Model-Based Controller Design

 Direct SynthesisMethod
e Internal Model Control

e ControllersWith Two Degrees of Freedom
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Controller Tuning

* PID controller settings can be determined by almemof
alternative techniques:

1. Direct Synthesis (DS) method

2. Internal Model Control (IMC) method
3. Controller tuning relations

4. Freguency response techniques

5. Computer simulation

6. On-line tuning after the control system is installed.
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Direct Synthesis M ethod

 In the Direct Synthesis (DS) method, the contraliesign
IS based on a process model and a desired clospd-lo
transfer function.

 The latter is usually specified for set-point ches, but
responses to disturbances can also be utilizedn(@he
Seborg, 2002).

 Although these feedback controllers do not alwsae a
PID structure, the DS method does produce PI or PID
controllers for common process models.
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» As a starting point for the analysis, considerhtoek diagram
of a feedback control system in Figure 12.2. Tlhsead-loop
transfer function for set-point changes was derimeSlection

(12-1)

Fig. 12.2. Block diagram for a standard feedbackrod system.



For simplicity, letG2G,G, and assurhatG, = 1. Then
Eqg. 12-1 reduces to

LI (12-2)
Yo 1+GG

Rearranging and solving f@. gives an expression for the
feedback controller:

YIY,
G, = 1 P (12-3a
G|1-Y /Y,

e Equation 12-3a cannot be used for controller adeberause
the closed-loop transfer functidfiYg, Is not knowna priori.

* Also, it is useful to distinguish between the atforocesss
and the model; , that provides an approximaticine
process behavior.
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A practical design equation can be derived byaapp the
unknownG by G, andY/Yg, by adesired closed-loop transfer
function, (Y/Yg)q

1 (Y/Ysp)d
G| 1-(Y /Yy,

G, = (12-3b

* The specification ofY/Yy,), Is the key design decision and will
be considered later in this section.

* Note that the controller transfer function in (3R} contains
the inverse of the process model owing to1hé term.
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» This feature is a distinguishing characteristienafdel-based
control.




Desired Closed-L oop Transfer Function

For processes without time delays, the first-ordedel in
Eqg. 12-4 is a reasonable choice,

Yo | IS+l

 The model has a settling time of &5 , as shmwn
Section 5. 2.

* Because the steady-state gain is one, no offsetrsfor
set-point changes.

By substituting (12-4) into (12-3b) and solving {8, the
controller design equation becomes:

G, =~ (12-5)
G .S
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« Thel/t.s term provides integral control aatand thus
eliminates offset.

e Design parametet.  provides a convenient ofeatrtuning
parameter that can be used to make the controbez m
aggressive (smatl. ) or less aggressive (lafpe

o If the process transfer function contains a knovwre delay |
a reasonable choice for the desired closed-lomsfiea

function is: os
H _e 126

Yo ; 1.S5+1

* The time-delay term in (12-6) is essential becalise
physically impossible for the controlled variabberéspond
to a set-point change &t O, before = 0.
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o If the time delay is unknowr®, must be replabgdn
estimate.

« Combining Egs. 12-6 and 12-3b gives:
1 %

G, == _
Gr.s+l-e

oS (12-7)

 Although this controller is not in a standard RtDm, it is
physically realizable.

* Next, we show that the design equation in Eq. T24Y be
used to derive PID controllers for simple processlats.

* The following derivation is based on approximatihg time-
delay term in the denominator of (12-7) with a trated
Taylor series expansion:

e B =1-0s (12-8)
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Substituting (12-8) into the denominator of Eq.712nd
rearranging gives

l e—eS

G. =
¢ G (TC+O)S

(12-9)

Note that this controller also contains integraitcol action.

10
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First-Order-plus-Time-Delay (FOPTD) M odél
Consider the standard FOPTD model,

_ Ke—Gs

G(S) tS+1

(12-10;

Substituting Eq. 12-10 into Eq. 12-9 and rearraggjives a
Pl controllerG, = K. (1+1/t;s),  withe following controller
settings:

1 =

Ke = ,
KB+,

T =1 (12-11

11
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Second-Order-plus-Time-Delay (SOPTD) Model

Consider a SOPTD model,

6(s)= K& 12-12,
(8)= s 1) (0,540 (1212

Substitution into Eq. 12-9 and rearrangement gave$D
controller in parallel form,

G, = KC£1+i+rDsj (12-13
T| S

where:

_ 1+t

T| :T1+T2, Tp :ﬂ (12'14]

Ke = ,
K. +6 T+ 1,

12



Example 12.1

Use the DS design method to calculate PID contrefi¢tings
for the process: e

(10s+1)( 5+ ]

Consider three values of the desired closeqh-time constant:
. =1, 3, and 1t Evaluate the controllers for unit step changes
In both the set point and the disturbance, assutheys, = G.
Repeat the evaluation for two cases:

a. The process model is perfeGt ( Gr

b. The model gaini& = 0.9, instead of the alotalue K = 2.

Thus,
0.%°

(10s+1)( 5+ ]
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The controller settings for this example are:

1. =1 1. =3 7. =10
Ke(K=2) 375 1.88 0.682
K.(K=09) 833 4.17 1.51
T) 15 15 15
5 3.33 3.33 3.33

The values oK_decrease as. increases, but the valuas of
andtp do not change, as indicated by Eq. 12-14.
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Figure 12.3 Simulation results for Example 12.1 ¢ajrect model gain.
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Fig. 12.4 Simulation results for Example 12.1 (b&drrect model gain.
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DS - Remark

* The specification of the desired closed-loop tfans
function, (Y/Ys), , should be based on therassl
process model, as well as the desired set-poiponss.

« The FOPTD model is a reasonable choice for many
processes but not all.

* For example, if the process model contains a RHP
zero(1-r,s) , we must specify

1-7.5)e
(YLJ _( azl (12-15
9 ), T.S
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 The DS approach should not be used directly focgss
models with unstable poles.
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Internal Model Control (IMC)

« A more comprehensive model-based design metimoatnal
Model Control (IMC), was developed by Morari and
coworkers (Garcia and Morari, 1982; Rivera etE§06).

 The IMC method, like the DS method, is based oassumed
process model and leads to analytical expressarté
controller settings.

* These two design methods are closely related eodlipe
identical controllers if the design parameterssarecified in a
consistent manner.

« The IMC method Is based on the simplified blockgiam
shown in Fig. 12.6b. A process model and theroller
outputP are used to calculate the model respovise,
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(a) Classical feedback control F|gure 126
Controller Process FeedbaCk ContrOI
o B o [2.] 6 strategies

> G

Internal model Y-Y

(b) Internal model control

* The model response Is subtracted from the achgalonse,
and the difference&/ -Y is used as the ismnal to the IMC
controllerG, .

 Ingeneraly #Y due to modeling er(ésf G) and unknown
disturbancefD #0)  that are not accountedhfthe model.
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* The block diagrams for conventional feedback amrénd
IMC are compared in Fig. 12.6.
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e |t can be shown that the two block diagrams are idenfical
controllersG, and G, satisfy the relation

GC = — (12-16]

» Thus, any IMC controlleB, is equivalent totarslard
feedback controlleG,, and vice versa.

e The following closed-loop relation for IMC can derived from
Fig. 12.6b using the block diagram algebra:

yo_ GG ., 1-GG

' 1+G,(G-G) ¥ 1+G,(G-G) 0 e
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For the special case of a perfect modek, G, (12-17) reduces to
Y =G:GYq +(1-G,G)D (12-18;

The IMC controller is designed in two steps:

Step 1. The process model is factored as

G=G,G._ (12-19

whereG, contains any time delays and right-pizifie
Zeros.

« In addition, G, is required to have a steadyjesain equal
to one in order to ensure that the two factorsqnI2-19
are unique.
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Step 2. The controller is specified as

1 \
G =& f (12-20

wheref is alow-passfilter with a steady-state gain of one. It
typically has the form:
f = 1 r (12-21
(TCS+1)

In analogy with the DS method, Is the desirleded-loop time
constant. Parameteliis a positive integer. The usual choice is
r=1.
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For the ideal situation where the process mocteasbniﬁecl(é = G) ,
substituting Eq. 12-20 into (12-18) gives the ctb&mop
expression

~

Y =G, fYg, +(1- 1G, ) D (12-22'

Thus, the closed-loop transfer function for setapchanges is

Y _G, 1 (12-23)
YSP
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Example 12.2

Use the IMC design method to design two controliershe
FOPDT model. Consider two approximations for theetidelay

term: ”
_gs —1—0.59s
(a) 1/1 Pade approximatiorf 1+ 0.595

(b) 1st-order Taylor series approximatios™® [11-0s
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Solution:
@ a-_ K (1-0.%5s)
(1+0.99s)(7s+ 1)
Factor this model a6 =G,G_.  where
G, =(1-0.5%5s)
G = K

(1+0.59s)(7rs+ )

24
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Settingr = 1 gives
«  (1+0.95s)(7s+ ]

- K(7.5+1)
The equivalent controller Gec can be obtained fromEq16
_(1+0.99s)(rs+ 1)

© K(r,+0.5)s
And rearranged into the PID controller of (12-13jhwv

2|~ |+1
1 (9) _ o o1
KC—K , T —E‘F’L‘, Tp =
Z(ch+1 Z(Tj+1
7 7

(b) The IMC controller is identical to the DS canilter for a
FOPTD model

25



Selection of 1,

» The choice of design parametgr  is a key d&tis both the
DS and IMC design methods.

* In general, increasing. produces a more congee
controller becausk, decreases whilg, increases.

o Several IMC guidelines for. have been publisfor the
FOPDT model in Eqg. 12-10:

1. 1./6 >0.8 and 1., >0.r (Rivera et al., 1986)
2. 1>1.>0 (Chien and Fruehauf, 1990)
3. 1.=6 (Skogestad, 2003)
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IMC Tuning Relations
The IMC method can be used to derive PID contraléttings

c . :
i< for a variety of transfer function models.
%)
Q :
a Table 12.1 IMC-Based PIDvérallel form) Controller Settings foG(s)
= (Chien and Fruehauf, 1990). *
— Case Model KK TI ™D
O
: A K T T —
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Table 12.1 (Continued).

-
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Table 12.2 Equivalent PID Controller Settings
for the Parallel and Series Forms

Parallel Form Series Form
Gds) = K;(l + ;}E + TDS’) Gs) = Ké(l + é)(l + T;)S]T
K. = K;(l ¥ i—i'-) K. = %(1 + J1 —drpty)
u=T 71 =5 (L+ /1 - drpfr)
e = 5 (1= /T4

- 7
- YThese conversion equations are only valid if Tp/1; = 0,25.
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Tuning for Lag-Dominant M odels

 First- or seconarder models with relatively small time delay.
(0/t<1) are referred to dsg-dominant models.

 The IMC and DS methods provide satisfactory setpo
responses, but very slow disturbance responsesugecthe
value of t; Is very large.

* Fortunately, this problem can be solved in thiffer@dnt ways.

Method 1: Integrator approximation

K e—es e—es

< K
byG & F—

Approximate G 6 )=
1s+1

whereK™ 2K f .
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e Then can use the IMC tuning rules (Rule M or N)
to specify the controller settings.
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Method 2. Limit the value of T,

* For lag-dominant models, the standard IMC corgrslfor first-
order and second-order models provide sluggishriahce
responses becausg IS very large.

* For example, controlle6 in Table 12.1 hag, =t whete Is
very large.

* As a remedy, Skogestad (2003) has proposed limitiagyalue
Of T|

7, =min{ty,4(t. +0)} (12-34)
wheret, Is the largest time constant (if there are two).

Method 3. Design the controller for disturbances, rather
than set-point changes
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* The desired CLTF is expressed in terms¥db] ., rather than¥Y/Y,
» Reference: Chen & Seborg (2002)

des
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Example 12.4

Consider a lag-dominant model witiit =0.01
G(s)= 100 s
100s+ 1
Design four Pl controllers:

a) IMC (TC :l)
b) IMC (z, =2) based on the integrator appration
C) IMC(rC :1) with Skogestad’s modification (EkR-34)

d) Direct Synthesis method for disturbance rejectoinen and

Seborg, 2002): The controller settings Kre= 0.551 and
T| — 491
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Evaluate the four controllers by comparing thenf@@nance for
unit step changes in both set point and disturbakssume that
the model is perfect and th@g(s) = G(9).

Solution

The PI controller settings are:

Controller K. T

(a) IMC 0.5 100
(b) Integrator approximation 0.556 5
(c) Skogestad 0.5 8
(d) DS-d 0.551 4.91
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b — Chen and Seborg
= —=— Skogestad
0.5 — |
= === |ntegrator Approx.
0 | l l | | |
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Time
2.5 l I | T |
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151 =
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11 Chen and Seborg —
— == Skogestad
-------- IMC
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0 .T.‘""‘"a]-— . I
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Time

Figure 12.8. Comparison
of set-point responses (top)
and disturbance responses
(bottom) for Example

12.4. The responses for
the Chen and Seborg and
Integrator approximation
methods are essentially
identical.

34



Controllers With Two Degrees of Freedom

* The specification of controller settings for angtard PI1D
controller typically requires a tradeoff betweetrgaint
tracking and disturbance rejection.

* The strategies which can be used to adjust thpaset and
disturbance independently are referred tocasrollers with
two-degrees-of-freedom.

* The first strategy Is very simple. Set-point chesgre
iIntroduced gradually rather than as abrupt stepgis

* For example, the set point can be ramped as shotug).
12.10 or “filtered” by passing it through a firstear transfer
function,
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*

Y
»__ 1 (12-38
Ysp ’L'f S+1
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whereYS*p denotes tlfidgtered set point that is used in the control
calculations.

* The filter time constant;; determines how glyiche filtered
set point will attain the new value, as shown ig. Ai2.10.

» This strategy can significantly reduce overshootsit-point
changes.
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Set point P .
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: == — Filtered
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Time

Figure 12.10 Implementation of set-point changes.
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« A second strategy for independently adjustingsitepoint
response is based on a simple modification of tBecentrol
law, _ t ( )

_ 1 K\ x de(t
p(t) = ps + K, e(t)+;_‘(;e(t )dt HTp—

whereym IS the measured value phnde is the error signal.
es Yo = ¥Ym

e The control law modification consists of multiplyitite set
point in the proportional term bysat-point weighting factor,3 :

p(t) = ps +Ke| Bygy () = Yin(t) ]

t
K, Ti e( )dt FTp d(tt) (12-39)
o
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The set-point weighting factor is bounded, 0 < [§ arld serves
as a convenient tuning factor.
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Figure 12.11 Influence of set-point weighting onseld-loop responses for
Example 12.6.
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« A more general control law modification consists o
multiplying the set point bget-point weighting factor in both
the proportional term and the derivative term.

p(t) = ps + K¢ [BVSp (t) = Ym (t)]

1 j d[ vy (1) - Y (1) ]

. Oe(t*)dt* FTp .

+K.

e To eliminate derivative kicky Is set to zero.
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