
MODSECURITY
HANDBOOK
The Complete Guide to the Popular
Open Source Web Application Firewall

Ivan Ristiæ

Sample

Last update: Mon Jun 03 17:36:08 BST 2013 (build 595)

ModSecurity Handbook
Ivan Ristić

https://www.feistyduck.com

ModSecurity Handbook
by Ivan Ristić
Copyright © 2010-2013 Feisty Duck Limited. All rights reserved.

ISBN: 978-1-907117-02-2

Development version (revision 595).

First published in March 2010. Fully revised in April 2012.

Feisty Duck Limited
www.feistyduck.com
contact@feistyduck.com

Address:
6 Acantha Court
Montpelier Road
London W5 2QP
United Kingdom

Production editor: Jelena Girić-Ristić

Copyeditor: Nancy Kotary

Cover design: Peter Jovanović

Cover illustration: Maja Veselinović

Technical reviewer: Brian Rectanus

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, without the prior permission in writing of the publisher.

The author and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

ModSecurity is a registered trademark of Trustwave Holdings, Inc. All other trademarks and copyrights are the property of their
respective owners.

iii

Table of Contents
Preface . xix

Scope and Audience xix
Contents xx
Updates xxiii
Feedback xxiii
About the Author xxiii
About the Technical Reviewer xxiv
Acknowledgments xxiv

I. User Guide 1
1. Introduction . 3

Brief History of ModSecurity 3
What Can ModSecurity Do? 4

Guiding Principles 6
Deployment Options 7
Is Anything Missing? 8

Getting Started 9
Hybrid Nature of ModSecurity 9
Main Areas of Functionality 10
What Rules Look Like 11
Transaction Lifecycle 11
Impact on Web Server 16
What Next? 17

Resources 18
General Resources 19
Developer Resources 20
AuditConsole 20

Summary 21
2. Installation . 23

Installation from Source 24

iv

Downloading Releases 24
Downloading from Repository 25
Installation on Unix 27

Installation from Binaries 30
Fedora Core, CentOS, and Red Hat Enterprise Linux 30
Debian and Ubuntu 31

Installation on Windows 31
Summary 32

3. Configuration . 33
Folder Locations 34
Configuration Layout 36
Adding ModSecurity to Apache 37
Powering Up 37
Request Body Handling 38
Response Body Handling 40
Filesystem Locations 42
File Uploads 42
Debug Log 43
Audit Log 44
Miscellaneous Options 44
Default Rule Match Policy 45
Handling Processing Errors 45
Verifying Installation 47
Summary 48

4. Logging . 51
Debug Log 51

Debugging in Production 52
Audit Log 54

Audit Log Entry Example 55
Concurrent Audit Log 57

Remote Logging 58
Configuring Remote Logging 59
Activating Remote Logging 61
Troubleshooting Remote Logging 63

File Upload Interception 64
Storing Files 64
Inspecting Files 65
Integrating with ClamAV 66

Advanced Logging Configuration 68

v

Increasing Logging from a Rule 69
Dynamically Altering Logging Configuration 69
Removing Sensitive Data from Audit Logs 69
Selective Audit Logging 71

Summary 71
5. Rule Language Overview . 73

Anatomy of a Rule 73
Variables 74

Request Variables 75
Server Variables 76
Response Variables 77
Miscellaneous Variables 77
Parsing Flags 78
Collections 79
Time Variables 79

Operators 80
String Matching Operators 80
Numerical Operators 80
Validation Operators 81
Miscellaneous Operators 81

Actions 82
Disruptive Actions 82
Flow Actions 82
Metadata Actions 83
Variable Actions 83
Logging Actions 84
Special Actions 84
Miscellaneous Actions 84

Summary 85
6. Rule Language Tutorial . 87

Introducing Rules 87
Working with Variables 88
Combining Rules into Chains 89
Operator Negation 89
Variable Counting 89
Using Actions 90

Understanding Action Defaults 90
Actions in Chained Rules 92
Unconditional Rules 93

vi

Using Transformation Functions 93
Blocking 95
Changing Rule Flow 95

Smarter Skipping 97
If-Then-Else 97

Controlling Logging 98
Capturing Data 98
Variable Manipulation 100
Variable Expansion 100
Recording Data in Alerts 101
Adding Metadata 103
Embedded vs. Reverse Proxy Mode 104
Summary 106

7. Rule Configuration . 107
Apache Configuration Syntax 107

Breaking Lines 108
Directives and Parameters 108
Spreading Configuration Across Files 109
Container Directives 110
Configuration Contexts 111
Configuration Merging 112

Configuration and Rule Inheritance 113
Configuration Inheritance 113
Rule Inheritance 114
Location-Specific Configuration Restrictions 115
SecDefaultAction Inheritance Anomaly 115

Rule Manipulation 116
Removing Rules at Configure Time 116
Updating Rule Actions at Configure Time 117
Updating Rule Targets at Configure Time 118
Removing Rules at Runtime 118
Updating Rule Targets at Runtime 118

Configuration Tips 119
Summary 119

8. Persistent Storage . 121
Manipulating Collection Records 122

Creating Records 122
Application Namespaces 123
Initializing Records 124

vii

Controlling Record Longevity 124
Deleting Records 125
Detecting Very Old Records 126

Collection Variables 127
Built-in Variables 127
Variable Expiry 128
Variable Value Depreciation 128

Implementation Details 129
Retrieving Records 130
Storing a Collection 130
Record Limits 132

Applied Persistence 133
Periodic Alerting 133
Denial of Service Attack Detection 136
Brute Force Attack Detection 138

Session Management 140
Initializing Sessions 140
Blocking Sessions 142
Forcing Session Regeneration 143
Restricting Session Lifetime 143
Detecting Session Hijacking 146

User Management 148
Detecting User Sign-In 148
Detecting User Sign-Out 149

Summary 149
9. Practical Rule Writing . 151

Whitelisting 151
Whitelisting Theory 151
Whitelisting Mechanics 152
Granular Whitelisting 153
Complete Whitelisting Example 154

Virtual Patching 155
Vulnerability versus Exploit Patching 156
Failings of Exploit Detection 157
Impedance Mismatch 157
Preferred Virtual Patching Approach 159

IP Address Reputation and Blacklisting 159
IP Address Blocking 160
Geolocation 161

viii

Real-Time Block Lists 162
Local Reputation Management 163

Integration with Other Apache Modules 163
Conditional Logging 165
Header Manipulation 165
Securing Session Cookies 166

Advanced Blocking 167
Immediate Blocking 167
Keeping Detection and Blocking Separate 168
User-Friendly Blocking 169
External Blocking 170
Honeypot Diversion 171
Delayed Blocking 171
Score-Based Blocking 172

Making the Most of Regular Expressions 173
How ModSecurity Compiles Patterns 174
Changing How Patterns Are Compiled 175
Common Pattern Problems 176
Regular Expression Denial of Service 176
Resources 177

Working with Rule Sets 177
Deploying Rule Sets 178
Writing Rules for Distribution 179
Resources for Rule Writers 181

Summary 182
10. Performance . 183

Understanding Performance 183
Top 10 Performance Rules 184

Performance Tracking 186
Performance Metrics 186
Performance Logging 187
Real-Time Performance Monitoring 187

Load Testing 187
Rule Benchmarking 191

Preparation 191
Test Data Selection 192
Performance Baseline 194

Optimizing Pattern Matching 196
Rule per Keyword Approach 196

ix

Combined Regular Expression Pattern 197
Optimized Regular Expression Pattern 197
Parallel Pattern Matching 198
Test Results 199

Summary 199
11. Content Injection . 201

Writing Content Injection Rules 201
Communicating Back to the Server 203
Interrupting Page Rendering 204
Using External JavaScript Code 204

Communicating with Users 205
Summary 206

12. Writing Rules in Lua . 207
Rule Language Integration 207
Lua Rules Skeleton 208
Accessing Variables 208
Setting Variables 209
Logging 210
Lua Actions 210
Summary 211

13. Handling XML . 213
XML Parsing 213
DTD Validation 217
XML Schema Validation 218
XML Namespaces 220
XPath Expressions 222
XPath and Namespaces 224
XML Inspection Framework 224
Summary 226

14. Extending Rule Language . 227
Extension Template 228
Adding a Transformation Function 230
Adding an Operator 233
Adding a Variable 237
Adding a Request Body Processor 240
Summary 243

II. Reference Manual 245
15. Directives . 247

SecAction 247

x

SecArgumentSeparator 247
SecAuditEngine 248
SecAuditLog 248
SecAuditLog2 249
SecAuditLogDirMode 249
SecAuditLogFileMode 250
SecAuditLogParts 250
SecAuditLogRelevantStatus 252
SecAuditLogStorageDir 252
SecAuditLogType 252
SecCacheTransformations 253
SecChrootDir 254
SecCollectionTimeout 254
SecComponentSignature 255
SecContentInjection 255
SecCookieFormat 255
SecDataDir 256
SecDebugLog 256
SecDebugLogLevel 256
SecDefaultAction 257
SecDisableBackendCompression 257
SecGeoLookupDb 258
SecGsbLookupDb 258
SecGuardianLog 258
SecInterceptOnError 259
SecMarker 259
SecPcreMatchLimit 260
SecPcreMatchLimitRecursion 260
SecPdfProtect 261
SecPdfProtectMethod 261
SecPdfProtectSecret 261
SecPdfProtectTimeout 262
SecPdfProtectTokenName 262
SecReadStateLimit 262
SecRequestBodyAccess 263
SecRequestBodyLimit 263
SecRequestBodyLimitAction 264
SecRequestBodyNoFilesLimit 264
SecRequestBodyInMemoryLimit 265

xi

SecResponseBodyLimit 265
SecResponseBodyLimitAction 265
SecResponseBodyMimeType 266
SecResponseBodyMimeTypesClear 266
SecResponseBodyAccess 267
SecRule 267
SecRuleInheritance 267
SecRuleEngine 268
SecRulePerfTime 269
SecRuleRemoveById 269
SecRuleRemoveByMsg 269
SecRuleRemoveByTag 270
SecRuleScript 270
SecRuleUpdateActionById 271
SecRuleUpdateTargetById 272
SecSensorId 273
SecServerSignature 274
SecStreamInBodyInspection 274
SecStreamOutBodyInspection 275
SecTmpDir 275
SecUploadDir 275
SecUploadFileLimit 276
SecUploadFileMode 276
SecUploadKeepFiles 277
SecWebAppId 277
SecUnicodeCodePage 278
SecUnicodeMapFile 278
SecWriteStateLimit 278

16. Variables . 281
ARGS 281
ARGS_COMBINED_SIZE 281
ARGS_GET 281
ARGS_GET_NAMES 281
ARGS_NAMES 281
ARGS_POST 282
ARGS_POST_NAMES 282
AUTH_TYPE 282
DURATION 282
ENV 282

xii

FILES 283
FILES_COMBINED_SIZE 283
FILES_NAMES 283
FILES_SIZES 283
FILES_TMPNAMES 283
GEO 283
HIGHEST_SEVERITY 284
INBOUND_DATA_ERROR 284
MATCHED_VAR 284
MATCHED_VAR_NAME 285
MATCHED_VARS 285
MATCHED_VARS_NAMES 285
MODSEC_BUILD 285
MULTIPART_CRLF_LF_LINES 286
MULTIPART_INVALID_PART 286
MULTIPART_STRICT_ERROR 286
MULTIPART_UNMATCHED_BOUNDARY 287
OUTBOUND_DATA_ERROR 288
PATH_INFO 288
PERF_ALL 288
PERF_COMBINED 288
PERF_GC 288
PERF_LOGGING 288
PERF_PHASE1 289
PERF_PHASE2 289
PERF_PHASE3 289
PERF_PHASE4 289
PERF_PHASE5 289
PERF_RULES 289
PERF_SREAD 289
PERF_SWRITE 289
QUERY_STRING 290
REMOTE_ADDR 290
REMOTE_HOST 290
REMOTE_PORT 290
REMOTE_USER 291
REQBODY_ERROR 291
REQBODY_ERROR_MSG 291
REQBODY_PROCESSOR 291

xiii

REQBODY_PROCESSOR_ERROR 291
REQBODY_PROCESSOR_ERROR_MSG 292
REQUEST_BASENAME 292
REQUEST_BODY 292
REQUEST_BODY_LENGTH 292
REQUEST_COOKIES 292
REQUEST_COOKIES_NAMES 293
REQUEST_FILENAME 293
REQUEST_HEADERS 293
REQUEST_HEADERS_NAMES 293
REQUEST_LINE 293
REQUEST_METHOD 294
REQUEST_PROTOCOL 294
REQUEST_URI 294
REQUEST_URI_RAW 294
RESPONSE_BODY 294
RESPONSE_CONTENT_LENGTH 295
RESPONSE_CONTENT_TYPE 295
RESPONSE_HEADERS 295
RESPONSE_HEADERS_NAMES 295
RESPONSE_PROTOCOL 295
RESPONSE_STATUS 296
RULE 296
SCRIPT_BASENAME 296
SCRIPT_FILENAME 296
SCRIPT_GID 296
SCRIPT_GROUPNAME 296
SCRIPT_MODE 297
SCRIPT_UID 297
SCRIPT_USERNAME 297
SERVER_ADDR 297
SERVER_NAME 297
SERVER_PORT 297
SESSION 298
SESSIONID 298
STREAM_INPUT_BODY 298
STREAM_OUTPUT_BODY 298
TIME 299
TIME_DAY 299

xiv

TIME_EPOCH 299
TIME_HOUR 299
TIME_MIN 299
TIME_MON 299
TIME_SEC 300
TIME_WDAY 300
TIME_YEAR 300
TX 300
UNIQUE_ID 301
URLENCODED_ERROR 301
USERAGENT_IP 301
USERID 301
WEBAPPID 301
WEBSERVER_ERROR_LOG 301
XML 302

17. Transformation Functions . 303
base64Decode 304
base64DecodeExt 304
base64Encode 304
cmdLine 304
compressWhitespace 304
cssDecode 305
decodeBase64Ext 305
escapeSeqDecode 305
hexDecode 305
hexEncode 305
htmlEntityDecode 305
jsDecode 306
length 306
lowercase 306
md5 306
none 306
normalisePath 306
normalisePathWin 307
normalizePath 307
normalizePathWin 307
parityEven7bit 307
parityOdd7bit 307
parityZero7bit 307

xv

removeComments 307
removeCommentsChar 307
removeNulls 307
removeWhitespace 308
replaceComments 308
replaceNulls 308
urlDecode 308
urlDecodeUni 308
urlEncode 308
utf8toUnicode 308
sha1 309
sqlHexDecode 309
trimLeft 309
trimRight 309
trim 309

18. Actions . 311
accuracy 311
allow 311
append 312
auditlog 312
block 312
capture 313
chain 314
ctl 314
deny 315
deprecatevar 316
drop 316
exec 316
expirevar 317
id 317
initcol 318
log 318
logdata 318
maturity 318
msg 319
multiMatch 319
noauditlog 319
nolog 319
pass 320

xvi

pause 320
phase 320
prepend 321
proxy 321
redirect 322
rev 322
sanitiseArg 322
sanitiseMatched 322
sanitiseMatchedBytes 323
sanitiseRequestHeader 323
sanitiseResponseHeader 323
sanitizeArg 323
sanitizeMatched 323
sanitizeMatchedBytes 323
sanitizeRequestHeader 324
sanitizeResponseHeader 324
severity 324
setuid 324
setsid 325
setenv 325
setvar 325
skip 326
skipAfter 326
status 326
t 327
tag 327
ver 327
xmlns 327

19. Operators . 329
beginsWith 329
contains 329
endsWith 329
eq 329
ge 330
geoLookup 330
gsbLookup 330
gt 331
inspectFile 332
ipMatch 332

xvii

ipMatchF 333
ipMatchFromFile 333
le 333
lt 333
pm 333
pmf 334
pmFromFile 334
rbl 335
rsub 335
rx 336
streq 336
validateByteRange 337
validateDTD 337
validateSchema 337
validateUrlEncoding 338
validateUtf8Encoding 338
verifyCC 339
verifyCPF 339
verifySSN 339
within 340

20. Data Formats . 341
Alerts 341

Alert Action Description 341
Alert Justification Description 342
Metadata 343
Escaping 344
Alerts in the Apache Error Log 344
Alerts in Audit Logs 345

Audit Log 345
Parts 346
Storage Formats 354
Remote Logging Protocol 356

Index . 359

xix

Preface
I didn’t mean to write this book, I really didn’t. Several months ago I started to work on the
second edition of Apache Security, deciding to rewrite the ModSecurity chapter first. A funny
thing happened: the ModSecurity chapter kept growing and growing. It hit 40 pages. It hit 80
pages. And then I realized that I was nowhere near the end. That was all the excuse I needed
to put Apache Security aside—for the time being—and focus on a ModSecurity book instead.

I admit that I couldn’t be happier, although it was an entirely emotional decision. After spend-
ing years working on ModSecurity, I knew it had so much more to offer, yet the documenta-
tion wasn’t there to show the way. But it is now, I am thrilled to say. The package is complete:
you have an open source tool that is able to compete with the best commercial products out
there, and you have the documentation to match.

With this book I am also trying something completely new—continuous writing and publish-
ing. You see, I had published my first book with a major publisher, but I never quite liked the
process. It was too slow. You write a book pretty much in isolation, you publish it, and then
you never get to update it. I was never happy with that, and that’s why I decided to do things
differently this time.

Simply said, ModSecurity Handbook is a living book. Every time I make a change, a new digital
version is made available to you. If I improve the book based on your feedback, you get the
improvements as soon as I make them. If you prefer a paper book, you can still get it of course,
through the usual channels. Although I can’t do anything about updating the paper version of
the book, we can narrow the gap slightly by pushing out book updates even between editions.
That means that, even when you get the paper version (as most people seem to prefer to), it
is never going to be too much behind the digital version.

Scope and Audience
This book exists to document every single aspect of ModSecurity and to teach you how to use
it. It is as simple as that. ModSecurity is a fantastic tool, but it is let down by the poor quality of
the documentation. As a result, the adoption is not as good as it could be; application security
is difficult on its own and you don’t really want to struggle with poorly documented tools

xx Preface

too. I felt a responsibility to write this book and show how ModSecurity can compete with
commercial web application firewalls, in spite of being the underdog. Now that the book is
finished, I feel I’ve done a proper job with ModSecurity.

If you are interested in application security, you are my target audience. Even if you’re not
interested in application security as such, and only want to deal with your particular problems
(it’s difficult to find a web application these days that’s without security problems), you are
still my target audience.

You don’t need to know anything about ModSecurity to get started. If you just follow the book
from the beginning, you will find that every new chapter advances a notch. Even if you are a
long-time ModSecurity user, I believe you will benefit from a fresh start. I will let you in on
a secret—I have. There’s nothing better for completing one’s knowledge than having to write
about a particular topic. I suspect that long-time ModSecurity users will especially like the
second half of the book, which discusses many advanced topics and often covers substantial
new ground.

But, there is only so much a book can cover. ModSecurity Handbook assumes you already know
how to operate the Apache web server. You don’t have to be an expert, but you do need to know
how to install, configure, and run it. If you don’t know how to do that already, you should
get my first book, Apache Security. I wrote it five years ago, but it’s still remarkably fresh.
(Ironically, it is only the ModSecurity chapter in Apache Security that is completely obsolete.
But that’s why you have this book.)

On the other end, ModSecurity Handbook will teach you how to use ModSecurity and write
good rules, but it won’t teach you application security. In my earlier book, Apache Security,
I included a chapter that served as an introduction to application security, but, even then, I
was barely able to mention all that I wanted, and the chapter was still the longest chapter in
the book. Since then, the application security field has exploded and now you have to read
several books and dozens of research papers just to begin to understand it.

Contents
Once you go past the first chapter, which is the introduction to the world of ModSecurity, the
rest of the book consists of roughly three parts. In the first part, you learn how to install and
configure ModSecurity. In the second part, you learn how to write rules. As for the third part,
you could say that it contains the advanced stuff—a series of chapters each dedicated to one
important aspect of ModSecurity.

At the end of the book is the official reference documentation, reproduced with the permission
from Breach Security.

Chapter 1, Introduction, is the foundation of the book. It contains a gentle introduction to
ModSecurity, and then explains what it can and cannot do. The main usage scenarios are listed
to help you identify where you can use ModSecurity in your environment. The middle of the

Contents xxi

chapter goes under the hood of ModSecurity to give you an insight into how it works, and
finishes with an overview of the key areas you will need to learn in order to deploy it. The
end of the chapter lists a series of resources (sites, mailing lists, tools, etc.) that you will find
useful in your day-to-day work.

Chapter 2, Installation, teaches you how to install ModSecurity, either compiling from source
(using one of the released versions or downloading straight from the development repository),
or by using one of the available binary packages, on Unix and Windows alike.

Chapter 3, Configuration, explains how each of the available configuration directives should
be used. By the end of the chapter, you get a complete overview of the configuration options
and will have a solid default configuration for all your ModSecurity installations.

Chapter 4, Logging, deals with the logging features of ModSecurity. The two main logging
facilities explained are the debug log, which is useful in rule writing, and the audit log, which
is used to log complete transaction data. Special attention is given to remote logging, which
you’ll need to manage multiple sensors, or to use any of the user-friendly tools for alert man-
agement. File interception and validation is covered in detail. The chapter ends with an ad-
vanced section of logging, which explains how to selectively log traffic, and how to use the
sanitation feature to prevent sensitive data from being stored in the logs.

Chapter 5, Rule Language Overview, is the first of the three chapters that deal with rule writing.
This chapter contains an overview of the entire rule language, which will get you started as
well as give you a feature map to which you can return whenever you need to deal with a new
problem.

Chapter 6, Rule Language Tutorial, teaches how to write rules, and how to write them well.
It’s a very fun chapter that adopts a gradual approach, introducing the features one by one.
By the end of the chapter, you will know everything about writing individual rules.

Chapter 7, Rule Configuration, completes the topic of rule writing. It takes a step back to view
the rules as the basic block for policy building. You first learn how to put a few rules together
and add them to the configuration, as well as how the rules interact with Apache’s ability to
use different configuration contexts for different sites and different locations within sites. The
chapter spends a great deal of time making sure you take advantage of the inheritance feature,
which helps make ModSecurity configuration much easier to maintain.

Chapter 8, Persistent Storage, is quite possibly the most exciting chapter in the book. It de-
scribes the persistent storage mechanism, which enables you to track data and events over
time and thus opens up an entire new dimension of ModSecurity. This chapter is also the
most practical one in the entire book. It gives you the rules for periodic alerting, brute force
attack detection, denial of service attack detection, session and user management, fixing ses-
sion management weaknesses, and more.

xxii Preface

Chapter 9, Practical Rule Writing, is, as the name suggests, a tour through many of the practical
activities you will perform in your day-to-day work. The chapter starts by covering whitelist-
ing, virtual patching, IP address reputation and blacklisting. You then learn how to integrate
with other Apache modules, with practical examples that show how to perform conditional
logging and fix insecure session cookies. Special attention is given to the topic of blocking;
several approaches, starting from the simple to the very sophisticated, are presented. A section
on regular expressions gets you up to speed with the most important ModSecurity operator.
The chapter ends with a discussion of rule sets, discussing how to use the rule sets others have
written, as well as how to write your own.

Chapter 10, Performance, covers several performance-related topics. It opens with an overview
of where ModSecurity usually spends its time, a list of common configuration mistakes that
should be avoided, and a list of approaches that result in better performance. The second part
of the chapter describes how to monitor ModSecurity performance in production. The third
part tests the publicly available rule sets in order to give you a taste of what they are like, as
well as document a methodology you can use to test your own rules. The chapter then moves
to rule set benchmarking, which is an essential part of the process of rule writing. The last
part of this chapter gives very practical advice on how to use regular expressions and parallel
matching, comparing several approaches and explaining when to use them.

Chapter 11, Content Injection, explains how to reach from ModSecurity, which is a server-side
tool, right into a user’s browser and continue with the inspection there. This feature makes it
possible to detect the attacks that were previously thought to be undetectable by a server-side
tool, for example DOM-based cross-site scripting attacks. Content injection also comes in
handy if you need to communicate with your users—for example, to tell them that they have
been attacked.

Chapter 12, Writing Rules in Lua, discusses a gem of a feature: writing rules using the Lua
programming language. The rule language of ModSecurity is easy to use and can get a lot
done, but for the really difficult problems you may need the power of a proper programming
language. In addition, you can use Lua to react to events, and it is especially useful when
integrating with external systems.

Chapter 13, Handling XML, covers the XML capabilities of ModSecurity in detail. You get
to learn how to validate XML using either DTDs or XML Schemas, and how to combine
XPath expressions with the other features ModSecurity offers to perform both whitelist- and
blacklist-based validation. The XML features of ModSecurity have traditionally been poorly
documented; here you will find details never covered before. The chapter ends with an XML
validation framework you can easily adapt for your needs.

Chapter 14, Extending Rule Language, discusses how you can extend ModSecurity to imple-
ment new functionality. It gives several step-by-step examples, explaining how to implement
a transformation function, an operator, and a variable. Of course, with ModSecurity being

Updates xxiii

open source, you can extend it directly at any point, but when you use the official APIs, you
avoid making a custom version of ModSecurity (which is generally time consuming because
it prevents upgrades).

Updates
If you purchased this book directly from Feisty Duck, your purchase includes access to newer
digital versions of the book. Updates are made automatically after I update the manuscript,
which I keep in DocBook format in a Subversion repository. At the moment, there is a script
that runs every hour, and rebuilds the book when necessary. Whenever you visit your personal
digital download link, you get the most recent version of the book.

I use a dedicated Twitter account (@modsecuritybook) to announce relevant changes I make
to the book. By following that account you’ll find out about the improvements pretty much
as they happen. You can also follow my personal Twitter account (@ivanristic) or subscribe
to my blog, if you are about computer security in general.

In the first two years of its life, I kept ModSecurity Handbook up-to-date with every ModSe-
curity release. There was a full revision in February 2012, which made the book essentially
as good and as current as it was on day of the first release back in 2010. Don’t take my past
performance as a guarantee of what is going to happen in the future, however. At the launch
in 2010 I offered a guarantee that the book will be kept up-to-date for at least a year from your
purchase. I dropped that promise at the end of 2011, because I could see the possibility that
I would stop with the updates at some point. I will keep my promise until the end of 2012,
but I don’t know what will happen after that.

Feedback
To get in touch with me please write to ivanr@webkreator.com. I would like to hear from you
very much, because I believe that a book can fulfill its potential only through the interaction
among its author(s) and the readers. Your feedback is particularly important when a book is
continuously updated, like this one is. When I change the book as a result of your feedback,
all the changes are immediately delivered back to you. There is no more waiting for years to
see the improvements!

About the Author
Ivan Ristić is a respected security expert and author, known especially for his contribution
to the web application firewall field and the development of ModSecurity, the open source
web application firewall. He is also the author of Apache Security, a comprehensive security
guide for the Apache web server. A frequent speaker at computer security conferences, Ivan

https://www.feistyduck.com
http://blog.ivanristic.com

xxiv Preface

is an active participant in the application security community, a member of the Open Web
Application Security Project (OWASP), and an officer of the Web Application Security Con-
sortium (WASC).

About the Technical Reviewer
Brian Rectanus is a developer turned manager in the web application security field. He has
worked in the past on various security software related projects such as the IronBee open
source WAF framework, the ModSecurity open source WAF and the Suricata open source
IDS/IPS. Brian is an open source advocate and proud `NIX loving, Mac using, non-Windows
user who has been writing code on various `NIX platforms with vi since 1993. Today he still
does all his development work in the more modern vim editor—like there is any other—and
loves every bit of it. Brian has spent the majority of his career working with web technology
from various perspectives, be it manager, developer, administrator or security assessor. Brian
has held many certifications in the past, including GCIA and GCIH certification from the
SANS Institute and a BS in computer science from Kansas State University.

Acknowledgments
To begin with, I would like to thank the entire ModSecurity community for their support,
and especially all of you who used ModSecurity and sent me your feedback. ModSecurity
wouldn’t be what it is without you. Developing and supporting ModSecurity was a remarkable
experience; I hope you enjoy using it as much as I enjoyed developing it.

I would also like to thank my former colleagues from Breach Security, who gave me a warm
welcome, even though I joined them pretty late in the game. I regret that, due to my geo-
graphic location, I didn’t spend more time working with you. I would especially like to thank
—in no particular order—Brian Rectanus, Ryan Barnett, Ofer Shezaf, and Avi Aminov, who
worked with me on the ModSecurity team. Brian was also kind to work with me on the book
as a technical reviewer, and I owe special thanks to him for ensuring I didn’t make too many
mistakes.

I mustn’t forget my copyeditor, Nancy Kotary, who was a pleasure to work with, despite having
to deal with DocBook and Subversion, none of which is in the standard copyediting repertoire.

For some reason unknown to me, my dear wife Jelena continues to tolerate my long working
hours. Probably because I keep promising to work less, even though that never seems to hap-
pen. To her I can only offer my undying love and gratitude for accepting me for who I am. My
daughter Iva, who’s four, is too young to understand what she means to me, but that’s all right
—I have the patience to wait for another 20 years or so. She is the other sunshine in my life.

I User Guide
This part, with its 14 chapters, constitutes the main body of the book. The first chapter is the
introduction to ModSecurity and your map to the rest of the book. The remaining chapters fall into
roughly four groups: installation and configuration, rule writing, practical work, and advanced
topics.

3

1 Introduction
ModSecurity is a tool that will help you secure your web applications. No, scratch that. Actu-
ally, ModSecurity is a tool that will help you sleep better at night, and I will explain how. I usu-
ally call ModSecurity a web application firewall (WAF), because that’s the generally accepted
term to refer to the class of products that are specifically designed to secure web applications.
Other times I will call it an HTTP intrusion detection tool, because I think that name better
describes what ModSecurity does. Neither name is entirely adequate, yet we don’t have a bet-
ter one. Besides, it doesn’t really matter what we call it. The point is that web applications—
yours, mine, everyone’s—are terribly insecure on average. We struggle to keep up with the
security issues and need any help we can get to secure them.

The idea to write ModSecurity came to me during one of my sleepless nights—I couldn’t sleep
because I was responsible for the security of several web-based products. I could see how most
web applications were slapped together with little time spent on design and little time spent
on understanding the security issues. Furthermore, not only were web applications insecure,
but we had no idea how insecure they were or if they were being attacked. Our only eyes were
the web server access and error logs, and they didn’t say much.

ModSecurity will help you sleep better at night because, above all, it solves the visibility prob-
lem: it lets you see your web traffic. That visibility is key to security: once you are able to see
HTTP traffic, you are able to analyze it in real time, record it as necessary, and react to the
events. The best part of this concept is that you get to do all of that without actually touch-
ing web applications. Even better, the concept can be applied to any application—even if you
can’t access the source code.

Brief History of ModSecurity
Like many other open source projects, ModSecurity started out as a hobby. Software develop-
ment had been my primary concern back in 2002, when I realized that producing secure web
applications is virtually impossible. As a result, I started to fantasize about a tool that would
sit in front of web applications and control the flow of data in and out. The first version was

4 Chapter 1: Introduction

released in November 2002, but a few more months were needed before the tool became use-
ful. Other people started to learn about it, and the popularity of ModSecurity started to rise.

Initially, most of my effort was spent wrestling with Apache to make request body inspection
possible. Apache 1.3.x did not have any interception or filtering APIs, but I was able to trick
it into submission. Apache 2.x improved things by providing APIs that do allow content in-
terception, but there was no documentation to speak of. Nick Kew released the excellent The
Apache Modules Book (Prentice Hall) in 2007, which unfortunately was too late to help me
with the development of ModSecurity.

By 2004, I was a changed man. Once primarily a software developer, I became obsessed with
web application security and wanted to spend more time working on it. I quit my job and
started treating ModSecurity as a business. My big reward came in the summer of 2006, when
ModSecurity went head to head with other web application firewalls, in an evaluation con-
ducted by Forrester Research, and came out very favorably. Later that year, my company was
acquired by Breach Security. A team of one eventually became a team of many: Brian Rectanus
came to work on ModSecurity, Ofer Shezaf took on the rules, and Ryan C. Barnett the com-
munity management and education. ModSecurity 2.0, a complete rewrite, was released in late
2006. At the same time we released ModSecurity Community Console, which combined the
functionality of a remote logging sensor and a monitoring and reporting GUI.

I stopped being in charge of ModSecurity in January 2009, when I left Breach Security. Brian
Rectanus subsequently took the lead. In the meantime, Ryan C. Barnett took charge of the
ModSecurity rules and produced a significant improvement with CRS v2. In 2010, Trustwave
acquired Breach Security and promised to revitalize ModSecurity. The project is currently run
by Ryan C. Barnett and Breno Silva, and there are indeed some signs that the project is getting
healthier. I remain involved primarily through my work on this book.

Something spectacular happened in March 2011: Trustwave announced that they would be
changing the license of ModSecurity from GPLv2 to Apache Software License (ASLv2). This
is a great step toward a wider use of ModSecurity because ASL falls into the category of per-
missive licenses. Later, the same change was announced for the Core Rule Set project (which
is hosted with OWASP).

What Can ModSecurity Do?
ModSecurity is a toolkit for real-time web application monitoring, logging, and access con-
trol. I like to think about it as an enabler: there are no hard rules telling you what to do; in-
stead, it is up to you to choose your own path through the available features. That’s why the
title of this section asks what ModSecurity can do, not what it does.

The freedom to choose what to do is an essential part of ModSecurity’s identity and goes very
well with its open source nature. With full access to the source code, your freedom to choose

What Can ModSecurity Do? 5

extends to the ability to customize and extend the tool itself to make it fit your needs. It’s not
a matter of ideology, but of practicality. I simply don’t want my tools to restrict what I can do.

Back on the topic of what ModSecurity can do, the following is a list of the most important
usage scenarios:

Real-time application security monitoring and access control
At its core, ModSecurity gives you access to the HTTP traffic stream, in real-time, along
with the ability to inspect it. This is enough for real-time security monitoring. There’s
an added dimension of what’s possible through ModSecurity’s persistent storage mech-
anism, which enables you to track system elements over time and perform event cor-
relation. You are able to reliably block, if you so wish, because ModSecurity uses full
request and response buffering.

Virtual patching
Virtual patching is a concept of vulnerability mitigation in a separate layer, where you
get to fix problems in applications without having to touch the applications themselves.
Virtual patching is applicable to applications that use any communication protocol, but
it is particularly useful with HTTP, because the traffic can generally be well understood
by an intermediary device. ModSecurity excels at virtual patching because of its reliable
blocking capabilities and the flexible rule language that can be adapted to any need. It
is, by far, the activity that requires the least investment, is the easiest activity to perform,
and the one that most organizations can benefit from straight away.

Full HTTP traffic logging
Web servers traditionally do very little when it comes to logging for security purposes.
They log very little by default, and even with a lot of tweaking you are not able to get
everything that you need. I have yet to encounter a web server that is able to log full
transaction data. ModSecurity gives you that ability to log anything you need, including
raw transaction data, which is essential for forensics. In addition, you get to choose
which transactions are logged, which parts of a transaction are logged, and which parts
are sanitized.

Continuous passive security assessment
Security assessment is largely seen as an active scheduled event, in which an indepen-
dent team is sourced to try to perform a simulated attack. Continuous passive security
assessment is a variation of real-time monitoring, where, instead of focusing on the
behavior of the external parties, you focus on the behavior of the system itself. It’s an
early warning system of sorts that can detect traces of many abnormalities and security
weaknesses before they are exploited.

Web application hardening
One of my favorite uses for ModSecurity is attack surface reduction, in which you se-
lectively narrow down the HTTP features you are willing to accept (e.g., request meth-
ods, request headers, content types, etc.). ModSecurity can assist you in enforcing many

6 Chapter 1: Introduction

similar restrictions, either directly, or through collaboration with other Apache mod-
ules. They all fall under web application hardening. For example, it is possible to fix
many session management issues, as well as cross-site request forgery vulnerabilities.

Something small, yet very important to you
Real life often throws unusual demands to us, and that is when the flexibility of Mod-
Security comes in handy where you need it the most. It may be a security need, but it
may also be something completely different. For example, some people use ModSecu-
rity as an XML web service router, combining its ability to parse XML and apply XPath
expressions with its ability to proxy requests. Who knew?

Note
I often get asked if ModSecurity can be used to protect Apache itself. The answer is
that it can, in some limited circumstances, but that it isn’t what it is designed for. You
may sometimes be able to catch an attack with ModSecurity before it hits a vulnerable
spot in Apache or in a third-party module, but there’s a large quantity of code that
runs before ModSecurity. If there’s a vulnerability in that area, ModSecurity won’t
be able to do anything about it.

What Are Web Application Firewalls, Anyway?
I said that ModSecurity is a web application firewall, but it’s a little known fact that no one
really knows what web application firewalls are. It is generally understood that a web application
firewall is an intermediary element (implemented either as a software add-on or process, or as a
network device) that enhances the security of web applications, but opinions differ once you dig
deeper. There are many theories that try to explain the different views, but the best one I could
come up with is that, unlike anything we had before, the web application space is so complex
that there is no easy way to classify what we do security-wise. Rather than focus on the name,
you should focus on what a particular tool does and how it can help.

If you want to learn more about the topic, there are two efforts that focus on understanding web
application firewalls:

• Web application firewall evaluation criteria (WAFEC) is a project of the Web Application
Security Consortium (WASC). It’s an older effort (which has been inactive for a couple of
years now) that focuses on the technical features of web application firewalls.

• Best practices: Web Application Firewalls is a project of Open Web Application Security
Project (OWASP) that focuses largely on the practicalities of WAF deployment, which is
an important aspect that is often overlooked.

Guiding Principles
There are four guiding principles on which ModSecurity is based, as follows:

http://projects.webappsec.org/Web-Application-Firewall-Evaluation-Criteria
http://www.webappsec.org
http://www.webappsec.org
http://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls
http://www.owasp.org
http://www.owasp.org

Deployment Options 7

Flexibility
I think that it’s fair to say that I built ModSecurity for myself: a security expert who
needs to intercept, analyze, and store HTTP traffic. I didn’t see much value in hard-
coded functionality, because real life is so complex that everyone needs to do things
just slightly differently. ModSecurity achieves flexibility by giving you a powerful rule
language, which allows you to do exactly what you need to, in combination with the
ability to apply rules only where you need to.

Passiveness
ModSecurity will take great care to never interact with a transaction unless you tell it
to. That is simply because I don’t trust tools, even the one I built, to make decisions for
me. That’s why ModSecurity will give you plenty of information, but ultimately leave
the decisions to you.

Predictability
There’s no such thing as a perfect tool, but a predictable one is the next best thing.
Armed with all the facts, you can understand ModSecurity’s weak points and work
around them.

Quality over quantity
Over the course of six years spent working on ModSecurity, we came up with many
ideas for what ModSecurity could do. We didn’t act on most of them. We kept them
for later. Why? Because we understood that we have limited resources available at our
disposal and that our minds (ideas) are far faster than our implementation abilities.
We chose to limit the available functionality, but do really well at what we decided to
keep in.

There are bits in ModSecurity that fall outside the scope of these four principles. For example,
ModSecurity can change the way Apache identifies itself to the outside world, confine the
Apache process within a jail, and even implement an elaborate scheme to deal with a once-
infamous universal XSS vulnerability in Adobe Reader. Although it was I who added those
features, I now think that they detract from the main purpose of ModSecurity, which is a
reliable and predictable tool that allows for HTTP traffic inspection.

Deployment Options
ModSecurity supports two deployment options: embedded and reverse proxy deployment.
There is no one correct way to use them; choose an option based on what best suits your
circumstances. There are advantages and disadvantages to both options:

Embedded
Because ModSecurity is an Apache module, you can add it to any compatible version
of Apache. At the moment that means a reasonably recent Apache version from the
2.0.x branch, although a newer 2.2.x version is recommended. The embedded option

8 Chapter 1: Introduction

is a great choice for those who already have their architecture laid out and don’t want
to change it. Embedded deployment is also the only option if you need to protect hun-
dreds of web servers. In such situations, it is impractical to build a separate proxy-
based security layer. Embedded ModSecurity not only does not introduce new points
of failure, but it scales seamlessly as the underlying web infrastructure scales. The main
challenge with embedded deployment is that server resources are shared between the
web server and ModSecurity.

Reverse proxy
Reverse proxies are effectively HTTP routers, designed to stand between web servers
and their clients. When you install a dedicated Apache reverse proxy and add ModSe-
curity to it, you get a “proper” network web application firewall, which you can use
to protect any number of web servers on the same network. Many security practition-
ers prefer having a separate security layer. With it you get complete isolation from the
systems you are protecting. On the performance front, a standalone ModSecurity will
have resources dedicated to it, which means that you will be able to do more (i.e., have
more complex rules). The main disadvantage of this approach is the new point of fail-
ure, which will need to be addressed with a high-availability setup of two or more re-
verse proxies.

Is Anything Missing?
ModSecurity is a very good tool, but there are a number of features, big and small, that could
be added. The small features are those that would make your life with ModSecurity easier,
perhaps automating some of the boring work (e.g., persistent blocking, which you now have
to do manually). But there are really only two features that I would call missing:

Learning
Defending web applications is difficult, because there are so many of them, and they are
all different. (I often say that every web application effectively creates its own commu-
nication protocol.) It would be very handy to have ModSecurity observe application
traffic and create a model that could later be used to generate policy or assist with false
positives. While I was at Breach Security, I started a project called ModProfiler as a step
toward learning, but that project is still as I left it, as version 0.2.

Passive mode of deployment
ModSecurity can be embedded only in Apache 2.x, but when you deploy it as a reverse
proxy, it can be used to protect any web server. Reverse proxies are not everyone’s cup of
tea, however, and sometimes it would be very handy to deploy ModSecurity passively,
without having to change anything on the network.

Although a GUI is not within the scope of the project, there are currently two options when it
comes to remote logging and alert management. You will find them in the Resources section
later in this chapter.

http://www.modsecurity.org/projects/modprofiler/

Getting Started 9

Getting Started
In this first practical section in the book, I will give you a whirlwind tour of the ModSecurity
internals, which should help you get started.

Hybrid Nature of ModSecurity
ModSecurity is a hybrid web application firewall engine that relies on the host web server
for some of the work. The only supported web server at the moment is Apache 2.x, but it
is possible, in principle, to integrate ModSecurity with any other web server that provides
sufficient integration APIs.

Apache does for ModSecurity what it does for all other modules—it handles the infrastructure
tasks:

1. Decrypts SSL

2. Breaks up the inbound connection stream into HTTP requests

3. Partially parses HTTP requests

4. Invokes ModSecurity, choosing the correct configuration context (<VirtualHost>,
<Location>, etc.)

5. De-chunks request bodies as necessary

There a few additional tasks Apache performs in a reverse proxy scenario:

1. Forwards requests to backend servers (with or without SSL)

2. Partially parses HTTP responses

3. De-chunks response bodies as necessary

The advantage of a hybrid implementation is that it is very efficient—the duplication of work
is minimal when it comes to HTTP parsing. A couple of disadvantages of this approach are
that you don’t always get access to the raw data stream and that web servers sometimes don’t
process data in the way a security-conscious tool would. In the case of Apache, the hybrid
approach works reasonably well, with a few minor issues:

Request line and headers are NUL-terminated
This is normally not a problem, because what Apache doesn’t see cannot harm any
module or application. In some very rare cases, however, the purpose of the NUL-byte
evasion is to hide things, and this Apache behavior only helps with the hiding.

Request header transformation
Apache will canonicalize request headers, combining multiple headers that use the
same name and collapsing those that span two or more lines. The transformation may
make it difficult to detect subtle signs of evasion, but in practice this hasn’t been a
problem yet.

10 Chapter 1: Introduction

Quick request handling
Apache will handle some requests quickly, leaving ModSecurity unable to do anything
but notice them in the logging phase. Invalid HTTP requests, in particular, will be re-
jected by Apache without ModSecurity having a say.

No access to some response headers
Because of the way Apache works, the Server and Date response headers are invisible
to ModSecurity; they cannot be inspected or logged.

Main Areas of Functionality
The functionality offered by ModSecurity falls roughly into four areas:

Parsing
ModSecurity tries to make sense of as much data as available. The supported data for-
mats are backed by security-conscious parsers that extract bits of data and store them
for use in the rules.

Buffering
In a typical installation, both request and response bodies will be buffered. This means
that ModSecurity usually sees complete requests before they are passed to the applica-
tion for processing, and complete responses before they are sent to clients. Buffering
is an important feature, because it is the only way to provide reliable blocking. The
downside of buffering is that it requires additional RAM to store the request and re-
sponse body data.

Logging
Full transaction logging (also referred to as audit logging) is a big part of what ModSe-
curity does. This feature allows you to record complete HTTP traffic, instead of just
rudimentary access log information. Request headers, request body, response header,
response body—all those bits will be available to you. It is only with the ability to see
what is happening that you will be able to stay in control.

Rule engine
The rule engine builds on the work performed by all other components. By the time
the rule engine starts operating, the various bits and pieces of data it requires will all be
prepared and ready for inspection. At that point, the rules will take over to assess the
transaction and take actions as necessary.

Note
There’s one thing ModSecurity purposefully avoids to do: as a matter of design, Mod-
Security does not support data sanitization. I don’t believe in sanitization, purely be-
cause I believe that it is too difficult to get right. If you know for sure that you are be-
ing attacked (as you have to before you can decide to sanitize), then you should refuse

What Rules Look Like 11

to process the offending requests altogether. Attempting to sanitize merely opens a
new battlefield where your attackers don’t have anything to lose, but everything to
win. You, on the other hand, don’t have anything to win, but everything to lose.

What Rules Look Like
Everything in ModSecurity revolves around two things: configuration and rules. The
configuration tells ModSecurity how to process the data it sees; the rules decide what to do
with the processed data. Although it is too early to go into how the rules work, I will show
you a quick example here just to give you an idea what they look like.

For example:

SecRule ARGS "<script>" log,deny,status:404

Even without further assistance, you can probably recognize the part in the rule that specifies
what we wish to look for in input data (<script>). Similarly, you will easily figure out what will
happen if we do find the desired pattern (log,deny,status:404). Things will become more
clear if I tell you about the general rule syntax, which is the following:

SecRule VARIABLES OPERATOR ACTIONS

The three parts have the following meanings:

1. The VARIABLES part tells ModSecurity where to look. The ARGS variable, used in the ex-
ample, means all request parameters.

2. The OPERATOR part tells ModSecurity how to look. In the example, we have a regular
expression pattern, which will be matched against ARGS.

3. The ACTIONS part tells ModSecurity what to do on a match. The rule in the example
gives three instructions: log problem, deny transaction and use the status 404 for the
denial (status:404).

I hope you are not disappointed with the simplicity of this first rule. I promise you that by
combining the various facilities offered by ModSecurity, you will be able to write very useful
rules that implement complex logic where necessary.

Transaction Lifecycle
In ModSecurity, every transaction goes through five steps, or phases. In each of the phases,
ModSecurity will do some work at the beginning (e.g., parse data that has become available),
invoke the rules specified to work in that phase, and perhaps do a thing or two after the phase
rules have finished. At first glance, it may seem that five phases are too many, but there’s a
reason why each of the phases exist. There is always one thing, sometimes several, that can
only be done at a particular moment in the transaction lifecycle.

12 Chapter 1: Introduction

Request headers (1)
The request headers phase is the first entry point for ModSecurity. The principal pur-
pose of this phase is to allow rule writers to assess a request before the costly request
body processing is undertaken. Similarly, there is often a need to influence how Mod-
Security will process a request body, and this phase is the place to do it. For example,
ModSecurity will not parse an XML request body by default, but you can instruct it do
so by placing the appropriate rules into phase 1. (If you care about XML processing, it
is described in detail in Chapter 13, Handling XML).

Request body (2)
The request body phase is the main request analysis phase and takes place immediately
after a complete request body has been received and processed. The rules in this phase
have all the available request data at their disposal.

Response headers (3)
The response headers phase takes place after response headers become available, but
before a response body is read. The rules that need to decide whether to inspect a re-
sponse body should run in this phase.

Response body (4)
The response body phase is the main response analysis phase. By the time this phase
begins, the response body will have been read, with all its data available for the rules
to make their decisions.

Logging (5)
The logging phase is special in more ways than one. First, it’s the only phase from which
you cannot block. By the time this phase runs, the transaction will have finished, so
there’s little you can do but record the fact that it happened. Rules in this phase are run
to control how logging is done.

Lifecycle Example
To give you a better idea what happens on every transaction, we’ll examine a detailed debug log
of one POST transaction. I’ve deliberately chosen a transaction type that uses the request body
as its principal method to transmit data, because following such a transaction will exercise
most parts of ModSecurity. To keep things relatively simple, I used a configuration without
any rules, removed some of the debug log lines for clarity, and removed the timestamps and
some additional metadata from each line.

Note
Please do not try to understand everything about the logs at this point. The idea
is just to get a general feel about how ModSecurity works, and to introduce you to
debug logs. Very quickly after starting to use ModSecurity, you will discover that the
debug logs will be an indispensable rule writing and troubleshooting tool.

Transaction Lifecycle 13

The transaction I am using as an example in this section is very straightforward. I made a point
of placing request data in two different places, parameter a in the query string and parameter
b in the request body, but there is little else of interest in the request:

POST /?a=test HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 6

b=test

The response is entirely unremarkable:

HTTP/1.1 200 OK
Date: Sun, 17 Jan 2010 00:13:44 GMT
Server: Apache
Content-Length: 12
Connection: close
Content-Type: text/html

Hello World!

ModSecurity is first invoked by Apache after request headers become available, but before a
request body (if any) is read. First comes the initialization message, which contains the unique
transaction ID generated by mod_unique_id. Using this information, you should be able to
pair the information in the debug log with the information in your access and audit logs.
At this point, ModSecurity will parse the information on the request line and in the request
headers. In this example, the query string part contains a single parameter (a), so you will see
a message documenting its discovery. ModSecurity will then create a transaction context and
invoke the REQUEST_HEADERS phase:

[4] Initialising transaction (txid SopXW38EAAE9YbLQ).
[5] Adding request argument (QUERY_STRING): name "a", value "test"
[4] Transaction context created (dcfg 8121800).
[4] Starting phase REQUEST_HEADERS.

Assuming that a rule didn’t block the transaction, ModSecurity will now return control to
Apache, allowing other modules to process the request before control is given back to it.

In the second phase, ModSecurity will first read and process the request body, if it is present.
In the following example, you can see three messages from the input filter, which tell you
what was read. The fourth message tells you that one parameter was extracted from the re-
quest body. The content type used in this request (application/x-www-form-urlencoded) is
one of the types ModSecurity recognizes and parses automatically. Once the request body is
processed, the REQUEST_BODY rules are processed.

[4] Second phase starting (dcfg 8121800).

14 Chapter 1: Introduction

[4] Input filter: Reading request body.
[9] Input filter: Bucket type HEAP contains 6 bytes.
[9] Input filter: Bucket type EOS contains 0 bytes.
[5] Adding request argument (BODY): name "b", value "test"
[4] Input filter: Completed receiving request body (length 6).
[4] Starting phase REQUEST_BODY.

The filters that keep being mentioned in the logs are parts of ModSecurity that handle request
and response bodies:

[4] Hook insert_filter: Adding input forwarding filter (r 81d0588).
[4] Hook insert_filter: Adding output filter (r 81d0588).

There will be a message in the debug log every time ModSecurity sends a chunk of data to the
request handler, and one final message to say that there isn’t any more data in the buffers.

[4] Input filter: Forwarding input: mode=0, block=0, nbytes=8192 …
(f 81d2228, r 81d0588).
[4] Input filter: Forwarded 6 bytes.
[4] Input filter: Sent EOS.
[4] Input filter: Input forwarding complete.

Shortly thereafter, the output filter will start receiving data, at which point the
RESPONSE_HEADERS rules will be invoked:

[9] Output filter: Receiving output (f 81d2258, r 81d0588).
[4] Starting phase RESPONSE_HEADERS.

Once all the rules have run, ModSecurity will continue to store the response body in its buffers,
after which it will run the RESPONSE_BODY rules:

[9] Output filter: Bucket type MMAP contains 12 bytes.
[9] Output filter: Bucket type EOS contains 0 bytes.
[4] Output filter: Completed receiving response body (buffered full - 12 bytes).
[4] Starting phase RESPONSE_BODY.

Again, assuming that none of the rules blocked, the accumulated response body will be for-
warded to the client:

[4] Output filter: Output forwarding complete.

Finally, the logging phase will commence. The LOGGING rules will be run first to allow them
to influence logging, after which the audit logging subsystem will be invoked to log the trans-
action if necessary. A message from the audit logging subsystem will be the last transaction
message in the logs. In this example, ModSecurity tells us that it didn’t find anything of in-
terest in the transaction and that it sees no reason to log it:

[4] Initialising logging.

Transaction Lifecycle 15

[4] Starting phase LOGGING.
[4] Audit log: Ignoring a non-relevant request.

File Upload Example
Requests that contain files are processed slightly differently. The changes can be best under-
stood by again following the activity in the debug log:

[4] Input filter: Reading request body.
[9] Multipart: Boundary: ---------------------------2411583925858
[9] Input filter: Bucket type HEAP contains 256 bytes.
[9] Multipart: Added part header "Content-Disposition" "form-data; name=\"f\"; …
filename=\"eicar.com.txt\""
[9] Multipart: Added part header "Content-Type" "text/plain"
[9] Multipart: Content-Disposition name: f
[9] Multipart: Content-Disposition filename: eicar.com.txt
[4] Multipart: Created temporary file: …
/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF
[9] Multipart: Changing file mode to 0600: …
/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF
[9] Multipart: Added file part 9c870b8 to the list: name "f" file name …
"eicar.com.txt" (offset 140, length 68)
[9] Input filter: Bucket type EOS contains 0 bytes.
[4] Reqest body no files length: 96
[4] Input filter: Completed receiving request body (length 256).

In addition to seeing the multipart parser in action, you see ModSecurity creating a temporary
file (into which it will extract the upload) and adjusting its privileges to match the desired
configuration.

Then, at the end of the transaction, you will see the cleanup and the temporary file deleted:

[4] Multipart: Cleanup started (remove files 1).
[4] Multipart: Deleted file (part) …
"/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF"

The temporary file will not be deleted if ModSecurity decides to keep an uploaded file. Instead,
it will be moved to the storage area:

[4] Multipart: Cleanup started (remove files 0).
[4] Input filter: Moved file from …
"/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF" to …
"/opt/modsecurity/var/upload/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF".

In the example traces, you’ve observed an upload of a small file that was stored in RAM. When
large uploads take place, ModSecurity will attempt to use RAM at first, switching to on-disk
storage once it becomes obvious that the file is larger:

16 Chapter 1: Introduction

[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 1536 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 576 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[4] Input filter: Request too large to store in memory, switching to disk.

A new file will be created to store the entire raw request body:

[4] Input filter: Created temporary file to store request body: …
/opt/modsecurity/var/tmp//20090819-180105-Sowv0X8AAQEAACWAArs-request_body-4nZjqf
[4] Input filter: Wrote 129559 bytes from memory to disk.

This file is always deleted in the cleanup phase:

[4] Input filter: Removed temporary file: …
/opt/modsecurity/var/tmp//20090819-180105-Sowv0X8AAQEAACWAArs-request_body-4nZjqf

Impact on Web Server
The addition of ModSecurity will change how your web server operates. As with all Apache
modules, you pay for the additional flexibility and security ModSecurity gives you with in-
creased CPU and RAM consumption on your server. The exact amount will depend on your
configuration of ModSecurity and the usage of your server. Following is a detailed list of the
various activities that increase resource consumption:

• ModSecurity will add to the parsing already done by Apache, and that results in a slight
increase of CPU consumption.

• Complex parsers (e.g., XML) are more expensive.

• The handling of file uploads may require I/O operations. In some cases, inbound data
will be duplicated on disk.

• The parsing will add to the RAM consumption, because every extracted element (e.g.,
a request parameter) will need to be copied into its own space.

What Next? 17

• Request bodies and response bodies are usually buffered in order to support reliable
blocking.

• Every rule in your configuration will use some of the CPU time (for the operator) and
RAM (to transform input data before it can be analyzed).

• Some of the operators used in the rules (e.g., the regular expression operator) are
CPU-intensive.

• Full transaction logging is an expensive I/O operation.

In practice, this list is important because it keeps you informed; what matters is that you have
enough resources to support your ModSecurity needs. If you do, then it doesn’t matter how
expensive ModSecurity is. Also, what’s expensive to someone may not be to someone else. If
you don’t have enough resources to do everything you want with ModSecurity, you will need
to monitor the operation of your system and remove some of the functionality to reduce the
resource consumption. Virtually everything that ModSecurity does is configurable, so you
should have no problems doing that.

It is generally easier to run ModSecurity in reverse proxy mode, because then you usually have
an entire server (with its own CPU and RAM) to play with. In embedded mode, ModSecurity
will add to the processing already done by the web server, so this method is more challenging
on a busy server.

For what it’s worth, ModSecurity generally uses the minimal necessary resources to perform
the desired functions, so this is really a case of exchanging functionality for speed: if you want
to do more, you have to pay more.

What Next?
The purpose of this section is to map your future ModSecurity activities and help you deter-
mine where to go from here. Where you will go depends on what you want to achieve and
how much time you have to spend. A complete ModSecurity experience, so to speak, consists
of the following elements:

Installation and configuration
This is the basic step that all users must learn how to perform. The next three chapters
will teach you how to make ModSecurity operational, performing installation, general
configuration, and logging configuration. Once you are done with that, you need to
decide what you want to do with it. That’s what the remainder of the book is for.

Rule writing
Rule writing is an essential skill. You may currently view rules as a tool to use to de-
tect application security attacks. They are that, but they are also much more. In Mod-
Security, you write rules to find out more about HTTP clients (e.g., geolocation and
IP address reputation), perform long-term activity tracking (of IP addresses, sessions

18 Chapter 1: Introduction

and users, for example), implement policy decisions (use the available information to
make the decisions to warn or block), write virtual patches, and even to check on the
status of ModSecurity itself.

It is true that the attack detection rules are in a class of its own, but that’s mostly be-
cause, in order to write them successfully, you need to know so much about application
security. For that reason, many ModSecurity users generally focus on using third-party
rule sets for the attack detection. It’s a legitimate choice. Not everyone has the time
and inclination to become an application security expert. Even if you end up not using
any inspection rules whatsoever, the ability to write virtual patches is reason enough
to use ModSecurity.

Rule sets
The use of existing rule sets is the easiest way to get to the proverbial low hanging fruit:
invest small effort and reap big benefits. Traditionally, the main source of ModSecurity
rules has been the Core Rule Set project, now hosted with OWASP. On the other hand,
if you are keen to get your hands dirty, I can tell you that I draw great pleasure from
writing my own rules. It’s a great way to learn about application security. The only
drawback is that it requires a large time investment.

Remote logging and alert management GUI
ModSecurity is perfectly usable without a remote logging solution and without a GUI
(the two usually go together). Significant error messages are copied to Apache’s error
log. Complete transactions are usually logged to the audit log. With a notification sys-
tem in place, you will know when something happens, and you can visit the audit logs
to investigate. For example, many installations will divert Apache’s error log to a central
logging system (via syslog).

The process does become more difficult with more than one sensor to manage. Fur-
thermore, GUIs make the whole experience of monitoring much more pleasant. For
that reason you will probably seek to install one of the available remote centralization
tools and use their GUIs. The available options are listed in the Resources section, which
follows.

Resources
This section contains a list of assorted ModSecurity resources that can assist you in your work.

General Resources 19

Figure 2-1. The homepage of www.modsecurity.org

General Resources
The following resources are the bare essentials:

ModSecurity web site
ModSecurity’s web site is probably going to be your main source of information. You
should visit the web site from time to time, as well as subscribe to receive the updates
from the blog.

Official documentation
The official ModSecurity documentation is maintained in a wiki, but copies of it are
made for inclusion with every release.

Issue tracker
The ModSecurity issue tracker is the place you will want to visit for one of two reasons:
to report a problem with ModSecurity itself (e.g., when you find a bug) or to check out
the progress on the next (major or minor) version. Before reporting any problems, go
through the Support Checklist, which will help you assemble the information required

https://www.modsecurity.org
https://www.modsecurity.org/documentation/
https://www.modsecurity.org/tracker/
http://www.modsecurity.org/documentation/support-request-checklist.html

20 Chapter 1: Introduction

to help resolve your problem. Providing as much information as you can will help the
developers understand and replicate the problem, and provide a fix (or a workaround)
quickly.

Users’ mailing list
The users’ mailing list (mod-security-users@lists.sourceforge.net) is a general-purpose
mailing list where you can discuss ModSecurity. Feel free to ask questions, propose
improvements, and discuss ideas. That is the place where you’ll hear first about new
ModSecurity versions.

ModSecurity@Freshmeat
If you subscribe to the users’ mailing list, you will generally find out about new versions
of ModSecurity as soon as they are released. If you care only about version releases,
however, you may consider subscribing to the new version notifications at the ModSe-
curity page at Freshmeat.

Core Rules mailing list
Starting with version 2, the Core Rules project is part of OWASP, and has a separate
mailing list (owasp-modsecurity-core-rule-set@lists.owasp.org).

Developer Resources
If you are interested in development work, you will need these:

Developers’ mailing list
The developers’ mailing list is generally a lonely place, but if you do decide to start
playing with the ModSecurity source code, this list is the place to go to discuss your
work.

Source code access
The source code of ModSecurity is hosted at a Subversion repository at SourceForge,
which allows you to access it directly or through a web-based user interface.

FishEye interface
If you are not looking to start developing immediately but still want to have a look at
the source code of ModSecurity, I recommend that you use the ModSecurity FishEye
interface, which is much better than the stock interface available at SourceForge.

AuditConsole
Using ModSecurity entirely from the command line is possible but not much fun. The
configuration part is not a problem, but reviewing logs is difficult without higher-level tools.
Your best choice for a log centralization and GUI tool is AuditConsole, which is built by Chris-
tian Bockermann and hosted on www.jwall.org.

http://lists.sourceforge.net/lists/listinfo/mod-security-users
http://freshmeat.net/projects/modsecurity
http://freshmeat.net/projects/modsecurity
http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.owasp.org
https://lists.sourceforge.net/lists/listinfo/mod-security-developers
http://sourceforge.net/projects/mod-security/develop
https://www.modsecurity.org/fisheye/
https://www.modsecurity.org/fisheye/

Summary 21

AuditConsole is free and provides the following features:

• Event centralization from multiple remote ModSecurity installations

• Event storage and retrieval

• Support for multiple user accounts and support for different views

• Event tagging

• Event rules, which are executed in the console

Summary
This chapter was your ModSecurity orientation. I introduced ModSecurity at a high level,
discussed what it is and what it isn’t, and what it can do and what it cannot. I also gave you a
taste of what ModSecurity is like and described common usage scenarios, as well as covered
some of the interesting parts of its operation.

The foundation you now have should be enough to help you set off on a journey of ModSe-
curity exploration. The next chapter discusses installation.

To purchase the full book, go to:

https://www.feistyduck.com

FINE TECHNOLOGY BOOKS

MODSECURITY
HANDBOOK
The Complete Guide to the Popular
Open Source Web Application Firewall

Ivan Ristiæ

Everything you need to know
about ModSecurity, in one place

	Pages from modsecurity-handbook-dev
	ModSecurity_Handbook
	ModSecurity Handbook
	Table of Contents
	Preface
	Scope and Audience
	Contents
	Updates
	Feedback
	About the Author
	About the Technical Reviewer
	Acknowledgments

	Part I: User Guide
	Chapter 1: Introduction
	Brief History of ModSecurity
	What Can ModSecurity Do?
	Guiding Principles
	Deployment Options
	Is Anything Missing?

	Getting Started
	Hybrid Nature of ModSecurity
	Main Areas of Functionality
	What Rules Look Like
	Transaction Lifecycle
	Lifecycle Example
	File Upload Example

	Impact on Web Server
	What Next?

	Resources
	General Resources
	Developer Resources
	AuditConsole

	Summary

	Chapter 2: Installation
	Installation from Source
	Downloading Releases
	Downloading from Repository
	Installation on Unix
	Compile-Time Options
	Custom-Compiled Apache Installations

	Installation from Binaries
	Fedora Core, CentOS, and Red Hat Enterprise Linux
	Debian and Ubuntu

	Installation on Windows
	Summary

	Chapter 3: Conﬁguration
	Folder Locations
	Conﬁguration Layout
	Adding ModSecurity to Apache
	Powering Up
	Request Body Handling
	Response Body Handling
	Filesystem Locations
	File Uploads
	Debug Log
	Audit Log
	Miscellaneous Options
	Default Rule Match Policy
	Handling Processing Errors
	Verifying Installation
	Summary

	Chapter 4: Logging
	Debug Log
	Debugging in Production

	Audit Log
	Audit Log Entry Example
	Concurrent Audit Log

	Remote Logging
	Conﬁguring Remote Logging
	Activating Remote Logging
	Troubleshooting Remote Logging

	File Upload Interception
	Storing Files
	Inspecting Files
	Integrating with ClamAV

	Advanced Logging Conﬁguration
	Increasing Logging from a Rule
	Dynamically Altering Logging Conﬁguration
	Removing Sensitive Data from Audit Logs
	Selective Audit Logging

	Summary

	Chapter 5: Rule Language Overview
	Anatomy of a Rule
	Variables
	Request Variables
	Server Variables
	Response Variables
	Miscellaneous Variables
	Parsing Flags
	Collections
	Time Variables

	Operators
	String Matching Operators
	Numerical Operators
	Validation Operators
	Miscellaneous Operators

	Actions
	Disruptive Actions
	Flow Actions
	Metadata Actions
	Variable Actions
	Logging Actions
	Special Actions
	Miscellaneous Actions

	Summary

	Chapter 6: Rule Language Tutorial
	Introducing Rules
	Working with Variables
	Combining Rules into Chains
	Operator Negation
	Variable Counting
	Using Actions
	Understanding Action Defaults
	Actions in Chained Rules
	Unconditional Rules

	Using Transformation Functions
	Blocking
	Changing Rule Flow
	Smarter Skipping
	If-Then-Else

	Controlling Logging
	Capturing Data
	Variable Manipulation
	Variable Expansion
	Recording Data in Alerts
	Adding Metadata
	Embedded vs. Reverse Proxy Mode
	Summary

	Chapter 7: Rule Conﬁguration
	Apache Conﬁguration Syntax
	Breaking Lines
	Directives and Parameters
	Spreading Conﬁguration Across Files
	Container Directives
	Conﬁguration Contexts
	Conﬁguration Merging

	Conﬁguration and Rule Inheritance
	Conﬁguration Inheritance
	Rule Inheritance
	Location-Speciﬁc Conﬁguration Restrictions
	SecDefaultAction Inheritance Anomaly

	Rule Manipulation
	Removing Rules at Conﬁgure Time
	Updating Rule Actions at Conﬁgure Time
	Updating Rule Targets at Conﬁgure Time
	Removing Rules at Runtime
	Updating Rule Targets at Runtime

	Conﬁguration Tips
	Summary

	Chapter 8: Persistent Storage
	Manipulating Collection Records
	Creating Records
	Application Namespaces
	Initializing Records
	Controlling Record Longevity
	Deleting Records
	Detecting Very Old Records

	Collection Variables
	Built-in Variables
	Variable Expiry
	Variable Value Depreciation

	Implementation Details
	Retrieving Records
	Storing a Collection
	Record Limits

	Applied Persistence
	Periodic Alerting
	Denial of Service Attack Detection
	Brute Force Attack Detection

	Session Management
	Initializing Sessions
	Blocking Sessions
	Forcing Session Regeneration
	Restricting Session Lifetime
	Detecting Session Hijacking

	User Management
	Detecting User Sign-In
	Detecting User Sign-Out

	Summary

	Chapter 9: Practical Rule Writing
	Whitelisting
	Whitelisting Theory
	Whitelisting Mechanics
	Granular Whitelisting
	Complete Whitelisting Example

	Virtual Patching
	Vulnerability versus Exploit Patching
	Failings of Exploit Detection
	Impedance Mismatch
	Preferred Virtual Patching Approach

	IP Address Reputation and Blacklisting
	IP Address Blocking
	Geolocation
	Real-Time Block Lists
	Local Reputation Management

	Integration with Other Apache Modules
	Conditional Logging
	Header Manipulation
	Securing Session Cookies

	Advanced Blocking
	Immediate Blocking
	Keeping Detection and Blocking Separate
	User-Friendly Blocking
	External Blocking
	Honeypot Diversion
	Delayed Blocking
	Score-Based Blocking

	Making the Most of Regular Expressions
	How ModSecurity Compiles Patterns
	Changing How Patterns Are Compiled
	Common Pattern Problems
	Regular Expression Denial of Service
	Resources

	Working with Rule Sets
	Deploying Rule Sets
	Dealing with False Positives
	Upgrading to New Releases

	Writing Rules for Distribution
	Resources for Rule Writers

	Summary

	Chapter 10: Performance
	Understanding Performance
	Top 10 Performance Rules

	Performance Tracking
	Performance Metrics
	Performance Logging
	Real-Time Performance Monitoring

	Load Testing
	Rule Benchmarking
	Preparation
	Test Data Selection
	Performance Baseline

	Optimizing Pattern Matching
	Rule per Keyword Approach
	Combined Regular Expression Pattern
	Optimized Regular Expression Pattern
	Parallel Pattern Matching
	Test Results

	Summary

	Chapter 11: Content Injection
	Writing Content Injection Rules
	Communicating Back to the Server
	Interrupting Page Rendering
	Using External JavaScript Code

	Communicating with Users
	Summary

	Chapter 12: Writing Rules in Lua
	Rule Language Integration
	Lua Rules Skeleton
	Accessing Variables
	Setting Variables
	Logging
	Lua Actions
	Summary

	Chapter 13: Handling XML
	XML Parsing
	DTD Validation
	XML Schema Validation
	XML Namespaces
	XPath Expressions
	XPath and Namespaces
	XML Inspection Framework
	Summary

	Chapter 14: Extending Rule Language
	Extension Template
	Adding a Transformation Function
	Adding an Operator
	Adding a Variable
	Adding a Request Body Processor
	Summary

	Part II: Reference Manual
	Chapter 15: Directives
	SecAction
	SecArgumentSeparator
	SecAuditEngine
	SecAuditLog
	SecAuditLog2
	SecAuditLogDirMode
	SecAuditLogFileMode
	SecAuditLogParts
	SecAuditLogRelevantStatus
	SecAuditLogStorageDir
	SecAuditLogType
	SecCacheTransformations
	SecChrootDir
	SecCollectionTimeout
	SecComponentSignature
	SecContentInjection
	SecCookieFormat
	SecDataDir
	SecDebugLog
	SecDebugLogLevel
	SecDefaultAction
	SecDisableBackendCompression
	SecGeoLookupDb
	SecGsbLookupDb
	SecGuardianLog
	SecInterceptOnError
	SecMarker
	SecPcreMatchLimit
	SecPcreMatchLimitRecursion
	SecPdfProtect
	SecPdfProtectMethod
	SecPdfProtectSecret
	SecPdfProtectTimeout
	SecPdfProtectTokenName
	SecReadStateLimit
	SecRequestBodyAccess
	SecRequestBodyLimit
	SecRequestBodyLimitAction
	SecRequestBodyNoFilesLimit
	SecRequestBodyInMemoryLimit
	SecResponseBodyLimit
	SecResponseBodyLimitAction
	SecResponseBodyMimeType
	SecResponseBodyMimeTypesClear
	SecResponseBodyAccess
	SecRule
	SecRuleInheritance
	SecRuleEngine
	SecRulePerfTime
	SecRuleRemoveById
	SecRuleRemoveByMsg
	SecRuleRemoveByTag
	SecRuleScript
	SecRuleUpdateActionById
	SecRuleUpdateTargetById
	SecSensorId
	SecServerSignature
	SecStreamInBodyInspection
	SecStreamOutBodyInspection
	SecTmpDir
	SecUploadDir
	SecUploadFileLimit
	SecUploadFileMode
	SecUploadKeepFiles
	SecWebAppId
	SecUnicodeCodePage
	SecUnicodeMapFile
	SecWriteStateLimit

	Chapter 16: Variables
	ARGS
	ARGS_COMBINED_SIZE
	ARGS_GET
	ARGS_GET_NAMES
	ARGS_NAMES
	ARGS_POST
	ARGS_POST_NAMES
	AUTH_TYPE
	DURATION
	ENV
	FILES
	FILES_COMBINED_SIZE
	FILES_NAMES
	FILES_SIZES
	FILES_TMPNAMES
	GEO
	HIGHEST_SEVERITY
	INBOUND_DATA_ERROR
	MATCHED_VAR
	MATCHED_VAR_NAME
	MATCHED_VARS
	MATCHED_VARS_NAMES
	MODSEC_BUILD
	MULTIPART_CRLF_LF_LINES
	MULTIPART_INVALID_PART
	MULTIPART_STRICT_ERROR
	MULTIPART_UNMATCHED_BOUNDARY
	OUTBOUND_DATA_ERROR
	PATH_INFO
	PERF_ALL
	PERF_COMBINED
	PERF_GC
	PERF_LOGGING
	PERF_PHASE1
	PERF_PHASE2
	PERF_PHASE3
	PERF_PHASE4
	PERF_PHASE5
	PERF_RULES
	PERF_SREAD
	PERF_SWRITE
	QUERY_STRING
	REMOTE_ADDR
	REMOTE_HOST
	REMOTE_PORT
	REMOTE_USER
	REQBODY_ERROR
	REQBODY_ERROR_MSG
	REQBODY_PROCESSOR
	REQBODY_PROCESSOR_ERROR
	REQBODY_PROCESSOR_ERROR_MSG
	REQUEST_BASENAME
	REQUEST_BODY
	REQUEST_BODY_LENGTH
	REQUEST_COOKIES
	REQUEST_COOKIES_NAMES
	REQUEST_FILENAME
	REQUEST_HEADERS
	REQUEST_HEADERS_NAMES
	REQUEST_LINE
	REQUEST_METHOD
	REQUEST_PROTOCOL
	REQUEST_URI
	REQUEST_URI_RAW
	RESPONSE_BODY
	RESPONSE_CONTENT_LENGTH
	RESPONSE_CONTENT_TYPE
	RESPONSE_HEADERS
	RESPONSE_HEADERS_NAMES
	RESPONSE_PROTOCOL
	RESPONSE_STATUS
	RULE
	SCRIPT_BASENAME
	SCRIPT_FILENAME
	SCRIPT_GID
	SCRIPT_GROUPNAME
	SCRIPT_MODE
	SCRIPT_UID
	SCRIPT_USERNAME
	SERVER_ADDR
	SERVER_NAME
	SERVER_PORT
	SESSION
	SESSIONID
	STREAM_INPUT_BODY
	STREAM_OUTPUT_BODY
	TIME
	TIME_DAY
	TIME_EPOCH
	TIME_HOUR
	TIME_MIN
	TIME_MON
	TIME_SEC
	TIME_WDAY
	TIME_YEAR
	TX
	UNIQUE_ID
	URLENCODED_ERROR
	USERAGENT_IP
	USERID
	WEBAPPID
	WEBSERVER_ERROR_LOG
	XML

	Chapter 17: Transformation Functions
	base64Decode
	base64DecodeExt
	base64Encode
	cmdLine
	compressWhitespace
	cssDecode
	decodeBase64Ext
	escapeSeqDecode
	hexDecode
	hexEncode
	htmlEntityDecode
	jsDecode
	length
	lowercase
	md5
	none
	normalisePath
	normalisePathWin
	normalizePath
	normalizePathWin
	parityEven7bit
	parityOdd7bit
	parityZero7bit
	removeComments
	removeCommentsChar
	removeNulls
	removeWhitespace
	replaceComments
	replaceNulls
	urlDecode
	urlDecodeUni
	urlEncode
	utf8toUnicode
	sha1
	sqlHexDecode
	trimLeft
	trimRight
	trim

	Chapter 18: Actions
	accuracy
	allow
	append
	auditlog
	block
	capture
	chain
	ctl
	deny
	deprecatevar
	drop
	exec
	expirevar
	id
	initcol
	log
	logdata
	maturity
	msg
	multiMatch
	noauditlog
	nolog
	pass
	pause
	phase
	prepend
	proxy
	redirect
	rev
	sanitiseArg
	sanitiseMatched
	sanitiseMatchedBytes
	sanitiseRequestHeader
	sanitiseResponseHeader
	sanitizeArg
	sanitizeMatched
	sanitizeMatchedBytes
	sanitizeRequestHeader
	sanitizeResponseHeader
	severity
	setuid
	setsid
	setenv
	setvar
	skip
	skipAfter
	status
	t
	tag
	ver
	xmlns

	Chapter 19: Operators
	beginsWith
	contains
	endsWith
	eq
	ge
	geoLookup
	gsbLookup
	gt
	inspectFile
	ipMatch
	ipMatchF
	ipMatchFromFile
	le
	lt
	pm
	pmf
	pmFromFile
	rbl
	rsub
	rx
	streq
	validateByteRange
	validateDTD
	validateSchema
	validateUrlEncoding
	validateUtf8Encoding
	verifyCC
	verifyCPF
	verifySSN
	within

	Chapter 20: Data Formats
	Alerts
	Alert Action Description
	Alert Justiﬁcation Description
	Metadata
	Escaping
	Alerts in the Apache Error Log
	Alerts in Audit Logs

	Audit Log
	Parts
	Audit Log Header (A)
	Request Headers (B)
	Request Body (C)
	Attempted Response Headers (D)
	Attempted Response Body (E)
	Response Headers (F)
	Response Body (G)
	Audit Log Trailer (H)
	Action
	Apache-Error
	Engine-Mode
	Message
	Producer
	Response-Body-Transformed
	Rules-Performance-Info
	Sanitised-Args
	Sanitised-Request-Headers
	Sanitised-Response-Headers
	Server
	Stopwatch
	Stopwatch2
	WebApp-Info

	Reduced Multipart Request Body (I)
	Multipart Files Information (J)
	Matched Rules (K)
	Audit Log Footer (Z)

	Storage Formats
	Serial Audit Log Format
	Concurrent Audit Log Format

	Remote Logging Protocol
	Request Headers Information

	Index

