Multiagent Systems

Page iii

A Modern Approach to Distributed Modern Approach to Artificial Intelligence

edited by Gerhard Weiss

The MIT Press
Cambridge, Massachusetts
London, England

©1999 Massachusetts Institute of Technology

All rights reserved. No part of the book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set in Computer Modern by Gerhard Weiss.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Page iv

Multiagent systems: a modern approach to distributed artificial intelligence / edited
by Gerhard Weiss
p. cm.
Includes bibliographical references and index.
ISBN 0-262-23203-0 (hardcover: alk. paper)
1. Intelligent agents (Computer software) 2. Distributed artificial intelligence.
I. Weiss, Gerhard, 1962- .
QAT76.76.158M85 1999
006.3—dc21 98-49797
CIP

Page v

CONTENTS IN BRIEF

Contributing Authors XiX
Preface XXi
Prologue 1
Part I: Basic Themes

1 27
Intelligent Agents

Michael Wooldridge

2 79
Multiagent Systems and Societies of Agents

Michael N. Huhns and Larry M. Stephens

3 121
Distributed Problem Solving and Planning

Edmund H. Durfee

4 165

Search Algorithms for Agents

Makoto Yokoo and Toru Ishida

5
Distributed Rational Decision Making

Thomas W. Sandholm

6
Learning in Multiagent Systems

Sandip Sen and Gerhard Weiss

7
Computational Organization Theory

Kathleen M. Carley and Les Gasser

8
Formal Methods in DAI: Logic-Based Representation and Reasoning

Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff

9
Industrial and Practical Applications of DAIH.

Van Dyke Parunak

Part I1: Related Themes

10
Groupware and Computer Supported Cooperative Work

Clarence Ellis and Jacques Wainer

11
Distributed Models for Decision Support

Jose Cuena and Sascha Ossowski

12
Concurrent Programming for DAI

Gul A. Agha and Nadeem Jamali

259

377

125

459

505

Page vi

13
Distributed Control Algorithms for Al

Geraint Tel

Glossary

Subject Index

CONTENTS IN DETAIL

Contributing Authors

Preface

Purpose, Features, Readership, How to Use This Book, One Final Word,

Acknowledgments

Prologue

Multiagent Systems and Distributed Artificial Intelligence

Intelligent Agents that Interact

Challenging Issues

Applications

Rationales for Multiagent Systems
A Guide to This Book

The Chapters

The Exercises

539

583

609

Xix

=

=

IN

|on

|

[ee]

[{e]

|©©

Page vii

The Glossary
A Few Pointers to Further Readings
References

Part I: Basic Themes

1
Intelligent Agents

Michael Wooldridge

1.1 Introduction

1.2 What Are Agents?

1.2.1 Examples of Agents

1.2.2 Intelligent Agents

1.2.3 Agents and Objects

1.2.4 Agents and Expert Systems

1.3 Abstract Architectures for Intelligent Agents
1.3.1 Purely Reactive Agents
1.3.2 Perception
1.3.3 Agents with State

1.4 Concrete Architectures for Intelligent Agents
1.4.1 Logic-based Architectures

1.4.2 Reactive Architectures

Page viii

1.4.3 Belief-Desire-Intention Architectures
1.4.4 Layered Architectures
1.5 Agent Programming Languages
1.5.1 Agent-Oriented Programming
1.5.2 Concurrent MeTATEM
1.6 Conclusions
1.7 Exercises
1.8 References

2
Multiagent Systems and Societies of Agents

Michael N. Huhns and Larry M. Stephens

2.1 Introduction
2.1.1 Motivations
2.1.2 Characteristics of Multiagent Environments
2.2 Agent Communications
2.2.1 Coordination
2.2.2 Dimensions of Meaning
2.2.3 Message Types
2.2.4 Communication Levels
2.2.5 Speech Acts
2.2.6 Knowledge Query and Manipulation Language (KQML)

2.2.7 Knowledge Interchange Format (KIF)

2.2.8 Ontologies

2.2.9 Other Communication Protocols
2.3 Agent Interaction Protocols

2.3.1 Coordination Protocols

2.3.2 Cooperation Protocols

2.3.3 Contract Net

2.3.4 Blackboard Systems

2.3.5 Negotiation

2.3.6 Multiagent Belief Maintenance

2.3.7 Market Mechanisms
2.4 Societies of Agents

2.5 Conclusions

2.6 Exercises
2.7 References

3
Distributed Problem Solving and Planning

Edmund H. Durfee

3.1 Introduction

3.2 Example Problems

3.3 Task Sharing

100

103

104

107

109

Page ix

3.3.1 Task Sharing in the Tower of Hanoi (Toll) Problem
3.3.2 Task Sharing in Heterogeneous Systems
3.3.3 Task Sharing for Distributed Sensor Network Establishment (DSNE)
3.3.4 Task Sharing for Interdependent Tasks
3.4 Result Sharing
3.4.1 Functionally Accurate Cooperation
3.4.2 Shared Repositories and Negotiated Search
3.4.3 Distributed Constrained Heuristic Search
3.4.4 Organizational Structuring
3.4.5 Communication Strategies
3.4.6 Task Structures
3.5 Distributed Planning
3.5.1 Centralized Planning for Distributed Plans
3.5.2 Distributed Planning for Centralized Plans
3.5.3 Distributed Planning for Distributed Plans
3.6 Distributed Plan Representations
3.7 Distributed Planning and Execution
3.7.1 Post-Planning Coordination
3.7.2 Pre-Planning Coordination
3.7.3 Interleaved Planning, Coordination, and Execution

3.7.4 Runtime Plan Coordination Without Communication

125

127

129

140

141

149

151

151

3.8 Conclusions
3.9 Exercises
3.10 References

4
Search Algorithms for Agents

Makoto Yokoo and Toru Ishida

4.1 Introduction
4.2 Constraint Satisfaction

4.2.1 Definition of a Constraint Satisfaction Problem

4.2.2 Filtering Algorithm
4.2.3 Hyper-Resolution-Based Consistency Algorithm
4.2.4 Asynchronous Backtracking
4.2.5 Asynchronous Weak-Commitment Search
4.3 Path-Finding Problem
4.3.1 Definition of a Path-Finding Problem
4.3.2 Asynchronous Dynamic Programming
4.3.3 Learning Real-Time A~
4.3.4 Real-Time A*
4.3.5 Moving Target Search

4.3.6 Real-Time Bidirectional Search

172

173

176

179

Page x

4.3.7 Real-Time Multiagent Search 190

4.4 Two-Player Games 191
4.4.1 Formalization of Two-Player Games 191

4.4.2 Minimax Procedure 192

4.4.3 Alpha-Beta Pruning 193

4.5 Conclusions 195

4.6 Exercises 196

4.7 References 197

5 201

Distributed Rational Decision Making

Thomas W. Sandholm

5.1 Introduction 201
5.2 Evaluation Criteria 202
5.2.1 Social Welfare 202
5.2.2 Pareto Efficiency 202
5.2.3 Individual Rationality 203
5.2.4 Stability 203
5.2.5 Computational Efficiency 204
5.2.6 Distribution and Communication Efficiency 204
5.3 Voting 204
5.3.1 Truthful Voters 205

5.3.2 Strategic (Insincere) Voters 207

5.4 Auctions
5.4.1 Auction Settings
5.4.2 Auction Protocols
5.4.3 Efficiency of the Resulting Allocation
5.4.4 Revenue Equivalence and Non-Equivalence
5.4.5 Bidder Collusion
5.4.6 Lying Auctioneer
5.4.7 Bidders Lying in Non-Private-Value Auctions

5.4.8 Undesirable Private Information Revelation

5.4.9 Roles of Computation in Auctions
5.5 Bargaining
5.5.1 Axiomatic Bargaining Theory
5.5.2 Strategic Bargaining Theory
5.5.3 Computation in Bargaining
5.6General Equilibrium Market Mechanisms
5.6.1 Properties of General Equilibrium
5.6.2 Distributed Search for a General Equilibrium
5.6.3 Speculative Strategies in Equilibrium Markets

5.7 Contract Nets

220

220

221

224

225

226

229

Page xi

5.7.1 Task Allocation Negotiation
5.7.2 Contingency Contracts and Leveled Commitment Contracts

5.8 Coalition Formation
5.8.1 Coalition Formation Activity 1: Coalition Structure Generation
5.8.2 Coalition Formation Activity 2: Optimization within a Coalition
5.8.3 Coalition Formation Activity 3: Payoff Division

5.9 Conclusions

5.10 Exercises

5.11 References

6
Learning in Multiagent Systems

Sandip Sen and Gerhard Weiss

6.1 Introduction
6.2 A General Characterization
6.2.1 Principal Categories
6.2.2 Differencing Features
6.2.3 The Credit-Assignment Problem
6.3 Learning and Activity Coordination
6.3.1 Reinforcement Learning
6.3.2 Isolated, Concurrent Reinforcement Learners
6.3.3 Interactive Reinforcement Learning of Coordination

6.4 Learning about and from Other Agents

241

242

247

247

270

272

6.4.1 Learning Organizational Roles

6.4.2 Learning in Market Environments

6.4.3 Learning to Exploit an Opponent

6.5 Learning and Communication

6.5.1 Reducing Communication by Learning
6.5.2 Improving Learning by Communication
6.6 Conclusions
6.7 Exercises
6.8 References

7
Computational Organization Theory

Kathleen M. Carley and Les Gasser

7.1 Introduction
7.1.1 What Is an Organization?
7.1.2 What Is Computational Organization Theory?
7.1.3 Why Take a Computational Approach?
7.2 Organizational Concepts Useful in Modeling Organizations
7.2.1 Agent and Agency
7.2.2 Organizational Design

7.2.3 Task

273

275

283

284

300

302

305

306

307

Page xii

7.2.4 Technology

7.3 Dynamics

7.4 Methodological Issues
7.4.1 Virtual Experiments and Data Collection
7.4.2 Validation and Verification
7.4.3Computational Frameworks

7.5 Conclusions

7.6 Exercises

7.7 References

8
Formal Methods in DAI: Logic-Based Representation and Reasoning

Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff

8.1 Introduction
8.2 Logical Background
8.2.1 Basic Concepts
8.2.2 Propositional and Predicate Logic
8.2.3 Modal Logic
8.2.4 Deontic Logic
8.2.5 Dynamic Logic
8.2.6 Temporal Logic
8.3 Cognitive Primitives

8.3.1 Knowledge and Beliefs

320

323

325

326

332

333

334

335

336

337

3338

342

343

8.3.2 Desires and Goals

8.3.3 Intentions

8.3.4 Commitments

8.3.5 Know-How

8.3.6 Sentential and Hybrid Approaches

8.3.7 Reasoning with Cognitive Concepts
8.4 BDI Implementations

8.4.1 Abstract Architecture

8.4.2 Practical System
8.5 Coordination

8.5.1 Architecture

8.5.2 Specification Language

8.5.3 Common Coordination Relationships
8.6 Communications

8.6.1 Semantics

8.6.2 Ontologies
8.7 Social Primitives

8.7.1 Teams and Organizational Structure

8.7.2 Mutual Beliefs and Joint Intentions

343

344

345

346

348

349

349

350

356

356

358

359

360

360

362

362

362

Page xiii

8.7.3 Social Commitments
8.7.4 Group Know-How and Intentions
8.8 Tools and Systems
8.8.1 Direct Implementations
8.8.2 Partial Implementations
8.8.3 Traditional Approaches
8.9 Conclusions
8.10 Exercises
8.11 References

9
Industrial and Practical Applications of DAIH.

Van Dyke Parunak

9.1 Introduction

9.2 Why Use DAL in Industry?

9.3 Overview of the Industrial Life-Cycle

9.4 Where in the Life Cycle Are Agents Used?
9.4.1 Questions that Matter
9.4.2 Agents in Product Design
9.4.3 Agents in Planning and Scheduling

9.4.4 Agents in Real-Time Control

363

363

364

364

366

363

363

369

371

377

377

378

381

385

385

387

395

9.5 How Does Industry Constrain the Life Cycle of an Agent-Based System?
9.5.1 Requirements, Positioning, and Specification
9.5.2 Design: The Conceptual Context
9.5.3 Design: The Process
9.5.4 System Implementation
9.5.5 System Operation
9.6 Development Tools
9.7 Conclusions
9.8 Exercises
9.9 References

Part I1: Related Themes

10
Groupware and Computer Supported Cooperative Work

Clarence Ellis and Jacques Wainer

10.1 Introduction

10.1.1 Well-Known Groupware Examples
10.2 Basic Definitions

10.2.1 Groupware

10.2.2 Computer Supported Cooperative Work
10.3 Aspects of Groupware

10.3.1 Keepers

399

399

401

407

409

414

415

416

425

425

425

426

426

427

428

429

Page xiv

10.3.2 Coordinators

10.3.3 Communicators

10.3.4 Team-Agents

10.3.5 Agent Models

10.3.6 An Example of Aspect Analysis of a Groupware
10.4 Multi-Aspect Groupware

10.4.1 Chautauqua — A Multi-Aspect System
10.5 Social and Group Issues in Designing Groupware Systems
10.6 Supporting Technologies and Theories

10.6.1 Keepers

10.6.2 Coordinators

10.6.3 Communicators

10.6.4 Team-Agents

10.7 Other Taxonomies of Groupware

10.7.1 Space/Time Matrix
10.7.2 Application Area

10.8 Groupware and Internet
10.8.1 Internet as Infrastructure

10.8.2 Internet as Presumed Software

434

436

437

441

442

442

443

445

445

445

446

446

447

447

447

448

449

449

Page xv

10.9 Conclusions 451

10.9.1 Incorporating Communicators into Keepers 451

10.9.2 Incorporating Keepers and Communicators into Coordinators 451

10.9.3 Future Research on Agents 452

10.9.4 Future Research on Keepers 452

10.10 Exercises 453
10.11 References 455

11 459

Distributed Models for Decision Support

Jose Cuena and Sascha Ossowski

11.1 Introduction 459
11.2 Decision Support Systems 460
11.2.1 The Decision Support Problem 460
11.2.2 Knowledge-Based Decision Support 462
11.2.3 Distributed Decision Support Models 464
11.3 An Agent Architecture for Distributed Decision Support Systems 467
11.3.1 Information Model 468
11.3.2 Knowledge Model 469
11.3.3 Control Model 471
11.4 Application Case Studies 472
11.4.1 Environmental Emergency Management 472

11.4.2 Energy Management 479

11.4.3 Road Traffic Management
11.5 Couclusions
11.6 Exercises

11.7 References

12
Concurrent Programming for DAI

Gul A. Agha and Nadeem Jamali

12.1 Introduction

12.2 Defining Multiagent Systems

12.3 Actors

12.3.1 Semantics of Actors
12.3.2 Equivalence of Actor Systems
12.3.3 Actors and Concurrent Programming
12.4 Representing Agents as Actors
12.4.1 Mobility of Actors
12.4.2 Resource Model
12.5 Agent Ensembles
12.5.1 Customizing Execution Contexts
12.5.2 Interaction Protocols

12.5.3 Coordination

483

496

497

503

505

505

506

508

522

522

526

527

Page xvi

12.5.4 Naming and Groups
12.6 Related Work
12.7 Conclusions
12.8 Exercises
12.9 References

13
Distributed Control Algorithms for Al

Gerard Tel

13.1 Introduction

13.1.1 Model of Computation

13.1.2 Complexity Measures

13.1.3 Examples of Distributed Architectures in Al
13.2 Graph Exploration

13.2.1 Depth-First Search

13.2.2 Pseudo-Fast Exploration: the Echo Algorithm

13.2.3 Searching for Connectivity Certificates
13.3 Termination Detection

13.3.1 Problem Definition

13.3.2 Tracing Algorithms

13.3.3 Probe Algorithms

13.4 Distributed Arc Consistency and the Constraint Satisfaction Problem
(CSP)

530

533

534

535

539

539

540

541

543

544

544

552

556

556

557

560

562

13.4.1 Constraint Satisfaction and Arc Consistency

13.4.2 The AC4 Algorithm

13.4.3 The Distributed AC4 Algorithm

13.4.4 Termination Detection

13.4.5 Partitioning for Multiprocessor Computers

13.4.6 Distributed Constraint Satisfaction Algorithm
13.5 Distributed Graph Processing

13.5.1 The Problem: Loop Cutset

13.5.2 Distributed Execution of the Algorithm

13.5.3 Complexity and Conclusions

13.6 Conclusions

13.7 Exercises

13.8 References

Glossary

Subject Index

562

563

565

567

568

568

570

570

571

575

576

577

578

583

609

Page xvii

CONTRIBUTING AUTHORS

Gul A. Agha

Open Systems Laboratory

Department of Computer Science
University of Illinois at Urbana-Champaign
1304 West Springfield Avenue

Urbana, IL 61801, USA

Kathleen M. Carley

Department of Social and Decision Sciences
Carnegie Mellon University

Pittsburgh, PA 15213, USA

Jose Cuena

Department of Artificial Intelligence
Technical University of Madrid
Cronpus de Montegancedo s/n
28660 Boadilla del Monte, Spain

Edmund H. Durfee

Artificial Intelligence Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, M1 48109, USA

Clarence (Skip) Ellis
Department of Computer Science
University of Colorado

Boulder GO 80309-0430, USA

Les Gasser

Information Technology and Organizations Program
National Science Foundation

4201 Wilson Blvd.

Arlington, Va. 22230, USA

Michael P. Georgeff

Australian Al Institute

171 La Trobe Street

Melbourne, Victoria 3000, Australia

Michael N. Huhns

Center for Information Technology

Department of Electrical & Computer Engineering
University of South Carolina

Columbia, SC 29208, USA

Page Xix

Toru Ishida

Department of Information Science
Kyoto University
Yoshida-honmachi, Sakyo-ku
Kyoto, 606-01, Japan

Nadeem Jamali

Open Systems Laboratory

University of Illinois at Urbana-Champaign
1304 West Springfield Avenue

Urbana, IL 61801, USA

Sascha Ossowski

Department of Artificial Intelligence
Technical University of Madrid
Campus de Montegancedo s/n
28660 Boadilla del Monte, Spain

H. Van Dyke Parunak
Industrial Technology Institute
PO Box 1485

Ann Arbor, M1 48106 USA

Anand S. Rao

Mitchell Madison Group

Level 49, 120 Collins Street
Melbourne, Vic 3000, Australia

Tuomas Sandholm

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

St. Louis, MO 63130-4899, USA

Sandip Sen

Department of Mathematical & Computer Science
University of Tulsa

600 South College Avenue

Tulsa, OK 74104-3189, USA

Munindar P. Singh

Department of Computer Science
446 EGRC/Box 7534

1010 Main Campus Drive

North Carolina State University
Raleigh, NC 27695-7534, USA

Page xx

Larry N. Stephens

Center for Information Technology

Department of Electrical & Computer Engineering
University of South Carolina

Columbia, SC 29208, USA

Gerard Tel

Utrecht University

Department of Computer Science
Padualaan 14, 3584 CH Utrecht
The Netherlands

Jacques Wainer

Instituto de Computacao *
Universidade Estadual de Campinas
Caixa Postal 6176

Campinas, SP 13083-970, Brazil

Gerhard Weiss

Institut for Informatik
Technische Universitat Minchen
D-80290 Miinchen, Germany

Mike Wooldridge

Dept of Electronic Engineering
Queen Mary & Westfield College
University of London

London E1 4NS, United Kingdom

Makoto Yokoo

NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun
Kyoto 619-02, Japan

PREFACE

Page xxi

Purpose — The study of multiagent systems began in the field of distributed artificial intelligence (DAI) about 20 years
ago. Today these systems are not simply a research topic, but are also beginning to become an important subject of
academic teaching and industrial and commercial application. While there are several high-quality collections of articles
on multiagent systems and DAL in print, most of these are proceedings of conferences and workshops. What is urgently
needed is a book that offers a comprehensive and up-to-date introduction and is suitable as a textbook for the field. The

purpose of this volume is to fulfill this need.

Features — The book offers a number of features that make it especially useful to readers:

javascript:doPopup('Popup','Page_xx_Popup_1.html','width=288,height=192,resizable=yes,scrollbars=yes')

* Scope. It is designed as an introductory text and a textbook that covers the whole range of multiagent systems. The
book reflects the state of the art in this field, and treats basic themes (Part 1) as well as several closely related themes
(Part 1) in detail.

* Theory. It gives a clear and careful presentation of the key concepts, methods, and algorithms that form the core of the
field. Many illustrations and examples are provided.

* Practice. The emphasis is not only on theory, but also on practice. In particular, the book includes a number of thought-
provoking exercises of varying degrees of difficulty at the end of each chapter that allow the reader to gain practical
experience.

* Glossary. It contains an extensive glossary that provides the reader with compact explanations of relevant terminology
used in the field.

« Expertise. Its chapters have been written by leading and outstanding authorities. This guarantees that the book is built
on a very broad and diverse basis of knowledge and experience.

It is worth saying a little more about the last-mentioned feature. It is clear that a book prepared by just a few authors, as
textbooks usually are, is likely to be more coherent than a book in which many authors are involved. But as the reader
will see, the contributors to Multiagent Systems have invested considerable effort in ensuring the coherence of this book
(and, in so doing, they practiced some of the basic issues—cooperation and negotiation—described in their chapters).

Page xxii
Readership — The book is primarily intended to meet the interests of the following audiences:

* Professors and students who require an up-to-date, in-depth source of material for their courses on multiagent systems
and DAL. Below it is described how the book can be used as the basis of a number of different courses.

* Researchers in the field who wish to branch out beyond the area in which they are specialized to better understand the
field as a whole, to investigate relationships between their own work and work by others, and to obtain valuable stimuli
for their future research activities.

« Software practitioners and professionals from industry who want to find out whether and how the technologies
available in the field can be usefully applied in their working domains.

Owing to the potential impact of multiagent systems on a variety of disciplines, this book can also serve as a repository
and primary reference volume for computer scientists, sociologists, economists, management and organization scientists,
engineers, psychologists, and philosophers.

How to Use This Book — The book can be used for teaching as well as self-study. The chapters and consequently the
overall book are designed to be self-contained and understandable without additional material. Of course, there are many
relationships between the chapters, but in principle they can be treated independently and read in any sequence. |
recommended, however, to start with Chapters 1 and 2.

This book can be used as a text for a graduate or advanced undergraduate course. A one-quarter course should
concentrate on the first three chapters of Part | of the book; with whatever time remains, further chapters of Part I, or
parts of them, could be covered. A course based on Part | could comfortably occupy a full semester. A course fully
covering Part I, Part 11, and some separate material could take an entire year. The book is also useful as a supplementary
text for a general Al course; for instance, within such a course the considerations on “classical™ Al topics like problem
solving and search could be enriched by Chapter 3 and Chapter 4, respectively. Moreover, most chapters could be also
used as the starting material for speciality courses and seminars; for instance, Chapter 5, Chapter 6, and Chapter 7 could
be used for courses devoted to distributed decision making, distributed machine learning, and computational
organization theory, respectively. Although it is obvious, | finally want to mention that Chapter 8 should be part of
courses with an emphasis on theory, while Chapter 9 should be part of courses with a focus on applications.

The exercises allow the reader to further deepen her or his knowledge, and course instructors might use them for putting
more emphasis on practical aspects. Some exercises are fairly simple and are intended to make sure that the material
provided

Page xxiii

in the chapters is mastered. Others are much more difficult and may serve as a subject of class discussions or advanced
team work.

Throughout the book numerous references to the source literature are provided. They enable interested students to
further pursue specific aspects, and they support professors in choosing additional course material.

The chapters can be understood without specific prior knowledge. However, a background in computer science and
mathematics/logic definitely would be helpful in using all parts of the book most efficiently.

One Final Word — When working through this book, the reader is asked to keep in mind that multiagent systems and
DAI constitute a young and dynamic field of interdisciplinary nature whose defining boundaries are not yet fully clear. It
is my particular hope that this book contributes to the search for sharper boundaries by spurring further research,
teaching, and application in this fascinating field.

Acknowledgments — This book would not have happened without the help of many people. | am most greateful to the
authors for participating in this challenging project. They contributed significantly to this book not only by preparing and
coordinating their texts—the chapters, the chapter descriptions included in the Prologue, and the index and glossary
entries—but also by providing many useful comments and suggestions on how the book’s overall quality could be further
improved. It was the authors' enthusiasm and encouragement that often made my editorial work easier. Particular thanks
are due to Mike Wooldridge and Munindar Singh for reading a draft of the Prologue.

At The MIT Press, | am grateful to Robert Prior for providing expert assistance and support during this project whenever
necessary.

I give my warmest thanks to my wife, Tina, for her tolerance and patience at the many evenings and weekends | worked
on this book.

Over the course of this project | have been financially supported by DFG (German National Science Foundation) under
grant Wel718/6-1.

Of course, despite the authors' influencing comments and suggestions, responsibility for the conception of this book and
the final selection of the chapter themes ultimately lies with me.

GERHARD WEIR

Page 1

PROLOGUE

Multiagent Systems and Distributed Artificial Intelligence

Since its inception in the mid to late 1970s distributed artificial intelligence (DAI) evolved and diversified rapidly.
Today it is an established and promising research and application field which brings together and draws on results,
concepts, and ideas from many disciplines, including artificial intelligence (Al), computer science, sociology,
economics, organization and management science, and philosophy. Its broad scope and multi-disciplinary nature make it
difficult to precisely characterize DALI in a few words. The following definition is intended to serve as a starting point for
exploring this arena and as a constant point of reference for reading through this book:

DAL is the study, construction, and application of multiagent systems, that is, systems in which several interacting, intelligent
agents pursue some set of goals or perform some set of tasks.

An agent is a computational entity such as a software program or a robot that can be viewed as perceiving and acting
upon its environment and that is autonomous in that its behavior at least partially depends on its own experience. As an
intelligent entity, an agent operates flexibly and rationally in a variety of environmental circumstances given its
perceptual and effectual equipment. Behavioral flexibility and rationality are achieved by an agent on the basis of key
processes such as problem solving, planning, decision making, and learning. As an interacting entity, an agent can be
affected in its activities by other agents and perhaps by humans. A key pattern of interaction in multiagent systems is
goal- and task-oriented coordination, both in cooperative and in competitive situations. In the case of cooperation several
agents try to combine their efforts to accomplish as a group what the individuals cannot, and in the case of competition
several agents try to get what only some of them can have. The long-term goal of DAI is to develop mechanisms and
methods that enable agents to interact as well as humans (or even better), and to understand interaction among intelligent
entities whether they are computational, human, or both. This goal raises a number of challenging issues that all are
centered around the elementary question of when and how to interact with whom.

Two main reasons to deal with DAI can be identified, and these two reasons are the primary driving forces behind the
growth of this field in recent years. The first is that multiagent systems have the capacity to play a key role in current and
future

Page 2

computer science and its application. Modern computing platforms and information environments are distributed, large,
open, and heterogeneous. Computers are no longer stand-alone systems, but have became tightly connected both with
each other and their users. The increasing complexity of computer and information systems goes together with an
increasing complexity of their applications. These often exceed the level of conventional, centralized computing because
they require, for instance, the processing of huge amounts of data, or of data that arises at geographically distinct
locations. To cope with such applications, computers have to act more as "individuals" or agents, rather than just "parts."”
The technologies that DAI promises to provide are among those that are urgently needed for managing high-level
interaction in and intricate applications for modern computing and information processing systems.

The second reason is that multiagent systems have the capacity to play an important role in developing and analyzing
models and theories of interactivity in human societies. Humans interact in various ways and at many levels: for
instance, they observe and model one another, they request and provide information, they negotiate and discuss, they
develop shared views of their environment, they detect and resolve conflicts, and they form and dissolve organizational
structures such as teams, committees, and economies. Many interactive processes among humans are still poorly
understood, although they are an integrated part of our everyday life. DAI technologies enable us to explore their
sociological and psychological foundations.

Intelligent Agents that Interact

To make the above considerations more concrete, a closer look has to be taken on multiagent systems and thus on
"interacting, intelligent agents™:

* "Agents" are autonomous, computational entities that can be viewed as perceiving their environment through sensors
and acting upon their environment through effectors. To say that agents are computational entities simply means that
they physically exist in the form of programs that run on computing devices. To say that they are autonomous means that
to some extent they have control over their behavior and Call act without the intervention of humans and other systems.
Agents pursue goals or carry out tasks in order to meet their design objectives, and in general these goals and tasks can
be supplementary as well as conflicting.

* "Intelligent"” indicates that the agents pursue their goals and execute their tasks such that they optimize some given
performance measures. To say that agents are intelligent does not mean that they are omniscient or omnipotent, nor does
it mean that they never fail. Rather, it means that they operate flexibly and rationally in a variety of environmental
circumstances, given the information they have and their perceptual and effectual capabilities. A major

Page 3

focus of DAI therefore is on processes such as problem solving, planning, search, decision making, and learning that
make it possible for agents to show flexibility and rationality in their behavior, and on the realization of such processes
in multiagent scenarios.

* "Interacting" indicates that the agents may be affected by other agents or perhaps by humans in pursuing their goals and
executing their tasks. Interaction can take place indirectly through the environment in which they axe embedded (e.g., by
observing one another or by carrying out an action that modifies the environmental state) or directly through a shared
language (e.g., by providing information in which other agents are interested or which confuses other agents). DAI
primarily focuses on coordination as a form of interaction that is particularly important with respect to goal attainment
and task completion. The purpose of coordination is to achieve or avoid states of affairs that axe considered as desirable
or undesirable by one or several agents. To coordinate their goals and tasks, agents have to explicitly take dependencies
among their activities into consideration. Two basic, contrasting patterns of coordination axe cooperation and
competition. In the case of cooperation, several agents work together and draw on the broad collection of their
knowledge and capabilities to achieve a common goal. Against that, in the case of competition, several agents work
against each other because their goals are conflicting. Cooperating agents try to accomplish as a team what the
individuals cannot, and so fail or succeed together. Competitive agents try to maximize their own benefit at the expense
of others, and so the success of one implies the failure of others.

It has to be stressed that there is no universally accepted definition of agency or of intelligence, and the above
explanations axe just intended to show how these terms are generally understood and what is generally considered as
essential for an entity to be an intelligent agent. The concept of an intelligent agent that interacts allows various degrees
of degradation, and is perhaps best viewed as a "guideline™ for designing and analyzing systems rather than an
"instruction” that allows no variation, or a precise “criterion™ that always allows one to determine whether an object does
or does not fulfill it. A useful catalog of agent theories and systems is provided in [45]. Another popular text on agents is
[38, Chapter 2]. A recent overview of key themes in agent research is given in [22].

In [25] the following major characteristics of multiagent systems are identified:
* each agent has just incomplete information and is restricted in its capabilities;
system control is distributed;

edata is decentralized; and

» computation is asynchronous.

Multiagent systems can differ in the agents themselves, the interactions among the agents, and the environments in
which the agents act. The following table gives an overview of some attributes of multiagent systems, together with their
potential range (an extensive overview is offered in [22]):

Page 4
attribute range
number from two upward
uniformity homogeneous . . . heterogeneous
agents goals contradicting . . . complementary
architecture reactive . . . deliberative

abilities (sensors, effectors, cognition) | simple . .. advanced

frequency low ... high

persistence short-term . . . long-term

level signal-passing . . . knowledge-intensive
interaction pattern (flow of data and control) decentralized . . . hierarchical

variability fixed . . . changeable

purpose competitive . . . cooperative

predictability forseeable . . . unforseeable

accessibility and knowability unlimited . . . limited
environment dynamics fixed . . . variable

diversity poor . .. rich

availability of resources restricted . . . ample

Traditionally two primary types of DAI systems have been distinguished [2]: multiagent systems in which several agents
coordinate their knowledge and activities and reason about the processes of coordination; and distributed problem
solving systems in which the work of solving a particular problem is divided among a number of nodes that divide and
share knowledge about the problem and the developing solution. Whereas initially the emphasis of work on multiagent
systems was on behavior coordination, the emphasis of work on distributed problem solving systems was on task
decomposition and solution synthesis. The modern concept of multi- agent systems as described above covers both types
of systems. For that reason, and in accordance with contemporary usage, in this book no explicit distinction is made
between multiagent systems and distributed problem solving systems, and the terms multiagent system and DAI system
are used synonymously.

The role that the concept of a multiagent system plays in DAI is comparable to the role that the concept of an individual
agent plays in traditional Al (see, e.g., [33, 36, 38]). Broadly construed, both DAI and traditional Al deal with
computational aspects of intelligence, but they do so from different points of view and under different assumptions.
Where traditional Al concentrates on agents as "intelligent stand-alone systems™ and on intelligence as a property of
systems that act in isolation, DAI concentrates on agents as "intelligent connected systems™ and

Page 5

on intelligence as a property of systems that interact. Where traditional Al focuses on "cognitive processes"” within
individuals, DAI focuses on "social processes” in groups of individuals. Where traditional Al considers systems having a
single locus of internal reasoning and control and requiring just minimal help from others to act successfully, DAI
considers systems in which reasoning and control is distributed and successful activity is a joint effort. And where
traditional Al uses psychology and behaviorism for ideas, inspiration, and metaphor, DAI uses sociology and economics.
In this way, DAL is not so much a specialization of traditional Al, but a generalization of it.

Challenging Issues

To build a multiagent system in which the agents "do what they should do™ turns out to be particularly difficult in the
light of the basic system characteristics mentioned above. The only way to cope with these characteristics is to enable the
agents to interact appropriately, and thus the elementary question faced by DAI is When and how should which agents
interact—cooperate and compete—to successfully meet their design objectives? Based on the common distinction
between the "micro™ or agent level and the "macro™ or group level (e.g., see [31]), in principle one can follow two
different routes to answer this question:

* bottom up: to search for specific agent-level capabilities that result in appropriate interaction at the overall group level,
or

* top down: to search for specific group-level rules—called conventions, norms, and so on—that appropriately constrain
the interaction repertoire at the level of the individual agents.

(The question how agent-level—individual—activity and group-level—societal— rules and structures are related to each
other is known as the micro-macro problem in sociology.) No matter which route is chosen, this question raises several
challenging, intertwined issues (items 1 to 5 were first mentioned in [2], and item 6 and items 7 and 8 were additionally
formulated in [31] and [25], respectively):

1. How to enable agents to decompose their goals and tasks, to allocate sub-goals and sub-tasks to other agents, and to
synthesize partial results and solutions.

2. How to enable agents to communicate. What communication languages and protocols to use.

3. How to enable agents to represent and reason about the actions, plans, and knowledge of other agents in order to
appropriately interact with them.

4. How to enable agents to represent and reason about the state of their interaction processes. How to enable them to find
out whether they have achieved progress in their coordination efforts, and how to enable them to improve the state of
their coordination and to act coherently.

Page 6

5. How to enable agents to recognize and reconcile disparate viewpoints and conflicts. How to syntheze views and
results.

6. How to engineer and constrain practical multiagent systems. How to design technology platforms and development
methodologies for DAL.

7. How to effectively balance local computation and communication.
8. How to avoid or mitigate harmful (e.g., chaotic or oscillatory) overall system behavior.
9. How to enable agents to negotiate and contract. What negotiation and contract protocols should they use.

10. How to enable agents to form and dissolve organizational structures—teams, alliances, and so on—that are suited for
attaining their goals and completing their tasks.

11. How to formally describe multiagent systems and the interactions among agents. How to make sure that they are
correctly specified.

12. How to realize "intelligent processes" such as problem solving, planning, decision making, and learning in
multiagent contexts. How to enable agents to collectively carry out such processes in a coherent way.

To provide solutions to these issues is the core request of DAL.

Applications

Many existing and potential industrial and commercial applications for DAI and multiagent systems are described in the
literature (e.g., see [23, 24] and also [26]). Basically following [25] (here the readers find a number of pointers to
specific work), examples of such applications are:

« Electronic commerce and electronic markets, where "buyer” and "seller” agents purchase and sell goods on behalf of
their users.

* Real-time monitoring and management of telecommunication networks, where agents are responsible, e.g., for call
forwarding and signal switching and transmission.

* Modelling and optimization of in-house, in-town, national- or world-wide transportation systems, where agents
represent, e.g., the transportation vehicles or the goods or customers to be transported.

« Information handling in information environments like the Internet, where multiple agents are responsible, e.g., for
information filtering and gathering.

* Improving the flow of urban or air traffic, where agents are responsible for appropriately interpreting data arising at
different sensor stations.

» Automated meeting scheduling, where agents act on behalf of their users to fix meeting details like location, time, and
agenda.

Page 7

* Optimization of industrial manufacturing and production processes like shop-floor scheduling or supply chain
management, where agents represent, e.g., different workcells or whole enterprises.

* Analysis of business processes within or between enterprises, where agents represent the people or the distinct
departments involved in these processes in different stages and at different levels.

» Electronic entertainment and interactive, virtual reality-based computer games, where, e.g., animated agents equipped
with different characters play against each other or against humans.

« Design and re-engineering of information- and control-flow patterns in large-scale natural, technical, and hybrid
organizations, where agents represent the entities responsible for these patterns.

* Investigation of social aspects of intelligence and simulation of complex social phenomena such as the evolution of
roles, norms, and organzational structures, where agents take on the role of the members of the natural societies under
consideration.

What these applications have in common is that they show one or several of the following features [2]:

« Inherent Distribution — They are inherently distributed in the sense that the data and information to be processed
* arise at geographically different locations (“spatial distribution");
* arise at different times (“temporal distribution™);

« are structured into clusters whose access and use requires familiarity with different ontologies and languages
("semantic distribution™); and/or

* are structured into clusters whose access and use requires different perceptual, effectual, and cognitive capabilities
("functional distribution™).

* Inherent Complexity — They are inherently complex in the sense that they are too large to be solved by a single,
centralized system because of limitations available at a given level of hardware or software technology. To enlarge a
centralized system such that it meets the requirements of inherently complex applications usually is very difficult, time-
consuming, and costly. Moreover, such an enlargement often results in solutions that are brittle and that become useless
as soon as the application requirements change only slightly.

Solving inherently distributed and complex applications in a centralized way is obviously not only counter-intuitive, but
often not even possible at all. The alternative is to distribute the solution process across multiple entities capable of
intelligent coordination—and DAI aims at developing technologies and methodologies for realizing this alternative in a
very natural way [15].

Page 8

Rationales for Multiagent Systems
The two major reasons that cause people to study multiagent systems are:

 Technological and Application Needs — Multiagent systems offer a promising and innovative way to understand,
manage, and use distributed, large-scale, dynamic, open, and heterogeneous computing and information systems. The
Internet is the most prominent example of such systems; other examples are multi-database systems and in-house
information systems. Computers and computer applications play an increasingly important and influencing part in our
everyday life, as they become more powerful and more tightly connected both with each other through long-range and
local-area networks and with humans through user-interfaces. These systems are too complex to be completely
characterized and precisely described. As their control becomes more and more decentralized, their components act more
and more like "individuals™ that deserve attributes like autonomous, rational, intelligent, and so forth rather than just as
"parts.” DAI does not only aim at providing know-how for building sophisticated interactive systems from scratch, but
also for interconnecting existing legacy systems such that they coherently act as a whole. Moreover, like no other
discipline, DAI aims at providing solutions to inherently distributed and inherently complex applications. As we saw
above, these applications are hard to solve with centralized computing technology. Many real world applications, if not
most, fall into this class, and they are present in many domains such as scheduling, manufacturing, control, diagnosis,
and logistics.

« Natural View of Intelligent Systems — Multiagent systems offer a natural way to view and characterize intelligent
systems. Intelligence and interaction are deeply and inevitably coupled, and multiagent systems reflect this insight.
Natural intelligent systems, like humans, do not function in isolation. Instead, they are at the very least a part of the
environment in which they and other intelligent systems operate. Humans interact in various ways and at various levels,
and most of what humans have achieved is a result of interaction. DAI can provide insights and understanding about
poorly understood interactions among natural, intelligent beings, as they organize themselves into various groups,
committees, societies, and economies in order to achieve improvement.

In addition, multiagent systems, as distributed systems, have the capacity to offer several desirable properties [2]:

» Speed-up and Efficiency — Agents can operate asynchronously and in parallel, and this can result in an increased
overall speed (provided that the overhead of necessary coordination does not outweigh this gain).

* Robustness and Reliability— The failure of one or several agents does not necessarily make the overall system useless,
because other agents already available in the system may take over their part.

Page 9

« Scalability and Flexibility — The system can be adopted to an increased problem size by adding new agents, and this
does not necessarily affect the operationality of the other agents.

* Costs — It may be much more cost-effective than a centralized system, since it could be composed of simple
subsystems of low unit cost.

* Development and Reusability — Individual agents can be developed separately by specialists (either from scratch or on
the basis of already available hardware and/or software facilities), the overall system can be tested and maintained more
easily, and it may be possible to reconfigure and reuse agents in different application scenarios.

The available computer and network technology forms a sound platform for realizing these systems. In particular, recent
developments in object-oriented programming, parallel and distributed computing, and mobile computing, as well as
ongoing progress in programming and computing standardization efforts such as KSE (e.g.,
http://www.cs.umbc.edu/kse/), FIPA (e.g., http://drogo.cselt.stet.it/fipa/), and CORBA (e.qg., http://www.rhein-
neckar.de/ cetus/oo_corba.html and http:// industry. ebi.ac.uk/ corba/) are expected to further improve the possibilities of
implementing and applying DAI techniques and methods.

A Guide to This Book

The Chapters

The book is divided into two parts. Part | contains nine chapters, each treating a core theme in the field of multiagent
systems and DALI:

* Chapter 1 concentrates on agents—the "micro" level referred to above.

» Chapter 2 expands the considerations of Chapter 1 by focusing on systems of agents and the computational
infrastructure required for interaction—the "macro” level referred to above.

* Chapters 3 to 6 address elementary "intelligent activities” and their realization in multiagent systems, namely,
* problem solving and planning,
* search,
« decision making, and
* learning.

* Chapter 7 shows how processes of organizing, as they occur among agents and humans, can be computationally
modelled.

Page 10

« Chapter 8 describes formal methods for studying and constructing agents and multiagent systems.

 Chapter 9 concentrates on applications of agent and multiagent system technology.

Part Il includes chapters on closely related, selected themes from computer science and software engineering:
* Chapter 10 focuses on groupware and computer supported cooperative work.

 Chapter 11 concentrates on distributed decision support systems.

 Chapter 12 discusses various issues of concurrent programming.

 Chapter 13 describes distributed control algorithms.

The relevance of these themes for the field can be easily seen. Agents in a multiagent system often have to coordinate
their activities, and so there is a need for technologies that support them in acting coherently as a group; additionally,
groupware and computer supported cooperative work constitute an important application domain for multiagent systems.
Agents in a multiagent system often have to jointly make decisions, and so there is a need for technologies that support
them in their distributed decision processes; moreover, distributed decision making is another obvious application
domain for multiagent systems. There is a need for powerful concurrent programming techniques that allow to
efficiently implement multiagent systems as parallel and distributed systems. And finally, there is an obvious need for
mechanisms and methods that enable agents to control their distributed computations.

In the following, the individual chapters and their themes are motivated in more detail.

Chapter 1, "Intelligent Agents'* by Michael Wooldridge — This chapter aims to introduce the reader to the basic
issues surrounding the design and implementation of intelligent agents. It begins by motivating the idea of an agent,
presents a definition of agents and intelligent agents, and then discusses the relationship between agents and other
software paradigms (in particular, objects and expert systems). The chapter then goes on to discuss four major
approaches to building agents. First, logic based architectures are reviewed. In logic based architectures, decision-
making is viewed as logical deduction: the process of deciding which action to perform is reduced to a theorem proving
problem. Such architectures have the advantage of semantic clarity, and in addition allow us to bring to bear all the
apparatus of logic and theorem proving that has been developed in Al and computer science over the years. However,
such architectures suffer from a number of drawbacks, not the least of which being that purely logical architectures do
not seem well suited to domains that are subject to real time constraints. Second, reactive architectures are discussed.
The characteristic of such architectures is that they eschew symbolic representations and reasoning in favour of a closer

Page 11

relationship between agent perception and action. Such architectures are more economical in computational terms,
making them well-suited to episodic environments that require real-time performance. However, the process of
engineering such architectures is not well understood. Third, belief-desire-intention architectures are discussed. In such
architectures, decision making is viewed as practical reasoning from beliefs about how the world is and will be to the
options available to an agent, and finally to intentions and actions. The process is somewhat similar to the kind of “folk
reasoning” that humans use every day in deciding what to do. Belief-desire-intention architectures also have an attractive
formalization, discussed elsewhere in this book. Fourth, layered agent architectures are reviewed. In such architectures,
decision making is partitioned into a number of different decision making layers, each dealing with the agent's
environment at a different level of abstraction. Layered agent architectures provide a natural way of decomposing agent
functionality, and are currently a popular approach to agent design. In particular, the horizontally layered
TOURINGMACHINES architecture and the vertically layered INTERRAP architecture are discussed. Finally, some prototypical
agent programming languages are reviewed: Shoham's AcenTO language, and Fisher's Concurrent MeTATEM language.

Chapter 2, ""Multiagent Systems and Societies of Agents' by Michael N. Huhns and Larry M. Stephens — Agents
operate and exist in some environment, which typically is both computational and physical. The environment might be
open or closed, and it might or might not contain other agents. Although there are situations where an agent can operate
usefully by itself, the increasing interconnection and networking of computers is making such situations rare. In Chapter
2, environments in which agents can operate effectively and interact with each other productively are analyzed,
described, and designed.

The environments provide a computational infrastructure for such interactions to take place. The infrastructure includes
communication protocols, which enable agents to exchange and understand messages, and interaction protocols, which
enable agents to have conversations—structured exchanges of messages. For example, a communication protocol might
specify that the messages for a particular course of action to be exchanged between two agents are of the types Propose,
Accept, Reject, and Counterpropose. Based on these message types, two agents might use the following interaction
protocol for negotiation: Agentl proposes a course of action to Agent2; Agent2 evaluates the proposal and sends a
counterproposal to Agentl; Agentl accepts the counterproposal.

Interaction protocols enable agents to coordinate their activities, which can then be performed more efficiently. The
degree of coordination is the extent to which they avoid extraneous activity by reducing resource contention, avoiding
livelock and deadlock, and maintaining applicable safety conditions. Cooperation is coordination among nonantagonistic
agents, while negotiation is coordination among competitive or simply self-interested agents. Chapter 2 describes
protocols for coordination, cooperation, and negotiation.

Page 12

Chapter 2 also shows how environments in which large numbers of agents exist must have different interaction
protocols, based on social commitments, laws, and conventions.

Chapter 3, ""Distributed Problem Solving and Planning™ by Edmund H. Durfee — The interaction protocols
introduced in Chapter 2 provide a means for agents to communicate about working together to solve problems, including
coordination problems. Chapter 3 focuses on strategies for using protocols and reasoning capabilities to realize the
benefits of cooperation. Distributed problem solving focuses on techniques for exploiting the distributed computational
power and expertise in a MAS to accomplish large complex tasks. Of particular interest are strategies for moving tasks
or results among agents to realize the benefits of cooperative problem solving. One main thread of work is the
development of task-passing techniques to decide where to allocate subtasks to exploit the available capabilities of
agents when large tasks initially arrive at a few agents. A second main thread of work is the study of result-sharing
strategies to decide how agents that might be working on pieces of larger task can discover the relationships among their
activities and coordinate them.

Coordinating problem-solving activities can involve anticipating the activities being undertaken by various agents and
modifying those plans to make them more coordinated. Solving this planning problem is thus both a means to an end
(distributed problem solving) and a distributed problem to be solved in its own right. The specific requirements and
representations of planning problems, however, allow us to identify techniques that are particularly suited for distributed
planning. We distinguish between the planning process and the execution of plans, and recognize that either, or both, of
these can be distributed. We can then consider techniques for each. An interesting issue arises as to whether the
coordination process should precede or succeed the planning processes of the agents; different decisions lead to different
flavors of distributed planning, and a perspective is presented that allows these approaches to be seen as extremes of a
more general process. It is also considered how throwing execution into the mix of planning and coordination can
complicate matters, and algorithms for interleaving planning, coordination, and execution for dynamic applications are
presented.

Chapter 4, "*Search Algorithms for Agents’ by Makoto Yokoo and Toru Ishida — This chapter deals with search
algorithms for agents. Search is an umbrella term for various problem solving techniques in Al, where the sequence of
actions required for solving a problem cannot be known a priori but must be determined by a trial-and-error exploration
of alternatives. Search problems are divided into three classes: (i) path-finding problems, where the objective is to find a
path from an initial state to a goal state, (ii) constraint satisfaction problems, where the objective is to find a combination
of variable values that satisfies the given constraints, and (iii) two-player games such as chess and checkers. While two-
player games deal with situations in which two competitive agents exist, most algorithms for the other two classes
(constraint satisfaction and path-finding) were originally devel-

Page 13

oped for single-agent problem solving. Various asynchronous search algorithms for these two classes are described.
These algorithms are useful for cooperative problem solving by multiple agents each with limited rationality, since in
these algorithms, a problem can be solved by accumulating local computations for each agent, and the execution order of
these local computations can be arbitrary or highly flexible. More specifically, with respect constraint satisfaction
problems the following asynchronous search algorithms are presented: the filtering algorithm, the hyper-resolution-based
consistency algorithm, the asynchronous backtracking algorithm, and the asynchronous weak-commitment search
algorithm. With respect to path-finding problems, first asynchronous dynamic programming as the basis for other
algorithms is introduced. Then the Learning Real-time A* algorithm, the Real-time A* algorithm, the Moving Target
Search algorithm, Real-time Bidirectional Search algorithms, and real-time multiagent search algorithms as special cases
of asynchronous dynamic programming are described. With respect to two-player games, the basic minimax procedure
and the alpha-beta pruning method to speed up the minimax procedure are presented.

Chapter 5, ""Distributed Rational Decision Making' by Tuomas W. Sandholm — Multiagent systems consisting of
self-interested agents are becoming increasingly important. One reason for this is the technology push of a growing
standardized communication infrastructure over which separately designed agents belonging to different organizations
can interact in an open environment in real-time and safely carry out transactions. The second reason is strong
application pull for computer support for negotiation at the operative decision making level. For example, we are
witnessing the advent of small transaction electronic commerce on the Internet for purchasing goods, information, and
communication bandwidth. There is also an industrial trend toward virtual enterprises: dynamic alliances of small, agile
enterprises which together can take advantage of economies of scale when available—e.g., respond to more diverse
orders than individual agents can—but do not suffer from diseconomies of scale. Automated negotiation can save labor
time of human negotiators, but in addition, other savings are possible because computational agents can be more
effective at finding beneficial short-term contracts than humans are in strategically and combinatorially complex
settings.

This chapter discusses methods for making socially desirable decisions among rational agents that only care of their own
good, and may act insincerely to promote it. The techniques covered include

* voting,

e auctions,

« bargaining,

» market mechanisms,
e contracting, and

« coalition formation.

Page 14

The chapter cites results from microeconomics—especially game theory—nbut it is not a general overview of those
topics. Instead it deals relatively deeply with some of the topics which are particularly relevant to the design of
computational multiagent systems. Special emphasis is placed on the implications of limited computation on the classic
results. This is one area where game theory and computer science fruitfully blend within the field of DAL.

Chapter 6, "'Learning in Multiagent Systems' by Sandip Sen and Gerhard Weiss — Multiagent systems typically
are of considerable complexity with respect to both their structure and their function. For most application tasks, and
even in environments that appear to be more or less simple at a first glance, it is extremely difficult or even impossible to
correctly specify the behavioral repertoires and concrete activities of multiagent sytems at design time. This would
require, for instance, that it is known in advance which environmental requirements will emerge in the future, which
agents will be available at the time of emergence, and how the available agents have to interact in response to these
requirements. Obviously, often the only feasible way to cope with this kind of problems is to endow the agents
themselves with the ability to learn appropriate activity and interaction patterns. This chapter focuses on important
aspects of learning in multiagent systems.

The chapter starts with a more general characterization of learning in multiagent systems. This includes an identification
of principle categories of this kind of learning, an overview of differencing features that help to structure the broad
variety of forms of learning that may occur in multiagent systems, and (from the point of view of multiagent systems) a
description of the basic learning problem known as the credit-assignment problem. Then several typical learning
approaches are described and illustrated. These approaches are ordered according to their main focus:

* learning and activity coordination;
« learning about and from other agents; and
* learning and communication.

The chapter also offers a brief guide to relevant related work from machine learning, psychology, and economics, and
shows potential directions of future research.

Chapter 7, ""Computational Organization Theory' by Kathleen M. Carley and Les Gasser — Chapter 7 provides
an overview of the emergent field of Computational Organization Theory (COT). Researchers in COT use mathematical
and computational models to theorize about and analyze organizations and the processes of organizing. Research in this
area blends some of the traditional concerns of Al and distributed computing with work by organizational and social
theorists, to develop a more comprehensive understanding. In most of this work, organizations are characterized as
multiagent systems in which agents are embedded in particular social roles, have particular cognitive capabilities, and
are engaged in specific organizationally-relevant tasks. Using computationally intensive techniques and empirical data,
researchers are examining how organizations composed of peo-

Page 15

pie, artificial agents (such as webbots, robots, or other information technologies), or both, should be coordinated and
how work should be distributed within and across such systems. Much of the work in this area focuses on issues of
representation, organizational design, knowledge sharing, learning, and adaptivity. Some issues currently being
addressed include:

* What is the nature of coordination and how can it be made most effective?

» How do organizations of people and organizations of automated agents differ? Should they be coordinated in similar
ways?

» How socially intelligent do artifical agents need to be to communicate effectively with people during a team decision
task?

and so on. In general, the aim of research in this area is to build new concepts, theories, and knowledge about organizing
and organization in the abstract, to develop tools and procedures for the validation and analysis of computational
organizational models, and to reflect these computational abstractions back to actual organizational practice through both
tools and knowledge. This chapter reviews the dominant approaches and models in this area, potential toolkits, new
findings, directions, and trends.

Chapter 8, ""Formal Methods in DAI'" by Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff — As DAI
moves into larger and more critical applications, it is becoming increasingly important to develop techniques to ensure
that DAI systems behave appropriately. Safety and assurance can be addressed by development methodologies, as in
traditional software engineering. But for methodologies to be effective in improving safety and correctness, they must be
founded upon rigorous characterizations of the architecture and behavior of the given class of systems. In the case of
DAL, this means that we develop formal bases for the abstractions and constructions that arise in the study of agents and
multiagent systems.

Chapter 8 studies precisely such formalizations. It begins with background material on some logics that are commonly
used in traditional computer science, especially in the verification of concurrent programs. It presents DAI-specific
enhancements to these logics, covering the concepts of knowledge, beliefs, desires, goals, intentions, and know-how.
Such cognitive concepts have long been informally studied in the context of agents, because they offer high-level
specifications of the agents' design and behavior that are independent of most implementation details. In order to give a
flavor of how the formal techniques might be applied, this chapter also describes how the above concepts may be
realized in a practical interpreter.

Next, this chapter discusses a range of additional phenomena, such as coordination, teamwork, interagent
communications, and social primitives. In conjunction with concepts such as joint and group intentions, which lift single-
agent primitives to multiagent systems, these topics provide the essential conceptual basis for multiagent systems.

Page 16

The chapter concludes with a discussion of tools and systems that either directly implement the associated DAI-specific
formal theories, are inspired by those theories, or bring in traditional formal approaches.

Chapter 9, ""Industrial and Practical Applications of DAI" by H. Van Dyke Parunak — Successful application of
agents (as of any technology) must reconcile two perspectives. The researcher (exemplified in Chapters 1 to 8) focuses
on a particular capability (e.g., communication, planning, learning), and seeks practical problems to demonstrate the
usefulness of this capability (and justify further funding). The industrial practitioner has a practical problem to solve, and
cares much more about the speed and cost-effectiveness of the solution than about its elegance or sophistication. Chapter
9 attempts to bridge these perspectives. To the agent researcher, it offers an overview of the kinds of problems that
industrialists face, and some examples of agent technologies that have made their way into practical application. To the
industrialist, it explains why agents are not just the latest technical fad, but a natural match to the characteristics of a
broad class of real problems. Chapter 9 emphasizes agent applications in manufacturing and physical control because
good examples are available, the problems of interfacing agents to the environment are more challenging than in all-
electronic domains, and the evidence of success or failure is clearer when a system must directly confront the laws of
physics. The chapter begins by describing the main industrial motivations for choosing an agent architecture for a
particular problem. It then explains the concept of a system life cycle, which is widely used in industry to manage the
progress of a project toward its intended results. The life cycle serves as an organizing framework for two sets of case
studies. The first shows where in the life cycle agent-based systems are used, while the second discusses the design and
construction of an agent-based system in terms of the life cycle. The chapter includes a review of some development
tools that will hasten deployment of agent technology in industry.

Chapter 10, "Groupware and Computer Supported Cooperative Work™ by Clarence Ellis and Jacques

Wainer — The explosive growth of internet, intranet, and related technologies is leading to an explosive growth of the
interest in groupware. Within our society, we see technologies that appear to greatly advance the conditions for human
life (e.g., water purification technology), and others that seem to be questionable in their societal effects (e.g., television
technology). Convergence of computer and communications technologies makes the world a "global village."
Groupware is an emerging technology that promises to conceptually bring people together. Whether people are in the
same conference room or scattered around the world, groupware can potentially help them to coordinate, collaborate, and
cooperate.

Chapter 10 provides an introduction to groupware and computer supported cooperative work. Groupware is defined as
computing and communications technology-based systems that assist groups of participants, and help to support a shared
environment. Computer supported cooperative work is defined as the study of how groups work, and how technology to
enhance group interaction and collaboration

Page 17
can be implemented.

The chapter, which primarily emphasizes technical issues of groupware, offers a taxonomy of groupware that is based on
four aspects. The first aspect, keeper, groups functionalities that are related to storage and access of shared data; the
second aspect, coordinator, is related to the ordering and synchronization of individual activities that make up the group
process; the third aspect, communicator, groups functionalities related to unconstrained and explicit communication
among the participants; and the fourth aspect, team-agents, refers to intelligent or semi-intelligent software components
that perform specialized functions and contribute as participants to the dynamics of the group. Most current groupware
systems have functionalities that are covered by the first three aspects. However, the most promising aspect is the fourth
one—and because this aspect is most closely related to DA, particular attention is paid to it throughout the chapter.

Chapter 11, ""Distributed Models for Decision Support' by Jose Cuena and Sascha Ossowski — Decision support
systems (DSS) assist the responsible persons in generating action plans in order to influence the behavior of natural or
artificial systems in a desired direction. Knowledge-based DSSs have shown to perform well in a variety of different
domains, as they allow for a meaningful dialogue with the control personnel. Still, the growing complexity of todays
decision support problems makes the design process of such systems increasingly difficult and cost intensive.

This chapter introduces the notion of distributed knowledge-based DSSs. Setting out from concepts described in Part 1
of this book, an agent-based decision support architecture is proposed. On the basis of this architecture, the possibilities
of a distributed, agent-based approach to DSS design are discussed by means of three case studies taken from literature:

* Environmental Emergency Management — The objective of Environmental Emergency Management is to minimize
the negative impact of natural disasters or industrial accidents. The architecture of a multiagent DSS is presented, in
which each agent corresponds to a preestablished organizational entity. An example of the operation of this system is
given within the frame of a flood management scenario.

» Energy Management — Energy Management aims to maintain high quality supply of electrical energy despite damages
to transport and distribution networks caused by wind, icing, lightning etc. A multiagent decision support architecture for
this task is described, that integrates both preexisting and purposefully designed agents. In an example, it is shown how
these agents cooperate to perform fault diagnosis and service restauration in a distributed fashion.

* Road Traffic Management — Road Traffic Management is concerned with the smooth flow of traffic in a road network
along the different rush hour demands and despite events such as accidents or road works. A multiagent architecture is
presented, where each traffic agent is responsible for specific parts of the road

Page 18

network. An example illustrates how the interaction between these agents leads to the coordinated proposals of traffic
control actions.

Chapter 12, ""Concurrent Programming for DAI"* by (Gul A. Agha and Nadeem Jamali — As processors and
networks have become faster and cheaper, parallelism and distribution to achieve performance gains has become more
attractive. This chapter describes the Actor model of concurrent computation and extends it to define mobile agents.
Mobile agents may travel over a network of processors in search for resources that they need to achieve their goals.

An economic model is useful as a basis on which hosts could be provided incentives to allow agents to migrate and also
to limit the resources that the agents consume. The chapter defines agents that are allocated limited units of a global
currency which they can expend on purchasing physical resources needed for carrying out their activities on different
hosts.

Reasoning about concurrent systems has traditionally been a challenging task. The chapter discusses ways of modifying
semantics of Actor systems to support mobility and control of resource consumption. The semantics of Agent systems
provides guidelines for designing systems of agents, for supporting non-intrusive monitoring of the system, allows the
systematic use computational reflection, and enables agents to develop proofs of safe execution which may be offered to
prospective hosts.

The dynamicity and uncertainty in the behavior of ensembles of agents poses challenging problems. The chapter
describes how the context in which agents execute, and in which their interactions are mediated, may be dynamically
customized. Programming constructs for naming in open systems and scalable communication are also described. The
chapter also includes a number of programming examples and a discussion of open issues.

Chapter 13, "'Distributed Control Algorithms for Al"* by Gerard Tel — This chapter discusses a number of
elementary problems in distributed computing and a couple of well-known algorithmic "building blocks," which are used
as procedures in distributed applications. The chapter is not intended to be complete, as an enumeration of the many
known distributed algorithms would be pointless and endless. The chapter is even not intended to touch all relevant sub-
areas and problems studied in distributed computing, because they are not all relevant to DAI. Rather than an algorithm
catalogue, the chapter aims to be an eye-opener for the possibilities of the distributed computing model, an introduction
to designing and reasoning about the algorithms, and a pointer to some literature.

The chapter introduces the distributed model and illustrates the various possibilities and difficulties with algorithms to
compute spanning trees in a network. It is shown how the communication and time complexities of the algorithms are
evaluated. Then a more complicated, but relevant control problem is studied, namely termination detection. This study
reveals how intricate it is to make information about a distributed global state available to a node locally. Termination
detection

Page 19

occurs in distributed applications of all areas and is not specific for DAL.

Application of some distributed control techniques is exemplified in the later sections in distributed computations for Al
problems. A distributed implementation of Arc Consistency and Constraint Satisfaction is discussed, and it is shown how
termination detection and distributed evaluation of functions play a role. The chapter finally presents a distributed graph
algorithm, illustrating another termination detection principle, and providing an example of broadcast/convergecast and
controller movement.

The Exercises

To enable the reader to gain practice in multiagent systems and DA, a number of exercises of varying levels of
difficulty are provided at the end of each chapter. The following rating system is applied to roughly indicate the amount
of effort required for solving the exercises:

1. [Level 1] Exercises of Level 1 are solvable within a day (e.g., simple test of comprehension or a small program).

2. [Level 2] Solving exercises of Level 2 can take days or weeks (e.g., writting a fairly complex program). Usually the
chapters provide all the information necessary for solving Level-1 and Level-2 exercises.

3. [Level 3] Exercises of Level 3 are even harder and their solution can take several weeks or months. Many of these
exercises are related to "hot" topics of current research.

4. [Level 4] Exercises of Level 4 concern open research questions and could be topics of PhD theses. Solving Level-3
and Level-4 exercises typically requires to read further literature and/or to conduct extensive experiments.

It is recommend to do the Level-1 and Level-2 exercises, and to attack at least some of the exercises of Levels 3 and 4.
Carefully working through Level-1 and Level-2 exercises will reward a reader with a real understanding of the material
of the chapters, and solving Level-3 and Level-4 exercises will turn a reader into a real expert!

The Glossary

The glossary at the end of the book is the result of a joint effort of the chapter authors. It provides compact explanations
of a number of terms used in the field of multiagent systems and DAI. This glossary is neither intended to be complete
nor to offer "definitions" in the strict sense of this word. Instead, the focus is on key terms and on their common usage.
The primary purpose of the glossary is to make it easier for the readers to get acquainted with basic terminology.

Page 20

A Few Pointers to Further Readings

The number of publications on multiagent systems and DAI has grown rapidly in the past decade. The reader not
familiar with the field and the available literature may find the following, by no means complete, list of pointers useful
as an initial point of orientation:

« Introductory texts, surveys, and overviews:
There are several general texts on multiagent systems and DAI (e.g., [2, 8, 20, 22, 25, 31, 40]), distributed problem
solving (e.g., [10, 11, 17]), and agents (e.g., [5, 22, 45]).

* Collections:

A detailed treatment of many key aspects of DA is provided in [34]. A recent compendium that covers both agent and
multiagent themes is [23]. A "classic" collection of DAI articles is [3]. Journal special issues on DAI and multiagent
systems are, e.g., [9, 16, 46]. There is a number of proceedings of conferences and workshops on multiagent systems and
DAI. For instance, the "International Conference on Multi-Agent Systems (ICMAS)" series resulted in three proceedings
[12, 18, 30] that broadly cover the whole range of multiagent systems. The AAAI-sponsored "Workshop on DAL’ series
led to two other "classic"” collections of DAI papers [19, 21]. The papers presented at the "European Workshop on
Modelling Agents in a Multi-Agent World (MAAMAW)" series are published in [1, 7, 6, 13, 14, 35, 42, 43]. There are
several conference and workshop series on agents. Among them are, for instance, the "International Conference on
Autonomous Agents (Agents)" series [37, 41], the "International Workshop on Agent Theories, Architectures, and
Languages (ATAL)" series [32, 39, 44, 47], and the "Cooperative Information Agents (CIA)" series [27, 28].

* Bibliographies:

A useful list of pointers to published material on DAI and related areas is provided in [29]. A subject-indexed
bibliography that comprehensively covers early DAI publications is [4].

* The first journal in the field is Autonomous Agents and Multi-Agent Systems (Kluwer Academic Publishers).

Pointers to papers that deal with specific aspects of multiagent systems are extensively included in the individual
chapters.

Page 21

References

1. M. Boman and W. Van der Velde, editors. Decentralized Artificial Intelligence. Proceedings of the Eighth European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'97). Lecture Notes in Artificial
Intelligence, Vol. 1237. Springer-Verlag, Berlin, 1997,

2. A.H. Bond and L. Gasser. An analysis of problems and research in DAI. In A.H. Bond and L. Gasser, editors,
Readings in Distributed Artificial Intelligence, pages 3-35. Morgan Kaufmann, San Mateo, CA, 1988.

3. A.H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan Kaufmann, San Mateo, CA,
1988.

4. A.H. Bond and L. Gasser. A subject-indexed bibliography of distributed artificial intelligence. In A.H. Bond and L.
Gasser, editors, Readings in Distributed Artificial Intelligence, pages 37-56. Morgan Kaufmann, San Mateo, CA, 1988.

5. J.M. Bradshaw. An introduction to software agents. In J.M. Bradshaw, editor, Software Agents, pages 3-46. AAAI
Press/The MIT Press, 1997.

6. C. Castelfranchi and J.-P. Muller, editors. Decentralized Artificial Intelligence. Proceedings of the Fifth European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'93). Lecture Notes in Artificial
Intelligence, Vol. 957. Springer-Verlag, Berlin, 1995.

7. C. Castelfranchi and E. Werner, editors. Decentralized Artificial Intelligence. Proceedings of the Fourth European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'92). Lecture Notes in Artificial
Intelligence, Vol. 830. Springer-Verlag, Berlin, 1994.

8. B. Chaib-draa, B. Moulin, R. Mandiau, and P. Millot. Trends in distributed artificial intelligence. Artificial
Intelligence Review, 6(1):35-66, 1992.

9. B. Chandrasekaran, editor. Special Issue on Distributed Artificial Intelligence of the IEEE Transactions on Systems,
Man, and Cybernetics. Vol. SMC-11, 1981.

10. K.S. Decker. Distributed problem solving techniques: A survey. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-17:729-740, 1987.

11. K.S. Decker, E.H. Durfee, and V.R. Lesser. Evaluating research in cooperative distributed problem solving. In M.N.
Huhns and L. Gasser, editors, Distributed Artificial Intelligence, Volume 2, pages 487-519. Pitman/Morgan Kaufmann,
Cambridge, MA, 1989.

12. Y. Demazeau, editor. Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS-98). IEEE
Computer Society, 1998.

13. Y. Demazeau and J.-P. Muller, editors. Decentralized Artificial Intelligence. Proceedings of the First European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'89). North-Holland, 1990.

14.Y. Demazeau and J.-P. Miillet, editors. Decentralized Artificial Intelligence. Proceedings of the Second European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'90). Elsevier Science, 1991.

15. E.H. Durfee. The distributed artificial intelligence melting pot. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-21(6):1301-1306, 1991.

Page 22

16. E.H. Durfee, editor. Special Issue on Distributed Artificial Intelligence of the IEEE Transactions on Systems, Man,
and Cybernetics. Vol. SMC-21, 1991.

17. E.H. Durfee, V.R. Lesser, and D.D. Corkill. Distributed problem solving. In S.C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, pages 379-388. John Wiley, 1992.

18. E.H. Durfee and M. Tokoro, editors. Proceedings of the Second International Conference on Multi-Agent Systems
(ICMAS-96). AAAI Press, 1996.

19. L. Gasser and M.N. Huhns, editors. Distributed Artificial Intelligence, Volume 2. Pitman/Morgan Kaufmann, 1989.

20. L. Gasser and M.N. Huhns. Themes in distributed artificial intelligence research. In L. Gasser and M.N. Huhns,
editors, Distributed Artificial Intelligence, Volume 2, pages vii-xv. Pitman/Morgan Kaufmann, 1989.

21. M.N. Huhns, editor. Distributed Artificial Intelligence. Pitman/Morgan Kaufmann, 1987.

22. M.N. Huhns and M.P. Singh. Agents and multiagent systems: Themes, approaches, and challenges. In M.N. Huhns
and M.P. Singh, editors, Readings in Agents, pages 1-23. Morgan Kaufmann, San Francisco, CA, 1998.

23. M.N. Huhns and M.P. Singh, editors. Readings in Agents. Morgan Kaufmann, San Francisco, CA, 1998.
24. N.R. Jennings, editor. Cooperation in Industrial Multi-Agent Systems. World Scientific, Singapore, 1994.

25. N.R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and development. Autonomous Agents
and Multi-Agent Systems, 1:7-38, 1998.

26. N.R. Jennings and M.J. Wooldridge, editors. Agent Technology. Foundations, Applications, and Markets. Springer-
Verlag, Berlin, 1998.

27. P. Kandzia and M. Klusch, editors. Cooperative Information Agents. Lecture Notes in Artificial in Artificial
Intelligence, Vol. 1202. Springer-Verlag, Berlin, 1997.

28. M. Klusch and G. Weil} editors. Cooperative Information Agents II. Lecture Notes in Artificial in Artificial
Intelligence, Vol. 1435. Springer-Verlag, Berlin, 1998.

29. D. Kwek and S. Kalenka. Distributed artificial intelligence references and resources. In G.M.P. O'Hare and N.R.
Jennings, editors, Foundations of Distributed Artificial Intelligence, pages 557-572. John Wiley & Sons Inc., New York,
1996.

30. V.R. Lesser and L. Gasser, editors. Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95). AAAI Press/The MIT Press, 1995.

31. B. Moulin and B. Chaib-Draa. An overview of distributed artificial intelligence. In G.M.P. O'Hare and N.R.
Jennings, editors, Foundations of Distributed Artificial Intelligence, pages 3-55. John Wiley & Sons Inc., New York,
1996.

32. J.P. Muller, M. Wooldridge, and N.R. Jennings, editors. Intelligent Agents I1l. Lecture Notes in Artificial in Artificial
Intelligence, Vol. 1193. Springer-Verlag, Berlin, 1997.

33. N.J. Nilsson. Artificial Intelligence. A New Synthesis. Morgan Kaufmann Publ., San Francisco, CA, 1998.

34. G.M.P. O'Hare and N.R. Jennings, editors. Foundations of Distributed Artificial Intelligence. John Wiley & Sons
Inc., New York, 1996.

35. J.W. Perram and J.-P. Miiller, editors. Decentralized Artificial Intelligence. Proceedings of the Sixth European
Workshop on Modelling Autonomous Agents in a

Page 23

Multi-Agent World (MAAMAW'94). Lecture Notes in Artificial Intelligence, VVol. 1069. Springer-Verlag, Berlin,
1996.

36. D. Poole, A. Machworth, and R. Goebel. Computational Intelligence. Oxford University Press, New York, 1998.

37. Proceedings of the First International Conference on Autonomous Agents (Agents'97).
http://www.isi.edu/isd/Agents97/materials-order-form.html, 1997.

38. S.J. Russell and P. Norwig. Artificial Intelligence. A Modern Approach. Prentice Hall, Englewood Cliffs, New
Jersey, 1995.

39. M.P. Singh, A. Rao, and M.J. Wooldridge, editors. Intelligent Agents IV. Lecture Notes in Artificial in Artificial
Intelligence, Vol. 1365. Springer-Verlag, Berlin, 1998.

40. K. Sycara. Multiagent systems. Al Magazine, Summer:79-92, 1998.

41. K.P. Sycara and M. Wooldridge, editors. Proceedings of the Second International Conference on Autonomous
Agents (Agents'98). Association for Computing Machinery, Inc. (ACM), 1998.

42. W. Van der Velde and J.W. Pertain, editors. Decentralized Artificial Intelligence. Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'96). Lecture Notes in
Artificial Intelligence, Vol. 1038. Springer-Verlag, Berlin, 1996.

43. E. Werner and Y. Demazeau, editors. Decentralized Artificial Intelligence. Proceedings of the Third European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'91). Elsevier Science, 1992.

44. M. Wooldridge and N.R. Jennings, editors. Intelligent Agents. Lecture Notes in Artificial in Artificial Intelligence,
Vol. 890. Springer-Verlag, Berlin, 1995.

45. M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The Knowledge Engineering Review,
10(2):115-152, 1995.

46. M. Wooldridge and N.R. Jennings, editors. Special Issue on Intelligent Agents and Multi-Agent Systems Applied
Artificial Intelligence Journal. VVol. 9(4), 1995 and Vol. 10(1), 1996.

47. M. Wooldridge, J.P. Mdiller, and M. Tambe, editors. Intelligent Agents Il. Lecture Notes in Artificial in Artificial
Intelligence, VVol. 1037. Springer-Verlag, Berlin, 1996.

Page 25

PART I: BASIC THEMES

Page 27

1
Intelligent Agents

Michael Wooldridge

1.1 Introduction

Computers are not very good at knowing what to do: every action a computer performs must be explicitly anticipated,
planned for, and coded by a programmer. If a computer program ever encounters a situation that its designer did not
anticipate, then the result is not usually pretty—a system crash at best, multiple loss of life at worst. This mundane fact is
at the heart of our relationship with computers. It is so self-evident to the computer literate that it is rarely mentioned.
And yet it comes as a complete surprise to those encountering computers for the first time.

For the most part, we are happy to accept computers as obedient, literal, unimaginative servants. For many applications
(such as payroll processing), it is entirely acceptable. However, for an increasingly large number of applications, we
require systems that can decide for themselves what they need to do in order to satisfy their design objectives. Such
computer systems are known as agents. Agents that must operate robustly in rapidly changing, unpredictable, or open
environments, where there is a significant possibility that actions can fail are known as intelligent agents, or sometimes
autonomous agents. Here are examples of recent application areas for intelligent agents:

* When a space probe makes its long flight from Earth to the outer planets, a ground crew is usually required to
continually track its progress, and decide how to deal with unexpected eventualities. This is costly and, if decisions are
required quickly, it is simply not practicable. For these reasons, organisations like NASA are seriously investigating the
possibility of making probes more autonomous— giving them richer decision making capabilities and responsibilities.

« Searching the Internet for the answer to a specific query can be a long and tedious process. So, why not allow a
computer program—an agent—do searches for us? The agent would typically be given a query that would require
synthesising pieces of information from various different Internet information sources. Failure would occur when a
particular resource was unavailable, (perhaps due to network failure), or where results could not be obtained.

This chapter is about intelligent agents. Specifically, it alms to give you a thorough

Page 28

introduction to the main issues associated with the design and implementation of intelligent agents. After reading it, you
will understand:

» why agents are believed to be an important new way of conceptualising and implementing certain types of software
application;

» what intelligent agents are (and are not), and how agents relate to other software paradigms—in particular, expert
systems and object-oriented programming;

« the main approaches that have been advocated for designing and implementing intelligent agents, the issues
surrounding these approaches, their relative merits, and the challenges that face the agent implementor;

« the characteristics of the main programming languages available for building agents today.

The chapter is structured as follows. First, section 1.2 describes what is meant by the term agent. Section 1.3, presents
some abstract architectures for agents. That is, some general models and properties of agents are discussed without
regard to how they might be implemented. Section 1.4, discusses concrete architectures for agents. The various major
design routes that one can follow in implementing an agent system are outlined in this section. In particular, logic-based
architectures, reactive architectures, belief-desire-intention architectures, and finally, layered architectures for intelligent
agents are described in detail. Finally, section 1.5 introduces some prototypical programming languages for agent
systems.

Comments on Notation

This chapter makes use of simple mathematical notation in order to make ideas precise. The formalism used is that of
discrete maths: a basic grounding in sets and first-order logic should be quite sufficient to make sense of the various
definitions presented. In addition: if S is an arbitrary set, then § (S) is the powerset of S, and S* is the set of sequences of
elements of S; the symbol = is used for logical negation (so —=p is read "not p"); A is used for conjunction (so p A q is
read "p and g"); V' is used for disjunction (so p V g is read "p or g"); and finally, == is used for material implication (so
P = Qs read "p implies q").

1.2 What Are Agents?

An obvious way to open this chapter would be by presenting a definition of the term agent. After all, this is a book about
multiagent systems—surely we must all agree on what an agent is? Surprisingly, there is no such agreement: there is no
universally accepted definition of the term agent, and indeed there is a good deal of ongoing debate and controversy on
this very subject. Essentially, while there is a general consensus that autonomy is central to the notion of agency, there is
little agreement beyond this. Part of the difficulty is that various attributes associated with agency

Page 29

AGENT
Sensor ;
input action
output
ENVIRONMENT
Figure 1.1

An agent in its environment. The agent takes sensory input
from the environment, and produces as output actions that affect
it. The interaction is usually an ongoing, non-terminating one.

are of differing importance for different domains. Thus, for some applications, the ability of agents to learn from their
experiences is of paramount importance; for other applications, learning is not only unimportant, it is undesirable.

Nevertheless, some sort of definition is important— otherwise, there is a danger that the term will lose all meaning (cf.
"user friendly™). The definition presented here is adapted from [71]: An agent is a computer system that is situated in
some environment, and that is capable of autonomous action in this environment in order to meet its design objectives.

There are several points to note about this definition. First, the definition refers to "agents” and not "intelligent agents."
The distinction is deliberate: it is discussed in more detail below. Second, the definition does not say anything about
what type of environment an agent occupies. Again, this is deliberate: agents can occupy many different types of
environment, as we shall see below. Third, we have not defined autonomy. Like agency itself, autonomy is a somewhat
tricky concept to tie down precisely. In this chapter, it is used to mean that agents are able to act without the intervention
of humans or other systems: they have control both over their own internal state, and over their behavior. In section
1.2.3, we will contrast agents with the objects of object-oriented programming, and we will elaborate this point there. In
particular, we will see how agents embody a much stronger sense of autonomy than objects do.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can see the action output generated by the
agent in order to affect its environment. In most domains of reasonable complexity, an agent will not have complete
control over its environment. It will have at best partial control, in that it can influence it. From the point of view of the
agent, this means that the same action performed twice in apparently identical circumstances might appear to have
entirely different effects, and in particular, it may fail to have the desired effect. Thus agents in all but the

Page 30

most trivial of environments must be prepared for the possibility of failure. We can sum this situation up formally by
saying that environments are non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of possible actions represents the agents
effectoric capability: its ability to modify its environments. Note that not all actions can be performed in all situations.
For example, an action "lift table" is only applicable in situations where the weight of the table is sufficiently small that
the agent can lift it. Similarly, the action "purchase a Ferrari” will fail if insufficient funds area available to do so.
Actions therefore have pre-conditions associated with them, which define the possible situations in which they can be
applied.

The key problem facing an agent is that of deciding which of its actions it should perform in order to best satisfy its
design objectives. Agent architectures, of which we shall see several examples later in this chapter, are really software
architectures for decision making systems that are embedded in an environment. The complexity of the decision-making
process can be affected by a number of different environmental properties. Russell and Norvig suggest the following
classification of environment properties [59, p46]:

* Accessible vs inaccessible.

An accessible environment is one in which the agent can obtain complete, accurate, up-to-date information about the
environment's state. Most moderately complex environments (including, for example, the everyday physical world and
the Internet) are inaccessible. The more accessible an environment is, the simpler it is to build agents to operate in it.

* Deterministic vs non-deterministic.

As we have already mentioned, a deterministic environment is one in which any action has a single guaranteed
effect—there is no uncertainty about the state that will result from performing an action. The physical world can to all
intents and purposes be regarded as non-deterministic. Non-deterministic environments present greater problems for the
agent designer.

* Episodic vs non-episodic.

In an episodic environment, the performance of an agent is dependent on a number of discrete episodes, with no link
between the performance of an agent in different scenarios. An example of an episodic environment would be a mail
sorting system [60]. Episodic environments are simpler from the agent developer's perspective because the agent can
decide what action to perform based only on the current episode—it need not reason about the interactions between this
and future episodes.

« Static vs dynamic.

A static environment is one that can be assumed to remain unchanged except by the performance of actions by the agent.
A dynamic environment is one that has other processes operating on it, and which hence changes in ways beyond the
agent's control. The physical world is a highly dynamic environment.

Page 31

* Discrete vs continuous.
An environment is discrete if there are a fixed, finite number of actions and percepts in it. Russell and Norvig give a
chess game as an example of a discrete environment, and taxi driving as an example of a continuous one.

As Russell and Norvig observe [59, p46], if an environment is sufficiently complex, then the fact that it is actually
deterministic is not much help: to all intents and purposes, it may as well be non-deterministic. The most complex
general class of environments are those that are inaccessible, non-deterministic, non-episodic, dynamic, and continuous.

1.2.1 Examples of Agents
At this point, it is worth pausing to consider some examples of agents (though not, as yet, intelligent agents):

 Any control system can be viewed as an agent. A simple (and overused) example of such a system is a thermostat.
Thermostats have a sensor for detecting room temperature. This sensor is directly embedded within the environment
(i.e., the room), and it produces as output one of two signals: one that indicates that the temperature is too low, another
which indicates that the temperature is OK. The actions available to the thermostat are "heating on™ or "heating off". The
action "heating on" will generally have the effect of raising the room temperature, but this cannot be a guaranteed
effect—if the door to the room is open, for example, switching on the heater may have no effect. The (extremely simple)
decision making component of the thermostat implements (usually in electro-mechanical hardware) the following rules:

too cold —+ heating on

temperature OK — heating off

More complex environment control systems, of course, have considerably richer decision structures. Examples include
autonomous space probes, fly-by-wire aircraft, nuclear reactor control systems, and so on.

» Most software daemons, (such as background processes in the unix operating system), which monitor a software
environment and perform actions to modify it, can be viewed as agents. An example is the X Windows program xbiff.
This utility continually monitors a user's incoming email, and indicates via a cui icon whether or not they have unread
messages. Whereas our thermostat agent in the previous example inhabited a physical environment—the physical
world— the xbiff program inhabits a software environment. It obtains information about this environment by carrying
out software functions (by executing system programs such as 1s, for example), and the actions it performs are software
actions (changing an icon on the screen, or executing a program). The decision making component is just as simple as
our thermostat example.

Page 32

To summarize, agents are simply computer systems that are capable of autonomous action in some environment in order
to meet their design objectives. An agent will typically sense its environment (by physical sensors in the case of agents
situated in part of the real world, or by software sensors in the case of software agents), and will have available a
repertoire of actions that can be executed to modify the environment, which may appear to respond non-deterministically
to the execution of these actions.

1.2.2 Intelligent Agents

We are not used to thinking of thermostats or unix daemons as agents, and certainly not as intelligent agents. So, when
do we consider an agent to be intelligent? The question, like the question what is intelligence? itself, is not an easy one to
answer. But for the purposes of this chapter, an intelligent agent is one that is capable of flexible autonomous action in
order to meet its design objectives, where flexibility means three things [71]:

* reactivity: intelligent agents are able to perceive their environment, and respond in a timely fashion to changes that
occur in it in order to satisfy their design objectives;

* pro-activeness: intelligent agents are able to exhibit goal-directed behavior by taking the initiative in order to satisfy
their design objectives;

« social ability: intelligent agents are capable of interacting with other agents (and possibly humans) in order to satisfy
their design objectives.

These properties are more demanding than they might at first appear. To see why, let us consider them in turn. First,
consider pro-activeness: goal directed behavior. It is not hard to build a system that exhibits goal directed behavior—we
do it every time we write a procedure in PAscAL, a function in c, or a method in Java. When we write such a procedure,
we describe it in terms of the assumptions on which it relies (formally, its pre-condition) and the effect it has if the
assumptions are valid (its post-condition). The effects of the procedure are its goal: what the author of the software
intends the procedure to achieve. If the pre-condition holds when the procedure is invoked, then we expect that the
procedure will execute correctly: that it will terminate, and that upon termination, the post-condition will be true, i.e., the
goal will be achieved. This is goal directed behavior: the procedure is simply a plan or recipe for achieving the goal. This
programming model is fine for many environments. For example, its works well when we consider functional systems—
those that simply take some input X, and produce as output some some function f(x) of this input. Compilers are a classic
example of functional systems.

But for non-functional systems, this simple model of goal directed programming is not acceptable, as it makes some
important limiting assumptions. In particular, it assumes that the environment does not change while the procedure is
executing. If the environment does change, and in particular, if the assumptions (pre-condition)

Page 33

underlying the procedure become false while the procedure is executing, then the behavior of the procedure may not be
defined—often, it will simply crash. Also, it is assumed that the goal, that is, the reason for executing the procedure,
remains valid at least until the procedure terminates. If the goal does not remain valid, then there is simply no reason to
continue executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in domains that are too complex for an agent
to observe completely, that are multi-agent (i.e., they are populated with more than one agent that can change the
environment), or where there is uncertainty in the environment, these assumptions are not reasonable. In such
environments, blindly executing a procedure without regard to whether the assumptions underpinning the procedure are
valid is a poor strategy. In such dynamic environments, an agent must be reactive, in just the way that we described
above. That is, it must be responsive to events that occur in its environment, where these events affect either the agent's
goals or the assumptions which underpin the procedures that the agent is executing in order to achieve its goals.

As we have seen, building purely goal directed systems is not hard. As we shall see later in this chapter, building purely
reactive systems—ones that continually respond to their environment—is also not difficult. However, what turns out to
be hard is building a system that achieves an effective balance between goal-directed and reactive behavior. We want
agents that will attempt to achieve their goals systematically, perhaps by making use of complex procedure-like patterns
of action. But we don't want our agents to continue blindly executing these procedures in an attempt to achieve a goal
either when it is clear that the procedure will not work, or when the goal is for some reason no longer valid. In such
circumstances, we want our agent to be able to react to the new situation, in time for the reaction to be of some use.
However, we do not want our agent to be continually reacting, and hence never focussing on a goal long enough to
actually achieve it.

On reflection, it should come as little surprise that achieving a good balance between goal directed and reactive behavior
is hard. After all, it is comparatively rare to find humans that do this very well. How many of us have had a manager
who stayed blindly focussed on some project long after the relevance of the project was passed, or it was clear that the
project plan was doomed to failure? Similarly, how many have encountered managers who seem unable to stay focussed
at all, who flit from one project to another without ever managing to pursue a goal long enough to achieve anything?
This problem—of effectively integrating goal-directed and reactive behavior—is one of the key problems facing the
agent designer. As we shall see, a great many proposals have been made for how to build agents that can do this—but the
problem is essentially still open.

Finally, let us say something about social ability, the final component of flexible autonomous action as defined here. In
one sense, social ability is trivial: every day, millions of computers across the world routinely exchange information with
both humans and other computers. But the ability to exchange bit streams is not really social ability. Consider that in the
human world, comparatively few of

Page 34

our meaningful goals can be achieved without the cooperation of other people, who cannot be assumed to share our
goals—in other words, they are themselves autonomous, with their own agenda to pursue. To achieve our goals in such
situations, we must negotiate and cooperate with others. We may be required to understand and reason about the goals
of others, and to perform actions (such as paying them money) that we would not otherwise choose to perform, in order
to get them to cooperate with us, and achieve our goals. This type of social ability is much more complex, and much less
well understood, than simply the ability to exchange binary information. Social ability in general (and topics such as
negotiation and cooperation in particular) are dealt with elsewhere in this book, and will not therefore be considered
here. In this chapter, we will be concerned with the decision making of individual intelligent agents in environments
which may be dynamic, unpredictable, and uncertain, but do not contain other agents.

1.2.3 Agents and Objects

Object-oriented programmers often fail to see anything novel or new in the idea of agents. When one stops to consider
the relative properties of agents and objects, this is perhaps not surprising. Objects are defined as computational entities
that encapsulate some state, are able to perform actions, or methods on this state, and communicate by message passing.

While there are obvious similarities, there are also significant differences between agents and objects. The first is in the
degree to which agents and objects are autonomous. Recall that the defining characteristic of object-oriented
programming is the principle of encapsulation—the idea that objects can have control over their own internal state. In
programming languages like Java, we can declare instance variables (and methods) to be private, meaning they are only
accessible from within the object. (We can of course also declare them public, meaning that they can be accessed from
anywhere, and indeed we must do this for methods so that they can be used by other objects. But the use of public
instance variables is usually considered poor programming style.) In this way, an object can be thought of as exhibiting
autonomy over its state: it has control over it. But an object does not exhibit control over it's behavior. That is, if a
method m is made available for other objects to invoke, then they can do so whenever they wish—once an object has
made a method public, then it subsequently has no control over whether or not that method is executed. Of course, an
object must make methods available to other objects, or else we would be unable to build a system out of them. This is
not normally an issue, because if we build a system, then we design the objects that go in it, and they can thus be
assumed to share a “common goal™. But in many types of multiagent system, (in particular, those that contain agents
built by different organisations or individuals), no such common goal can be assumed. It cannot be for granted that an
agent i will execute an action (method) a just because another agent j wants it to—a may not be in the best interests of i.
We thus do not think of agents as invoking methods upon one-another, but rather as requesting actions to

Page 35

be performed. If j requests i to perform a, then i may perform the action or it may not. The locus of control with respect
to the decision about whether to execute an action is thus different in agent and object systems. In the object-oriented
case, the decision lies with the object that invokes the method. In the agent case, the decision lies with the agent that
receives the request. This distinction between objects and agents has been nicely summarized in the following slogan:
Objects do it for free; agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented techniques. For example, we can build
some kind of decision making about whether to execute a method into the method itself, and in this way achieve a
stronger kind of autonomy for our objects. The point is that autonomy of this kind is not a component of the basic object-
oriented model.

The second important distinction between object and agent systems is with respect to the notion of flexible (reactive, pro-
active, social) autonomous behavior. The standard object model has nothing whatsoever to say about how to build
systems that integrate these types of behavior. Again, one could object. that we can build object-oriented programs that
do integrate these types of behavior. But this argument misses the point, which is that the standard object-oriented
programming model has nothing to do with these types of behavior.

The third important distinction between the standard object model and our view of agent systems is that agents are each
considered to have their own thread of control—in the standard object model, there is a single thread of control in the
system. Of course, a lot of work has recently been devoted to concurrency in object-oriented programming. For example,
the Java language provides built-in constructs for multi-threaded programming. There are also many programming
languages available (most of them admittedly prototypes) that were specifically designed to allow concurrent object-
based programming. But such languages do not capture the idea we have of agents as autonomous entities. Perhaps the
closest that the object-oriented community comes is in the idea of active objects:

An active object is one that encompasses its own thread of control [. . .]. Active objects are generally autonomous,
meaning that they can exhibit some behavior without being operated upon by another object. Passive objects, on the
other hand, can only undergo a state change when explicitly acted upon. [5, p91]

Thus active objects are essentially agents that do not necessarily have the ability to exhibit flexible autonomous
behavior.

To summarize, the traditional view of an object and our view of an agent have at least three distinctions:

* agents embody stronger notion of autonomy than objects, and in particular, they decide for themselves whether or not
to perform an action on request from another agent;

* agents are capable of flexible (reactive, pro-active, social) behavior, and. the standard object model has nothing to say
about such types of behavior;

Page 36

» a multiagent system is inherently multi-threaded, in that each agent is assumed to have at least one thread of control.
1.2.4 Agents and Expert Systems

Expert systems were the most important Al technology of the 1980s [31]. An expert system is one that is capable of
solving problems or giving advice in some knowledge-rich domain [32]. A classic example of an expert system is MycIN,
which was intended to assist physicians in the treatment of blood infections in humans. mycin worked by a process of
interacting with a user in order to present the system with a number of (symbolically represented) facts, which the
system then used to derive some conclusion. mycin acted very much as a consultant: it did not operate directly on
humans, or indeed any other environment. Thus perhaps the most important distinction between agents and expert
systems is that expert systems like mycin are inherently disembodied. By this, we mean that they do not interact directly
with any environment: they get their information not via sensors, but through a user acting as middle man. In the same
way, they do not act on any environment, but rather give feedback or advice to a third party. In addition, we do not
generally require expert systems to be capable of co-operating with other agents. Despite these differences, some expert
systems, (particularly those that perform real-time control tasks), look very much like agents. A good example is the
ARCHON System [33].

Sources and Further Reading

A view of artificial intelligence as the process of agent design is presented in [59], and in particular, Chapter 2 of [59]
presents much useful material. The definition of agents presented here is based on [71], which also contains an extensive
review of agent architectures and programming languages. In addition, [71] contains a detailed survey of agent
theories—formalisms for reasoning about intelligent, rational agents, which is outside the scope of this chapter. This
question of "what is an agent" is one that continues to generate some debate; a collection of answers may be found in
[48]. The relationship between agents and objects has not been widely discussed in the literature, but see [24]. Other
readable introductions to the idea of intelligent agents include [34] and [13].

1.3 Abstract Architectures for Intelligent Agents

We can easily formalize the abstract view of agents presented so far. First, we will assume that the state of the agent's
environment can be characterized as a set S = {s,,s,,...} of environment states. At any given instant, the environment is
assumed to be in one of these states. The effectoric capability of an agent is assumed to be represented by a set A =
{a,,a,,...} of actions. Then abstractly, an agent

Page 37
can be viewed as a function
action: S* — A

which maps sequences of environment states to actions. We will refer to an agent modelled by a function of this form as
a standard agent. The intuition is that an agent decides what action to perform on the basis of its history—its experiences
to date. These experiences are represented as a sequence of environment states—those that the agent has thus far
encountered.

The (non-deterministic) behavior of an an environment can be modelled as a function

env: S x A = p(5)

which takes the current state of the environment $ € S and an action | Mage-0054 (performed by the agent), and

maps them to a set of environment states env(s, a)— those that could result from performing action a in state s. If all the
sets in the range of env are all singletons, (i.e., if the result of performing any action in any state is a set containing a
single member), then the environment is deterministic, and its behavior can be accurately predicted.

We can represent the interaction of agent and environment as a history. A history h is a sequence:

LY

o3, ... g Quy ...
" * Sy T

[v i
h: : 8o —nbﬂl —:Pﬂg M‘r‘ 89

where s, is the initial state of the environment (i.e., its state when the agent starts executing), a, is the u'th action that the
agent chose to perform, and s, is the u'th environment state (which is one of the possible results of executing action a,,

in state s, ,). If action : §* — A isan agent, env : S X A = 9(85) is an environment, and s, is the initial state of the
environment, then the sequence

h: - |0037-006 |

will represent a possible history of the agent in the environment iff the following two conditions hold:

Vu € IN,a, = action((s0,81,---,8u))

and

Vu € IV such that u > 0,8, € env(sy—1,Qu—1)-

The characteristic behavior of an agent action : §* —+ A in an environment env : 0037-010 s the set of all the
histories that satisfy these properties. If some property @ holds of all these histories, this property can be regarded as an
invariant property of the agent in the environment. For example, if our agent is a nuclear reactor controller, (i.e., the
environment is a nuclear reactor), and in all possible histories of the controller/reactor, the reactor does not blow up, then
this can be regarded as a (desirable) invariant property. We will denote by

Page 38

hist(agent, environment) the set of all histories of agent in environment. Two agents a,, and a, are said to be
behaviorally equivalent with respect to environment env iff hist(ay, env) = hist(a,,, env), and simply behaviorally
equivalent iff they are behaviorally equivalent with respect to all environments.

In general, we are interested in agents whose interaction with their environment does not end, i.e., they are non-
terminating. In such cases, the histories that we consider will be infinite.

1.3.1 Purely Reactive Agents

Certain types of agents decide what to do without reference to their history. They base their decision making entirely on
the present, with no reference at all to the past. We will call such agents purely reactive, since they simply respond
directly to their environment. Formally, the behavior of a purely reactive agent can be represented by a function

action: 5 — A,

It should be easy to see that for every purely reactive agent, there is an equivalent standard agent; the reverse, however,
is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without loss of generality, that the thermostat's
environment can be in one of two states— either too cold, or temperature OK. Then the thermostat's action function is
simply

jon(s) heater off if 8 = temperature OK
action(s) =
heater on otherwise.

1.3.2 Perception

Viewing agents at this abstract level makes for a pleasantly simply analysis. However, it does not help us to construct
them, since it gives us no clues about how to design the decision function action. For this reason, we will now begin to
refine our abstract model of agents, by breaking it down into sub-systems in exactly the way that one does in standard
software engineering. As we refine our view of agents, we find ourselves making design choices that mostly relate to the
subsystems that go to make up an agent—what data and control structures will be present. An agent architecture is
essentially a map of the internals of an agent—its data structures, the operations that may be performed on these data
structures, and the control flow between these data structures. Later in this chapter, we will discuss a number of different
types of agent architecture, with very different views on the data structures and algorithms that will be present within an
agent. In the remainder of this section, however, we will survey some fairly high-level design decisions. The first of
these is the separation of an agent's decision function into perception and action subsystems: see Figure 1.2.

Page 39

—_—
AOQENT

EMVIROMMENT

Figure 1.2
Perception and action subsystems.

The idea is that the function see captures the agent's ability to observe its environment, whereas the action function
represents the agent's decision making process. The see function might be implemented in hardware in the case of an
agent situated in the physical world: for example, it might be a video camera or an infra-red sensor on a mobile robot.
For a software agent, the sensors might be system commands that obtain information about the software environment,
such as 1s, finger, or suchlike. The output of the see function is a percept—a perceptual input. Let P be a (non-empty)
set of percepts. Then see is a function

see: 9 =+ P

which maps environment states to percepts, and action is now a function
action: P* =+ A

which maps sequences of percepts to actions.

These simple definitions allow us to explore some interesting properties of agents and perception. Suppose that we have

two environment states, 91 €5 and 82 € S such that 81 7 82, but see(s;) = see(s,). Then two different
environment states are mapped to the same percept, and hence the agent would receive the same perceptual information
from different environment states. As far as the agent is concerned, therefore, s, and s, are indistinguishable. To make
this example concrete, let us return to the thermostat example. Let x represent the statement

"the room temperature is OK"
and let y represent the statement
"John Major is Prime Minister."

If these are the only two facts about our environment that we are concerned with,

Page 40

then the set S of environment states contains exactly four elements:

§={{zz v}, {2y}, {7, 70} (= 0})

Thus in state s,, the room temperature is not OK, and John Major is not Prime Minister; in state s,, the room temperature
is not OK, and John Major is Prime Minister. Now, our thermostat is sensitive only to temperatures in the room. This
room temperature is not causally related to whether or not John Major is Prime Minister. Thus the states where John
Major is and is not Prime Minister are literally indistinguishable to the thermostat. Formally, the see function for the
thermostat would have two percepts in its range, p, and p,, indicating that the temperature is too cold or OK respectively.
The see function for the thermostat would behave as follows:

p1 ifs=3s, 0r s =3,
see(s) =

pa if s =283 0r8=asy4.

[- !
Given two environment states © €S and¥ € S, letuswrites 8 = & g if see(s) = see(s"). It is not hard to see
that = is an equivalence relation over environment states, which partitions S into mutually indistinguishable sets of

states. Intuitively, the coarser these equivalence classes are, the less effective is the agent's perception. il =1=15 ,
(i.e., the number of distinct percepts is equal to the number of different environment states), then the agent can
distinguish every state—the agent has perfect perception in the environment; it is omniscient. At the other extreme, if

| = | = 1, then the agent's perceptual ability is non-existent—it cannot distinguish between any different states. In this
case, as far as the agent is concerned, all environment states are identical.

1.3.3 Agents with State

We have so far been modelling an agent's decision function action as from sequences of environment states or percepts
to actions. This allows us to represent agents whose decision making is influenced by history. However, this is a
somewhat unintuitive representation, and we shall now replace it by an equivalent, but somewhat more natural scheme.
The idea is that we now consider agents that maintain state—see Figure 1.3.

These agents have some internal data structure, which is typically used to record information about the environment state
and history. Let | be the set of all internal states of the agent. An agent's decision making process is then based, at least in
part, on this information. The perception function see for a state-based agent is unchanged, mapping environment states
to percepts as before:

see: S5 =+ P

Page 41

-
AGENT 7

S5CC

next

EN\-"IRDNHEN'I}

Figure 1.3
Agents that maintain state.

The action-selection function action is now defined a mapping
action: I — A

from internal states to actions. An additional function next is introduced, which maps an internal state and percept to an
internal state:

next : [noa1.002 |

The behavior of a state-based agent can be summarized as follows. The agent starts in some initial internal state i, It then
observes its environment state s, and generates a percept see(s). The internal state of the agent is then updated via the
next function, becoming set to next(i,, see(s)). The action selected by the agent is then action(next(i,, see(s))). This action
is then performed, and the agent enters another cycle, perceiving the world via see, updating its state via next, and
choosing an action to perform via action.

It is worth observing that state-based agents as defined here are in fact no more powerful than the standard agents we
introduced earlier. In fact, they are identical in their expressive power—every state-based agent can be transformed into
a standard agent that is behaviorally equivalent.

Sources and Further Reading

The abstract model of agents presented here is based on that given in [25, Chapter 13], and also makes use of some ideas
from [61, 60]. The properties of perception as discussed in this section lead to knowledge theory, a formal analysis of the
information implicit within the state of computer processes, which has had a profound effect in theoretical computer
science. The definitive reference is [14], and an introductory survey is [29].

Page 42

1.4 Concrete Architectures for Intelligent Agents

Thus far, we have considered agents only in the abstract. So while we have examined the properties of agents that do and
do not maintain state, we have not stopped to consider what this state might look like. Similarly, we have modelled an
agent's decision making as an abstract function action, which somehow manages to indicate which action to
perform—but we have not discussed how this function might be implemented. In this section, we will rectify this
omission. We will consider four classes of agents:

* logic based agents—in which decision making is realized through logical deduction;
* reactive agents—in which decision making is implemented in some form of direct mapping from situation to action;

* belief-desire-intention agents—in which decision making depends upon the manipulation of data structures
representing the beliefs, desires, and intentions of the agent; and finally,

* layered architectures—in which decision making is realized via various software layers, each of which is more-or-less
explicitly reasoning about the environment at different levels of abstraction.

In each of these cases, we are moving away from the abstract view of agents, and beginning to make quite specific
commitments about the internal structure and operation of agents. Each section explains the nature of these
commitments, the assumptions upon which the architectures depend, and the relative advantages and disadvantages of
each.

1.4.1 Logic-Based Architectures

The "traditional™ approach to building artificially intelligent systems, (known as symbolic Al) suggests that intelligent
behavior can be generated in a system by giving that system a symbolic representation of its environment and its desired
behavior, and syntactically manipulating this representation. In this section, we focus on the apotheosis of this tradition,
in which these symbolic representations are logical formulae, and the syntactic manipulation corresponds to logical
deduction, or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some theory of agency—some theory that explains
how an intelligent agent should behave. This theory might explain, for example, how an agent generates goals so as to
satisfy its design objective, how it interleaves goal-directed and reactive behavior in order to achieve these goals, and so
on. Then this theory g can be considered as a specification for how an agent should behave. The traditional approach to
implementing a system that will satisfy this specification would involve refining the

Page 43

specification through a series of progressively more concrete stages, until finally an implementation was reached. In the
view of agents as theorem provers, however, no such refinement takes place. Instead, @ is viewed as an executable
specification: it is directly executed in order to produce the agent's behavior.

To see how such an idea might work, we shall develop a simple model of logic-based agents, which we shall call
deliberate agents. In such agents, the internal state is assumed to be a database of formulae of classical first-order
predicate logic. For example, the agent's database might contain formulae such as:

Open(valve221)
Temperature(reactor4726, 321)

Pressure(tank776, 28)

It is not difficult to see how formulae such as these can be used to represent the properties of some environment. The
database is the information that the agent has about its environment. An agent's database plays a somewhat analogous
role to that of belief in humans. Thus a person might have a belief that valve 221 is open— the agent might have the
predicate Open(valve221) in its database. Of course, just like humans, agents can be wrong. Thus I might believe that
valve 221 is open when it is in fact closed; the fact that an agent has Open(valve221) in its database does not mean that
valve 221 (or indeed any valve) is open. The agent's sensors may be faulty, its reasoning may be faulty, the information
may be out of date, or the interpretation of the formula Open(valve221) intended by the agent's designer may be
something entirely different.

Let L be the set of sentences of classical first-order logic, and let D = p(L) ve the set of L databases, i.e., the set of
sets of L-formulae. The internal state of an agent is then an element of D. We write A,A,,... for members of D. The
internal state of an agent is then simply a member of the set D. An agent's decision making process is modelled through a

set of deduction rules, p. These are simply rules of inference for the logic. We write AFy, ¢ if the formula @ can be
proved from the database A using only the deduction rules p. An agents perception function see remains unchanged:

see: 8 — P.

Similarly, our next function has the form

next:lonoao nno |

It thus maps a database and a percept to a new database. However, an agent's action selection function, which has the
signature

action: D — A

is defined in terms of its deduction rules. The pseudo-code definition of this function is as follows.

Page 44

1. function action(A:D) : A
2. begi n
3 for each @ € A go
4,

. AFp Dola)
5. return a
6. end-if
7. end-f or
8.

for each @ €A 4o

9.

¢ Alp~Do(a) .,
10. return a
11. end-if
12. end- f or
13. return nul |
14. end function action

The idea is that the agent programmer will encode the deduction rules p and database A in such a way that if a formula
Do(a) can be derived, where a is a term that denotes an action, then a is the best action to perform. Thus, in the first part
of the function (lines (3)-(7)), the agent takes each of its possible actions a in turn, and attempts to prove the form the
formula Do(a) from its database (passed as a parameter to the function) using its deduction rules p. If the agent succeeds
in proving Do(a), then a is returned as the action to be performed.

What happens if the agent fails to prove Do(a), for all actions & €A ? In this case, it attempts to find an action that is
consistent with the rules and database, i.e., one that is not explicitly forbidden. In lines (8)-(12), therefore, the agent

attempts to find an action @ €A such that =Do(a) cannot be derived from its database using its deduction rules. If it
can find such an action, then this is returned as the action to be performed. If, however, the agent falls to find an action
that is at least consistent, then it returns a special action null (or hoop), indicating that no action has been selected.

In this way, the agent's behavior is determined by the agent's deduction rules (its "program™) and its current database
(representing the information the agent has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum cleaning world example of [59, p51]).
The idea is that we have a small robotic agent that will clean up a house. The robot is equipped with a sensor that will

tell it whether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt. In addition, the robot always has
a definite orientation (one of north, south, east, or west). In addition to being able to suck up dirt, the agent can move
forward one "step™ or turn right 90°. The agent moves around a room, which is divided grid-like into a number of equally
sized squares (conveniently corresponding to the unit of movement of the agent). We will assume that our agent does
nothing but clean—it never leaves the room, and further, we will assume in the interests of simplicity that the room is a 3
x 3 grid, and the agent always starts in grid square (0, 0) facing

Page 45
oo AL
- ’ - > ~
02 AL £2.2)
T Bt AR € PF 51 HNUUURRR < 3 B
0.0y Lo (2,00
Figure 1.4

Vacuum world
north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt beneath it), or null (indicating no special
information). It can perform any one of three possible actions: forward, suck, or turn. The goal is to traverse the room
continually searching for and removing dirt. See Figure 1.4 for an illustration of the vacuum world.

First, note that we make use of three simple domain predicates in this exercise:
agent is at (x, y)

In(X, y)
Dirt(x, y) there is dirt at (x, y)
Facing(d) the agent is facing direction d

Now we specify our next function. This function must look at the perceptual information obtained from the environment
(either dirt or null), and generate a new database which includes this information. But in addition, it must remove old or
irrelevant information, and also, it must try to figure out the new location and orientation of the agent. We will therefore
specify the next function in several parts. First, let us write old(A) to denote the set of "old" information in a database,
which we want the update function next to remove:

l0045-002 |

Next, we require a function new, which gives the set of new predicates to add to the database. This function has the
signature

new: D x P — D

The definition of this function is not difficult, but it is rather lengthy, and so we will leave it as an exercise. (It must
generate the predicates In(...), describing the new position of the agent, Facing(...) describing the orientation of the
agent, and Dirt(...) if dirt has been detected at the new position.) Given the new and old functions, the next function is
defined as follows:

[0045-004 |

Page 46
Now we can move on to the rules that govern our agent's behavior. The deduction rules have the form

&(...) — ¥(...)

where g and are predicates over some arbitrary list of constants and variables. The idea being that if @ matches against
the agent's database, then (s can be concluded, with any variables in instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will take priority over all other possible
behaviors of the agent (such as navigation).

[0046-002 | (1.1)

Hence if the agent is at location (X, y) and it perceives dirt, then the prescribed action will be to suck up dirt. Otherwise,
the basic action of the agent will be to traverse the world. Taking advantage of the simplicity of our environment, we
will hardwire the basic navigation algorithm, so that the robot will always move from (0, 0) to (0, 1) to (0, 2) and then to
(1, 2), (1, 1) and so on. Once the agent reaches (2, 2), it must head back to (0, 0). The rules dealing with the traversal up
to (0, 2) are very simple.

In(0,0) A Facing(north) A -Dirt(0,0) — Do(forward) 1.2)
[0046-004 | 13)
In(0,2) A Facing(north) A —~Dirt(0,2) — Do(turn) 149
In(0,2) A Facing(east) — Dol forward) (15)

Notice that in each rule, we must explicitly check whether the antecedent of rule (1.1) fires. This is to ensure that we
only ever prescribe one action via the Do(...) predicate. Similar rules can easily be generated that will get the agent to (2,
2), and once at (2, 2) back to (0, 0). It is not difficult to see that these rules, together with the next function, will generate
the required behavior of our agent.

At this point, it is worth stepping back and examining the pragmatics of the logic-based approach to building agents.
Probably the most important point to make is that a literal, naive attempt to build agents in this way would be more or
less entirely impractical. To see why, suppose we have designed out agent's rule set p such that for any database A, if we
can prove Do(a) then a is an optimal action— that is, a is the best action that could be performed when the environment
Is as described in A. Then imagine we start running our agent. At time t,, the agent has generated some database A,, and
begins to apply its rules p in order to find which action to perform. Some time later, at time t,, it manages to establish

Image-0069 | bo(a) for some |!M39E-0070] 4nd 50 a is the optimal action that the agent could perform at time t,. But if

the environment has changed between t, and t,, then there is no guarantee that a will still be optimal. It could be far from
optimal, particularly if much time has elapsed between t, and t,. If t,-t; is infinitesimal—that is, if decision making is
effectively instantaneous—then we could safely disregard this problem. But in fact,

Page 47

we know that reasoning of the kind our logic-based agents use will be anything but instantaneous. (If our agent uses
classical first-order predicate logic to represent the environment, and its rules are sound and complete, then there is no
guarantee that the decision making procedure will even terminate.) An agent is said to enjoy the property of calculative
rationality if and only if its decision making apparatus will suggest an action that was optimal when the decision making
process began. Calculative rationality is clearly not acceptable in environments that change faster than the agent can
make decisions—we shall return to this point later.

One might argue that this problem is an artifact of the pure logic-based approach adopted here. There is an element of
truth in this. By moving away from strictly logical representation languages and complete sets of deduction rules, one
can build agents that enjoy respectable performance. But one also loses what is arguably the greatest advantage that the
logical approach brings: a simple, elegant logical semantics.

There are several other problems associated with the logical approach to agency. First, the see function of an agent, (its
perception component), maps its environment to a percept. In the case of a logic-based agent, this percept is likely to be
symbolic—typically, a set of formulae in the agent's representation language. But for many environments, it is not
obvious how the mapping from environment to symbolic percept might be realized. For example, the problem of
transforming an image to a set of declarative statements representing that image has been the object of study in Al for
decades, and is still essentially open. Another problem is that actually representing properties of dynamic, real-world
environments is extremely hard. As an example, representing and reasoning about temporal information—how a
situation changes over time turns out to be extraordinarily difficult. Finally, as the simple vacuum world example
illustrates, representing even rather simple procedural knowledge (i.e., knowledge about "what to do™) in traditional
logic can be rather unintuitive and cumbersome.

To summarize, in logic-based approaches to building agents, decision making is viewed as deduction. An agent's
"program”—that is, its decision making strategy— is encoded as a logical theory, and the process of selecting an action
reduces to a problem of proof. Logic-based approaches are elegant, and have a clean (logical) semantics—wherein lies
much of their long-lived appeal. But logic-based approaches have many disadvantages. In particular, the inherent
computational complexity of theorem proving makes it questionable whether agents as theorem provers can operate
effectively in time-constrained environments. Decision making in such agents is predicated on the assumption of
calculative rationality—the assumption that the world will not change in any significant way while the agent is deciding
what to do, and that an action which is rational when decision making begins will be rational when it concludes. The
problems associated with representing and reasoning about complex, dynamic, possibly physical environments are also
essentially unsolved.

Page 48

Sources and Further Reading

My presentation of logic based agents is based largely on the discussion of deliberate agents presented in [25, Chapter
13], which represents the logic-centric view of Al and agents very well. The discussion is also partly based on [38]. A
number of more-or-less "pure™ logical approaches to agent programming have been developed. Well-known examples
include the concoLoc system of Lespérance and colleagues [39] (which is based on the situation calculus [45]) and the
MeTaTEM and Concurrent MeTATEM programming languages developed by Fisher and colleagues [3, 21] (in which
agents are programmed by giving them temporal logic specifications of the behavior they should exhibit). Concurrent
MEeTATEM is discussed as a case study in section 1.5. Note that these architectures (and the discussion above) assume that
if one adopts a logical approach to agent-building, then this means agents are essentially theorem provers, employing
explicit symbolic reasoning (theorem proving) in order to make decisions. But just because we find logic a useful tool
for conceptualising or specifying agents, this does not mean that we must view decision-making as logical manipulation.
An alternative is to compile the logical specification of an agent into a form more amenable to efficient decision making.
The difference is rather like the distinction between interpreted and compiled programming languages. The best-known
example of this work is the situated automata paradigm of Leslie Kaelbling and Stanley Rosenschein [58]. A review of
the role of logic in intelligent agents may be found in [70]. Finally, for a detailed discussion of calculative rationality and
the way that it has affected thinking in Al, see [60].

1.4.2 Reactive Architectures

The seemingly intractable problems with symbolic/logical approaches to building agents led some researchers to
question, and ultimately reject, the assumptions upon which such approaches are based. These researchers have argued
that minor changes to the symbolic approach, such as weakening the logical representation language, will not be
sufficient to build agents that can operate in time-constrained environments: nothing less than a whole new approach is
required. In the mid-to-late 1980s, these researchers began to investigate alternatives to the symbolic Al paradigm. It is
difficult to neatly characterize these different approaches, since their advocates are united mainly by a rejection of
symbolic Al, rather than by a common manifesto. However, certain themes do recur:

« the rejection of symbolic representations, and of decision making based on syntactic manipulation of such
representations;

« the idea that intelligent, rational behavior is seen as innately linked to the environment an agent occupies—intelligent
behavior is not disembodied, but is a product of the interaction the agent maintains with its environment;

Page 49

« the idea that intelligent behavior emerges from the interaction of various simpler behaviors.

Alternative approaches to agency are sometime referred to as behavioral (since a common theme is that of developing
and combining individual behaviors), situated (since a common theme is that of agents actually situated in some
environment, rather than being disembodied from it), and finally—the term used in this chapter—reactive (because such
systems are often perceived as simply reacting to an environment, without reasoning about it). This section presents a
survey of the subsumption architecture, which is arguably the best-known reactive agent architecture. It was developed
by Rodney Brooks—one of the most vocal and influential critics of the symbolic approach to agency to have emerged in
recent years.

There are two defining characteristics of the subsumption architecture. The first is that an agent's decision-making is
realized through a set of task accomplishing behaviors; each behavior may be though of as an individual action function,
as we defined above, which continually takes perceptual input and maps it to an action to perform. Each of these
behavior modules is intended to achieve some particular task. In Brooks' implementation, the behavior modules are finite
state machines. An important point to note is that these task accomplishing modules are assumed to include no complex
symbolic representations, and are assumed to do no symbolic reasoning at all. In many implementations, these behaviors
are implemented as rules of the form

situation — action
which simple map perceptual input directly to actions.

The second defining characteristic of the subsumption architecture is that many behaviors can "fire™ simultaneously.
There must obviously be a mechanism to choose between the different actions selected by these multiple actions. Brooks
proposed arranging the modules into a subsumption hierarchy, with the behaviors arranged into layers. Lower layers in
the hierarchy are able to inhibit higher layers: the lower a layer is, the higher is its priority. The idea is that higher layers
represent more abstract behaviors. For example, one might desire a behavior in a mobile robot for the behavior "avoid
obstacles”. It makes sense to give obstacle avoidance a high priority—hence this behavior will typically be encoded in a
low-level layer, which has high priority. To illustrate the subsumption architecture in more detail, we will now present a
simple formal model of it, and illustrate how it works by means of a short example. We then discuss its relative
advantages and shortcomings, and point at other similar reactive architectures.

The see function, which represents the agent's perceptual ability, is assumed to remain unchanged. However, in
implemented subsumption architecture systems, there is assumed to be quite tight coupling between perception and
action—raw sensor input is not processed or transformed much, and there is certainly no attempt to transform images to
symbolic representations.

Page 50

The decision function action is realized through a set of behaviors, together with an inhibition relation holding between

cCP is a set of percepts called the condition, and @ €A is an

these behaviors. A behavior is a pair (c, a), where
action. A behavior (c, a) will fire when the environment is in state # €S iff see(s) @ €A Let

Beh = {(c,a) | ¢ C P and a € A} pe the set of all such rules.

Associated with an agent's set of behavior rules 0050-003| geh s a binary inhibition relation on the set of behaviors:

~< C R x R This relation is assumed to be a total ordering on R (i.e., it is transitive, irreflexive, and antisymmetric).

We write b1 = b4 j£{0050-006 , and read this as "b, inhibits b,", that is, b, is lower in the hierarchy than b,, and will
hence get priority over b,. The action function is then defined as follows:

1. function action(p : P) : A
2. var fired : (R

3. var selected : A

4. begi n

5. fired := {(c,a) | (c,a) € R and p € ¢}

for each {c,n}E fired do

7.
i f Image-0079 fired such that (c, a 0050008) then
8. return a
9. end-if
10. end-f or
11. return nul |
12. end function action

Thus action selection begins by first computing the set fired of all behaviors that fire (5). Then, each behavior (c, a) that
fires is checked, to determine whether there is some other higher priority behavior that fires. If not, then the action part
of the behavior, a, is returned as the selected action (8). If no behavior fires, then the distinguished action null will be
returned, indicating that no action has been chosen.

Given that one of our main concerns with logic-based decision making was its theoretical complexity, it is worth pausing
to examine how well our simple behavior-based system performs. The overall time complexity of the subsumption
action function is no worse than O(n2), where n is the larger of the number of behaviors or number of percepts. Thus,
even with the naive algorithm above, decision making is tractable. In practice, we can do considerably better than this:
the decision making logic can be encoded into hardware, giving constant decision time. For modern hardware, this
means that an agent can be guaranteed to select an action within nano-seconds. Perhaps more than anything else, this
computational simplicity is the strength of the subsumption architecture.

To illustrate how the subsumption architecture in more detail, we will show how subsumption architecture agents were
built for the following scenario (this example is adapted from [66]):

Page 51

The objective is to explore a distant planet, more concretely, to collect samples of a particular type of precious rock. The location
of the rock samples is not known in advance, but they are typically clustered in certain spots. A number of autonomous vehicles are
available that can drive around the planet collecting samples and later reenter the a mothership spacecraft to go back to earth.
There is no detailed map of the planet available, although it is known that the terrain is full of obstacles—hills, valleys,
etc.—which prevent the vehicles from exchanging any communication.

The problem we are faced with is that of building an agent control architecture for each vehicle, so that they will
cooperate to collect rock samples from the planet surface as efficiently as possible. Luc Steels argues that logic-based
agents, of the type we described above, are "entirely unrealistic™ for this problem [66]. Instead, he proposes a solution
using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels: The first is a gradient field. In order that agents can
know in which direction the mothership lies, the mothership generates a radio signal. Now this signal will obviously
weaken as distance to the source increases—to find the direction of the mothership, an agent need therefore only travel
"up the gradient™ of signal strength. The signal need not carry any information—it need only exist.

The second mechanism enables agents to communicate with one another. The characteristics of the terrain prevent direct
communication (such as message passing), so Steels adopted an indirect communication method. The idea is that agents

will carry "radioactive crumbs”, which can be dropped, picked up, and detected by passing robots. Thus if an agent drops
some of these crumbs in a particular location, then later, another agent happening upon this location will be able to detect
them. This simple mechanism enables a quite sophisticated form of cooperation.

The behavior of an individual agent is then built up from a number of behaviors, as we indicated above. First, we will
see how agents can be programmed to individually collect samples. We will then see how agents can be programmed to
generate a cooperative solution.

For individual (non-cooperative) agents, the lowest-level behavior, (and hence the behavior with the highest "priority™) is
obstacle avoidance. This behavior can can be represented in the rule:

1.6
if detect an obstacle then change direction. (1.8)

The second behavior ensures that any samples carried by agents are dropped back at the mother-ship.

1.7
if carrying samples and at the base then drop samples a7

if carrying samples and not at the base then travel up gradient. (1.8)

Behavior (1.8) ensures that agents carrying samples will return to the mother-ship (by heading towards the origin of the
gradient field). The next behavior ensures

Page 52

that agents will collect samples they find.

. : (1.9)
if detect a sample then pick sample up.

The final behavior ensures that an agent with "nothing better to do™ will explore randomly.

) (1.10)
if true then move randomly.

The pre-condition of this rule is thus assumed to always fire. These behaviors are arranged into the following hierarchy:

(1.6) < (1.7) < (1.8) < (1.9) < (1.10)

The subsumption hierarchy for this example ensures that, for example, an agent will always turn if any obstacles are
detected; if the agent is at the mother-ship and is carrying samples, then it will always drop them if it is not in any
immediate danger of crashing, and so on. The "top level™ behavior—a random walk—will only every be carried out if
the agent has nothing more urgent to do. It is not difficult to see how this simple set of behaviors will solve the problem:
agents will search for samples (ultimately by searching randomly), and when they find them, will return them to the
mother-ship.

If the samples are distributed across the terrain entirely at random, then equipping a large number of robots with these
very simple behaviors will work extremely well. But we know from the problem specification, above, that this is not the
case: the samples tend to be located in clusters. In this case, it makes sense to have agents cooperate with one-another in
order to find the samples. Thus when one agent finds a large sample, it would be helpful for it to communicate this to the
other agents, so they can help it collect the rocks. Unfortunately, we also know from the problem specification that direct
communication is impossible. Steels developed a simple solution to this problem, partly inspired by the foraging
behavior of ants. The idea revolves around an agent creating a "trail" of radioactive crumbs whenever it finds a rock
sample. The trail will be created when the agent returns the rock samples to the mother ship. If at some later point,
another agent comes across this trail, then it need only follow it down the gradient field to locate the source of the rock
samples. Some small refinements improve the efficiency of' this ingenious scheme still further. First, as an agent follows
a trail to the rock sample source, it picks up some of the crumbs it finds, hence making the trail fainter. Secondly, the
trail is only laid by agents returning to the mothership. Hence if an agent follows the trail out to the source of the nominal
rock sample only to find that it contains no samples, it will reduce the trail on the way out, and will not return with
samples to reinforce it. After a few agents have followed the trail to find no sample at the end of it, the trail will in fact
have been removed.

The modified behaviors for this example are as follows. Obstacle avoidance, (1.6), remains unchanged. However, the
two rules determining what to do if carrying a

Page 53

sample are modified as follows.

111
if carrying samples and at the base then drop samples (1)

if carrying samples and not at the base then drop 2 crumbs and travel up (1.12)
gradient.

The behavior (1.12) requires an agent to drop crumbs when returning to base with a sample, thus either reinforcing or
creating a trail. The "pick up sample™ behavior, (1.9), remains unchanged. However, an additional behavior is required
for dealing with crumbs.

1.13
if sense crumbs then pick up 1 crumb and travel down gradient (113)

Finally, the random movement behavior, (1.10), remains unchanged. These behavior are then arranged into the following
subsumption hierarchy.

(1.6) < (1.11) < (1.12) < (1.9) < (1.13) < (1.10)

Steels shows how this simple adjustment achieves near-optimal performance in many situations. Moreover, the solution
is cheap (the computing power required by each agent is minimal) and robust (the loss of a single agent will not affect
the overall system significantly).

In summary, there are obvious advantages to reactive approaches such as that Brooks' subsumption architecture:
simplicity, economy, computational tractability, robustness against failure, and elegance all make such architectures
appealing. But there are some fundamental, unsolved problems, not just with the subsumption architecture, but with
other purely reactive architectures:

* If agents do not employ models of their environment, then they must have sufficient information available in their local
environment for them to determine an acceptable action.

« Since purely reactive agents make decisions based on local information, (i.e., information about the agents current
state), it is difficult to see how such decision making could take into account non-local information—it must inherently
take a "short term™ view.

« It is difficult to see how purely reactive agents can be designed that learn from experience, and improve their
performance over time.

» A major selling point of purely reactive systems is that overall behavior emerges from the interaction of the component
behaviors when the agent is placed in its environment. But the very term "emerges" suggests that the relationship
between individual behaviors, environment, and overall behavior is not understandable. This necessarily makes it very
hard to engineer agents to fulfill specific tasks. Ultimately, there is no principled methodology for building such agents:
one must use a laborious process of experimentation, trial, and error to engineer an agent.

Page 54

* While effective agents can be generated with small numbers of behaviors (typically less that ten layers), it is much
harder to build agents that contain many layers. The dynamics of the interactions between the different behaviors
become too complex to understand.

Various solutions to these problems have been proposed. One of the most popular of these is the idea of evolving agents
to perform certain tasks. This area of work has largely broken away from the mainstream Al tradition in which work on,
for example, logic-based agents is carried out, and is documented primarily in the artificial life (alife) literature.

Sources and Further Reading

Brooks' original paper on the subsumption architecture the one that started all the fuss—was published as [8]. The
description and discussion here is partly based on [15]. This original paper seems to be somewhat less radical than many
of his later ones, which include [9, 11, 10]. The version of the subsumption architecture used in this chapter is actually a
simplification of that presented by Brooks. The subsumption architecture is probably the best-known reactive
architecture around—but there are many others. The collection of papers edited by Pattie Maes [41] contains papers that
describe many of these, as does the collection by Agre and Rosenschein [2]. Other approaches include:

« the agent network architecture developed by Pattie Maes [40, 42, 43];
* Nilsson's teleo reactive programs [49];

* Rosenchein and Kaelbling's situated automata approach, which is particularly interesting in that it shows how agents
can be specified in an abstract, logical framework, and compiled into equivalent, but computationally very simple
machines [57, 36, 35, 58];

» Agre and Chapman's penal system [1];

* Schoppers' universal plans—which are essentially decision trees that can be used to efficiently determine an
appropriate action in any situation [62];

* Firby's reactive action packages [19].

Kaelbling [34] gives a good discussion of the issues associated with developing resource-bounded rational agents, and
proposes an agent architecture somewhat similar to that developed by Brooks.

1.4.3 Belief-Desire-Intention Architectures

In this section, we shall discuss belief-desire-intention (Bbi1) architectures. These architectures have their roots in the
philosophical tradition of understanding practical reasoning—the process of deciding, moment by moment, which
action to perform in the furtherance of our goals.

Page 55

Practical reasoning involves two important processes: deciding what goals we want to achieve, and how we are going to
achieve these goals. The former process is known as deliberation, the latter as means-ends reasoning. To gain an
understanding of the b1 model, it is worth considering a simple example of practical reasoning. When you leave
university with a first degree, you are faced with a decision to make about what to do with your life. The decision
process typically begins by trying to understand what the options available to you are. For example, if you gain a good
first degree, then one option is that of becoming an academic. (If you fail to obtain a good degree, this option is not
available to you.) Another option is entering industry. After generating this set of alternatives, you must choose between
them, and commit to some. These chosen options become intentions, which then determine the agent's actions. Intentions
then feed back into the agent's future practical reasoning. For example, if | decide | want to be an academic, then |
should commit to this objective, and devote time and effort to bringing it about.

Intentions play a crucial role in the practical reasoning process. Perhaps the most obvious property of intentions is that
they tend to lead to action. If | truly have an intention to become an academic, then you would expect me to act on that
intention—to try to achieve it. For example, you might expect me to apply to various PhD programs. You would expect
to make a reasonable attempt to achieve the intention. Thus you would expect me to carry our some course of action that
| believed would best satisfy the intention. Moreover, if a course of action fails to achieve the intention, then you would
expect me to try again—you would not expect me to simply give up. For example, if my first application for a PhD
programme is rejected, then you might expect me to apply to alternative universities.

In addition, once | have adopted an intention, then the very fact of having this intention will constrain my future practical
reasoning. For example, while | hold some particular intention, | will not entertain options that are inconsistent with that
intention. Intending to become an academic, for example, would preclude the option of partying every night: the two are
mutually exclusive.

Next, intentions persist. If | adopt an intention to become an academic, then | should persist with this intention and
attempt to achieve it. For if I immediately drop my intentions without devoting resources to achieving them, then 1 will
never achieve anything. However, | should not persist with my intention for too long—if it becomes clear to me that |
will never become an academic, then it is only rational to drop my intention to do so. Similarly, if the reason for having
an intention goes away, then it is rational of me to drop the intention. For example, if | adopted the intention to become
an academic because | believed it would be an easy life, but then discover that | would be expected to actually teach,
then the justification for the intention is no longer present, and | should drop the intention.

Finally, intentions are closely related to beliefs about the future. For example, if | intend to become an academic, then |
should believe that I will indeed become an academic. For if I truly believe that I will never be an academic, it would be
non-sensical of me to have an intention to become one. Thus if | intend to become an academic, | should at least believe
that there is a good chance | will indeed

Page 56
become one.
From this discussion, we can see that intentions play a number of important roles in practical reasoning:

« Intentions drive means-ends reasoning.

If I have formed an intention to become an academic, then I will attempt to achieve the intention, which involves,
amongst other things, deciding how to achieve it, for example, by applying for a PhD programme. Moreover, if one
particular course of action fails to achieve an intention, then | will typically attempt others. Thus if I fail to gain a PhD
place at one university, | might try another university.

* Intentions constrain future deliberation.

If I intend to become an academic, then | will not entertain options that are inconsistent with this intention. For example,
a rational agent would not consider being rich as an option while simultaneously intending to be an academic. (While the
two are not actually mutually exclusive, the probability of simultaneously achieving both is infinitesimal.)

* Intentions persist.

I will not usually give up on my intentions without good reason—they will persist, typically until either I believe | have
successfully achieved them, I believe | cannot achieve them, or else because the purpose for the intention is no longer
present.

« Intentions influence beliefs upon which future practical reasoning is based.

If I adopt the intention to become an academic, then I can plan for the future on the assumption that I will be an
academic. For if | intend to be an academic while simultaneously believing that | will never be one, then | am being
irrational.

A key problem in the design of practical reasoning agents is that of of achieving a good balance between these different
concerns. Specifically, it seems clear that an agent should at times drop some intentions (because it comes to believe that
either they will never be achieved, they are achieved, or else because the reason for having the intention is no longer
present). It follows that, from time to time, it is worth an agent stopping to reconsider its intentions. But reconsideration
has a cost—in terms of both time and computational resources. But this presents us with a dilemma:

* an agent that does not stop to reconsider sufficiently often will continue attempting to achieve its intentions even after it
is clear that they cannot be achieved, or that there is no longer any reason for achieving them;

* an agent that constantly reconsiders its attentions may spend insufficient time actually working to achieve them, and
hence runs the risk of never actually achieving them.

This dilemma is essentially the problem of balancing pro-active (goal directed) and reactive (event driven) behavior, that
we introduced in section 1.2.2.

Page 57

There is clearly a tradeoff to be struck between the degree of commitment and reconsideration at work here. The nature
of this tradeoff was examined by David Kinny and Michael Georgeff, in a number of experiments carried out with a Bpi
agent framework called dMARS [37]. They investigate how bold agents (those that never stop to reconsider) and
cautious agents (those that are constantly stopping to reconsider) perform in a variety of different environments. The
most important parameter in these experiments was the rate of world change, g The key results of Kinny and Georgeff
were as follows.

* If yis low, (i.e., the environment does not change quickly), then bold agents do well compared to cautious ones,
because cautious ones waste time reconsidering their commitments while bold agents are busy working towards—and
achieving—their goals.

« If yis high, (i.e., the environment changes frequently), then cautious agents tend to outperform bold agents, because
they are able to recognize when intentions are doomed, and also to take advantage of serendipitous situations and new
opportunities.

The lesson is that different types of environment require different types of decision strategies. In static, unchanging
environment, purely pro-active, goal directed behavior is adequate. But in more dynamic environments, the ability to
react to changes by modififying intentions becomes more important.

The process of practical reasoning in a Bbi agent is summarized in Figure 1.5. As this Figure illustrates, there are seven
main components to a Bbi agent:

* a set of current beliefs, representing information the agent has about its current environment;

« a belief revision function, (brf), which takes a perceptual input and the agent's current beliefs, and on the basis of these,
determines a new set of beliefs;

* an option generation function, (options), which determines the options available to the agent (its desires), on the basis
of its current beliefs about its environment and its current intentions;

* a set of current options, representing possible courses of actions available to the agent;

« a filter function (filter), which represents the agent's deliberation process, and which determines the agent's intentions
on the basis of its current beliefs, desires, and intentions;

* a set of current intentions, representing the agent's current focus—those states of affairs that it has committed to trying
to bring about;

« an action selection function (execute), which determines an action to perform on the basis of current intentions.

It is straightforward to formally define these components. First, let Bel be the set of all possible beliefs, Des be the set of
all possible desires, and Int be the set of

Page 58

BEMSEOT
input

- Filter S

Figure 1.5
Schematic diagram of a generic
belief-desire-intention architecture.

all possible intentions. For the purposes of this chapter, the content of these sets is not important. (Often, beliefs, desires,
and intentions are represented as logical formulae, perhaps of first-order logic.) Whatever the content of these sets, its is
worth noting that they should have some notion of consistency defined upon them, so that one can answer the question
of, for example, whether having an intention to achieve X is consistent with the belief that y. Representing beliefs,
desires, and intentions as logical formulae permits us to cast such questions as questions as questions of determining
whether logical formulae are consistent—a well known and well-understood problem. The state of a Bpi agent at any

given moment is, unsurprisingly, a triple (B, D, I), where |99°8-002] DC -D'Eﬁ, and [0058-004

An agent's belief revision function is a mapping

brf: (Bel) x P — p(Bel)

which on the basis of the current percept and current beliefs determines a new set of beliefs. Belief revision is out of the
scope of this chapter (and indeed this book), and so we shall say no more about it here.

Page 59

The option generation function, options, maps a set of beliefs and a set of intentions to a set of desires.
options : P(Bel) x p(Int) —+ p(Des)

This function plays several roles. First, it must be responsible for the agent's means-ends reasoning—the process of
deciding how to achieve intentions. Thus, once an agent has formed an intention to x, it must subsequently consider
options to achieve x. These options will be more concrete—Iless abstract—than x. As some of these options then become
intentions themselves, they will also feedback into option generation, resulting in yet more concrete options being
generated. We can thus think of a b1 agent's option generation process as one of recursively elaborating a hierarchical
plan structure, considering and committing to progressively more specific intentions, until finally it reaches the
intentions that correspond to immediately executable actions.

While the main purpose of the options function is thus means-ends reasoning, it must in addition satisfy several other
constraints. First, it must be consistent: any options generated must be consistent with both the agent's current beliefs and
current intentions. Secondly, it must be opportunistic, in that it should recognize when environmental circumstances
change advantageously, to offer the agent new ways of achieving intentions, or the possibility of achieving intentions
that were otherwise unachievable.

A BpI agent's deliberation process (deciding what to do) is represented in the filter function,

filter : [0059-002 |

which updates the agent's intentions on the basis of its previously-held intentions and current beliefs and desires. This
function must fulfill two roles. First, it must drop any intentions that are no longer achievable, or for which the expected
cost of achieving them exceeds the expected gain associated with successfully achieving them. Second, it should retain
intentions that are not achieved, and that are still expected to have a positive overall benefit. Finally, it should adopt new
intentions, either to achieve existing intentions, or to exploit new opportunities.

Notice that we do not expect this function to introduce intentions from nowhere. Thus filter should satisfy the following
constraint:

VB € p(Bel),VD € p(Des),VI € p(Int), filter(B,D,I) C TU D.
In other words, current intentions are either previously held intentions or newly adopted options.

The execute function is assumed to simply return any executable intentions—one that corresponds to a directly
executable action:

execute :[0059-004 |

The agent decision function, action of a Bbi agent is then a function

action: P — A

and is defined by the following pseudo-code.

Page 60

1. function action(p : P) : A
2. begi n

3 B := brf(B,p)

4 D := options(D, I)

S. | :=filter(B, D, 1)
6. return execute(l)
7. end function action

Note that representing an agent's intentions as a set (i.e., as an unstructured collection) is generally too simplistic in
practice. A simple alternative is to associate a priority with each intention, indicating its relative importance. Another
natural idea is to represent intentions as a stack. An intention is pushed on to the stack when it is adopted, and popped
when it is either achieved or else not achievable. More abstract intentions will tend to be at the bottom of the stack, with
more concrete intentions towards the top.

To summarize, Bbi architectures are practical reasoning architectures, in which the process of deciding what to do
resembles the kind of practical reasoning that we appear to use in our everyday lives. The basic components of a BDI
architecture are data structures representing the beliefs, desires, and intentions of the agent, and functions that represent
its deliberation (deciding what intentions to have— i.e., deciding what to do) and means-ends reasoning (deciding how
to do it). Intentions play a central role in the Bpi model: they provide stability for decision making, and act to focus the
agent's practical reasoning. A major issue in Boi architectures is the problem of striking a balance between being
committed to and overcommitted to one's intentions: the deliberation process must be finely tuned to its environment,
ensuring that in more dynamic, highly unpredictable domains, it reconsiders its intentions relatively frequently—in more
static environments, less frequent reconsideration is necessary.

The Bp1 model is attractive for several reasons. First, it is intuitive—we all recognize the processes of deciding what to
do and then how to do it, and we all have an informal understanding of the notions of belief, desire, and intention.
Second, it gives us a clear functional decomposition, which indicates what sorts of subsystems might be required to build
an agent. But the main difficulty, as ever, is knowing how to efficiently implement these functions.

Sources and Further Reading

Belief-desire-intention architectures originated in the work of the Rational Agency project at Stanford Research Institute
in the mid 1980s. The origins of the model lie in the theory of human practical reasoning developed by the philosopher
Michael Bratman [6], which focusses particularly on the role of intentions in practical

Page 61

reasoning. The conceptual framework of the BDI model is described in [7], which also describes a specific BDI agent
architecture called IrmA. The description of the spi model given here (and in particular Figure 1.5) is adapted from [7].
One of the interesting aspects of the Bpi model is that it has been used in one of the most successful agent architectures to
date. The Procedural Resoning System (prs), originally developed by Michael Georgeff and Amy Lansky [26], has been
used to build some of the most exacting agent applications to date, including fault diagnosis for the reaction control
system of the space shuttle, and an air traffic management system at Sydney airport in Australia—overviews of these
systems are described in [27]. In the prs, an agent is equipped with a library of plans which are used to perform means-
ends reasoning. Deliberation is achieved by the use of meta-level plans, which are able to modify an agent's intention
structure at runtime, in order to change the focus of the agent's practical reasoning. Beliefs in the prs are represented as
proLOG-like facts—essentially, as atoms of first-order logic.

The Bp1 model is also interesting because a great deal of effort has been devoted to formalising it. In particular, Anand
Rao and Michael Georgeff have developed a range of b1 logics, which they use to axiomatize properties of spi-based
practical reasoning agents [52, 56, 53, 54, 55, 51]. These models have been extended by others to deal with, for example,
communication between agents [28].

1.4.4 Layered Architectures

Given the requirement that an agent be capable of reactive and pro-active behavior, an obvious decomposition involves
creating separate subsystems to deal with these different types of behaviors. This idea leads naturally to a class of
architectures in which the various subsystems are arranged into a hierarchy of interacting layers. In this section, we will
consider some general aspects of layered architectures, and then go on to consider two examples of such architectures:
INTERRAP and TOURINGMACHINES.

Typically, there will be at least two layers, to deal with reactive and pro-active behaviors respectively. In principle, there
IS no reason why there should not be many more layers. However many layers there are, a useful typology for such
architectures is by the information and control flows within them. Broadly speaking, we can identify two types of control
flow within layered architectures (see Figure 1.6):

* Horizontal layering.
In horizontally layered architectures (Figure 1.6(a)), the software layers are each directly connected to the sensory input
and action output. In effect, each layer itself acts like an agent, producing suggestions as to what action to perform.

* Vertical layering.
In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input and action output are each dealt with by at
most one layer each.

The great advantage of horizontally layered architectures is their conceptual simplicity: if we need an agent to exhibit n
different types of behavior, then we imple-

Page 62

action
output
——— ern
La I_j_!ll'ﬂ' i i LH}I i
percepual ___._kna:nun f— 4 4 Laver2 i
input s Layer? 7wtpul: y Layer2 j AV i
1 I La I
Layer 1 u—l':ﬂ ! =
perceptusl percepnm action
input input output
(a) Horizontal layering {b) Vertical layering {c) Vertical layering
(One pass controd) (Two pass control)
Figure 1.6

Information and control flows in three types of
layered agent architecture (Source: [47, p263]).

ment n different layers. However, because the layers are each in effect competing with one-another to generate action
suggestions, there is a danger that the overall behavior of the agent will not be coherent. In order to ensure that
horizontally layered architectures are consistent, they generally include a mediator function, which makes decisions
about which layer has "control” of the agent at any given time. The need for such central control is problematic: it means
that the designer must potentially consider all possible interactions between layers. If there are n layers in the
architecture, and each layer is capable of suggesting m possible actions, then this means there are mn such interactions to
be considered. This is clearly difficult from a design point of view in any but the most simple system. The introduction
of a central control system also introduces a bottleneck into the agent's decision making.

These problems are partly alleviated in a vertically layered architecture. We can subdivide vertically layered
architectures into one pass architectures (Figure 1.6(b)) and two pass architectures (Figure 1.6(c)). In one-pass
architectures, control flows sequentially through each layer, until the final layer generates action output. In two-pass
architectures, information flows up the architecture (the first pass) and control then flows back down. There are some
interesting similarities between the idea of two-pass vertically layered architectures and the way that organisations work,
with information flowing up to the highest levels of the organisation, and commands then flowing down. In both one
pass and two pass vertically layered architectures, the complexity of interactions between layers is reduced: since there
are n - 1 interfaces. between n layers, then if each layer is capable of suggesting m actions, there are at most m2(n - 1)
interactions to be considered between layers. This is clearly much simpler than the horizontally layered case. However,
this simplicity comes at the cost of some flexibility: in order for a vertically layered architecture to

Page 63

]
Modelling layer |
imput
Perception subsyanem Plansing Layer Action subsystem
action
eratpud
Reactive layer |
|
i Control subsystem
|
Figure 1.7

TOURINGMACHINES: a horizontally layered agent architecture

make a decision, control must pass between each different layer. This is not fault tolerant: failures in any one layer are
likely to have serious consequences for agent performance.

In the remainder of this section, we will consider two examples of layered architectures: Innes Ferguson's
TOURINGMACHINES, and Jorg Muller's INTERRAP. The former is an example of a horizontally layered architecture; the latter
is a (two pass) vertically layered architecture.

TouringMachines

The TouRINGMACHINES architecture is illustrated in Figure 1.7. As this Figure shows, TourRINGMACHINES consists of three
activity producing layers. That is, each layer continually produces "suggestions” for what actions the agent should
perform. The reactive layer provides a more-or-less immediate response to changes that occur in the environment. It is
implemented as a set of situation-action rules, like the behaviors in Brooks' subsumption architecture (section 1.4.2).
These rules map sensor input directly to effector output. The original demonstration scenario for TOURINGMACHINES Was
that of autonomous vehicles driving between locations through streets populated by other similar agents. In this scenario,
reactive rules typically deal with functions like obstacle avoidance. For example, here is an example of a reactive rule for
avoiding the kerb (from [16, p59]):

rul e-1: kerb-avoi dance
i f
i s-in-front (Kerb, Cbserver) and
speed(Cbserver) > 0 and
separation(Kerb, Cbserver) < KerbThreshHol d

Page 64

t hen
change-ori entati on (KerbAvoi danceAngl e)

Here change-orientation(. . .) is the action suggested if the rule fires. The rules can only make references to the agent's
current state they cannot do any explicit reasoning about the world, and on the right hand side of rules are actions, not
predicates. Thus if this rule fired, it would not result in any central environment model being updated, but would just
result in an action being suggested by the reactive layer.

The TouriINGMACHINES planning layer achieves the agent's pro-active behavior. Specifically, the planning layer is
responsible for the "day-to-day" running of the agent—under normal circumstances, the planning layer will be
responsible for deciding what the agent does. However, the planning layer does not do "first-principles” planning. That
is, it does not attempt to generate plans from scratch. Rather, the planning layer employs a library of plan "skeletons"
called schemas. These skeletons are in essence hierarchically structured plans, which the TourRINGMACHINES planning
layer elaborates at run time in order to decide what to do. So, in order to achieve a goal, the planning layer attempts to
find a schema in its library which matches that goal. This schema will contain sub-goals, which the planning layer
elaborates by attempting to find other schemas in its plan library that match these sub-goals.

The modeling layer represents the various entities in the world (including the agent itself, as well as other agents). The
modeling layer thus predicts conflicts between agents, and generates new goals to be achieved in order to resolve these
conflicts. These new goals are then posted down to the planning layer, which makes use of its plan library in order to
determine how to satisfy them.

The three control layers are embedded within a control subsystem, which is effectively responsible for deciding which of
the layers should have control over the agent. This control subsystem is implemented as a set of control rules. Control
rules can either suppress sensor information between the control rules and the control layers, or else censor action
outputs from the control layers. Here is an example censor rule [18, p207]:

censor-rule- 1:
i f
entity(obstacle-6) in perception-buffer
t hen
remove-sensory-record(layer-R, entity (obstacle-6))

This rule prevents the reactive layer from ever knowing about whether obstacle-6 has been perceived. The intuition is
that although the reactive layer will in general be the most appropriate layer for dealing with obstacle avoidance, there
are certain obstacles for which other layers are more appropriate. This rule ensures that the reactive layer never comes to
know about these obstacles.

Page 65

rl !
cooperation layer [social knowledge
1 - S—
J ¥ #
plan layer —=—planning knowledge

13 ’r

, behaviour layer HI. world model

by i

‘ world interface

LN s

T perceptual input Y action output

Figure 1.8
INTERRAP—a vertically layered two-pass agent architecture.

InteRRaP
INTERRAP IS an example of a vertically layered two-pass agent architecture—see Figure 1.8.

As Figure 1.8 shows, INTERRAP contains three control layers, as in TOURINGMA-CHINES. Moreover, the purpose of each
INTERRAP layer appears to be rather similar to the purpose of each corresponding TourRINGMACHINES layer. Thus the lowest
(behavior based) layer deals with reactive behavior; the middle (local planning) layer deals with everyday planning to
achieve the agent's goals, and the uppermost (cooperative planning) layer deals with social interactions. Each layer has
associated with it a knowledge base, i.e., a representation of the world appropriate for that layer. These different
knowledge bases represent the agent and its environment at different levels of abstraction. Thus the highest level
knowledge base represents the plans and actions of other agents in the environment; the middle-level knowledge base
represents the plans and actions of the agent itself; and the lowest level knowledge base represents "raw" information
about the environment. The explicit introduction of these knowledge bases distinguishes TOURINGMACHINES from
INTERRAP.

The way the different layers in INTERRAP conspire to produce behavior is also quite different from TourRINGMACHINES. The
main difference is in the way the layers interract with the environment. In TouRINGMACHINES, each layer was directly
coupled to perceptual input and action output. This necessitated the introduction of a supervisory control framework, to
deal with conflicts or problems between layers. In INTERRAP, layers interact with each other to achieve the same end. The
two main types of interaction between layers are bottom-up activation and top-down execution. Bottom-up activation
occurs when a lower layer passes control to a higher layer because it is not competent to deal with the current situation.
Top-down execution occurs when a higher layer makes use of the facilities provided by

Page 66

a lower layer to achieve one of its goals. The basic flow of control in INTERRAP begins when perceptual input arrives at
the lowest layer in the achitecture. If the reactive layer can deal with this input, then it will do so; otherwise, bottom-up
activation will occur, and control will be passed to the local planning layer. If the local planning layer can handle the
situation, then it will do so, typically by making use of top-down execution. Otherwise, it will use bottom-up activation
to pass control to the highest layer. In this way, control in INTERRAP Will flow from the lowest layer to higher layers of the
architecture, and then back down again.

The internals of each layer are not important for the purposes of this chapter. However, it is worth noting that each layer
implements two general functions. The first of these is a situation recognition and goal activation function. This
function acts rather like the options function in a BDI architecture (see section 1.4.3). It maps a knowledge base (one of
the three layers) and current goals to a new set of goals. The second function is responsible for planning and
scheduling—it is responsible for selecting which plans to execute, based on the current plans, goals, and knowledge base
of that layer.

Layered architectures are currently the most popular general class of agent architecture available. Layering represents a
natural decomposition of functionality: it is easy to see how reactive, pro-active, social behavior can be generated by the
reactive, pro-active, and social layers in an architecture. The main problem with layered architectures is that while they
are arguably a pragmatic solution, they lack the conceptual and semantic clarity of unlayered approaches. In particular,
while logic-based approaches have a clear logical semantics, it is difficult to see how such a semantics could be devised
for a layered architecture. Another issue is that of interactions between layers. If each layer is an independent activity
producing process (as in TOURINGMACHINES), then it is necessary to consider all possible ways that the layers can interact
with one another. This problem is partly alleviated in two-pass vertically layered architecture such as INTERRAP.

Sources and Further Reading

The introductory discussion of layered architectures given here draws heavily upon [47, pp262-264]. The best reference
to TOURINGMACHINES IS [16]; more accessible references include [17, 18]. The definitive reference to INTERRAP is [46],
although [20] is also a useful reference. Other examples of layered architectures include the subsumption architecture [8]
(see also section 1.4.2), and the 3T architecture [4].

1.5 Agent Programming Languages

As agent technology becomes more established, we might expect to see a variety of software tools become available for
the design and construction of agent-based

Page 67

systems; the need for software support tools in this area was identified as long ago as the mid-1980s [23]. In this section,
we will discuss two of the better-known agent programming languages, focussing in particular on Yoav Shoham's
AGENTO system.

1.5.1 Agent-Oriented Programming

Yoav Shoham has proposed a "new programming paradigm, based on a societal view of computation” which he calls
agent-oriented programming. The key idea which informs aop is that of directly programming agents in terms of
mentalistic notions (such as belief, desire, and intention) that agent theorists have developed to represent the properties
of agents. The motivation behind the proposal is that humans use such concepts as an abstraction mechanism for
representing the properties of complex systems. In the same way that we use these mentalistic notions to describe and
explain the behavior of humans, so it might be useful to use them to program machines.

The first implementation of the agent-oriented programming paradigm was the AcenT0 programming language. In this
language, an agent is specified in terms of a set of capabilities (things the agent can do), a set of initial beliefs (playing
the role of beliefs in Boi architectures), a set of initial commitments (playing a role similar to that of intentions in BbI
architectures), and a set of commitment rules. The key component, which determines how the agent acts, is the
commitment rule set. Each commitment rule contains a message condition, a mental condition, and an action. In order to
determine whether such a rule fires, the message condition is matched against the messages the agent has received; the
mental condition is matched against the beliefs of the agent. If the rule fires, then the agent becomes committed to the
action. Actions may be private, corresponding to an internally executed subroutine, or communicative, i.e., sending
messages. Messages are constrained to be one of three types: "requests” or "unrequests” to perform or refrain from
actions, and "inform™ messages, which pass on information—Shoham indicates that he took his inspiration for these
message types from speech act theory [63, 12]. Request and unrequest messages typically result in the agent's
commitments being modified; inform messages result in a change to the agent's beliefs.

Here is an example of an AcenT0 commitment rule:

COW T(
(agent, REQUEST, DQ(tine, action))
), ;;; meg condition
(B
[now, Friend agent] AND
CAN(sel f, action) AND
NOT [tinme, CMI(self, anyaction)]
), ;;; mental condition
sel f,

DO(tine. action))

Page 68

| initialise y messages in
1
i
1
i
— |
1
1
1
bellefs 1--
1 | T :
updaie -~ i
B |
belicfs ' 1
— : :
1
: commitments [T~
- LT "
update P i
L __1
COMMAITmERS |
— I
N ahilities 1 -"‘
I
i
i
]
]
]
]
EXBCUTE ..
" ""-_‘
% -
[.
§ "ﬁ
Y 3 messages oul
|
intermeal actions
Figure 1.9

The flow of control in AGENT-O0.

This rule may be paraphrased as follows:

if I receive a message from agent which requests me to do action at time, and | believe that:

* agent is currently a friend;

* | can do the action;

« at time, | am not committed to doing any other action, then commit to doing action at time.

The operation of an agent can be described by the following loop (see Figure 1.9):

1. Read all current messages, updating beliefs—and hence commitments—where necessary;

2. Execute all commitments for the current cycle where the capability condition of the associated action is satisfied;
3. Goto (2).

It should be clear how more complex agent behaviors can be designed and built

Page 69

in AGeENTO. However, it is important to note that this language is essentially a prototype, not intended for building
anything like large-scale production systems. But it does at least give a feel for how such systems might be built.

1.5.2 Concurrent METATEM

The Concurrent MeTaTeM language developed by Fisher is based on the direct execution of logical formulae [21]. A
Concurrent MeTATEM system contains a number of concurrently executing agents, each of which is able to communicate
with its peers via asynchronous broadcast message passing. Each agent is programmed by giving it a temporal logic
specification of the behavior that it is intended the agent should exhibit. An agent's specification is executed directly to
generate its behavior. Execution of the agent program corresponds to iteratively building a logical model for the
temporal agent specification. It is possible to prove that the procedure used to execute an agent specification is correct, in
that if it is possible to satisfy the specification, then the agent will do so [3].

The logical semantics of Concurrent MeTATEM are closely related to the semantics of temporal logic itself. This means
that, amongst other things, the specification and verification of Concurrent MeTATEM systems is a realistic proposition
[22].

An agent program in Concurrent MeTATEM has the form f'\i Fi = Ff, where P; is a temporal logic formula referring

only to the present or past, and F; is a temporal logic formula referring to the present or future. The 0069-002
are known as rules. The basic idea for executing such a program may be summed up in the following slogan:

formulae

on the basis of the past do the future.

Thus each rule is continually matched against an internal, recorded history, and if a match is found, then the rule fires. If
a rule fires, then any variables in the future time part are instantiated, and the future time part then becomes a
commitment that the agent will subsequently attempt to satisfy. Satisfying a commitment typically means making some
predicate true within the agent. Here is a simple example of a Concurrent MeTaTEM agent definition:

rc(ask)[give]:

0069-003

The agent in this example is a controller for a resource that is infinitely renewable, but which may only be possessed by
one agent at any given time. The controller must therefore enforce mutual exclusion over this resource. The first line of
the program defines the interface to the agent: its name is rc (for resource controller), and it will accept ask messages
and send give messages. The following three lines constitute the agent program itself. The predicate ask(x) means that
agent x has

Page 70

asked for the resource. The predicate give(x) means that the resource controller has given the resource to agent x. The
resource controller is assumed to be the only agent able to "give" the resource. However, many agents may ask for the
resource simultaneously. The three rules that define this agent's behavior may be summarized as follows:

Rule 1: if someone has just asked for the resource, then eventually give them the resource;
Rule 2: don't give unless someone has asked since you last gave; and
Rule 3: if you give to two people, then they must be the same person (i.e., don't give to more than one person at a time).

Concurrent MeTATEM is a good illustration of how a quite pure approach to logic-based agent programming can work,
even with a quite expressive logic.

Sources and Further Reading

The main references to AGenTO are [64, 65]. Michael Fisher's Concurrent METATEM language is described in [21]; the
execution algorithm that underpins it is described in [3]. Since Shoham's proposal, a number of languages have been
proposed which claim to be agent-oriented. Examples include Becky Thomas's Planning Communicating Agents (PLACA)
language [67, 68], maIL [30], and Anand Rao's AcenTs-PEAK(L) language [50]. APRIL is a language that is intended to be
used for building multiagent systems, although it is not "agent-oriented" in the sense that Shoham describes [44]. The
TELESCRIPT programming language, developed by General Magic, Inc., was the first mobile agent programming language
[69]. That is, it explicitly supports the idea of agents as processes that have the ability to autonomously move themselves
across a computer network and recommence executing at a remote site. Since TELESCRIPT was announced, a number of
mobile agent extensions to the JAVA programming language have been developed.

1.6 Conclusions

I hope that after reading this chapter, you understand what agents are and why they are considered to be an important
area of research and development. The requirement for systems that can operate autonomously is very common. The
requirement for systems capable of flexible autonomous action, in the sense that | have described in this chapter, is
similarly common. This leads me to conclude that intelligent agents have the potential to play a significant role in the
future of software engineering. Intelligent agent research is about the theory, design, construction, and application of
such systems. This chapter has focussed on the design of intelligent agents. It has presented a high-level, abstract view of
intelligent agents, and described the sort of properties that one would expect such an agent to enjoy. It went

Page 71

on to show how this view of an agent could be refined into various different types of agent architecture—purely logical
agents, purely reactive/behavioral agents, Bpi agents, and layered agent architectures.

1.7 Exercises

1. [Level 1] Give other examples of agents (not necessarily intelligent) that you know of. For each, define as precisely as
possible:

(a) the environment that the agent occupies (physical, software, . . .), the states that this environment can be in, and
whether the environment is: accessible or inaccessible; deterministic or non-deterministic; episodic or non-episodic;
static or dynamic; discrete or continuous.

(b) the action repertoire available to the agent, and any pre-conditions associated with these actions;
(c) the goal, or design objectives of the agent—what it is intended to achieve.

2. [Level 1] Prove that

(a) for every purely reactive agent, these is a behaviorally equivalent standard agent.

(b) there exist standard agents that have no behaviorally equivalent purely reactive agent.

3. [Level 1] Prove that state-based agents are equivalent in expressive power to standard agents, i.e., that for every state-
based agent there is a behaviorally equivalent standard agent and vice versa.

4. [Level 2] The following few questions refer to the vacuum world example described in section 1.4.1.

Give the full definition (using pseudo-code if desired) of the new function, which defines the predicates to add to the
agent's database.

5. [Level 2] Complete the vacuum world example, by filling in the missing rules. How intuitive do you think the solution
is? How elegant is it? How compact is it?

6. [Level 2] Try using your favourite (imperative) programming language to code a solution to the basic vacuum world
example. How do you think it compares to the logical solution? What does this tell you about trying to encode
essentially procedural knowledge (i.e., knowledge about what action to perform) as purely logical rules?

7. [Level 2] If you are familiar with proLoG, try encoding the vacuum world example in this language and running it with
randomly placed dirt. Make use of the assert and retract meta-level predicates provided by PROLOG to simplify your
system (allowing the program itself to achieve much of the operation of the next function).

Page 72

8. [Level 2] Develop a solution to the vacuum world example using the behavior-based approach described in section
1.4.2. How does it compare to the logic-based example?

9. [Level 2] Try scaling the vacuum world up to a 10 x 10 grid size. Approximately how many rules would you need to
encode this enlarged example, using the approach presented above? Try to generalize the rules, encoding a more general
decision making mechanism.

10. [Level 3] Suppose that the vacuum world could also contain obstacles, which the agent needs to avoid. (Imagine it is
equipped with a sensor to detect such obstacles.) Try to adapt the example to deal with obstacle detection and avoidance.
Again, compare a logic-based solution to one implemented in a traditional (imperative) programming language.

11. [Level 3] Suppose the agent's sphere of perception in the vacuum world is enlarged, so that it can see the whole of its
world, and see exactly where the dirt lay. In this case, it would be possible to generate an optimal decision-making
algorithm—one which cleared up the dirt in the smallest time possible. Try and think of such general algorithms, and try
to code them both in first-order logic and a more traditional programming language. Investigate the effectiveness of
these algorithms when there is the possibility of noise in the perceptual input the agent receives, (i.e., there is a non-zero
probability that the perceptual information is wrong), and try to develop decision-making algorithms that are robust in
the presence of such noise. How do such algorithms perform as the level of perception is reduced?

12. [Level 2] Try developing a solution to the Mars explorer example from section 1.4.2 using the logic-based approach.
How does it compare to the reactive solution?

13. [Level 3] In the programming language of your choice, implement the Mars explorer example using the subsumption
architecture. (To do this, you may find it useful to implement a simple subsumption architecture "shell” for programming
different behaviors.) Investigate the performance of the two approaches described, and see if you can do better.

14. [Level 3] Using the simulator implemented for the preceding question, see what happens as you increase the number
of agents. Eventually, you should see that overcrowding leads to a sub-optimal solution—agents spend too much time
getting out of each other's way to get any work done. Try to get around this problem by allowing agents to pass samples
to each other, thus implementing chains. (See the description in [15, p305].)

15. [Level 4] Read about traditional control theory, and compare the problems and techniques of control theory to what
are trying to accomplish in building intelligent agents. How are the techniques and problems of traditional control theory
similar to those of intelligent agent work, and how do they differ?

16. [Level 4] One advantage of the logic-based approach to building agents is that

Page 73

the logic-based architecture is generic: first-order logic turns out to extremely powerful and useful for expressing a range
of different properties. Thus it turns out to be possible to use the logic-based architecture to encode a range of other
architectures. For this exercise, you should attempt to use first-order logic to encode the different architectures (reactive,
BDI, layered) described in this chapter. (You will probably need to read the original references to be able to do this.) Once
completed, you will have a logical theory of the architecture, that will serve both as a formal specification of the
architecture, and also as a precise mathematical model of it, amenable to proof. Once you have your logically-specified
architecture, try to animate it, by mapping your logical theory of it into, say the PROLOG programming language. What
compromises do you have to make? Does it seem worthwhile trying to directly program the system in logic, or would it
be simpler to implement your system in a more pragmatic programming language (such as Java)?

1.8 References

1. P. Agre and D. Chapman PENGI: An implementation of a theory of activity. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI-87), pages 268-272, Seattle, WA, 1987.

2. P. E. Agre and S. J. Rosenschein, editors. Computational Theories of Interaction and Agency. The MIT Press:
Cambridge, MA, 1996.

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MeTaTeM: A framework for programming in temporal
logic. In REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness (LNCS
Volume 430), pages 94-129. Springer-Verlag: Berlin, Germany, June 1989.

4. R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an architecture for intelligent, reactive
agents. In M. Wooldridge, J. P. Miller, and M. Tambe, editors, Intelligent Agents Il (LNAI Volume 1037), pages 187-
202. Springer-Verlag: Berlin, Germany, 1996.

5. G. Booch. Object-Oriented Analysis and Design (second edition). Addison-Wesley: Reading, MA, 1994,

6. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press: Cambridge, MA, 1987.

7. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical reasoning. Computational
Intelligence, 4:349-355, 1988.

8. R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1):14-
23, 1986.

9. R. A. Brooks. Elephants don't play chess. In P. Maes, editor, Designing Autonomous Agents, pages 3-15. The MIT
Press: Cambridge, MA, 1990.

10. R. A. Brooks. Intelligence without reason. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence (IJCAI-91), pages 569-595, Sydney, Australia, 1991.

Page 74
11. R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-159, 1991.
12. P. R. Cohen and C. R. Perrault. Elements of a plan based theory of speech acts. Cognitive Science, 3:177-212, 1979.
13. Oren Etzioni. Intelligence without robots. Al Magazine, 14(4), December 1993.

14. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The MIT Press: Cambridge, MA,
1995,

15. J. Ferber. Reactive distributed artificial intelligence. In G. M. P. O'Hare and N. R. Jennings, editors, Foundations of
Distributed Artificial Intelligence, pages 287-317. John Wiley, 1996.

16. I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents. PhD thesis, Clare Hall,
University of Cambridge, UK, November 1992. (Also available as Technical Report No. 273, University of Cambridge
Computer Laboratory).

17. 1. A. Ferguson. Towards an architecture for adaptive, rational, mobile agents. In E. Werner and Y. Demazeau,
editors, Decentralized Al 3 — Proceedings of the Third European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW-91), pages 249-262. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands,
1992,

18. I. A. Ferguson. Integrated control and coordinated behaviour: A case for agent models. In M. Wooldridge and N. R.
Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages 203-218.
Springer-Verlag: Berlin, Germany, January 1995.

19. J. A. Firby. An investigation into reactive planning in complex domains. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence (IJCAI-87), pages 202-206, Milan, Italy, 1987.

20. K. Fischer, J. P. Miiller, and M. Pischel. A pragmatic BDI architecture. In M. Wooldridge, J. P. Miller, and M.
Tambe, editors, Intelligent Agents 11 (LNAI Volume 1037), pages 203-218. Springer-Verlag: Berlin, Germany, 1996.

21. M. Fisher. A survey of Concurrent MetaTeEM — the language and its applications. In D. M. Gabbay and H. J.
Ohlbach, editors, Temporal Logic — Proceedings of the First International Conference (LNAI Volume 827), pages 480-
505. Springer-Verlag: Berlin, Germany, July 1994,

22. M. Fisher and M. Wooldridge. Specifying and verifying distributed intelligent systems. In M. Filgueiras and L.
Damas, editors, Progress in Artificial Intelligence — Sixth Portuguese Conference on Artificial Intelligence (LNAI
Volume 727), pages 13-28. Springer-Verlag: Berlin, Germany, October 1993.

23. L. Gasser, C. Braganza, and N. Hermann. MACE: A flexible testbed for distributed Al research. In M. Huhns, editor,
Distributed Artificial Intelligence, pages 119-152. Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA,
1987,

24. L. Gasser and J. P. Briot. Object-based concurrent programming and DAI. In Distributed Artificial Intelligence:
Theory and Praxis, pages 81-108. Kluwer Academic Publishers: Boston, MA, 1992.

25. M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers: San
Mateo, CA, 1987.

26. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of the Sixth National Conference
on Artificial Intelligence (AAAI-87), pages 677-682, Seattle, WA, 1987.

Page 75

27. M. P. Georgeff and A. S. Rao. A profile of the Australian Al Institute. IEEE Expert, 11(6):89-92, December 1996.

28. A. Haddadi. Communication and Cooperation in Agent Systems (LNAI Volume 1056). Springer-Verlag: Berlin,
Germany, 1996.

29. J. Y. Halpern. Using reasoning about knowledge to analyze distributed systems. Annual Review of Computer
Science, 2:37-68, 1987.

30. H. Haugeneder, D. Steiner, and F. G. McCabe. IMAGINE: A framework for building multi-agent systems. In S. M.
Deen, editor, Proceedings of the 1994 International Working Conference on Cooperating Knowledge Based Systems
(CKBS-94), pages 31-64, DAKE Centre, University of Keele, UK, 1994,

31. F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors. Building Expert Systems. Addison-Wesley: Reading, MA,
1983.

32. P. Jackson. Introduction to Expert Systems. Addison-Wesley: Reading, MA, 1986.

33. N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek, and L. Z. Varga. Using ARCHON to
develop real-world DAI applications for electricity transportation management and particle accelerator control. IEEE
Expert, dec 1996.

34. L. P. Kaelbling. An architecture for intelligent reactive systems. In M. P. Georgeff and A. L. Lansky, editors,
Reasoning About Actions & Plans — Proceedings of the 1986 Workshop, pages 395-410. Morgan Kaufmann Publishers:
San Mateo, CA, 1986.

35. L. P. Kaelbling. A situated automata approach to the design of embedded agents. SIGART Bulletin, 2(4):85-88, 1991.

36. L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In P. Maes, editor, Designing
Autonomous Agents, pages 35-48. The MIT Press: Cambridge, MA, 1990.

37. D. Kinny and M. Georgeff. Commitment and effectiveness of situated agents. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), pages 82-88, Sydney, Australia, 1991.

38. K. Konolige. A Deduction Model of Belief. Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA,
1986.

39. Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl. Foundations of a logical approach to
agent programming. In M. Wooldridge, J. P. Muller, and M. Tambe, editors, Intelligent Agents H (LNAI Volume 1037),
pages 331-346. Springer-Verlag: Berlin, Germany, 1996.

40. P. Maes. The dynamics of action selection. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence (1JCAI-89), pages 991-997, Detroit, MI, 1989.

41. P. Maes, editor. Designing Autonomous Agents. The MIT Press: Cambridge, MA, 1990.

42. P. Maes. Situated agents can have goals. In P. Maes, editor, Designing Autonomous Agents, pages 49-70. The MIT
Press: Cambridge, MA, 1990.

43. P. Maes. The agent network architecture (ANA). SIGART Bulletin, 2(4):115-120, 1991.

44. F. G. McCabe and K. L. Clark. April — agent process interaction language. In M. Wooldridge and N. R. Jennings,
editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages 324-340. Springer-
Verlag:

Page 76

Berlin, Germany, January 1995.

45. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In B.
Meltzer and D. Michie, editors, Machine Intelligence 4. Edinburgh University Press, 1969.

46. J. Muller. A cooperation model for autonomous agents. In J. P. Miller, M. Wooldridge, and N. R. Jennings, editors,
Intelligent Agents 111 (LNAI Volume 1193), pages 245-260. Springer-Verlag: Berlin, Germany, 1997.

47.J. P. Miller, M. Pischel, and M. Thiel. Modelling reactive behaviour in vertically layered agent architectures. In M.
Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890),
pages 261-276. Springer-Verlag: Berlin, Germany, January 1995.

48. J. P. Miller, M. Wooldridge, and N. R. Jennings, editors. Intelligent Agents I11 (LNAI Volume 1193). Springer-
Verlag: Berlin, Germany, 1995.

49. N. J. Nilsson. Towards agent programs with circuit semantics. Technical Report STAN-CS-92-1412, Computer
Science Department, Stanford University, Stanford, CA 94305, January 1992.

50. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In W. Van de Velde and J. W.
Perram, editors, Agents Breaking Away: Proceedings of the Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, (LNAI Volume 1038), pages 42-55. Springer-Verlag: Berlin, Germany, 1996.

51. A. S. Rao. Decision procedures for propositional linear-time Belief-Desire-Intention logics. In M. Wooldridge, J. P.
Miller, and M. Tambe, editors, Intelligent Agents H (LNAI Volume 1037), pages 33-48. Springer-Verlag: Berlin,
Germany, 1996.

52. A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear time and branching time
intention logics. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91),
pages 498-504, Sydney, Australia, 1991.

53. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In R. Fikes and E. Sandewall,
editors, Proceedings of Knowledge Representation and Reasoning (KR&R-91), pages 473-484. Morgan Kaufmann
Publishers: San Mateo, CA, April 1991.

54. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich, W. Swartout, and B. Nebel,
editors, Proceedings of Knowledge Representation and Reasoning (KR&R-92), pages 439-449, 1992.

55. A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated reasoning systems. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), pages 318-324,
Chambéry, France, 1993.

56. A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A preliminary report. In E. Werner and Y. Demazeau,
editors, Decentralized Al 3 — Proceedings of the Third European Workshop on Modelling Autonomous Agents in a.
Multi-Agent World (MAAMAW-91), pages 57-76. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992.

57. S. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with provable epistemic properties. In J. Y.
Halpern, editor, Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 83-
98. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

Page 77

58. S. J. Rosenschein and L. P. Kaelbling. A situated view of representation and control. In P. E. Agre and S. J.
Rosenschein, editors, Computational Theories of Interaction and Agency, pages 515-540. The MIT Press: Cambridge,
MA, 1996.

59. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, 1995.
60. S. Russell and D. Subramanian. Provably bounded-optimal agents. Journal of Al Research, 2:575-609, 1995.

61. S. J. Russell and E. Wefald. Do the Right Thing — Studies in Limited Rationality. The MIT Press: Cambridge, MA,
1991,

62. M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence (IJCAI-87), pages 1039-1046, Milan, Italy, 1987.

63. J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press: Cambridge,
England, 1969.

64. Y. Shoham. Agent-oriented programming. Technical Report STAN-CS-1335-90, Computer Science Department,
Stanford University, Stanford, CA 94305, 1990.

65. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993.

66. L. Steels. Cooperation between distributed agents through self organization. In Y. Demazeau and J.-P. Miller,
editors, Decentralized Al — Proceedings of the First European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-89), pages 175-196. Elsevier Science Publishers B.V.: Amsterdam. The Netherlands, 1990.

67. S. R. Thomas. PLACA, an Agent Oriented Programming Language. PhD thesis, Computer Science Department,
Stanford University, Stanford, CA 94305, August 1993. (Available as technical report STAN-CS-93-1487).

68. S. R. Thomas. The PLACA agent programming language. In M. Wooldridge and N. R. Jennings, editors, Intelligent
Agents: Theories. Architectures, and Languages (LNAI Volume 890), pages 355-369. Springer-Verlag: Berlin, Germany,
January 1995.

69. J. E. White. Telescript technology: The foundation for the electronic marketplace. White paper, General Magic, Inc.,
2465 Latham Street, Mountain View, CA 94040, 1994.

70. M. Wooldridge. Agent-based software engineering. IEE Transactions on Software Engineering, 144(1):26-37,
February 1997.

71. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge Engineering Review,
10(2):115-152, 1995.

Page 79

2
Multiagent Systems and Societies of Agents

Michael N. Huhns and Larry M. Stephens

2.1 Introduction

Agents operate and exist in some environment, which typically is both computational and physical. The environment
might be open or closed, and it might or might not contain other agents. Although there are situations where an agent can
operate usefully by itself, the increasing interconnection and networking of computers is making such situations rare, and
in the usual state of affairs the agent interacts with other agents. Whereas the previous chapter defined the structure and
characteristics of an individual agent, the focus of this chapter is on systems with multiple agents. At times, the number
of agents may be too numerous to deal with them individually, and it is then more convenient to deal with them
collectively, as a society of agents.

In this chapter, we will learn how to analyze, describe, and design environments in which agents can operate effectively
and interact with each other productively. The environments will provide a computational infrastructure for such
interactions to take place. The infrastructure will include protocols for agents to communicate and protocols for agents to
interact.

Communication protocols enable agents to exchange and understand messages. Interaction protocols enable agents to
have conversations, which for our purposes are structured exchanges of messages. As a concrete example of these, a
communication protocol might specify that the following types of messages can be exchanged between two agents:

*Propose a course of action
*Accept a course of action

*Reject a course of action

*Retract a course of action
*Disagree with a proposed course of action
*Counterpropose a course of action

Based on these message types, the following conversation—an instance of an

Page 80
interaction protocol for negotiation—can occur between Agentl and Agent2:
*Agentl proposes a course of action to Agent2
Agent2 evaluates the proposal and
esends acceptance to Agentl
or
sends counterproposal to Agentl
or
esends disagreement to Agentl
or
esends rejection to Agentl

This chapter describes several protocols for communication and interaction among both large and small groups of
agents.

2.1.1 Motivations

But why should we be interested in distributed systems of agents? Indeed, centralized solutions are generally more
efficient: anything that can be computed in a distributed system can be moved to a single computer and optimized to be
at least as efficient. However, distributed computations are sometimes easier to understand and easier to develop,
especially when the problem being solved is itself distributed. Distribution can lead to computational algorithms that
might not have been discovered with a centralized approach. There are also times when a centralized approach is
impossible, because the systems and data belong to independent organizations that want to keep their information private
and secure for competitive reasons.

The information involved is necessarily distributed, and it resides in information systems that are large and complex in
several senses: (1) they can be geographically distributed, (2) they can have many components, (3) they can have a huge
content, both in the number of concepts and in the amount of data about each concept, and (4) they can have a broad
scope, i.e., coverage of a major portion of a significant domain. Also, the components of the systems are typically
distributed and heterogeneous. The topology of these systems is dynamic and their content is changing so rapidly that it
is difficult for a user or an application program to obtain correct information, or for the enterprise to maintain consistent
information.

There are four major techniques for dealing with the size and complexity of these enterprise information systems:
modularity, distribution, abstraction, and intelligence, i.e., being smarter about how you seek and modify information.
The use of intelligent, distributed modules combines all four of these techniques, yielding a distributed artificial
intelligence (DAI) approach [25, 18].

In accord with this approach, computational agents need to be distributed and embedded throughout the enterprise. The
agents could function as intelligent application programs, active information resources, “wrappers" that surround and
buffer conventional components, and on-line network services. The agents would be

Page 81

knowledgeable about information resources that are local to them, and cooperate to provide global access to, and better
management of, the information. For the practical reason that the systems are too large and dynamic (i.e., open) for
global solutions to be formulated and implemented, the agents need to execute autonomously and be developed
independently.

The rationale for interconnecting computational agents and expert systems is to enable them to cooperate in solving
problems, to share expertise, to work in parallel on common problems, to be developed and implemented modularly, to
be fault tolerant through redundancy, to represent multiple viewpoints and the knowledge of multiple experts, and to be
reusable.

The possibility of an agent interacting with other agents in the future, in unanticipated ways, causes its developer to think
about and construct it differently. For example, the developer might consider "What exactly does my agent know?" and
"How can another agent access and use the knowledge my agent has?" This might lead to an agent's knowledge being
represented declaratively, rather than being buried in procedural code.

Multiagent systems are the best way to characterize or design distributed computing systems. Information processing is
ubiquitous. There are computer processors seemingly everywhere, embedded in all aspects of our environment. Your
kitchen likely has many, in such places as the microwave oven, toaster, and coffee maker, and this number does not
consider the electrical power system, which probably uses hundreds in getting electricity to the kitchen. The large
number of processors and the myriad ways in which they interact makes distributed computing systems the dominant
computational paradigm today.

When the processors in the kitchen are intelligent enough to be considered agents, then it becomes convenient to think of
them in anthropomorphic terms. For example, "the toaster knows when the toast is done,” and "“the coffee pot knows
when the coffee is ready.” When these systems are interconnected so they can interact, then they should also know that
the coffee and toast should be ready at approximately the same time. In these terms, your kitchen becomes more than just
a collection of processors—a distributed computing system—it becomes a multiagent system.

Much of traditional Al has been concerned with how an agent can be constructed to function intelligently, with a single
locus of internal reasoning and control implemented in a Von Neumann architecture. But intelligent systems do not
function in isolation—they are at the very least a part of the environment in which they operate, and the environment
typically contains other such intelligent systems. Thus, it makes sense to view such systems in societal terms.

2.1.2 Characteristics of Multiagent Environments

1. Multiagent environments provide an infrastructure specifying communication and interaction protocols.

2. Multiagent environments are typically open and have no centralized designer.

3. Multiagent environments contain agents that are autonomous and distributed, and may be self-interested or

cooperative.

Page 82

A multiagent execution environment includes a number of concerns, which are enumerated as possible characteristics in

Table 2.1.

Property

Design Autonomy

Communication Infrastructure

Directory Service

Message Protocol

Mediation Services

Security Services

Remittance Services

Operations Support

Range of values

Platform/Interaction Protocol
/Language/Internal Architecture

Shared memory (blackboard) or Message-based
Connected or Connection-less (email)
Point-to-Point, Multicast, or Broadcast

Push or Pull

Synchronous or Asynchronous

White pages, Yellow pages

KQML
HTTP and HTML
OLE, CORBA, DSOM

Ontology-based? Transactions?

Timestamps/Authentication

Billing/Currency

Archiving/Redundancy
/Restoration/Accounting

Table 2.1 Characteristics of multiagent environments.

Property

Knowable

Predictable

Controllable

Historical

Teleological

Definition

To what extent is the environment known to the agent

To what extent can it be predicted by the agent

To what extent can the agent modify the environment

Do future states depend on the entire history, or only the current state

Avre parts of it purposeful, i.e., are there other agents

Real-time Can the environment change while the agent is deliberating

Table 2.2 Environment-agent characteristics.

Table 2.2 lists some key properties of an environment with respect to a specific agent that inhabits it. These generalize
the presentation in [38].

Page 83

2.2 Agent Communications

We first provide a basic definition for an agent, which we need in order to describe the languages and protocols needed
by multiagent systems. Fundamentally, an agent is an active object with the ability to perceive, reason, and act. We
assume that an agent has explicitly represented knowledge and a mechanism for operating on or drawing inferences from
its knowledge. We also assume that an agent has the ability to communicate. This ability is part perception (the receiving
of messages) and part action (the sending of messages). In a purely computer-based agent, these may be the agent's only
perceptual and acting abilities.

2.2.1 Coordination

Agents communicate in order to achieve better the goals of themselves or of the society/system in which they exist. Note
that the goals might or might not be known to the agents explicitly, depending on whether or not the agents are goal-
based. Communication can enable the agents to coordinate their actions and behavior, resulting in systems that are more
coherent.

Coordination is a property of a system of agents performing some activity in a shared environment. The degree of
coordination is the extent to which they avoid extraneous activity by reducing resource contention, avoiding livelock and
deadlock, and maintaining applicable safety conditions. Cooperation is coordination among nonantagonistic agents,
while negotiation is coordination among competitive or simply self-interested agents. Typically, to cooperate
successfully, each agent must maintain a model of the other agents, and also develop a model of future interactions. This
presupposes sociability.

Coordination

T

Cooperation Competition

Planning Negotiation

PN

Distributed Planning Centralized Planning

Figure 2.1
A taxonomy of some of the different ways in which
agents can coordinate their behavior and activities.

Page 84

Coherence is how well a system behaves as a unit. A problem for a multiagent system is how it can maintain global
coherence without explicit global control. In this case, the agents must be able on their own to determine goals they share
with other agents, determine common tasks, avoid unnecessary conflicts, and pool knowledge and evidence. It is helpful
if there is some form of organization among the agents. Also, social commitments can be a means to achieving
coherence, which is addressed in Section 2.4.

Section 2.3.7 discusses another means, based on economic principles of markets. In this regard, Simon [40] argues
eloquently that although markets are excellent for clearing all goods, i.e., finding a price at which everything is sold, they
are less effective in computing optimal allocations of resources. Organizational structures are essential for that purpose.
It is believed that coherence and optimality are intimately related.

2.2.2 Dimensions of Meaning

There are three aspects to the formal study of communication: syntax (how the symbols of comunication are structured),
semantics (what the symbols denote), and pragmatics (how the symbols are interpreted). Meaning is a combination of
semantics and pragmatics. Agents communicate in order to understand and be understood, so it is important to consider
the different dimensions of meaning that are associated with communication [42].

Descriptive vs. Prescriptive. Some messages describe phenomena, while others prescribe behavior. Descriptions are
important for human comprehension, but are difficult for agents to mimic. Appropriately, then, most agent
communication languages are designed for the exchange of information about activities and behavior.

Personal vs. Conventional Meaning. An agent might have its own meaning for a message, but this might differ from
the meaning conventionally accepted by the other agents with which the agent communicates. To the greatest extent
possible, multiagent systems should opt for conventional meanings, especially since these systems are typically open
environments in which new agents might be introduced at any time.

Subjective vs. Objective Meaning Similar to conventional meaning, where meaning is determined external to an agent,
a message often has an explicit effect on the environment, which can be perceived objectively. The effect might be
different than that understood internally, i.e., subjectively, by the sender or receiver of the message.

Speaker’s vs. Hearer's vs. Society's Perspective Independent of the conventional or objective meaning of a message,
the message can be expressed according to the viewpoint of the speaker or hearer or other observers.

Semantics vs. Pragmatics The pragmatics of a communication are concerned with how the communicators use the
communication. This includes considerations

Page 85

of the mental states of the communicators and the environment in which they exist, considerations that are external to the
syntax and semantics of the communication.

Contextuality Messages cannot be understood in isolation, but must be interpreted in terms of the mental states of the
agents, the present state of the environment, and the environment's history: how it arrived at its present state.
Interpretations are directly affected by previous messages and actions of the agents.

Coverage Smaller languages are more manageable, but they must be large enough so that an agent can convey the
meanings it intends.

Identity When a communication occurs among agents, its meaning is dependent on the identities and roles of the agents
involved, and on how the involved agents are specified. A message might be sent to a particular agent, or to just any
agent satisfying a specified criterion.

Cardinality A message sent privately to one agent would be understood differently than the same message broadcast
publicly.

2.2.3 Message Types

It is important for agents of different capabilities to be able to communicate. Communication must therefore be defined
at several levels, with communication at the lowest level used for communication with the least capable agent. In order
to be of interest to each other, the agents must be able to participate in a dialogue. Their role in this dialogue may be
either active, passive, or both, allowing them to function as a master, slave, or peer, respectively. In keeping with the
above definition for and assumptions about an agent, we assume that an agent can send and receive messages through a
communication network. The messages can be of several types, as defined next.

There are two basic message types: assertions and queries. Every agent, whether active or passive, must have the ability
to accept information. In its simplest form, this information is communicated to the agent from an external source by
means of an assertion. In order to assume a passive role in a dialog, an agent must additionally be able to answer
questions, i.e., it must be able to 1) accept a query from an external source and 2) send a reply to the source by making
an assertion. Note that from the standpoint of the communication network, there is no distinction between an unsolicited
assertion and an assertion made in reply to a query.

In order to assume an active role in a dialog, an agent must be able to issue queries and make assertions. With these
capabilities, the agent then can potentially control another agent by causing it to respond to the query or to accept the
information asserted. This means of control can be extended to the control of subagents, such as neural networks and
databases.

An agent functioning as a peer with another agent can assume both active and passive roles in a dialog. It must be able to
make and accept both assertions and queries. A summary of the capabilities needed by different classes of agents is
shown in Table 2.3.

Receives assertions

Receives queries

Sends assertions

Sends queries

Table 2.3 Agent capabilities.

Communicative Action

Assertion

Query

Reply

Request

Explanation

Command

Permission

Refusal

Offer/Bid

Acceptance

Agreement

Proposal

Confirmation

Retraction

Denial

Basic Agent

Passive Agent

Illocutionary Force

Table 2.4 Interagent message types.

Inform

Question

Inform

Request

Inform

Request

Inform

Inform

Inform

Inform

Active Agent

Expected Result

Acceptance

Reply

Acceptance

Agreement

Acceptance

Acceptance

Acceptance

Offer/Bid

Peer Agent

Page 86

Other types of messages, derived from work on speech-act theory [43], are listed in Table 2.4.
2.2.4 Communication Levels

Communication protocols are typically specified at several levels. The lowest level of the protocol specifies the method
of interconnection; the middle level specifies the format, or syntax, of the information being transfered; the top level
specifies the meaning, or semantics, of the information. The semantics refers not only to the substance of the message,
but also to the type of the message.

There are both binary and n-ary communication protocols. A binary protocol involves a single sender and a single
receiver, whereas an n-ary protocol involves a single sender and multiple receivers (sometimes called broadcast or
multicast). A protocol is specified by a data structure with the following five fields:

1. sender

Page 87
2. receiver(s)
3. language in the protocol
4. encoding and decoding functions
5. actions to be taken by the receiver(s).
2.2.5 Speech Acts

Spoken human communication is used as the model for communication among computational agents. A popular basis
for analyzing human communication is speech act theory [1, 39]. Speech act theory views human natural language as
actions, such as requests, suggestions, commitments, and replies. For example, when you request something, you are not
simply making a statement, but creating the request itself. When a jury declares a defendant guilty, there is an action
taken: the defendant’s social status is changed.

A speech act has three aspects:

1. Locution, the physical utterance by the speaker

2. lllocution, the intended meaning of the utterance by the speaker
3. Perlocution, the action that results from the locution.

For example, John might say to Mary, "Please close the window." This act consists of the physical sounds generated by
John (or the character sequences typed by John), John's intent for the message as a request or a command, and if all goes
well, the window being shut.

In communication among humans, the intent of the message is not always easily identified. For example, "I am cold,"
can be viewed as an assertion, a request for a sweater, or a demand for an increase in room temperature. However, for
communication among agents, we want to insure that there is no doubt about the type of message.

Speech act theory uses the term performative to identify the illocutionary force of this special class of utterance.
Example performative verbs include promise, report, convince, insist, tell, request, and demand. lllocutionary force can
be broadly classified as assertives (statements of fact), directives (commands in a master-slave structure), commissives
(commitments), declaratives (statements of fact), and expressives (expressions of emotion).

Performatives are usually represented in the stylized syntatic form "I hereby tell. . ." or "I hereby request. . ." Because
performatives have the special property that "saying it makes it so," not all verbs are performatives. For example, stating
that "I hereby solve this problem™ does not create the solution. Although the term speech is used in this discussion,
speech acts have to do with communication in forms other than the spoken word.

In summary, speech act theory helps define the type of message by using the concept of the illocutionary force, which
constrains the semantics of the communication act itself. The sender's intended communication act is clearly defined, and

Page 88
the receiver has no doubt as to the type of message sent. This constraint simplifies the design of our software agents.

The message contained within the protocol may be ambiguous, may have no simple response, or may require
decomposition and the assistance of other agents; however, the communication protocol itself should clearly identify the
type of message being sent.

2.2.6 Knowledge Query and Manipulation Language (KQML)

A fundamental decision for the interaction of agents is to separate the semantics of the communication protocol (which
must be domain independent) from the semantics of the enclosed message (which may depend on the domain). The
communication protocol must be universally shared by all agents. It should be concise and have only a limited number of
primitive communication acts.

The knowledge query and manipulation language (KQML) is a protocol for exchanging information and knowledge, as
illustrated in Figure 2.2. The elegance of KQML is that all information for understanding the content of the message is
included in the communication itself. The basic protocol is defined by the following structure:

(KQML-performative

:sender <word>
‘receiver <word>
:language <word>
-ontology <word>
-content <expression>
)

The syntax is Lisp-like; however, the arguments—identified by keywords preceded

1‘

KQML KQML

Application

Agent Agent Program

Figure 2.2
KQML is a protocol for communications among
both agents and application programs.

Page 89

by a colon—may be given in any order. The KQML-performatives are modeled on speech act performatives. Thus, the
semantics of KQML performatives is domain independent, while the semanatics of the message is defined by the fields
:content (the message itself), :language (the langauge in which the message is expressed), and :ontology (the vocabulary
of the "words" in the message). In effect, KQML "wraps" a message in a structure that can be understood by any agent.
(To understand the message itself, the recipient must understand the language and have access to the ontology.)

The terms :content, :language, and :ontology delineate the semantics of the message. Other arguments, including :sender,
:receiver, :reply-with, and :in-reply-to, are parameters of the message passing. KQML assumes asynchronous
communications; the fields: reply-with from a sender and: in-reply-to from a responding agent link an outgoing message
with an expected response.

KQML is part of a broad research effort to develop a methodology for distributing information among different systems
[35]. One part of the effort involves defining the Knowledge Interchange Format (KIF), a formal syntax for representing
knowledge. Described in the next section, KIF is largely based on first-order predicate calculus. Another part of the
effort is defining ontologies that define the common concepts, attributes, and relationships for different subsets of world
knowledge. The definitions of the ontology terms give meaning to expressions represented in KIF. For example, in a
Blocks-World ontology, if the concept of a wooden block of a given size is represented by the unary predicate Block,
then the fact that block A is on top of block B could be communicated as follows:

(tell
:sender Agentl
‘receiver Agent?2
:language: KIF
-ontology: Blocks-World

-content (AND (Block A) (Block B) (On A B))

The language in a KQML message is not restricted to KIF; other languages such as PROLOG, LISP, SQL, or any other
defined agent communication language can be used.

KQML-speaking agents appear to each other as clients and servers. Their communications can be either synchronous or
asynchronous, as illustrated in Figure 2.3. For a synchronous communication, a sending agent waits for a reply. For an
asynchronous communication, the sending agent continues with its reasoning or acting, which would then be interrupted
when replies arrive at a later time.

Interestingly, KQML messages can be "nested"” in that the content of a KQML message may be another KQML message,
which is self contained. For example, if Agentl cannot communicate directly with Agent2 (but can communicate with
Agent3), Agentl might ask Agent3 to forward a message to Agent2:

Page 90

0090-001

Figure 2.3
Synchronous and asynchronous communications
among agents that understand KQML.

(forward

:from

‘to
:sender
:receiver
:language
:ontology

:content

Agentl

Agent2

Agentl

Agent3

KQML

kgml-ontology

(tell
:sender
‘receiver
:language
:ontology:
:content

Agentl

Agent?2

KIF

Blocks-World

(On (Block A) (Block B))))

Page 91

In a forwarded KQML message, the value of the :from field becomes the value in the :sender field of the : cont ent

message, and the value of the : t o field in the forward becomes the value of the : r ecei ver field.

The KQML performatives may be organized into seven basic categories:

* Basic query performatives (evaluate, ask-one, ask-all, ...)

» Multiresponse query performatives (stream-in, stream-all, ...)

* Response performatives (reply, sorry, ...)

* Generic informational performatives (tell, achieve, cancel, untell, unachieve, ...)

 Generator performatives (standby, ready, next, rest, ...)

« Capability-definition performatives (advertise, subscribe, monitor, ...)

 Networking performatives (register, unregister, forward, broadcast, ...)

The advertise performative is used by a :sender agent to inform a : r ecei ver about the : sender's capabilities:

(advertise

:sender
receiver
:language

:ontology

Agent2
Agentl
KQML
kgml-ontology

:content (ask-all

:sender Agentl
‘receiver Agent2
‘in-reply-to idl
:language Prolog

:ontology: Blocks-World

.content "on(X,Y)")
Page 92

Now Agentl may query Agent2:
(ask-all

:sender Agentl

‘receiver Agent2

:in-reply-to idl

-reply-with id2

:language: Prolog

:ontology: Blocks-World

:content "on(X,Y)"

Agent2 could respond with matching assertions from its knowledge base:

(tell

:sender Agent2
‘receiver Agentl
‘in-reply-to id2
‘language: Prolog
:ontology: Blocks-World
:content "[on(a,b),on(c,d)]"

Issues:

The sender and receiver must understand the agent communication language being used; the ontology must be created
and be accesssible to the agents who axe communicating.

KQML must operate within a communication infrastructure that allows agents to locate each other. The infrastructure is
not part of the KQML specification, and implemented systems use custom-made utility programs called routers or
facilators to perform this function. In the advertise example above, if Agent2 sent the message to a facilator agent, then
other agents could query the facilitator to find out about Agent2's capabilities.

KQML is still a work in progress and its semantics have not been completely defined. Labrou and Finin [31] have
recently proposed a new KQML specification that refines the original draft [15]. However, there is yet no offical KQML
specification that agent builders can rely on.

2.2.7 Knowledge Interchange Format (KIF)

Agents need descriptions of real-world things. The descriptions could be expressed in natural languages, such as English
and Japanese, which are capable of describing a wide variety of things and situations. However, the meaning of a natural
language statement is often subject to different interpretations.

Page 93

Symbolic logic is a general mathematical tool for describing things. Rather simple logics (e.g., the first order predicate
calculus) have been found to be capable of describing almost anything of interest or utility to people and other intelligent
agents. These things include simple concrete facts, definitions, abstractions, inference rules, constraints, and even
metaknowledge (knowledge about knowledge).

KIF, a particular logic language, has been proposed as a standard to use to describe things within expert systems,
databases, intelligent agents, etc. It is readable by both computer systems and people. Moreover, it was specifically
designed to serve as an "interlingua,” or mediator in the translation of other languages. For example, there is a translation
program that can map a STEP/PDES expression about products into an equivalent KIF expression and vice versa. If
there were a translation program for mapping between the healthcare language HL7 and KIF, then there would be a way
to translate between STEP/PDES and HL7 (to exchange information about healthcare products) using KIF as an
intermediate representation.

KIF is a prefix version of first order predicate calculus with extensions to support nonmonotonic reasoning and
definitions. The language description includes both a specification for its syntax and one for its semantics. KIF provides
for the expression of simple data. For example, the sentences shown below encode 3 tuples in a personnel database
(arguments stand for employee 1D number, department assignment, and salary, respectively):

(salary 015-46-3946 wi dgets 72000)
(salary 026-40-9152 gronmets 36000)
(sal ary 415-32-4707 fidgets 42000)

More complicated information can be expressed through the use of complex terms. For example, the following sentence
states that one chip is larger than another:

(> (* (width chipl) (length chipl))
(* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical information, such as negation, disjunction,
rules, and quantified formulas. The expression shown below is an example of a complex sentence in KIF. It asserts that
the number obtained by raising any real-number ?x to an even power ?n is positive:

(=> (and (real - nunber ?x)
(even- number ?n))
(> (expt ?x ?n) 0))

KIF provides for the encoding of knowledge about knowledge, using the back-quote (*) and comma (,) operators and
related vocabulary. For example, the following sentence asserts that agent Joe is interested in receiving triples in the
salary relation. The use of commas signals that the variables should not be taken literally.

Page 94

Without the commas, this sentence

(interested joe '(salary ,?x ,?y ,?z))
would say that agent joe is interested in the sentence (sal ary ?x ?y ?z) instead of its instances.

KIF can also be used to describe procedures, i.e., to write programs or scripts for agents to follow. Given the prefix
syntax of KIF, such programs resemble Lisp or Scheme. The following is an example of a three-step procedure written
in KIF. The first step ensures that there is a fresh line on the standard output stream; the second step prints "Hello!" to
the standard output stream; the final step adds a carriage return to the output.

(progn (fresh-line t)
(print "Hello!")
(fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar to that of first-order logic. There is an
extension to handle nonstandard operators (like backquote and comma), and there is a restriction that models must
satisfy various axiom schemata (to give meaning to the basic vocabulary in the format). Despite these extensions and
restrictions, the core language retains the fundamental characteristics of first-order logic, including compactness and the
semi-decidability of logical entailment.

2.2.8 Ontologies

An ontology is a specification of the objects, concepts, and relationships in an area of interest. In the Blocks-World
example above, the term Block represents a concept and the term On represents a relationship. Concepts can be
represented in first-order logic as unary predicates; higher-arity predicates represent relationships. To express the idea
that a block is a physical object, we might use the first-order expression

Vx (Block x) = (PhysicalObject x)

There are other, more general representations. Instead of (Block A), the expression (instanceOf A Block) could be used.
Both A and Block are now objects in the universe of discourse, and new relationships instanceOf and subclassOf are
introduced:

(cl ass Bl ock)
(cl ass Physi cal Obj ect)
(subcl assOf Bl ock Physi cal Obj ect)

lnnoa.0n?2

Page 95

The last sentence is a rule that expresses the notion of a type hierarchy.

An ontology is more than a taxonomy of classes (or types); the ontology must describe the relationships. The classes and
relationships must be represented in the ontology; the instances of classes need not be represented. For example, there is
no need to represent A in the ontology for either (Bl ock A) or (i nst anceOf A Bl ock) . Anontology is

analogous to a database schema, not the contents of a database itself.

Implicit in this discussion is that an agent must represent its knowledge in the vocabulary of a specified ontology. Since
agents are constructed by people, the effect is that the agent's creator must use a specified ontology to represent the
agent's knowledge. All agents that share the same ontology for knowledge representation have an understanding of the
"words" in the agent communication language.

Many agents have knowledge bases in which relationships are defined in more detail than just a character string. For
example, the domain and range of a binary relationship can be specified;

(domai n On Physi cal Obj ect)
(range On Physi cal Obj ect)

These restrictions limit the values allowed in using a relationship. (On A B) is permitted since both Aand B are
instances of Physi cal Obj ect via transitive closure of subcl assOf ; (On A Dreaml) would be prohibited
assuming that Dr eanil is not of type Physi cal Obj ect .

Ontology editors, such as those developed at Stanford [14] and the University of South Carolina [32], are typically frame-
based knowledge-representation systems that allow users to define ontologies and their components: classes, instances,
relationships, and functions. Figure 2.4 shows an example of such an ontology. Ontology editors offer a variety of
features, such as the ability to translate ontologies into several representation languages or the ability for distributed
groups to develop ontologies jointly over the Internet.

2.2.9 Other Communication Protocols

The above protocols for interagent communication in no way preclude other means by which computational agents can
interact, communicate, and be interconnected. For example, one agent may be able to view a second agent with a
camera, and use the resulting images to coordinate its own actions with those of the second agent.

Once communication protocols are defined and agreed upon by a set of agents, higher level protocols can be readily
implemented. The next section describes some of these.

Page 96

1
I i | Class of All Class of All
Enclty Anributes Relations

EEEI Agent Employmen}

Attributes

Relations
]
. .| Person -
j Person | [Enlerpnm'l Enterprise Person | MName warks-for
] Adtributes Atiributes |
Person
SSN
[Employee | [Department] Department | | Employee | _
Atiributes Attributes | - | Employee
K | ID
Department
Part-Time Full-Time | L2 Pant-Time Full-Time
Employee Employee Employes Employee
Auributes Atiributes
Figure 2.4

Example ontology for a simple business, showing classes and their
subclasses, relationships, and instances (indicated by a dashed line).

2.3 Agent Interaction Protocols

The previous section describes mechanisms for agents to communicate single messages. Interaction protocols govern the
exchange of a series of messages among agents—a conversation. Several interaction protocols have been devised for
systems of agents. In cases where the agents have conflicting goals or are simply self-interested, the objective of the
protocols is to maximize the payoffs (utilities) of the agents [37]. In cases where the agents have similar goals or
common problems, as in distributed problem solving (DPS), the objective of the protocols is to main-rain globally
coherent performance of the agents without violating autonomy, i.e., without explicit global control [11]. For the latter
cases, important aspects include how to

* determine shared goals
* determine common tasks
* avoid unnecessary conflicts

* pool knowledge and evidence.

Page 97
2.3.1 Coordination Protocols

In an environment with limited resources, agents must coordinate their activities with each other to further their own
interests or satisfy group goals. The actions of multiple agents need to be coordinated because there are dependencies
between agents' actions, there is a need to meet global constraints, and no one agent has sufficient competence, resources
or information to achieve system goals. Examples of coordination include supplying timely information to other agents,
ensuring the actions of agents are synchronized, and avoiding redundant problem solving.

To produce coordinated systems, most DAI research has concentrated on techniques for distributing both control and
data. Distributed control means that agents have a degree of autonomy in generating new actions and in deciding which
goals to pursue next. The disadvantage of distributing control and data is that knowledge of the system's overall state is
dispersed throughout the system and each agent has only a partial and imprecise perspective. There is an increased
degree of uncertainty about each agent's actions, so it is more difficult to attain coherent global behavior.

The actions of agents in solving goals can be expressed as search through a classical AND/OR goal graph. The goal
graph includes a representation of the dependencies between the goals and the resources needed to solve the primitive
goals (leaf nodes of the graph). Indirect dependencies can exist between goals through shared resources.

Formulating a multiagent system in this manner allows the activities requiring coordination to be clearly identified. Such
activities include: (1) defining the goal graph, including identification and classification of dependencies; (2) assigning
particular regions of the graph to appropriate agents; (3) controlling decisions about which areas of the graph to explore;
(4) traversing the graph; and (5) ensuring that successful traversal is reported. Some of the activities may be
collaborative, while some may be carried out by an agent acting in isolation. Determining the approach for each of the
phases is a matter of system design.

While the distributed goal search formalism has been used frequently to characterize both global and local problems, the
key agent structures are commitment and convention [29]. Commitments are viewed as pledges to undertake a specified
course of action, while conventions provide a means of managing commitments in changing circumstances.
Commitments provide a degree of predictability so that agents can take the future activities of others into consideration
when dealing with interagent dependencies, global constraints, or resource utilization conflicts. As situations change,
agents must evaluate whether existing commitments are still valid. Conventions constrain the conditions under which
commitments should be reassessed and specify the associated actions that should then be undertaken: either retain,
rectify or abandon the commitments.

If its circumstances do not change, an agent will endeavor to honor its commitments. This obligation constrains the
agent's subsequent decisions about making new commitments, since it knows that sufficient resources must be reserved
to honor its existing ones. For this reason, an agent's commitments should be both internally

Page 98
consistent and consistent with its beliefs.

Conventions help an agent manage its commitments, but they do not specify how the agent should behave towards others
if it alters or modifies its commitments. However for goals that are dependent, it is essential that the relevant agents be
informed of any substantial change that affects them. A convention of this type is a social one. If communication
resources are limited, the following social convention might be appropriate:

LI M TED- BANDW DTH SOCI AL CONVENTI ON

I NVOKE WHEN
Local conmitnent dropped
Local conmtnent satisfied

ACTI ONS
RULE1l: | F Local conmm tnent satisfied
THEN i nformall related comm tnents

Rul e2: |F local conmitnents dropped because unattai nabl e or
notivation not present
THEN informall strongly related conmitnments

Rul e3: |F local conmitnents dropped because unattai nabl e or
nmoti vation not present
AND communi cati on resources not overburdened
THEN informall weakly related conm tnents

When agents decide to pursue a joint action, they jointly commit themselves to a common goal, which they expect will
bring about the desired state of affairs. The minimum information that a team of cooperating agents should share is (1)
the status of their commitment to the shared objective, and (2) the status of their commitment to the given team
framework. If an agent's beliefs about either of these issues change, then the semantics of joint commitments requires
that all team members be informed. As many joint actions depend upon the participation of an entire team, a change of
commitment by one participant can jeopardize the team's efforts. Hence, if an agent comes to believe that a team
member is no longer jointly committed, it also needs to reassess its own position with respect to the joint action. These
three basic assumptions are encoded in a convention that represents the minimum requirement for joint commitments, as
shown below.

BASI C JO NT- ACTI ON CONVENTI ON

I N\VOKE WHEN
Status of comritnent to joint action changes
Status of conmitnment to attaining joint action in present

Page 99

t eam cont ext changes
Status of joint commitnent of a team menber changes

ACTI ONS
Rulel: IF Status of commtnent to joint action changes
OR
| F Status of comitnment to present team
cont ext changes
THEN i nform all other team nenber of these changes

Rul e2: IF Status of joint comrtnent of a team nmenber changes
THEN Det ermi ne whether joint commtnent still viable

Commitments and conventions are the cornerstones of coordination: commitments provide the necessary structure for
predictable interactions, and social conventions provide the necessary degree of mutual support.

2.3.2 Cooperation Protocols

A basic strategy shared by many of the protocols for cooperation is to decompose and then distribute tasks. Such a divide-
and-conquer approach can reduce the complexity of a task: smaller subtasks require less capable agents and fewer
resources. However, the system must decide among alternative decompositions, if available, and the decomposition
process must consider the resources and capabilities of the agents. Also, there might be interactions among the subtasks
and conflicts among the agents.

Task decomposition can be done by the system designer, whereby decomposition is programmed during implementation,
or by the agents using hierarchical planning, or it might be inherent in the representation of the problem, as in an AND-
OR graph. Task decomposition might be done spatially, based on the layout of information sources or decision points, or
functionally, according to the expertise of available agents.

Once tasks are decomposed, they Call be distributed according to the following criteria [13]:
 Avoid overloading critical resources

* Assign tasks to agents with matching capabilities

» Make an agent with a wide view assign tasks to other agents

« Assign overlapping responsibilities to agents to achieve coherence

* Assign highly interdependent tasks to agents in spatial or semantic proximity. This minimizes communication and
synchronization costs

* Reassign tasks if necessary for completing urgent tasks.

Page 100

Spatial decomposition by information source or decision point

Agent | Agent 3
l.--"""'"l..--"'."'..--"' ..-r__..-""
x.-‘,..-_,J _,-}.a f'”:'/ /

Functional decompaosition by expertise:

Figure 2.5
Two commonly used methods for distributing tasks among cooperative agents.

The following mechanisms are commonly used to distribute tasks:

» Market mechanisms: tasks are matched to agents by generalized agreement or mutual selection (analogous to pricing
commodities)

« Contract net: announce, bid, and award cycles
» Multiagent planning: planning agents have the responsibility for task assignment
* Organizational structure: agents have fixed responsibilities for particular tasks.

Figure 2.5 illustrates two of the methods of task distribution. Details of additional methods are described in the sections
that follow.

2.3.3 Contract Net

Of the above mechanisms, the best known and most widely applied is the contract net protocol [44, 9]. The contract net
protocol is an interaction protocol for cooperative problem solving among agents. It is modeled on the contracting
mechanism

Page 101

used by businesses to govern the exchange of goods and services. The contract net provides a solution for the so-called
connection problem: finding an appropriate agent to work on a given task. Figure 2.6 illustrates the basic steps in this
protocol.

An agent wanting a task solved is called the manager, agents that might be able to solve the task are called potential
contractors. From a manager's perspective, the process is

* Announce a task that needs to be performed

* Receive and evaluate bids from potential contractors
» Award a contract to a suitable contractor

* Receive and synthesize results.

From a contractor's perspective, the process is

* Receive task announcements

* Evaluate my capability to respond

* Respond (decline, bid)

* Perform the task if my bid is accepted

* Report my results.

The roles of agents are not specified in advance. Any agent can act as a manager by making task announcements; any
agent can act as a contractor by responding to task announcements. This flexibility allows for further task
decomposition: a contractor for a specific task may act as a manager by soliciting the help of other agents in solving
parts of that task. The resulting manager-contractor links form a control hierarchy for task sharing and result synthesis.

The contract net offers the advantages of graceful performance degradation. If a contractor is unable to provide a
satisfactory solution, the manager can seek other potential contractors for the task.

The structure of a task announcement includes slots for addressee, eligibility specification, task abstraction, bid
specification, and expiration time. The tasks may be addressed to one or more potential contractors who must meet the
criteria of the eligibility specification. The task abstraction, a brief description of the task, is used by contractors to rank
tasks from several task announcements. The bid specification tells potential contractors what information must be
provided with the bid; returned bid specifications give the manager a basis for comparing bids from different potential
contractors. The expiration time is a deadline for receiving bids.

Each potential contractor evaluates unexpired task announcements to determine if it is eligible to offer a bid. The
contractor then chooses the most attractive task (based on some criteria) and offers a bid to the corresponding manager.

A manager receives and evaluates bids for each task announcement. Any bid deemed satisfactory may be accepted
before the expiration time of the task announcement. The manager notifies the contractor of bid acceptance with an an-

A manager announces the existence of tasks via a (possibly selective)
multicast

Agents evaluate the announcement. Some of these agents submit bids

The manager awards a contract to the most appropriate agent

The manager and contractor communicate privately as necessary

Figure 2.6
The basic steps in the contract net, an important generic
protocol for interactions among cooperative agents.

Page 102

Page 103

nounced award message. (A limitation of the contract net protocol is that a task might be awarded to a contractor with
limited capability if a better qualified contractor is busy at award time. Another limitation is that a manager is under no
obligation to inform potential contractors that an award has already been made.)

A manager may not receive bids for several reasons: (1) all potential contractors are busy with other tasks, (2) a potential
contractor is idle but ranks the proposed task below other tasks under consideration, (3) no contractors, even if idle, are
capable of working on the task. To handle these cases, a manager may request immediate response bids to which
contractors respond with messages such as eligible but busy, ineligible, or uninterested (task ranked too low for
contractor to bid). The manager can then make adjustments in its task plan. For example, the manager can wait until a
busy potential contractor is free.

The contract net provides for directed contracts to be issued without negotiation. The selected contractor responds with
an acceptance or refusal. This capability can simplify the protocol and improve effiency for certain tasks.

2.3.4 Blackboard Systems
Blackboard-based problem solving is often presented using the following metaphor:

"Imagine a group of human or agent specialists seated next to a large blackboard. The specialists are working
cooperatively to solve a problem, using the blackboard as the workplace for developing the solution. Problem solving
begins when the problem and initial data are written onto the blackboard. The specialists watch the blackboard, looking
for an opportunity to apply their expertise to the developing solution. When a specialist finds sufficient information to
make a contribution, he records the contribution on the blackboard. This additional information may enable other
specialists to apply their expertise. This process of adding contributions to the blackboard continues until the problem
has been solved."

This metaphor captures a number of the important characteristics of blackboard systems, each of which is described
below.

Independence of expertise. The specialists (called knowledges sources or KSs) are not trained to work solely with that
specific group of specialists. Each is an expert on some aspects of the problem and can contribute to the solution
independently of the particular mix of other specialists in the room.

Diversity in problem-solving techniques. In blackboard systems, the internal representation and inferencing machinery
used by each KS are hidden from direct view.

Flexible representation of blackboard information. The blackboard model does not place any prior restrictions on
what information can be placed on the blackboard.

Common interaction language. KSs in blackboard systems must be able to correctly interpret the information recorded
on the blackboard by other KSs. In prac-

Page 104

tice, there is a tradeoff between the representational expressiveness of a specialized representation shared by only a few
KSs and a fully general representation understood by all KSs.

Event-based activation. KSs in blackboard systems are triggered in response to blackboard and external events.
Blackboard events include the addition of new information to the blackboard, a change in existing information, or the
removal of existing information. Rather than having each KS scan the blackboard, each KS informs the blackboard
system about the kind of events in which it is interested. The blackboard system records this information and directly
considers the KS for activation whenever that kind of event occurs.

Need for control. A control component that is separate from the individual KSs is responsible for managing the course
of problem solving. The control component can be viewed as a specialist in directing problem solving, by considering
the overall benefit of the contributions that would be made by triggered KSs. When the currently executing KS
activation completes, the control component selects the most appropriate pending KS activation for execution.

When a KS is triggered, the KS uses its expertise to evaluate the quality and importance of its contribution. Each
triggered KS informs the control component of the quality and costs associated with its contribution, without actually
performing the work to compute the contribution. The control component uses these estimates to decide how to proceed.

Incremental solution generation. KSs contribute to the solution as appropriate, sometimes refining, sometimes
contradicting, and sometimes initiating a new line of reasoning.

Figure 2.7 shows the architecture of a basic blackboard system.
2.3.5 Negotiation

A frequent form of interaction that occurs among agents with different goals is termed negotiation. Negotiation is a
process by which a joint decision is reached by two or more agents, each trying to reach an individual goal or objective.
The agents first communicate their positions, which might conflict, and then try to move towards agreement by making
concessions or searching for alternatives.

The major features of negotiation are (1) the language used by the participating agents, (2) the protocol followed by the
agents as they negotiate, and (3) the decision process that each agent uses to determine its positions, concessions, and
criteria for agreement.

Many groups have developed systems and techniques for negotiation. These can be either environment-centered or agent-
centered. Developers of environment-centered techniques focus on the following problem: *How can the rules of the
environment be designed so that the agents in it, regardless of their origin, capabilities, or intentions, will interact
productively and fairly?" The resultant negotiation mechanism should ideally have the following attributes:

Page 105

Efficiency: the agents should not waste resources in coming to an agreement. Stability: no agent should have an
incentive to deviate from agreed-upon strategies.

Simplicity: the negotiation mechanism should impose low computational and bandwidth demands on the agents.
Distribution: the mechanism should not require a central decision maker.
Symmetry: the mechanism should not be biased against any agent for arbitrary or inappropriate reasons.

An articulate and entertaining treatment of these concepts is found in [36]. In particular, three types of environments
have been identified: worth-oriented domains, state-oriented domains, and task-oriented domains.

A task-oriented domain is one where agents have a set of tasks to achieve, all resources needed to achieve the tasks are
available, and the agents can achieve the tasks without help or interference from each other. However, the agents can
benefit by sharing some of the tasks. An example is the "Internet downloading domain,” where each agent is given a list
of documents that it must access over the Internet. There is a cost associated with downloading, which each agent would
like to minimize. If a document is common to several agents, then they can save

0105-001

Figure 2.7
The architecture of a basic blackboard system, showing the
blackboard, knowledge sources or agents, and control components.

Page 106

downloading cost by accessing the document once and then sharing it.

The environment might provide the following simple negotiation mechanism and constraints: (1) each agent declares the
documents it wants, (2) documents found to be common to two or more agents are assigned to agents based on the toss
of a coin, (3) agents pay for the documents they download, and (4) agents are granted access to the documents they
download. as well as any in their common sets. This mechanism is simple, symmetric, distributed, and efficient (no
document is downloaded twice). To determine stability, the agents' strategies must be considered.

An optimal strategy is for an agent to declare the true set of documents that it needs, regardless of what strategy the other
agents adopt or the documents they need. Because there is no incentive for an agent to diverge from this strategy, it is
stable.

Developers of agent-centered negotiation mechanisms focus on the following problem: "Given an environment in which
my agent must operate, what is the best strategy for it to follow?" Most such negotiation strategies have been developed
for specific problems, so few general principles of negotiation have emerged. However, there are two general
approaches, each based on an assumption about the particular type of agents involved.

For the first approach, speech-act classifiers together with a possible world semantics are used to formalize negotiation
protocols and their components. This clarifies the conditions of satisfaction for different kinds of messages. To provide a
flavor of this approach, we show in the following example how the commitments that an agent might make as part of a
negotiation are formalized [21]:

Vz(z # y) A
—(Precommit, y T ¢) A (Goal y Eventually(Achieves y ¢)) A (Willing y ¢)
<= (Intend y Eventually(Achieves y ¢))

This rule states that an agent forms and maintains its commitment to achieve g individually iff (1) it has not
precommitted itself to another agent to adopt and achieve g, (2) it has a goal to achieve @ individually, and (3) it is
willing to achieve g individually. The chapter on "Formal Methods in DAI" provides more information on such
descriptions.

The second approach is based on an assumption that the agents are economically rational. Further, the set of agents must
be small, they must have a common language and common problem abstraction, and they must reach a common
solution. Under these assumptions, Rosenschein and Zlotkin [37] developed a unified negotiation protocol. Agents that
follow this protocol create a deal, that is, a joint plan between the agents that would satisfy all of their goals. The utility
of a deal for an agent is the amount he is willing to pay minus the cost of the deal. Each agent wants to maximize its own
utility. The agents discuss a negotiation set, which is the set of all deals that have a positive utility for every agent.

Page 107
In formal terms, a task-oriented domain under this approach becomes a tuple
<T,A, c>

where T is the set of tasks, A is the set of agents, and c¢(X) is a monotonic function for the cost of executing the tasks X. A
deal is a redistribution of tasks. The utility of deal d for agent k is

Uy(d) = c(Ty) - c(dy)

The conflict deal D occurs when the agents cannot reach a deal. A deal d is individually rational if d > D. Deal d is
pareto optimal if there is no deal d' > d. The set of all deals that are individually rational and pareto optimal is the
negotiation set, NS. There are three possible situations:

1. conflict: the negotiation set is empty
2. compromise: agents prefer to be alone, but since they are not, they will agree to a negotiated deal
3. cooperative: all deals in the negotiation set are preferred by both agents over achieving their goals alone.

When there is a conflict, then the agents will not benefit by negotiating—they are better off acting alone. Alternatively,
they can "flip a coin" to decide which agent gets to satisfy its goals. Negotiation is the best alternative in the other two
cases.

Since the agents have some execution autonomy, they can in principle deceive or mislead each other. Therefore, an
interesting research problem is to develop protocols or societies in which the effects of deception and misinformation
can be constrained. Another aspect of the research problem is to develop protocols under which it is rational for agents to
be honest with each other.

The connections of the economic approaches with human-oriented negotiation and argumentation have not yet been fully
worked out.

2.3.6 Multiagent Belief Maintenance

A multiagent truth-maintenance system can serve as a detailed example of a high-level interaction among agents. A truth-
maintenance system (TMS) [10] is designed to ensure the integrity of an agent's knowledge, which should be stable, well-
founded, and logically consistent. Depending on how beliefs, justifications, and data are represented, a stable state of a
knowledge base is one in which 1) each datum that has a valid justification is believed, and 2) each datum that lacks a
valid justification is disbelieved. A well-founded knowledge base permits no set of its beliefs to be mutually dependent.
A logically consistent knowledge base is one that is stable at the time that consistency is determined and in which no
logical contradiction exists. A consistent knowledge base is one in which no datum is both believed and disbelieved (or
neither), or in which no datum and its negation are both

Page 108
believed. Other desirable properties for a knowledge base are that it be complete, concise, accurate, and efficient.

A single-agent TMS attempts to maintain well-founded stable states of a knowledge base by adjusting which data are
believed and which are disbelieved. However, it is important for a group of agents to be able to assess and maintain the
integrity of communicated information, as well as of their own knowledge. A multiagent TMS can provide this integrity
[27].

We consider a modified justification-based TMS, in which every datum has a set of justifications and an associated
status of INTERNAL (believed, because of a valid local justification), EXTERNAL (believed, because another agent
asserted it), or OUT (disbelieved). Consider a network of many agents, each with a partially-independent system of
beliefs. The agents interact by communicating data, either unsolicited or in response to a query. For well-foundedness, a
communicated datum must be INTERNAL to at least one of the agents that believes it and either INTERNAL or
EXTERNAL to the rest.

The support status of a communicated datum is jointly maintained by several agents. Hence, a single agent is generally
not free to change the status on its own accord. It must coordinate with the other agents so that they axe all consistent on
the status of the datum.

The multiagent TMS is invoked by the addition or removal of a justification, and obeys the following principles:
« Belief changes should be resolved with as few agents as possible.

« Belief changes should be resolved by changing as few beliefs as possible.

When invoked, it does the following three things:

1. Unlabels some data, including the newly justified datum and, presumably, its consequences. This unlabeled data set
might be confined to a single agent or it might span several agents. If a communicated datum is unlabeled in some agent,
it must be unlabeled in all the agents that share it.

2. Chooses labelings for all the unlabeled shared data, as defined above.

3. Initiates labeling by each of the affected agents with respect to the requirements imposed by the shared data. If any of
the affected agents fails to label successfully, it then backtracks. It either chooses different labelings for the shared data
(step 2), or unlabels a different set of data (step 1).

Consider the justification network in Figure 2.8. There are two agents, Agent 1 and Agent 2, and they share the
communicated datum T. Assume that the initial labeling shown in the diagram is perturbed by the addition of a new
justification for Q. Agent 1 initially unlabels just the changed datum and private data downstream, P and Q, but there is
no consistent relabeling. Hence, Agent 1 unlabels all shared data downstream of P and Q, and all private data
downstream from there: P, Q, both Ts, and U. Again labeling fails. Since there is no further shared data downstream,
Agent 1 and Agent 2 unlabel upstream and privately downstream

unreliable{ Agentl}—(OUT)

U (OUT)

O

:F
It -—

I

T (EXTERNAL)

I Agent 2|
T (INTERNAL)
+ /
P(IN) O
7 =
"/
C< R (IN) S (OUT)
N - -
3 OuUT
Ql) Apent 1
Figure 2.8

A multiagent TMS network before a new justification for datum
Q (shown dashed) is added; this invokes the multiagent

TMS algorithm and results in a relabeling of the network.

Page 109

from there: P, Q, Ts, U, R, and S. Now labeling succeeds, with S and U IN and everything else OUT, as shown in Figure

2.9. Had labeling feiled, unlabel would not be able to unlabel more data, and would report that the network is

inconsistent.

2.3.7 Market Mechanisms

Most of the protocols and mechanisms described earlier in this chapter require agents to communicate with each other
directly so are appropriate for small numbers of agents only. Other mechanisms for coordination are needed when there

are a large or unknown number of agents. One mechanism is based on voting, where agents choose from a set of
alternatives, and then adopt the alternative receiving the most votes. This mechanism is simple, equitable, and

distributed, but it requires significant amounts of communication and organization, and is most useful when there are just

a few well defined issues to be decided.

U (IN)
T (OUT)
Agent 2
T (OUT)
P (OUT) -
+ /C)\
R (OUT) S (IN)
Q (OUT) \O/
Agent 1)
Figure 2.9

The resultant stable labeling of the justification network
that is produced by the multiagent TMS algorithm.

Page 110

Computational economies, based on market mechanisms, are another approach [47]. These are effective for coordinating
the activities of many agents with minimal direct communication among the agents. The research challenge is to build
computational economies to solve specific problems of distributed resource allocation.

Everything of interest to an agent is described by current prices—the preferences or abilities of others are irrelevant
except insofar as they (automatically) affect the prices. There are two types of agents, consumers, who exchange goods,
and producers, who transform some goods into other goods. Agents bid for goods at various prices, but all exchanges

occur at current market prices. All agents bid so as to maximize either their profits or their utility.

To cast a problem in terms of a computational market, one needs to specify

* the goods being traded

« the consumer agents that are trading the goods

Page 111

« the producer agents, with their technologies for transforming some goods into others
« the bidding and trading behaviors of the agents.

Since the markets for goods are interconnected, the price of one good will affect the supply and demand of others. The
market will reach a competitive equilibrium such that (1) consumers bid to maximize their utility, subject to their budget
constraints, (2) producers bid to maximize their profits, subject to their technological capability, and (3) net demand is
zero for all goods.

The important property is that an equilibrium corresponds—in some sense optimally—to an allocation of resources and
dictates the activities and consumptions of the agents. In general, equilibria need not exist or be unique, but under certain
conditions, such as when the effect of an individual on the market is assumed negligible, they can be guaranteed to exist
uniquely.

In an open market, agents are free to choose their own strategy, and they do not have to behave rationally. Economic
rationality assumes that the agent's preferences are given along with knowledge of the effects of the agent's actions.
From these, the rational action for an agent is the one that maximizes its preferences.

Economic rationality has the charm of being a simple, "least common denominator" approach—if you can reduce
everything to money, you can talk about maximizing it. But to apply it well requires a careful selection of the target
problem.

One of the oldest applications of economic rationality is in decision-theoretic planning, which models the costs and
effects of actions quantitatively and probabilistically. For many applications, where the probabilities can be estimated
reliably, this leads to highly effective plans of actions [24, 22].

The need to maximize preferences essentially requires that there be a scalar representation for all the true preferences of
an agent. In other words, all of the preferences must be reduced to a single scalar that can be compared effectively with
other scalars. This is often difficult unless one can carefully circumscribe the application domain. Otherwise, one ends
up essentially recreating all of the other concepts under a veneer of rationality. For example, if we would like an agent to
be governed by its past commitments, not just the most attractive choice at the present time, then we can develop a utility
function that gives additional weight to past commitments. This approach may work in principle, but, in practice, it only
serves to hide the structure of commitments in the utility function that one chooses. The next section describes social
commitments more fully.

2.4 Societies of Agents

Much of traditional Al has been concerned with how an agent can be constructed to function intelligently, with a single
locus of internal reasoning and control implemented in a Von Neumann architecture. But intelligent systems do not
function in isolation—they are at the very least a part of the environment in which

Page 112

they operate, and the environment typically contains other such intelligent systems. Thus, it makes sense to view such
systems in societal terms.

There are promising opportunities engendered by the combination of increasingly large information environments, such
as the national information infrastructure and the intelligent vehicle highway system, and recent advances in multiagent
systems. Planned information environments are too large, complex, dynamic, and open to be managed centrally or via
predefined techniques—the only feasible alternative is for computational intelligence to be embedded at many and
sundry places in such environments to provide distributed control. Each locus of embedded intelligence is best thought
of as an autonomous agent that finds, conveys, or manages information. Because of the nature of the environments, the
agents must be long-lived (they should be able to execute unattended for long periods of time), adaptive (they should be
able to explore and learn about their environment, including each other), and social (they should interact and coordinate
to achieve their own goals, and the goals of their society; they should rely on other agents to know things so they do not
have to know everything).

Techniques for managing societies of autonomous computational agents are useful not only for large open information
environments, but also for large open physical environments. For example, such techniques can yield new efficiencies in
defense logistics: by considering each item of materiel to be an intelligent entity whose goal is to reach a destination, a
distribution system could manage more complicated schedules and surmount unforeseen difficulties.

A group of agents can form a small society in which they play different roles. The group defines the roles, and the roles
define the commitments associated with them. When an agent joins a group, he joins in one or more roles, and acquires
the commitments of that role. Agents join a group autonomously, but are then constrained by the commitments for the
roles they adopt. The groups define the social context in which the agents interact.

Social agency involves abstractions from sociology and organizational theory to model societies of agents. Since agents
are often best studied as members of multiagent systems, this view of agency is important and gaining recognition.
Sociability is essential to cooperation, which itself is essential for moving beyond the somewhat rigid client-server
paradigm of today to a true peer-to-peer distributed and flexible paradigm that modern applications call for, and where
agent technology finds its greatest payoffs.

Although mental primitives, such as beliefs, desires, and intentions, are appropriate for a number of applications and
situations, they are not suitable in themselves for understanding all aspects of social interactions. Further, economic
models of agency, although quite general in principle, are typically limited in practice. This is because the value
functions that are tractable essentially reduce an agent to a selfish agent. [7] argue that a self-interested agent need not be
selfish, because it may have other interests than its immediate personal gain. This is certainly true in many cases when
describing humans, and is likely to be a richer assumption for modeling artificial agents in settings that are appropriately
complex.

Page 113

Social commitments are the commitments of an agent to another agent. These must be carefully distinguished from
internal commitments. Social commitments have been studied by a number of researchers, including [17, 28]. There are
a number of definitions in the literature, which add components such as witnesses [5] or contexts [41]. Social
commitments are a flexible means through which the behavior of autonomous agents is constrained. An important
concept is that of social dependence, defined as

(Social Dependence = y a p) = (Goal = p) A
~(CanDo z a) A
(CanDo y a) A
((DoneBy y a) => Eventually p)

that is, agent x depends on agent y with regard to act a for realizing state p, when p is a goal of x and x is unable to
realize p while y is able to do so.

Social dependence can be voluntary when the agents adopt the roles that bind them to certain commitments. However, it
IS an objective relationship, in that it holds independently of the agents' awareness of it. Of course, there may be
consequences that occur when the agents become aware of it, such as x might try to influence y to pursue p.

Social dependencies may be compound. For example, mutual dependence occurs when x and y depend on each other for
realizing a common goal p, which can be achieved by a plan including at least two different actions, such that x depends
ony doing a, and y depends on x doing a,, as

|0113-002 |

Cooperation is a form of such mutual dependence.

Reciprocal dependence occurs when x and y depend on each other for realizing different goals, P, for x and p, for y, as
dp.3py ((Social Dependence = y ay p:) A (Social Dependence y = ax py))

Social exchange is a form of such reciprocal dependence.

With this as a basis, a group of agents form a cooperative team when

« All agents share a common goal.

« Each agent is required to do its share to achieve the common goal by the group itself or a subgroup.

« Each agent adopts a request to do its share.

Beyond social dependencies, social laws may govern the behaviors of large numbers of agents in a society. See [34] for a
treatment of this concept.

Page 114

2.5 Conclusions

This chapter described elements of a computational environment that are needed for the interaction of multiple software
agents. The elements enable agents to communicate, cooperate, and negotiate while they act in the interests of
themselves or their society.

Further research is needed to develop the basis and techniques for societies of autonomous computational agents that
execute in open environments for indefinite periods. This research will rely on the ability of agents to acquire and use
representations of each other. This is what is needed for negotiation, cooperation, coordination, and multiagent learning.
What should be the contents of these representations? Subsequent chapters of this textbook provide the answers.

2.6 Exercises

1. [Level 1] What are some of the advantages and disadvantages of synchronous versus asynchronous communications
among agents?

2. [Level 1] Imagine that two agents are negotiating a contract. In the course of the negotiation, they engage in the
following speech acts: propose, counter-propose, accept, reject, retract, explain, ask-for-clarification, agree, disagree.
Draw a state diagram for the negotiation protocol followed by each agent.

3. [Level 3] Consider an environment having one broker agent with which many information agents can advertise. When
an information agent advertises, it provides the broker with a list of predicate calculus expressions summarizing its
knowledge. To find information agents who are knowledgeable about certain topics, a query agent supplies predicate
calculus expressions to the broker and asks for pointers to the relevant information agents. The broker then returns a list
of all relevant information agents.

(a) List the KQML message that would be sent when query agent Q1 asks broker agent B1 for pointers to information
agents knowledgeable about the predicate calculus expression weight (Automobile ?x). Hint: the following is an example
KQML message for an information agent advertising with a broker:

(adverti se
:content weight (Autonobile ?z)
: I anguage Predi cat e- Cal cul us
:ontol ogy Transportation-Domain :sender info-agent-3
:receiver broker-1)
(b) The Transportati on-Domain ontology is common to all agents. Draw a

Page 115

state transition diagram for each agent. Be sure that every speech act sent and received serves as a "condition” for a state
transition. State any simplifying assumptions used.

4. [Level 1] What is the difference between the concepts coherence and coordination?

5. [Level 1] Give an advantage and disadvantage of the use of the contract net protocol.

6. [Level 2] Formalize the following protocol for the contract net in KQML. Clearly state which parts must be in the
:content part of the communications. "One agent, the Manager, has a task that it wants to be solved. The Manager
announces the task by broadcasting the task description in a task-announcement message to the other agents, the
potential contractors. When contractors receives a task announcement, they evaluate it and some of them respond with a
bid message, containing an estimate of their ability and a cost. The manager evaluates the bids, chooses the best one, and
sends an award message to the winning contractor."

7. [Level 2] List the sequence of KQML performatives that must the generated by agents A, B, and C in solving the
following problem: "Agent A wants to find out the cost of football tickets. Agent A does not know the cost, but Agent A
knows that Agent B exists. Agent B does not know the cost either, but Agent B knows that Agent C exists. Agent C
knows the cost." Assume that the agents are cooperative and truthful.

8. [Level 2] Describe how three agents might negotiate to find a common telephone line for a conference call. Assume
that Agent A has telephones lines 1, 2, 3; Agent B, 1, 3; and Agent C, 2, 3.

The negotiation proceeds pair-wise: two agents at a time. The agents negotiate in order: A, B, C, A, B, C, A,... Also,
alternate lines are chosen in the order specified above for each agent.

Initially,
Agent A proposes line 1 to Agent B, and Agent B accepts it.
Agent B proposes line 1 to Agent C, but Agent C rejects it.

Complete the process until all agents have picked a common line.

9. [Level 3] "Multiagent Truth Maintenance:" A single agent who knows P and P = Qwould have its knowledge
labeled as follows:

Page 116

factl: i

status: (IN)

shared with: (NIL)

justification: (PREMISE)
rulel: P=0Q

status: (IN)

shared with: (NIL)

justification: (PREMISE)
fact2: Q

status: (IN)

shared with: (NIL)

justification:

(factl, rulel)

If the agent shares factl with another agent, factl's status changes to INTERNAL, and the agent receiving the knowledge
labels its new fact as having status EXTERNAL.

Now consider the following situation in which the knowledge is initially local to each agent:

Agent A Agent B Agent C
factl: P rulel: 0116-002 factl: R
I‘uleli S =‘1"' v ru'ez: R ==" Q

ule3: [0116-005
ulea: [0116-006

(a) Suppose that Agent A shares factl with Agent B, who uses forward chaining to make all possible conclusions from
his knowledge. Show the effect of Agent A sharing factl on the status, shared with, and justification fields for all data in
each agent.

(b) Now suppose Agent C shares factl with Agent B. Show the effect of sharing this knowledge on the status, shared
with, and justification fields for all data in each agent.

(c) Now suppose that Agent A retracts factl by making factl have status OUT. Show the changes that would occur to the
status, shared with, and justification fields for all data in each agent.

10. [Level 1] In the discussion of the unified negotiation protocol, it is stated that the agents might decide to "flip a coin"
when the negotiation set is empty. Under what conditions might this be beneficial to the agents.

11. [Level 4] Imagine a two-dimensional domain consisting of packages and destinations (Figure 2.10). In this domain,
robots must move the packages to the correct destinations. Robots can carry only one package at a time, and they

Page 117

H Destingtion 2

marsan

oo
L -
R3 ..Ej
]
Figure 2.10

A domain where robots must move packages to their destinations.

are not allowed to travel through a package—they must maneuver around it. There is a cost associated with moving a
package, but not with picking it up or setting it down. If a robot encounters a package when it is already carrying
another, it can either move the package out of the way, or it can go around it. Moving it has a higher cost, but it might be
beneficial to itself or other robots in the future to have the package out of the way. Assume that a robot is rewarded
according to the amount that it moves a package closer to its destination. Develop a computer simulation of this domain,
and try to establish answers to the following questions:

(@) Will the robots develop any social conventions regarding which direction they move packages that are obstacles?
(b) Under what conditions will "roadways" (paths without obstacles) form for the robots to travel on?

(c) Destination points will likely become congested with robots attempting to drop off their packages. Gridlock might
even occur. Will the robots become specialized in their operation, where some robots bring packages near the
destinations and other robots move them from the drop-off points to the final destinations?

(d) If the robots communicate information about their intentions regarding the packages they are moving, will other
robots be able to take advantage of the information?

Suggestions: choose a grid of size NxN containing P packages, R robots, and D destinations, where initial values for the
parameters are N=100, P=50, R=8, and D=3. Assume that a robot and a package each take up one square of the

Page 118

grid. Assume that a robot can move to any of its 8 adjoining squares, or stay where it is, in each time interval.

12. [Level 1] The initial state in a Block's World is On(B,C), On(D,A), Table(A), and Table(C). The desired goal state is
On(A,B), On(B,C), Table(C), and Table(D). Agentl can manipulate only blocks A and B; Agent2 can manipulate only
blocks C and D. In solving this problem, the action MoveToTable(agent, block) can be used to place block D on the
table. Express the movement of block D to the table in terms of the social dependence formula in this chapter.

2.7 References
1. John L. Austin. How to do Things with Words. Clarendon, Oxford, UK, 1962.
2. Will Briggs and Diane Cook. Flexible Social Laws. In Proc. 14th 1JCAI, 1995.

3. Birgit Burmeister, Afsaneh Haddadi, and Kurt Sundermeyer. Generic Configurable Cooperation Protocols for Multi-
Agent Systems. In Proceedings of the 3rd European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW), 1993.

4. Stefan Bussman and Jurgen Muller. A Communication Architecture for Cooperating Agents. Computers and Artificial
Intelligence, Vol. 12, No. 1, pages 37-53, 1993.

5. Cristiano Castelfranchi. Commitments: From individual intentions to groups and organizations. In Proceedings of the
International Conference on Multiagent Systems, pages 41-48, 1995.

6. Man Kit Chang. SANP: A Communication Level Protocol for Supporting Machine-to-Machine Negotiation in
Organization. MS Thesis, U. of British Columbia, Vancouver, B.C., Canada, 1991.

7. Rosaria Conte and Cristiano Castelfranchi. Cognitive and Social Action. UCL Press, London, 1995.

8. Daniel D. Corkill, Kevin Q. Gallagher, and Kelly E. Murray. GBB: A Generic Blackboard Development System. In
Proc. AAAI-86, Philadelphia, PA, pages 1008-1014, 1986.

9. Randall Davis and Reid G. Smith. Negotiation as a Metaphor for Distributed Problem Solving. Artificial Intelligence,
Vol. 20, No. 1, pages 63-109, January 1983.

10. Jon Doyle. A Truth Maintenance System. Artificial Intelligence, Vol. 12, No. 3, pages 231-272, 1979.
11. Edmund H. Durfee. Coordination of Distributed Problem Solvers. Kluwer, 1988.

12. Edmund H. Durfee and Thomas A. Montgomery. A Hierarchical Protocol for Coordinating Multiagent Behaviors. In
Proc. AAAI-90, 1990.

13. Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent Cooperation among Communicating Problem
Solvers. IEEE Transactions on Computers, C-36(11):1275-1291, 1987.

14. Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: A tool for Collaborative Ontology
Construction. Technical Report KSL-96-26, Knowledge Systems Laboratory, Stanford University, September 1996.

Page 119

15. Tim Finin, Don McKay, and Rich Fritzson. An Overview of KQML: A Knowledge Query and Manipulation
Language. Technical Report, U. of Maryland CS Department, 1992.

16. S. Fiske and S. E. Taylor. Social Cognition. Addison Wesley, New York, 1984.

17. Les Gasser. Social Conceptions of Knowledge and Action: DAI Foundations and Open Systems Semantics. Artificial
Intelligence, 47:107-138, 1991.

18. Les Gasser and Michael N. Huhns, editors. Distributed Artificial Intelligence, Volume Il. Pitman Publishing, London,
1989.

19. N. Gilbert and J. E. Doran, editors. Simulating Societies: The Computer Simulation of Social Phenomena. In
Proceedings of the Symposium on Simulating Societies. University College Press, London, 1994,

20. N.Gilbert and R.Conte, editors. Artificial Societies: Computer Simulation of Social Life. University College Press,
London, 1995.

21. Afsaneh Haddadi. Towards a Pragmatic Theory of Interactions. In Proc. International Conference on MultiAgent
Systems (ICMAS), San Francisco, 1995.

22. Peter Haddawy. Believing Change and Changing Belief. IEEE Transactions on Systems, Man, and Cybernetics
Special Issue on Higher-Order Uncertainty, 26(5), 1996.

23. Carl Hewitt. Open Information Systems Semantics for Distributed Artificial Intelligence. Artificial Intelligence, Vol.
47, pages 79-106, 1991.

24. Eric Horvitz and Geoffrey Rutledge. Time-dependent Utility and Action under Uncertainty. In Proceedings of the
7th Conference on Uncertainty in Artificial Intelligence, pages 151-158, 1991.

25. M. N. Hubris, U. Mukhopadhyay, L. M. Stephens, and R. D. Bonnell. DAI for Document Retrieval: The MINDS
Project. In M. N. Huhns, editor, Distributed Artificial Intelligence. Pittman, London, 1987.

26. Michael N. Huhns and Munindar P. Singh. A Mediated Approach to Open, Large-Scale Information Management. In
Proc. IEEE Int. Phoenix Conf. on Computers and Communications, 1995.

27. Michael N. Huhns and David M. Bridgeland. Multiagent Truth Maintenance. IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 21, No. 6, pages 1437-1445, December 1991.

28. N. R. Jennings. Commitments and Conventions: The Foundation of Coordination in Multi-Agent Systems. The
Knowledge Engineering Review, 2(3):223-250, 1993.

29. Nick R. Jennings. Coordination Techniques for distributed Artificial Intelligence. In G. M. P. O'Hare and N. R.
Jennings, editors, Foundations of Distributed Artificial Intelligence, pages 187-210. John Wiley & Sons, Inc., New
York, 1996.

30. R. Kakehi and M. Tokoro. A Negotiation Protocol for Conflict Resolution in Multi-Agent Environments. In Proc.
ICICIS, pages 185-196, 1993.

31. Yannis Labrou and Tim Finin. A Semantics approach for KQML—A General Purpose Communication Language for
Software Agents. In Proc. Int. Conf on Information and Knowledge Management, 1994.

32. Kuha Mahalingam and Michael N. Huhns. An Ontology Tool for Distributed Information Environments. IEEE
Computer, 30(6):80-83, June 1997.

33. Robin Milner. Elements of Interaction. CACM, Vol. 36, No. 1, pages 78-89, 1993.

34. Yoram Moses and Moshe Tenenholtz. On Computational Aspects of Artificial Social Systems. In Proc. 11th DAI
Workshop, Glen Arbor, Ml, 1992.

Page 120

35. R. Neches, R. Fikes, T. Finin, R. Gruber, R. Patil, T. Senator, and W. Swartout. Enabling Technology for Knowledge
Sharing. Al Magazine, 12(3):36-56, Fall 1991.

36. Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. The MIT Press, Cambridge, MA, 1994.

37. Jeffrey S. Rosenschein and Gilad Zlotkin. Designing Conventions for Automated Negotiation. Al Magazine, pages
29-46, 1994,

38. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River,
NJ, 1995.

39. John R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge U. Press, 1970.
40. Herbert Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA, third edition, 1996.

41. Munindar P. Singh. Commitments among autonomous agents in information-rich environments. In Proceedings of
the 8th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), 1997.

42. Munindar P. Singh. "Considerations on Agent Communication,” presented at FIPA Workshop, 1997.
43. Munindar P. Singh. A Semantics for Speech Acts. Annals of Mathematics and Al, VVol.8, No.I-11, pages 47-71, 1993.

44. Reid G. Smith. The Contract Net Protocol: High Level Communication and Control in a Distributed Problem Solver.
IEEE Transactions on Computers, Vol. C-29, No. 12, pages 1104-1113, December 1980.

45. Reid G. Smith and Randall Davis. Frameworks for Cooperation in Distributed Problem Solving. IEEE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-11, No. 1, pages 61-70, January 1981.

46. Katia Sycara. Resolving Goal Conflicts via Negotiation. In Proc. AA Al-88, pages 245-250, 1988.

47. Michael P. Wellman. A Computational Market Model for Distributed Configuration Design. Al EDAM, 9:125-133,
1995,

48. Eric Werner. Cooperating Agents: A Unified Theory of Communication and Social Structure. In L. Gasser and M.
Huhns, editors, Distributed Artificial Intelligence, Volume 11, pages 3-36. Pittman, London, 1989.

49. Gio Wiederhold. Mediators in the Architecture of Future Information Systems, IEEE Computer, Vol. 25, No. 3,
pages 38-49, March 1992,

50. Carson Woo and Frederick H. Lochovsky. Knowledge Communication in Intelligent Information Systems.
International Journal of Intelligent and Cooperative Information Systems, Vol. 1, No. 1, pages 203-228, 1992.

Page 121

3
Distributed Problem Solving and Planning

Edmund H. Durfee

3.1 Introduction

Distributed problem solving is the name applied to a subfield of distributed artificial intelligence (Al) in which the
emphasis is on getting agents to work together well to solve problems that require collective effort. Due to an inherent
distribution of resources such as knowledge, capability, information, and expertise among the agents, an agent in a
distributed problem-solving system is unable to accomplish its own tasks alone, or at least can accomplish its tasks better
(more quickly, completely, precisely, or certainly) when working with others.

Solving distributed problems well demands both group coherence (that is, agents need to want to work together) and
competence (that is, agents need to know how to work together well). As the reader by now recognizes, group coherence
is hard to realize among individually-motivated agents (see Chapters 2 and 5, for example). In distributed problem
solving, we typically assume a fair degree of coherence is already present: the agents have been designed to work
together; or the payoffs to self-interested agents are only accrued through collective efforts; or social engineering has
introduced disincentives for agent individualism; etc. Distributed problem solving thus concentrates on competence; as
anyone who has played on a team, worked on a group project, or performed in an orchestra can tell you, simply having
the desire to work together by no means ensures a competent collective outcome!

Distributed problem solving presumes the existence of problems that need to be solved and expectations about what
constitute solutions. For example, a problem to solve might be for a team of (computational) agents to design an artifact
(say, a car). The solution they formulate must satisfy overall requirements (it should have four wheels, the engine should
fit within the engine compartment and be powerful enough to move the car, etc.), and must exist in a particular form (a
specification document for the assembly plant). The teamed agents formulate solutions by each tackling (one or more)
subproblems and synthesizing these subproblem solutions into overall solutions.

Sometimes the problem the agents are solving is to construct a plan. And often, even if the agents are solving other kinds
of problems, they also have to solve

Page 122

Figure 3.1
Tower of Hanoi (ToH).

planning problems as well. That is, how the agents should plan to work together— decompose problems into
subproblems, allocate these subproblems, exchange sub-problem solutions, and synthesize overall solutions—is itself a
problem the agents need to solve. Distributed planning is thus tightly intertwined with distributed problem solving, being
both a problem in itself and a means to solving a problem.

In this chapter, we will build on the topics of the previous chapters to describe the concepts and algorithms that comprise
the foundations of distributed problem solving and planning. The reader is already familiar with protocols of interaction;
here we describe how those protocols are used in the context of distributed problem solving and planning. The reader is
also assumed to be familiar with traditional Al search techniques; since problem solving and planning are usually
accomplished through search, we make liberal use of the relevant concepts. The subsequent chapter delves more
formally into distributed search specifically.

The remainder of the chapter is structured as follows. We begin by introducing some representative example problems,
as well as overviewing a variety of other applications of the techniques to be described. Working from these motivating
examples, we work our way up through a series of algorithms and concepts as we introduce increasingly complicated
requirements into the kinds of problems to solve, including planning problems.

3.2 Example Problems

There are several motivations for distributed problem solving and distributed planning. One obvious motivation is that
using distributed resources concurrently can allow a speedup of problem solving thanks to parallelism. The possible
improvements due to parallelism depend, of course, on the degree of parallelism inherent in a problem.

One problem that permits a large amount of parallelism during planning is a classic toy problem from the Al literature:
the Tower of Hanoi (ToH) problem (see Figure 3.1). As the reader will recall from an introductory Al course, Toll
consists of 3 pegs and n disks of graduated sizes. The starting situation has all of the disks on one peg, largest at bottom
to smallest at top. The goal is to move the disks from the start peg to another specified peg, moving only one disk at a
time,

Page 123

without ever placing a larger disk on top of a smaller disk. The problem, then, is to find a sequence of moves that will
achieve the goal state.

A second motivation for distributed problem solving and planning is that expertise or other problem-solving capabilities
can be inherently distributed. For example, in concurrent engineering, a problem could involve designing and
manufacturing an artifact (such as a car) by allowing specialized agents to individually formulate components and
processes, and combining these into a collective solution. Or, supervisory systems for air-traffic control, factory
automation, or crisis management can involve an interplay between separate pieces for event monitoring, situation
assessment, diagnosis, prioritization, and response generation. In these kinds of systems, the problem is to employ
diverse capabilities to solve problems that are not only large (the Toll can itself be arbitrarily large) but also multi-
faceted.

As a simple example of distributed capability, we will use the example of distributed sensor network establishment
for monitoring a large area for vehicle movements. In this kind of problem, the overall task of monitoring cannot be done
in a central location since the large area cannot be sensed from any single location. The establishment problem is thus to
decompose the larger monitoring task into subtasks that can be allocated appropriately to geographically distributed
agents.

A third motivation is related to the second, and that is that beliefs or other data can be distributed. For example,
following the successful solution of the distributed sensor network establishment problem just described, the problem of
actually doing the distributed vehicle monitoring could in principle be centralized: each of the distributed sensor agents
could transmit raw data to a central site to be interpreted into a global view. This centralized strategy, however, could
involve tremendous amounts of unnecessary communication compared to allowing the separate sensor agents to
formulate local interpretations that could then be transmitted selectively.

Finally, a fourth motivation is that the results of problem solving or planning might need to be distributed to be acted on
by multiple agents. For example, in a task involving the delivery of objects between locations, distributed delivery
agents can act in parallel (see Figure 3.2). The formation of the plans that they execute could be done at a centralized site
(a dispatcher) or could involve distributed problem- solving among them. Moreover, during the execution of their plans,
features of the environment that were not known at planning time, or that unexpectedly change, can trigger changes in
what the agents should do. Again, all such decisions could be routed through a central coordinator, but for a variety of
reasons (exploiting parallelism, sporadic coordinator availability, slow communication channels, etc.) it could be
preferable for the agents to modify their plans unilaterally or with limited communication among them.

In the above, we have identified several of the motivations for distributed problem solving and planning, and have
enumerated examples of the kinds of applications for which these techniques make sense. In the rest of this chapter, we
will refer back to several of these kinds of application problems, specifically:

Page 124

A room1 A room2 rooma3 A

23

a a ©]

Figure 3.2
Distributed delivery example.

 Tower of Hanoi (ToH)
* Distributed Sensor Network Establishment (DSNE)
* Distributed Vehicle Monitoring (DVM)

* Distributed Delivery (DD)

3.3 Task Sharing

The first class of distributed problem-solving strategies that we will consider have been called "task sharing” or "task
passing" strategies in the literature. The idea is simple. When an agent has many tasks to do, it should enlist the help of
agents with few or no tasks. The main steps in task sharing are:

1. Task decomposition: Generate the set of tasks to potentially be passed to others. This could generally involve
decomposing large tasks into subtasks that could be tackled by different agents.

2. Task allocation: Assign subtasks to appropriate agents.

3. Task accomplishment: The appropriate agents each accomplish their subtasks, which could include further
decomposition and subsubtask assignment, recursively to the point that an agent can accomplish the task it is handed
alone.

4. Result synthesis: When an agent accomplishes its subtask, it passes the result to the appropriate agent (usually the
original agent, since it knows the

Page 125

decomposition decisions and thus is most likely to know how to compose the results into an overall solution).

Note that, depending on the circumstances, different steps might be more or less difficult. For example, sometimes an
overburdened agent begins with a bundle of separate tasks, so decomposition is unnecessary; sometimes the agent can
pass tasks off to any of a number of identical agents, so allocation is trivial; and sometimes accomplishing the tasks does
not yield any results that need to be synthesized in any complex way.

3.3.1 Task Sharing in the Toll Problem

To get a feel for the possibilities of task sharing, we start with the very simple Toll problem. Consider the task-sharing
steps when it comes to this problem:

1. Task decomposition: Means-ends analysis (see Figure 3.3), where moving the largest disk that is not at its destination
peg is considered the most important difference, leads to a recursive decomposition: solve the problem of getting to the
state where the largest disk can be moved, and get from the state after it is moved to the goal state. These subproblems
can be further decomposed into problems of moving the second largest disk to the middle peg to get it out of the way, so
the state where that can be done needs to be reached, etc.

2. Task allocation: If we assume an indefinite number of identical idle agents capable of solving (pieces of) the Toll
problem, then allocation reduces to just assigning a task randomly to one of these agents.

3. Task accomplishment: In general, an agent can use means-ends analysis to find the most significant difference
between the start and goal states that it is responsible for, and will decompose the problem based on these. If the
decomposed problems are such that the start and goal states are the same (that is, where the most significant difference is
also the only difference), then the recursive decomposition terminates.

4. Result synthesis: When an agent has solved its problem, it passes the solution back on up. When an agent has received
solutions to all of the subproblems it passed down, it can compose these into a more comprehensive sequence of moves,
and then pass this up as its solution.

ToH represents an ideal case of the possibilities of distributed problem solving due to the hierarchical nature of the
problem. In general, for a problem like ToH, the search space is exponential in size. If we assume a branching factor of b
(meaning that from a state, there are b alternative states that can be reached by moving some disk to some peg), and
assuming that in the best case it will take n disk movements to go from the start state to the end state, then the search
complexity is bn.

Thanks to the hierarchical structure of the problem, the means-ends heuristic can reduce this complexity dramatically.
Let us assume that ultimately the hierarchy

Page 126

|-4--i | Move L-1- .._l_

.-I--__.d l,l' I\HH
< M-1- L1- P M2

o | | - —— | |

| ' 7 RN
- / y Y

N P A A e g = S

Figure 3.3
Means-ends decomposition for ToH.

divides the problem of size n into problems each of size k, yielding n/k subproblems, each of which requires f(k) time to
solve. These solutions are fed to the next level up in the hierarchy such that k are given to each of the agents at this level.
Each of these n/k2 agents has to synthesize k results, again requiring f(k) time. This aggregation process continues up the
hierarchy, such that at the next-to-topmost level, n/k!-1 agents are combining k results from below in the hierarchy with |
levels. The topmost agent then combines these n/k!-! results together, requiring f(n/k1-1) time. The total expenditure is
thus:

f(n/kl-L) + (kL1 - £(K)) + (/K12 - £(K)) + ... + (n/k - f(K)) .

Since Kk is a constant, and we can choose | = log, n, the equation can be reduced to O([(k' - 1)/(k - 1)]f(k)) which can be
simplified simply to O(n) [23, 23]. More importantly, if each level of the hierarchy has agents that solve their
subproblems in parallel, then the time needed below the top of the hierarchy (assuming negligible distribution and
communication time) is simply f(k) for each level, so (I - 1)f(k). This is added to the top agent's calculation f(n/k!-1).
Again, since k (and hence f(k)) is constant, and | = log, n, this reduces simply to O(log, n). This means that through
decomposition and parallel problem solving, the exponential Toll problem can be reduced to logarithmic time
complexity [33].

What the Toll problem illustrates is the potential for improved parallelism due to distributed problem solving in the
ideally decomposable case. Unfortunately, few problems satisfy the assumptions in this analysis of Toll, including:

1. There is no backtracking back upward in the abstraction hierarchy, meaning that each distributed subproblem is
solvable independently and the solution of one does not affect the solution of others. We will consider the effects of
relaxing this assumption in Subection 3.3.4.

2. The solution found hierarchically approximates (is linear in length to) the solution that would be found using brute-
force centralized search. This depends on having hierarchical abstraction spaces that do not exclude good solutions as a
consequence of reducing complexity.

Page 127

3. The number of abstraction levels grows with the problem size. While doing this is easy for ToH, often the number of
levels is fixed by the domain rather than the specific problem instance.

4. The ratio between levels is the base of the logarithm, k. Again, this depends on how the abstraction space is
constructed.

5. The problems can be decomposed into equal-sized subproblems. This is very difficult in domains where problems are
decomposed into qualitatively different pieces, requiring different expertise. We consider the effects of relaxing this
assumption in Subsection 3.3.2.

6. There are at least as many agents as there are "leaf" subproblems. Clearly, this will be difficult to scale!

7. The processes of decomposing problems, distributing subproblems, and collecting results takes negligible time. We
consider some of the effects of relaxing this assumption at various places in this chapter.

3.3.2 Task Sharing in Heterogeneous Systems

One of the powerful motivations for distributed problem solving is that it is difficult to build artifacts (or train humans)
to be competent in every possible task. Moreover, even if it feasible to build (or train) an omni-capable agent, it is often
overkill because, at any given time, most of those capabilities will go to waste. The strategy in human systems, and
adopted in many distributed problem-solving systems, is to bring together on demand combinations of specialists in
different areas to combine their expertise to solve problems that are beyond their individual capabilities.

In the Toll example, the subproblems required identical capabilities, and so the decisions about where to send tasks was
extremely simple. When agents can have different capabilities, and different subproblems require different capabilities,
then the assignment of subproblems to agents is not so simple.

Conceptually, it is possible for an agent to have a table that identifies the capabilities of agents, so that it can simply
select an appropriate agent and send the subproblem off, but usually the decisions need to be based on more dynamic
information. For example, if several candidate agents are capable of solving a subproblem, but some are already
committed to other subproblems, how is this discovered? One way is to use the Contract Net protocol (Chapter 2) with
directed contracts or focused addressing: the agent (in Contract-Net terms, the manager) announces a subproblem to a
specific agent (in the case of directed contracts) or a focused subset of other agents (in focused addressing) based on the
table of capabilities, and requests that returned bids describe acceptance/availability. The manager can then award the
subproblem to the directed contractor if it accepts, or to one of the available contractors in the focused addressing set.
However, if none of the agents are available, the manager has several options, described in the following paragraphs.

Page 128
Broadcast Contracting

In the kind of open environment for which Contract Net was envisioned, it is unlikely that a manager will be acquainted
with all of the possible contractors in its world. Thus, while directed contracts and focused addressing might be
reasonable first tries (to minimize communication in the network), a manager might want to update its knowledge of
eligible contractors by broadcasting its announcement to reach agents that it is currently unaware of as well. This is the
most commonly considered mode of operation for Contract Net. Directed contracts and focused addressing can be
thought of as caching results of such broadcasts, but since the cached results can become outdated, many
implementations of Contract Net do not include this function. It is interesting to note, however, that this kind of
"capabilities database" has found renewed favor in knowledge sharing efforts such as KQML (Chapter 2), where some
agents explicitly adopt the task of keeping track of what other agents purport to be good at.

Retry

One very simple strategy is to retry the announcement periodically, assuming that eventually a contractor will free up.
The retry interval then becomes an important parameter: if retries happen too slowly, then many inefficiencies can arise
as agents do not utilize each other well; but if retries happen to quickly, the network can get bogged down with
messages. One strategy for overcoming such a situation is to turn the protocol on its head. Rather than announcing tasks
and collecting bids, which implies that usually there are several bidders for each task, instead the protocol can be used by
potential contractors to announce availability, and managers can respond to the announcements by bidding their pending
tasks! It is possible to have a system alternate between the task and availability announcement strategies depending on
where the bottlenecks are in the system at various times [41].

Announcement Revision

Part of the announcement message that a manager sends is the eligibility specification for potential contractors. When no
(satisfactory) contractors respond to an announcement, it could be that the manager was being too exclusive in whom it
would entertain bids from. Thus, the manager could engage in iterative revision of its announcement, relaxing eligibility
requirements until it begins to receive bids.

An interesting aspect of this relaxation process is that the eligibility specifications could well reflect preferences over
different classes of contractors - or, more specifically, over the quality of services that different contractors provide. In
concert with other methods of handling a lack of bids (described above), a manager will be deciding the relative
importance of having a preferred contractor eventu-

Page 129

ally pursue the subproblem compared to finding a suboptimal contractor sooner. In many cases, these preferences and
tradeoffs between them can be captured using economic representations. By describing parts of its marginal utility curve,
for example, a manager can provide tradeoff information to an auction, which can then apply principled algorithms to
optimize the allocation of capabilities (see Chapter 5).

Alternative Decompositions

The manager can try decomposing the overall problem differently such that contractors are available for the alternative
subproblems. In general, the relationship between problem decomposition and subproblem allocation is extremely
complex and has not received sufficient attention. Sometimes a manager should first determine the space of alternative
contractors to focus problem decomposition, while other times the space of decompositions can be very restrictive.
Moreover, decisions about the number of problems to decompose into and the granularity of those sub-problems will
depend on other features of the application environment, including communication delays. We say no more about these
issues here, other than to stress the research opportunities in this area.

3.3.3 Task Sharing for DSNE

Smith and Davis (and others since) have explored the use of the Contract Net protocol for a variety of problems,
including the Distributed Sensor Net Establishment (DSNE) problem [4]. To give the reader a flavor of this approach,
we briefly summarize the stages of this application.

At the outset, it is assumed that a particular agent is given the task of monitoring a wide geographic area. This agent has
expertise in how to perform the overall task, but is incapable of sensing all of the area from its own locality. Therefore,
the first step is that an agent recognizes that it can perform its task better (or at all) if it enlists the help of other agents.
Given this recognition, it then needs to create subtasks to offload to other agents. In the DSNE problem, it can use its
representation of the structure of the task to identify that it needs sensing done (and sensed data returned) from remote
areas. Given this decomposition, it then uses the protocol to match these sensing subtasks with available agents. It
announces (either directed, focused, or broadcast) a subtask; we leave out the details of the message fields since they
were given in Chapter 2.

The important aspects of the announcement for our purposes here axe the eligibility specification, the task abstraction,
and the bid specification. To be eligible for this task requires that the bidding agent have a sensor position within the
required sensing area identified and that it have the desired sensing capabilities. Agents that meet these requirements can
then analyze the task abstraction (what, at an abstract level, is the task being asked of the bidders) and can determine the

Page 130

degree to which it is willing and able to perform the task. from its perspective. Based on this analysis, an eligible agent
can bid on the task, where the content of a bid is dictated by the bid specification.

The agent with the task receives back zero or more bids. If it gets back no bids, then it faces the options previously
described: it can give up, try again, broaden the eligibility requirements to increase the pool of potential bidders, or
decompose the task differently to target a different pool of bidders. If it gets back bids, it could be that none are
acceptable to it, and it is as if it got none back. If one or more is acceptable, then it can award the sensing subtask to one
(or possible several) of the bidding agents. Note that, because the agent with the task has a choice over what it announces
and what bids it accepts, and an eligible agent has a choice over whether it wants to bid and what content to put into its
bid, no agent is forced to be part of a contract. The agents engage in a rudimentary form of negotiation, and form teams
through mutual selection.

3.3.4 Task Sharing for Interdependent Tasks

For problems like ToH, tasks can be accomplished independently; the sequence of actions to get from the start state to an
intermediate state can be found completely separately from the sequence to get from that intermediate state to the goal
state. Thus, the subtasks can be accomplished in any order (or concurrently), and synthesis need only wait to complete
until they are all done.

In some cases, contracted tasks are not independent. In a concurrent engineering application, for example, process
planning subtasks usually need to wait until product design tasks have progressed beyond a certain point. For relatively
clearcut subtask relationships, a manager for the subtasks can coordinate their execution by initiating a subtask based on
the progress of another, or by relaying interim results for one subtask to contractors of related subtasks.

More generally, however, aspects of subtask relationships might only become apparent during the course of problem
solving, rather than being dictated ahead of time by the problem decomposition. For example, when using a distributed
sensor network to perform vehicle monitoring, the runtime relationships between what is being monitored in different
areas is as variable as the possible movements of vehicles through the areas. While a task-sharing strategy, exemplified
in the Contract Net protocol, can establish a distributed sensor network, it does not provide a sufficient basis for using
the network. Or, put more correctly, when task sharing is used to allocate classes of tasks among agents, then if different
instances of those tasks have different interrelationships, discovering and exploiting those relationships requires the
generation and sharing of tentative results.

Page 131

3.4 Result Sharing

A problem-solving task is accomplished within the context of the problem solver, so the results of the task if performed
by one problem solver could well differ from the results of the same task being performed by another problem solver.
For example, students in a class are often given the same task (homework problem), but their independently derived
solutions will not (better not!) be identical.

By sharing results, problem solvers can improve group performance in combinations of the following ways:

1. Confidence: Independently derived results for the same task can be used to corroborate each other, yielding a
collective result that has a higher confidence of being correct. For example, when studying for an exam, students might
separately work out an exercise and then compare answers to increase confidence in their solutions.

2. Completeness: Each agent formulates results for whichever subtasks it can (or has been contracted to) accomplish,
and these results altogether cover a more complete portion of the overall task. For example, in distributed vehicle
monitoring, a more complete map of vehicle movements is possible when agents share their local maps.

3. Precision: To refine its own solution, an agent needs to know more about the solutions that others have formulated.
For example, in a concurrent engineering application, each agent might separately come up with specifications for part
of an artifact, but by sharing these the specifications can be further honed to fit together more precisely.

4. Timeliness: Even if an agent could in principle solve a large task alone, solving subtasks in parallel can yield an
overall solution faster.

Accruing the benefits of result sharing obviously means that agents need to share results. But making this work is harder
than you might think! First of all, agents need to know what to do with shared results: how should an agent assimilate
results shared from others in with its own results? Second, given that assimilation might be non-trivial, that
communicating large volumes of results can be costly, and that managing many assimilated results incurs overhead,
agents should attempt to be as selective as possible about what they exchange. In the remainder of this section, we look
at these issues.

3.4.1 Functionally Accurate Cooperation

In task-passing applications like ToH, the separate problem-solving agents are completely accurate in their computations
(they have all information and a complete specification for their subtasks) and operate independently. In contrast, agents
do-

Page 132

ing Distributed Vehicle Monitoring (DVM) lack information about what is happening elsewhere that could impact their
calculations. As a result, these agents need to cooperate to solve their subtasks, and might formulate tentative results
along the way that turn out to be unnecessary. This style of collective problem solving has been termed functionally-
accurate (it gets the answer eventually, but with possibly many false starts) and cooperative (it requires iterative
exchange) [28].

Functionally-accurate cooperation has been used extensively in distributed problem solving for tasks such as
interpretation and design, where agents only discover the details of how their subproblem results interrelate through
tentative formulation and iterative exchange. For this method to work well, participating agents need to treat the partial
results they have formulated and received as tentative, and therefore might have to entertain and contrast several
competing partial hypotheses at once. A variety of agent architectures can support this need; in particular, blackboard
architectures (Chapter 2) have often been employed as semi-structured repositories for storing multiple competing
hypotheses.

Exchanging tentative partial solutions can impact completeness, precision, and confidence. When agents can synthesize
partial solutions into larger (possibly still partial) solutions, more of the overall problem is covered by the solution.
When an agent uses a result from another to refine its own solutions, precision is increased. And when an agent
combines confidence measures of two (corroborating or competing) partial solutions, the confidence it has in the
solutions changes. In general, most distributed problem-solving systems assume similar representations of partial
solutions (and their certainty measures) which makes combining them straightforward, although some researchers have
considered challenges in crossing between representations, such as combining different uncertainty measurements [47].

In functionally accurate cooperation, the iterative exchange of partial results is expected to lead, eventually, to some
agent having enough information to keep moving the overall problem solving forward. Given enough information
exchange, therefore, the overall problem will be solved. Of course, without being tempered by some control decisions,
this style of cooperative problem solving could incur dramatic amounts of communication overhead and wasted
computation. For example, if agents share too many results, a phenomenon called distraction can arise: it turns out that
they can begin to all gravitate toward doing the same problem-solving actions (synthesizing the same partial results into
more complete solutions). That is, they all begin exploring the same part of the search space (Chapter 4). For this reason,
limiting communication is usually a good idea, as is giving agents some degree of skepticism in how they assimilate and
react to information from others. We address these issues next.

Page 133

3.4.2 Shared Repositories and Negotiated Search

One strategy for reducing potential flurry of multicast messages is to instead concentrate tentative partial results in a
single, shared repository. The blackboard architecture, for example, allows cooperating knowledge sources to exchange
results and build off of them by communicating through a common, structured blackboard (Chapter 2).

This strategy has been adopted in a variety of distributed problem-solving approaches, including those for design
applications [25, 45]. In essence, using a shared repository can support search through alternative designs, where agents
with different design criteria can revise and critique the alternatives. In many ways, this is a distributed constraint
satisfaction problem (Chapter 4), but it differs from traditional formulations in a few respects.

Two important differences are: agents are not assumed to know whose constraints might be affected by their design
choices, and agents can relax constraints in a pinch. The first difference motivates the use of a shared repository, since
agents would not know whom to notify of their decisions (as is assumed in typical DCSP formulations as in Chapter 4).
The second difference motivates the need for heuristics to control the distributed search, since at any given time agents
might need to choose between improving some solutions, rejecting some solutions, or relaxing expectations (thus
making some solutions that were previously considered as rejected now acceptable).

For example, agents engaged in negotiated search [25] have at their disposal a variety of operators for progressing the
distributed problem-solving effort: initiate-solution (propose a new starting point for a solution); extend-solution (revise
an already existing partial solution); critique-solution (provide feedback on the viability of an already existing partial
solution); and relax-solution-requirement (change local requirements for solution acceptability). At any given time, an
agent needs to decide which of these operators to apply, and where. While a systematic exploration of the space can be
considered (Chapter 4), the problem domains for negotiated search are typically complex enough that heuristic guidance
is preferred. Heuristic measures for when to invoke operators (such as invoking the relax-solution-requirement operator
when lack of progress is detected) and on what (such as relaxing requirements corresponding to the most constrained
component) are generally application-specific.

3.4.3 Distributed Constrained Heuristic Search

Constraint satisfaction problems in distributed environments also arise due to contention for resources. Rather than
assuming a shared repository for tentative partial solutions, a search strategy that has been gainfully employed for
distributed resource allocation problems has been to associate an "agent" with each resource, and have that agent process
the contending demands for the resource. One form that this strategy takes is so-called market-oriented programming
[44] where associated

Page 134

with resources are auctions that support the search for equilibria in which resources are allocated efficiently. Market
mechanisms are covered in detail in Chapter 5.

A second form that this strategy takes is to allow resources to compute their aggregate demands, which then the
competing agents can take into account as they attack their constraint-satisfaction problem. For example, distributed
constrained heuristic search (DCHS) uses aggregate demand to inform a heuristic search for solving a distributed
constraint satisfaction problem [43]. The idea is that more informed search decisions decrease wasted backtracking
effort, and that constraint satisfaction heuristics such as variable and value ordering can be gainfully employed in a
distributed environment.

DCHS works as follows (Figure 3.4):

1. An agent begins with a problem state comprised of a problem topology (the tasks to do and their relationships
including constraints).

2. An agent propagates constraints within its state; it backtracks if an inconsistency is detected. Otherwise, it determines
what resources it requires for what time intervals and computes a demand profile for those resources.

3. If the system is just beginning, or if the demand profiles differ from previous profiles, an agent sends the profile(s) to
the resource(s).

4. A resource computes aggregate demand and informs the agents making the demands.

5. An agent uses the aggregate demands to order its variables (resource-and-time-interval pairs) and order the activities
that it might assign to the highest-demand pair. It identifies a preferred resource/time-interval/activity assignment.

6. An agent requests that the resource reserve the interval for it.

7. The resource in turn grants the reservation if possible and updates the resource schedule. Otherwise the request is
denied.

8. An agent processes the response from the resource. If the reservation is granted, the agent goes to step 2 (to propagate
the effects of concretely scheduling the activity). If the reservation is not granted, the agent attempts another reservation,
going to step 6.

This view of the search strategy, while simplified, highlights the use of resources being contended for to focus
communication, and of an exchange of information that tends to decrease the amount of backtracking. That is, by giving
agents an opportunity to settle the "difficult” contention issues first, much useless work is avoided in settling the easier
issues and then discovering that these fail to allow the hard issues to be settled.

Page 135

consumers resources consumers resources

tentative aggregate
demands demands
consumers resources consumers respources
acce
rejec
| accep
reserve
requests
Figure 3.4
DCHS steps.

3.4.4 Organizational Structuring

When a shared repository cannot be supported or when problem-solving is not tantamount to resource scheduling, an
alternative strategy for reducing communication is to exploit the task decomposition structure, to the extent that it is
known. In a distributed design problem, for example, it makes sense to have designers working on components that must
"connect" speak with each other more frequently than they speak with designers working on more remote parts of the
design (of course, physical proximity might be only one heuristic!). Or, in a DVM task, agents monitoring neighboring
parts of the space should communicate when their maps show activity at or near their mutual boundary. The notion is
that agents have genera] roles to play in the collective effort, and by using knowledge of these roles the agents can make
better interaction decisions.

This notion can be explicitly manifested in an organizational structure, which defines roles, responsibilities, and
preferences for the agents within a cooperative society, and thus in turn defines control and communication patterns
between them. From a global view, the organizational structure associates with each agent the

Page 136

types of tasks that it can do, and usually some prioritization over the types such that an agent that currently could do any
of a number of tasks can identify the most important tasks as part of its organizational role. Allowing prioritization
allows the structure to permit overlapping responsibilities (to increase the chances of success despite the loss of some of
the agents) while still differentiating agents based on their primary roles.

Since each agent has responsibilities, it is important that an agent be informed of partial results that could influence how
it carries out its responsibilities. More importantly, agents need not be told of results that could not affect their actions,
and this can be determined based on the organizational structure. Thus, an organizational structure provides the basis for
deciding who might potentially be interested in a partial result. It also can dictate the degree to which an agent should
believe and act on (versus remain skeptical about) a received result.

While an organizational structure needs to be coherent from an overall perspective, it is important to note that, as in
human organizations, an agent only needs to be aware of its local portion of the structure: what it is supposed to be doing
(and how to decide what to do when it has choices), who to send what kinds of information to, who to accept what kinds
of information from and how strongly to react to that information, etc. For practical purposes, therefore, organizational
structures are usually implemented in terms of stored pattern-response rules: when a partial result that matches the
pattern is generated/received, then the response actions are taken (to transmit the partial result to a particular agent, or to
act on it locally, or to decrement its importance, etc.). Note that a single partial result could trigger multiple actions.

Finally, we have briefly mentioned that an organizational structure call be founded upon the problem decomposition
structure, such as for the DSNE problem where agents would be made aware of which other agents are responsible for
neighboring areas so that partial results that matched the overlapping regions of interest would be shared. The design of
organizational structures for multi- agent systems, however, is generally a complex search problem in its own right. The
search can be conducted in a bottom-up distributed manner, where boundaries between the roles of agents can be
determined as the problem instance is initialized [5] or as problem solving progresses [19, 35], where adjustments to the
structure can be based on reacting to performance inefficiencies of the current structure. In some cases, the
organizational structure can be equated to a priority order for a distributed constraint satisfaction problem, and the agents
are trying to discover an effective ordering to converge on a solution efficiently (see Chapter 4).

Alternatively, organizational structuring can be viewed as a top-down design problem, where the space of alternative
designs can be selectively explored and candidate designs can be evaluated prior to their implementation [3, 34, 40]. The
use of computational techniques to study, and prescribe, organizational structures is covered in Chapter 7.

Page 137
3.4.5 Communication Strategies

Organization structures, or similar knowledge, can provide static guidelines about who is generally interested in what
results. But this ignores timing issues. When deciding whether to send a result, an agent really wants to know whether
the potential recipient is likely to be interested in the result now (or soon). Sending a result that is potentially useful but
that turns out to not be at best clutters up the memory of the recipient, and at worst can distract the recipient away from
the useful work that it otherwise would have done. On the other hand, refraining from sending a result for fear of these
negative consequences can lead to delays in the pursuit of worthwhile results and even to the failure of the system to
converge on reasonable solutions at all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths are short, then the communication strategy can
simply be to send all partial results. On the other hand, when it is likely that an exchange of a partial result will lead a
subset of agents into redundant exploration of a part of the solution space, it is better to refrain, and only send a partial
result when the agent that generated it has completed everything that it can do with it locally. For example, in a
distributed theorem-proving problem, an agent might work forward through a number of resolutions toward the sentence
to prove, and might transmit the final resolvent that it has formed when it could progress no further.

Between the extremes of sending everything and sending only locally complete results are a variety of gradations [7],
including sending a small partial result early on (to potentially spur the recipient into pursuing useful related results
earlier). For example, in the DVM problem, agents in neighboring regions need to agree when they map vehicles from
one region to the other. Rather than waiting until it forms its own local map before telling its neighbor, an agent can send
a preliminary piece of its map near the boundary early on, to stimulate its neighbor into forming a complementary map
(or determining that no such map is possible and that the first agent is working down a worthless interpretation path).

So far, we have concentrated on how agents decide when and with whom to voluntarily share results. But the decision
could clearly be reversed: agents could only send results when requested. Just like the choice between announcing tasks
versus announcing availability in the Contract Net depends on which is more scarce, the same holds true in result
sharing. When the space of possible interesting results is large compared to the actual results that are generated, then
communicating results makes sense. But when the space of results formed is large and only few are really needed by
others, then sending requests (or more generally, goals) to others makes more sense. This strategy has been explored in
the DVM problem [3], as well as in distributed theorem proving [15, 31]. For example, in DARES [31], when a theorem
proving agent would fail to make progress, it would request to import clauses from other such agents, where the set of
desired literals would be heuristically chosen (Figure 3.5).

Page 138

compute
saturation
level
yes

° new clauses? import knowledge

Figure 3.5
DARES agent control flow.

It is also important to consider the delays in iterative exchange compared to a blind inundation of information. A request
followed by a reply incurs two communication delays, compared to the voluntary sharing of an unrequested result. But
sharing too many unrequested results can introduce substantial overhead. Clearly, there is a tradeoff between reducing
information exchanged by iterative messaging versus reducing delay in having the needed information reach its
destination by sending many messages at the same time. Sen, for example, has looked at this in the context of distributed
meeting scheduling [38]. Our experience as human meeting schedulers tells us that finding a meeting time could involve
a series of proposals of specific times until one is acceptable, or it could involve having the participants send all of their
available times at the outset. Most typically, however, practical considerations leave us somewhere between these
extremes, sending several options at each iteration.

Finally, the communication strategies outlined have assumed that messages are assured of getting through. If messages
get lost, then results (or requests for results) will not get through. But since agents do not necessarily expect messages
from each other, a potential recipient will be unable to determine whether or not messages have been lost. One solution
to this is to require that messages be acknowledged, and that an agent sending a message will periodically repeat the
message (sometimes called "murmuring™) until it gets an acknowledgment [29]. Or, a less obtrusive but more uncertain
method is for the sending agent to predict how the message will affect the recipient, and to assume the message made it
through when the predicted change of behavior is observed (see discussion of plan recognition in Subsection 7.4).

3.4.6 Task Structures

Up to this point, we have made intuitive appeals to why agents might need to communicate results. The TAEMS work of
Decker and Lesser has investigated this question much more concretely [6]. In their model, an agent's local problem
solving

Page 139

can have non-local effects on the activity of other agents. Perhaps it is supplying a result that another agent must have to
enable its problem-solving tasks. Or the result might facilitate the activities of the recipient, allowing it to generate better
results and/or generate results faster. The opposites of these (inhibit and hinder, respectively) are among the other
possible relationships.

By representing the problem decomposition structure explicitly, and capturing within it these kinds of task relationships,
we can employ a variety of coordination mechanisms. For example, an agent that provides an enabling result to another
can use the task structure representation to detect this relationship, and can then bias its processing to provide this result
earlier. In fact, it can use models of task quality versus time curves to make commitments to the recipient as to when it
will generate a result with sufficiently high quality. In situations where there are complex networks of non-local task
interrelationships, decisions of this kind of course get more difficult. Ultimately, relatively static organizational
structures, relationships, and communication strategies can only go so far. Going farther means that the problem-solving
agents need to analyze their current situation and construct plans for how they should interact to solve their problems.

3.5 Distributed Planning

In many respects, distributed planning call be thought of simply as a specialization of distributed problem solving, where
the problem being solved is to design a plan. But because of the particular features of planning problems, it is generally
useful to consider techniques that are particularly suited to planning.

Distributed planning is something of an ambiguous term, because it is unclear exactly what is "distributed.” It could be
that the operative issue is that, as a consequence of planning, a plan is formulated that can be distributed among a variety
of execution systems. Alternatively, the operative issue could be that the planning process should be distributed, whether
or not the resulting plan(s) can be. Or perhaps both issues are of interest. In this section, we consider both distributed
plans and distributed plan formation as options; we of course skip over the case where neither holds (since that is
traditional centralized planning) and consider where one or both of these distributions exists.

3.5.1 Centralized Planning for Distributed Plans

Plans that axe to be executed in a distributed fashion can nonetheless be formulated in a centralized manner. For
example, a partial order planner can generate plans where there need not be a strict ordering between some actions, and
in fact where those-actions can be executed in parallel. A centralized coordinator agent with such a plan can break it into
separate threads, possibly with some synchronization

Page 140

actions. These separate plan pieces can be passed (using task-passing technology) to agents that can execute them. If
followed suitably, and under assumptions of correctness of knowledge and predictability of the world, the agents
operating in parallel achieve a state of the world consistent with the goals of the plan.

Let us consider this process more algorithmically. It involves:

1. Given a goal description, a set of operators, and an initial state description, generate a partial order plan. When
possible, bias the search to find a plan in which the steps have few ordering constraints among them.

2. Decompose the plan into subplans such that ordering relationships between steps tend to be concentrated within
subplans and minimized across subplans. [26].

3. Insert synchronization (typically, communication) actions into subplans.

4. Allocate subplans to agents using task-passing mechanisms. If failure, return to previous steps (decompose differently,
or generate a different partial order plan, ...). If success, insert remaining bindings into subplans (such as binding names
of agents to send synchronization messages to).

5. Initiate plan execution, and optionally monitor progress (synthesize feedback from agents to ensure complete
execution, for example).

Notice that this algorithm is just a specialization of the decompose-allocate-execute-synthesize algorithm used in task
passing. The specific issues of decomposition and allocation that are involved in planning give it a special flavor.
Essentially, the objective is to find, of all the possible plans that accomplish the goal, the plan that can be decomposed
and distributed most effectively. But since the availability of agents for the subplans is not easy to determine without
first having devised the subplans, it is not certain that the most decomposable and distributable plan can be allocated in
any current context.

Moreover, the communication infrastructure can have a big impact on the degree to which plans should be decomposed
and distributed. As an extreme, if the distributed plans require synchronization and if the communication channels are
slow or undependable, then it might be better to form a more efficient centralized plan. The monetary and/or time costs
of distributing and synchronizing plans should thus be taken into account. In practical terms, what this usually means is
that there is some minimal subplan size smaller than which it does not make sense to decompose a plan. In loosely-
coupled networks, this leads to systems with fewer agents each accomplishing larger tasks, while in tightly-connected (or
even shared-memory) systems the degree of decomposition and parallelism can be increased.

3.5.2 Distributed Planning for Centralized Plans

Formulating a complex plan might require collaboration among a variety of cooperative planning specialists, just like
generating the solution to any complex

Page 141

problem would. Thus, for complex planning in fields such as manufacturing and logistics, the process of planning could
well be distributed among numerous agents, each of which contributes pieces to the plan, until an overarching plan is
created.

Parallels to task-sharing and result-sharing problem solving are appropriate in this context. The overall problem-
formulation task can be thought of as being decomposed and distributed among various planning specialists, each of
which might then proceed to generate its portion of the plan. For some types of problems, the interactions among the
planning specialists might be through the exchange of a partially-specified plan. For example, this model has been used
in the manufacturing domain, where a general-purpose planner has been coupled with specialist planners for geometric
reasoning and fixturing [21]. In this application, the geometric specialist considers the shape of a part to be machined,
and generates an abstract plan as an ordering over the geometric features to put into the part. The general-purpose
planner then uses these ordering constraints to plan machining operations, and the augmented plan is passed on to the
fixture specialist, which ensures that the operations can be carried out in order (that the part can be held for each
operation, given that as each operation is done the shape of the part can become increasingly irregular). If any of these
planners cannot perform its planning subtask with the partially- constructed plan, they call backtrack and try other
choices (See Chapter 4 on DCSPs). Similar techniques have been used for planning in domains such as mission planning
for unmanned vehicles [7] and for logistics planning [46].

The more asynchronous activity on the part of planning problem-solvers that is characteristic of most distributed
problem-solving systems can also be achieved through the use of result sharing. Rather than pass around a single plan
that is elaborated and passed on (or discovered to be a deadend and passed back), a result-sharing approach would have
each of the planning agents generate a partial plan in parallel and then share and merge these to converge on a complete
plan in a negotiated search mode. For example, in the domain of communication networks, localized agents can
tentatively allocate network connections to particular circuits and share these tentative allocations with neighbors [2].
When inconsistent allocations are noticed, some agents try other allocations, and the process continues until a consistent
set of allocations have been found. In this example, result-sharing amounts to a distributed constraint satisfaction search,
with the usual concerns of completeness and termination (See Chapter 4 on DCSPs).

3.5.3 Distributed Planning for Distributed Plans

The most challenging version of distributed planning is when both the planning process and its results are intended to be
distributed. In this case, it might be unnecessary to ever have a multi-agent plan represented in its entirety anywhere in
the system, and yet the distributed pieces of the plan should be compatible, which at a minimum means that. the agents
should not conflict with each other

Page 142

when executing the plans, and preferably should help each other achieve their plans when it would be rational to do so
(e.g. when a helping agent is no worse off for its efforts).

The literature on this kind of distributed planning is relatively rich and varied. In this chapter, we will hit a few of the
mealy possible techniques that can be useful.

Plan Merging

We begin by considering the problem of having multiple agents formulate plans for themselves as individuals, and then
having to ensure that their separate plans can be executed without conflict. Assume that the assignment of goals to agents
has been done, either through task-sharing techniques, or because of the inherent distributivity of the application domain
(such as in a distributed delivery (DD) task, where different agents are contacted by users to provide a delivery service).
Now the challenge is to identify and resolve potential conflicts.

We begin by considering a centralized plan coordination approach. Let us say that an agent collects together these
individual plans. It then has to analyze the plans to discover what sequences of actions might lead to conflicts, and to
modify the plans to remove the conflicts. In general, the former problem amounts to a reachability analysis - given a set
of possible initial states, and a set of action sequences that can be executed asynchronously, enumerate all possible states
of the world that can be reached. Of these, then, find the subset of worlds to avoid, and insert constraints on the
sequences to eliminate them.

In general, enumerating the reachable state space can be intractable, so strategies for keeping this search reasonable are
needed. From the planning literature, many assumptions about the limited effects of actions and minimal
interdependence between agents' goals can be used to reduce the search. We will look at one way of doing this, adapted
from Georgeff [16] next.

As is traditional, assume that the agents know the possible initial states of the world, and each agent builds a totally-
ordered plan using any planning technology. The plan is comprised of actions a, through a,, such that a, is applicable to
any of the initial states, and a; is applicable in all states that could arise after action a, ;. The state arising after a, satisfies
the agent's goal.

We represent an action as a STRIPS operator, with preconditions that must hold for the action to take place, effects that
the action has (where features of the world not mentioned in the effects are assumed unaffected), and "during™ conditions
to indicate changes to the world that occur only during the action. The STRIPS assumption simplifies the analysis for
interactions by allowing us to avoid having to search through all possible interleavings of actions; it is enough to identify
specific actions that interact with other specific actions, since the effects of any sequence is just the combined effects of
the sequence's actions.

The merging method thus proceeds as follows. Given the plans of several agents (where each is assume to be a correct
individual plan), the method begins by

Page 143

analyzing for interactions between pairs of actions to be taken by different agents. Arbitrarily, let us say we are
considering the actions a; and b; are the next to be executed by agents A and B, respectively, having arrived at this point
through the asynchronous execution of plans by A and B. Actions a; and b; can be executed in parallel if the
preconditions, during conditions, and effects of each are satisfiable at the same time as any of those conditions of the
other action. If this is the case, then the actions can commute, and are essentially independent. If this is not the case, then
it might still be possible for both actions to be taken but in a stricter order. If the situation before either action is taken,
modified by the effects of a;, can satisfy the preconditions of b;, then a; can precede b;. It is also possible for b; to precede
a;. If neither can precede the other, then the actions conflict.

From the interaction analysis, the set of unsafe situations can be identified. Clearly, it is unsafe to begin both a; and b, if
they do not commute. It is also unsafe to begin a; before b; unless a; has precedence over b;. Finally, we can propagate
these unsafe interactions to neighboring situations:

« the situation of beginning a; and b; is unsafe if either of its successor situations is unsafe;
« the situation of beginning a; and ending b; is unsafe if the situation of ending a; and ending b; is unsafe;
« the situation of ending a; and ending b is unsafe if both of its successor states are unsafe.

To keep this safety analysis tractable, actions that commute with all others can be dropped from consideration. Given a
loosely-coupled multiagent system, where agents mostly bring their own resources and capabilities to bear and thus have
few opportunities to conflict, dropping commuting actions would reduce the agents' plans to relatively short sequences.
From these simplified sequences, then, the process can find the space of unsafe interactions by considering the
(exponential) number of interleavings. And, finally, given the discovered unsafe interactions, synchronization actions
can be added to the plans to force some agents to suspend activities during regions of their plans that could conflict with
others' ongoing actions, until those others release the waiting agents.

Plan synchronization need not be accomplished strictly through communication only. Using messages as signals allows
agents to synchronize based on tile completion of events rather than reaching specific time points. But many applications
have temporal features for goals. Manufacturing systems might have deadlines for fabricating an artifact, or delivery
systems might have deadlines for dropping off objects. For these kinds of applications, where temporal predictions for
individual tasks are fundamentally important, the formulation of distributed plans can be based on scheduling activities
during fixed time intervals. Thus, in these kinds of systems, the individual planners can formulate a desired schedule of
activities assuming independence, and then plan coordination requires that the agents search for revisions to their
schedules to find non-conflicting times for their activities (which can be ac-

Page 144

complished by DCHS (see 3.4.3)). More importantly, different tasks that the agents pursue might be related in a
precedence ordering (e.g. a particular article needs to be dropped off before another one can be picked up). Satisfying
these constraints, along with deadlines and resource limitation constraints, turns the search for a workable collective
schedule into a distributed constraint satisfaction problem (see Chapter 4).

A host of approaches to dealing with more complex forms of this problem exist, but are beyond the scope of this chapter.
We give the flavor of a few of these to illustrate some of the possibilities. When there are uncertainties about the time
needs of tasks, or of the possibility of arrival of new tasks, the distributed scheduling problem requires mechanisms to
maximize expected performance and to make forecasts about future activities [30]. When there might not be feasible
schedules to satisfy all agents, issues arise about how agents should decide which plans to combine to maximize their
global performance [12]. More complex representations of reactive plans and techniques for coordinating them based on
model-checking and Petri-net-based mechanisms have also been explored [20, 27, 37].

Iterative Plan Formation

Plan merging is a powerful technique for increasing parallelism in the planning process as well as during execution. The
synchronization and scheduling algorithms outlined above can be carried out in centralized and decentralized ways,
where the flow is generally that of (1) assign goals to agents; (2) agents formulate local plans; (3) local plans are
exchanged and combined; (4) messaging and/or timing commitments are imposed to resolve negative plan interactions.
The parallels between this method of planning and the task-sharing style of distributed problem-solving should be
obvious. But just as we discovered in distributed problem solving, not all problems are like the Tower of Hanoi;
sometimes, local decisions are dependent on the decisions of others. This raises the question of the degree to which local
plans should be formulated with an eye on the coordination issues, rather than as if the agent could work alone.

One way of tempering proposed local plans based on global constraints is to require agents to search through larger
spaces of plans rather than each proposing a single specific plan. Thus, each agent might construct the set of all feasible
plans for accomplishing its own goals. The distributed planning process then consists of a search through how subsets of
agents' plans can fit together.

Ephrati and Rosenschein [11] have developed a plan combination search approach for doing this kind of search, where
the emphasis is on beginning with encompassing sets of possible plans and refining these to converge on a nearly
optimal subset. They avoid commitment to sequences of actions by specifying sets of propositions that hold as a result of
action sequences instead. The agents engage in the search by proposing, given a particular set of propositions about the
world, the changes to that set that they each can make with a single action from their

Page 145

plans. These are all considered so as to generate candidate next sets of propositions about the world, and these candidates
can be ranked using an A* heuristic (where each agent can use its plans to estimate the cost from the candidate to
completing its own goals). The best candidate is chosen and the process repeats, until no agent wants to propose any
changes (each has accomplished its goal).

Note that, depending on the more global movement of the plan, an agent will be narrowing down the plan it expects to
use to accomplish its own private goals. Thus, agents are simultaneously searching for which local plan to use as well as
for synchronization constraints on their actions (since in many cases the optimal step forward in the set of achieved
propositions might omit the possible contributions of an agent, meaning that the agent should not perform an action at
the time).

An alternative to this approach instead exploits the hierarchical structure of a plan space to perform distributed
hierarchical planning. By now, hierarchical planning is well-established in the Al literature. It has substantial
advantages (as exemplified in the Toll problem) in that some interactions can be worked out in more abstract plan
spaces, thereby pruning away large portions of the more detailed spaces. In the distributed planning literature, the
advantages of hierarchical planning were first investigated by Corkill.

Corkill's work considered a distributed version of Sacerdoti's NOAH system. He added a "decompose plan” critic that
would look for conjunctive goals to distribute. Thus, in a blocks-world problem (the infamous Sussman's Anomaly, for
instance), the initial plan refinement of (AND (ON A B) (ON B C)) leads to a plan network with two concurrent paths,
one for each of the conjuncts. The decompose-plan critic gives a copy of the plan network to a second agent, where each
of the two agents now represents the goal it is to achieve as well as a parallel node in the network that represents a model
of the other agent's plan. Then the agents proceed refine their abstract plans to successively detailed levels. As an agent
does so, it can communicate with the other one about the changes that it expects to make to the world state, so that each
can separately detect conflicts. For example, when an agent learns that the other is going to make block B not clear (it
does not know the details of how) it can determine that this will interfere with stacking B on C, and can ask the first
agent to WAIT on the action that causes that change until it has received permission to go on. This process can continue
until a synchronized set of detailed plans are formed.

A variation on the hierarchical distributed planning approach is to allow each agent to represent its local planned
behaviors at multiple levels of abstraction, any of which can suffice to resolve all conflicts. In this hierarchical
behavior-space search approach to distributed planning, the outer loop of the protocol identifies a particular level of
abstraction to work with, and whether conflicts should be resolved at this level or passed to more detailed levels. The
inner loop of the protocol conducts what can be thought of as a distributed constraint satisfaction search to resolve the
conflicts. Because the plans at various abstraction levels dictate the behaviors of agents to a particular degree, this
approach has been characterized

Page 146
. Initialize the current-abstraction-level to the most abstract level.
2. Agents exchange descriptions of the plans and goals of interest at the current level.
3. Remove plans with no potential conflicts. If the set is empty, then done; otherwise determine whether to
resolve conflicts at the current level or at a deeper level.
4. If conflicts are to be resolved at a deeper level, set the current level to the next deeper level and set the
plans/goals of interest to the refinements of the plans with potential conflicts. Go to step 2.
5. If conflicts are to be resolved at this level:
@ Agents form a total order. Top agent is the current superior.
(b) Current superior sends down its plan to the others.
(© Other agents change their plans to work properly with those of the current superior. Before
confirming with the current superior, an agent also doublechecks that its plan changes do not
conflict with previous superiors.

(d) Once no further changes are needed among the plans of the inferior agents, the current superior
becomes a previous superior and the next agent in the total order becomes the superior. Return to
step (b). If there is no next agent, then the protocol terminates and the agents have coordinated

their plans.

Algorithm 3.1 Hierarchical behavior-space search algorithm.

as search through hierarchical behavior space [9]. The algorithm is presented in Algorithm 3.1. Provided that there are
finite abstraction levels and that agents are restricted in the changes to their plans that they can make such that they
cannot get into cyclic plan generation patterns, the above protocol is assured to terminate. A challenge lies in the outer
loop, in terms of deciding whether to resolve at an abstract level or to go deeper. The advantage of resolving a conflict at
an abstract level is that it reduces the amount of search, and thus yields coordinated plans with less time and messaging.
The disadvantage is that the coordination constraints at an abstract level might impose unnecessary limits on more
detailed actions. At more detailed levels, the precise interaction problems can be recognized and resolved, while at
abstract levels more inefficient coordination solutions might work. The tradeoffs between long-term, simple, but
possibly inefficient coordination decisions versus more responsive but complex runtime coordination decisions is
invariably domain-dependent. The goal is to have mechanisms that support the broad spectrum of possibilities.

As a concrete example of this approach, consider the DD problem of two delivery robots making repeated deliveries
between two rooms as in Figure 3.6 (left side). Since R1 always delivers between the upper locations, and R2 between
the lower ones, the robots could each inform the other about where they might be into the

Page 147

Figure 3.6
An organizational solution.

indefinite future (between the locations, passing through the closest door). Their long-term delivery behaviors potentially
conflict over that door, so the robots can choose either to search in greater detail around the door, or to eliminate the
conflict at the abstract behavior level. The latter leads to a strategy for coordinating that statically assigns the doors. This
leads to the permanent allocation of spatial regions shown in Figure 3.6 (right side), where R2 is always running around
the long way. This "organizational” solution avoids any need for further coordination, but it can be inefficient, especially
when R1 is not using its door, since R2 is still taking the long route. If they choose to examine their behaviors in more
detail, they can find other solutions. If they consider a particular delivery, for example, R1 and R2 might consider their
time/space needs, and identify that pushing their activities apart in space or time would suffice (Figure 3.7, top). With
temporal resolution, R2 waits until R1 is done before beginning to move through the central door. Or the robots could
use information from this more abstract level to further focus communication on exchanging more detailed information
about the trouble spots. They could resolve the potential conflict at an intermediate level of abstraction; temporal
resolution has R2 begin once R1 has cleared the door (Figure 3.7, middle). Or they could communicate more details
(Figure 3.7, bottom), where now R2 moves at the same time as R1, and stops just before the door to let R1 pass through
first. Clearly, this last instance of coordination is crispest, but it is also the most expensive to arrive at and the least
tolerant of failure, since the robots have less distance between them in general, so less room to avoid collisions if they
deviate from planned paths.

Of course, there axe even more strategies for coordination even in a simple domain such as the distributed delivery task.
One interesting strategy is for the robots to move up a level to see their tasks as part of a single, team task. By doing so,
they can recognize alternative decompositions. For example, rather than decompose by

Page 148

L Resolve by
space

t -
Resolve by -
r / tirmie

Communlcate
maore details

Resolve by

jaj/

i

Resolve by
) I_ tirmne
Communicate

maore delails

Figure 3.7
Alternative levels of abstraction.

items to deliver, they could decompose by spatial areas, leading to a solution where one robot picks up items at the
source locations and drops them off at the doorway, and the other picks up at the doorway and delivers to the final
destinations. By seeing themselves as part of one team, the agents can coordinate to their mutual benefit (they can

cooperate) by searching through an enlarged behavior space.

Page 149
Negotiation in Distributed Planning

In the above, we considered how agents can determine that conflicts exist between their plans and how to impose
constraints on (usually when they take) their actions to avoid conflict. Sometimes, determining which agent should wait
for another is fairly random and arbitrary. Exceptions, however, exist. A large amount of work in negotiation (see
Chapter 2) is concerned with these issues, so we only touch on them briefly here.

Sometimes the selection of the agent that should revise its local plans is based on models of the possibilities open to the
agents. For example, Steeb and Cammarata, in the air-traffic control domain, were concerned with which of the various
aircraft should alter direction to decrease potentially dangerous congestion. Their agents exchanged descriptions
indicating their flexibility, and the agent that had the most other options was asked to change its plan, in an early
distributed Al application of the least-constrained agent heuristic (see Subsection 3.4.3 and Chapter 4 on DCSPs).

Of course, these and other negotiation mechanisms for resolving goals presume that agents are honest about the
importance of their goals and their options for how to achieve them. Issues of how to encourage self-interested agents to
be honest are covered elsewhere in this book (see Chapter 5). However, clearly agents have self-interest in looking for
opportunities to work to their mutual benefit by accomplishing goals that each other need. However, although the space
of possible conflicts between agents is large, the space of possible cooperative activities can be even larger, and
introduces a variety of utility assessments. That is, while it can be argued that agents that have conflicts always should
resolve them (since the system might collapse if conflicts are manifested), the case for potential cooperative actions is
not so strong. Usually, cooperation is "better,” but the degree to which agents benefit might not outweigh the efforts they
expend in finding cooperative opportunities. Thus, work on distributed planning that focuses on planning for mutually
beneficial actions even though they were not strictly necessary has been limited to several forays into studies within well-
defined boundaries. For example, partial global planning (see Subsection 3.7.3) emphasized a search for generating
partial solutions near partial solution boundaries with other agents, so as to provide them with useful focusing
information early on (see Subsection 3.4.5 on communication strategies). The work of von Martial [32] concentrated on
strategies that agents can use to exploit "favor relations” among their goals, such as accomplishing a goal for another
agent while pursuing its own goal.

3.6 Distributed Plan Representations

Distributed problem solving, encompassing distributed planning, generally relies heavily on agents being able to
communicate about tasks, solutions, goals, plans, and so on. Of course, much work has gone into low-level networking
protocols for

Page 150

interprocess communication in computer science generally, which forms the foundation upon which the particular
communication mechanisms for multiagent systems build. At a much higher level, general-purpose protocols for agent
interaction have been developed over the years, ranging from the Contract Net protocol which we have already seen to a
broader variety of languages based on speech acts, such as KQML and agent-oriented programming (see Chapter 2).
With speech-act-based languages, sending a message can be seen as invoking a behavior at the recipient. For example,
sending a message of the type "query" might be expected to evoke in the recipient a good-faith effort to generate an
answer followed by sending a message of the type "response™ back to the sender.

This is all well and good, but what should the query itself look like? And the response? Different kinds of information
might be asked about, and talked about, very differently. For this reason, a high-level speech-act-based language usually
leaves the definition of the "content™ of a message up to the designer. For any application domain, therefore, one or more
relevant content languages need to be defined such that agents can understand not only the intent behind a message, but
also the content of the message. In general, the definition of content languages is difficult and open-ended. By restricting
our considerations to distributed planning, however, there is some hope in developing characteristics of a sharable
planning language.

A planning content language needs to satisfy all of the constituencies that would use the plan. If we think of a plan as
being comprised of a variety of fields (different kinds of related information), then different combinations of agents will
need to access and modify different combinations of fields. In exchanging a plan, the agents need to be able to find the
information they need so as to take the actions that they are expected to take in interpreting, modifying, or executing the
plan. They also need to know how to change the plan in ways that will be interpreted correctly by other agents and lead
to desirable effects.

To date, there are few standards for specifying plans for computer-based agents. Some conventions certainly exist (such
as the "STRIPS operator" format [14]), but these are usually useful only within a narrow context. In most distributed
planning systems, it is assumed that the agents use identical representations and are built to interpret them in the same
ways.

One effort for formulating a more general description of a plan has been undertaken by SRI, in the development of their
Cypress system [46]. In a nutshell, Cypress combined existing systems for plan generation and for plan execution. These
existing systems were initially written to be stand-alone; Cypress needed to define a language that the two systems could
use to exchange plans, despite the fact that what each system did with plans was very different. In their formalism, an
ACT is composed of the following fields:

* Name - a unique label

* Cue - goals which the ACT is capable of achieving

Page 151
* Precondition - features of the world state that need to hold for the ACT to be applicable
* Setting - world-state features that are bound to ACT variables
* Resources - resources required by the ACT during execution
* Properties - other properties associated with the ACT
» Comment - documentation information
* Plot - specification of the procedure (partially-ordered sequences of goals/actions) to be executed
Of course, each of these fields in turn needs a content language that can be understood by the relevant agents.

Other efforts have sought planning languages grounded in temporal logics and operational formalisms such as Petri Nets
and Graphcet [20, 27, 37]. By appealing to a representation with a well-understood operational interpretation, the
planning agents are freed from having to use identical internal representations so long as their interpretations are
consistent with the operational semantics.

3.7 Distributed Planning and Execution

Of course, distributed planning does not occur in a vacuum. The product of distributed planning needs to be executed.
The relationships between planning and execution are an important topic in Al in general, and the added complexity of
coordinating plans only compounds the challenges. In this section, we consider strategies for combining coordination,
planning, and execution.

3.7.1 Post-Planning Coordination

The distributed planning approach based on plan merging essentially sequentialized the processes in terms of allowing
agents to plan, then coordinating the plans, and then executing them. This is reasonable approach given that the agents
individually build plans that are likely to be able to be coordinated, and that the coordinated result is likely to executed
successfully. If, during execution, one (or more) plans for agents fail to progress as expected, the coordinated plan set is
in danger of failing as a whole.

As in classical planning systems, there are several routes of recourse to this problem. One is contingency planning.
Each agent formulates not only its expected plan, but also alternative (branches of) plans to respond to possible
contingencies that can arise at execution time. These larger plans, with their conditional branches, can then be merged
and coordinated. The coordination process of course is more complicated because of the need to consider the various
combinations of plan execution threads that could be pursued. By annotating the

Page 152

plan choices with the conditions, a more sophisticated coordination process can ignore combinations of conditional plans
whose conditions cannot be satisfied in the same run.

A second means of dealing with dynamics is through monitoring and replanning: Each agent monitors its plan execution,
and if there is a deviation it stops all agents' progress, and the plan-coordinate-execute cycle is repeated. Obviously, if
this happens frequently, a substantial expenditure of effort for planning and coordination can result. Sometimes,
strategies such as repairing the previous plans, or accessing a library of reusable plans [42] can reduce the effort to make
it managable.

Significant overhead can of course be saved if a plan deviation can be addressed locally rather than having to require
coordination. For example, rather than coordinating sequences of actions, the agents might coordinate their plans at an
abstract level. Then, during execution, an agent can replan details without requiring coordination with others so long as
its plan revision fits within the coordinated abstract plan. This approach has been taken in the team plan execution work
of Kinney and colleagues, for example [22]. The perceptive reader will also recognize in this approach the flavor of
organizational structuring and distributed planning in a hierarchical behavior space: so long as it remains within the
scope of its roles and responsibilities, an agent can individually decide what is the best way of accomplishing its goals.
By moving to coordinate at the most abstract plan level, the process essentially reverses from post-planning to pre-
planning coordination.

3.7.2 Pre-Planning Coordination

Before an agent begins planning at all, can coordination be done to ensure that, whatever it plans to do, the agent will be
coordinated with others? The answer is of course yes, assuming that the coordination restrictions are acceptable. This
was the answer in organizational structuring in distributed problem solving, where an agent could choose to work on any
part of the problem so long as it. fit within its range of responsibilities.

A variation on this theme is captured in the work on social laws [39]. A social law is a prohibition against particular
choices of actions in particular contexts. For example, entering an intersection on a red light is prohibited, as might be
not entering the intersection on a green light. These laws call be derived by working from undesirable states of the world
backwards to find combinations of actions that lead to those states, and then imposing restrictions on actions so that the
combinations cannot arise. A challenge is to find restrictions that prevent undesirable states without handcuffing agents
from achieving states that are acceptable and desirable. When overly constrictive, relaxations of social laws can be made

[1].

Alternatively, in domains where conflict avoidance is not a key consideration, it is still possible that agents might
mutually benefit if they each prefer to take actions that benefit society as a whole, even if not directly relevant to the
agent's goal. For

Page 153

example, in a Distributed Delivery application, it could be that a delivery agent is passing by a location where an object
is awaiting pickup by a different agent. The agent passing by could potentially pick up the object and deliver it itself, or
deliver it to a location along its route that will be a more convenient pickup point for the other agent. For example, the
delivery agents might pass through a "hub" location. The bias toward doing such favors for other agents could be
encoded into cooperative state-changing rules [17] that require agents to take such cooperative actions even to their
individual detriment, as long as they axe not detrimental beyond some threshold.

3.7.3 Interleaved Planning, Coordination, and Execution

More generally, between approaches that assume agents have detailed plans to coordinate and approaches that assume
general-purpose coordination policies can apply to all planning situations, lies work that is more flexible about at what
point between the most abstract and most detailed plan representations different kinds of coordination should be done.
Perhaps the search for the proper level is conducted through a hierarchical protocol, or perhaps it is predefined. In either
case, planning and coordination are interleaved with each other, and often with execution as well.

Let us consider a particular example of an approach that assumes that planning and coordination decisions must be
continually revisited and revised. The approach we focus on is called Partial Global Planning [8].

Task Decomposition - Partial Global Planning starts with the premise that tasks axe inherently decomposed - or at least
that they could be. Therefore, unlike planning techniques that assume that the overall task to be planned for is known by
one agent, which then decomposes the task into subtasks, which themselves might be decomposed, and so on, partial
global planning assumes that an agent with a task to plan for might be unaware at the outset as to what tasks (if any)
other agents might be planning for, and how (and whether) those tasks might be related to its own as in the DVM task. A
fundamental assumption in Partial Global Planning is that no individual agent might be aware of the global task or state,
and the purpose of coordination is to allow agents to develop sufficient awareness to accomplish their tasks nonetheless.

Local Plan Formulation - Before an agent can coordinate with others using Partial Global Planning, it must first develop
an understanding of what goals it is trying to achieve and what actions it is likely to take to achieve them. Hence, purely
reactive agents, which cannot explicitly represent goals that they are trying to achieve and actions to achieve them,
cannot gainfully employ Partial Global Planning (or, for that matter, distributed planning at all). Moreover, since most
agents will be concurrently concerned with multiple goals (or at least will be able to identify several achievable
outcomes that satisfy a desired goal), local plans will most often be uncertain, involving branches of alternative actions
depending on the results of

Page 154
previous actions and changes in the environmental context in carrying out the plan.

Local Plan Abstraction - While it is important for an agent to identify alternative courses of action for achieving the
same goal in an unpredictable world, the details of the alternatives might be unnecessary as far as the agent's ability to
coordinate with others. That is, an agent might have to commit to activities at one level of detail (to supply a result by a
particular time) without committing to activities at more detailed levels (specifying how the result will be constructed
over time). Abstraction plays a key role in coordination, since coordination that is both correct and computationally
efficient requires that agents have models of themselves and others that are only detailed enough to gainfully enhance
collective performance. In Partial Global Planning, for example, agents are designed to identify their major plan steps
that could be of interest to other agents.

Communication - Since coordination through Partial Global Planning requires agents to identify how they could and
should work together, they must somehow communicate about their abstract local plans so as to build models of joint
activity. In Partial Global Planning, the knowledge to guide this communication is contained in the Meta-Level
Organization (MLO). The MLO specifies information and control flows among the agents: Who needs to know the
plans of a particular agent, and who has authority to impose new plans on an agent based on having a more global view.
The declarative MLO provides a flexible means for controlling the process of coordination.

Partial Global Goal Identification - Due to the inherent decomposition of tasks among agents, the exchange of local
plans (and their associated goals) gives agents an opportunity to identify when the goals of one or more agents could be
considered subgoals of a single global goal. Because, at any given time, only portions of the global goal might be known
to the agents, it is called a partial global goal. Construction of partial global goals is, in fact, an interpretation problem,
with a set of operators that attempts to generate an overall interpretation (global goal) that explains the component data
(local goals). The kinds of knowledge needed are abstractions of the knowledge needed to synthesize results of the
distributed tasks. And, just as interpretations can be ambiguous, so too is it possible that a local goal can be seen as
contributing to competing partial global goals.

Partial Global Plan Construction and Modification - Local plans that can be seen as contributing to a single partial
global goal can be integrated into a partial global plan, which captures the planned concurrent activities (at the abstract
plan step level) of the individuals. By analyzing these activities, an agent that has constructed the partial global plan can
identify opportunities for improved coordination. In particular, the coordination relationships emphasized in PGP are
those of facilitating task achievement of others by performing related tasks earlier, and of avoiding redundant task
achievement. PGP uses a simple hill-climbing algorithm, coupled with an evaluation function on ordered actions, to
search for an improved (although not necessarily optimal) set of concurrent actions for the

Page 155

. For the current ordering, rate the individual actions and sum the ratings.
2. For each action, examine the later actions for the same agent and find the most highly-rated

one. If it is higher rated, then swap the actions.
3. If the new ordering is more highly rated than the current one, then replace the current

ordering with the new one and go to step 2.
4. Return the current ordering.
Algorithm 3.2 The algorithm for PGP plan step reordering.

. Initialize the set of partial task results to integrate.
2. While the set contains more than one element:
@) For each pair of elements: find the earliest time and agent at which they can be
combined.
(b) For the pair that can be combined earliest: add a new element to the set of partial
results for the combination and remove the two elements that were combined.
3. Return the single element in the set.
Algorithm 3.3 The algorithm for planning communication actions.

partial global plan (see Algorithm 3.2). The evaluation function sums evaluations of each action, where the evaluation of
an action is based on features such as whether the task is unlikely to have been accomplished already by another agent,
how long it is expected to take, and on how useful its results will be to others in performing their tasks.

Communication Planning - After reordering the major local plan steps of the participating agents so as to yield a more
coordinated plan, an agent must next consider what interactions should take place between agents. In PGP, interactions,
in the form of communicating the results of tasks, are also planned. By examining the partial global plan, an agent can
determine when a task will be completed by one agent that could be of interest to another agent, and can explicitly plan
the communication action to transmit the result. If results need to be synthesized, an agent using PGP will construct a
tree of exchanges such that, at the root of the tree, partially synthesized results will be at the same agent which can then
construct the complete result (see Algorithm 3.3).

Acting on Partial Global Plans - Once a partial global plan has been constructed and the concurrent local and
communicative actions have been ordered, the collective activities of the agents have been planned. What remains is for
these activities to be translated back to the local level so that they can be carried out. In PGP, an agent responds to a
change in its partial global plans by modifying the abstract representation of its local plans accordingly. In turn, this
modified representation

Page 156

is used by an agent when choosing its next local action, and thus the choice of local actions is guided by the abstract
local plan, which in turn represents the local component of the planned collective activity.

Ongoing Modification - As agents pursue their plans, their actions or events in the environment might lead to changes in
tasks or in choices of actions to accomplish tasks. Sometimes, these changes are so minor that they leave the abstract
local plans used for coordination unchanged. At other times, they do cause changes. A challenge in coordination is
deciding when the changes in local plans are significant enough to warrant communication and recoordination. The
danger in being too sensitive to changes is that an agent that informs others of minor changes can cause a chain reaction
of minor changes, where the slight improvement in coordination is more than offset by the effort spent in getting it. On
the other hand, being too insensitive can lead to very poor performance, as agents' local activities do not mesh well
because each is expecting the other to act according to the partial global plan, which is not being followed very closely
anymore. In PGP, a system designer has the ability to specify parametrically the threshold that defines significant
temporal deviation from planned activity.

Task Reallocation - In some circumstances, the exogenous task decomposition and allocation might leave agents with
disproportionate task loads. Through PGP, agents that exchange abstract models of their activities will be able to detect
whether they are overburdened, and candidate agents that are underburdened. By generating and proposing partial global
plans that represent others taking over some of its tasks, an agent essentially suggests a contracting relationship among
the agents. A recipient has an option of counter proposing by returning a modified partial global plan, and the agents
could engage in protracted negotiations. If successful, however, the negotiations will lead to task reallocation among the
agents, allowing PGP to be useful even in situations where tasks are quite centralized.

Summary - PGP fills a distributed planning niche, being particularly suited to applications where some uncoordinated
activity can be tolerated and overcome, since the agents are individually revisiting and revising their plans midstream,
such that the system as a whole might at times (or even through the whole task episode) never settle down into a stable
collection of local plans. PGP focuses on dynamically revising plans in cost-effective ways given an uncertain world,
rather than on optimizing plans for static and predictable environments. It works well for many tasks, but could be
inappropriate for domains such as air-traffic control where guarantees about coordination must be made prior to any
execution.

3.7.4 Runtime Plan Coordination Without Communication

While tailored for dynamic domains, PGP still assumes that agents can and will exchange planning information over
time to coordinate their actions. In some applications, however, runtime recoordination needs to be done when agents
cannot or should not communicate. We briefly touch on plan coordination mechanisms for such circumstances.

Page 157

One way of coordinated without explicit communication is to allow agents to infer each others plans based on
observations. The plan recognition literature focuses on how observed actions can lead to hypotheses about the plans
being executed by others. While generally more uncertain than coordination using explicit communication, observation-
based plan coordination can still achieve high-quality results and, under some circumstances can outperform
communication-based distributed planning [18].

Another way of coordinating without explicit communication is to allow agents to make inferences about the choices
others are likely to make based on assumptions about their rationality [36] or about how they view the world. For
example, if Distributed Delivery agents are going to hand off objects to each other, they might infer that some locations
(such as a hub) are more likely to be mutually recognized as good choices. Such solutions to choice problems have been
referred to as focal points [13].

3.8 Conclusions

Distributed planning has a variety of reasonably well-studied tools and techniques in its repertoire. One of the important
challenges to the field is in characterizing these tools and undertanding where and when to apply each. To some extent,
the lack of specificity in the term "distributed planning™ in terms of whether the process or the product or both of
planning is distributed has hampered communication within the field, but more fundamental issues of articulating the
foundational assumptions behind different approaches still need to be addressed. Until many of the assumed context and
semantics for plans are unveiled, the goal of having heterogeneous plan generation and plan execution agents work
together is likely to remain elusive.

The field of distributed problem solving is even more wide open, because the characterization of a "problem” is that
much broader. As we have tried to emphasize, distributed plan formation and, in many cases, execution can be thought
of as distributed problem solving tasks. Representations and general-purpose strategies for distributed problem solving
are thus even more elusive. In this chapter we have characterized basic classes of strategies such as task- sharing and
result-sharing. Ultimately, the purpose of any strategy is to share the right information about tasks, capabilities,
availabilities, partial results, or whatever so that each agent is doing the best thing that it can for the group at any given
time. Of course, exchanging and using the information that renders such choices can itself be costly, and opens the door
to misinterpretation that makes matters worse rather than better. All of these considerations factor into the definition and
implementation of a distributed problem strategy, but formulating such a strategy still has more "art" to it than we like to
see in an engineering discipline.

Page 158

Acknowledgements: The effort of compiling (and in some cases developing) the ideas in this chapter was supported, in
part, by the NSF under PY1 award 91-58473, and by DARPA under contract N66001-93-D-0058. | would like to thank
my colleagues and my current and former graduate students, who have contributed the partial solutions assembled here.

3.9 Exercises

1. [Level 1] The Toll time complexity analysis that reduces the complexity to logarithmic time assumed that the number
of levels was a function of the problem size. More realistically, an organization would be developed for a variety of
problems, rather than on a case-by-case basis. Assume the number of levels is fixed (and so the ratio between hierarchy
levels will vary with the problem size). Now what is the expected time complexity for the Toll in a distributed problem-
solving scenario. What does this answer tell you?

2. [Level 1] Consider Contract Net without focused addressing (that is, announcements are broadcast).

(a) Name a real-life example where task announcment makes much more sense than availability announcement. Justify
why.

(b) Now name a real-life example where availability announcement makes much more sense. Justify why.

(c) Let's say that you are going to build a mechanism that oversees a distributed problem-solving system, and can
"switch" it to either a task or availability announcement mode.

i. Assuming communication costs are negligible, what criteria would you use to switch between modes? Be specific
about what you would test.

ii. If communication costs are high, now what criteria would you use? Be specific about what you would test.

3. [Level 2/3] We noted that task announcing can be tricky: If a manager is too fussy about eligibility, it might get no
bids, but if it is too open it might have to process too many bids, including those from inferior contractors. Let us say that
the manager has n levels of eligibility specifications from which it needs to choose one. Describe how it would make this
choice based on a decision-theoretic formulation. How would this formulation change if it needed to consider
competition for contractors from other managers?

4. [Level 2] A folk theorem in the organization literature is that, in human organizations, task decompositions invariably
lead to clear assignments of subtasks to members of the organization. Give an example of where decomposition with-

Page 159

out look-ahead to available contractors can be detrimental. Give an example where biasing decomposition based on
available contractors can instead be detrimental. Finally, give an algorithm for alternating between decomposition and
assignment to incrementally formulate a distributed problem-solving system. Is your algorithm assured of yielding an
optimal result? Is it complete?

5. [Level 1] Consider the pursuit task, with four predators attempting to surround and capture a prey. Define an
organizational structure for the predators. What are the roles and responsibilities of each? How does the structure
indicate the kinds of communication patterns (if any) that will lead to success?

6. [Level 2] In the problem of distributed meeting scheduling, let us say that the chances that a specific meeting time
proposal will be accepted is p.

(@) If each iteration of the scheduling protocol has an agent propose a specific time to the others, what is the probability
that the meeting will be scheduled in exactly | iterations? What is the expected number of iterations to schedule the
meeting?

(b) If each iteration instead proposes N specific times, now what is the probability that the meeting will be scheduled in
exactly I iterations? What is the expected number of iterations to schedule the meeting? What happens when N
approaches 1? How about when N grows very large?

(c) Based on the above, how would you choose a value for N to use in a distributed meeting scheduling system? What
other considerations might need to be taken into account besides a desire to keep the number of iterations low?

7. [Level 2] Consider the following simple instance of the distributed delivery task. Robot A is at position a and robot B
is at position (3. Article X is at position & and needs to go to position s, and article Y is at position) and needs to go to
¢. Positions a, B, &, g, and C are all different.

(a) Define in STRIPS notation, suitable for Partial Order Planning, simple operators Pickup, Dropoff, PickDrop, and
Return, where Pickup moves the robot from its current position to a Pickup position where it then has the article
associated with that position; Dropoff moves a robot and an article it holds to a dropoff position where it no longer has
the article; PickDrop combines the two (it drops off its article and picks up another associated with that position); and
Return moves a robot back to its original position.

(b) Using these operators, generate the partial order plan with the shortest sequence of plan steps to accomplish the
deliveries. Decompose and distribute this plan to the robots for parallel execution, inserting any needed synchronization
actions. How does the use of multiple robots affect the plan execution?

(c) Using the operators, generate the partial order plan that, when distributed, will accomplish the deliveries as quickly as
possible. Is this the

Page 160

same plan as in the previous part of this problem? Why or why not?

8. [Level 2] Given the problem of question 7, include in the operator descriptions conditions that disallow robots to be at
the same position at the same time (for example, a robot cannot do a pickup in a location where another is doing a
dropoff). Assuming each robot was given the task of delivering a different one of the articles, generate the individual
plans and then use the plan merging algorithm to formulate the synchronized plans, including any synchronization
actions into the plans. Show your work.

9. [Level 2] Consider the problem of question 7. Assume that delivery plans can be decomposed into 3 subplans (pickup,
dropoff, and return), and that each of these subplans can further be decomposed into individual plan steps. Furthermore,
assume that robots should not occupy the same location at the same time not just at dropoff/pickup points, but
throughout their travels. Use the hierarchical protocol to resolve potential conflicts between the robots plans, given a few
different layouts of the coordinates for the various positions (that is, where path-crossing is maximized and minimized).
What kinds of coordinated plans arise depending on what level of the hierarchy the plans' conflicts are resolved through
synchronization?

10. [Level 2] Assume that agents in the distributed delivery domain could be given delivery requests at any given time,
and operate in a finite, fully shared delivery region. Describe social laws that can assure that no matter what deliveries
are asked of them and when, the agents can be assured of avoiding collisions no matter where the pickup and dropoff
positions are. You may assume that the world begins in a legal state. In what circumstances would using these laws be
very inefficient?

11. [Level 3] Assume that distributed delivery robots are in an environment where delivery tasks pop up dynamically.
When a delivery needs to be done, the article to be delivered announces that it needs to be delivered, and delivery agents
within a particular distance from the article hear the announcement.

(a) Assume that the distance from which articles can be heard is small. What characteristics would an organizational
structure among the delivery agents have to have to minimize the deliveries that might be overlooked?

(b) Assume that the distance is instead large. Would an organizational structure be beneficial anyway? Justify your
answer.

(c) As they become aware of deliveries to be done, delivery agents try to incorporate those into their current delivery
plans. But the dynamic nature of the domain means that these plans are undergoing evolution. Under what assumptions
would partial global planning be a good approach for coordinating the agents in this case?

(d) Assume you are using partial global planning for coordination in this problem. What would you believe would be a
good planning level for the agents to communicate and coordinate their plans? How would the agents

Page 161

determine whether they were working on related plans? How would they use this view to change their local plans?
Would a hill-climbing strategy work well for this?

3.10 References

1. W. Briggs and D.J. Cook. Flexible social laws. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (1JCAI-95), August 1995.

2. Susan E. Conry, Kazuhiro Kuwabara, Victor R. Lesser, and Robert A. Meyer. Multistage negotiation for distributed
constraint satisfaction. IEEE Transactions on Systems, Man, and Cybernetics, SMC-21(6):1462-1477, Nov. 1991.

3. Daniel D. Corkill. A Framework for Organizational Self-Design in Distributed Problem Solving Networks. PhD thesis,
University of Massachusetts, December 1982.

4. Randall Davis and Reid Smith. Negotiation as a metaphor for distributed problem solving. Artificial Intelligence,
20:63-109, 1983.

5. Keith Decker and Victor Lesser. A one-shot dynamic coordination algorithm for distributed sensor networks. In
Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 210-216, July 1993.

6. Keith Decker and Victor Lesser. Designing a family of coordination mechanisms. In Proceedings of the First
International Conf. on Multi-Agent Systems (ICMAS-95), pages 73-80, June 1995.

7. Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Cooperation Through Communication in a Distributed
Problem Solving Network. In M. Huhns, editor, Distributed Artificial Intelligence, Chapter 2, Pitman 1987.

8. Edmund H. Durfee. Coordination of Distributed Problem Solvers, Kluwer Academic Press, Boston 1988.

9. Edmund H. Durfee and Thomas A. Montgomery. Coordination as Distributed Search in a Hierarchical Behavior
Space. IEEE Transactions on Systems, Man, and Cybernetics, Special Issue on Distributed Artificial Intelligence, SMC-
21(6):1363-1378, November 1991.

10. Edmund H. Durfee, Patrick G. Kenny, and Karl C. Kluge. Integrated Premission Planning and Execution for
Unmanned Ground Vehicles. In Proceedings of the First International Conference on Autonomous Agents, pages 348-
354, February 1997.

11. Eithan Ephrati and Jeffrey S. Rosenschein. Divide and conquer in multi-agent planning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 375-380, July 1994.

12. Eithan Ephrati, Martha E. Pollack, and Jeffrey S. Rosenschein. A tractable heuristic that maximizes global utility
through local plan combination. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS