
1 © 2011 Atego. All Rights Reserved. © 2011 Atego. All Rights Reserved.

Model-based development of ARINC 653
 using UML and SysML

Andreas Korff, Atego – OMG RT Workshop, Paris, 18.04.2012

2 © 2011 Atego. All Rights Reserved.

Agenda

 Motivation of Integrated Modular Systems

 Modelling Notation Standards UML and SysML

 Applying UML and SysML to IMS

 ARINC 653

 Using Models to support ARINC 653

 Conclusion

3 © 2011 Atego. All Rights Reserved.

Motivation of Integrated Modular Systems

Integrated Modular Systems (or IMA) aim to

 Minimize Life Cycle Costs

 Enhance Mission and Operational Performance

 Allow greater flexibility and re-use in Development and Maintenance

Existing standards for IMS

 ARINC 653 – for implementing IMS concepts onto RTOSes

 Stanag 4626/EN 4660 – to de-couple Avionics HW and SW

4 © 2011 Atego. All Rights Reserved.

Federated Architectures (shown with UML)

Broad range of possible

problems:

 Any failure effects

everything

 Scheduling sensitive to

any change

 Difficult to maintain:

Obsolecence

One change effects again

everything

 Re-Use?

5 © 2011 Atego. All Rights Reserved.

A closer Look on Federated Architectures

 On Closer inspection, logical
‘wrappers’ appear that perform
specific functions.

 These can be interpreted as
‘layers’ in a Federated
Architecture

Central
Controller

Physical Interface Layer

Data Formatting Layer

Data Processing Layer

6 © 2011 Atego. All Rights Reserved.

From Federated to a Layered Architecture

 In an IMS layered architecture each layer has a clearly defined

responsibility, interface and is as important as each of the other layers

Physical Interface Lacer

Data Formating Layer

Data Processing Layer Application Layer

Operating System Layer

Module Support Layer

Federated Architecture Stanag 4626/EN 4660 (ASAAC)

{maps for logic}

{maps for scheduling}

{maps}

{maps}

7 © 2011 Atego. All Rights Reserved.

The resulting IMS Layered Architecture

 The Application Layer is partitioned into a network of (potentially) reusable
components.

 Each component has a secure execution environment (processor time and
memory).

 Inter-component communication is managed by the OSL.

 All components are loaded into memory and scheduled by the OSL.

 A set of components can be re-configured at run-time

8 © 2011 Atego. All Rights Reserved.

IMS Network Architecture

 A set of components execute on a specific hardware node.

 A complete system will require a number of hardware nodes.

 The OSL (across all the hardware nodes) manages and co-ordinates the
system.

9 © 2011 Atego. All Rights Reserved.

IMS Reconfiguration

 The allocation of components to hardware nodes is not static at run-time.

The failure of a critical component on one hardware node will cause it to be re-

deployed to another hardware node.

The failure of one Hardware Node will cause all components to be re-deployed.

 Changes in Mission may also cause a reconfiguration.

10 © 2011 Atego. All Rights Reserved.

Information required by the OSL

 The OSL must know:

What component is running

Where the component is running

How long the component runs for

What to do if the component fails

Scheduling policy for all components

Information required by all components

Information provided by all components

…

 All this information is held in ‘Blueprints’

Software (for each component)

Hardware (for each hardware execution environment)

Configuration (links Software with Hardware)

Run-time (contains multiple configurations)

12 © 2011 Atego. All Rights Reserved. © 2011 Atego. All Rights Reserved.

Modelling Network Architectures

13 © 2011 Atego. All Rights Reserved.

Hierarchical Design Notations

Context Diagram
(DFD 0)

DFD X

DFD X.Y

 Keep breaking the problem down until you

have solved all the parts…

 Is the whole the sum of all the parts?

 Design notation cannot be extended to

capture essential properties (e.g. thread

execution parameters).

 The hierarchy becomes almost immutable!

 Complexity becomes hidden in the

hierarchy!

14 © 2011 Atego. All Rights Reserved.

Hierarchical Design Notations
Development/Maintenance Issues

 The nodes (data/control

transforms) are (relatively)

easy to maintain (i.e. changes

localised to a node).

 Information flows that link

nodes are NOT easy to

maintain! The knock-on

effects caused by the

introduction of the hierarchy

can be prohibitive.

1 Flow Change

3 Flow Changes

12 Flow Changes

15 © 2011 Atego. All Rights Reserved.

Hierarchical Design Notations
Development/Maintenance Issues

 Unless a rigorous maintenance
process is adopted, it is often
quicker (i.e. cheaper) to
implement a change only
where the design is
significantly affected.

 The higher-levels of the
hierarchy become almost
obsolete or overlooked.

16 © 2011 Atego. All Rights Reserved.

Hierarchical Design Notations
The Emerging Network

 Information-flows at high-
levels connect DFD’s at low-
levels.

 Design information on High-
level DFD’s become an
integral part of the network.

 The hierarchy flattens into a
network of collaborating
nodes.

17 © 2011 Atego. All Rights Reserved.

Resulting Modelling Language considerations

 Hierarchical design notations are deficient in detailing the distributed

nature of IMS modules.

 Limited (if any) extensibility to capture specific IMS properties.

 A notation capable to handle networks of generic elements is needed

=> UML (and SysML)!

18 © 2011 Atego. All Rights Reserved. © 2011 Atego. All Rights Reserved.

UML/SysML Modelling for IMS
Using standards and their extensibility

19 © 2011 Atego. All Rights Reserved.

What UML and SysML Provides
Taxonomy of Diagrams (Viewpoints)

Model

A model contains artefacts
and interrelationships between
artefacts.

Each diagram-type provides a
unique perspective or
viewpoint on an underlying
model.

20 © 2011 Atego. All Rights Reserved.

What UML and SysML Provides
Taxonomy of Diagrams (Viewpoints)

21 © 2011 Atego. All Rights Reserved.

Applying the Basics of UML to IMS

Pilot

Stores
Navigation Data

Deploys
Weapon

Performs
Sorte

Use Case Model
(Modelling capabilities of each IMS layer)

The Software

:The SoftwarePilot Data Entry Panel

Pilot Presses Key
Key Press

Software Determines new Mode
Key Press(KEY ID)

if NAV Key then

Enter Navigation Mode
Set Mode(NAV)

elsif Weapons Key then

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

end if

Enter Navigation Mode
Set Mode(NAV)

elsif Weapons Key then

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

The Software

:The SoftwarePilot Data Entry Panel

Pilot Presses Key
Key Press

Software Determines new Mode
Key Press(KEY ID)

if NAV Key then

Enter Navigation Mode
Set Mode(NAV)

elsif Weapons Key then

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

end if

Enter Navigation Mode
Set Mode(NAV)

elsif Weapons Key then

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

The Software

:The SoftwarePilot Data Entry Panel

Pilot Presses Key
Key Press

Software Determines new Mode
Key Press(KEY ID)

if NAV Key then

Enter Navigation Mode
Set Mode(NAV)

elsif Weapons Key then

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

end if

Enter Navigation Mode
Set Mode(NAV)

elsif Weapons Key then

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

case Selected Store is

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

end case

when Loft Bombs => Set Mode(LOFT)

when Retard Bombs => Set Mode(RETARD)

when Guns => Set Mode(GUN)

when Rockets => Set Mode(ROCKET)

Scenario Model
(Detailing communication flows between IMS components)

::Person

Name

Age

Assign

Un-Assign

::Company

Name

::Contract

Start Date

Salary

Grade

Change Grade

::Work Instruction

Description

Start Date

Duration

Performance Rating

Agree Performance Rating

::Revenue Item

Cost

::Product ::Service

::Development Plan

Mean Performance

Training Needs

Current Skills

::Contractual Constraint

Description

Update

::Term ::Condition

11..* Works For

Employee Employer

1..*

1

Manages

Manager

Worker

1..*

1

Markets

Manufacturer

1..*1 Describes Work On

*

0..1

1

1

*

1

Updates

Supervisor

*1

1..*

1

Updates

1..*

1

Purchases

Customer

Item Type {Exclusive}Item Type {Exclusive}

Constraint Type {Inclusive}Constraint Type {Inclusive}

Class Model
(Detailing static architecture of IMS components)

running down

Entry/monitor.inhibit(LOP);

timer.set(40);

motor.stop;

valve[inlet].close;

valve[outlet].close;

valve[by-pass].open; ...

stopped

waiting for oil pressure to build

Entry/monitor.inhibit(LOP);

valve[vent].close;

timer.set(30);

timer.set(40);

motor.start; ...

waiting for gas pressure to build
operating

timeup/

monitor.enable(LOP)

start compressor/

after(40s)/

valve[vent].open;...

after(10s)/

valve[by-pass].close;

valve[inlet].open;

valve[outlet].open; ...

stop compressor/

«Destroy»/

stop compressor/

timer.cancel(30);

timer.cancel(40);

stop compressor/

timer.cancel(40);

«Create»/

[!monitor.check(LOP)]/

monitor.activate(LOP)

[monitor.check(LOP)]/

Dynamic Model
(Detailing dynamic behaviour of IMS components)

23 © 2011 Atego. All Rights Reserved.

Extending the SysML & UML Notation

 SysML & UML can be extended by «Stereotypes»

Stereotypes are applied to standard UML model-elements.

Additional properties (“Tags Definitions”) are added to stereotypes.

 SysML & UML can encompass any language domain:

Software Engineering
− Programming Languages (e.g. Ada, Java, C, C++, C#, IDL, VB)
− Real-time Systems (OMG MARTE Profile)
− Component-based Development
− Incremental Development

Systems Engineering
− IMS Terminology (Stanag 4626/EN 4660 & ARINC-653)
− Business Terminology
− System On Chip (OMG SoC Profile)
− Architecture Analysis & Design Language (SAE AADL Profile)
− Goal Structured Notation (GSN)
− Architectural Frameworks

– Zachman
– UPDM (MODAF/DoDAF)

− AUTOSAR
− …

24 © 2011 Atego. All Rights Reserved.

Extensibility – What is a Stereotype?

 A stereotype defines how an existing metaclass (UML model-element
type) may be extended, and enables the use of platform or domain
specific terminology or notation in addition to the ones used for the
extended metaclass.

 A stereotype can be used to change the semantics of a model element
in an non-arbitrary way.

25 © 2011 Atego. All Rights Reserved.

Extensibility – What is a Tag Definition?

 Tag Definitions allow additional properties (of the

Stereotype) to be documented.

For example, RMS Voltage, Peak Voltage, Current …

26 © 2011 Atego. All Rights Reserved.

Example of Extensibility
ARINC 653

Define the “ARINC 653 Profile”

Create the ARINC 653 Elements (cross referencing with other UML model-elements)

It’s all UML under the cover!

27 © 2011 Atego. All Rights Reserved.

Example of Extensibility
IMS Terminology

 An “IMS Profile” encompasses the terminology of IMS.

Properties (WCET, Scheduling policy, memory requirements…) are tags within the IMS

Profile.

 These properties are available outside of the model (via XMI/XML for example)

for assessment and analysis (because the profile makes these properties a formal

part of the modelling language).

Safety assessment, performance analysis etc.

28 © 2011 Atego. All Rights Reserved.

Applying UML, SysML, ARINC 653 + IMS Profiles to IMS

Module Support Layer

Operating System Layer

Application Layer

Module/OS Interface

AP/OS Interface

29 © 2011 Atego. All Rights Reserved.

Pilot

«Primary Actor»

Mission Plan

«Secondary Actor»

Commander

«Secondary Actor»

Navigator

«Primary Actor»

Bombadier

«Primary Actor»

Time

«Primary Actor»

Power

«Primary Actor»

Power Up
Cold

Store
Information

Load Mission

Continuous
Built-In Test

Communicate

Execute
Mission

Power Up
Built-In Test

Power Up
Warm

Power Up

Shutdown

«include»

«include»

«include»

«include»

«include»

«include»

«include»

See Execute Mission Use Case Diagram

See Store Information Use Case Diagram

Modelling IMS Capabilities
UML Use Case Diagram

 Each layer in the

architecture provides

‘capabilities’.

 These can be documented

as Use Cases.

 Use Cases can be

hierarchically organised.

Application Layer

30 © 2011 Atego. All Rights Reserved.

Land Aircraft

Description

Format Manager

:Formats::Format Manager

«Singleton»
«Controller»

ILS Manager

:ILS::ILS Manager

«Singleton»
«Controller» TheVORILS

:Logical::VOR ILS

«Singleton»

VOR/ILS

«Single Press Button»

Head Up (Front)

«Display Surface»

Head Up (Rear)

«Display Surface» VOR ILSNavigator

VOR ILS

«Equipment»NavigatorPilot

The Pilot informs the Navigator

to initiate a landing sequence

Initiate ILS Landing Sequence

The Navigator selects ILS
Select ILS

The VOR ILS (Subsystem) receives

the request to enter ILS.
Toggle VORILS Mode

The VOR ILS (Subsystem) informs the

VOR ILS (Equipment) to enter ILS

mode.

Enter ILS

while ILS Not Active loop

Retrieve the State of the VOR ILS

(Equipment)
Get State

end loop

VOR ILS informs the Format Manager

to Display the ILS Format
Activate Format(ILS Format)

Activate the Head Up (Front)

(Display)

with the ILS Format

Activate(ILS Format)

Activate the Head Up (Rear) (Display)

with the ILS Format
Activate(ILS Format)

Activate the ILS Manager Activate

while ILS Active loop

Schedule the ILS Manager Schedule

Retrieve the Raw Localiser Data
Raw Localiser

Retrieve the Raw Glideslope Data
Raw Glideslope

Retrieve the calculated Localiser

position
Get Localiser Sym Position

Retrieve the calculated Glideslope

position
Get Glideslope Sym Position

Update the Head Up (Front)

(Display)
Update(ILS Symbology)

Update the Head Up (Rear)

(Display)
Update(ILS Symbology)

end loop

Timeout Required?

Land Aircraft (System Only) Land Aircraft (Software Only)...

Exploring Use Case
UML Interaction Diagrams

Hazard Analysis: What if something goes wrong?

Here

Or Here

Or Here

Or Here

Or Here

Or Here

31 © 2011 Atego. All Rights Reserved.

Modelling IMS Dynamics
UML State Diagram (and Class Diagram)

 A clear understanding of dynamic behaviour is essential.

 UML allows the dynamic properties of the whole IMS, an individual IMS

component or an individual thread (within a process) to be linked with the

IMS structure.
Thread 1

::ASAAC::APOS::Thread Management

Process 1Application 1

Abstract Thread
{Abstract}

Ge My Thread ID ()

Get Thread Ststus ()

Lock Thread Preemption ()

Sleep ()

Sleep Until ()

Start Thread ()

Stop Thread ()

Suspend Self ()

Terminate Self ()

Unlock Thread Preemption ()

Wait For Semaphore ()

Receive Message ()

::ASAAC::APOS::Communication

::ASAAC::APOS::Synchronisation

11

«use» «use» «use»

Running

Ready

Dormant

Waiting

Suspended

Ready

Dormant

Waiting

Terminating

«C reate»/

S tart Thread/

S top Thread/ S top Thread/

when[Sc heduled]/

when[S us pended]/

S leep /

Term inate Self/

S leep Until/

when[Timeout E xpired]/

«Des troy »/

S uspend Self/

when[Semaphore Released]/

W ait For Semaphore/

Receive Message/

The behavioural
characteristics of an
individual thread.
Extra properties
such as scheduling
policy (e.g. priority
inheritance, priority
ceiling) can be added
to the overall dynamic
model and analysed.

32 © 2011 Atego. All Rights Reserved.

Modelling IMS Interfaces
UML Class Diagram

 The (Stanag 4626/EN 4660)

Application/OS interface

captured as a set of class-

partitioned operations.

 The run-time characteristics of

each operation are captured as

IMS properties.

APOS Thread Management

Sleep ()

Sleep Until ()

Ge My Thread ID ()

Start Thread ()

Suspend Self ()

Stop Thread ()

Terminate Self ()

Lock Thread Preemption ()

Unlock Thread Preemption ()

Get Thread Ststus ()

Time Management

Get Absolute Local Time ()

Get Absolute Global Time ()

Get Relative Local Time ()

Synchronisation

Create Semaphore ()

Delete Semaphore ()

Wait For Semaphore ()

Post Semaphore ()

Get Semaphore Status ()

Get Semaphore ID ()

Create Event ()

Delete Event ()

Set Event ()

Reset Event ()

Wait For Event ()

Get Event Status ()

Get Event ID ()

Error Handling

Log Message ()

Raise Application Error ()

Get Error Information ()

Terminate Error Handler ()

Debugging

Get Debug Error Information ()

Communication

Send Message Non Blocking ()

Receive Message Non Blocking ()

Send Message ()

Receive Message ()

Lock Buffer ()

Send Buffer ()

Receive Buffer ()

Unlock Buffer ()

Wait On Multi Channel ()

File Handling

Create Directory ()

Delete Directory ()

Create File ()

Delete File ()

Open File ()

Close File ()

Lock File ()

Unlock File ()

Get File Attributes ()

Seek File ()

Read File ()

Write File ()

Get File Buffer ()

Release File Buffer ()

Power Conversion

Set Power Switch ()

Reset Power Switch ()

Get Power Switch Status ()

33 © 2011 Atego. All Rights Reserved.

Modelling IMS Hardware
SysML Internal Block Diagram

 An individual
Processing
Node (execution
environment)

External
 Connections
(Port)

Boards (Part)

Data Bus (Part)

Memory (Part)

34 © 2011 Atego. All Rights Reserved.

Modelling IMS Hardware
SysML Internal Block Diagram

 Topology of all Processing Nodes.

Details (on previous slide) reside in the model, only the top-most part is

required here.

38 © 2011 Atego. All Rights Reserved. © 2011 Atego. All Rights Reserved.

Model-based Support of ARINC 653

39 © 2011 Atego. All Rights Reserved.

A Summary on ARINC653

 Standard, supporting IMS

 Aerospace and beyond

 Strong partitioning between applications leads to:

 System robustness

 Reuse

Application in different configurations

Certification where Application changes context

Decreased recertification costs (improved change isolation)

 Reduce cost of over-certifying lower SIL applications

Isolate them from higher SIL applications using partitioning

 Reduce cost of re-certifying unchanged applications

Where applications in other partitions have changed

40 © 2011 Atego. All Rights Reserved.

ARINC 653 Support

 Openly integrated with RTOS and IDE’s

Supporting ARINC 653

 APEX

Applications make calls to the Application Executive defined by ARINC 653 to

decouple the applications from vendor ARINC 653 implementations

 Primarily Text Entry

Application behavior and initialization is coded in programming languages (Ada, C,

etc)

System configuration is coded in XML files (ARINC 653 concepts such as partitions,

ports, channels etc)

41 © 2011 Atego. All Rights Reserved.

Benefits of using UML and ARINC 653 together

 Synergistic advantages

Ease of Adoption

Clearer Workflow

Communication

Productivity

Link between configuration and applications clearer in single model

 Possibility to automate and re-use model-based software engineering

techniques

42 © 2011 Atego. All Rights Reserved.

Automated Steps using ARINC 653 Profile

 Create all necessary elements based on pre-configured templates

43 © 2011 Atego. All Rights Reserved.

Example Configuration Diagram

 Module, Partition, Application, Process, Port, Channel

44 © 2011 Atego. All Rights Reserved.

Artisan Studio Model

 : Configuration Detail : Application Detail 1..*

Wind River Workbench Workspace

1..*: Application Project

 : Source Files 2..* : Initialization Source Files 2

: Configuration Project

 : Configuration XML Files 2..*

Binary or Binaries for Target or Simulator

Artisan ACS VxWorks653 Apex Generator

Artisan ACS C VxWorks653 Production Generator

Wind River Build System

«Process»

Player1

MsgReceived : char

entrypoint ()

Player1 ()

RxMsg (in PortID : QUEUING_PORT_ID_TYPE) : int

DisplayReceivedMsg ()

TxMsg (in PortID : QUEUING_PORT_ID_TYPE, inout Msg : char)

Print (inout Text : char)

After (in Time : SYSTEM_TIME_TYPE) : int

BallGameModule

Description

Player1Partition

«Partition Part»

Player2Partition

«Partition Part»

loop

seq

«ScheduleWindow» {ReleasePoint, DurationSeconds = 0.25}

seq

«ScheduleWindow» {ReleasePoint, DurationSeconds = 0.25}end loop

«Module»

BallGameModule

«SystemHMTable»

systemHm :

«ModuleHMTable»

moduleHm :

«PartitionHMTable»

partHm :

«SharedLibrary»

vxSysLib :

«Partition Part»

Player1Partition : Player1Partition

«Application Part»

Player1Application :
Player1Application

«Process Part»

Player1 : Player1

«QueuingPort»

QueuingPort1

«QueuingPort»

QueuingPort2

«Partition Part»

Player2Partition : Player2Partition

«Application Part»

Player2Application : Player2Application

«Process Part»

Player2 : Player2

«QueuingPort»

QueuingPort1

«QueuingPort»

QueuingPort2
«Channel»

Channel1

«Channel»

Channel2

BallGameModule

Description

Player1Partition

«Partition Part»

Player2Partition

«Partition Part»

loop

seq

«ScheduleWindow» {ReleasePoint, DurationSeconds = 0.25}

seq

«ScheduleWindow» {ReleasePoint, DurationSeconds = 0.25}end loop

«Module»

BallGameModule

«SystemHMTable»

systemHm :

«ModuleHMTable»

moduleHm :

«PartitionHMTable»

partHm :

«SharedLibrary»

vxSysLib :

«Partition Part»

Player1Partition : Player1Partition

«Application Part»

Player1Application :
Player1Application

«Process Part»

Player1 : Player1

«QueuingPort»

QueuingPort1

«QueuingPort»

QueuingPort2

«Partition Part»

Player2Partition : Player2Partition

«Application Part»

Player2Application : Player2Application

«Process Part»

Player2 : Player2

«QueuingPort»

QueuingPort1

«QueuingPort»

QueuingPort2
«Channel»

Channel1

«Channel»

Channel2

«Process»

Player1

MsgReceived : char

entrypoint ()

Player1 ()

RxMsg (in PortID : QUEUING_PORT_ID_TYPE) : int

DisplayReceivedMsg ()

TxMsg (in PortID : QUEUING_PORT_ID_TYPE, inout Msg : char)

Print (inout Text : char)

After (in Time : SYSTEM_TIME_TYPE) : int

Summary of Tool Chain Artifacts

46 © 2011 Atego. All Rights Reserved.

The best possible ARINC 653 Support needs

 (Open) Ergonomic UML Profile containing

all ARINC 653 views and elements

Automation Scripts to ease auto-generation of necessary elements

 Code Generators (and Generator Models) to get

ARINC 653 Configuration Files (XML)

Startup Code for the selected RTOS supporting ARINC 653

 Professional Services to adapt

Profile Scripts

ARINC 653 Generator Models

48 © 2011 Atego. All Rights Reserved.

Questions and Answers

DescriptionDescription You

:Attendee

Me

:Speaker

loop1

You

:Attendee

Me

:Speaker

loop1 while open questions exist

Question1.1

end loop

while open questions exist

Question1.1
Question

Answer1.1.1
Question

Answer1.1.1
AnswerAnswer

end loop

{Speech Time}{Speech Time}

