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Model-Based Controller Design

• Direct Synthesis Method

• Internal Model Control

• Controllers With Two Degrees of Freedom
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1. Direct Synthesis (DS) method

2. Internal Model Control (IMC) method

3. Controller tuning relations

4. Frequency response techniques

5. Computer simulation

6. On-line tuning after the control system is installed.

• PID controller settings can be determined by a number of      
alternative techniques:

Controller Tuning
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Direct Synthesis Method

• In the Direct Synthesis (DS) method, the controller design 
is based on a process model and a desired closed-loop 
transfer function. 

• The latter is usually specified for set-point changes, but 
responses to disturbances can also be utilized (Chen and 
Seborg, 2002). 

• Although these feedback controllers do not always have a 
PID structure, the DS method does produce PI or PID 
controllers for common process models.
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Fig. 12.2.  Block diagram for a standard feedback control system. 

• As a starting point for the analysis, consider the block diagram
of a feedback control system in Figure 12.2. The closed-loop 
transfer function for set-point changes was derived in Section 
11.2:

(12-1)
1

=
+

c v p

sp c v p m

G G GY

Y G G G G
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For simplicity, let                    and assume that Gm = 1. Then 
Eq. 12-1 reduces to

≜ v pG G G

(12-2)
1

c

sp c

G GY

Y G G
=

+

Rearranging and solving for Gc gives an expression for the 
feedback controller:

/1
(12-3a)

1 /
sp

c
sp

Y Y
G

G Y Y

 
=   − 

• Equation 12-3a cannot be used for controller design because 
the closed-loop transfer function Y/Ysp is not known a priori. 

• Also, it is useful to distinguish between the actual process G
and the model,    , that provides an approximation of the 
process behavior. 

Gɶ
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( )
( )

/1
(12-3b)

1 /

sp d
c

sp d

Y Y
G

G Y Y

 
 =
 −
 
ɶ

• The specification of (Y/Ysp)d is the key design decision and will 
be considered later in this section. 

• Note that the controller transfer function in (12-3b) contains 
the inverse of the process model owing to the          term. 

• This feature is a distinguishing characteristic of model-based 
control.

1/Gɶ

• A practical design equation can be derived by replacing the 
unknown G by    , and Y/Ysp by a desired closed-loop transfer 
function, (Y/Ysp)d:

Gɶ



7

M
o

d
el

-B
as

ed
 C

o
n

tr
o

lle
r 

D
es

ig
n

For processes without time delays, the first-order model in 
Eq. 12-4 is a reasonable choice,

• The model has a settling time of  ~ 5   , as shown in 
Section 5. 2.

• Because the steady-state gain is one, no offset occurs for 
set-point changes. 

• By substituting (12-4) into (12-3b) and solving for Gc, the 
controller design equation becomes:

τc

1 1
(12-5)

τ
c

c

G
sG

=
ɶ

Desired Closed-Loop Transfer Function

1
(12-4)

1sp cd

Y

Y sτ
 

=   + 
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• The            term provides integral control action and thus 
eliminates offset. 

• Design parameter       provides a convenient controller tuning 
parameter that can be used to make the controller more 
aggressive (small     ) or less aggressive (large    ).

θ

(12-6)
τ 1

s

sp cd

Y e

Y s

− 
=   + 

• If the process transfer function contains a known time delay   ,
a reasonable choice for the desired closed-loop transfer 
function is:

θ

• The time-delay term in (12-6) is essential because it is 
physically impossible for the controlled variable to respond 
to a set-point change at t = 0, before t =   . θ

τc

τcτc

1/ τcs
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• Although this controller is not in a standard PID form, it is 
physically realizable. 

• Next, we show that the design equation in Eq. 12-7 can be 
used to derive PID controllers for simple process models. 

• The following derivation is based on approximating the time-
delay term in the denominator of (12-7) with a truncated 
Taylor series expansion:

θ 1 θ (12-8)se s− ≈ −

• If the time delay is unknown,     must be replaced by an 
estimate. 

• Combining Eqs. 12-6 and 12-3b gives:
θ

θ

1
(12-7)

τ 1

s

c s
c

e
G

G s e

−

−=
+ −ɶ

θ
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Substituting (12-8) into the denominator of Eq. 12-7 and 
rearranging gives

Note that this controller also contains integral control action.

( )
θ1

(12-9)
τ θ

−
=

+ɶ

s

c
c

e
G

sG
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First-Order-plus-Time-Delay (FOPTD) Model

Consider the standard FOPTD model,

( )
θ

(12-10)
τ 1

sKe
G s

s

−
=

+
ɶ

Substituting Eq. 12-10 into Eq. 12-9 and rearranging gives a 
PI controller,                                 with the following controller 
settings:

( )1 1/τ ,c c IG K s= +

1 τ
, τ τ (12-11)

θ τ
c I

c

K
K

= =
+
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Substitution into Eq. 12-9 and rearrangement gives a PID 
controller in parallel form,

1
1 τ (12-13)
τ

c c D
I

G K s
s

 
= + + 

 
where:

1 2 1 2
1 2

1 2

τ τ τ τ1
, τ τ τ , τ (12-14)

τ τ τθ
+= = + =
+ +c I D

c

K
K

Second-Order-plus-Time-Delay (SOPTD) Model

Consider a SOPTD model,

( ) ( )( )
θ

1 2
(12-12)

τ 1 τ 1

sKe
G s

s s

−
=

+ +
ɶ
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Consider three values of the desired closed-loop time constant:                           
. Evaluate the controllers for unit step changes 

in both the set point and the disturbance, assuming that Gd = G. 
Repeat the evaluation for two cases:

1, 3, and 10cτ =

a. The process model is perfect (    = G).

b. The model gain is      = 0.9, instead of the actual value, K = 2. 
Thus,

Gɶ

Kɶ

( )( )
0.9

10 1 5 1

se
G

s s

−
=

+ +
ɶ

Example 12.1
Use the DS design method to calculate PID controller settings 
for the process:

( )( )
2

10 1 5 1

se
G

s s

−
=

+ +
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The values of Kc decrease as      increases, but the values of       
and       do not change, as indicated by Eq. 12-14.

τc τI
τD

3.333.333.33

151515

1.514.178.33

0.6821.883.75

3.333.333.33

151515

1.514.178.33

0.6821.883.75

τ 1c = τ 3c = 10cτ =
( )2cK K =ɶ

( )0.9cK K =ɶ
τI

τD

The controller settings for this example are:
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Figure 12.3 Simulation results for Example 12.1 (a): correct model gain.
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Fig. 12.4 Simulation results for Example 12.1 (b): incorrect model gain. 
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DS - Remark
• The specification of the desired closed-loop transfer 

function,              , should be based on the assumed 
process model, as well as the desired set-point response. 

• The FOPTD model is a reasonable choice for many  
processes but not all.

• For example, if the process model contains a RHP 
zero             , we must specify  

• The DS approach should not be used directly for process 
models with unstable poles.

( )sp d
Y Y

( )1 asτ−

( ) θ1
(12-15)

τ 1

s
a

sp cd

s eY

Y s

τ −  −
=   + 
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Internal Model Control (IMC)
• A more comprehensive model-based design method, Internal 

Model Control (IMC), was developed by Morari and 
coworkers (Garcia and Morari, 1982; Rivera et al., 1986). 

• The IMC method, like the DS method, is based on an assumed 
process model and leads to analytical expressions for the 
controller settings. 

• These two design methods are closely related and produce 
identical controllers if the design parameters are specified in a 
consistent manner. 

• The IMC method is based on the simplified block diagram 
shown in Fig. 12.6b. A process model      and the controller 
output P are used to calculate the model response,    . 

Gɶ

Yɶ
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• The model response is subtracted from the actual response Y, 
and the difference,           is used as the input signal to the IMC 
controller,     . 

• In general,            due to modeling errors              and unknown 
disturbances              that are not accounted for in the model.

• The block diagrams for conventional feedback control and 
IMC are compared in Fig. 12.6.

Y Y− ɶ
*
cG

Y Y≠ ɶ ( )G G≠ɶ
( )0D ≠

Figure 12.6. 
Feedback control 
strategies
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*
cG

*

*
(12-16)

1
c

c
c

G
G

G G
=

− ɶ

• Thus, any IMC controller      is equivalent to a standard 
feedback controller Gc, and vice versa. 

• The following closed-loop relation for IMC can be derived from 
Fig. 12.6b using the block diagram algebra:

*
cG

( ) ( )
* *

* *

1
(12-17)

1 1
c c

sp
c c

G G G G
Y Y D

G G G G G G

−= +
+ − + −

ɶ

ɶ ɶ

• It can be shown that the two block diagrams are identical if 
controllers Gc and       satisfy the relation
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For the special case of a perfect model,           , (12-17) reduces toG G=ɶ

( )* *1 (12-18)c sp cY G GY G G D= + −

The IMC controller is designed in two steps: 

Step 1. The process model is factored as

(12-19)G G G+ −=ɶ ɶ ɶ

where       contains any time delays and right-half plane 
zeros. 

• In addition,       is required to have a steady-state gain equal 
to one in order to ensure that the two factors in Eq. 12-19 
are unique.

G+
ɶ

G+
ɶ
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Step 2. The controller is specified as

* 1
(12-20)cG f

G−
=
ɶ

where f is a low-pass filter with a steady-state gain of one. It 
typically has the form:

( )
1

(12-21)
τ 1

r
c

f
s

=
+

In analogy with the DS method,     is the desired closed-loop time 
constant. Parameter r is a positive integer. The usual choice is      
r = 1.

τc
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For the ideal situation where the process model is perfect      , 
substituting Eq. 12-20 into (12-18) gives the closed-loop 
expression

( )G G=ɶ

( )1 (12-22)spY G fY fG D+ += + −ɶ ɶ

Thus, the closed-loop transfer function for set-point changes is

(12-23)
sp

Y
G f

Y += ɶ
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Solution:

(a)

Factor this model as                   where 

( )
( )( )

1 0.5

1 0.5 1

K s
G

s s

θ
θ τ
−

=
+ +

ɶ

( )1 0.5G sθ+ = −ɶ

Example 12.2
Use the IMC design method to design two controllers for the 
FOPDT model. Consider two approximations for the time delay 
term:

(a) 1/1 Pade approximation:

(b) 1st-order Taylor series approximation: 

1 0.5

1 0.5
s s

e
s

θ θ
θ

− −≅
+

θ 1 θse s− ≅ −

G G G+ −=ɶ ɶ ɶ

( )( )1 0.5 1

K
G

s sθ τ− =
+ +

ɶ
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Setting r = 1 gives

The equivalent controller Gc can be obtained from Eq. 12-16

And rearranged into the PID controller of (12-13) with:

( )( )
( )

* 1 0.5 1

1c
c

s s
G

K s

θ τ
τ

+ +
=

+

( )( )
( )

1 0.5 1

0.5c
c

s s
G

K s

θ τ
τ θ

+ +
=

+

c

τ
2 1

1 τ
, τ τ, τ

τ τ2 2 12 1
c I DK

K

θθ

θθ

 + 
 = = + =
   ++   

  

(b) The IMC controller is identical to the DS controller for a 
FOPTD model
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1. > 0.8  and (Rivera et al., 1986)

2. (Chien and Fruehauf, 1990)

3. (Skogestad, 2003)

τ /θc τ 0.1τc >

τ τ θc> >

τ θc =

• Several IMC guidelines for      have been published for the 
FOPDT model in Eq. 12-10:

τc

Selection of τc

• The choice of design parameter      is a key decision in both the 
DS and IMC design methods. 

• In general, increasing      produces a more conservative 
controller because Kc decreases while      increases.

τc

τc
τI
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IMC Tuning Relations
The IMC method can be used to derive PID controller settings 
for a variety of transfer function models.

Table 12.1 IMC-Based PID (parallel form) Controller Settings for Gc(s) 
(Chien and Fruehauf, 1990).
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Table 12.1 (Continued).
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Tuning for Lag-Dominant Models

• First- or second-order models with relatively small time delays        
are referred to as lag-dominant models. 

• The IMC and DS methods provide satisfactory set-point 
responses, but very slow disturbance responses, because the 
value of      is very large. 

• Fortunately, this problem can be solved in three different ways.

Method 1: Integrator approximation

τI

( )θ / τ 1≪

*

*

Approximate ( ) by ( )
1

where / .

s sKe K e
G s G s

s s

K K

−θ −θ
= =

τ +
τ

ɶ ɶ

≜

• Then can use the IMC tuning rules (Rule M or N) 
to specify the controller settings.
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Method 2.  Limit the value of ττττI

• For lag-dominant models, the standard IMC controllers for first-
order and second-order models provide sluggish disturbance 
responses because      is very large. 

• For example, controller G in Table 12.1 has            where     is 
very large. 

• As a remedy, Skogestad (2003) has proposed limiting the value 
of     :

( ){ }1τ min τ ,4 τ θ (12-34)I c= +

τI

τ τI = τ

τI

whereτ1 is the largest time constant (if there are two). 

Method 3.  Design the controller for disturbances, rather 
than set-point changes

• The desired CLTF is expressed in terms of (Y/D)des, rather than (Y/Ysp)des

• Reference: Chen & Seborg (2002)
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Example 12.4

Consider a lag-dominant model with θ / τ 0.01:=

( ) 100

100 1
sG s e

s
−=

+
ɶ

Design four PI controllers:

a) IMC

b) IMC               based on the integrator approximation

c) IMC             with Skogestad’s modification (Eq. 12-34)

d) Direct Synthesis method for disturbance rejection (Chen and 
Seborg, 2002): The controller settings are Kc = 0.551 and      

( )τ 1c =

( )τ 2c =

( )τ 1c =

τ 4.91.I =
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Evaluate the four controllers by comparing their performance for
unit step changes in both set point and disturbance. Assume that
the model is perfect and that Gd(s) = G(s).

Solution

The PI controller settings are:

4.910.551(d) DS-d

80.5(c) Skogestad

50.556(b) Integrator approximation

1000.5(a) IMC

KcController Iτ
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Figure 12.8. Comparison 
of set-point responses (top) 
and disturbance responses 
(bottom) for Example 
12.4. The responses for 
the Chen and Seborg and 
integrator approximation 
methods are essentially 
identical.
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Controllers With Two Degrees of Freedom

• The specification of controller settings for a standard PID 
controller typically requires a tradeoff between set-point 
tracking and disturbance rejection. 

• The strategies which can be used to adjust the set-point and 
disturbance independently are referred to as controllers with 
two-degrees-of-freedom.

• The first strategy is very simple. Set-point changes are 
introduced gradually rather than as abrupt step changes. 

• For example, the set point can be ramped as shown in Fig. 
12.10 or “filtered” by passing it through a first-order transfer 
function,

*
1

(12-38)
τ 1

sp

sp f

Y

Y s
=

+
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where       denotes the filtered set point that is used in the control 
calculations. 

• The filter time constant,      determines how quickly the filtered 
set point will attain the new value, as shown in Fig. 12.10.

• This strategy can significantly reduce overshoot for set-point 
changes.

*
spY

τ f

Figure 12.10 Implementation of set-point changes.
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• A second strategy for independently adjusting the set-point 
response is based on a simple modification of the PID control 
law,

( ) ( ) ( ) ( )* *

0

1
t

s c D
I

de t
p t p K e t e t dt

dt
τ

τ
 

= + + + 
  

∫

where ym is the measured value of y and e is the error signal.        
. 

• The control law modification consists of multiplying the set 
point in the proportional term by a set-point weighting factor,   :

sp me y y−≜

β

( ) ( ) ( )

( ) ( )* *

0

1
(12

τ

β

-39)

sp ms c

t

c D
I

p t p K

de t
K e t d

t

t
t

y t y

d
τ

 = +  

 
+ + 



−

 
∫

The set-point weighting factor is bounded, 0 < ß < 1, and serves 
as a convenient tuning factor.
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Figure 12.11 Influence of set-point weighting on closed-loop responses for 
Example 12.6.
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multiplying the set point by set-point weighting factor in both 
the proportional term and the derivative term.

( ) ( ) ( )

( ) ( ) ( )* *

0

β

γ1

τ

s c

t

c D
I

sp m

sp m

p t p K

d
K e t dt

y t y t

y t y

t

t

d
τ

 = +  

    + +
 

−



−
∫

• To eliminate derivative kick,     is set to zero.γ


