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Preface
I didn’t mean to write this book, I really didn’t. Several months ago I started to work on the
second edition of Apache Security, deciding to rewrite the ModSecurity chapter first. A funny
thing happened: the ModSecurity chapter kept growing and growing. It hit 40 pages. It hit 80
pages. And then I realized that I was nowhere near the end. That was all the excuse I needed
to put Apache Security aside—for the time being—and focus on a ModSecurity book instead.

I admit that I couldn’t be happier, although it was an entirely emotional decision. After spend-
ing years working on ModSecurity, I knew it had so much more to offer, yet the documenta-
tion wasn’t there to show the way. But it is now, I am thrilled to say. The package is complete:
you have an open source tool that is able to compete with the best commercial products out
there, and you have the documentation to match.

With this book I am also trying something completely new—continuous writing and publish-
ing. You see, I had published my first book with a major publisher, but I never quite liked the
process. It was too slow. You write a book pretty much in isolation, you publish it, and then
you never get to update it. I was never happy with that, and that’s why I decided to do things
differently this time.

Simply said, ModSecurity Handbook is a living book. Every time I make a change, a new digital
version is made available to you. If I improve the book based on your feedback, you get the
improvements as soon as I make them. If you prefer a paper book, you can still get it of course,
through the usual channels. Although I can’t do anything about updating the paper version of
the book, we can narrow the gap slightly by pushing out book updates even between editions.
That means that, even when you get the paper version (as most people seem to prefer to), it
is never going to be too much behind the digital version.

Scope and Audience
This book exists to document every single aspect of ModSecurity and to teach you how to use
it. It is as simple as that. ModSecurity is a fantastic tool, but it is let down by the poor quality of
the documentation. As a result, the adoption is not as good as it could be; application security
is difficult on its own and you don’t really want to struggle with poorly documented tools
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too. I felt a responsibility to write this book and show how ModSecurity can compete with
commercial web application firewalls, in spite of being the underdog. Now that the book is
finished, I feel I’ve done a proper job with ModSecurity.

If you are interested in application security, you are my target audience. Even if you’re not
interested in application security as such, and only want to deal with your particular problems
(it’s difficult to find a web application these days that’s without security problems), you are
still my target audience.

You don’t need to know anything about ModSecurity to get started. If you just follow the book
from the beginning, you will find that every new chapter advances a notch. Even if you are a
long-time ModSecurity user, I believe you will benefit from a fresh start. I will let you in on
a secret—I have. There’s nothing better for completing one’s knowledge than having to write
about a particular topic. I suspect that long-time ModSecurity users will especially like the
second half of the book, which discusses many advanced topics and often covers substantial
new ground.

But, there is only so much a book can cover. ModSecurity Handbook assumes you already know
how to operate the Apache web server. You don’t have to be an expert, but you do need to know
how to install, configure, and run it. If you don’t know how to do that already, you should
get my first book, Apache Security. I wrote it five years ago, but it’s still remarkably fresh.
(Ironically, it is only the ModSecurity chapter in Apache Security that is completely obsolete.
But that’s why you have this book.)

On the other end, ModSecurity Handbook will teach you how to use ModSecurity and write
good rules, but it won’t teach you application security. In my earlier book, Apache Security,
I included a chapter that served as an introduction to application security, but, even then, I
was barely able to mention all that I wanted, and the chapter was still the longest chapter in
the book. Since then, the application security field has exploded and now you have to read
several books and dozens of research papers just to begin to understand it.

Contents
Once you go past the first chapter, which is the introduction to the world of ModSecurity, the
rest of the book consists of roughly three parts. In the first part, you learn how to install and
configure ModSecurity. In the second part, you learn how to write rules. As for the third part,
you could say that it contains the advanced stuff—a series of chapters each dedicated to one
important aspect of ModSecurity.

At the end of the book is the official reference documentation, reproduced with the permission
from Breach Security.

Chapter 1, Introduction, is the foundation of the book. It contains a gentle introduction to
ModSecurity, and then explains what it can and cannot do. The main usage scenarios are listed
to help you identify where you can use ModSecurity in your environment. The middle of the
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chapter goes under the hood of ModSecurity to give you an insight into how it works, and
finishes with an overview of the key areas you will need to learn in order to deploy it. The
end of the chapter lists a series of resources (sites, mailing lists, tools, etc.) that you will find
useful in your day-to-day work.

Chapter 2, Installation, teaches you how to install ModSecurity, either compiling from source
(using one of the released versions or downloading straight from the development repository),
or by using one of the available binary packages, on Unix and Windows alike.

Chapter 3, Configuration, explains how each of the available configuration directives should
be used. By the end of the chapter, you get a complete overview of the configuration options
and will have a solid default configuration for all your ModSecurity installations.

Chapter 4, Logging, deals with the logging features of ModSecurity. The two main logging
facilities explained are the debug log, which is useful in rule writing, and the audit log, which
is used to log complete transaction data. Special attention is given to remote logging, which
you’ll need to manage multiple sensors, or to use any of the user-friendly tools for alert man-
agement. File interception and validation is covered in detail. The chapter ends with an ad-
vanced section of logging, which explains how to selectively log traffic, and how to use the
sanitation feature to prevent sensitive data from being stored in the logs.

Chapter 5, Rule Language Overview, is the first of the three chapters that deal with rule writing.
This chapter contains an overview of the entire rule language, which will get you started as
well as give you a feature map to which you can return whenever you need to deal with a new
problem.

Chapter 6, Rule Language Tutorial, teaches how to write rules, and how to write them well.
It’s a very fun chapter that adopts a gradual approach, introducing the features one by one.
By the end of the chapter, you will know everything about writing individual rules.

Chapter 7, Rule Configuration, completes the topic of rule writing. It takes a step back to view
the rules as the basic block for policy building. You first learn how to put a few rules together
and add them to the configuration, as well as how the rules interact with Apache’s ability to
use different configuration contexts for different sites and different locations within sites. The
chapter spends a great deal of time making sure you take advantage of the inheritance feature,
which helps make ModSecurity configuration much easier to maintain.

Chapter 8, Persistent Storage, is quite possibly the most exciting chapter in the book. It de-
scribes the persistent storage mechanism, which enables you to track data and events over
time and thus opens up an entire new dimension of ModSecurity. This chapter is also the
most practical one in the entire book. It gives you the rules for periodic alerting, brute force
attack detection, denial of service attack detection, session and user management, fixing ses-
sion management weaknesses, and more.
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Chapter 9, Practical Rule Writing, is, as the name suggests, a tour through many of the practical
activities you will perform in your day-to-day work. The chapter starts by covering whitelist-
ing, virtual patching, IP address reputation and blacklisting. You then learn how to integrate
with other Apache modules, with practical examples that show how to perform conditional
logging and fix insecure session cookies. Special attention is given to the topic of blocking;
several approaches, starting from the simple to the very sophisticated, are presented. A section
on regular expressions gets you up to speed with the most important ModSecurity operator.
The chapter ends with a discussion of rule sets, discussing how to use the rule sets others have
written, as well as how to write your own.

Chapter 10, Performance, covers several performance-related topics. It opens with an overview
of where ModSecurity usually spends its time, a list of common configuration mistakes that
should be avoided, and a list of approaches that result in better performance. The second part
of the chapter describes how to monitor ModSecurity performance in production. The third
part tests the publicly available rule sets in order to give you a taste of what they are like, as
well as document a methodology you can use to test your own rules. The chapter then moves
to rule set benchmarking, which is an essential part of the process of rule writing. The last
part of this chapter gives very practical advice on how to use regular expressions and parallel
matching, comparing several approaches and explaining when to use them.

Chapter 11, Content Injection, explains how to reach from ModSecurity, which is a server-side
tool, right into a user’s browser and continue with the inspection there. This feature makes it
possible to detect the attacks that were previously thought to be undetectable by a server-side
tool, for example DOM-based cross-site scripting attacks. Content injection also comes in
handy if you need to communicate with your users—for example, to tell them that they have
been attacked.

Chapter 12, Writing Rules in Lua, discusses a gem of a feature: writing rules using the Lua
programming language. The rule language of ModSecurity is easy to use and can get a lot
done, but for the really difficult problems you may need the power of a proper programming
language. In addition, you can use Lua to react to events, and it is especially useful when
integrating with external systems.

Chapter 13, Handling XML, covers the XML capabilities of ModSecurity in detail. You get
to learn how to validate XML using either DTDs or XML Schemas, and how to combine
XPath expressions with the other features ModSecurity offers to perform both whitelist- and
blacklist-based validation. The XML features of ModSecurity have traditionally been poorly
documented; here you will find details never covered before. The chapter ends with an XML
validation framework you can easily adapt for your needs.

Chapter 14, Extending Rule Language, discusses how you can extend ModSecurity to imple-
ment new functionality. It gives several step-by-step examples, explaining how to implement
a transformation function, an operator, and a variable. Of course, with ModSecurity being
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open source, you can extend it directly at any point, but when you use the official APIs, you
avoid making a custom version of ModSecurity (which is generally time consuming because
it prevents upgrades).

Updates
If you purchased this book directly from Feisty Duck, your purchase includes access to newer
digital versions of the book. Updates are made automatically after I update the manuscript,
which I keep in DocBook format in a Subversion repository. At the moment, there is a script
that runs every hour, and rebuilds the book when necessary. Whenever you visit your personal
digital download link, you get the most recent version of the book.

I use a dedicated Twitter account (@modsecuritybook) to announce relevant changes I make
to the book. By following that account you’ll find out about the improvements pretty much
as they happen. You can also follow my personal Twitter account (@ivanristic) or subscribe
to my blog, if you are about computer security in general.

In the first two years of its life, I kept ModSecurity Handbook up-to-date with every ModSe-
curity release. There was a full revision in February 2012, which made the book essentially
as good and as current as it was on day of the first release back in 2010. Don’t take my past
performance as a guarantee of what is going to happen in the future, however. At the launch
in 2010 I offered a guarantee that the book will be kept up-to-date for at least a year from your
purchase. I dropped that promise at the end of 2011, because I could see the possibility that
I would stop with the updates at some point. I will keep my promise until the end of 2012,
but I don’t know what will happen after that.

Feedback
To get in touch with me please write to ivanr@webkreator.com. I would like to hear from you
very much, because I believe that a book can fulfill its potential only through the interaction
among its author(s) and the readers. Your feedback is particularly important when a book is
continuously updated, like this one is. When I change the book as a result of your feedback,
all the changes are immediately delivered back to you. There is no more waiting for years to
see the improvements!

About the Author
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to the web application firewall field and the development of ModSecurity, the open source
web application firewall. He is also the author of Apache Security, a comprehensive security
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This part, with its 14 chapters, constitutes the main body of the book. The first chapter is the
introduction to ModSecurity and your map to the rest of the book. The remaining chapters fall into
roughly four groups: installation and configuration, rule writing, practical work, and advanced
topics.



3

1 Introduction
ModSecurity is a tool that will help you secure your web applications. No, scratch that. Actu-
ally, ModSecurity is a tool that will help you sleep better at night, and I will explain how. I usu-
ally call ModSecurity a web application firewall (WAF), because that’s the generally accepted
term to refer to the class of products that are specifically designed to secure web applications.
Other times I will call it an HTTP intrusion detection tool, because I think that name better
describes what ModSecurity does. Neither name is entirely adequate, yet we don’t have a bet-
ter one. Besides, it doesn’t really matter what we call it. The point is that web applications—
yours, mine, everyone’s—are terribly insecure on average. We struggle to keep up with the
security issues and need any help we can get to secure them.

The idea to write ModSecurity came to me during one of my sleepless nights—I couldn’t sleep
because I was responsible for the security of several web-based products. I could see how most
web applications were slapped together with little time spent on design and little time spent
on understanding the security issues. Furthermore, not only were web applications insecure,
but we had no idea how insecure they were or if they were being attacked. Our only eyes were
the web server access and error logs, and they didn’t say much.

ModSecurity will help you sleep better at night because, above all, it solves the visibility prob-
lem: it lets you see your web traffic. That visibility is key to security: once you are able to see
HTTP traffic, you are able to analyze it in real time, record it as necessary, and react to the
events. The best part of this concept is that you get to do all of that without actually touch-
ing web applications. Even better, the concept can be applied to any application—even if you
can’t access the source code.

Brief History of ModSecurity
Like many other open source projects, ModSecurity started out as a hobby. Software develop-
ment had been my primary concern back in 2002, when I realized that producing secure web
applications is virtually impossible. As a result, I started to fantasize about a tool that would
sit in front of web applications and control the flow of data in and out. The first version was
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released in November 2002, but a few more months were needed before the tool became use-
ful. Other people started to learn about it, and the popularity of ModSecurity started to rise.

Initially, most of my effort was spent wrestling with Apache to make request body inspection
possible. Apache 1.3.x did not have any interception or filtering APIs, but I was able to trick
it into submission. Apache 2.x improved things by providing APIs that do allow content in-
terception, but there was no documentation to speak of. Nick Kew released the excellent The
Apache Modules Book (Prentice Hall) in 2007, which unfortunately was too late to help me
with the development of ModSecurity.

By 2004, I was a changed man. Once primarily a software developer, I became obsessed with
web application security and wanted to spend more time working on it. I quit my job and
started treating ModSecurity as a business. My big reward came in the summer of 2006, when
ModSecurity went head to head with other web application firewalls, in an evaluation con-
ducted by Forrester Research, and came out very favorably. Later that year, my company was
acquired by Breach Security. A team of one eventually became a team of many: Brian Rectanus
came to work on ModSecurity, Ofer Shezaf took on the rules, and Ryan C. Barnett the com-
munity management and education. ModSecurity 2.0, a complete rewrite, was released in late
2006. At the same time we released ModSecurity Community Console, which combined the
functionality of a remote logging sensor and a monitoring and reporting GUI.

I stopped being in charge of ModSecurity in January 2009, when I left Breach Security. Brian
Rectanus subsequently took the lead. In the meantime, Ryan C. Barnett took charge of the
ModSecurity rules and produced a significant improvement with CRS v2. In 2010, Trustwave
acquired Breach Security and promised to revitalize ModSecurity. The project is currently run
by Ryan C. Barnett and Breno Silva, and there are indeed some signs that the project is getting
healthier. I remain involved primarily through my work on this book.

Something spectacular happened in March 2011: Trustwave announced that they would be
changing the license of ModSecurity from GPLv2 to Apache Software License (ASLv2). This
is a great step toward a wider use of ModSecurity because ASL falls into the category of per-
missive licenses. Later, the same change was announced for the Core Rule Set project (which
is hosted with OWASP).

What Can ModSecurity Do?
ModSecurity is a toolkit for real-time web application monitoring, logging, and access con-
trol. I like to think about it as an enabler: there are no hard rules telling you what to do; in-
stead, it is up to you to choose your own path through the available features. That’s why the
title of this section asks what ModSecurity can do, not what it does.

The freedom to choose what to do is an essential part of ModSecurity’s identity and goes very
well with its open source nature. With full access to the source code, your freedom to choose
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extends to the ability to customize and extend the tool itself to make it fit your needs. It’s not
a matter of ideology, but of practicality. I simply don’t want my tools to restrict what I can do.

Back on the topic of what ModSecurity can do, the following is a list of the most important
usage scenarios:

Real-time application security monitoring and access control
At its core, ModSecurity gives you access to the HTTP traffic stream, in real-time, along
with the ability to inspect it. This is enough for real-time security monitoring. There’s
an added dimension of what’s possible through ModSecurity’s persistent storage mech-
anism, which enables you to track system elements over time and perform event cor-
relation. You are able to reliably block, if you so wish, because ModSecurity uses full
request and response buffering.

Virtual patching
Virtual patching is a concept of vulnerability mitigation in a separate layer, where you
get to fix problems in applications without having to touch the applications themselves.
Virtual patching is applicable to applications that use any communication protocol, but
it is particularly useful with HTTP, because the traffic can generally be well understood
by an intermediary device. ModSecurity excels at virtual patching because of its reliable
blocking capabilities and the flexible rule language that can be adapted to any need. It
is, by far, the activity that requires the least investment, is the easiest activity to perform,
and the one that most organizations can benefit from straight away.

Full HTTP traffic logging
Web servers traditionally do very little when it comes to logging for security purposes.
They log very little by default, and even with a lot of tweaking you are not able to get
everything that you need. I have yet to encounter a web server that is able to log full
transaction data. ModSecurity gives you that ability to log anything you need, including
raw transaction data, which is essential for forensics. In addition, you get to choose
which transactions are logged, which parts of a transaction are logged, and which parts
are sanitized.

Continuous passive security assessment
Security assessment is largely seen as an active scheduled event, in which an indepen-
dent team is sourced to try to perform a simulated attack. Continuous passive security
assessment is a variation of real-time monitoring, where, instead of focusing on the
behavior of the external parties, you focus on the behavior of the system itself. It’s an
early warning system of sorts that can detect traces of many abnormalities and security
weaknesses before they are exploited.

Web application hardening
One of my favorite uses for ModSecurity is attack surface reduction, in which you se-
lectively narrow down the HTTP features you are willing to accept (e.g., request meth-
ods, request headers, content types, etc.). ModSecurity can assist you in enforcing many
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similar restrictions, either directly, or through collaboration with other Apache mod-
ules. They all fall under web application hardening. For example, it is possible to fix
many session management issues, as well as cross-site request forgery vulnerabilities.

Something small, yet very important to you
Real life often throws unusual demands to us, and that is when the flexibility of Mod-
Security comes in handy where you need it the most. It may be a security need, but it
may also be something completely different. For example, some people use ModSecu-
rity as an XML web service router, combining its ability to parse XML and apply XPath
expressions with its ability to proxy requests. Who knew?

Note
I often get asked if ModSecurity can be used to protect Apache itself. The answer is
that it can, in some limited circumstances, but that it isn’t what it is designed for. You
may sometimes be able to catch an attack with ModSecurity before it hits a vulnerable
spot in Apache or in a third-party module, but there’s a large quantity of code that
runs before ModSecurity. If there’s a vulnerability in that area, ModSecurity won’t
be able to do anything about it.

What Are Web Application Firewalls, Anyway?
I said that ModSecurity is a web application firewall, but it’s a little known fact that no one
really knows what web application firewalls are. It is generally understood that a web application
firewall is an intermediary element (implemented either as a software add-on or process, or as a
network device) that enhances the security of web applications, but opinions differ once you dig
deeper. There are many theories that try to explain the different views, but the best one I could
come up with is that, unlike anything we had before, the web application space is so complex
that there is no easy way to classify what we do security-wise. Rather than focus on the name,
you should focus on what a particular tool does and how it can help.

If you want to learn more about the topic, there are two efforts that focus on understanding web
application firewalls:

• Web application firewall evaluation criteria (WAFEC) is a project of the Web Application
Security Consortium (WASC). It’s an older effort (which has been inactive for a couple of
years now) that focuses on the technical features of web application firewalls.

• Best practices: Web Application Firewalls is a project of Open Web Application Security
Project (OWASP) that focuses largely on the practicalities of WAF deployment, which is
an important aspect that is often overlooked.

Guiding Principles
There are four guiding principles on which ModSecurity is based, as follows:

http://projects.webappsec.org/Web-Application-Firewall-Evaluation-Criteria
http://www.webappsec.org
http://www.webappsec.org
http://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls
http://www.owasp.org
http://www.owasp.org
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Flexibility
I think that it’s fair to say that I built ModSecurity for myself: a security expert who
needs to intercept, analyze, and store HTTP traffic. I didn’t see much value in hard-
coded functionality, because real life is so complex that everyone needs to do things
just slightly differently. ModSecurity achieves flexibility by giving you a powerful rule
language, which allows you to do exactly what you need to, in combination with the
ability to apply rules only where you need to.

Passiveness
ModSecurity will take great care to never interact with a transaction unless you tell it
to. That is simply because I don’t trust tools, even the one I built, to make decisions for
me. That’s why ModSecurity will give you plenty of information, but ultimately leave
the decisions to you.

Predictability
There’s no such thing as a perfect tool, but a predictable one is the next best thing.
Armed with all the facts, you can understand ModSecurity’s weak points and work
around them.

Quality over quantity
Over the course of six years spent working on ModSecurity, we came up with many
ideas for what ModSecurity could do. We didn’t act on most of them. We kept them
for later. Why? Because we understood that we have limited resources available at our
disposal and that our minds (ideas) are far faster than our implementation abilities.
We chose to limit the available functionality, but do really well at what we decided to
keep in.

There are bits in ModSecurity that fall outside the scope of these four principles. For example,
ModSecurity can change the way Apache identifies itself to the outside world, confine the
Apache process within a jail, and even implement an elaborate scheme to deal with a once-
infamous universal XSS vulnerability in Adobe Reader. Although it was I who added those
features, I now think that they detract from the main purpose of ModSecurity, which is a
reliable and predictable tool that allows for HTTP traffic inspection.

Deployment Options
ModSecurity supports two deployment options: embedded and reverse proxy deployment.
There is no one correct way to use them; choose an option based on what best suits your
circumstances. There are advantages and disadvantages to both options:

Embedded
Because ModSecurity is an Apache module, you can add it to any compatible version
of Apache. At the moment that means a reasonably recent Apache version from the
2.0.x branch, although a newer 2.2.x version is recommended. The embedded option
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is a great choice for those who already have their architecture laid out and don’t want
to change it. Embedded deployment is also the only option if you need to protect hun-
dreds of web servers. In such situations, it is impractical to build a separate proxy-
based security layer. Embedded ModSecurity not only does not introduce new points
of failure, but it scales seamlessly as the underlying web infrastructure scales. The main
challenge with embedded deployment is that server resources are shared between the
web server and ModSecurity.

Reverse proxy
Reverse proxies are effectively HTTP routers, designed to stand between web servers
and their clients. When you install a dedicated Apache reverse proxy and add ModSe-
curity to it, you get a “proper” network web application firewall, which you can use
to protect any number of web servers on the same network. Many security practition-
ers prefer having a separate security layer. With it you get complete isolation from the
systems you are protecting. On the performance front, a standalone ModSecurity will
have resources dedicated to it, which means that you will be able to do more (i.e., have
more complex rules). The main disadvantage of this approach is the new point of fail-
ure, which will need to be addressed with a high-availability setup of two or more re-
verse proxies.

Is Anything Missing?
ModSecurity is a very good tool, but there are a number of features, big and small, that could
be added. The small features are those that would make your life with ModSecurity easier,
perhaps automating some of the boring work (e.g., persistent blocking, which you now have
to do manually). But there are really only two features that I would call missing:

Learning
Defending web applications is difficult, because there are so many of them, and they are
all different. (I often say that every web application effectively creates its own commu-
nication protocol.) It would be very handy to have ModSecurity observe application
traffic and create a model that could later be used to generate policy or assist with false
positives. While I was at Breach Security, I started a project called ModProfiler as a step
toward learning, but that project is still as I left it, as version 0.2.

Passive mode of deployment
ModSecurity can be embedded only in Apache 2.x, but when you deploy it as a reverse
proxy, it can be used to protect any web server. Reverse proxies are not everyone’s cup of
tea, however, and sometimes it would be very handy to deploy ModSecurity passively,
without having to change anything on the network.

Although a GUI is not within the scope of the project, there are currently two options when it
comes to remote logging and alert management. You will find them in the Resources section
later in this chapter.

http://www.modsecurity.org/projects/modprofiler/
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Getting Started
In this first practical section in the book, I will give you a whirlwind tour of the ModSecurity
internals, which should help you get started.

Hybrid Nature of ModSecurity
ModSecurity is a hybrid web application firewall engine that relies on the host web server
for some of the work. The only supported web server at the moment is Apache 2.x, but it
is possible, in principle, to integrate ModSecurity with any other web server that provides
sufficient integration APIs.

Apache does for ModSecurity what it does for all other modules—it handles the infrastructure
tasks:

1. Decrypts SSL

2. Breaks up the inbound connection stream into HTTP requests

3. Partially parses HTTP requests

4. Invokes ModSecurity, choosing the correct configuration context (<VirtualHost>,
<Location>, etc.)

5. De-chunks request bodies as necessary

There a few additional tasks Apache performs in a reverse proxy scenario:

1. Forwards requests to backend servers (with or without SSL)

2. Partially parses HTTP responses

3. De-chunks response bodies as necessary

The advantage of a hybrid implementation is that it is very efficient—the duplication of work
is minimal when it comes to HTTP parsing. A couple of disadvantages of this approach are
that you don’t always get access to the raw data stream and that web servers sometimes don’t
process data in the way a security-conscious tool would. In the case of Apache, the hybrid
approach works reasonably well, with a few minor issues:

Request line and headers are NUL-terminated
This is normally not a problem, because what Apache doesn’t see cannot harm any
module or application. In some very rare cases, however, the purpose of the NUL-byte
evasion is to hide things, and this Apache behavior only helps with the hiding.

Request header transformation
Apache will canonicalize request headers, combining multiple headers that use the
same name and collapsing those that span two or more lines. The transformation may
make it difficult to detect subtle signs of evasion, but in practice this hasn’t been a
problem yet.
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Quick request handling
Apache will handle some requests quickly, leaving ModSecurity unable to do anything
but notice them in the logging phase. Invalid HTTP requests, in particular, will be re-
jected by Apache without ModSecurity having a say.

No access to some response headers
Because of the way Apache works, the Server and Date response headers are invisible
to ModSecurity; they cannot be inspected or logged.

Main Areas of Functionality
The functionality offered by ModSecurity falls roughly into four areas:

Parsing
ModSecurity tries to make sense of as much data as available. The supported data for-
mats are backed by security-conscious parsers that extract bits of data and store them
for use in the rules.

Buffering
In a typical installation, both request and response bodies will be buffered. This means
that ModSecurity usually sees complete requests before they are passed to the applica-
tion for processing, and complete responses before they are sent to clients. Buffering
is an important feature, because it is the only way to provide reliable blocking. The
downside of buffering is that it requires additional RAM to store the request and re-
sponse body data.

Logging
Full transaction logging (also referred to as audit logging) is a big part of what ModSe-
curity does. This feature allows you to record complete HTTP traffic, instead of just
rudimentary access log information. Request headers, request body, response header,
response body—all those bits will be available to you. It is only with the ability to see
what is happening that you will be able to stay in control.

Rule engine
The rule engine builds on the work performed by all other components. By the time
the rule engine starts operating, the various bits and pieces of data it requires will all be
prepared and ready for inspection. At that point, the rules will take over to assess the
transaction and take actions as necessary.

Note
There’s one thing ModSecurity purposefully avoids to do: as a matter of design, Mod-
Security does not support data sanitization. I don’t believe in sanitization, purely be-
cause I believe that it is too difficult to get right. If you know for sure that you are be-
ing attacked (as you have to before you can decide to sanitize), then you should refuse



What Rules Look Like 11

to process the offending requests altogether. Attempting to sanitize merely opens a
new battlefield where your attackers don’t have anything to lose, but everything to
win. You, on the other hand, don’t have anything to win, but everything to lose.

What Rules Look Like
Everything in ModSecurity revolves around two things: configuration and rules. The
configuration tells ModSecurity how to process the data it sees; the rules decide what to do
with the processed data. Although it is too early to go into how the rules work, I will show
you a quick example here just to give you an idea what they look like.

For example:

SecRule ARGS "<script>" log,deny,status:404

Even without further assistance, you can probably recognize the part in the rule that specifies
what we wish to look for in input data (<script>). Similarly, you will easily figure out what will
happen if we do find the desired pattern (log,deny,status:404). Things will become more
clear if I tell you about the general rule syntax, which is the following:

SecRule VARIABLES OPERATOR ACTIONS

The three parts have the following meanings:

1. The VARIABLES part tells ModSecurity where to look. The ARGS variable, used in the ex-
ample, means all request parameters.

2. The OPERATOR part tells ModSecurity how to look. In the example, we have a regular
expression pattern, which will be matched against ARGS.

3. The ACTIONS part tells ModSecurity what to do on a match. The rule in the example
gives three instructions: log problem, deny transaction and use the status 404 for the
denial (status:404).

I hope you are not disappointed with the simplicity of this first rule. I promise you that by
combining the various facilities offered by ModSecurity, you will be able to write very useful
rules that implement complex logic where necessary.

Transaction Lifecycle 
In ModSecurity, every transaction goes through five steps, or phases. In each of the phases,
ModSecurity will do some work at the beginning (e.g., parse data that has become available),
invoke the rules specified to work in that phase, and perhaps do a thing or two after the phase
rules have finished. At first glance, it may seem that five phases are too many, but there’s a
reason why each of the phases exist. There is always one thing, sometimes several, that can
only be done at a particular moment in the transaction lifecycle.
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Request headers (1)
The request headers phase is the first entry point for ModSecurity. The principal pur-
pose of this phase is to allow rule writers to assess a request before the costly request
body processing is undertaken. Similarly, there is often a need to influence how Mod-
Security will process a request body, and this phase is the place to do it. For example,
ModSecurity will not parse an XML request body by default, but you can instruct it do
so by placing the appropriate rules into phase 1. (If you care about XML processing, it
is described in detail in Chapter 13, Handling XML).

Request body (2)
The request body phase is the main request analysis phase and takes place immediately
after a complete request body has been received and processed. The rules in this phase
have all the available request data at their disposal.

Response headers (3)
The response headers phase takes place after response headers become available, but
before a response body is read. The rules that need to decide whether to inspect a re-
sponse body should run in this phase.

Response body (4)
The response body phase is the main response analysis phase. By the time this phase
begins, the response body will have been read, with all its data available for the rules
to make their decisions.

Logging (5)
The logging phase is special in more ways than one. First, it’s the only phase from which
you cannot block. By the time this phase runs, the transaction will have finished, so
there’s little you can do but record the fact that it happened. Rules in this phase are run
to control how logging is done.

Lifecycle Example
To give you a better idea what happens on every transaction, we’ll examine a detailed debug log
of one POST transaction. I’ve deliberately chosen a transaction type that uses the request body
as its principal method to transmit data, because following such a transaction will exercise
most parts of ModSecurity. To keep things relatively simple, I used a configuration without
any rules, removed some of the debug log lines for clarity, and removed the timestamps and
some additional metadata from each line.

Note
Please do not try to understand everything about the logs at this point. The idea
is just to get a general feel about how ModSecurity works, and to introduce you to
debug logs. Very quickly after starting to use ModSecurity, you will discover that the
debug logs will be an indispensable rule writing and troubleshooting tool.
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The transaction I am using as an example in this section is very straightforward. I made a point
of placing request data in two different places, parameter a in the query string and parameter
b in the request body, but there is little else of interest in the request:

POST /?a=test HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 6

b=test

The response is entirely unremarkable:

HTTP/1.1 200 OK
Date: Sun, 17 Jan 2010 00:13:44 GMT
Server: Apache
Content-Length: 12
Connection: close
Content-Type: text/html

Hello World!

ModSecurity is first invoked by Apache after request headers become available, but before a
request body (if any) is read. First comes the initialization message, which contains the unique
transaction ID generated by mod_unique_id. Using this information, you should be able to
pair the information in the debug log with the information in your access and audit logs.
At this point, ModSecurity will parse the information on the request line and in the request
headers. In this example, the query string part contains a single parameter (a), so you will see
a message documenting its discovery. ModSecurity will then create a transaction context and
invoke the REQUEST_HEADERS phase:

[4] Initialising transaction (txid SopXW38EAAE9YbLQ).
[5] Adding request argument (QUERY_STRING): name "a", value "test"
[4] Transaction context created (dcfg 8121800).
[4] Starting phase REQUEST_HEADERS.

Assuming that a rule didn’t block the transaction, ModSecurity will now return control to
Apache, allowing other modules to process the request before control is given back to it.

In the second phase, ModSecurity will first read and process the request body, if it is present.
In the following example, you can see three messages from the input filter, which tell you
what was read. The fourth message tells you that one parameter was extracted from the re-
quest body. The content type used in this request (application/x-www-form-urlencoded) is
one of the types ModSecurity recognizes and parses automatically. Once the request body is
processed, the REQUEST_BODY rules are processed.

[4] Second phase starting (dcfg 8121800).
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[4] Input filter: Reading request body.
[9] Input filter: Bucket type HEAP contains 6 bytes.
[9] Input filter: Bucket type EOS contains 0 bytes.
[5] Adding request argument (BODY): name "b", value "test"
[4] Input filter: Completed receiving request body (length 6).
[4] Starting phase REQUEST_BODY.

The filters that keep being mentioned in the logs are parts of ModSecurity that handle request
and response bodies:

[4] Hook insert_filter: Adding input forwarding filter (r 81d0588).
[4] Hook insert_filter: Adding output filter (r 81d0588).

There will be a message in the debug log every time ModSecurity sends a chunk of data to the
request handler, and one final message to say that there isn’t any more data in the buffers.

[4] Input filter: Forwarding input: mode=0, block=0, nbytes=8192 …
(f 81d2228, r 81d0588).
[4] Input filter: Forwarded 6 bytes.
[4] Input filter: Sent EOS.
[4] Input filter: Input forwarding complete.

Shortly thereafter, the output filter will start receiving data, at which point the
RESPONSE_HEADERS rules will be invoked:

[9] Output filter: Receiving output (f 81d2258, r 81d0588).
[4] Starting phase RESPONSE_HEADERS.

Once all the rules have run, ModSecurity will continue to store the response body in its buffers,
after which it will run the RESPONSE_BODY rules:

[9] Output filter: Bucket type MMAP contains 12 bytes.
[9] Output filter: Bucket type EOS contains 0 bytes.
[4] Output filter: Completed receiving response body (buffered full - 12 bytes).
[4] Starting phase RESPONSE_BODY.

Again, assuming that none of the rules blocked, the accumulated response body will be for-
warded to the client:

[4] Output filter: Output forwarding complete.

Finally, the logging phase will commence. The LOGGING rules will be run first to allow them
to influence logging, after which the audit logging subsystem will be invoked to log the trans-
action if necessary. A message from the audit logging subsystem will be the last transaction
message in the logs. In this example, ModSecurity tells us that it didn’t find anything of in-
terest in the transaction and that it sees no reason to log it:

[4] Initialising logging.



Transaction Lifecycle 15

[4] Starting phase LOGGING.
[4] Audit log: Ignoring a non-relevant request.

File Upload Example
Requests that contain files are processed slightly differently. The changes can be best under-
stood by again following the activity in the debug log:

[4] Input filter: Reading request body.
[9] Multipart: Boundary: ---------------------------2411583925858
[9] Input filter: Bucket type HEAP contains 256 bytes.
[9] Multipart: Added part header "Content-Disposition" "form-data; name=\"f\"; …
filename=\"eicar.com.txt\""
[9] Multipart: Added part header "Content-Type" "text/plain"
[9] Multipart: Content-Disposition name: f
[9] Multipart: Content-Disposition filename: eicar.com.txt
[4] Multipart: Created temporary file: …
/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF
[9] Multipart: Changing file mode to 0600: …
/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF
[9] Multipart: Added file part 9c870b8 to the list: name "f" file name …
"eicar.com.txt" (offset 140, length 68)
[9] Input filter: Bucket type EOS contains 0 bytes.
[4] Reqest body no files length: 96
[4] Input filter: Completed receiving request body (length 256).

In addition to seeing the multipart parser in action, you see ModSecurity creating a temporary
file (into which it will extract the upload) and adjusting its privileges to match the desired
configuration.

Then, at the end of the transaction, you will see the cleanup and the temporary file deleted:

[4] Multipart: Cleanup started (remove files 1).
[4] Multipart: Deleted file (part) …
"/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF"

The temporary file will not be deleted if ModSecurity decides to keep an uploaded file. Instead,
it will be moved to the storage area:

[4] Multipart: Cleanup started (remove files 0).
[4] Input filter: Moved file from …
"/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF" to …
"/opt/modsecurity/var/upload/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF".

In the example traces, you’ve observed an upload of a small file that was stored in RAM. When
large uploads take place, ModSecurity will attempt to use RAM at first, switching to on-disk
storage once it becomes obvious that the file is larger:
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[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 1536 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 576 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[4] Input filter: Request too large to store in memory, switching to disk.

A new file will be created to store the entire raw request body:

[4] Input filter: Created temporary file to store request body: …
/opt/modsecurity/var/tmp//20090819-180105-Sowv0X8AAQEAACWAArs-request_body-4nZjqf
[4] Input filter: Wrote 129559 bytes from memory to disk.

This file is always deleted in the cleanup phase:

[4] Input filter: Removed temporary file: …
/opt/modsecurity/var/tmp//20090819-180105-Sowv0X8AAQEAACWAArs-request_body-4nZjqf

Impact on Web Server
The addition of ModSecurity will change how your web server operates. As with all Apache
modules, you pay for the additional flexibility and security ModSecurity gives you with in-
creased CPU and RAM consumption on your server. The exact amount will depend on your
configuration of ModSecurity and the usage of your server. Following is a detailed list of the
various activities that increase resource consumption:

• ModSecurity will add to the parsing already done by Apache, and that results in a slight
increase of CPU consumption.

• Complex parsers (e.g., XML) are more expensive.

• The handling of file uploads may require I/O operations. In some cases, inbound data
will be duplicated on disk.

• The parsing will add to the RAM consumption, because every extracted element (e.g.,
a request parameter) will need to be copied into its own space.
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• Request bodies and response bodies are usually buffered in order to support reliable
blocking.

• Every rule in your configuration will use some of the CPU time (for the operator) and
RAM (to transform input data before it can be analyzed).

• Some of the operators used in the rules (e.g., the regular expression operator) are
CPU-intensive.

• Full transaction logging is an expensive I/O operation.

In practice, this list is important because it keeps you informed; what matters is that you have
enough resources to support your ModSecurity needs. If you do, then it doesn’t matter how
expensive ModSecurity is. Also, what’s expensive to someone may not be to someone else. If
you don’t have enough resources to do everything you want with ModSecurity, you will need
to monitor the operation of your system and remove some of the functionality to reduce the
resource consumption. Virtually everything that ModSecurity does is configurable, so you
should have no problems doing that.

It is generally easier to run ModSecurity in reverse proxy mode, because then you usually have
an entire server (with its own CPU and RAM) to play with. In embedded mode, ModSecurity
will add to the processing already done by the web server, so this method is more challenging
on a busy server.

For what it’s worth, ModSecurity generally uses the minimal necessary resources to perform
the desired functions, so this is really a case of exchanging functionality for speed: if you want
to do more, you have to pay more.

What Next?
The purpose of this section is to map your future ModSecurity activities and help you deter-
mine where to go from here. Where you will go depends on what you want to achieve and
how much time you have to spend. A complete ModSecurity experience, so to speak, consists
of the following elements:

Installation and configuration
This is the basic step that all users must learn how to perform. The next three chapters
will teach you how to make ModSecurity operational, performing installation, general
configuration, and logging configuration. Once you are done with that, you need to
decide what you want to do with it. That’s what the remainder of the book is for.

Rule writing
Rule writing is an essential skill. You may currently view rules as a tool to use to de-
tect application security attacks. They are that, but they are also much more. In Mod-
Security, you write rules to find out more about HTTP clients (e.g., geolocation and
IP address reputation), perform long-term activity tracking (of IP addresses, sessions
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and users, for example), implement policy decisions (use the available information to
make the decisions to warn or block), write virtual patches, and even to check on the
status of ModSecurity itself.

It is true that the attack detection rules are in a class of its own, but that’s mostly be-
cause, in order to write them successfully, you need to know so much about application
security. For that reason, many ModSecurity users generally focus on using third-party
rule sets for the attack detection. It’s a legitimate choice. Not everyone has the time
and inclination to become an application security expert. Even if you end up not using
any inspection rules whatsoever, the ability to write virtual patches is reason enough
to use ModSecurity.

Rule sets
The use of existing rule sets is the easiest way to get to the proverbial low hanging fruit:
invest small effort and reap big benefits. Traditionally, the main source of ModSecurity
rules has been the Core Rule Set project, now hosted with OWASP. On the other hand,
if you are keen to get your hands dirty, I can tell you that I draw great pleasure from
writing my own rules. It’s a great way to learn about application security. The only
drawback is that it requires a large time investment.

Remote logging and alert management GUI
ModSecurity is perfectly usable without a remote logging solution and without a GUI
(the two usually go together). Significant error messages are copied to Apache’s error
log. Complete transactions are usually logged to the audit log. With a notification sys-
tem in place, you will know when something happens, and you can visit the audit logs
to investigate. For example, many installations will divert Apache’s error log to a central
logging system (via syslog).

The process does become more difficult with more than one sensor to manage. Fur-
thermore, GUIs make the whole experience of monitoring much more pleasant. For
that reason you will probably seek to install one of the available remote centralization
tools and use their GUIs. The available options are listed in the Resources section, which
follows.

Resources
This section contains a list of assorted ModSecurity resources that can assist you in your work.
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Figure 2-1. The homepage of www.modsecurity.org

General Resources
The following resources are the bare essentials:

ModSecurity web site
ModSecurity’s web site is probably going to be your main source of information. You
should visit the web site from time to time, as well as subscribe to receive the updates
from the blog.

Official documentation
The official ModSecurity documentation is maintained in a wiki, but copies of it are
made for inclusion with every release.

Issue tracker
The ModSecurity issue tracker is the place you will want to visit for one of two reasons:
to report a problem with ModSecurity itself (e.g., when you find a bug) or to check out
the progress on the next (major or minor) version. Before reporting any problems, go
through the Support Checklist, which will help you assemble the information required

https://www.modsecurity.org
https://www.modsecurity.org/documentation/
https://www.modsecurity.org/tracker/
http://www.modsecurity.org/documentation/support-request-checklist.html
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to help resolve your problem. Providing as much information as you can will help the
developers understand and replicate the problem, and provide a fix (or a workaround)
quickly.

Users’ mailing list
The users’ mailing list (mod-security-users@lists.sourceforge.net) is a general-purpose
mailing list where you can discuss ModSecurity. Feel free to ask questions, propose
improvements, and discuss ideas. That is the place where you’ll hear first about new
ModSecurity versions.

ModSecurity@Freshmeat
If you subscribe to the users’ mailing list, you will generally find out about new versions
of ModSecurity as soon as they are released. If you care only about version releases,
however, you may consider subscribing to the new version notifications at the ModSe-
curity page at Freshmeat.

Core Rules mailing list
Starting with version 2, the Core Rules project is part of OWASP, and has a separate
mailing list (owasp-modsecurity-core-rule-set@lists.owasp.org).

Developer Resources
If you are interested in development work, you will need these:

Developers’ mailing list
The developers’ mailing list is generally a lonely place, but if you do decide to start
playing with the ModSecurity source code, this list is the place to go to discuss your
work.

Source code access
The source code of ModSecurity is hosted at a Subversion repository at SourceForge,
which allows you to access it directly or through a web-based user interface.

FishEye interface
If you are not looking to start developing immediately but still want to have a look at
the source code of ModSecurity, I recommend that you use the ModSecurity FishEye
interface, which is much better than the stock interface available at SourceForge.

AuditConsole
Using ModSecurity entirely from the command line is possible but not much fun. The
configuration part is not a problem, but reviewing logs is difficult without higher-level tools.
Your best choice for a log centralization and GUI tool is AuditConsole, which is built by Chris-
tian Bockermann and hosted on www.jwall.org.

http://lists.sourceforge.net/lists/listinfo/mod-security-users
http://freshmeat.net/projects/modsecurity
http://freshmeat.net/projects/modsecurity
http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.owasp.org
https://lists.sourceforge.net/lists/listinfo/mod-security-developers
http://sourceforge.net/projects/mod-security/develop
https://www.modsecurity.org/fisheye/
https://www.modsecurity.org/fisheye/
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AuditConsole is free and provides the following features:

• Event centralization from multiple remote ModSecurity installations

• Event storage and retrieval

• Support for multiple user accounts and support for different views

• Event tagging

• Event rules, which are executed in the console

Summary
This chapter was your ModSecurity orientation. I introduced ModSecurity at a high level,
discussed what it is and what it isn’t, and what it can do and what it cannot. I also gave you a
taste of what ModSecurity is like and described common usage scenarios, as well as covered
some of the interesting parts of its operation.

The foundation you now have should be enough to help you set off on a journey of ModSe-
curity exploration. The next chapter discusses installation.
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