Microbiology B. Sc. II Semester-III (CBCS)			
Course Code - USMBT05Paper-IMarks: 50			
Credits: 2 Total Hours :48			
MICROBIAL PHYSIOLOGY AND METABOLISM			
Objective	To make the students to understand the fundamentals of bacterial physiolog	y and	
Unit No.	Content	Hrs	
	Growth	12	
1	 a) Concept of Growth; b) Bacterial Growth Curve and its phases c) Reproduction-Binary fission d) Generation time, mathematical expression, Growth rate constant e) Diauxic Growth f) Synchronous Growth (methods) g) Continuous Culture (methods) h) Measurement of Bacterial Growth: Breed's method, Hemocytometer, Coulter counter, Plate count, Membrane filter count. i) Physical conditions required for growth i) Oxygen requirement ii) pH iii) Temperature iv) Miscellaneous. 		
	Enzymes	12	
2	 a) Introduction and terminologies used in Enzymology, Characteristics of Enzymes, Nomenclature and Classification Based on IUB system and EC. b) Enzymes and catalysts i. Activation energy ii. Mechanism of enzyme action c) The active site, Allosteric Site, Allosteric modulators d) Enzyme-Substrate Interactions (E. Fischer Hypothesis & Daniel Koshland's Model) e) Enzyme kinetics: i.Michaelis-Menten equation ii.Line Weaver-Burk Plot f) Enzyme Inhibition: Competitive, Uncompetitive and non- competitive g)Factors affecting Enzyme activity: pH, temperature and substrate concentration. 		
	Microbial Metabolism	12	
3	 a) Definition of Metabolism, Anabolism, Catabolism and Amphibolism. b) EMP pathway (detail) c) HMP pathway (outline) d) ED Pathway (outline) e) PK pathway (outline) f) TCA cycle (detail) g) Metabolic mill (outline), Anaplerotic reactions: Definition and examples h) β -oxidation of fatty acid, Urea Cycle 		
	Energy Metabolism	12	
4	 a) Phosphorylation: Substrate level, definition and examples, Oxidative Phosphorylation and electron transport chain - general features, cytochromes, NADH and Succinate dehydrogenase, Chemoistic coupling hypothesis. b) Cyclic and non cyclic phosphorylation in detail c) General concept of Respiration and Fermentation: Alcohol, lactic acid, acetone butanol and mixed acid fermentation. d) High energy rich compounds 		

Microbiology B. Sc. II Semester-III (CBCS)		
Course Code – USMBT06 Paper-II Marks:		s: 50
Credits: 2 Total Hours		
	FOOD, SOIL MICROBIOLOGY AND MICROBIAL ECOLOGY	
Objective	: To make the students to understand the fundamentals of Food, Soil and Mic	robial
ecology.		n
Unit No.	Content	Hrs
1	 a) Definition and types of food, Sources of contamination in food b) Microbial examinations of food, Significance of microorganisms in food c)Spoilage and its types (Different types of spoilages with suitable examples) d) Preservation of food (Physical, chemical and biological methods) e) Food borne diseases, food infections and food poisoning (Botulism, <i>Staphylococcal</i> intoxication and <i>Salmonellosis</i>) f) Concept of HACCP 	12
	Soil Microbiology	12
2	 a) Definition and composition of soil, types of soil b) Humus Formation (Nature and Characteristics) c) Compost, aerobic and anaerobic methods of composting d) Elemental transformations: Carbon cycle; Nitrogen cycle; Sulphur cycle; Phosphorus cycle 	
	Microbial Association and Nitrogen Fixation	12
3	 a) Positive and Negative Microbial associations with examples, mutualism, Symbiosis, Syntrophism, Synergism, Commensalism, Parasitism, Competition, Antibiosis. b) Biological Nitrogen fixation, Nitrogen fixing bacteria, Symbiotic and non symbiotic nitrogen fixation, Process of nodulation in legume, Nitrogenase complex, Mechanism of nitrogen fixation (symbiotic and non symbiotic), <i>Nif</i> gene and r DNA technology in N₂ Fixation. c) Mycorrhizae (types and application) d) Biofertilizers and Biopesticides 	
	Environmental Biotechnology	12
4	 a) Microbial leaching - Bioleaching of Copper and Uranium. b) Microbial Enhanced Oil Recovery (MEOR). c) Bioremediation, Acid mine drainage, Desulfurization of coal d) Biogas plant, Construction and working mechanism e) Biodegradation of (a) Cellulose (b) Pesticides (Xenobiotics) 	

Practical B. Sc. II Semester III {Based on Paper I & II}

Course code – USMBP03 Total Hours: 48

CREDITS: 2

Marks: 30

- 1. *Demonstration of enzymes activity: Catalase, Lecithinase (Lipase), Amylase, Caseinase (protease), Urease, Gelatinase
- 2. *Isolation and study of *Rhizobium* from root nodules.
- 3. <u>*Isolation and study of Azotobacter from soil</u>
- 4. <u>Demonstration of Synergism.</u>
- 5. <u>Demonstration of Antibiosis</u>
- 6. Demonstration of Syntrophism.
- 7. Isolation and Study of Rhizospheric microflora.
- 8. *Demonstration of: Ammonification, Nitrification, Nitrate Reduction.
- 9. <u>Microbiological examination of food by SPC, YMPC.</u>
- 10. Demonstration of cellulose degradation.
- 11. Study of Phosphate solubilization by Mycorhizae.
- 12. *<u>Production of amylase enzyme and its assay</u>
- 13. Preparation of *Rhizobium* Biofertilizer.
- 14. Study of bacterial growth curve.
- 15. Study of effect of P^{H} , temperature on enzyme activity
- 16. Detection of food Adulteration

Note: i) Minimum 4 major and 4 minor experiments are compulsory

- ii) Underlined experiments are considered to be major experiments
- iii) Experiments with asterisks are compulsory
- iv) Duration of practical examination will be 8 hours i.e. 4 hours each for two Consecutive days

Distribution of marks for practical examination:

One major experiment	10 Marks
Two minor experiments 5 × 2	=10 marks
Viva-Voce	05 marks
Practical Record	05 Marks

Total 30 marks

Books Recommended for Theory& Practical of B.Sc. II Year SEM III

- 1. Soil Microbiology by Martin A. Alexander, John Wiley & Sons
- 2. Food Microbiology by William C. Frazier, McGraw Hill.
- 3. Food Microbiology- Martin R.Adams and Maurice O. Moss, RSC Publishing
- 4. Introductory Food Microbiology by H. A .Modi, Ekta publication
- 5. Soil Microbiology by N.S. Subbarao, Oxford & IBH Publishing Co.
- 6. A Manual of Environmental Microbiology by Christon J. Hurst, Ronald L. Craford, ASM Presss
- 7. Soil Microbiology by S.A. Waksman, Chapman & Hall
- 8. Soil Microbiology & Biochemistry by E.A. Paul, Elsevier Academic Press
- 9. Soil microorganism and plant growth- N.S. Subbarao, Oxford and IBH Pub. co. Delhi
- 10. Principles of Microbial Ecology by T.D. Brock, Prentice Hall Inc
- 11. Nature and properties of soil- N.C.Brady, Pearson Education
- 12. Agricultural Microbiology, G. Rangaswamy and D.J.Bhagyaraj, Prentice Hall of India
- 13. The Enzymes by P.D.Boyer, Academic Press
- 14. Lehninger, 2010, Principles of Biochemistry, 5th edn., by Nelson & Cox, W.H. Freeman and Co.NYork.
- 15. Molecular and Cellular enzymology by J.Y. Khan & G. Herve
- 9. Text Book of Microbial Taxonomy, Ecology and Diversity by P.H.Kumbhare and V.U.Thool Rajani Prakashan, Nagpur.
- 10. Text Book of Enzymology and Metabolism by P.H.Kumbhare and V.U.Thool, Rajani Prakashan, Nagpur.
- 11. Text Book of Industrial and Food Microbiology by P.H.Kumbhare and V.U.Thool, Rajani Prakashan, Nagpur.
- 21. Bacterial Cell to Cell Communication by D.R. Demuth
- 22. Modern Food Microbiology by James M. Jay.
- 23. Bacterial Metabolism by Gottschalk
- 24. Chemical Microbiology by Rose
- 25. Fundamentals of Food Microbiology by A. Bhunia
- 26. Secondary Metabolites in Soil Ecology by Ajit Verma
- 27. Molecular Mechanism of Plant and Microbe Coexistence by C. Nautiyal.
- 28. Bacterial Metabolism by Doelle
- 29. Fundamental Food Microbiology by Bibek Ray & Arun Bhutia, CRC Press
- 30. Elementary Microbiology by H.A. Modi
- 31. General Microbiology by Powar & Daginawala, Himalaya Publication
- 32. Textbook of Microbiology by R.C.Dubey & D.K. Maheshwari
- 33. Biochemistry by J.L.Jain
- 34. Environmental Biotechnology, InduShekhar Thakur- IK International Pvt. Ltd. New Delhi
- 35. Experiments in Microbiology, Plant pathology and Biotechnology, K.R. Aneja
- 36. Cappucino J and Sherman N.(2010) Microbiology, A Laboratory Manual. 9th edition, Pearson Education Limited.
- 37. Standard methods of Biochemical analysis by Thimaiah
- 38. Practical Biochemistry by Plummer

Microbiology B. Sc. II Semester-IV (CBCS)		
Course Code - USMBT07Paper-IMarks: 50		
Credits: 2	Total Hou	Irs
:48	INDUSTRIAL MICROPIOLOCY	
Ohiective	To make the students to understand the fundamentals of Industrial processe	s and
mechanisr	ns for the product formation.	.5 ana
Unit No.	Content	Hrs
1	Basics of Industrial Microbiology	12
	 Definition, Scope and Development of Industrial Microbiology, Bioreactor / Fermentor (Definition, Characteristics of Ideal, General design and Different parts of typical Fermentor), Application of Computer in fermentation process, Antifoaming agents. Types of Fermentor: Laboratory Fermentor, Batch and Continuous Fermentor with diagram, Single stage and Multiple stage continuous fermentor (in brief). Fermentations: Definition and Types- Batch and Continuous (comparison), Aerobic and Anaerobic, Solid and Liquid state, Surface and Submerged culture, Single, Dual / Multiple culture. 	
2	Fermentation Media and Microbes in Industrial Microbiology	12
	 A) Commonly used raw materials for the fermentation process with composition: Saccharine materials (Cane and beet molasses, fruit juices, cheese whey), Starchy materials (cereals and root tubers), Cellulosic materials (Sulphite waste liquor, wood molasses, agricultural waste- rice straw), Nitrogenous materials (corn steep liquor), Vegetable oils. B) Industrially important microorganisms & their products (List) Screening of industrially important microorganisms: Primary and Secondary screening, Strain improvement, Inoculum build up, Scale up of fermentation process, Tolerance studies. 	
3	Unstream and Downstream Processing	12
	 Upstream process : Definition and different stages in brief Downstream process - Recovery & Purification of fermentation products(brief) Cell mass removal by precipitation, filtration & centrifugation Cell disruption by physical & chemical methods Solvent recovery process Chromatographic separation and industrial product recovery Drying & crystallization, Quality testing of end product. Packaging and marketing of product 	
4	Production of Important Fermentation products	12
	 Industrial production, Fermentation media , Microbes involved, Biochemistry, fermentation conditions, Product recovery operations and Uses of Beverages (Production of Wine, concept of Beer and its types) Organic acid (Citric acid) Antibiotics(Penicillin) Amino acids(Lysine) Enzymes (Amylase) Biomass – Baker's Yeast Fermented food – Idli 	

Microbiology B. Sc. II Semester-IV (CBCS)			
Course Code – USMBT08 Paper-II Mar		S:	
50			
Credits: 2 :48	Total Hou	ırs	
	MICROBIAL GENETICS AND MOLECULAR BIIOLOGY		
Objective of DNA, RN	: To make the students to understand the fundamentals of Microbial genetics and co IA and Protein Synthesis.	oncept	
Unit No.	Content	Hrs	
1	Gene Regulation and Gene Action	12	
	 Concept of Gene- Intron, Exon, Recon, Muton, Cistron-Mono and Polycistron, Structural organization of DNA in cell (Nucleosome Model). Types of Genes – Split gene, Overlapping genes and Pseudo genes, Central dogma of gene action (Brief). Regulation of Gene Expression – Repression, Induction, Positive and Negative Control. Operon Model – Lac operon and trp operon in E.coli Role of SiRNAs and MiRNAs in regulation. 		
2	Mutation and Replication	12	
	 Spontaneous and Induced Mutation, Frequency of Mutation. Types of Mutation - Point mutation (Base substitution), Frameshift mutation, Nonsense mutation, Missense mutation, Silent mutation, Suppressor mutation (Intragenic and Extragenic), Transition and Transversion. Mutagens - Physical and Chemical agents Detection of Mutation - Replica plating technique and Ame's Test Enzymes in DNA replication - DNA helicases, RNA primase, SSB, DNA polymerase and DNA ligase. Mechanism of DNA replication (detail), Modes of replication, DNA damage and repair (NER, BER) 		
3	RNA synthesis, Processing and Translation	12	
	 Transcription - RNA polymerase, sigma factor, pribnow box, mechanism of transcription (detail), reverses transcription. Post transcriptional modification - m-RNA processing, Splicing mechanism - alternate and spliceosome. Genetic codes and its different characteristics. Translation - General features, enzymes and factors involved, mechanism of protein synthesis in bacteria (detail). 		
4	Genetic Recombination	12	
	 Transformation - Competence, Artificially induced competence, Mechanism of bacterial transformation, Griffith Experiment. Transposable Genetic Elements - Insertion sequence and transposon Transduction - U tube experiment, Generalized and specialized transduction, abortive and complete transduction. Conjugation - F factor, F+ cells, F- cells, Hfr cells, F prime cells, Mechanism of conjugation, Sexduction. 		

Practical's B.Sc. II (Semester IV) {Practical's based on Paper -I & II}

Course Code – USMBP04 Total Hours: 48

CREDITS: 2

Marks: 30

- 1. Primary screening of antibiotic producers, amylase producers, and organic acid producers.
- 2. Preparation of fermented food Idli.
- 3. <u>*Production of Penicillin by Fermentation and its Bioassay.</u>
- 4. <u>*Production of Wine by Fermentation and its estimation by Titration.</u>
- 5. <u>*Production of Ethanol by Fermentation and its estimation by Titration.</u>
- 6. <u>Production of Citric acid by Surface/submerged fermentation and its estimation</u> <u>by titration.</u>
- 7. Extraction and Purification of RNA from Yeast.
- 8. Replica Plate method.
- 9. <u>*Isolation of bacterial plasmid DNA</u>
- 10. <u>*Extraction of genomic DNA from E. coli and isolation by Agarose gel</u> <u>electrophoresis</u>
- 11. <u>*Digestion of DNA using restriction enzyme and analysis by agarose gel</u> <u>electrophoresis</u>
- 12. *Ligation of restricted DNA fragment
- 13. Demonstration of Transformation
- 14. Demonstration of Conjugation

Note: i) Minimum 4 major and 4 minor experiments are compulsory

- ii) Underlined experiments are considered to be major experiments
- iii) Experiments with asterisks are compulsory
- iv) Duration of practical examination will be 8 hours i.e. 4 hours each for two Consecutive days

Distribution of marks for practical examination:

Total	30 marks
Practical Record	5 marks
Viva-Voce	5 marks
Two minor experiments $5 \times 2 =$	10 marks
One major experiment	10 marks
-	

Books Recommended for Theory& Practical of B.Sc. II SEM -IV

- 1. Essentials of Molecular Biology by D. Freidfelder
- 2. Molecular Biology of the Gene(5th edition) : By James D Watson
- 3. Microbial Genetics by D. Freidfelder
- 4. Microbial Technology by Vol. I & II by A.H. Peppler.
- 5. Microbial Technology of TCA by A. B. Solunke, V.S. Hamde, P.S. Wakte
- 6. Principles of Genetics by R.H. Tamarin.
- 7. Lodish, et. Molecular cell biology, WH Freeman;2003
- 8. Molecular Biology and Genetic engineering by Narayanan.
- 9. Genes XI, Author- B. Lewin.
- 10. Genome by T.A.Brown
- 11. Measuring Microbiome by Vijay Wadhai & Hariom Powar, Lambert Academic Publishing, Germany
- 12. Fundamentals of Bacterial Genetics by Nancy Trum and J. Trumphy.
- 13. Industrial Microbiology by A.H. Patel
- 14. Industrial Microbiology by Prescott & Dunn.
- 15. Industrial Microbiology, Author- G. Reed.
- 16. Principles of Fermentation Technology- Standbary, Whitaker and Hall.
- 17. Biotechnology, A textbook of industrial Microbiology by Creuger and Creuger, Sinaeur associates.
- 18. Modern Industrial Microbiology & Biotechnology by Nduka Okafoe.
- 19. The Book of Citric Acid by A.B. Solunke
- 20. Industrial Microbiology: An Introduction by Michael J. Waites, Neil Morgan, John S. Rockey and Gary Higton, Blackwell Science Ltd
- 21. Text Book of, Microbial Genetics by P.H.Kumbhare & V.U.Thool Rajani Prakashan, Nagpur
- 22. Biotechnology by P. Prave
- 23. Industrial Microbiology by Casida.
- 24. DNA Chromatography by Doughlas
- 25. Ion Chromatography by J. Weiss
- 26. Encyclopedia of Bioprocessing Technology by M.C. Flickinger & S.W. Drew.
- 27. Microbiology for Analytical Chemists by R.K. Dar
- 28. Practical Fermentation Technology by Brian McNeil, Linda M. Harvey, John Wiley & Sons Ltd.