
© 2006 Texas Instruments Inc, Slide 1

MSP430 Timers In-Depth

Keith Quiring
MSP430 Applications Engineer

Texas Instruments

© 2006 Texas Instruments Inc, Slide 2

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 3

Introduction
• Timers: Essential to almost any embedded application

Generate fixed-period events
Periodic wakeup
Count edges
Replacing delay loops with timer calls allows CPU to sleep, consuming much
less power

• Five types of MSP430 timer modules
• Different tasks call for different timers. But which one?
• We will:

Discuss all five timer modules
Extract the unique characteristics of each, compare/contrast them
Spend majority of time on Timer_A/B
Look at real-world application examples

© 2006 Texas Instruments Inc, Slide 4

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 5

Basic Timer: Overview

• Found only on ‘4xx
• Primary characteristics

Clock for LCD module
Good choice for RTC implementation
Basic interval timer
Simple interrupt capability

• Wide range of intervals – up to two seconds

© 2006 Texas Instruments Inc, Slide 6

Basic Timer: Real-Time Clock Example
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
FLL_CTL0 |= XCAP14PF; // Set load caps
setTime(0x12,0,0,0); // Init
BTCTL = BT_ADLY_1000; // Set interval
IE2 |= BTIE; // Enable BT int
__BIS_SR(LPM3_bits + GIE); // Sleep, enable ints

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void BT_ISR(void)
{
incrementSeconds();
if(sec==60) {sec = 0; incrementMinutes();}
if(min==60) {min = 0; incrementHours();}
if(hours>12) hours=1;

}

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
FLL_CTL0 |= XCAP14PF; // Set load caps
setTime(0x12,0,0,0); // Init
BTCTL = BT_ADLY_1000; // Set interval
IE2 |= BTIE; // Enable BT int
__BIS_SR(LPM3_bits + GIE); // Sleep, enable ints

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void BT_ISR(void)
{
incrementSeconds();
if(sec==60) {sec = 0; incrementMinutes();}
if(min==60) {min = 0; incrementHours();}
if(hours>12) hours=1;

}

© 2006 Texas Instruments Inc, Slide 7

Basic Timer: LCD Drive Example
Set Basic Timer
for LCD refresh

void main(void)
{
int i;

WDTCTL = WDTPW + WDTHOLD;
FLL_CTL0 |= XCAP14PF;
LCDCTL = LCDP2 + LCD4MUX + LCDON;
BTCTL = BTFRFQ1; // LCD freq=ACLK/128
P5SEL = 0xFC; // Set LCD pins

for (;;)
for (i=0; i<7; ++i) // Display #
LCDMEM[i] = digit[i];

}

void main(void)
{
int i;

WDTCTL = WDTPW + WDTHOLD;
FLL_CTL0 |= XCAP14PF;
LCDCTL = LCDP2 + LCD4MUX + LCDON;
BTCTL = BTFRFQ1; // LCD freq=ACLK/128
P5SEL = 0xFC; // Set LCD pins

for (;;)
for (i=0; i<7; ++i) // Display #
LCDMEM[i] = digit[i];

}

© 2006 Texas Instruments Inc, Slide 8

Basic Timer: Thermostat Example
void main(void)
{
<< Code to initialize WDT/caps/LCD/IOs >>

BTCTL = BT_ADLY_2000; // Two seconds
BTCTL |= BT_fLCD_DIV256; // LCD=ACLK/256
IE2 = BTIE; // Enable ints

while(1)
checkTempAndUpdateDisplay();

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void basic_timer(void)
{
if(count&0x01) // Every other time
__BIC_SR_IRQ(LPM3_bits); // Exit after return

count++;
}

void main(void)
{
<< Code to initialize WDT/caps/LCD/IOs >>

BTCTL = BT_ADLY_2000; // Two seconds
BTCTL |= BT_fLCD_DIV256; // LCD=ACLK/256
IE2 = BTIE; // Enable ints

while(1)
checkTempAndUpdateDisplay();

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void basic_timer(void)
{
if(count&0x01) // Every other time
__BIC_SR_IRQ(LPM3_bits); // Exit after return

count++;
}

© 2006 Texas Instruments Inc, Slide 9

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 10

Real-Time Clock Module: Overview
• First introduced on ‘FG4619

(new module)
• Extension of the Basic Timer
• Two modes

Counter: BT is unaltered, and
there’s now an additional 32-bit
counter
Calendar: BT becomes part of
RTC module, all of which drives an
RTC

• BT and RTC share interrupt
vectors

© 2006 Texas Instruments Inc, Slide 11

RTC: Calendar Mode
• Clock functions handled

automatically
• Registers for:

Year
Month
Date
Day of week
Hour
Minute
Second

• Either BCD or hex format
• No generic BT

functionality

• Handles leap year
calculation

• RTC interrupt
Can be enabled/disabled
Triggered on turnover of
min/hr/midnight/noon

• Intervals from every
minute to once a day;
one-second intervals no
longer required to
implement RTC

• No “alarm clock” (exact
time) interrupt – easily
implemented in code

© 2006 Texas Instruments Inc, Slide 12

RTC: Real-Time Clock Example
void main(void) {
WDTCTL = WDTPW+WDTHOLD; // Stop the dog
RTCCTL = RTCBCD+RTCHOLD+RTCMODE_3+RTCTEV_0+RTCIE;

// Enable, BCD, int every minute
RTCSEC = 0x00; // Set Seconds
RTCMIN = 0x00; // Set Minutes
RTCHOUR = 0x08; // Set Hours
RTCDOW = 0x02; // Set DOW
RTCDAY = 0x23; // Set Day
RTCMON = 0x08; // Set Month
RTCYEAR = 0x2005; // Set Year
RTCCTL &= ~RTCHOLD; // Enable RTC
__BIS_SR(LPM3_bits+GIE);// Enter LPM3 w/ interrupt

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void basic_timer(void) {
P5OUT ^= 0x02; // Toggle P5.1 every minute

}

void main(void) {
WDTCTL = WDTPW+WDTHOLD; // Stop the dog
RTCCTL = RTCBCD+RTCHOLD+RTCMODE_3+RTCTEV_0+RTCIE;

// Enable, BCD, int every minute
RTCSEC = 0x00; // Set Seconds
RTCMIN = 0x00; // Set Minutes
RTCHOUR = 0x08; // Set Hours
RTCDOW = 0x02; // Set DOW
RTCDAY = 0x23; // Set Day
RTCMON = 0x08; // Set Month
RTCYEAR = 0x2005; // Set Year
RTCCTL &= ~RTCHOLD; // Enable RTC
__BIS_SR(LPM3_bits+GIE);// Enter LPM3 w/ interrupt

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void basic_timer(void) {
P5OUT ^= 0x02; // Toggle P5.1 every minute

}

© 2006 Texas Instruments Inc, Slide 13

RTC: Counter Mode
• BT remains “intact”
• RTC provides an additional 32-bit counter
• BT/RTC counters share one interrupt vector
• In effect, the 32-bit counter replaces the 16-bit one
• RTCIE bit selects whether interrupt generated by RTC

or BT counters
• If set, interrupt generated by overflow of RTC counter

(selectable 8/16/24/32-bit)
• Interrupt vector is shared with BT

© 2006 Texas Instruments Inc, Slide 14

RTC: BT/RTC Interval Timer Example
• Setting RTCIE in interval mode causes interrupt to be

generated from 32-bit RTC interval counter
void main(void)
{
WDTCTL = WDTPW + WDTHOLD;
FLL_CTL0 |= XCAP18PF;
P5DIR |= 0x02;
BTCTL=BTSSEL+BT_fCLK2_DIV256; //1MHz/256 = ~244us Interval
RTCCTL =RTCMODE_1+RTCTEV_0+RTCIE; // 1MHz/(128*256) =32 Hz
IE2 |= BTIE;
__BIS_SR(LPM0_bits + GIE);

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void basic_timer_ISR(void)
{
P5OUT ^= 0x02; // Toggle P5.1

}

void main(void)
{
WDTCTL = WDTPW + WDTHOLD;
FLL_CTL0 |= XCAP18PF;
P5DIR |= 0x02;
BTCTL=BTSSEL+BT_fCLK2_DIV256; //1MHz/256 = ~244us Interval
RTCCTL =RTCMODE_1+RTCTEV_0+RTCIE; // 1MHz/(128*256) =32 Hz
IE2 |= BTIE;
__BIS_SR(LPM0_bits + GIE);

}

#pragma vector=BASICTIMER_VECTOR
__interrupt void basic_timer_ISR(void)
{
P5OUT ^= 0x02; // Toggle P5.1

}

© 2006 Texas Instruments Inc, Slide 15

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 16

Watchdog (WDT/+) Module: Overview
• Found on all MSP430 devices
• Two flavors: WDT & WDT+
• Two modes

Watchdog
Interval timer

• Access password protected
• Separate interrupt vectors for POR

and interval timer
• Sourced by ACLK or SMCLK
• Controls RST/NMI pin mode
• WDT+ adds failsafe/protected clock

© 2006 Texas Instruments Inc, Slide 17

WDT: Watchdog Function
• Controlled start if s/w problem occurs
• Code must “pet” the “dog” before interval

expires, otherwise PUC
• Selectable intervals
• Powers up active as watchdog w/ ~32ms

reset – YOUR CODE MUST INITIALIZE THE
WDT

• In addition to PUC, WDTIFG sources reset
vector interrupt

• Code can use WDTIFG to determine
whether dog caused interrupt

© 2006 Texas Instruments Inc, Slide 18

WDT: Common Design Issues
• Program keeps resetting itself!
• Program acting wacky – how did execution get to that

place?
Try setting interrupt near beginning of main() to see if code is re-starting

• CPU seems to freeze before even getting to first
instruction

Is this a C program with a lot of initialized memory?
Generally can occur only with very large-memory versions of the device
Solution: Use __low_level_init() function, stop watchdog there

void main(void)
{
WDTCTL = WDTPW+WDTHOLD; // Stop the dog
.
.

}

void main(void)
{
WDTCTL = WDTPW+WDTHOLD; // Stop the dog
.
.

}

© 2006 Texas Instruments Inc, Slide 19

WDT: Interval Timer Function
• No PUC issued when interval

is reached
• If WDTIE and GIE set when

interval is reached, a WDT
interval interrupt generated
instead of reset interrupt

• Selectable intervals

© 2006 Texas Instruments Inc, Slide 20

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 21

Timer_A Module: Overview
• The most versatile
• Async 16-bit timer/counter
• Four input clocks, including

externally-sourced
• Selectable count mode
• Extensive interrupt capability
• Up to three capture/compare

registers (CCR) generate events
when value reached

• “Capture” or “Compare” mode
• Output not only interrupts, but

also “output signals”
• Extensive connections to other

modules

© 2006 Texas Instruments Inc, Slide 22

Timer_A: Capture Mode
• Measure time before a signal event

occurs
• Why not just use a CPU interrupt and

have CPU fetch timer value?
Extra cycles expire
Dependent on ints being enabled

• Input signal from:
External pin
Internal signal (i.e., Comp_A)
Vcc/GND

• Edge direction – programmable
• Applications:

Analog signal rising to Comp_A threshold
Slope ADC
Frequency measurement
Vcc threshold detect (via voltage divider)

© 2006 Texas Instruments Inc, Slide 23

Timer_A: Compare Mode
• Cause an event after a defined period (exact opposite

of capture mode)
• What kind of event?

CPU interrupt
Modules tied internally to timer output (DMA, start ADC/DAC conversion)
External components

• Applications:
PWM generation
RTC
Thermostat
Timer_A UART

© 2006 Texas Instruments Inc, Slide 24

Timer_A: Count Modes
• Determines pattern of counter direction

What will it do when it rolls over?
Does it always count up? Maybe down?
What is the maximum value?

• Typically used in compare mode to generate cyclical
events

• Can apply to capture mode in measuring cyclical
events

• The modes:
Continuous: Up to FFFF, rolls over to 0000, back up to FFFF, etc.
Up: Up to value specified by CCR0, rolls over to 0000, back up to CCR0
value, etc.
Up/down: Up to value specified by CCR0, count down to 0000, back up
to CCR0 value, etc.

© 2006 Texas Instruments Inc, Slide 25

Timer_A: Count Modes
Up

Continuous

Up to FFFF, rolls
over to 0000, back up
to FFFF, etc.

Up to value
specified by CCR0,
rolls over to 0000,
back up to CCR0
value, etc.

Up/
Down

Up to value in
CCR0, count
down to 0000,
back up to
value in CCR0,
etc.

© 2006 Texas Instruments Inc, Slide 26

Timer_A: CCR Output Mode
• Each CCR generates an output signal, available

externally
• This is a separate and different type of output

compared to interrupts
• Operate continuously while CPU sleeps
• Output modes determine how the timer pattern

translates to output signal
• Note that CCR0 plays a role in CCR1-2 output signals
• For different combinations of count modes, output

modes, and CCR values, a multitude of outputs and
behaviors possible

© 2006 Texas Instruments Inc, Slide 27

Timer_A: Count Modes

© 2006 Texas Instruments Inc, Slide 28

Timer_A: Interrupt Overview
• Two vectors:

TACCR0 for CCR0 CCIFG (higher
priority)
TAIV for all CCIFG except CCR0,
plus TAIFG

• In compare mode:
corresponding CCIFG set
when TAR reaches TACCRx

• In capture mode:
corresponding CCIFG set
when event occurs and new
value placed in TACCRx

• Also TAIFG bit – set
whenever timer reaches zero

© 2006 Texas Instruments Inc, Slide 29

Timer_A: TAIV Interrupt Handling

• TAIV interrupt handler uses switch mechanism to
identify correct sub-vector to handle

CCRX_ISR add &TAIV,PC ; Offset to Jump table
reti ; No source
jmp CCR1_ISR ;
jmp CCR2_ISR ;
reti ; No source
reti ; No source

TIMOVH xor.b #08h,&P1OUT
reti

CCR1_ISR xor.b #02h,&P1OUT
reti

CCR2_ISR xor.b #04h,&P1OUT
reti

CCRX_ISR add &TAIV,PC ; Offset to Jump table
reti ; No source
jmp CCR1_ISR ;
jmp CCR2_ISR ;
reti ; No source
reti ; No source

TIMOVH xor.b #08h,&P1OUT
reti

CCR1_ISR xor.b #02h,&P1OUT
reti

CCR2_ISR xor.b #04h,&P1OUT
reti

© 2006 Texas Instruments Inc, Slide 30

Timer_A: Internal Connections
• Timer_A/B have several internal

connections to other modules
Comp_A
DMA
DAC12
External inputs/outputs

• Avoids CPU wakeup – saves power
• Faster response – no cycles wasted

while ISR loads/executes

© 2006 Texas Instruments Inc, Slide 31

Timer_A: Internal Connections

Automatic SOC trigger eliminates phase error

Why are they important? Example:

© 2006 Texas Instruments Inc, Slide 32

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 33

Timer_B Module: Overview
• Same as Timer_A, except:

Some implementations have 7 CCRs
Bit-length of timer is programmable
as 8-, 10-, 12-, or 16-bit
No SCCI bit function
Double-buffered CCR registers
CCR registers can be grouped

© 2006 Texas Instruments Inc, Slide 34

Timer_B: Double-Buffered CCR Registers
• New register TBCLx with

TBCCRx
• TBCLx takes on role of

TACCRx in determining
interrupts

• TBCL0 takes on role of
TACCR0 in count modes

• Can’t access TBCLx directly;
write to TBCCRx, then at the
load event, moves to TBCLx

• Load event timing is
programmable:

Immediately
When TBR counts to zero
When TBR counts to old TBCLx value

• Load events can be grouped –
multiple TBCCR loaded into
TBCL together

© 2006 Texas Instruments Inc, Slide 35

• Introduction
• Basic Timer
• RTC
• Watchdog Timer (WDT/WDT+)
• Timer_A
• Timer_B
• Summary and Applications

Agenda

© 2006 Texas Instruments Inc, Slide 36

Timer Modules: Unique Features
• Basic Timer / RTC

RTC-specific functionality
LCD functions
Interrupt intervals up to two seconds

• WDT / WDT+
Can reset device automatically
Interrupt intervals up to one second

• Timer_A/B
Widest interrupt interval range:
1/MCLK to 32 seconds
Control count direction
Set count max w/o software
intervention
Has outputs with configurable duty
cycle
Internal connection to other
peripherals
Capture capability

© 2006 Texas Instruments Inc, Slide 37

Timer Modules: Interval Ranges

32sec / .031Hz0.95us / 1.048MHzTimer_A/B
2sec / 0.5Hz1.9us / 524kHzBasic / RTC
1sec / 1Hz61us / 16.4kHzWatchdog

Maximum PeriodMinimum Period

Assuming either clock source can be used to source the timer, what are
the interval ranges for interrupts?

Example 1: MCLK = SMCLK = 1.048MHz and ACLK = 32kHz

87.4sec / .011Hz62.5ns / 16MHzTimer_A/B
5.5sec / 0. 18Hz125ns / 8MHzBasic / RTC
2.7sec / 0.37Hz4us / 250kHzWatchdog

Maximum PeriodMinimum Period
Example 2: MCLK = SMCLK = 16MHz and ACLK = VLOCLK = 12kHz

Values are approximate

© 2006 Texas Instruments Inc, Slide 38

Timer Applications: PWM
void main(void)
{
WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x04; // Output
P1SEL |= 0x04; // TA1 option
P2DIR |= 0x01; // Output
P2SEL |= 0x01; // TA2 option
CCR0 = 512-1; // PWM Period
CCTL1 = OUTMOD_7;// Reset/set
CCR1 = 384; // Duty cycle
CCTL2 = OUTMOD_7;// Reset/set
CCR2 = 128; // Duty cycle
TACTL = TASSEL_2 + MC_1;

// SMCLK, up mode

__BIS_SR(LPM0_bits);
}

void main(void)
{
WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x04; // Output
P1SEL |= 0x04; // TA1 option
P2DIR |= 0x01; // Output
P2SEL |= 0x01; // TA2 option
CCR0 = 512-1; // PWM Period
CCTL1 = OUTMOD_7;// Reset/set
CCR1 = 384; // Duty cycle
CCTL2 = OUTMOD_7;// Reset/set
CCR2 = 128; // Duty cycle
TACTL = TASSEL_2 + MC_1;

// SMCLK, up mode

__BIS_SR(LPM0_bits);
}

© 2006 Texas Instruments Inc, Slide 39

Timer Applications: Voice Recorder
Which timer to use?

© 2006 Texas Instruments Inc, Slide 40

Summary
• There are a variety of MSP430 timers available
• Timers allow more time in sleep mode, saving power
• Use the Basic Timer and Watchdog Interval timer for

simple interval situations
• Use Timer_A/B for PWM, capture, and more-complex

counting situations
• A wealth of information is available: check the User’s

Guides, code examples, and application reports

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

