_CH dflang=locale;
TITLE;
TITLE1 "Analyse statistique";

FOOTNOTE;
FOOTNOTE1 "Générée par le système SAS le %TRIM(%QSY SFUNC(DATE(), NLDATE20.))
à %SYSFUNC(TIME(), NLTIME10.)";

proc freq data=french;
 Tables gender*marital_status / NOFREQ NOCUM;

RUN; QUIT;

TITLE; FOOTNOTE;
/* -- -------------------
 DTRESET specifies that SAS update the date and t ime in the titles

15

Multilingual Computing with SAS ® 9.4

 of the SAS log and the listing file.
 -- ------------------- */
OPTIONS DTRESET;

ods pdf file='c:\temp\german.pdf';
options locale=de_CH dflang=locale;
TITLE;
TITLE1 "Statistische Auswertung";

FOOTNOTE;
FOOTNOTE1 "Generiert durch das SAS System am %TRIM(%QSYSFUNC(DATE(), NLDATE20.))
um %SYSFUNC(TIME(), NLTIME10.)";

proc freq data=german;
 Tables gender*marital_status / NOFREQ NOCUM;

RUN; QUIT;
TITLE; FOOTNOTE;
/* -- -------------------
 DTRESET specifies that SAS update the date and t ime in the titles
 of the SAS log and the listing file.
 -- ------------------- */
OPTIONS DTRESET;

ods pdf file='c:\temp\italian.pdf';
options locale=it_CH dflang=locale;
TITLE;
TITLE1 "Analisi";
FOOTNOTE;
FOOTNOTE1 "Generato dal sistema SAS il %TRIM(%QSYSF UNC(DATE(), NLDATE20.))
alle %SYSFUNC(TIME(), NLTIME10.)";

proc freq data=italian;
 Tables gender*marital_status / NOFREQ NOCUM;

RUN; QUIT;
TITLE; FOOTNOTE;
ods pdf close;

This is what the output looks like:

Table 6: Language Switching with PROC FREQ

Multilingual Computing with SAS® 9.4

16

Multilingual Computing with SAS® 9.4

Making Your SAS Code Locale-Sensitive

SAS ® Enterprise Guide ® 6.1 ships a new feature that helps customers determine if there are any possible
internationalization issues within their own SAS code. Internationalization, often abbreviated as I18n, is the process
by which a program is optimized so that it can be adapted to any locale without needing to be rewritten. When you
analyze a program for internationalization, SAS ® Enterprise Guide ® lists the lines of code that might be affected
and suggests a substitution when possible. It makes suggestions for substitutions of the SAS supplied (intrinsic)
formats and string functions and will even replace those in the SAS code. It will also point out embedded text.
To analyze a program for internationalization:
1. Open the program in the SAS Enterprise Guide workspace.
2. Select Program Analyze Analyze Program for I18n Issues . The Analyze for Internationalization dialog

box opens.
3. Select the check boxes for the types of issues that you want to include in the analysis. By default, all of the check

boxes are selected except Check for Unicode problems with column pointer cont rols (UPS) .
4. Click Analyze . The results show each affected line of code in the program. You can click a line in the Analyze for

Internationalization dialog box to highlight the affected line in the Program window.
5. When you view the results of the analysis, you can select the following options:

o Insert Substitution - replaces the affected code in your program with the suggested substitution. This
option is available only if SAS Enterprise Guide has a suggested substitution.

o Suppress - inserts a comment on the affected line of code so that it is excluded from analysis.
o Next Substitution - advances to the next substitution.

Figure 4: Analyze for Internationalization Dialog in EG

When you analyze a program for internationalization, SAS Enterprise Guide checks for the following items:

17

Multilingual Computing with SAS ® 9.4

• Embedded strings (EMS) - text strings that are embedded in a program allow the application to display only one
language to the user. Any strings that are visible in the user interface should be externalized, or stored in a
separate properties file, so they can be translated. For information about replacing strings in your SAS program,
see the help for the SASMSG function in the SAS 9.4 National Language Support (NLS): Reference Guide.

• Concatenated text strings (CON) - concatenation is the operation in which two or more text strings are combined
into one string. However, since grammatical structures of language can be very different, concatenation of strings
can cause grammatical conflicts. It is best to avoid concatenation of strings that you intend to translate.

• Locale-dependent SAS formats/informats (LFM) - formats and informats can present locale dependencies for
types of data including dates, time, currency, and numerical values. You can use SAS NL formats to avoid such
locale-specific dependencies.

• String functions (IFN) - SAS provides many string functions and call routines that can be used to manipulate
characters and strings. Some string functions in SAS assume that the size of a single character is always one
byte. In some environments, however, a single character can be up to four bytes. SAS provides additional K
string functions that do not make assumptions about the size of a single character. Regular functions are byte-
oriented, but K functions are character-oriented (as explained above).

• String macros (IMA) - SAS provides many macros that can be used to manipulate characters and strings. Some
string macros in SAS assume that the size of a single character is always one byte. In some environments,
however, a single character can be up to four bytes. SAS provides additional NLS macro functions that do not
make assumptions about the size of a single character.

• Column pointer controls in the PUT and INPUT statements in a UTF-8 SAS session (UPS)- the SAS column
pointer controls assume that each character can be displayed in one column. However, a character in a multi-
byte encoding, such as UTF-8, is not equivalent to one byte as characters are in single-byte encodings. In UTF-8
encoding, all non-ASCII characters have a varying length between two and four bytes, which can cause the SAS
column pointer controls to return unexpected results.

To exclude code from analysis

When you analyze your code, you might find that some of the reported issues occur in code that does not need to be
changed. You can prevent SAS Enterprise Guide from including those issues by adding a comment to a single line or
around a block of code. When you add the comment to your code, you can specify a particular issue that you want to
exclude from the analysis, or you can exclude all issues. For example, you can exclude embedded strings (EMS) from the
analysis of one line of code as follows:

data a;
 x="text string"; /* ignore for i18n analyzer - ID: EMS */
run;

You can exclude an entire block of code from all analysis as follows:

/* ignore for i18n analyzer - ID:ALL:begin */
data a;
 x='string 1';
 y='string 2';
 z=today();
 put z date.;
run;
/* ignore for i18n analyzer - ID:ALL:end */

More information about how to successfully internationalize your SAS programs and making applications "locale-aware" is
available in the SAS Global Forum paper "Give Some International Flavor to Your SAS® Applications".

Multilingual Support in SAS® Visual Analytics

SAS Visual Analytics not only leverages the in-memory analytic engine, the SAS LASR Analytic Server, letting you visually
explore big data at fast speeds, but also provides support for multiple languages, enabling people from different regions in
your organization to run analytics on multiple language data, and produce reports in their language and according to their
conventions.

Multilingual Computing with SAS® 9.4

18

Multilingual Computing with SAS® 9.4

Multilingual language data can easily be loaded into SAS LASR Analytic Server without any additional transcoding. After
that, you can perform data exploration and create reports on these data with SAS VA applications in your language.
The user interfaces, number and date formats in the explorations and reports can switch automatically according to your
language and conventions. At the same time, when you view reports on mobile devices or through web browsers, the
number and date formats will switch automatically as well.
 Besides the above features, SAS Visual Analytics also provides a way to easily create the same style reports for different
languages.

Data sources in various languages can be loaded into SAS LASR Analytic Server, as long as the SAS session encoding is
compatible with the data source encoding. For example, on a Linux operating system, use a Latin9 SAS session encoding
to load French data and a EUC-CN SAS session encoding to load Chinese data. Of course, all data can be loaded into
SAS LASR Analytic Server with an utf-8 SAS session.

Figure 5: Loading Data into SAS LASR Analytical Server

After the data has been loaded into SAS LASR Analytic Server, you are able to explore and use it to create reports, no
matter what language your SAS Visual Analytics application is using.

The language of the SAS Visual Analytics applications can be set to be the same as your browser language or set to a
specific language. For example, you can explore English and Chinese data with an English SAS Visual Analytics
application or explore the same Chinese data with an English or French SAS Visual Analytics application. All characters
are displayed correctly.

19

Multilingual Computing with SAS ® 9.4

Figure 6: English VA with Chinese data

Moreover, the user interfaces, number and date formats of explorations and reports can switch automatically according to
your VA application language. For example, when you are working with an English VA application: the user interfaces
are in English, the dates and numbers are displayed according to English language and conventions.
When you are working with a French VA application: the user interfaces are in French; the display of dates and numbers
change accordingly. You can see, in the figure below, the formats of dates and numbers are obviously different.

Multilingual Computing with SAS® 9.4

20

Multilingual Computing with SAS® 9.4

Figure 7: French VA

SAS Visual Analytics is able to manipulate multiple language data simultaneously. Sometimes, it is necessary to create
the same style reports for data sources in different languages. SAS Visual Analytics makes this easy to implement.
Below is a report based on English data. It is very easy to propagate this report to data in another language.

21

Multilingual Computing with SAS ® 9.4

Figure 8: Propagating a report in different languages

You just need change the data sources of this report to data in another language. The report will display the information of
the new data. When you view this report on mobile devices or web browser with this language, the report will be shown in
the expected format. In the example above a French report and a Chinese report were generated this way. The
prerequisite of this approach is that data sources in different languages have the same data items. This approach can
save report design time and reduce repetitive workload.

Conclusion

SAS 9.4 provides a number of new or enhanced features for handling multiple languages. For broadest multilingual
support, use of Unicode server is required. However, you can use multiple languages and switch between them with
legacy encodings as well – as long as those languages use a compatible encoding.

Acknowledgments

Many thanks to all of those reviewers for their valuable feedback and for going over the technical details of the paper:
Junichi Arai, Mickaël Bouedo, Troy Harris, Mark Kernodle, Joji Kobayashi, John Kohl, Helen (Honglian) Pan, Masahiro
Takagi, and Tony (Tao) Zhang. Special thanks go to the editor Rachel Wynne, to Janusz Wojdecki and Csaba
Prencsovszky for providing the Polish and Hungarian translations, and to Elizabeth Bales whose constructive comments
improved each draft.

Multilingual Computing with SAS® 9.4

22

Multilingual Computing with SAS® 9.4

References

Bouedo, Mickaël and Beatrous, Stephen. 2013. “Internationalization 101: Give Some International Flavor to Your SAS®
Applications .” Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings13/025-2013.pdf.

Kiefer, Manfred. 2012. SAS® Encoding: Understanding the Details. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2013. SAS/ACCESS® 9.4 for Relational Databases: Reference, Second Edition. Cary, NC: SAS
Institute Inc.

SAS Institute Inc. 2013. SAS® 9.4 Language Reference: Concepts, Second Edition. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2013. SAS® 9.4 National Language Support (NLS): Reference Guide. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2009. SAS Institute technical paper. “Processing Multilingual Data with the SAS 9.2 Unicode Server.”
Available at http://support.sas.com/resources/papers/92unicodesrvr.pdf.

Appendix

@(#)linux.fontconfig.RedHat.properties 1.11 10/03/23

Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.

Version

version=1

Component Font Mappings

allfonts.chinese-cn-iso10646=-misc-zysong18030-medium-r-normal--*-%d-*-*-c-*-iso10646-1
allfonts.chinese-tw-iso10646=-misc-ar pl shanheisun uni-medium-r-normal--*-%d-*-*-c-*-iso10646-1
allfonts.lucida=-b&h-lucidasans-medium-r-normal-sans-*-%d-*-*-p-*-iso8859-1

serif.plain.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.plain.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.plain.latin-1=-b&h-lucidabright-medium-r-normal--*-%d-*-*-p-*-iso8859-1

serif.bold.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.bold.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.bold.latin-1=-b&h-lucidabright-demibold-r-normal--*-%d-*-*-p-*-iso8859-1

serif.italic.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.italic.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.italic.latin-1=-b&h-lucidabright-medium-i-normal--*-%d-*-*-p-*-iso8859-1

serif.bolditalic.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.bolditalic.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
serif.bolditalic.latin-1=-b&h-lucidabright-demibold-i-normal--*-%d-*-*-p-*-iso8859-1

23

Multilingual Computing with SAS ® 9.4

sansserif.plain.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.plain.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.plain.latin-1=-b&h-lucidasans-medium-r-normal-sans-*-%d-*-*-p-*-iso8859-1

sansserif.bold.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.bold.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.bold.latin-1=-b&h-lucidasans-bold-r-normal-sans-*-%d-*-*-p-*-iso8859-1

sansserif.italic.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.italic.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.italic.latin-1=-b&h-lucidasans-medium-i-normal-sans-*-%d-*-*-p-*-iso8859-1

sansserif.bolditalic.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.bolditalic.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
sansserif.bolditalic.latin-1=-b&h-lucidasans-bold-i-normal-sans-*-%d-*-*-p-*-iso8859-1

monospaced.plain.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.plain.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.plain.latin-1=-b&h-lucidatypewriter-medium-r-normal-sans-*-%d-*-*-m-*-iso8859-1

monospaced.bold.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.bold.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.bold.latin-1=-b&h-lucidatypewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1

monospaced.italic.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.italic.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.italic.latin-1=-b&h-lucidatypewriter-medium-i-normal-sans-*-%d-*-*-m-*-iso8859-1

monospaced.bolditalic.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.bolditalic.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
monospaced.bolditalic.latin-1=-b&h-lucidatypewriter-bold-i-normal-sans-*-%d-*-*-m-*-iso8859-1

dialog.plain.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.plain.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.plain.latin-1=-b&h-lucidasans-medium-r-normal-sans-*-%d-*-*-p-*-iso8859-1

dialog.bold.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.bold.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.bold.latin-1=-b&h-lucidasans-bold-r-normal-sans-*-%d-*-*-p-*-iso8859-1

dialog.italic.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.italic.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.italic.latin-1=-b&h-lucidasans-medium-i-normal-sans-*-%d-*-*-p-*-iso8859-1

dialog.bolditalic.japanese-iso10646=-misc-sazanami gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.bolditalic.korean-iso10646=-misc-baekmuk gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialog.bolditalic.latin-1=-b&h-lucidasans-bold-i-normal-sans-*-%d-*-*-p-*-iso8859-1

dialoginput.plain.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.plain.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.plain.latin-1=-b&h-lucidatypewriter-medium-r-normal-sans-*-%d-*-*-m-*-iso8859-1

dialoginput.bold.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.bold.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.bold.latin-1=-b&h-lucidatypewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1

dialoginput.italic.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.italic.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.italic.latin-1=-b&h-lucidatypewriter-medium-i-normal-sans-*-%d-*-*-m-*-iso8859-1

dialoginput.bolditalic.japanese-iso10646=-misc-sazanami mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-1

Multilingual Computing with SAS® 9.4

24

Multilingual Computing with SAS® 9.4

dialoginput.bolditalic.korean-iso10646=-misc-baekmuk batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1
dialoginput.bolditalic.latin-1=-b&h-lucidatypewriter-bold-i-normal-sans-*-%d-*-*-m-*-iso8859-1

Search Sequences

sequence.allfonts=latin-1
sequence.allfonts.UTF-8.ko.KR=latin-1,korean-iso10646
sequence.allfonts.UTF-8.ja.JP=latin-1,japanese-iso10646
sequence.allfonts.UTF-8.zh.CN=latin-1,chinese-cn-iso10646
sequence.allfonts.UTF-8.zh.TW=latin-1,chinese-tw-iso10646
sequence.allfonts.UTF-8.zh.HK=latin-1,chinese-tw-iso10646
sequence.fallback=lucida,chinese-tw-iso10646,chinese-cn-iso10646,japanese-iso10646,korean-iso10646

Exclusion Ranges

exclusion.japanese-iso10646=2200-22ef,2701-27be,20a0-20aa,2153-215f,2166-2168,216a-216f,2173-2182

Font File Names

filename.-misc-ar_pl_shanheisun_uni-medium-r-normal--*-%d-*-*-c-*-iso10646-
1=/usr/share/fonts/chinese/TrueType/uming.ttf
filename.-misc-baekmuk_batang-medium-r-normal--*-%d-*-*-c-*-iso10646-1=/usr/share/fonts/korean/TrueType/batang.ttf
filename.-misc-baekmuk_gulim-medium-r-normal--*-%d-*-*-c-*-iso10646-1=/usr/share/fonts/korean/TrueType/gulim.ttf
filename.-misc-sazanami_gothic-medium-r-normal--*-%d-*-*-c-*-iso10646-
1=/usr/share/fonts/japanese/TrueType/sazanami-gothic.ttf
filename.-misc-sazanami_mincho-medium-r-normal--*-%d-*-*-c-*-iso10646-
1=/usr/share/fonts/japanese/TrueType/sazanami-mincho.ttf
filename.-misc-zysong18030-medium-r-normal--*-%d-*-*-c-*-iso10646-1=/usr/share/fonts/chinese/TrueType/zysong.ttf
filename.-b&h-lucidasans-medium-r-normal-sans-*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaSansRegular.ttf
filename.-b&h-lucidabright-medium-r-normal--*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaBrightRegular.ttf
filename.-b&h-lucidabright-demibold-r-normal--*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaBrightDemiBold.ttf
filename.-b&h-lucidabright-medium-i-normal--*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaBrightItalic.ttf
filename.-b&h-lucidabright-demibold-i-normal--*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaBrightDemiItalic.ttf
filename.-b&h-lucidasans-bold-r-normal-sans-*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaSansDemiBold.ttf
filename.-b&h-lucidasans-medium-i-normal-sans-*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaSansRegular.ttf
filename.-b&h-lucidasans-bold-i-normal-sans-*-%d-*-*-p-*-iso8859-1=$JRE_LIB_FONTS/LucidaSansDemiBold.ttf
filename.-b&h-lucidatypewriter-medium-r-normal-sans-*-%d-*-*-m-*-iso8859-
1=$JRE_LIB_FONTS/LucidaTypewriterRegular.ttf
filename.-b&h-lucidatypewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1=$JRE_LIB_FONTS/LucidaTypewriterBold.ttf
filename.-b&h-lucidatypewriter-medium-i-normal-sans-*-%d-*-*-m-*-iso8859-
1=$JRE_LIB_FONTS/LucidaTypewriterRegular.ttf
filename.-b&h-lucidatypewriter-bold-i-normal-sans-*-%d-*-*-m-*-iso8859-1=$JRE_LIB_FONTS/LucidaTypewriterBold.ttf

AWT X11 font paths
awtfontpath.chinese-tw-iso10646=/usr/share/fonts/chinese/TrueType
awtfontpath.chinese-cn-iso10646=/usr/share/fonts/chinese/TrueType
awtfontpath.japanese-iso10646=/usr/share/fonts/japanese/TrueType
awtfontpath.korean-iso10646=/usr/share/fonts/korean/TrueType

Glossary

American Standard Code for Information Interchange
a 7-bit encoding standard that provides a basic set of 128 characters, supporting a variety of computer systems. ASCII
encodes the uppercase and lowercase letters of the English alphabet, punctuation marks, the digits 0–9, and control
characters. This set of 128 characters is also included in most other encodings. Short form: ASCII.

25

Multilingual Computing with SAS ® 9.4

ASCII
See American Standard Code for Information Interchange.

CEDA
See Cross-Environment Data Access.

Chinese, Japanese, and Korean
the collective group of languages Chinese, Japanese, and Korean. Short form: CJK.

CJK
See Chinese, Japanese, and Korean.

coded character set
a map of an abstract character repertoire to a set of numeric values. The ISO Latin-1 coded character set provides the
Western European alphabet and symbols and their numeric representations. For example, the letter Ä is represented as
C4 (hexadecimal). Short forms: CCS, character set.

Cross-Environment Data Access
a feature of SAS software that enables a SAS data file that was created in any directory-based operating environment (for
example, Solaris, Windows, HP-UX, OpenVMS) to be read by a SAS session that is running in another environment. You
can access the SAS data files without using any intermediate conversion steps. Short form: CEDA.

DATA step
in a SAS program, a group of statements that begins with a DATA statement and that ends with either a RUN statement,
another DATA statement, a PROC statement, or the end of the job. The DATA step enables you to read raw data or other
SAS data sets and to create SAS data sets.

DBCS
See double-byte character set.

double-byte character set
a character set that requires a variable-width encoding because many characters occupy two bytes of memory. The term
DBCS, as traditionally applied to languages such as Japanese, Korean, and Chinese, is somewhat misleading because
some DBCS characters actually require less than two bytes. Short form: DBCS.

EBCDIC
See Extended Binary Coded Decimal Interchange Code.

encoding
a mapping of a coded character set to code values.

Extended Binary Coded Decimal Interchange Code
a family of single-byte and multi-byte encodings for the representation of data on IBM mainframe and mid-range
computers. EBCDIC encodes the uppercase and lowercase letters of the English alphabet, punctuation marks, the digits
0–9, and an extended set of control characters. Short form: EBCDIC.

font
a typeface with a specific character shape, spacing, weight, and size. The characters in a font can be figures, symbols, or
alphanumeric.

glyph
the most basic element (a grapheme or combination of graphemes) of a typeface or font that is used to render text in a
writing system.

I18N
See internationalization.

Internationalization
the process of designing a software product without making assumptions that are based on a single language or locale.
Internationalization ensures that international conventions (including rules for sorting strings and for formatting dates,
times, numbers, and currencies) are supported. It also facilitates a consistent user experience across different language
editions of a product. Short form: I18N.

Multilingual Computing with SAS® 9.4

26

Multilingual Computing with SAS® 9.4

L10N
See localization.

legacy encoding
a single-byte or multi-byte encoding pre-dating the Unicode standard. Legacy encodings are limited to the characters
from a single language or a group of languages.

locale
a setting that reflects the language, local conventions, and culture for a geographic region. Local conventions can include
specific formatting rules for paper sizes, dates, times, and numbers, and a currency symbol for the country or region.
Some examples of locale values are French_Canada, Portuguese_Brazil, and Chinese_Singapore.

localization
the process of adapting software for a particular geo-cultural region (locale). Translation of the user interface, system
messages, and documentation is a large part of the localization process. Short form: L10N.

multi-byte character set
a character set that requires a variable-width encoding because that characters occupies more than one byte of memory.
DBCS and MBCS are sometimes used interchangeably, but MBCS is more accurate for describing the character sets of
languages such as Japanese, Korean, and Chinese. Short form: MBCS.

multilingual
software that supports more than one natural language simultaneously, enabling the user to access content in multiple
languages, but usually from a particular locale.

RDBMS
See relational database management system.

relational database management system
a database management system that organizes and accesses data according to relationships between data items. The
main characteristic of a relational database management system is the two-dimensional table. Examples of relational
database management systems are DB2, Oracle, Sybase, and Microsoft SQL Server. Short form: RDBMS.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of SAS data sets: SAS data files and
SAS data views. SAS data files contain data values in addition to descriptor information that is associated with the data.
SAS data views contain only the descriptor information plus other information that is required for retrieving data values
from other SAS data sets or from files whose contents are in other software vendors’ file formats.

SBCS
See single-byte character set.

single-byte character set
a type of encoding for which each character is represented using one byte of computer memory. An example of a single-
byte character set is ISO Latin 1. Short form: SBCS.

Unicode
a computing industry standard for the consistent encoding, representation and handling of text expressed in most of the
world's writing systems. Unicode includes more than 110,000 characters covering dozens of scripts, plus standards for
character properties such as uppercase and lowercase, for rendering bidirectional script, and a number of related items.

Unicode server
a workspace server that is configured in SAS to handle Unicode.

Unicode Transformation Format 8
See UTF-8.

Unicode Transformation Format 16
See UTF-16.

27

Multilingual Computing with SAS ® 9.4

Unicode Transformation Format 32
See UTF-32.

UTF-8
a multi-byte encoding that represents each Unicode character with 1 to 4 bytes. It is backward-compatible with ASCII.

UTF-16
a multi-byte encoding that represents each Unicode character with 2 or 4 bytes. It is not backward-compatible with ASCII.

UTF-32
a multi-byte encoding that represents each Unicode character with 4 bytes. It is not backward-compatible with ASCII.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.
Copyright © 2013 SAS Institute Inc., Cary, NC, USA. All rights reserved.

