METHODS OF SOIL ANALYSIS

PART 3

Chemical Methods

Soil Science Society of America Book Series

Books in the series are available from the Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711 USA.

- 1. MINERALS IN SOIL ENVIRONMENTS. Second Edition. 1989. J. B. Dixon and S. B. Weed, *editors* R. C. Dinauer, *managing editor*
- 2. PESTICIDES IN THE SOIL ENVIRONMENT: PROCESSES, IMPACTS, AND MODELING. 1990.
 H. H. Cheng, editor
 S. H. Mickelson, managing editor
- SOIL TESTING AND PLANT ANALYSIS. Third Edition. 1990.
 R. L. Westerman, editor
 S. H. Mickelson, managing editor
- 4. MICRONUTRIENTS IN AGRICULTURE. Second Edition. 1991. J. J. Mortvedt et al., *editors* S. H. Mickelson, *managing editor*
- METHODS OF SOIL ANALYSIS: PHYSICAL AND MINERALOGICAL METHODS. Part 1. Second Edition. 1986. Arnold Klute, editor
 R. C. Dinauer, managing editor

METHODS OF SOIL ANALYSIS: CHEMICAL AND MICROBIOLOGICAL PROPERTIES. Part 2. Second Edition. 1982. A. L. Page et al., *editor* R. C. Dinauer, *managing editor*

METHODS OF SOIL ANALYSIS: CHEMICAL METHODS. Part 3. 1996. D. L. Sparks, editor J. M. Bartels, managing editor

Methods of Soil Analysis

Part 3 Chemical Methods

Editorial Committee: D. L. Sparks A. L. Page P. A. Helmke R. H. Loeppert P. N. Soltanpour M. A. Tabatabai C. T. Johnston M. E. Sumner

Managing Editor: J. M. Bartels

Editor-in-Chief SSSA: J. M. Bigham

Number 5 in the Soil Science Society of America Book Series

Published by: Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA Copyright © 1996 by the Soil Science Society of America, Inc. American Society of Agronomy, Inc.

ALL RIGHTS RESERVED UNDER THE U.S. COPYRIGHT LAW OF 1978 (P. L. 94-553)

Any and all uses beyond the "fair use" provision of the law require written permission from the publishers and/or author(s); not applicable to contributions prepared by officers or employees of the U.S. Government as part of their official duties.

Second printing 1999. Third printing 2001.

Soil Science Society of America, Inc. American Society of Agronomy, Inc. 677 South Segoe Road, Madison, Wisconsin 53711 USA

Library of Congress Cataloging-in-Publication Data

Library of Congress Catalog Card Number: 96-70096

CONTENTS

	Page
Foreword	ix
Preface	xi
Contributors	xiii
Conversion Factors for SI and non-SI Units	xvii

1	Sampling Roger G. Petersen and Lyle D. Calvin	1
2	Quality Assurance and Quality Control E. J. Klesta, Jr. and J. K. Bartz	19
3	Dissolution for Total Elemental Analysis L. R. Hossner	49
4	Atomic Absorption and Flame Emission Spectrometry Robert J. Wright and Tomasz I. Stuczynski	65
5	Inductively Coupled Plasma Emission Spectrometry and Inductively Coupled Plasma-Mass Spectroscopy Parviz N. Soltanpour, Greg W. Johnson, Stephen M. Workman, J. Benton Jones, Jr., and Robert O. Miller	91
6	Neutron Activation Analysis Philip A. Helmke	141
7	Elemental Analysis by X-Ray Fluorescence Spectroscopy A. D. Karathanasis and Ben F. Hajek	161
8	Liquid Chromatography M. A. Tabatabai and W. T. Frankenberger, Jr	225
9	Differential Pulse Voltammetry Larry M. Shuman	247
10	Fourier Transform Infrared and Raman Spectroscopy C. T. Johnston and Y. O. Aochi	269

11	Electron Spin (or Paramagnetic) Resonance Spectroscopy Nicola Senesi	323
12	X-Ray Photoelectron Spectroscopy R. K. Vempati, T. R. Hess, and D. L. Cocke	357
13	X-Ray Absorption Fine Structure Spectroscopy Scott Fendorf and Donald L. Sparks	377
14	Salinity: Electrical Conductivity and Total Dissolved Solids J. D. Rhoades	417
15	Carbonate and Gypsum Richard H. Loeppert and Donald L. Suarez	437
16	Soil pH and Soil Acidity Grant W. Thomas	475
17	Lime Requirement J. Thomas Sims	491
18	Aluminum Paul M. Bertsch and Paul R. Bloom	517
19	Lithium, Sodium, Potassium, Rubidium, and Cesium Philip A. Helmke and Donald L. Sparks	551
20	Beryllium, Magnesium, Calcium, Strontium, and Barium Donald L. Suarez	575
21	Boron R. Keren	603
22	Silicon R. Lewis Jones and Gary B. Dreher	627
23	Iron Richard L. Loeppert and W. P. Inskeep	639
24	Manganese R. P. Gambrell	665
25	Chromium Richmond J. Bartlett and Bruce R. James	683
26	Copper and Zinc Stewart T. Reed and D.C. Martens	703

CONTENTS

27	Molybdenum and Cobalt John L. Sims	723
28	Nickel, Cadmium, and Lead Michael C. Amacher	739
29	Mercury James G. Crock	769
30	Selenium and Arsenic P. M. Huang and Roger Fujii	793
31	Bromine, Chlorine, and Fluorine W. T. Frankenberger, Jr., M. A. Tabatabai, D. C. Adriano, and H. E. Doner	833
32	Phosphorus Shiou Kuo	869
33	Sulfur M. A. Tabatabai	921
34	Total Carbon, Organic Carbon, and Organic Matter Darrell W. Nelson and Lee E. Sommers	961
35	Organic Matter Characterization Roger S. Swift	1011
36	Extraction of Organic Chemicals Brij L. Sawhney	1071
37	Nitrogen—Total John M. Bremner	1085
38	Nitrogen—Inorganic Forms R. L. Mulvaney	1123
39	Nitrogen—Organic Forms F. J. Stevenson	1185
40	Cation Exchange Capacity and Exchange Coefficients Malcolm E. Sumner and William P. Miller	1201
41	Charge Analyses of Soils and Anion Exchange Lucian W. Zelazny, Liming He, and An M. Vanwormhoudt	1231

42	Redox Measurements of Soils W. H. Patrick, Jr., R. P. Gambrell, and S. P. Faulkner	1255
43	Kinetic Methods and Measurements Donald L. Sparks, Theodore H. Carski, Scott E. Fendorf, and Charles V. Toner, IV	1275
44	Equilibrium Modeling in Soil Chemistry S. V. Mattigod and J. M. Zachara	1309

FOREWORD

Analytical methods are the foundation of a scientific discipline. This was recognized by the Soil Science Society of America when an effort was initiated in 1957 to give recognition to the body of analytical methods developed specifically to characterize soil composition and properties. Publication of the first edition of the "Methods of Soil Analysis" in 1965, under the editorship of Dr. C.A. Black, marked a milestone in the development of the field of soil science. Although there existed several books on soil analysis prior to 1965, this publication was the first authoritative treatise collectively authored by soil scientists under the joint sponsorship of the American Society of Agronomy and American Society of Testing and Materials, and published as volumes in the Agronomy Monograph series. The publication quickly became the primary reference book on methods for analyzing many soil physical, chemical, and microbiological properties.

After the Soil Science Society of America created the Book Series, the Boards of Directors of the American Society of Agronomy and Soil Science Society of America reached an agreement in 1993 "to publish all future reprints, revised editions, and new versions of Methods of Soil Analysis and all subsequent parts as part of the SSSA Book Series." The third edition of Methods of Soil Analysis will now have three volumes. The volume covering the microbiological and chemical methods was published in 1995. The current volume will cover the chemical methods, and the volume on physical and mineralogical methods is under preparation. This volume includes coverage of newer methods for characterizing soil chemical properties as well as several methods for characterizing soil chemical provide soil and environmental scientists additional tools to advance our knowledge of soil properties and soil processes.

> H. H. Cheng, president Soil Science Society of America

PREFACE

The second edition of *Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties* was published in 1982. It was edited by A.L. Page, R.H. Miller, and D.R. Keeney. The 2nd edition is recognized as the benchmark reference on chemical and microbiological analyses of soils. It has been used widely by soil scientists and professionals in other fields. More than 11,000 copies have been sold. Due to major advances in analytical equipment and methodology, the desire to include new chapters on analyses of soil chemical processes, and the need to include additional material on microbiological analyses, Part 2 has been divided into two parts and revised. The first book, *Methods of Soil Analysis, Microbiological and Biochemical Properties (Part 2)*, was published in 1995 as SSSA Book Series No. 5. This book, *Methods of Soil Analysis: Chemical Methods*, is Part 3 of SSSA Book Series No. 5.

This book contains 44 chapters, written by 70 authors from throughout the world. A new chapter on quality assurance and quality control is included. Updated chapters are included on the principles of various instrumental methods and their applications to soil analysis. Additionally, new chapters are included on Fourier transform infrared, Raman, electron spin resonance, x-ray photoelectron, and x-ray absorption fine structure spectroscopies. The application of these methods to analyzing soil chemical reactions is currently one of the major research areas in the soil and environmental sciences.

Chapters are included on analyses of soil chemical properties including soil salinity, carbonate and gypsum, soil pH and acidity, lime requirement, cation and anion exchange capacities, and organic matter. Methods for the analyses of soluble, sorbed, and total concentrations of 34 elements are also included. Additionally, these chapters include useful background information on the chemistry of the elements. A new chapter on methods for organic chemical extraction is included.

A new aspect of this book is the addition of procedures for analyzing important soil chemical processes. These include redox and surface charge (points of zero charge) analyses, and kinetic methods and measurements. Chapter 44, the last chapter, discusses equilibrium modeling in soil chemistry.

The editorial committee, that was instrumental in the planning of the book and in the reviewing process, was composed of:

D.L. Sparks, Chairman, University of Delaware, Newark, DE.

A.L. Page, University of California, Riverside, CA.

P.A. Helmke, University of Wisconsin, Madison, WI.

R.H. Loeppert, Texas A&M University, College Station, TX.

P.N. Soltanpour, Colorado State University, Fort Collins, CO.

M.A. Tabatabai, Iowa State University, Ames, IA.

C.T. Johnston, Purdue University, West Lafayette, IN.

M.E. Sumner, University of Georgia, Athens, GA.

The editorial committee expresses its sincerest gratitude to the anonymous reviewers for their careful and thoughtful evaluation of the manuscripts. Many thanks are extended to Jon Bartels of the SSSA Headquarters Staff for his outstanding editorial assistance.

Methods of Soil Analysis: Chemical Properties should be useful not only to students and professionals in soil science, but to those in allied fields such as engineering, chemistry, geosciences, and marine studies, who are increasingly interested in soils.

D.L. Sparks, Editor-in-Chief University of Delaware Newark, Delaware 19717-1303

A.L. Page, Associate Editor University of California, Riverside Riverside, California 92521

P.A. Helmke, Associate Editor University of Wisconsin Madison, Wisconsin 53706-1299

R.H. Loeppert, Associate Editor Texas A&M University College Station, Texas 77843

CONTRIBUTORS

Domy C. Adriano	Professor and Head, Biogeochemical Ecology Division, Savannah River Ecology Laboratory, Drawer E, Aiken SC 29802
Michael C. Amacher	Research Soil Chemist, USDA-FS, Forestry Sciences Laboratory, 850 N. 1200 E., Logan UT 84321
Y. O. Aochi	Staff Research Associate, Department of Soil and Environmental Sciences, University of California, Riverside CA 92521
Richmond J. Bartlett	Professor of Soil and Environmental Chemistry, Department of Plant and Science, Hills Building, University of Vermont, Burlington VT 05405
J. K. Bartz	Chemist, Washington State Department of Ecology, 1315 W. 4th Avenue, Kennewick, WA 99336
Paul M. Bertsch	Professor, Advanced Analytical Center for Environmental Science, University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken SC 29802
Paul R. Bloom	Professor of Soil Science, Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul MN 55108
John M. Bremner	Distinguished Professor Emeritus, Department of Agronomy, Iowa State University, Ames IA 50011-1010
L.D. Calvin	Professor Emeritus of Statistics, Department of Statistics, Oregon State University, Corvallis OR 97331
Theodore H. Carksi	Research Associate/Supervisor, Agricultural Products, Stine-Haskell Research Center, E.I. duPont de Nemours and Company, Building 210N, Room 204, Elkton Road, P.O. Box 30, Newark DE 19714
D.L. Cocke	J.M. Gill Professor of Chemistry, Department of Chemistry, Lamar University, P.O. Box 10022, Beaumont TX 77710
James G. Crock	Analytical Geochemist, Branch of Geochemistry, Analytical Chemis- try Services Group, U.S. Geological Survey, Denver Federal Center, Mail Stop 973, Building 20, Box 25046, Denver CO 80225-6046
Harvey E. Doner	Professor of Soil Chemistry, Division of Ecosystem Sciences, ESPM, University of California, 101 Giannini Hall, Berkeley CA 94720-3110
Gary B. Dreher	Head, Analytical Geochemistry Section, Illinois State Geological Survey, 615 E. Peabody Drive, Champaign IL 61820
S.P. Faulkner	Assistant Professor, Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge LA 70803-7511
Scott Fendorf	Assistant Professor of Soil Science, Soil Science Division, University of Idaho, Moscow ID 83844-2339

W.T. Frankenberger, Jr.	Professor of Soil Microbiology and Biochemistry, Department of Soil and Environmental Sciences, University of California, Riverside CA 92521-0424
Roger Fujii	Research Chemist, Water Resources Division-California District, U.S. Geological Survey, 2800 Cottage Way, Sacramento CA 95825
R.P. Gambrell	Professor, Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge LA 70803-7511
Ben F. Hajek	Professor, Department of Agronomy and Soils, 201 Funchess Hall, Auburn University, Auburn AL 36849
Liming He	Research Assistant, Scripps Institute of Oceanography, University of California, La Jolla CA 92093-0202
Philip A. Helmke	Professor of Soil Science, Department of Soil Science, University of Wisconsin, 1525 Observatory Drive, Madison WI 53706-1299
T. R. Hess	Gill Chair, Department of Chemistry, Lamar University, P.O. Box 10022, Beaumont TX 77710
L. R. Hossner	Professor of Soil Chemistry, Department of Soil and Crop Sciences, Texas A&M University, College Station TX 77843-2474
P. M. Huang	Professor of Soil Science, Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
William P. Inskeep	Professor, Department of Plant, Soil and Environmental Sciences, Montana State University, Bozeman MT 59717
Bruce R. James	Associate Professor of Soil Chemistry, Department of Agronomy, University of Maryland, College Park MD 20742
Greg W. Johnson	Spectroscopist, Matheson Gas Products, 1861 Lefthand Circle Drive, Longmont CO 80501
C.T. Johnston	Associate Professor of Soil Chemistry, Department of Agronomy, Purdue University, 1150 Lilly Hall, West Lafayette IN 47907-1150
J. Benton Jones, Jr.	Vice President, Micro-Macro International, Inc., 183 Paradise Boulevard, Athens GA 30607
R. Lewis Jones	Professor of Soil Mineralogy and Ecology, Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Avenue, Urbana IL 61801
A.D. Karathanasis	Professor of Soil Mineralogy and Pedology, Department of Agronomy, University of Kentucky, N-122 Agricultural Sciences Building North, Lexington KY 40546-0091
Rami Keren	Director, Institute of Soils and Water, The Volcani Center, ARO, P.O. Box 6, Bet Dagan 50250, Israel
E. J. Klesta, Jr.	Director of Technology, Cozz Iron & Metal, Inc., 605 Alexandria Drive, Naperville IL 60565
Shiou Kuo	Soil Scientist, Department of Crop and Soil Sciences, Washington State University, 7612 Pioneer Way E., Puyallup WA 98371-4998
Richard H. Loeppert	Professor, Department of Soil and Crop Sciences, Texas A&M University, College Station TX 77843-2474

CONTRIBUTORS

D. C. Martens	W.G. Wysor Professor of Agriculture and Life Sciences, Department of Soil and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA 24061-0404
S. V. Mattigod	Battelle Pacific Northwest Laboratory, P.O. Box 999, Richland WA 99352
Robert O. Miller	Soil Scientist/Extension Soil Specialist, Department of Land, Air and Water Resources, Hoagland Hall, University of California, Davis CA 95616-8627
William P. Miller	Professor of Soil Science, Department of Crop and Soil Sciences, 3111 Miller Plant Sciences Building, University of Georgia, Athens GA 30602-7503
Richard L. Mulvaney	Professor of Soil Science, Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Avenue, Urbana IL 61801
Darrell W. Nelson	Dean and Director, Agricultural Research Division, 207 Agricultural Hall, University of Nebraska, Lincoln NE 68583-0704
W. H. Patrick, Jr.	Boyd Professor and Director, Wetland Biogeochemistry Institute Louisiana State University, Baton Rouge LA 70803-7511
Roger G. Petersen	Professor Emeritus of Statistics, Department of Statistics, Oregon State University, Corvallis OR 97331
Stewart T. Reed	Assistant Professor of Soil Science, CESTA, 306E South Perry Paige Building, Florida A&M University, Tallahassee FL 32307
J. D. Rhoades	Laboratory Director, USDA-ARS, U.S. Salinity Laboratory, 450 W. Big Springs Road, Riverside CA 92507
Brij L. Sawhney	Soil Chemist, The Connecticut Agricultural Experiment Station, 123 Huntington Street, P.O. Box 1106, New Haven CT 06504
Nicola Senesi	Professor of Soil Chemistry and Director, Istituto di Chimica Agraria, Università di Bari, Via Amendola 165/A, Bari-70126, Italy
Larry M. Shuman	Professor of Soil Chemistry, Department of Crop and Soil Sciences, Georgia Agricultural Experiment Station, University of Georgia, Griffin GA 30223-1797
John L. Sims	Professor Emeritus of Agronomy, Department of Agronomy, N-122 Agricultural Science Building North, University of Kentucky, Lexington KY 40546-0091
J. Thomas Sims	Professor of Soil Science, Department of Plant and Soil Science, 149 Townsend Hall, University of Delaware, Newark DE 19717-1303
Parviz N. Soltanpour	Professor of Soil Science, Department of Soil and Crop Sciences, C117 Plant Sciences Building, Colorado State University, Fort Collins CO 80523
Lee E. Sommers	Professor of Soil Science and Department Head, Department of Soil and Crop Sciences, Colorado State University, Fort Collins CO 80523
Donald L. Sparks	Distinguished Professor of Soil Science, Department of Plant and Soil Sciences, University of Delaware, Newark DE 19717-1303

xvi	li 41 Contributors
Frank J. Stevenson	Professor Emeritus, Department of Agronomy, University of Illinois, 1102 S. Goodwin Avenue, Urbana IL 61801-4798
Tomasz I. Stuczynski	Soil Scientist, Institute of Soil Science and Plant Cultivation, Osada Palacowa, 24-100 Pulawy, Poland
Donald L. Suarez	Research Leader, USDA-ARS, U.S. Salinity Laboratory, 450 W. Big Springs Road, Riverside CA 92507
Malcolm E. Sumner	Regents' Professor of Soil Science, Department of Crop and Soil Sciences, 3111 Miller Plant Sciences Building, University of Georgia, Athens GA 30602
Roger S. Swift	Chief, CSIRO, Division of Soils, PMB 2, Glen Osmond 5064, Australia
M. A. Tabatabai	Professor of Soil Chemistry, Department of Agronomy, Iowa State University, Ames IA 50011-1010
Grant W. Thomas	Professor of Agronomy, Department of Agronomy, University of Kentucky, Lexington KY 40546-0091
Charles V. Toner, IV	Graduate Research Fellow, Department of Plant and Soil Sciences, University of Delaware, Newark DE 19717-1303
An M. Vanwormhoudt	49 Lillibrooke Crescent, Maidenhead, Berkshire SL6 3XJ U.K.
R. K. Vempati	Department of Chemistry, Lamar University, P.O. Box 10022, Beaumont TX 77710
Stephen M. Workman	Technical Manager, Analytical Technologies, Inc., 225 Commerce Drive, Fort Collins CO 80524
Robert J. Wright	Research Soil Scientist, USDA-ARS, Environmental Chemistry Laboratory, Building 007, Room 224, BARC-West, Beltsville MD

J. M. Zachara Chief Scientist, Pacific Northwest Laboratory, P.O. Box 999, Mail Stop K3-61, Richland WA 99352

20705

Lucian W. Zelazny Thomas B. Hutchison, Jr., Professor of Soil Chemistry/Mineralogy, Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg VA 24061-0404

Conversion Factors for SI and non-SI Units

Conversion Factors for SI and non-SI Units			xviii
Column 1 SI Unit	Column 2 non-SI Units	To convert Column 2 into Column 1, multiply by	
Le	ngth		
kilometer, km (10^3 m) meter, m micrometer, µm (10^{-6} m) millimeter, mm (10^{-3} m) nanometer, nm (10^{-9} m)	mile, mi yard, yd foot, ft micron, μ inch, in Angstrom, Å	1.609 0.914 0.304 1.0 25.4 0.1	co
А	rea		NVE
hectare, ha square kilometer, $\text{km}^2 (10^3 \text{ m})^2$ square kilometer, $\text{km}^2 (10^3 \text{ m})^2$ square meter, m^2 square meter, m^2 square millimeter, $\text{mm}^2 (10^{-3} \text{ m})^2$	acre acre square mile, mi ² acre square foot, ft ² square inch, in ²	$\begin{array}{c} 0.405 \\ 4.05 \times 10^{-3} \\ 2.590 \\ 4.05 \times 10^{3} \\ 9.29 \times 10^{-2} \\ 645 \end{array}$	ERSION FACTORS
Vol	lume		5 FOI
cubic meter, m^3 cubic meter, m^3 cubic meter, m^3 liter, L ($10^{-3} m^3$) liter, L ($10^{-3} m^3$)	acre-inch cubic foot, ft ³ cubic inch, in ³ bushel, bu quart (liquid), qt cubic foot, ft ³ gallon ounce (fluid), oz pint (fluid), pt	102.8 2.83×10^{-2} 1.64×10^{-5} 35.24 0.946 28.3 3.78 2.96×10^{-2} 0.473	CONVERSION FACTORS FOR SI AND NON-SI UNITS

Conversion Factors for SI and non-SI Units

To convert Column 1 into Column 2, multiply by

0.621

1.094

3.28

 3.94×10^{-2}

1.0

10

2.47

247

0.386

10.76

35.3

1.057

0.265

33.78

2.11

 2.47×10^{-4}

 1.55×10^{-3}

 9.73×10^{-3}

 6.10×10^{4}

 2.84×10^{-2}

 3.53×10^{-2}

Mass

$\begin{array}{c} 2.20 \times 10^{-3} \\ 3.52 \times 10^{-2} \\ 2.205 \\ 0.01 \\ 1.10 \times 10^{-3} \\ 1.102 \\ 1.102 \end{array}$	gram, g (10^{-3} kg) gram, g (10^{-3} kg) kilogram, kg kilogram, kg kilogram, kg megagram, Mg (tonne) tonne, t	pound, lb ounce (avdp), oz pound, lb quintal (metric), q ton (2000 lb), ton ton (U.S.), ton ton (U.S.), ton	454 28.4 0.454 100 907 0.907 0.907
			0.907
	Yield	and Rate	
$\begin{array}{c} 0.893 \\ 7.77 \times 10^{-2} \\ 1.49 \times 10^{-2} \\ 1.59 \times 10^{-2} \\ 1.86 \times 10^{-2} \\ 0.107 \\ 893 \\ 893 \\ 0.446 \\ 2.24 \end{array}$	kilogram per hectare, kg ha ⁻¹ kilogram per cubic meter, kg m ⁻³ kilogram per hectare, kg ha ⁻¹ kilogram per hectare, kg ha ⁻¹ kilogram per hectare, kg ha ⁻¹ liter per hectare, L ha ⁻¹ tonnes per hectare, t ha ⁻¹ megagram per hectare, Mg ha ⁻¹ megagram per hectare, Mg ha ⁻¹ meter per second, m s ⁻¹	pound per acre, lb $acre^{-1}$ pound per bushel, lb bu^{-1} bushel per acre, 60 lb bushel per acre, 56 lb bushel per acre, 48 lb gallon per acre pound per acre, lb $acre^{-1}$ pound per acre, lb $acre^{-1}$ ton (2000 lb) per acre, ton $acre^{-1}$ mile per hour	1.12 12.87 67.19 62.71 53.75 9.35 1.12×10^{-3} 1.12 $\times 10^{-3}$ 2.24 0.447
	Speci	fic Surface	
10 1000	square meter per kilogram, m ² kg ⁻¹ square meter per kilogram, m ² kg ⁻¹	square centimeter per gram, $cm^2 g^{-1}$ square millimeter per gram, $mm^2 g^{-1}$ ressure	0.1 0.001
9.90 10 1.00 2.09 × 10^{-2} 1.45 × 10^{-4}	megapascal, MPa (10 ⁶ Pa) megapascal, MPa (10 ⁶ Pa) megagram, per cubic meter, Mg m ⁻³ pascal, Pa pascal, Pa	atmosphere bar gram per cubic centimeter, g cm ⁻³ pound per square foot, lb ft ⁻² pound per square inch, lb in ⁻²	$\begin{array}{c} 0.101 \\ 0.1 \\ 1.00 \\ 47.9 \\ 6.90 \times 10^3 \end{array}$

To convert Column 1 into Column 2, multiply by	Column 1 SI Unit	Column 2 non-SI Units	To convert Column 2 into Column 1, multiply by
an a	Ter	nperature	· · · · · · · · · · · · · · · · · · ·
1.00 (K – 273)	Kelvin, K	Celsius, °C	1.00 (°C + 273)
(9/5 °C) + 32	Celsius, °C	Fahrenheit, °F	5/9 (°F – 32)
	Energy, Wor	k, Quantity of Heat	
9.52×10^{-4}	joule, J	British thermal unit, Btu	1.05×10^{3}
0.239	joule, J	calorie, cal	4.19
107	joule, J	erg	10-7
0.735	joule, J	foot-pound	1.36
2.387×10^{-5}	joule per square meter, J m ⁻²	calorie per square centimeter (langley)	4.19×10^{4}
105	newton, N	dyne	10 ⁻⁵
1.43×10^{-3}	watt per square meter, W m ⁻²	calorie per square centimeter minute (irradiance), cal cm ⁻² min ⁻¹	698
	Transpiration	and Photosynthesis	
3.60×10^{-2}	milligram per square meter second, mg m ⁻² s ⁻¹	gram per square decimeter hour, g dm ⁻² h ⁻¹	27.8
5.56×10^{-3}	milligram (H ₂ O) per square meter second, mg m ⁻² s ⁻¹	micromole (H ₂ O) per square centi- meter second, μmol cm ⁻² s ⁻¹	180
10 ⁻⁴	milligram per square meter second, mg m ⁻² s ⁻¹	milligram per square centimeter second, mg cm ⁻² s ⁻¹	104
35.97	milligram per square meter second, mg m ⁻² s ⁻¹	milligram per square decimeter hour, mg dm ⁻² h ⁻¹	2.78×10^{-2}
	Pla	ane Angle	
57.3	radian, rad	degrees (angle), °	1.75×10^{-2}

Conversion Factors for SI and non-SI Units

X

Electrical Conductivity, Electricity, and Magnetism		
siemen per meter, S m^{-1}	millimho per centimeter, mmho cm ⁻¹	0.1
tesla, T	gauss, G	10-4
Water	Measurement	
cubic meter, m ³	acre-inches, acre-in	102.8
	cubic feet per second, ft ³ s ⁻¹	101.9
	U.S. gallons per minute, gal min ⁻¹	0.227
hectare-meters, ha-m	acre-feet, acre-ft	0.123
hectare-meters, ha-m	acre-inches, acre-in	1.03×10^{-2}
hectare-centimeters, ha-cm	acre-feet, acre-ft	12.33
Cone	centrations	
centimole per kilogram, cmol kg ⁻¹	milliequivalents per 100 grams, meq 100 g ⁻¹	1
gram per kilogram, g kg ⁻¹	6	10
milligram per kilogram, mg kg ⁻¹	parts per million, ppm	1
Rac	lioactivity	
becquerel. Ba	curie. Ci	3.7×10^{10}
	picocurie per gram, pCi g ⁻¹	37
		0.01
sievert, Sv (equivalent dose)	rem (roentgen equivalent man)	0.01
Plant Nut	rient Conversion	
Elemental	Oxide	
Р		0.437
		0.830
	CaO	0.715
Mg	MgO	0.602
	siemen per meter, S m ⁻¹ tesla, T Water 1 Cubic meter, m ³ cubic meter per hour, m ³ h ⁻¹ cubic meter per hour, m ³ h ⁻¹ hectare-meters, ha-m hectare-meters, ha-m hectare-centimeters, ha-cm Cond centimole per kilogram, cmol kg ⁻¹ gram per kilogram, g kg ⁻¹ milligram per kilogram, mg kg ⁻¹ Rad becquerel, Bq becquerel per kilogram, Bq kg ⁻¹ gray, Gy (absorbed dose) sievert, Sv (equivalent dose) Sievert, Sv (equivalent dose)	Note to the second permeter of tesla, Tsiemen per meter, S m ⁻¹ millimbo per centimeter, mmho cm ⁻¹ gauss, GWater Measurementcubic meter, m ³ acre-inches, acre-in cubic meter per hour, m ³ h ⁻¹ u.S. gallons per minute, gal min ⁻¹ acre-feet, acre-fi hectare-meters, ha-m hectare-centimeters, ha-m hectare-centimeters, ha-m hectare-centimeters, ha-m hectare-centimeters, ha-m hectare-meters, ha-m hectare-meters, ha-m hectare-meters, ha-m hectare-meters, ha-m hectare-meters, ha-m hectare-meters, ha-m hectare-meters, ha-m hectare-centimeters, ha-m hectare-centimeters, ha-m hectare-centimeters, ha-m hectare-meters, ha-m

XX.

SSSA BOOK SERIES: 5

Methods of Soil Analysis Part 3—Chemical Methods

SALINITY, ELECTRICAL CONDUCTIVITY & DISSOLVED SOLIDS

419

concentrations of individual inorganic solutes (i.e., Na⁺, Ca²⁺, Mg²⁺, K⁺, Cl⁺, SO_4^{2-} , HCO_3^{-} , NO_3^{-} , CO_3^{2-} , H_3BO_3 , etc.) in waters and soil extracts in common use in laboratories having modern instrumentation are described elsewhere in this publication. Analogous methodology suited to laboratories without such conveniences are given in an earlier publication (see Bower & Wilcox, 1965).

SATURATION AND OTHER AQUEOUS EXTRACTS

Principles

Because present methods of obtaining soil water samples at typical field water contents are not very practical, aqueous extracts of the soil samples are usually made at higher than normal water contents for routine soil salinity diagnosis and characterization purposes. Because the absolute and relative amounts of the various solutes are influenced by the soil/water ratio at which the extract is made (Reitemeier, 1946), the soil/water ratio used to obtain the extract should be standardized to obtain results that can be applied and reasonably interpreted generally. Soil salinity is most generally defined and measured on aqueous extracts of so-called, saturated soil-pastes (U.S. Salinity Laboratory Staff, 1954). This water content (and water/soil ratio) varies with soil texture but is used because it is the lowest one for most soils for which sufficient extract can be practically removed from a soil sample for the compositional analysis of major constituents and because it is better related to soil-water contents under field conditions. For these same reasons, crop-tolerance to salinity also is expressed in terms of the EC of the saturation extract (EC_e, Mass & Hoffman, 1977; Maas, 1986, 1990).

Apparatus

- 1. Plastic containers with snaptight lids of 250-mL capacity or greater.
- 2. Vacuum line, suction apparatus (Richards filter funnel², Buchner funnel, or commercial vacuum manifold) filter paper (medium grade, such as Whatman no. 50) and sample bottles [28.4 g (1 oz.) or larger, to collect and store extracts] with sealable caps.
- 3. Balance or scale accurate to at least 1 g.
- 4. Extraction bottles for soil suspensions.
- 5. Mechanical shaker.

Graveel (1986); a simple field-pressure filtration method by Ross and Bartlett (1990); adsorption techniques by Shimshi (1966) and by Tadros and McGarity (1976) and centrifugation techniques by Davies and Davies (1963), Yamasuki and Kishita (1972), Gilman (1976), Dao and Lavy (1978), Kinniburgh and Miles (1983) and Elkhatib et al. (1987). Comparisons of the various methods have been made by Adams et al. (1980); Kittrick (1983); Wolt and Graveel (1986); Menzies and Bell (1988) and Ross and Bartlett (1990). The different suction-type samplers and other methods for sampling soil solution and various errors associated with them have been critically reviewed by Rhoades (1978), Rhoades and Oster (1986), Litaor (1988) and Grossman and Udluft (1991).

² Richards, L.A. (1949).

Reagent

1. Sodium hexametaphosphate [(NaPO₃)₆] solution, 0.1%. Dissolve 0.1 g of (NaPO₃)₆ in water, and dilute the solution to 100 mL.

Procedure

Saturation Extract

Weigh 200 to 400 g of air-dry soil of known water content into a tared plastic container having a snaptight lid. Weigh the container plus contents. Add distilled water to the soil with stirring until it is nearly saturated. Allow the mixture to stand covered for several hours to permit the soil to imbibe the water and the readily soluble salts to dissolve, and then add more water with stirring to achieve a uniformly saturated soil-water paste. At this point, which is generally reproducible to within ±5%, the soil paste glistens as it reflects light, flows slightly when the container is tipped, slides freely and cleanly off a smooth spatula, and consolidates easily by tapping or jarring the container after a trench is formed in the paste with the side of the spatula. After mixing, allow the sample to stand (preferably for another 2 h), and then recheck the criteria for saturation. Free water should not collect on the soil surface, nor should the paste stiffen markedly or lose its glisten. If the paste is too wet, add additional dry soil of known amount (weight) to the paste mixture. Upon attainment of saturation, weigh the container plus contents. Record the increase in weight due to the amount of water added. Transfer the saturated soil paste to a filter funnel fitted with highly retentive filter paper. Apply vacuum, and collect the filtrate in a test tube or bottle. If the initial filtrate is turbid, refilter or discard it. Terminate the filtration when air begins to pass through the filter. Add 1 drop of 0.1% (NaPO₃)₆ solution for each 25 mL of extract.

Extracts of Soil/Water Ratios of One:One and One:Five

Weigh a sample of air-dry soil of appropriate size, and transfer it to a flask or bottle. Add the required amount of distilled water (an equal weight for a 1:1 extract, 5 times the weight for a 1:5 extract), stopper the container, and shake it in a mechanical shaker for 1 h. If a mechanical shaker is not available, shake the container vigorously by hand for 1 min at least four times at 30-min intervals. Filter the suspension using highly retentive filter paper. (Discard or refilter the initial filtrate if it is turbid.) Add 0.1% (NaPO₃)₆ solution at the rate of 1 drop/25 mL of extract.

Calculations

Calculate the saturation water percentage (SP) of the saturated paste from the weight of oven-dry soil (W_s) and the weight of water (W) added (W_w) , including that initially present in the soil sample as,

$$SP = 100 \cdot W_{\rm w}/W_{\rm s}.$$
 [1]

420

0

Comments

421

The extraction ratios (1:1, 1:5, etc.) are easier to make than that of saturation, but they are less well related to field soil water composition and content. More importantly, salinity and compositional errors from dispersion, hydrolysis, cation exchange, and mineral dissolution increase as the water/soil ratio increases (Reitemeier, 1946). As a compromise, Sonnevelt and van den Ende (1971) recommended a 1:2 (1 part soil = 2 parts water) volume extract, since it is closer to the saturation extract ratio but quicker to make. When relative changes rather than absolute solute concentrations are needed, these wider extraction ratios have the advantages of speed and greater volume.

The EC of extracts of gypsiferous soils decreases less, as the water/soil ratio increases, due to the dissolution of gypsum. This gypsum dissolution exaggerates the concentration of soluble salts present in the soil at lower water contents, especially those existing under field conditions.

Soil samples should not be oven-dried before extracting for determination of soluble salts, because heating to 105° C converts at least a part of the gypsum (CaSO₄ • 2 H₂O) to plaster of paris (CaSO₄ • 1/2 H₂O). The latter hydrate has a higher solubility in water than does the former. The solubilities of other salts and minerals also may be affected.

The weight of soil required will depend on the number and kind of determinations to be made on the extract, the analytical methods employed, and the salt content of the soil. In general, from one-fourth to one-third of the water in saturated soil pastes can be practically removed by vacuum filtration.

In determinations of extract water contents, especially when a high ratio of soil to water is used, it is desirable to correct for the water content of the soil sample. For example, an air-dry sample containing 2% water on an oven-dry basis can be adjusted to a soil/water ratio of 1:1 by adding 98 mL of water to 102 g of air-dry soil. At soil/water ratios of 1:5 or greater, no correction is ordinarily made for water in the air-dry sample.

Special precautions should be taken in preparing a saturated soil paste with peat and muck soils or very fine or very coarse-textured soils (Prichard et al., 1983). If possible, peat and muck soils should not be allowed to dry appreciably following collection because their saturation water content changes with dehydration. Peat and muck, especially if coarse or woody, require an overnight imbibition period to obtain a definite endpoint for the saturation point. After the first wetting, pastes of these soils usually stiffen upon standing. Adding water and remixing then yields a mixture that usually retains the characteristics of a saturated paste. With fine-textured soils, enough water should be added immediately, with a minimum of mixing, to bring the sample nearly to saturation. This minimizes the formation of clumps of soil during stirring, speeds the mixing process, and helps attain a more definite endpoint. Care also should be taken not to unduly overwet coarse-textured soils. The presence of free water on the surface of the paste after standing is an indication of oversaturation in the case of coarse-textured soils. Even small amounts of free water can lead to appreciable errors in saturation paste water contents for these materials. However, the effect on the value of the EC of the extract (EC_c) is small and usually does not significantly affect salinity diagnoses.

Sodium hexametaphosphate is added to the extract to prevent the precipitation of $CaCO_3$ from the extract upon standing. The quantity of $(NaPO_3)_6$ solution added increases the Na concentration about 0.5 ppm, or 0.02 mmol_c/L, which is inconsequential compared with the possible loss of $CaCO_3$. Alternatively, a subsample of the extract should be analyzed immediately or immediately diluted twofold and used for the Ca and alkalinity determinations.

Alternative methods of preparing the saturated soil paste have been described by Longenecker and Lyerly (1964), who proposed wetting the soil sample on a capillary saturation table, by Beatty and Loveday (1974) and Loveday (1972), who recommended predetermining the amount of water at saturation on a separate soil sample using a capillary wetting technique, and by Allison (1973), who recommended slowly adding soil to water (oversaturation method). Similar results are obtained with these methods. The choice of method is primarily one of personal preference.

Thymol can be added to the paste to minimize the effect of microbial activity on saturation extract composition during equilibration (Carlson et al., 1971). The extracts should be stored at about 4°C until analyzed.

ELECTRICAL CONDUCTIVITY OF WATERS AND AQUEOUS EXTRACTS

Principles

Electrical conductivity is a numerical expression of the ability of an aqueous solution to carry an electric current. It is generally related to the total solute concentration and can be used as a quantitative expression of dissolved salt concentration, even though it is also affected by the mobilities, valences and relative concentrations of the individual ions present in the solution.

The determination of EC generally involves the physical measurement of resistance (R) in ohms. The R of a conducting material (such as a saline solution) is inversely proportional to its cross-sectional area (A) and directly proportional to its length (L). The magnitude of the R measured therefore depends on the characteristics (dimensions and spacings) of the conductivity cell and electrodes. Specific resistance (R_s) is the R of a cube of the sample 1 cm on edge. Practical conductivity electrodes are not of this dimension and measure only a given fraction of the specific R; this fraction (R/R_s) is commonly referred to as the cell constant (K).

The reciprocal of R is conductance (C). It is expressed in reciprocal ohms, or mhos. When the cell constant is applied, the measured conductance at a specified temperature is converted to specific C, the reciprocal of the specific R (herein called EC)

 $EC = \frac{1}{R_{\star}} = K/R.$

422

[2]

II_41