
Million Song Dataset Recommendation
Project Report

Yi Li
Cornell University
yl2326@cornell.edu

Rudhir Gupta
Cornell University
rg495@cornell.edu

Yoshiyuki Nagasaki
Cornell University
yn253@cornell.edu

Tianhe Zhang
Cornell University
tz249@cornell.edu

Abstract—For our project, we decided to experiment, design
and implement a song recommendation system. We used the
Million Song Dataset [1] (MSDS) to find correlations between
users and between songs to ultimately provide recommendations
for songs to which users would prefer to listen. In this paper, we
will discuss the problems we faced, the methods we considered
to implement this system, and the results and analysis of our
findings. We have also compared our findings with other exper-
iments done in the field. From our findings, also we recognize
numerous ways to improve the results of our recommendation
system; we believe we have found a novel way to recommend
songs that a user might enjoy.

I. INTRODUCTION

With the advent of online services such as Pandora and iTunes,
the music industry has shifted away from the traditional
distribution model of selling physical copies of music to a
cloud-based model that provides music for users to listen to.
In this model, value is derived when these services present
songs that the customer is interested in; either the customer
purchases a subscription, or the customer pays for the song.
In both cases, these music services can derive financial gain
by improving their recommendations to potential customers
of the songs they like. Thus, there is strong financial incentive
to implement a good song recommendation system.

There are many interesting problems to tackle when
building a song recommendation system. One issue that
makes recommending songs difficult is that there is no
straightforward similarity measure between songs; two songs
that sound similar may be very different songs that have
completely different audiences. Thus, we needed to figure
out how to gain useful information that could be used to
recommend other songs. Another issue is in identifying useful
features of the songs; determining which features would be
best for a learning algorithm is important, since good feature
selection could improve recommendations. Lastly, we decided
to use the MSDS, as well as data from participating partners1,
to train and test our recommendation system, and the scope
of this data presented issues. The MSDS alone contained
more than 280 gigabytes of data, which was a challenge to
process and use efficiently.

1http://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets

To address the problem of effectively measuring song
similarity and recommendation, we used song metadata from
the MSDS and user play history data from EchoNest2. After
experimenting with several baselines, such as K-Nearest
Neighbors (KNN) and matrix factorization, we created
a program that utilized the user listening data and song
metadata to suggest new songs that a user would most likely
prefer. Metadata that we deemed had the greatest value in
this metric were used as features. Lastly, we had several
ways to address the large amount of data. The simplest way
was to run our training and testing on a subset of the data.
We also decided to filter our data in order to preserve the
useful information while ignoring information with little value.

Our basic approach is to use a combination of clustering,
song-based similarity metrics, and user-based similarity
metrics to recommend songs. When recommending to a user
in the test group, our algorithm produces three different sets
of recommendations from these three different metrics. From
these recommendations, as well as properties of the test user,
we choose songs with the highest likelihood of being a song
that the test user prefers.

Papers on related work in this field talk about how a
specific implementation will improve the precision of
recommendations. For example, the winner of the Kaggle
MSDS competition3 provided a Memory-based Collaborative
Filtering method. Also, many other papers talked about
different song similarity approaches, such as using acoustic
data. These publications focused on deriving methods that
provide a better precision. We surveyed some of these
algorithms in our work and used them as baselines and in
designing our final solution.

From our experimentation, we have derived several
conclusions. First, we discovered the precision of our
results tended to be low, which he attribute mainly to the
lack of useful features and the fact that our program only
recommends constant number of songs for a given user.

2The Echo Nest Taste profile subset, the official user data collection for
the MSDS, available at: http://labrosa.ee.columbia.edu/millionsong/tasteprofile

3http://www.kaggle.com/c/msdchallenge

Second, we found that certain methods that we surveyed were
more useful than others, when the properties of the users in
the test set were considered (i.e. the number of songs in a
users listening history). Lastly, we believe our method for
calculating song similarity is a novel solution for the song
recommendation problem, as it optimizes among numerous
approaches to predict the best songs for users.

II. PROBLEM DEFINITION

The central issue is the recommendation of songs to a
user. For a given user, we have their song history and play
count for each song. From this, we want to produce a
set of ten recommendations to the user. Then, we try to
answer the question, “How do we use the song history of
a user to provide recommendations that they will like?”
Generally, this is done by looking at the songs that are
most similar to the users songs, as well as the users who
are most similar to the user according to their listening history.

In order to discern whether songs are similar to those in a
query users listening history, our methods use the metadata
collected from a song to weigh its similarity with another
song. From this, we can choose the songs with the highest
weights as the recommended songs. However, given that
there is a lot of metadata about each song, a significant issue
was deciding which features should be used to calculate song
similarity. For this project, we focused on the features that we
deemed were most likely to distinguish similar songs from
different songs.

We also determine the best songs for a given user, in part,
based on the song histories from similar users. However, this
brings up another problem: How do we measure similarity
among users? Our approach measured closeness among users
by taking the cosine similarity measure between the two
users’ song histories. This is a major component in some of
our algorithms.

Another problem that we considered is the cold-start and
near-cold-start problem. The cold-start problem, in terms of
song recommendations, refers to the situation in which the
test user has no song history; since all our metrics use this for
song prediction, a lack of song history is a difficult problem
for our algorithms. It can be solved by simply recommending
a subset of the most popular songs. This scenario also brings
up another interesting situation, the near-cold-start problem.
If the user has a very small song history, our algorithms may
not return an accurate set of recommended songs. To address
these issues and to try to achieve the best possible precision
under any circumstance, we ran several experiments with our
algorithms and devised a multi-faceted prediction algorithm.

Lastly, we have the issue of dealing with large quantities
of data. The MSDS and accompanying datasets offer over
280 gigabytes of information about songs, their metadata,

and user play counts. How do we deal with all the data?
Often, we simply use a random sample of the data for
training, validation, and testing. For example, we use
the data in our user song history set with only the top
one thousand songs in the song history. We also prune
our data so that we focus on information that would
maximize the value-to-performance tradeoff. Furthermore,
we developed multithreaded, multiprocessor, and map-
reduce implementations of certain methods to accelerate the
processing of the tasks.

III. DATA ANALYSIS

The main source of data for this project was the Million
Song Data Set (MSDS), released by Columbia Universitys
Laboratory for the Recognition and Organization of Speech
and Audio. It contains metadata and audio features for one
million popular and contemporary songs, varying in genre,
time period, and country of origin. Supplementary data
provided by other groups and matched to songs in the MSDS
was also used. This includes lyrics provided by musiXMatch4,
user-defined tags provided by Last.fm5, and user listening
data provided by the EchoNest.

A. User Listening Data

This data comes in the form of the number of times a given
user has listened to a given song (play count). Throughout the
project, we have roughly modeled user preferences by their
played song history, so the algorithms we implemented that
use this per-user song play count data learn and are evaluated
based on this assumption.

B. Song Metadata

Among the large amounts of song metadata, we decided to
focus on features that we deemed would be most relevant
in determining similarity between songs, as well as those
that we thought were interesting candidates for enhancing
this metric. We decided that information like artist name,
year composed, and some audio signal-related measurements
like tempo would be most relevant in characterizing a song,
whereas data on artist location would not matter significantly.

We used the lyrics data as features for those songs whose
lyrics were provided. To respect copyright privileges,
lyrics data for only about 23% of the MSDS songs were
released in a bag-of-(stemmed)-words format. Ultimately,
we decided to include this data, because we believed that
it could exploit the semantic relationship in like-themed songs.

4http://labrosa.ee.columbia.edu/millionsong/musixmatch
5http://labrosa.ee.columbia.edu/millionsong/lastfm

IV. METHODS AND ALGORITHMS

For all of our methods, we created sets of training, validation,
and test data. For training data, we used unmodified user
histories and song metadata. For validation and test data, we
took the user histories and split it into two halves. The first
half was used to test our algorithms, while the second half
was used to evaluate our results. If a song recommendation
for a user, predicted based on the history for that user in
the first half, existed in the second set of data, then that
recommendation was considered relevant. This is the same
method used to create training, validation, and test data in
[1].

A. Baseline algorithms

For this project, we devised a few baseline algorithms against
which to compare our results. These methods provided a
solid basis for evaluating the effectiveness of our later work.
The first and simplest baseline method we implemented
was a straightforward popularity-based algorithm that just
recommends the most popular songs, as outlined in [1].

1) K-Nearest Neighbors (KNN): We also used the k-
Nearest Neighbor algorithm on the user history data. For each
test user, we found the set of users who were closest, using
each song as a feature and weighted according to the play
count for that song. From these results, we recommended
songs (that the test user had not listened to) from the listening
history of the closest users. Closeness between users is
calculated by the minimum cosine distances between users
song histories.

2) Matrix factorization: Singular Value Decompositions
(SVD) are among the most successful recommender system
algorithms. In its simplest form, SVD decomposes the
user-song play count matrix M into a latent feature space
that relates users to songs (and vice-versa). This is usually
achieved by factoring M according to

M = UTV

Where U ∈ Rk×m is a low-rank representation of the m
users, and V ∈ Rk×n represents the n items. Once the
representations U and V have been constructed, personalized
recommendations are calculated for a user u by ranking each
item i in descending order of the predicted feedback:

wi = UTu Vi

The interpretation is that the users and songs can each be
represented by k-dimensional vectors, where each dimension
corresponds to one of k topics like (rock music, artist name
etc). Each row of U , represents user u’s degree of interest
in each topic. Each row of V represnts the relevance of the
song v to each topic.

The computation of SVD in our case is non-trivial due
to the large number of missing values in M . The above
decomposition is possible only if M is complete. Simon
Funk has described a method to estimate SVD using only
the known weights (playcount)[2]. The idea is to view
the decomposition as a regression problem of finding the
parameters of the vectors u and v, so as to minimize the error
between the known actual song weights and the predictions.

Err(w) = argmin(

m,n∑
u∈U,s∈S

(V (wu,s)− V) +R)

where V (wu,s) is the predicted value.

As only few songs per user are known, an L2 norm regularizer
is added to prevent overfitting:

R = γ(||u||2 + ||s||2)

Now, we use adaptive stochastic gradient descent to minimize
the above objective. We train the user and song vectors one
feature at a time. Here are the update equations for user and
song vector feature i:

ui = ui − λ(u′v′ − u · v)vi + γui

vi = vi − λ(u′v′ − u · v)ui + γvi

Where u′ and v′ represent current feature values for user
u and song v. γ is the regularization parameter and γ is
the learning rate. For our experiments, we varied the latent
factors from k = 1 to 20, and varied γ ∈ {10−3, 10−4} with
λinit = 10−2.

B. Main Algorithms

1) K-Means clustering: One of the approaches used was
K-Means clustering. For all the users in the training data, we
found clusters of users based on their song histories. From
the clusters, we predicted for each user which cluster was
the best fit according to proximity to its centroid. The most
highly weighted songs in each cluster were selected as the
songs to recommend for that particular user. Although this
algorithm will approximate the accuracy of KNN, it is a lot
faster and easier to tweak.

2) User Based Recommendations: Generally, given a new
user, for which we want to obtain predictions, the set of
items (in this case songs) to suggest is computed by looking
at similar users. This strategy is typically referred to as user-
based recommendations. In user-based recommendations, the
scoring function, on the basis of which the recommendations
are made, is computed as

sim(u, v) =
u · v

||u|| 12 · ||v|| 12
which is just a cosine similarity between two users u and v.
One common way of finding the cosine similarity is finding the

number of common items the users share between them. Thus,

sim(u, v) =
#common items(u, v)

#items(u)
1
2 · #items(v)

1
2

The strategy relies on the fact that each user belongs to a larger
group of similarly-behaving individuals. Consequently, items
frequently purchased (listened) by the various members of the
group can be used to form the basis of the recommended items.

The overall procedure is as follows: We try to find the weight
of each item Ii in the system for the new user u by finding
the set of users V in the training set who have listened to
the item Ii and then summing the user similarity using the
similarity function. Thus, weight for song Ii, wIi is,

wli =
∑
v∈V

sim(u, v)

Finally, all the items are sorted by their weights and top-N
are recommended to the user.

The cosine similarity weighs each of the users equally which
is usually not the case. In fact, a user should be weighted
less if he has shown interests to many variety of items
basing it on the knowledge that he does not discern between
songs based on their quality of the item, or he just likes
to explore items. Likewise, user is weighted more if he
listens to very limited set of songs. Thus, we re-modeled the
similarity measure by parametrizing it with this weighing rule.

sim(u, v) =
#common items(u, v)

#items(u)α · #items(v)1−α
, α ∈ [0, 1)

We also, added another parameter to sharpen this
normalization. The effect of this exponentiation is this:
when γ is high, smaller weights drop to zero while larger
weights are (relatively) emphasized. Thus our item weight
equation is now,

wli =
∑
v∈V

(sim(u, v))γ , γ ∈ [0, 1)

3) Item Based Recommendations: User-based
recommendations identify a neighborhood of users that,
in the past, have exhibited similar behaviors. An alternative
approach is to build recommendation models that are based
on items. The key motivation behind this scheme is that a
user will more likely purchase (or listen to) items that are
similar to items he already purchased; thus, in this approach,
the historical information is analyzed to identify relationships
between the items so that the purchase of an item often
leads to the purchase of another item. The algorithm first
determines the similarities between the various items, then
uses them to identify the items to be recommended. The key
steps in this approach are (i) the method used to compute the
similarity between items and (ii) the method used to combine
the similarities and provide recommendations.

During the model building phase, for each item i, the k most
similar items {i1, i2, .., ik} are computed and their correspond-
ing similarities are stored. Now, for each user, that has listened
to a set U of items, we first identify the set V of candidate
items for recommendation by taking the union of the k most
similar items that are already in U . Then, for each item c ∈ C,
we compute its similarity to the set U as the sum of similarities
between all items u ∈ U and c, using only the k most similar
items of u. Finally, as in user-based recommendation, the
candidate items for recommendation are sorted and the top-N
items are recommended.

wc =
∑

u∈U,c∈C
sim(u, c)

Item similarity: We used two approaches to calculate Item-
Item similarity used in the Item based recommendations.

(i) Without metadata: We used the similar method as in user-
user similarity by finding the common users that are shared
by items i and j. Thus, similarity function is,

sim(i, j) =
#common users(i, j)

#items(i)
1
2 · #items(j)

1
2

(ii) With Metadata: the second approach involves using the
song metadata to compute a cosine similarity score between
two songs. The features used for each song in this calculation
are artist name, tempo, loudness, energy, year the song was
composed, the five most common lyrics in the song, and the
five most heavily weighted user tags for the song. All the
features, except tempo, loudness, and energy, were treated as
binary features.

Lyrics were included as features in an attempt to take
advantage of any possible semantic similarity between songs.
For example, if a user enjoys love songs, then this approach
could exploit the fact that love songs may often share
love-themed lyrics.

4) Multi-faceted Prediction Algorithm: The multi-faceted
prediction algorithm uses multiple algorithms to more
precisely recommend songs for the user. We do this because
we have observed that different methods work better under
different circumstances. By combining the different methods
and weighing a specific methods prediction more based on
the size of the test users listening history, we can maximize
our song recommendation systems precision.

The multi-faceted prediction algorithm uses the trends
observed in Figure 7 and Figure 8. For different sizes of the
test users song history, different methods of prediction give
optimal recommendations. Specifically, when the test users
song history is small, predictions based on song similarity
metrics tend to perform better; when the test users song
history is large, predictions based on similar user metrics tend
to perform better. This has a direct application to the cold
start or near cold start situation, in which predictions based

on a test users song history tend to be noisy and inaccurate,
since the similar users do not accurately represent the test
user. In these situations, making recommendations based on
song similarity is better. Thus, the multi-faceted prediction
algorithm aims to use this phenomenon to make the best
predictions. Using our validation sets, we tuned the weights
to produce the optimal set of predictions.

V. RESULTS

A. Precision Metric

The metric we used to determine the quality of our algorithms
was the precision value of our song recommendations.
Specifically, our metric was the proportion of relevant songs
over a constant number of recommendations. This form of
precision was used because it is similar to the metric used in
the Kaggle competition. This allows us to make comparisons
between our results and the results of related work from
the competition. Furthermore, in recommendation systems,
precision is the key metric in determining the quality of the
recommendations. In [3], the authors who were building an
online recommendation system of web searches believed
precision was the best metric for recommendation systems.
Thus, precision was selected as our metric for determining
the quality of our algorithms results.

Due to the nature of our data, we found it impossible to run
our program on the entire set of data provided by the MSDS.
The following results reflect a subset of the song metadata
and the song history of 10,000 users.

B. KNN

We begin by considering the KNN baseline method and
compare its performance against the popularity baseline.
Figure 1 shows that even a simple popularity-based
recommendation method offers better precision than a
KNN approach. This suggests that similarity based purely
on user play count is not a good measure of predicting
new songs; in the end, people would rather listen to popular
music rather than what other similarly behaving users listen to.

C. Matrix Factorization

With the singular value decomposition (SVD) method (Figure
2), we found that precision was exceptionally poor. Although
the theory behind this method is compelling, there is not
enough data for the algorithm to arrive at a good prediction.
The median number of songs in a users play count history
is fourteen to fifteen; this sparseness does not allow the
SVD objective function to converge to a global optimum.
Ultimately, this results in poor prediction precision rates.

Fig. 1. KNN baseline performance v. popularity baseline performance

Fig. 2. Precision of SVD with rate of 0.510−4 and γ of 1.010−5

D. K-Means

With K-Means, we start to see precision results that exceed
the popularity baseline (Figure 3). This can be attributed to
the fact that the K-Means method finds more generalized
clusters of users with similar behavior (as compared to KNN)
and offers predictions from this more general pool of user
song histories, which ends up being slightly more accurate.

Fig. 3. K-Means performance

E. User Based Recommendations

Next, we consider the user-based song-recommendation
method, which provided dramatic gains in precision over our

other approaches. Figures 4 and 5 illustrate how different
values of the α and γ parameters change the recommendation
precision; we see that an α value of 0.8 and a γ value of 5
offers the best precision. The α and γ factors are the same
factors expressed in the Methods section.

Fig. 4. Precision of user-based approach v. γ

Fig. 5. Precision of user-based approach v. α

F. Item Based Recommendations

We also got comparably high precision with item-based
recommendations, specifically using the song similarity
metric that does not use the song metadata. The item-based
recommendation algorithm that uses metadata to calculate
song similarity yielded lower precision, but still performed
better than the popularity baseline, KNN, and K-Means. The
relative performance of the different methods is summarized
in Figure 6.

Finally, we present some indication that the multi-faceted
prediction algorithm that we implemented would offer
improved results over a purely user-based recommendation
method or item-based method, which are our two highest-
performing algorithms. Figures 7 and 8 show the performance

Fig. 6. Comparison of recommendation methods

of the user- and item-based methods, respectively, as the
played song history count for a given user increases.

Fig. 7. User-based v. listened song count

Fig. 8. Item-based v. listened song count

Given these trends, the benefit of a recommendation system
that chooses songs based on different underlying algorithms
(i.e. user-based or item-based) depending on the number of
songs a user has listened to is apparent. When the song history
of a user is too small to leverage the power of the user-based
recommendation algorithm, we can offer recommendations
based on song similarity, which yield better results with
smaller song histories.

Figure 6 illustrates the effectiveness of the multi-faceted

prediction algorithm. By combining user- and item-based
methods in a way that stresses each ones strengths, we get
the highest prediction precision overall.

VI. DISCUSSION

An analysis of our results has provided a deeper understanding
of our data and our questions. We used several of our methods
to find similarities between users and songs. Using our metrics,
we produced data that represents the correlation between song
predictions based on song similarity and similar users and
the precision of the song recommendations. An interesting
property we discovered was how the size of the user history
affected the precision of different metrics. Test users with
smaller song histories tended to be have better precision with
metrics based on song similarity, while those with larger song
histories tended to have better precision with metrics based
on user history.

Our results show a generally low level of precision produced
by the song recommendations. Our multi-faceted prediction
algorithm resulted in a precision of 14.2%. This shows that
the song recommendation problem is a difficult one and
can be attributed to the lack of high correlation between a
users song history and their song preferences in the data set.
Regardless, our song recommendation system uses a novel
approach of incorporating the results of our multiple methods
to produce an optimal set of song recommendations, while
other researchers are mostly focused on optimizing individual
algorithms that exclusively use a single approach.

VII. RELATED WORK

A lot of related work has been completed on the Kaggle
competition site relating to the MSDS. Although the specific
implementations of the competitions various solutions were
not revealed, we used the scoreboard of the competition as
a point of comparison for our algorithm against others. The
highest average precision achieved in the competition was
17%, while our highest average precision was 14.2%.
There have been a lot of published works as well, regarding
the different methods to evaluate the data to produce song
recommendations. Some of this work is detailed below.

A. About song similarity

There are a number of different ways to measure the
similarities between songs, such as semantic embedding
model [4] and acoustic similarity model [5]. However, music
similarity measures are subjective, which makes it difficult
to rely on ground truth. This issue is addressed in [6] and
[7]. For our final algorithm, we inherently assumed that this
metric was unreliable and used user song history to provide
better results.

B. Meta-data

Meta-data provides rich information for the songs, which
helps classify the music. However, meta-data suffers from a
popularity bias. People are more likely to rate the artists and
songs that are popular. Thus, little information can be found
for those less known artists and songs. [8]

C. Algorithms

Numerous other methods have been considered and
implemented [9]. One method that is very similar to
our SVD approach is called Latent factor mode Bayesian
personalized ranking (BPR). The factorization is similar:

M ≈ M̄ = UTV

At a high level, the algorithm learns U and V such that for
each user, the positive (consumed) items are ranked higher
than the negative (no-feedback items). This is accomplished
by performing stochastic gradient descent on the following
objective function:

f(U, V) =
∑
u,i,j:

Mu,i>Mu,j

ln(1+e−U
T
u (Vi−Vj))+λi||U ||2F+λ2||V ||2F

where u is a user, and i and j are positive and negative items,
respectively, for user u. This is a different approach since it
transforms the original problem into an optimization problem.

D. Comparison

For the MSDS problem, we compare our results to the results
from the Kaggle competition. The winner , aio[10], has a
recommendation system with mean average precision of
0.1791 for the top 500 songs. Our final precision is 0.142 for
the top 10 songs. We believe our results are good because,
when a user looks at a set of recommendations, he usually
only focuses on the top songs, in the same way that we rarely
go to the second page of results in a Google search.

VIII. FUTURE WORK

The song-with-metadata approach yields low precision
compared to the user-based and song-without-meta methods.
This may be attributed in part to low similarity scores
generated by the cosine similarity distance metric, which,
in turn, could be because the features chosen to represent
a song are a poor indicator of what users value in their
choices of music. Despite this, the precision attained is
significantly higher than the popularity baseline, and it is
conceivable that incorporating more features or choosing
different combinations of features or simply playing with
weight values for the chosen features could improve the
method even more.

We believe that a very effective method of music discovery
lies in compiling the results from a variety of different
individual recommendation algorithms, like the results
from our multi-faceted predictor have indicated. Our work
looked at leveraging mostly user listening behavior and
song characteristics to identify similarities between that data
and that of a query user to make some recommendations.
Generally, further work can be done to develop more
recommendation algorithms based on different data (e.g.
the how the user is feeling, which www.ragechill.com tries
to capture), and these new methods can be used to further
enhance multi-faceted prediction.

IX. CONCLUSION

Our work has given us a keen insight into recommendation
systems for music. Our results have shown how we can
use song metadata as well as data from users histories to
provide the best set of songs to recommend. Furthermore, we
observed the low precision results from both our own work
and those from related work, which forced us to think about
ways to improve overall precision. Ultimately, we devised a
novel method to provide a recommendation system aimed to
maximize precision of our song recommendations.

ACKNOWLEDGMENT

The authors would like to thank Thorsten Joachims, Joshua
Moore!

REFERENCES

[1] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and
Paul Lamere. The Million Song Dataset. In Proceedings of the 12th
International Society for Music Information Retrieval Conference
(ISMIR 2011), 2011.

[2] http://sifter.org/∼simon/journal/20061211.html

[3] Sergey Brin, Lawrence Page.: The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, Volume 30,
Issues 17, April 1998, Pages 107117

[4] Law, E., Settles, B., Mitchell, T.: Learning to tag from open vocabulary
labels. In: ECML. (2010)

[5] Bertin-Mahieux, T ., Eck, D., Mandel, M.: Automatic tagging of audio:
The state-of-the-art. In Wang, W., ed.: Machine Audition: Principles,
Algorithms and Systems. IGI Publishing (2010) In press.

[6] Berenzweig, A.: A Large-Scale Evaluation of Acoustic and Subjective
Music Similarity Measures. Computer Music Journal 28(2) (June 2004)

[7] Ellis, D.P.W., Whitman, B., Berenzweig, A., Lawrence, S.: The quest
for ground truth in musical artist similarity. In: ISMIR. (2002)

[8] Pampalk, E., Dixon, S., Widmer, G.: On the evaluation of perceptual
similarity measures for music. In: Intl. Conf. on Digital Audio Eects.
(2003)

[9] Law, E., West, K., Mandel, M., Bay, M., Downie, J.S.: Evaluation of
algorithms using games: the case of music tagging. In: Proceedings
of the 10th International Conference on Music Information Retrieval
(ISMIR). (October 2009)

[10] Fabio Aiolli.: Preliminary Study on a recommender system for the
Million Songs Dataset challenge. (2011)

