

Model-driven Integration Architecture for
Compliance

Project acronym: COMPAS

Project name: Compliance-driven Models, Languages, and Architectures for Services

Call and Contract: FP7-ICT-2007-1

Grant agreement no.: 215175

Project Duration: 01.02.2008 – 28.02.2011 (36 months)

Co-ordinator: TUV Vienna University of Technology (AT)

Partners: CWI Stichting Centrum voor Wiskunde en Informatica (NL)

UCBL Université Claude Bernard Lyon 1 (FR)

USTUTT Universitaet Stuttgart (DE)

TILBURG UNIVERSITY Stichting Katholieke Universiteit Brabant (NL)

UNITN Universita degli Studi di Trento (IT)

TARC-PL Telcordia Poland (PL)

THALES Thales Services SAS (FR)

PWC Pricewaterhousecoopers Accountants N.V. (NL)

This project is supported by funding from the Information Society Technologies Programme under the 7th

Research Framework Programme of the European Union.

D1.1

Version: 2.0
Date: 2009-06-08

Dissemination status: PU
Document reference: D1.1

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 2 of 49

Project no. 215175

COMPAS
Compliance-driven Models, Languages, and Architectures for Services

Specific Targeted Research Project

Information Society Technologies

Start date of project: 2008-02-01 Duration: 36 months

D1.1 Model-driven Integration Architecture for Compliance
Revision 2.0

Due date of deliverable: 2008-12-31

First submission date: 2008-12-30

Latest submission date: 2009-06-08

Organisation name of lead partner for this deliverable:

TUV Technische Universität Wien, AT

Contributing partner(s):

CWI Stichting Centrum voor Wiskunde en Informatica, NL

USTUTT Universitaet Stuttgart, DE

TARC-PL Telcordia Poland, PL

UNITN Universita degli Studi di Trento, IT

Project funded by the European Commission within the Seventh Framework Programme
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 3 of 49

History chart
Issue Date Changed page(s) Cause of change Implemented by
0.1 2008-10-30 Table of contents New document TUV
0.2 2008-11-18 Initial draft TUV review TUV
0.21 2008-11-19 Addressing TUV review TUV
0.3 2008-12-02 Request for review TUV
0.4 2008-12-10 Whole document Addressing reviews TUV
0.5 2008-12-12 Architecture overview Added explanations for

the relationships of
components by partner
contributions

TUV

0.6 2008-12-19 Whole document Addressing reviews TUV
0.9 2008-12-23 Whole document Revising TUV
 Document name Renamed to comply

with Project Quality
Plan

TUV

0.98 2008-12-29 Table 1 Updating with partner
contributions

TUV

1.00 2008-12-30 Table 1 Updating with partner
contributions

TUV

 Whole document Prepare for releasing TUV
1.10 2009-05-08 Whole document Revise according to

reviewers’ comments
TUV

2.0 2009-06-08 Approval & Release TUV

Authorisation
No. Action Company/Name Date
1 Prepared TUV 2008-12-23
2 Approved TUV 2008-12-27
3 Released TUV 2008-12-30
4 Prepared TUV 2009-05-08
5 Approved TUV 2009-06-08
3 Released TUV 2009-06-08

Disclaimer: The information in this document is subject to change without notice. Company
or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies.

All rights reserved.
The document is proprietary of the COMPAS consortium members. No copying or
distributing, in any form or by any means, is allowed without the prior written agreement of
the owner of the property rights.

This document reflects only the authors’ view. The European Community is not liable for any
use that may be made of the information contained herein.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 4 of 49

Contents
1. Introduction .. 6

1.1. Purpose and scope ... 6

1.2. Document overview .. 6

1.3. Definitions and glossary .. 6

1.4. Abbreviations and acronyms ... 8

2. Compliance Framework Architecture Overview ... 8

3. COMPAS Integration Architecture .. 11

3.1. Model-driven Integration Architecture ... 24

3.2. View-based Modelling Framework (VbMF) .. 25

3.2.1. Overview of the View-based Modelling Framework ... 26

3.2.2. View-based Modelling Framework Architecture ... 27

3.2.3. Supporting MDSD mechanisms in VbMF ... 28

3.3. Domain Specific Languages for Compliance Concerns ... 30

3.3.1. What are Domain-Specific Languages? ... 31

3.3.2. DSLs based on MDSD ... 31

3.3.3. A DSL for Specifying Locative Compliance Concerns ... 33

3.3.4. A Sample DSL – Quality-of-Service (QoS) DSL .. 34

3.3.5. Tools for DSL-Development .. 38

4. Compliance Modelling ... 39

4.1. Compliance Views .. 39

4.2. Control flow .. 39

4.3. Locative ... 40

4.4. Information .. 42

4.5. Resource .. 43

4.6. Temporal ... 44

4.7. Summary ... 45

5. Conclusion .. 46

6. Reference documents ... 46

6.1. Internal documents .. 46

6.2. External documents ... 47

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 5 of 49

List of figures
Figure 1 Overview of COMPAS Architecture ... 9

Figure 2 COMPAS architecture: interaction and integration of technologies and prototypes 11

Figure 3 Foundation of integration architecture: a view-based, model-driven tool-chain . 25

Figure 4 The View-based Modelling Framework with extended facilities for modelling of
compliance concerns .. 27

Figure 5 Top-down and bottom-up tool-chains in View-based Modelling Framework 28

Figure 6 Reverse engineering of legacy code in VbMF ... 30

Figure 7 VbMF code generator (adapted from [HZD07]) .. 30

Figure 8 MDSD based DSL – Relevant Concepts .. 32

Figure 9 High- and Low-Level DSLs ... 32

Figure 10 High-Level Model of the QoS DSL ... 36

Figure 11 Low-Level Model of the QoS DSL .. 37

Figure 12 UML class for ComplianceRequirements .. 46

List of tables
Table 1 Mapping of COMPAS components into prototypes, tools and/or technologies 23

List of listings
Listing 1 Definition of the DSL Model for Locative Compliance Concerns 34

Listing 2 Definition of a Locative Compliance Concerns ... 34

Listing 3 The High-Level QoS DSL for the Domain Experts ... 37

Listing 4 The Low-Level QoS DSL for the Technical Experts ... 38

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 6 of 49

Abstract
Business compliance today is usually implemented on a per case basis. In this deliverable, we
present the initial architecture of a framework that aims to implement this compliance in a
more generalized manner. The framework leverages the advantages of the model driven
software development paradigm to rapidly develop and stably evolve a business compliance
solution. We give an overview of the components that make up this framework and how they
integrate with each other, as well as explaining how the model driven approach addresses
some of the challenges experienced when developing compliance solutions.

1. Introduction

1.1. Purpose and scope
The COMPAS project aims to develop a demonstrable approach to solving the problem of
business compliance. For the sake of demonstration, a prototype of a business compliance
software framework, based on the model driven development paradigm, is to be developed.
WP1 focuses on development of the core and modelling aspects of this business compliance
framework, as well as ensuring that it integrates with the components from the different WPs
in COMPAS project.

The purpose of this deliverable is to describe the architecture of this framework and elaborate
on how it shall interface with the different prototypes from other WPs (2, 3 and 5). It provides
a high level overview of the components from all WPs and then provides a more detailed
view of the components and explains how the components integrate with each other to realise
a business compliance solution.

1.2. Document overview
The deliverable has a number of sections that are now described briefly. Section 2 gives a
high level overview of the whole COMPAS architecture. This is followed by Section 3 that
describes the components in more detail and explains how they integrate with each other. In
Section 3, we introduce in detail the model-driven tool-chain that comes together with
concepts of domain specific languages to serve as the basis for COMPAS model-driven
integration architecture. Section 4 will examine a number of compliance concerns and
present our proposed approaches to modelling these concerns. Finally, Section 5 comes to
summarise the main contributions presented in this document.

1.3. Definitions and glossary
Architectural view: a view is a representation of a whole system from the perspective of a

related set of concerns.

Service Oriented Architecture (SOA): an architectural style in which software components or
software systems operate in a loosely-coupled environment, and are delivered
to end-users in terms of software units, namely, services. A service provides a
standard interface (e.g., service interfaces described using WSDL), and utilises
message exchange as the only communication method.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 7 of 49

Separation of concerns: the process of breaking a software system into distinct pieces such
that the overlaps between those pieces are as little as possible, in order to make
it easier to understand, to design, to develop, to maintain, etc., the system.

Business compliance (or compliance for short): The goal to ensure that the systems of a
company comply with regulatory or legislative provisions, or similar business
requirements given through outer influences. A typical example is compliance
to the regulations set forth in Basel II, IFRS2, MiFID3, LSF4, Tabaksblat5, and
the Sarbanes-Oxley Act, just to name a few, which cover issues such as auditor
independence, corporate governance, and enhanced financial disclosure.

Domain-Specific Languages (DSL): DSLs are small languages that are tailored for a particular
domain. Usually, DSLs are simple because they are suited for a very narrow
purpose only, and they are easy to edit and to translate. To describe a broad
domain, a broad DSL can be used. To keep the smallness and simplicity of
DSLs, multiple narrow DSLs should be used, which have to be combined to
describe a broad domain. The goal of DSLs is to improve productivity and
software quality. DSLs raise the level of abstraction to empower users with the
ability to build solutions using concepts that are similar to the domain and
his/her knowledge

Model-Driven Software Development (MDSD) or Model-Driven Development (MDD): a
paradigm that advocates the concept of models, that is, models will be the most
important development artefacts at the centre of developers’ attention. In
MDSD, domain-specific languages are often used to create models that capture
domain abstraction, express application structure or behaviour in an efficient
and domain-specific way. These models are subsequently transformed into
executable code by a sequence of model transformations.

Model and meta-model: a model is an abstract representation of a system’s structure, function
or behaviour. A meta-model defines the basic constructs that may occur in a
concrete model. Meta-models and models have a class-instance relationship:
each model is an instance of a meta-model.

Model transformation: transformation maps high-level models into low-level models (aka
model-to-model transformations), or maps models into source code, executable
code (aka model-to-code or code generation).

Role-Based Access Control (RBAC): Access control decisions are often based on the roles
individual users take on as part of an organization. A role describes a set of
transactions that a user or set of users can perform within the context of an
organisation. RBAC provide a means of naming and describing relationships
between individuals and rights, providing a method of meeting the secure
processing needs of many commercial and civilian government organisations.

Web Service Description Language (WSDL): a standard XML-based language for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and
messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. WSDL is extensible to
allow description of endpoints and their messages regardless of what message
formats or network protocols are used to communicate.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 8 of 49

Stakeholder: In general, stakeholder is a person or organization with a legitimate interest in a
given situation, action or enterprise. In the context of this chapter, stakeholder
is a person who involved in the business process development at different
levels of abstraction, for instance, the business experts, system analysts, IT
developers, and so forth.

1.4. Abbreviations and acronyms

BPMN Business Process Modelling Notation

BPEL Business Process Execution Language

DSL Domain Specific Language

EMF Eclipse Modelling Framework

EPC Event-Driven Process Chain

ETL Extract-Transform-Load

LTL Linear Temporal Logic

MDA Model-Driven Architecture

MDSD Model-Driven Software Development

oAW openArchitectureWare

SOA Service-Oriented Architecture

VbMF View-based Modelling Framework

WSDL Web Services Description Language

WS-BPEL Web Services Business Process Execution Language

XPDL XML Process Definition Language

2. Compliance Framework Architecture Overview
Many regulations, standards and internal policies act as sources of guidance for business
compliance in organisations. These sources, termed compliance concerns, need to be
translated into artefacts within the organization’s information systems and/or business
processes.

The architecture of the software framework presented in this section is designed to enable an
organisation to develop and maintain compliance framework that addresses these compliance
concerns. The architecture follows the model driven development paradigm. The resulting
framework should be able to address both the design time and runtime issues of a business
compliance infrastructure. The software framework focuses on achieving business
compliance in a process-driven SOA.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 9 of 49

Figure 1 shows the overview of the components that make up this architecture.

Figure 1 Overview of COMPAS Architecture

The overview of COMPAS architecture can be broken down into a number of sections;

COMPAS design time infrastructure comprises the MDSD Software Framework,
Repositories, Verification Tools, and Compliance Request Languages. The MDSD
Software Framework that includes View-based Modelling Framework (VbMF) presented in
Section 3.2, and Domain-specific Languages (DSLs) introduced in Section 3.3 aids in the
development of specialised modelling languages. In our case the specialised languages would
be used to model compliance concerns and/or other supporting elements for the compliance
framework. These DSLs are what the professionals in their respective domains would use to
model a particular organisation’s interpretation of compliance concerns. For example, the
DSL components could be used to develop a modelling language for expressing only
compliance concerns related to security legislation. The security professionals could then use
such a DSL to develop a particular model of security that the organization is required to
implement. VbMF provides tooling that enables modelling of these concerns in separate
views that allow the designer an abstract view of a system specific to his/her domain. In our
case, different compliance concerns can possibly be represented in different views based on
the domain experts for the various categories of compliance concerns. Verification tooling
allows static validation of the models and the compliance concerns whilst the Repositories
provide model repositories to store models, process fragments, and compliance requirements.
Compliance Request Languages are DSLs used for discovering and choosing process
fragments that meet specific compliance requirements and that can be subsequently
aggregated into end-to-end business processes.

COMPAS runtime infrastructure includes the Dashboard, and the monitors which offer the
ability of both online and offline monitoring of systems and compliance under execution.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 10 of 49

Application servers provide the platforms for deploying process engines and business
services. Enterprise Service Bus (ESB) is the integration platform for connecting and
coordinating the interaction of applications constituting the runtime infrastructure. The
runtime infrastructure monitors the execution of the business processes, stores data by using
data warehouses, and uses the Dashboard as an interface to users. The Dashboard then
provides information about the state of the system, say status information or a compliance
violation, to users.

In this section we have presented a brief overview of the various components that make up the
overall compliance framework architecture. The various components are developed by
different partners and in different work packages. However, while they evolve independently,
these components need to be integrated to achieve the objectives set out in the project. To
facilitate this integration, we now describe, in the next section, how the various components
interact with each other. We describe this in the next section.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 11 of 49

3. COMPAS Integration Architecture

Figure 2 COMPAS architecture: interaction and integration of technologies and

prototypes

In this section COMPAS integration architecture shown in Figure 1 will be discussed in
detail. We introduce tools, technologies, and prototypes which are newly developed,
extended or reused in COMPAS project along with the interaction and integration of them in
the overall COMPAS architecture (see Figure 2). Detailed functionality, status and
corresponding WP responsibility of these components are then provided in Table 1.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 12 of 49

Every row of Table 1 describes detail of one component in the COMPAS architecture. The
first column is the component’s name. Next, the second column introduces functionality of
these components, respectively. Each component might have one or more interactions with
others. These interactions are clarified in the third column in which the corresponding
component is aligned with expected inputs from its adjacent components. The forth column
mentions specific technologies or tools used to realise the component as well as their status in
context of COMPAS project, such as New (i.e., develop from scratch), Extend (i.e., extend
existing tools or technologies), and Use (i.e., use existing tools or technologies without
extending). The last column names the WPs involving in the component.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 13 of 49

Component Functionality description Relationships to other components Tools and
technologies Status Work-

Package

Analysis /
Business
Intelligence

The reasoning mechanisms and algorithms
should analyse the root causes of deviations
of the process constellations and fragments
from the desired compliance concern targets,
as well as it automatically identifies such
deviations. A meta-model and DSL for
compliance to security policies will be
developed in this task to show-case and
validate the results of this task for a technical
governance concern, which will be analysed
using the business process intelligence suite.

Data Warehouse

Analysis/Business Intelligence
component acts as both producer and
consumer of data: it analyses data in the
warehouse and stores the results back into
the warehouse.

Process (-fragment) Repository

The Repository provides the
Analysis/Business Intelligence
component with Processes (or -
fragments) that comprise relevant
annotated compliance meta-data in order
to support compliance-oriented analysis
and interpretations.

BusinessObje
cts, SpagoBI

Extend WP5

Annotation
Editor

The annotation editor is a text-based editor
that allows annotating artefact with other
artefact. In the case of COMPAS we foresee
the annotation of processes with both textual
annotations and with process fragment, as
well as the annotation of process fragments
with textual annotations.

 Text Editor New WP4

Application
Servers

The application server is the runtime
environment for components such as the
process engine and the services. It is often
also referred to as container.

Code Generators

Deployable artefacts (e.g., generated and
annotated processes, services, runtime
configurations, etc.,) are deployed to

Apache
Tomcat,
Axis2
support

Extend WP4

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 14 of 49

process engines and application servers
for execution.

Business
Protocol
Monitoring

Architecture for runtime monitoring of Web
Services conversations. It provides basic
events as detection of compliance violation at
messages level.

Process (-fragment) Repository

The Business Process Protocol
Monitoring component retrieves BPEL
processes and BPEL process fragments in
order to monitor business process
execution.

ESB

Business Protocol Monitoring component
listens to messages exchanged between
Services through the ESB and publishes
some events related to compliance
checking into the ESB.

MS Visual
Studio/
Eclipse plug-
in

New WP5

Code
Generator

The Code Generator takes as inputs the
modelling artefacts validated via the Model
Validator, and a number of transformation
templates used to produce. Then, it might
perform model validations against required
constraints (if any). Finally, schematic code
and configurations are generated. The
generated schematic code might be
augmented with individual code specialized
for specific business logics, particular
platform features, etc.

Model Repository

The Code Generators takes models and
model-instances from the Repositories as
well as templates needed for transforming
model-instances to code.

Process (-fragment) Repository

The Code generator retrieves non-
executable BPEL processes from the
Process (-fragment) Repository and
generates execution information, e.g.

openArchitec
tureWare

Extend WP1

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 15 of 49

WSDL-file, deployment descriptor etc.
and stores the executable BPEL process
in the Process (-fragment) Repository.

View-based Modelling Framework

View model and view instances in VbMF
can be directly used by the Code
Generator for generating code.

Compliance
Governance
Dashboard

The Dashboards are a user friendly graphical
web based visualisation of compliance
information, particularly compliance
violations of business process.

Runtime Compliance Monitoring

Displays the visualised monitoring results
to the user.

Log Mining

The Dashboard is fed up with analysed
and interpreted results from Log Mining
to display to the user.

Analysis/Business Intelligence

The analysis/business intelligence
component will compute compliance
indicators based on the data in the
warehouse and identify (where possible)
root causes of violations. Such results are
displayed in the dashboard

Graphical
Web UI
Dashboard

New WP5

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 16 of 49

Compliance
Request
Language
Tools

Compliance Request Language (CRL) is a
proposed formal language that can be utilised
for the specification and representation of
compliance requirements and introduce an
initial specification of compliance language,
along with its associated constructs and
operators (extracted from D2.2). CRL Tools
aim at supporting the user effectively making
use of the CRL language.

Process (-fragment) Repository

The Compliance Request Language Tools
retrieve BPEL process fragments and
BPEL processes stored in the Process (-
fragment) Repository by querying the
Process (-fragment) Repository
employing a request language defined and
specified in WP2. Moreover the
Compliance Request Language Tools
store verified compliant BPEL processes
and process fragment compositions in the
Process (-fragment) Repository.

Compliance Requirements Repository

The Compliance Requirement Repository
stores and organises compliance
requirements at various abstractions
levels (in terms of goals, policies and
rules) and allows the reusability of the
compliance constraints (extracted from
D2.2)

Process Verification Tools

Verified process models are stored in the
Process (-fragment) Repository and can
be queried by means of the Compliance
Request Language Tools.

Graphical
LTL tools

Extend WP2

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 17 of 49

Compliance Governance Dashboard

Feedbacks from the Dashboard are
needed by the Compliance Request
Languages Tools to help the user to adjust
relevant compliance requirements and
specifications.

Converters Three converters, namely, BPMN2Reo,
UML2Reo and BPEL2Reo, are Eclipse plug-
ins used to convert business process models to
Reo circuits, and subsequently, to constraint
automata, for their formal analysis and
compliance verification.

Process (-fragment) Repositories

BPEL process fragments are retrieved
from the Process (-fragment) repository
are automatically converted to Reo
process models for their further
composition, refinement, verification and
compliance analysis using Reo Editor and
Process Verification Tools.

Reo, Eclipse New WP3

Data
Warehouse

A Data warehouse is an integrated, non-
volatile, historical, subject-oriented data
collection, aimed at supporting decision-
making processes. Particularly, in COMPAS
the DW stores compliance and process related
data.

ETL

The data warehouse is the destination of
the data processed by the ETL
procedures. It stores transformed events
in form of process, activity, and service
instance facts.

Project-
specific data
warehouse
model

DBMS

New

Use

WP5

DSL Editor System requirements and compliance
concerns are represented in terms of Domain-
Specific Languages (DSLs). DSLs describe
knowledge via a graphical or textual syntax.
Therefore, DSL editors are necessary for, and
often used by stakeholders to manipulate the
requirements.

 Eclipse-based
editors, XML
Editors

Extend WP1

DSL DSL transformations take as inputs the DSLs DSL Editor Frag, XML Extend WP1

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 18 of 49

Transforma
tion

defined by using DSL editors, and then,
interpret and transform them into modelling
artefacts such as models, model instances
and/or relevant constraints (if any).

DSL instances are passed from DSL
Editors to the DSL Transformation

Parsers,
Parser
Generators

ESB
(Enterprise
Service Bus)

The Enterprise Service Bus (ESB) is a unified
communication channel between the
components. Besides that the ESB provides a
publish/subscribe mechanism for events that
are published via this channel. In COMPAS
the ESB is employed for publish subscribe
mechanism for events, without implementing
additional functionality.

Application Servers

The runtime components such as the
process engine executing processes, and
the services describe their current status
by generating and emitting events. Those
events can be published via the ESB in
order to inform any interested component,
such as the Event Log (described below)
for example.

Business Protocol Monitoring

Described above

Runtime Compliance Monitoring

Runtime Compliance Monitoring is an
event subscriber of the ESB. Relevant
events published by the ESB are
exploited by the Runtime Compliance
Monitoring for online detection of
compliance violations.

ServiceMix,
ActiveMQ

Use WP2,4,5

ETL
(Extract,
Transform,
and Load)

The ETL (extract, transform and load)
processes are responsible for the extraction of
the data from the Event log (possibly from
Audit trail), transforming them according to

Process (fragment) Repository

Process models will be used during ETL
for the identification of executed process

Project-
specific ETL
procedures

New

WP5

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 19 of 49

the DW data model. instances out of logged events. Process
fragment models can be used to check
whether a specific process instance
obeyed to a given fragment or not.

Event Log

The event log represents the actual data is
processed by the ETL procedures. Event
will be aggregated in order to reconstruct
process, activity, and service instances.

Talend (or
similar)

Use

Event Log An Event log can be seen as a set of past
events typically ordered chronologically by
the timestamps. Depending on the
implementation the event log normally
provides an interface to retrieve a certain sub-
set of those events that occurred within a
given interval. In the architecture of
COMPAS the events are emitted from any
component in form of messages, which can be
delivered by the ESB that again provides
publish/subscribe functionality for any
component that is interested in a certain type
or source of event.

ESB

The Event Log uses the Publish-
Subscribe mechanism that the ESB
provides, for subscribing to, and
retrieving any event that is required for
further processing, such as for
compliance analysis in the Data
Warehouse.

DBMS New WP5

Log Mining Log mining refers to the activity of extracting
implicit knowledge from log repository. For
instance, the actual business protocol of the
process can be retrieved, allowing a better
understanding of service and clients
behaviour. In the architecture of COMPAS,
knowledge from log mining is reported

Event Log

The Log Mining uses subsets of events
provided via the Event Log’s interfaces to
reason and produce relevant knowledge
that are displayed to the user via the
Dashboard.

Java, Matlab New WP5

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 20 of 49

through the monitoring dashboard.

Process
Engine

The process engine is the component that
executes processes by navigating through the
steps defined in the process model, based on
the current parameters of the running process
instance. A process engine describes the
current status of the execution of processes by
generating and emitting execution events.
During execution of a business process
instance the engine stores additional
execution data in the audit trail e.g., incoming
purchase order, and emits events to the ESB,
which is used for reliable messaging and
Publish-Subscribe mechanism for event
messages

 Apache ODE Use WP1,5

Process
Verification
Tools

Process Verification tools include a Reo
animation plug-in and a Vereofy model
checker.

Reo animation plug-in is a tool that generates
flash animated simulations of formal business
process models. The plug-in depicts the
process that was previously shown in the Reo
editor in the animation view. The parts of the
process highlighted red represent synchronous
data flow. Tokens move along these
synchronous regions. On the left side there is
a list of possible animations for this connector
and the attached writers and readers.

Reo validation plug-in is a tool that performs
model checking over coordination models

Reo Editor

Process Verification Tools take as input
format constraint automata automatically
generated from Reo process models.

Compliance Requirement Repository

Compliance requirements are expressed
as logic formulas and used as input for
the model checker.

Eclipse plug-
in

Extend WP3

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 21 of 49

represented as constraint automata. This
model checker uses a symbolic model and
LTL logic as property specification formats.

Reo Editor The Reo editor is an Eclipse plug-in that
enables business process modelling by simple
drawing operations and serves as a bridge to a
number of other tools that can be either
invoked from the context menus or directly
interact with it. Formal business process
models are stored using an XML format and
can be further verified and transformed to
service compositions by wiring appropriate
web services.

Converters

Reo process models can be automatically
obtained from BPMN/UML diagrams
(green field scenario) or BPEL process
fragments with the help of corresponding
converters.

Reo, Eclipse Extend WP3

Repositories The Repositories provides means for
registering, persisting, and versioning
modelling artefacts in order to enhance
reusability and collaborative development.
There are three main types of repositories
including Compliance Requirement
Repository, Model Repository and Process (-
fragment) Repositories.

• Compliance Requirement Repository

• Process (-fragment) Repository.

• Model Repository

DSL Transformation

Model instances produced by the DSL
Transformation are stored in the Model
Repository for later use.

Compliance Request Language Tools

The Compliance Request Language Tools
retrieve BPEL process fragments and
BPEL processes by querying the Process
(-fragment) Repository employing a
request language defined and specified in
WP2. Moreover the Compliance Request
Language Tools store verified compliant
BPEL processes and process fragment

DBMS as
backend

New

New

New

WP2

WP4

WP1

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 22 of 49

compositions in the Process (-fragment)
Repository.

Annotation Editor

The Annotation Editor is employed for
annotating BPEL processes with textual
annotation as well as process fragments
for defining and specifying compliance
constraints. Besides the BPEL processes
and BPEL process fragments are
annotated with meta data, e.g.
information about application domain.
For details see [D4.1]

Runtime Compliance Monitoring

The Runtime Compliance Monitoring
component retrieves BPEL processes and
BPEL process fragments in order to do
near-real time monitoring of business
process execution.

Code Generator

Schematic process code generated from
the Code Generator can also be stored in
the Process (-fragment) Repository.
Conversely, processes and process
fragments in the repository can be queried

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 23 of 49

and re-used within the Code Generator.

Runtime
Compliance
Monitoring

Software architecture for online detection of
compliance violations. It’s based on complex
event processing concepts and provides
immediate notification of detected violations.

Process (-fragment) Repository

The Runtime Compliance Monitoring
component retrieves BPEL processes and
BPEL process fragments stored in the
Process (-fragment) Repository in order
to do near-real time monitoring of
business process execution.

ESB

Described above

CEP engine,
Eclipse

New WP5

View-based
Modelling
Framework

View-based Modelling Framework acts as a
modelling foundation for representing
different process concerns by exploiting the
concept of architectural views. Process
concerns, such as the control-flow, service
invocations, data handling, etc., are modelling
artefacts. These artefacts might be bound to
some modelling constraints, or be associated
with meta-data of some compliance concerns.

DSL Transformation

The DSL transformation parses the DSL
instances and produces model instances
that can be manipulated by the View-
based Modelling Framework.

Process (-fragment) Repository

The View-based Modelling Framework
imports BPEL processes from the Process
(-fragment) Repository, transforms them
into EMF-models and stores these models
in the Model Repository.

EMF, Frag Extend WP1

Table 1 Mapping of COMPAS components into prototypes, tools and/or technologies

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 24 of 49

3.1. Model-driven Integration Architecture
After describing the dependencies of the various components that compose the compliance
framework, it needs to be emphasized that one of the objectives of the project is to develop a
framework that “enables companies to rapidly develop and then stably evolve and maintain a
business compliance framework”.

To do this, we leverage the MDSD paradigm that addresses some of the challenges (like the
maintenance, evolution and reuse of systems and system components) experienced during the
design time of compliance solutions. In this section, therefore, we describe the structure of
the MDSD environment that we intend to use for this purpose.

As mentioned in the overview, the design time infrastructure consists of MDSD Software
Framework, Repositories, Verification Tools, and Compliance Request Languages. In this
section, we present a model-driven tool-chain (see Figure 3) which is the fine detail of the
MDSD Software Framework component shown in COMPAS overall architecture (see
Figure 1 and Figure 2). This component provides basic concepts and mechanisms for
integrations of COMPAS prototypes, tools, and technologies.

At design time, stakeholders supporting by appropriate tools and editors develop view models
for business processes and specify relevant compliance requirements that those processes
comply with. These compliance requirements are described in terms of DSL concrete syntax.
DSL parsers take the DSL instances representing compliance requirements as inputs and
transform them into model instances. Transformation mechanisms implemented in DSL
parsers are defined according to corresponding models, parser specifications, and model -
mapping specifications. After that, the Model Validator performs constraint checking on each
model instance against its model and associated constraints. Model instances qualifying the
constraint checking are candidates for transforming into EMF models by the Model
Transformation plug-in. The code generator component which is an extension of
openArchitectureWare model transformation [OAW] consumes the EMF models and
generates system code and configurations being deployed in process engines, application
servers, and other relevant COMPAS components, for instance, the governance framework,
the dash board. The transformation templates define schematic code and configuration being
generated by the code generator. Moreover, necessary individual code that implements
specific business logic might be injected into schematic code in order to fully accomplish
particular desired functionalities.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 25 of 49

DSL Concrete
Syntax

Individual
Code

Parser
Spec

Transformation
Templates

Schematic
System Code/
Configurations

DSL
Parser Model Instances

Model-
Mapping Models

Model
Transformation

Plugin

Code Generator

Models/model
instances in

Ecore

Figure 3 Foundation of integration architecture: a view-based, model-driven tool-

chain

The subsequent sections gradually introduce important concept constituting the tool-chain.
Section 3.2 provides overview of the view-based framework which is the basis for COMPAS
model-driven architecture. Section 3.3 is dedicated to domain-specific languages that can be
utilised as a vehicle for representing compliance concerns.

3.2. View-based Modelling Framework (VbMF)
In a process-driven, service-oriented architecture (SOA), business functionality is
accomplished by executing business processes invoking various services. A typical business
process includes a number of activities and a control flow. Each activity corresponds to a
communication task (e.g., it invokes other services or processes) or a data processing task.
The control flow describes how these activities are orchestrated. A process is typically
represented either in an executable language, such as BPEL [BPEL] or XPDL [XPDL], or in a
high-level modelling language such as BPMN [BPMN], EPC [EPC], or UML Activity
Diagrams [UML].

Business and domain analysts who understand business and domain concepts best design
processes in high abstraction languages, such as BPMN, EPC, or UML Activity Diagram.
These designs are handed over to IT experts who will implement the processes using
executable languages, such as BPEL, and deploy these processes on process engines.
Bridging the gap between process design and implementation is challenging because of the
complexity of the process descriptions, the divergence of process modelling languages in
terms of syntax and semantics, and the discordance of levels of abstraction and granularity
[HZD07, HZD08a, HZD08b]. In [HZD07, HZD08a, HZD08b], we proposed a view-based
model-driven framework for process-driven SOAs to address these problems. The view-based
approach serves as the basis for COMPAS model-driven integration architecture. In

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 26 of 49

subsequent sections, we introduce basic concepts of the view-based modelling framework
with relevant extensions for modelling of business compliance, and describe useful modelling
mechanisms such as view extension and code generation that support collaboration and
integration between WP1 and other WPs.

3.2.1. Overview of the View-based Modelling Framework
In this section, we briefly introduce the View-based Modelling Framework [HZD07,
HZD08a, HZD08b]. Figure 4 shows VbMF with proposed extensions for modelling of
business compliance. From now on, the term “VbMF modelling framework”, unless
specifically stated otherwise, is used to mention the combination of VbMF and the proposed
modelling extensions as well.

The modelling framework consists of modelling artefacts such as a meta-model, view models,
and view instances (see Figure 4). In VbMF, an architectural view (or view for short) is a
representation of a process from the perspective of related concerns. Each view instance
comprises many relevant elements and relationships among these elements. The appearance
of view elements and their relationships are precisely specified in a view model that the view
must conform to. A view model, in turn, conforms to a MOF-compliant meta-model [MOF]
derived from Eclipse Modelling Framework meta-model [EMF]. VbMF view models are
devised on top of that meta-model.

On the left-hand side, the modelling framework provides basic view models for describing
process-driven systems. As stated in [HZD07] three view models: Flow, Collaboration, and
Information view model, represent the basic concerns of a business process. Other concerns,
for instance, transaction, human integration, event handling, etc., are also developed and
plugged into VbMF accordingly thanks to its extensibility. For the sake of simplicity and
concentration on compliance modelling, other view models are not presented in Figure 4. On
the right-hand side, VbMF is going to be leveraged for modelling of compliance concerns.
These compliance concerns will derived from the basic facilities provided by the common
meta-model. The aggregation of desired compliance concerns to complement a certain
process in order to make it compliant is so-called the Compliance Meta-data Model. Being
annotated with a relevant Compliance Meta-data Model, the process models are readied for
generating schematic process code as well as configurations needed to deploy and monitor the
execution of the business process.

The goal of the modelling framework, as mentioned in [DoW], is to provide concepts and
solutions for supporting all kinds of business compliance throughout a SOA. Due to the
limitation of project duration, COMPAS will address a subset of the compliance [DoW]
including following concerns:

• Quality of Service (QoS) policies (contributed by WP1)
• Security policies (contributed by WP5)
• Intellectual property and licenses (contributed by WP5)
• Regulatory or legislative provisions (contributed by WP2)

Regarding particular compliance requirements, the view models represented business
processes will be annotated or associated with corresponding compliance meta-data. Our
modelling framework is not bound to four compliance concerns mentioned above. It is
possible to extend the framework into other compliance concerns using the extension
mechanisms provided in [HZD07].

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 27 of 49

Figure 4 The View-based Modelling Framework with extended facilities for

modelling of compliance concerns

3.2.2. View-based Modelling Framework Architecture
In VbMF, we categorise distinct components in which the modelling artefacts are
manipulated (see Figure 5) [HZD07]:

• View Model Editors are based on view models. Using these editors, a new view model
might be developed from scratch by deriving the Core model. Moreover, an existing
view model might also be extended with some additional features to form a new view
model.

• View Model Instance Editors can be (semi)-automatically generated from VbMF view
models. These editors support stakeholders in creating new view instances or editing
existing instances.

• View Integrators aid the stakeholders in combining view instances to produce a richer
view, or a thorough view of a certain business process.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 28 of 49

• Code Generators generate executable code from one or many view instances. Before
generating outputs, the code generators will validate the conformity of the input views
against corresponding view models.

• View Interpreters are used to extract relevant views from existing legacy business
process code.

Figure 5 Top-down and bottom-up tool-chains in View-based Modelling

Framework

In VbMF top-down tool-chain high level view instances are designed first. Then, these
instances are refined down to their lower level counterparts which are technical-specific view
instances. The code generator uses the technical-specific view instance in order to produce
schematic process code and/or necessary configurations. In the course of the bottom-up tool-
chain, the view interpreters take as input legacy process descriptions and produce high level
or low level view instances that can be re-used later in the top-down tool-chain.

3.2.3. Supporting MDSD mechanisms in VbMF

3.2.3.i. Extension mechanisms [HZD07]
During the process development lifecycle, various stakeholders take part in with different
needs and responsibility. For instance, the business experts - who are familiar with business
concepts and methods - sketch blueprint designs of the business process functionality using
abstract and high level languages such as flow-charts, BPMN diagrams, or UML activity
diagrams. Based on these designs, the IT experts implement the business processes using
executable languages such as BPEL, XPDL, etc. Hence, these stakeholders work at different
levels of abstraction. According to the specific requirements on the granularity of the view

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 29 of 49

models, we can gradually refine these models toward more concrete, platform- or technology-
specific views using the extension mechanisms [HZD07].

A view refinement is performed by, firstly, choosing adequate extension points, and
consequently, applying extension methods to create the resulting view. An extension point of
a certain view is a view’s element which is enhanced in another view by adding additional
features (e.g., new element attributes, or new relationships with other elements) to form a new
element in the corresponding view. Extension methods are modelling relationships such as
generalisation, extend, etc., that we can use to establish and maintain the relationships
between an existing view and its extension. For instance, the Flow View, Collaboration
View, and Information View models are mostly extensions of the Core model using the
generalization relationship. In the same way, more specific view models for other
technologies can be derived. In addition, other business process concerns such as transactions,
event handling, and so on, can be formalised by new adequate view models derived from the
basic view model using the same approach as used above [HZD07].

3.2.3.ii. Integration mechanisms
In VbMF, the Flow View model - as the most important concern in process-driven SOA - is
often used as the central model. View models can be integrated via integration points to
provide a richer view or a thorough view of the business process. In [HZD07], named-based
matching mechanism is used for integrating view models. This mechanism is effectively used
at model level because from a modeller’s point of view, it makes sense and is reasonable to
give the same name to the modelling entities that pose the same functionality and semantics.
However, other integration approaches such as those using class hierarchical structures or
ontology-based structures are applicable in the view-based modelling framework [HZD07].

3.2.3.iii. Reverse engineering of legacy process code [HZD08a, HZD08b]
In the context of process-driven SOAs, many existing systems have built up an enormous
repository of existing process code in executable languages, for instance, BPEL. These
languages are rather technology-specific and therefore the abstract representations are not
explicitly available at the code level. As a result, the process models become too complex for
stakeholders to understand and maintain, to integrate, to cooperate with other processes, or to
re-use process models from existing modelling tools.

VbMF can potentially resolve these issues. However, for budgetary reasons, developing the
view models, required in our approach, from scratch is a costly option. The alternative is an
(automated) re-engineering approach comprising two activities: reverse-engineering for
building more appropriate and relevant representations of the legacy code; forward-
engineering for manipulating the process models and for re-generating certain parts of the
process code. During the reverse engineering process, high-level, abstract and low-level,
technology-specific views on the process models are recovered from the existing code. This
way, the reverse engineering approach helps stakeholders to get involved in process re-
development and maintenance at different abstraction levels. Reverse engineering of business
processes not only helps to adapt process models to stakeholder needs but also offers the
ability to integrate various process models to enhance the interoperability of process models
[HZD08a, HZD08b] (see Figure 6). The view interpreters play a central role in the bottom-up
tool-chain in VbMF (see Figure 5).

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 30 of 49

Figure 6 Reverse engineering of legacy code in VbMF

3.2.3.iv. Model-to-code transformations [HZD07]
There are two basic types of model transformations: model-to-model and model-to-code. A
model-to-model transformation maps a model conforming to a given meta-model to another
kind of model conforming to another meta-model. Model-to-code, so-called code generation,
produces executable code from a certain model. In VbMF, the model transformation is
model-to-code that takes as input one or many views and generates code in executable
languages, for instance, BPEL and WSDL [HZD07]. VbMF utilized the combination of
template and meta-model technique realized in the openArchitectureWare framework [OAW]
to implement the model transformations [HZD07] (see Figure 7). Nonetheless, other of
above-mentioned techniques could be utilized in VbMF with reasonable efforts as well.

Figure 7 VbMF code generator (adapted from [HZD07])

3.3. Domain Specific Languages for Compliance Concerns
This section will demonstrate how to specify a Domain-Specific Language (DSL) for the
defined compliance models. First, a general introduction to DSLs is given. Second, the

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 31 of 49

development of DSLs based on the Model-Driven Software Development (MDSD) paradigm
is described. The section concludes with an example of a DSL which is used to describe
Quality-of-Service (QoS) compliance concerns.

3.3.1. What are Domain-Specific Languages?
Domain-Specific Languages (DSLs) are small languages that are tailored for a particular
domain. In the area of DSLs, the term domain is related to a certain domain of the real world,
e.g., the banking domain [PM06]. Usually, DSLs are simple because they are suited for a very
narrow purpose only, and they are easy to edit and to translate. To describe a broad domain, a
broad DSL can be used. To keep the smallness and simplicity of DSLs, multiple narrow DSLs
should be used, which have to be combined to describe a broad domain. Describing a domain
with multiple DSLs is also called Language Oriented Programming [Fow05].

The goal of DSLs is to improve productivity and software quality. In contrast to General
Purpose Languages (GPL), such as Java or C#, a DSL serves to accurately describe one
domain of knowledge. A DSL concentrates on the efforts of the stakeholders to describe the
problems of the domain, while complexity, design, and implementation decisions and details
are hidden.

DSLs raise the level of abstraction to empower users with the ability to build solutions using
concepts that are similar to the domain and his/her knowledge [SSL+07]. All different DSL
users can specify the solutions with a familiar vocabulary of the problem domain [PM06].

One trade-off of DSLs lies in the high initial investment phase required for designing and
developing. Furthermore, inflexibility with regard to the target platform is given. In most
cases, the code generators only support a particular target platform. Due to changing
technologies and platforms, code generators need to be maintained permanently.

But, some few advantages of using and/or developing DSLs are as follows:

• A clear view of the problem domain is given.

• Only valid relations between the domain concepts exist.

• Due to the separation between business and technical level, multiple levels of
abstractions exist.

• The productivity and the software quality can be improved because they are easier to
maintain and the generated code does not contain bugs.

• The generated code can be tailored for the particular technology.

• Technical aspects are not shown to business experts.

3.3.2. DSLs based on MDSD
Because MDSD provides high levels of abstractions and platform-independency, a very
common development approach for DSLs is MDSD. Our approach of MDSD-based DSLs,
also proposed in [LJJ07], is depicted in Figure 8. A DSL consists of an abstract and concrete
syntax. The abstract syntax, which is based on a meta-model, defines the elements of the
domain and their relationships without considering their notations. The meta-model defines
how the domain elements and their relations must be described [VS06]. The concrete syntax
describes the representation of the domain elements and their relationships in a human
readable form. Abstract and concrete syntax are used that DSL users can define model
instances which represent a particular problem of the domain. Transformations, which are

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 32 of 49

defined on the model, transform the user-defined model instances into schematic recurring
code.

Figure 8 MDSD based DSL – Relevant Concepts

Our approach of developing DSLs aims to dividing the DSL into multiple DSLs, as
demonstrated in Figure 9. Domain experts can work in a language, from now on called high-
level language, where the syntax is close or equal to the domain terminology. On the other
hand, technical experts can express the additional technical aspects with a language, from now
on called low-level language, where the syntax is close or equal to terminology of the used
technology. In DSLs, the syntax of the high- and low-level languages is based on language
models. Low-level language models are extensions to high-level language models. In this
way, technical experts are able to add the additional needed technical aspects. DSLs are then
used to define instances of the high- and low-level language models. Each instance contains
the concrete solution of a certain problem.

Figure 9 High- and Low-Level DSLs

Due to the multiple levels of abstractions, business or domain experts do not need to know
any details about the underlying technology. For instance, the abstraction level for business or
domain experts of the banking domain can provide terminologies and notations like account,

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 33 of 49

customer, withdrawal, or stock order. On the other hand, the abstraction level for technical
experts can provide technical terminologies and notations, e.g., database connection, Web
service, operation, or parameter. Hence, technical experts can express the additional needed
technical aspects of the needed solution with a familiar terminology [OZD08].

The development process of DSLs brings many design decisions and tradeoffs. An example is
demonstrated by developing a DSL for XML. A design decision regards the notations of the
concrete syntax of the DSL. Should the notations be close to XML or should they be named
based on names given by domain experts? On the one hand, the XML syntax can be parsed
easier, but, the customised syntax is actually easier to understand for domain experts. This
example shows that design decisions bring tradeoffs [Fow05]. Hence, the responsible
developers of the DSL have to handle with those design decisions and tradeoffs.

The problem of companies - or rather their expert developers - is how to come up with a
suitable DSL. If the DSL reflects the code the developers usually write, the possibility for
productivity is limit. DSLs should focus on restricted and narrow domains the companies
have been working on already. Hence, the level of abstractions gets enhanced, and it is easier
to create code generators to automate development [Tol08].

3.3.3. A DSL for Specifying Locative Compliance Concerns
This section describes the specification of a model on which a DSL is based on, and how the
DSL can be used. Especially, we concentrate on how locative compliance concerns can be
defined for business processes. A more detailed introduction to locative compliance concerns
is given in Section 4.3. The following DSL is defined and used in Frag [FRAG].

Listing 1 describes how the model of the DSL can be defined. Frag provides constructs for
specifying the classes and their attributes of the model. Also, constructs for defining relations
(i.e. associations or compositions) are provided. In our case, we define some classes, i.e.,
ExecutionCompliance, Process, ProcessActivity, and ExecutionLocation, where the
ExecutionLocation class has a number of attributes. Then, two associations are defined. The
first one is an association between the classes ExecutionCompliance and
ExecutionLocation. The second on is between the classes ExecutionCompliance and
Process.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 34 of 49

first, create the classes of the model

and define their attributes

FMF::Class create ExecutionCompliance

FMF::Class create Process

FMF::Class create ProcessActivity

FMF::Class create ExecutionLocation -attributes {

 domain String

 IP String

 host String

 country String

 geocordinates String

 priority int

}

second, define the relations between the classes

FMF::Association create ExecutionLocationCompliance -ends {

 {ExecutionLocation -roleName location -multiplicity 1}

 {ExecutionCompliance -roleName compliance -multiplicity 1}

}

FMF::Association create ExecutionComplianceProcess -ends {

 {ExecutionCompliance -roleName compliance -multiplicity *}

 {Process -roleName process -multiplicity *}

}

Listing 1 Definition of the DSL Model for Locative Compliance Concerns

After the definition of the DSL model, the DSL users can define concrete problems of the
domain based on the DSL model. The following code, Listing 2, gives an example of how
DSL users can assign locative compliance concerns to a process.
ExecutionCompliance create aLocationCompliance

 -location [ExecutionLocation create aLocation

 -set domain "infosys.tuwien.ac.at"]

 -process [Process create aProcess]

Listing 2 Definition of a Locative Compliance Concerns

The DSL users can define concrete problems of their domain within the DSL. The code
example above defines an ExecutionCompliance that specifies the location, and assigns it to a
Process.

3.3.4. A Sample DSL – Quality-of-Service (QoS) DSL
This section gives a more detailed example of how MDSD-based DSLs can be divided into
high- and low-level DSLs which can be used by business and technical experts, respectively.
While the next deliverable of WP1, Deliverable 1.2, will define concrete syntax and semantics

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 35 of 49

for DSLs in more detail, we do not focus on these aspects within this deliverable. Instead, we
complete the introduction of high- and low-level DSLs with an example DSL.

The purpose of the following DSL is to specify Quality-of-Service (QoS) of Web services, as
well as actions which should be performed if Service Level Agreements (SLAs) get violated.
Business experts should be able to specify which QoS values have to be measured on a
particular Web service to fulfil the agreed SLAs, as well as actions or events which should be
performed if a certain SLA is violated, e.g., if the response is longer than 2 minutes, then send
an e-mail to the administrator of the service provider. On the other hand, technical experts
need something to specify how QoS values are measured on a particular technology, as well
as how the defined actions are executed. Only the collaboration between business and
technical DSLs results in a running system.

To achieve the aims of specifying QoS of Web services for business and technical experts, we
provide two DSLs. The first one, the high-level language, is tailored for business experts. It
provides constructs and expressions that are named similar to the terminology of the
particular domain the DSL was designed for. The second one, the low-level language, is
tailored for technical experts. The low-level language is an extension of the high-level one,
because it enriches the high-level language with technical concerns, e.g., how to measure the
response time on a particular Web service engine. Similar to high-level DSLs, the constructs
and expressions of the low-level DSL are named similar or equivalent to the appropriate
technology.

In the following we will describe the models on which the high- and low-level DSLs are
based on, and how the high-level models get extended by the low-level ones.

• High-Level Model
The requirements for the high-level DSLs can be formulated as follows: SLAs are
associated with Web services, as well as with actions. SLAs depend on measured QoS
values, where, for the time being, the main attention lies on performance QoS values,
e.g., response time, wrapping time [RPD06].

Figure 10 depicts the model of the high-level QoS DSL. Services are associated
with QoSMeasurements. For the time being, we provide classes for measuring
Performance and Dependability QoS measurements, as described in
[RPD06]. Each QoSMeasurement can have Service-Level-Agreements
(SLAs) which are in relation with different Actions that should be raised if an SLA
gets violated. E.g. if the ResponseTime of a Service is longer than 2 minutes, a
Mail should be send to the service provider.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 36 of 49

Figure 10 High-Level Model of the QoS DSL

The high-level model is extended by the following described low-level model which contains
all necessary constructs for specifying the technological aspects to get a running system.

• Low-Level Model
The expressions of the low-level DSLs depend on the technology on which the DSL is
based on. We decided to use the open-source Apache CXF Web service framework
[CXF]. The requirements can be modelled as follows: The communication between
clients and services is based on message-flows. Each message-flow consists of a
number of phases, where each phases can contain handlers for measuring QoS values.
E.g. the handler for measuring the response time is associated to two phases of the
message flow on the client side.

Figure 11 depicts the low-level model of the QoS DSL, and how the low-level model
extends the high-level model. The Service class at the low-level model extends the
Service class at the high-level model. Services are enriched with Operations
which have a particular number of Parameters. For measuring QoS values of
services, e.g., the response time, QoSHandlers are associated to services. Again,
QoS handlers are associated with different QoS measurements of the high-level model.
In our case, the QoS handler class extends the Response class of the high-level
model. In the Apache CXF framework, QoS handlers are associated to Phases where
each phase corresponds to a certain MessageFlow. Now, the technical experts can
specify in which Phases of which MessageFlows the Response time of a
Service is measured when the underlying technology is the Apache CXF
framework.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 37 of 49

Figure 11 Low-Level Model of the QoS DSL

Next, we want to demonstrate how the models and the DSLs are combined, so that business
and technical experts can use the appropriate tailored high- and low-level DSLs. The
following demonstrated DSLs were developed and used within Frag [FRAG]. While business
experts may directly use concrete textual DSLs for expressing compliance concerns, also
graphical DSL tools are possible for representing and populating abstract DSLs.

• The QoS DSL for Business Experts
define a service and add some measurements to it

Service create QoSService

-measure [ResponseTime create QoSResponseTime

 -assert [SLA create ResponseAssertion

 -set predicate "LONGER THAN"

 -set value "10"

 -set unit "SECONDS"

 -set actions [Mail create SendMailToProvider

 -set mailto "admin@provider"]]]

Listing 3 The High-Level QoS DSL for the Domain Experts

First, the business user has to create a Web service and specify which QoS values
should be measured. An Assertion is assigned to the ResponseTime where the
SLAs are specified. The idea of specifying a predicate, a value, and a unit for QoS
assertions is taken from [REM+07]. Actions, which specify what should happen if a
violation against the SLAs occurred, are assigned to Assertions.

In our example, a service, QoSService, is created where the ResponseTime will be
measured. An SLA, ResponseAssertion, is defined which occurs if the
ResponseTime is greater than 10 seconds. If so, a Mail should be sent to the
service provider which has the e-mail address admin@provider.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 38 of 49

Technical experts have to enrich the, by the domain experts specified aspects, with
technical aspects to become a running system. The next paragraph shows how
technical aspects can to be described by using the low-level DSL.

• The QoS DSL for Technical Experts
First, the technical expert, in our case an Apache CXF [CXF] expert, specifies how the
message flow between the service client and the service is done. Client and service
have in- and out-flows, where in-flows are responsible for the incoming of a message
and out-flows are responsible for outgoing messages. Each flow consists of phases.
After specifying the phases, the technical expert defines where each QoS value has to
be measured.

define message flows of client

ClientFlow create ClientInFlow -superclasses ClientFlow

ClientFlow create ClientOutFlow -superclasses ClientFlow

define phases of the message flows

OutPhase create OutSetup

OutPhase create OutSetupEnding

assign phases to message flows

ClientOutFlow phases {OutSetup OutSetupEnding}

define in which phases the response time is measured

ResponseTime measuredInFlows {ClientOutFlow}

ResponseTime measuredBetweenPhases {OutSetup OutSetupEnding}

Listing 4 The Low-Level QoS DSL for the Technical Experts

In our example, the in- and out-flows of the service client, ClientInFlow and
ClientOutFlow, are specified. Then, the phases of the out-flow, OutSetup and
OutSetupEnding, are defined. In the end, the technical experts specify the flows and
phases, between which the ResponseTime is measured.

3.3.5. Tools for DSL-Development
Nowadays, many tools exist for developing DSLs, whether based on MDSD or not. Using
Frag [FRAG] for developing and using DSLs, which is described above, is not obligatory
although we provide an automated model-driven generation of Frag code that is ready to use
for internal DSLs. The Frag example is provided to give better insides for a better
understanding to the reader. In order to bind external, concrete DSLs to the abstract DSLs we
provide an example with a parser implementation that can be adapted for individual DSLs.

Other tools for developing DSLs are:

• Microsoft DSL Tools [MSDSL]

• Microsoft Oslo [OSLO]

• XText which is provided by openArchitectureWare [OAW]

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 39 of 49

4. Compliance Modelling
After having introduced MDSD, the View-based Modelling Framework and DSL support, we
will now start with a general discussion on compliance concerns and identify and extract
various concepts. In Section 4.1 we will then show how to integrate these concepts with the
VbMF and give an example on how to model a business process with some compliance
aspects.

4.1. Compliance Views
Section 3.1 of [D2.1] gives an overview of various compliance concerns such as locative,
monitoring, quality or security concerns and their relation to several compliance legislations
such as Basel II [BASELII] or Sarbanes-Oxley Act. [SOX].

In order to express the compliance of a certain process or process activity we propose two
options: An existing process or process activity can be annotated to be compliant to a certain
compliance rule of a specific regulation as probably implemented by a standard framework.
This allows for reuse of legacy processes that need to be marked as compliant. Such processes
would have to be validated manually, thus no validation at runtime may occur using this
approach. Also the compliance for a process or process activity can be modelled. In this case
for each of the compliance concerns an appropriate precisely specified model has to be
defined using modelling techniques. Besides the modelling of compliance concerns also
Object Constraint Language (OCL) [OCL] constraints can help to restrict the models in order
to become compliant. Therefore all models may be extended by additional compliance OCL
constraints.

[D2.1] distinguishes between basic and advanced compliance concerns. For each of the basic
compliance concerns we will come up with a starting example. There, we will consider a
scenario with a specific compliance requirement that addresses the corresponding compliance
concern in a simplistic way. We will then illustrate a pragmatic approach how to address this
requirement in regard to compliance modelling using VbMF. A resulting model would permit
formal verification of the compliance at a later point of the MDSD process, e.g. at
deployment- or runtime. Without the aspiration to be complete, we will then enumerate
several other possible requirements. Finally we will, after these initial considerations, either
propose a concrete modelling for the respective compliance concern or leave the subject open
to further investigation. Although concrete proposals will be illustrated for some compliance
concerns, it is important to point out that these models will serve as a starting point rather than
be a final specification. Also advanced compliance concerns have to be covered in future.

4.2. Control flow
“The control flow compliance concern encompasses requirements concerning how
things are done in business processes (i.e. what activities are carried out and in what
order).” [D2.1]

The control flow of business processes primarily consists of activities. These activities can be
of basic nature; also structured activities such as loops or conditional activities are defined in
common workflow languages such as BPEL. Activities are arranged within in a workflow;
therefore they are given a certain order.

If we want to apply some kind of compliance on the control flow we should foremost
concentrate on the execution of activities and the order of their execution.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 40 of 49

Initial example and modelling approach:
A possible compliance requirement for a business process could be that a certain activity B
must be executed after an activity A. This requirement could be addressed by a simple
compliance model within the VbMF with a MustExecuteAfter class that contains two
references to the service element from the VbMF Core model. While the first reference could
specify the activity A, the second reference would define the activity B that must follow.

Some other possible requirements:
This kind of modelling, obviously, is rather limited if we consider other possible requirements
towards compliance of the control flow such as:

• A certain process must execute an activity X before an activity Y and the execution of
these activities does not have to be performed subsequently. Particularly there can be
an activity Z in between the control flow of activity X and Z.

• A process must execute a certain activity at some point during its control flow.

• Two activities must not be executed by the same process.

Suggested approach:
We could easily consider these additional requirements and extend the conceptual model
elements accordingly; however we believe that by using process fragments we can express the
control flow compliance of a business process in a much more comprehensive way. We will
thus show in [D4.3] how process fragments relate to COMPAS and the control flow
compliance concern.

4.3. Locative
“The locative compliance concern addresses requirements concerning the location
where business process activities are carried out.” [D2.1]

In contrast to the control flow compliance concern where we had to concentrate on the
execution of activities and their order we now have to focus on the location of the execution.
This section extends Section 3.3.3, by giving a more detailed introduction to locative
compliance concerns.

We therefore have to elaborate how to identify the location of an execution. This usually is
related to where a service is deployed at. A deployment model that e.g. specifies a host as a
location for a service (execution) can also be used for expressing and validating the locative
compliance concern. One possibility to determine the location would be to use the internet
protocol (IP) address of a computer that executes an activity or business process as an
identifier for the location. While an IP address would not directly reveal the location of a host,
it could nonetheless be a unique identifier for a certain host. If we (just) want to bind the
execution of e.g. a business process to a certain host, IP-based locative specification would be
sufficient in order to specify a locative compliance concern. In contrast of using plain IP
addresses for specifying hosts also hostnames of course can be used thanks to the worldwide
applied domain name system (DNS). A DNS name already can encode some geographical
information into its hostname as this is usually done with addresses of routers:

• at-vie15a-ra1-ae0-946.aorta.net (213.46.173.113)

• uk-lon01a-rd3-10ge-11-0.aorta.net (213.46.160.233)

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 41 of 49

More interestingly, hostnames can be associated with geographical location information using
LOC records [RFC 1876]. Geo location information nonetheless is however only an example
and not the only or primary locative compliance concern. We have seen that also host based
locative information can help to specify the compliance of an execution effectively.

Initial example and modelling approach:
Because of valid contracts, some out-sourced activities of a business process have to be
performed by a certain company. The company has registered a domain name
company.test.com and all hosts of the company have hostnames within this domain.

We can model the requirement in VbMF as follows: An ExecutionLocation class with an
attribute domain can be instantiated with the domain name of the company and referenced by
an ExecutionConcern class, that references the process or process activity that must be
executed on a host that domain name lies within domain.

Some other possible requirements:

• A certain business process consists of a computationally intensive activity that
typically is performed by a grid provider. Because of legislative regulations, the
transfer and execution of the according data e.g. may only be performed within a
certain member state of the European Union.

• Business to business (B2B) Web service calls to certain countries may be forbidden
because of existing international sanctions. While related but more appropriate to the
focus on execution we could state that the execution of processes or process activities
must not take place on or within a certain location.

• While we have until now focused on the execution of single processes or activities,
another requirement could be that all execution has to take place within a certain
country or company in order to eliminate risks concerning different legislations or
unclear liabilities.

Suggested approach:
We suggest the following approach for modelling the locative compliance concern:

An ExecutionCompliance class consists of

• a reference, that specifies a process or service element of the VbMF core view.

• an instance of an ExecutionLocation that specifies one of the following possible
information:

o an IP address or IP address block
o a host- or domain name
o a country using an ISO 3166 alpha-2 code
o geocoordinates as specified in Section 3 of [RFC 1876]

• a priority that may be instantiated with one of the following values

o 1: must be executed on the location specified

o 2, 3, 4,..: should be executed on the location specified with decreasing priority
by increasing value.

o -1: must not be executed on the location specified

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 42 of 49

o -2, -3, -4: should not be executed on the location specified with decreasing
priority by increasing absolute value.

Notes:
As we in general have to deal with other parties, security becomes an important issue in
regard to locative compliance concerns. How can we say that an IP address or hostname has
not been faked or spoofed? As it is the case with the today’s internet, we – like everyone –
have to rely on underlying technologies like IPv4 or DNS. IPv6 and DNSSec could provide
solutions in order to bring more security to the net, however: e.g. LOC records still would
have to be verified. An external, trusted, device that would be connected to the host with the
location in question may probably receive (signed) geo-coordinates via a GPS signal and
could establish trust by cryptographic certificates but as not only these approaches would
have to be investigated but also are out of scope of the COMPAS project we rather stop at this
point, leave the related questions open for discussion and continue with the modelling of other
compliance concerns.

4.4. Information
“The information compliance concern deals with the information used and produced
in business processes as well as the syntax and semantics of this information.” [D2.1]

The topic of information is a broad subject and therefore we only illustrate some few possible
compliance concerns in regard to information as used and produced in business processes. It
also needs to be pointed out that this compliance concern may overlap with the security and
privacy compliance concerns that have been categorized as advanced compliance concerns in
[D2.1]. Therefore no security or privacy aspects in regard to information are covered here as
the later compliance concerns particularly address questions in regard to information.

Initial example and modelling approach:
A business process defines the output of one of its process activities using XML schema
definition (XSD) [XSD]. While it is possible to specify restrictions in XSD and therefore
dictate the syntax of a valid XSD instance, the semantics of the information has to be checked
independently. Does for example a passed identifier exist in a database?

Some other possible requirements:

• Compliance regulations may require information to be tagged e.g. by a serial.

• A domain specific language may be used as the in- or output of a process activity. The
syntax and semantics of this information thus has to be checked.

Possible approaches:
For addressing the semantic concern:

Within the VbMF an Information view model covers the concern of data and business objects
as used and produced by processes and process activities. We can thus use this view for e.g.
applying compliance OCL [OCL] restrictions.

For addressing the syntax concern:

When dealing with XML data Document Schema Definition Languages (DSDL) like RELAX
NG [vdV03] or Schematron [vdV07] would be interesting options for expressing restrictions
in order to guarantee information compliance in regard to syntax as well. Another possibility
how information compliance in regard to syntax could be achieved would be to use a plug-in

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 43 of 49

architecture: We could introduce a namespace attribute within a XSD complex type that is
used for the corresponding data object. Such a namespace may indicate that encapsulated
information is expressed in a certain language. A plug-in for the language that needs to be
deployed within the compliance framework would then validate the syntax (and potentially
the semantics) of the information.

4.5. Resource
“The resource compliance concern considers the question of which resources are used
within business processes (e.g. employees and customers, and computerized
systems).” [D2.1]

While we already have covered an aspect of the resource compliance concern within the
locative compliance concern, namely the execution of a business process or activity on a
certain host, we particularly want to examine concerns that are more related to the field of
quality of service within this section.

1. What stakeholders are involved or associated with a certain process or activity?

2. How much CPU cycles or memory does a (process) activity consume?

Regarding question one:

The BPEL4People extension for BPEL [B4P] permits a precisely defined mapping of people
and processes and activities in the context of BPEL processes. This technology can thus be
used to define and execute processes with human interaction. While [VieBOP] proposes a
generic architecture for BPEL engines that could be used during runtime to execute
BPEL4People processes, [HumanVbMF] presents conceptual models for human aspects of
business processes together with a mapping to BPEL4People technology. We can reuse the
models, namely the human view for also specifying the compliance of business processes.
This seems to result in needless redundancy and indeed it introduces the question: are the
respective models, once found in the modelling of the business process as well as the second
one as recorded as a compliance concern consistent? The answer to this question is exactly
the answer to the question if the modelled business process is compliant in regard to the
modelled concern. Such a validation of models thus results in a direct test for compliance at
design time where we can profit from already existing models that can be used for reference
instances.

Regarding question two:

Various criteria for quantifying different computer resources exist. Amongst them are:

• Max memory

• Max CPU cycles

• Bandwidth Limits

• Download/Upload Volume

Initial example and modelling approach:
Within a certain business process an activity has to be performed manually by a qualified
person that thus is authorized to perform this human task.

Within the human view of the VbMF we can annotate a certain process activity to be a human
task. Also we can define the role of potential owners for this task and associate the respective
person to this role. For expressing the compliance of a business process, that needs to

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 44 of 49

implement the process activity as a human task with the appropriate binding to human
stakeholders, we would like to (re)use such an instance of a human view.

Suggested approach:
We already mentioned that we covered some of the compliance concerns that are related to
resources within the locative compliance concerns. Regarding the human resources and
stakeholders we propose the following new compliance class:

A StakeholderCompliance class consists of

• a reference to the VbMF human view, that specifies the human aspect compliance
concerns of a business process.

Notes:
We have seen that we actually can reuse existing models for business processes for also
expressing the compliance for a business process. When doing so the validation for
compliance at design and deployment time becomes trivial. Usually however the compliance
is determined at runtime using online or offline monitoring. In cases where it is possible and
suffices to check for compliance at deployment time we could profit nonetheless from the
following validation: ideally, only model instances need to be compared by identity: is the
same model instance used for the process as it is required to implement according to the
compliance? If not the same but an equal model instance would suffice, we would compare
the compliance model instance with the process model instance by value. In such cases it
might make sense not only to check for equality but also use comparisons that e.g. check for a
subset, etc.

4.6. Temporal
“The temporal compliance concern takes requirements concerning when things are
done/must not be done within a business process into account (e.g. in terms of relevant
business events).” [D2.1]

Initial example and modelling approach:
Within a business to business (B2B) scenario the computation of a certain third party Web
service request could be more expensive during day than during night. For this reason not so
urgent processes might be delayed during day and continued when the external Web service
calls are scheduled for execution.

We could extend the above mentioned ExecutionCompliance class with an optional attribute
executionTime that indicates the time for the execution of the process or process activity.

Another problem is mentioned in Section 2.1 of [D5.2]:

“Section 409 of SOX requires that a publicly traded company discloses information
regarding material changes in the financial condition of the company in real-time.
[…] The requirement that relevant information be disclosed in “real-time” has so far
commonly been interpreted as “within 2-4 business days”.”

There an execution of two up to four business days determines the compliance of an
accordant process.

Some other possible requirements:

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 45 of 49

• The not so urgent execution of a process like backing up a system might take place
during a dedicated interval. If the interval ended the process could be delayed and
continued at a later time when e.g. the interval reoccurs again.

• A process or process activity must not be executed during a specific interval.

Suggested approach:
As the temporal compliance concern like the locative compliance concern deals with some
kind of execution concern, we intend to extend the ExecutionCompliance class with a
reference to a new TemporalCompliance class that consist of:

• An attribute that specifies the starting of an execution

• An attribute that specifies the end (or deadline) of an execution. It can be specified as:

o the duration from the start of an execution (useful for the problem from Section
2.1 of [D5.2])

o or can be a fixed date.

• A reoccurrence attribute may specify a period in terms of e.g. milliseconds

• exceptions may hold dates with exceptions to the specified reoccurrences.

4.7. Summary
We have examined different compliance concerns and proposed several modelling approaches
for respective initial scenarios. We have enumerated some additional compliance
requirements and covered these with some proposals. We would now like to summarize and
bring together the different aspects of compliance concerns by proposing the following
modelling approach for compliance concerns within the VbMF.

In compliance concerns we have seen a priority that specifies if e.g. an execution must, must
not or should take place e.g. at a certain location. As this priority can be generalised we move
this up to the level of a ComplianceRequirement that consists of various compliance concerns.

The ComplianceRequirement itself can be associated with a certain ComplianceRule1 of a
ComplianceRegulation2 as well as a ComplianceFramework3

Various instances of a ComplianceRequirement can be logically combined by associating
them within an instance of ComplianceRequirements (see

. Additionally a Risk can be
specified for the ComplianceRequirement that applies when such a compliance requirement is
violated.

Figure 12) that finally is associated
with a process or process element by referencing an Element of the VbMF core model
[HZD07]. Last but not least OCL constraints can be applied to ComplianceRequirements with
its associated data in order to complete expressing of a particular compliance concern.

1Section 5 of [D2.1] covers Compliance Specification and introduces Compliance Rules or Policies that express
Compliance Requirements.
2 Examples for different Compliance Legislations or Regulations (Section 3.1 of [D2.1]) are: Basel II, Sarbanes-
Oxley Act or Tabaksblat.
3 Compliance Frameworks such as COSO or COBIT, have been introduced in Section 2 of [D2.1].

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 46 of 49

Priority

ControlFlowCompliance

ExecutiveCompliance

StakeholderCompliance

ComplianceRequirement

Reference to Core Model::Element

Reference to ComplianceRule

Reference to ComplianceFramework

References to Risk

ComplianceRequirements

Figure 12 UML class for ComplianceRequirements

5. Conclusion
In this deliverable, we step from the high level perspective of the overall COMPAS
architecture down into the details of the components that the architecture constitutes. We
discuss these components’ functionality, inter-relationships and give details of the
technologies used in implementation. We also distinguish which components are to be newly
developed, extended or reused. This gives an insight into the contributions that the COMPAS
project provides technology-wise.

As the project intends to take advantage of some of the positive points of the MDSD
paradigm, we also present in more detail the COMPAS model-driven integration component.
This component consists of the extensible architecture. We clarify functionalities of
prototypes, tools, and technologies used, extended or newly developed by COMPAS
consortium, and elicit the relationships, the interactions between these components.
Moreover, the document also presented the foundation of COMPAS model-driven integration
architecture which comprises core modelling artefacts and supporting mechanisms provided
in the extended view-based framework for modelling of process-driven systems and business
compliance; part of the framework supports and , along with the concepts of domain specific
languages to enable domain experts to represent those facilitated for effectively and
productively eliciting compliance concerns as customised models. As such, the model-driven
integration component serves as the basis for the interactions and integrations of prototypes,
tools, and technologies from COMPAS WPs.

6. Reference documents

6.1. Internal documents
[DA.1] “Model-driven Integration Architecture for Compliance: Case Study and

Technology Mappings, Evaluation Metrics”, 2009-01-31

[DoW] “Description of Work” for COMPAS, final version of 2008-02-01.

[D2.1] “State-of-the-Art in the Field of Compliance Languages”, 2008-07-31.

[D2.2] “Initial specification of compliance language constructs and operators”, 2009-
01-31.

[D3.1] “Specification of a behavioural model for services”, 2009-01-31.

[D4.3] “Classification and specification of reusable process artefacts”, 2010-07-31.

[D5.1] “State-of-the-Art in the Field of Adaptive Service Composition Monitoring and
Management”, 2008-07-30.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 47 of 49

[D5.2] “Initial Goal-oriented data model”, 2009-01-31.

6.2. External documents
[AAD+07a] A. Agrawal, M. Amend, M. Das, Ford, M., Keller, C., Kloppmann, M., König,

D., Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R.,
Rickayzen, A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., and M. Zeller,
Web Services Human Task (WS-HumanTask), Version 1.0;
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/WS-HumanTask_v1.pdf.

[AAD+07b] Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M.,
König, D., Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R.,
Rickayzen, A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A. and M. Zeller ,
“WS-BPEL Extension for People (BPEL4People)”, Version 1.0;
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/BPEL4People_v1.pdf.

[ADO00] W. van der Aalst, J. Desel and A. Oberweis, ed., Business process
management: Models, techniques, and empirical studies - Lecture Notes in
Computer Science (Vol. 1806). Springer-Verlag, 2000.

[AHK+03] W. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros,
“Workflow patterns”, Distributed and Parallel Databases, 14 (1), 2003, pp. 5-
51.

[AKR+05] B. Axenath, E. Kindler and V. Rubin, “An open and formalism independent
meta-model for business processes”, Proc. of the Workshop on Business
Process Reference Models, 2005, pp. 45–59.

[BASELII] Basel II Capital Accord, 2007; http://www.occ.gov/ftp/release/2007-123b.pdf

[B4P] http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/

[BPEL] IBM, BEA Systems, Microsoft, SAP AG, & Systems Siebel, “Business Process
Execution Language for Web services”, version 1.1; 2003,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

[BPM] Business Process Modelling Forum, “What is Business Process Modelling
(BPM)?”; http://www.bpmodeling.com/faq/#faq_1

[BPMN] Business Process Modelling Notation (BPMN), 2006; http://www.bpmn.org

[EMF] Eclipse Modelling Framework; http://www.eclipse.org/emf/.

[EPC] E. Kindler, “On the semantics of EPCs: A framework for resolving the vicious
circle”, In Business Process Management, 2004, pp. 82–97.

[FBK+99] D. Ferraiolo, J. Barkley, D. R. Kuhn, “A role-based access control model and
reference implementation within a corporate intranet”. ACM Trans.
Information and System Security (TISSEC), 2(1), 1999, pp. 34-64.

[FRAG] The Frag Language, http://frag.sourceforge.net

[GJM91] C. Ghezzi and M. Jazayeri and D. Mandrioli, Fundamentals of Software
Engineering, Prentice Hall, 1991.

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 48 of 49

[HTZ+08] T. Holmes, H. Tran, U. Zdun, and S. Dustdar, “Modeling Human Aspects of
Business Processes - A View-Based, Model-Driven Approach”, 4th European
Conf. Model Driven Architecture Foundations and Applications (ECMDA'08),
Springer LNCS, 2008, pp. 246-261.

[HZ06] C. Hentrich and U. Zdun, “Patterns for Process-Oriented Integration in
Service-Oriented Architectures”, Proc. 11th European Conf. Pattern
Languages of Programs. (EuroPLoP 06), 2006, pp. 1-45.

[HZD07] H. Tran, U. Zdun and S. Dustdar, View-based and Model-driven Approach for
Reducing the Development Complexity in Process-Driven SOA. In Int’l Conf.
Business Process and Services Computing (BPSC'07), volume 116 LNI, 2007,
pp. 105-124.

[HZD08a] H. Tran, U. Zdun, and S. Dustdar, View-based Integration of Process-driven
SOA Models at Various Abstraction Levels. Proc. 1st Int’l Workshop on
Model-Based Software and Data Integration (MBSDI 2008), CCIS 8, Springer,
2008, pp. 55-66.

[HZD08b] H. Tran, U. Zdun and S. Dustdar, View-Based Reverse Engineering Approach
for Enhancing Model Interoperability and Reusability in Process-Driven SOAs.
10th Int’l Conf. Software Reuse (ICSR'08), Springer LNCS, 2008, pp. 233-244.

[IEEE00] IEEE Recommended Practice for Architectural Description of Software
Intensive Systems (Tech. Rep. No. IEEE-std-1471-2000), IEEE, 2000.

[MOF] OMG. Meta Object Facility (MOF™) 2.0, 2008;
http://www.omg.org/spec/MOF/2.0/HTML

[MSDSL] Microsoft Domain-Specific Language (DSL) Tools,
http://msdn.microsoft.com/en-us/library/bb126235(VS.80).aspx

[OAW] openArchitectureWare, 2002; http://www.openarchitectureware.org

[ODE] Apache (Orchestration Director Engine), 2008; http://ode.apache.org/.

[OMRDP] Open Distributed Processing Reference Model (IS 10746), 1998;
http://isotc.iso.org/.

[OCL] http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

[OSLO] MSDN Oslo Developer Center, http://msdn.microsoft.com/oslo

[RFC 1876] C. Davis, P. Vixie, T. Goodwin and I. Dickinson, RFC 1876 - A Means for
Expressing Location Information in the Domain Name System, 1996

[SOX] Sarbanes-Oxley Act of 2002; http://frwebgate.access.gpo.gov/cgi-
bin/getdoc.cgi?dbname=107_cong_public_laws&docid=f:publ204.107

[UML] Unified Modelling Language 2.0 (UML), 2004; http://www.uml.org

[vdV03] E. van der Vlist, RELAX NG, O’Reilly, 2003

[vdV07] E. van der Vlist, Schematron, O’Reilly, 2007

[VS06] M. Völter and T. Stahl, Model-Driven Software Development: Technology,
Engineering, Management, Wiley, 2006.

[WSDL] Web Services Description Language 1.1; http://www.w3.org/TR/wsdl

FP7-215175 COMPAS D1.1v2.0

File: D1.1_Model-Driven-Integration-Architecture-for-Compliance.doc Page 49 of 49

[XML] XML Schema Part 1: Structures; http://www.w3.org/TR/xmlschema-1/ and
Part 2: Datatypes http://www.w3.org/TR/xmlschema-2/, 2001

[XPDL] XML Process Definition Language (XPDL), 2005;
http://www.wfmc.org/standards/XPDL.htm

[XSD] http://www.w3.org/XML/Schema

	1. Introduction
	1.1. Purpose and scope
	1.2. Document overview
	1.3. Definitions and glossary
	1.4. Abbreviations and acronyms

	2. Compliance Framework Architecture Overview
	3. COMPAS Integration Architecture
	3.1. Model-driven Integration Architecture
	3.2. View-based Modelling Framework (VbMF)
	3.2.1. Overview of the View-based Modelling Framework
	3.2.2. View-based Modelling Framework Architecture
	3.2.3. Supporting MDSD mechanisms in VbMF
	3.2.3.i. Extension mechanisms [HZD07]
	3.2.3.ii. Integration mechanisms
	3.2.3.iii. Reverse engineering of legacy process code [HZD08a, HZD08b]
	3.2.3.iv. Model-to-code transformations [HZD07]

	3.3. Domain Specific Languages for Compliance Concerns
	3.3.1. What are Domain-Specific Languages?
	3.3.2. DSLs based on MDSD
	3.3.3. A DSL for Specifying Locative Compliance Concerns
	3.3.4. A Sample DSL – Quality-of-Service (QoS) DSL
	3.3.5. Tools for DSL-Development

	4. Compliance Modelling
	4.1. Compliance Views
	4.2. Control flow
	4.3. Locative
	4.4. Information
	4.5. Resource
	4.6. Temporal
	4.7. Summary

	5. Conclusion
	6. Reference documents
	6.1. Internal documents
	6.2. External documents

