Meta-Analytic Approaches to Using Historical Data in Clinical Trials

Bayes Pharma, 11 June 2014, London

Beat Neuenschwander, Head Statistical Methodology Oncology, Biometrics and Data Management Novartis Pharma AG, Basel

> Joint work with: Heinz Schmidli, Satrajit Roychoudhury (Novartis) Sandro Gsteiger (University of Bern) Tony O'Hagan (Sheffiled University) David Spiegelhalter (Cambridge University)

Outline

Introduction with Examples

- Overview of Approaches
- Meta-Analytic Approaches
 - Meta-Combined and Meta-Analytic-Predictive Approach
 - Prior Effective Sample Size
 - Robustness
- More on Meta-Analytic-Predictive (MAP) Priors

INOVARTIS

Conclusions

Introduction with Examples

1. Introduction and Examples Informed Decision Making

- Informed decisions should be based on all relevant information
- In particular, when
 - information is sparse
 - new information is difficult to obtain
- Contextual or complementary data are often available

1. Introduction and Examples Historical Data

- These data often referred too as «historical data»
 - But they may be come from a parallel experiment
 - Or, from data in the same experiment.
 E.g., in a clinical trial, from a similar subgroup
- Considering historical and current data is an example of evidence synthesis
- Various aspects to consider
 - methodological and practical issues and challenges

INOVARTIS

pros and cons

1. Introduction and Examples Use of Historical Data: Pros & Cons

Pros

- Design: historical data are always used
 - This information puts the current experiment into perspective
 - For example: information about variability and expected effect sizsed drives sample size calculations
- Analysis: historical data are rarely used. However, these data can improve the inference for key parameters

- adjusted estimates (safeguard against extremes)
- better precision

1. Introduction and Examples Use of Historical Data: Pros & Cons

Cons

- What is relevant historical data?
 - Requires judgment about similarity of historical and current setting
 - Requires interaction between subject matter experts
- How to incorporate historical data?
 - Requires a statistically principled approach
- How much is the historical data worth?
- What if historical data and actual data are in conflict?
 - Requires careful evaluation of the reasons
 - Problem can be mitigated by using a robust statistical approach

1. Introduction and Examples Clinical Trials

- Use of historical data is attractive
 - Smaller sample sizes: e.g., smaller placebo group
 - More ethical (less placebo patients), or more scientific trials (learn more about new treatment)
 - Decreased costs and trial duration
- Historical data: various formats, e.g.
 - for control group only (our focus)
 - for effect parameter (mean difference, risk-ratio,...)

INOVARTIS

aggregate and/or individual data

1. Introduction and Examples Novartis Experience

Use of historical data

• In all phase I oncology trials (to inform prior distributions)

- In a substantial percentage of phase II trials
- In special cases (e.g. non-inferiority trials)
- Experience overall positive
- However, there are challenges
 - Practical: drug development is highly regulated (company internal and external standards)
 - Practical: more time needed for study design
 - Methodological: innovative statistics

- Phase IV transplantation trial
- Binary outcome: treatment failure
- New treatment (T) vs. standard of care (C)
- Standard design: requires 450 patents per arm
- Historical data
 - 930 historical controls from 11 internal trials
 - Can these data be used to make control arm smaller?

INOVARTIS

• See N et al. 2010

Example 1 *Phase IV Trial: Control Data from 11 Historical Trials*

Example 2 Phase II Design

- Phase II Trial in Ulcerative Colitis
- Outcome: clinical remission at week 8
- Placebo data from 4 external trials (363 historical controls) of similar design

Source	r/n	%
VanAssche (2007)	6/56	10.7
Feagan (2005)	9/63	14.3
Rutgeerts et al. I (2005)	18/121	14.9
Rutgeerts et al. II (2005)	7/123	5.7
Total	40/363	11.0

• Western (on-going) first-in-human study

- Objective: determine the maximum tolerated dose (MTD)
- Endpoint: frequency of dose-limiting toxicity (DLT)
- Phase I study in Japan to find Japanese MTD
 - Often, no ethnic differences
 - For Japanese trial, can we make use of Western data?

Dose	100	200	400	800	1500	3000	TOTAL
# Patients	5	6	5	9	8	4	37
# DLT	0	0	0	0	1	3	4

Tentative Western MTD

Overview of Approaches

14 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

2. Overview of Approaches Find Relevant Historical Data

- Ist step: idenfity relevant historical data
 - Systematic Reviews methodology
 - E.g. Cochrane Handbook (Higgins and Green 2011)
 - Pocock's (1976) criteria
 - Inclusion/exclusion criteria for patient population
 - Type of study design
 - Exact definition of the outcome
 - Quality of study execution and management;
 - Potential biases due to time trends
 - Requires cross-functional expertise
 - A psychological barrier for many statisticians
 - May not lead to a unique set of trials (\rightarrow sensitivity analyses)

2. Overview of Approaches Basic Notation

Index for

- Historical data from H trials:
- Current/new trial:
- Data
 - Historical: Y₁,...Y_H Current: Y_{*}

1,...H

*

- Parameters
 - Historical: $\theta_1, \dots, \theta_H$ Current: θ_*
 - Use of historical data requires an assumption of similarity: formally expressed by parameter model for

$\theta_1, ..., \theta_H, \theta_*$

2. Overview of Approaches Approaches

- Original work in pre-clinical applications (1970s)
- The main approaches are
 - 1. Pocock's approach (bias model)
 - 2. Ibrahim & Chen Power Priors
 - 3. Meta-Analytic approaches (hierarchical models)
 - Approaches 1-3
 - Are conceptually and mathematically similar
 - Discount the historical data; see Spiegelhalter et al. 2004

2. Overview of Approaches Pocock (1976)

Differences between new and historical trial

$$\delta_{h} = \theta_{*} - \theta_{h}$$
 (h=1,...,H)

Assumption: no systematic biases
 This requires careful selection of historical data

$$\delta_h \sim N(0, \tau_{\delta}^2)$$

The above model can be extended, but this requires additional assumptions

- Bias assumptions $\rightarrow \delta_h$ not centered at 0
- Historical trials of different quality \rightarrow different τ_{δ}
 - e.g., larger for observational, smaller for randomized controlled trials

2. Overview of Approaches *Power Priors (Ibrahim and Chen 2000)*

- Prior for θ_{*}
 - For one historical trial:

 $p(\theta_*|Y_1) \propto L(\theta_*|Y_1)^a \times \pi_0(\theta_*)$

- Accounts for historical data via discounted likelihood
- $a \in [0,1]$ determines the amount of discounting
 - a = 1: pooling of historical and new data; a = 0: no borrowing
- Notes:
 - $\pi_0(\theta_*)$, a default non-informative prior
 - No formal model for θ_1 (historical) and θ_* (but see slides 20-21)

NOVARTIS

- Extension to more trials: power parameters a1,...,aH

2. Overview of Approaches Power Priors: Two Versions

Fixed a

- Discounting does not depend on how similar historical and new data are
- What about unknown $a (=\alpha)?$
 - Prior on α ?

$$\mathsf{p}(\theta_{\star}, \alpha \mid \mathsf{Y}_{1}) \propto \mathsf{L}(\theta_{\star} \mid \mathsf{Y}_{1})^{\alpha} \times \pi(\alpha) \times \pi_{0}(\theta_{\star})$$

- This is not correct:
 - $L(\theta_*|Y_1)^{\alpha}$, conditional prior of θ_* given α ; $\pi(\alpha)$ marginal prior of α
 - Normalizing constant on right-hand side depends on unknown α
 - Derivation of normalizing constant can be difficult
 - See Duan et al. 2006, N et al. 2009

2. Overview of Approaches Power Priors: Unknown Power Parameter

- Simple Example: one trial with binary data
 - Uniform prior for power parameter α
 - Historical data: x₀ responders, y₀ non-responders, n₀=x₀+y₀
 - New data: x responders, y non-responders, n=x+y
 - Power priors
 - Original: $\propto \theta^{\alpha x 0} (1-\theta)^{\alpha y 0}$
 - Normalized: = $\Gamma(\alpha n_0 + 2) \Gamma^{-1}(\alpha x_0 + 1) \Gamma^{-1}(\alpha y_0 + 1) \theta^{\alpha x 0} (1 \theta)^{\alpha y 0}$
 - Data: historical x₀/n₀=20/100, new x/n=20/100
 - α posterior from original prior: 0.02 (0.00,0.07)_{95%} ???
 - α posterior from normalized prior: 0.57 (0.07,0.98)_{95%}

2. Overview of Approaches Hierarchical Modeling Approaches

 Data (within trials) suggests a hierarchical model that allows for between-trial heterogeneity

•
$$\theta_1, \dots, \theta_C, \theta_* \sim \mathsf{N}(\mu, \tau^2)$$

- For normal-normal hierarchical model (see later slides), there is a 1-1 mapping between τ and *a* (power parameter)
- Historical data: n observations with standard deviation σ (known)

•
$$\theta_1 = \ldots = \theta_C = \mu$$
, $\theta_* \sim N(\mu, \tau^2)$

- Commensurate prior approach (Hobbs et al. 2011,2013)
- Note:
 - for one historical trial, the above approaches are equivalent

$$a = \frac{1}{1 + 2n\tau^2/\sigma^2}$$

2. Overview of Approaches

1-1 Relationship: Power Parameter a vs. Between-Trial sd τ

- Example
 - Normal data (known standard deviation σ)
 - Hierarchical model (between trial sd τ)
- Power parameter a (%) as a function of
 - historical sample size n (one trial)
 - between trial-heterogeneity (σ^2/τ^2 , see N et al 2010)

	large (4)	substantial (16)	moderate (64)	small (256)
n=25	7.0	20.0	60	80
n=50	4.0	10.0	40	70
n=100	2.0	7.0	20	60
n=250	0.8	3.0	10	30
n=500	0.4	2.0	6	20
n=1000	0.2	0.8	3	10

- For moderate between-trial sd: historical data are worth
 - 20 subjects if n=100 (a=0.20),
 - 30 subjects if n=1000 (a=0.03)

Meta-Analytic Approaches

24 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

3. Meta-Analytic Approaches Framework

Meta-Analytic Approach

- uses a data model Y| θ , and a parameter model (?)
- infers the parameter of interest θ_*
 - at the end of the new trial (with Y_*),
 - or, at the design stage (without Y_*) \rightarrow prior of θ_*

3. Meta-Analytic Approaches *Retrospective or Prospective Use of Historical Data*

- Two MA approaches
 - Meta-Analytic-Combined (MAC) is retrospective
 - Perform a meta-analysis of historical data and current trial data
 - Parameter of interest: the parameter in the actual trial

 $\boldsymbol{\theta}_{*} \mid \boldsymbol{Y}_{1}, \dots \boldsymbol{Y}_{H}, \boldsymbol{Y}_{*}$

Meta-Analytic-Predictive (MAP) is prospective

1) At design stage of current trial: Perform MA of historical data data and obtain distribution of θ_{\star}

MAP Prior: $\theta_* | Y_1, \dots Y_H$

2) Combine MAP prior with current trial data Y_{\star} (Bayesian analysis)

3. Meta-Analytic Approaches MAC or MAP?

Meta-Analytic-Combined (MAC)

- No prior for θ^* required at design stage
- Only one analysis required, can be (non-)Bayesian

Meta-Analytic-Predictive (MAP)

• Historical information about θ^* is explicitely stated at design stage

INOVARTIS

- Historical data can then be ignored
- Fully Bayesian analysis required

• MAC or MAP ? Which one is better?

3. Meta-Analytic Approaches MAC and MAP Are Equivalent

- For a hierarchical model, MAC and MAP are equivalent
 - HM \rightarrow data conditionally independent given parameters
 - That is: $Y_h \mid \theta_1, \dots, \theta_h, \dots \theta_H$, $\theta_* = Y_h \mid \theta_h$
 - Proof:

$$p(\theta_{\star}|Y_{\star}, Y_{\mathcal{J}}) \propto p(\theta_{\star}, \theta_{\mathcal{J}}|Y_{\star}, Y_{\mathcal{J}})$$

$$\propto p(Y_{\star}, Y_{\mathcal{J}}|\theta_{\star}, \theta_{\mathcal{J}}) \times p(\theta_{\star}, \theta_{\mathcal{J}})$$

$$= p(Y_{\star}|\theta_{\star}) \times p(Y_{\mathcal{J}}|\theta_{\mathcal{J}}) \times p(\theta_{\star}, \theta_{\mathcal{J}})$$

$$\propto p(Y_{\star}|\theta_{\star}) \times p(\theta_{\star}, \theta_{\mathcal{J}}|Y_{\mathcal{J}})$$

$$\propto p(Y_{\star}|\theta_{\star}) \times p(\theta_{\star}|Y_{\mathcal{J}})$$

3. Meta-Analytic Approaches Normal-Normal Hierarchical Model (NNHM)

NNHM, very popular model

Sampling model

$$Y_{h} | \theta_{h} \sim N(\theta_{h}, s_{h}^{2}) \qquad h = 1,...,H, *$$

Parameter model

$$θ_h \mid μ, τ \sim N(μ, τ^2)$$
 h = 1,...,H, *

- Inference: for 0.
 - Challenge: what is τ ? (in particular if H is small)
 - Classical: various ways to estimate τ
 - Bayesian: priors on μ (often flat) and τ (contextual)

3. Meta-Analytic Approaches Inference for **known** τ (with improper prior for μ)

Basic formulas for fixed τ : Classical and Bayesian results are the same

Meta-analytic weights Inference for μ $w_h = 1/(s_h^2 + \tau^2)$ $\hat{\mu} = \sum_i w_h Y_h / \sum_i w_h, \quad Var(\hat{\mu}) = 1/\sum_i w_h$ Shrinkage factors Inference for θ_h $B_h = s_h^2 / (s_h^2 + \tau^2) \qquad \hat{\theta}_h = B_h \hat{\mu} + (1 - B_h) Y_h, \quad Var(\hat{\theta}_h) = B_h (\tau^2 + B_h Var(\hat{\mu}))$

Inference for new parameter θ^*

$$\hat{\theta}^{\star} = \hat{\mu}, \quad Var(\hat{\theta}^{\star}) = \tau^2 + Var(\hat{\mu})$$

Special casel: 1 historical trial: $\hat{\theta}^{\star} = Y_1$, $Var(\hat{\theta}^{\star}) = s_1^2 + 2\tau^2$

3. Meta-Analytic Approaches *Unknown τ*

- Discounting of historical data depends on τ
- For small number of trials
 - Classical
 - The various estimates can differ substantially
 - It is unclear how to adjust for estimation uncertainty
 - Proposal: for θ_* , t distribution with H-2 df (Higgins et al. 2009)

- Bayesian
 - Conclusions can be sensitive to the prior
 - Judgment required about plausible values for $\boldsymbol{\tau}$

3. Meta-Analytic Approaches *τ-Priors. Spiegelhalter et al. 2004, Gelman 2006*

Various priors for τ

- Uniform, inverse-sqrt-gamma, Half-Normal, Half-Cauchy...
- Recommendation: use prior that puts
 - most of its mass to values that represent plausible heterogeneity
 - remaining probability to unanticipated heterogeneity (e.g. large)
- Example: binary data, parameter = logit(p)
 - τ = 2 (1) correspond to very large (large) heterogeneity
 - Half-Normal priors (Spiegelhalter et al. 2004)

 $\tau \sim \text{Half-Normal(scale=1.0)} \rightarrow \text{Pr}(\tau < 2) \approx 0.95$

$\tau \sim \text{Half-Normal(scale=0.5)} \rightarrow \text{Pr}(\tau < 1) \approx 0.95$

3. Meta-Analytic Approaches *Prior Effective Sample Size (ESS)*

Idea:

- express prior as an equivalent number of subjects
- the prior effective sample size (ESS)
- What we know from conjugate analyses:
 - Binomial(n,p) data, Beta(a,b) prior
 - Prior ESS: $n_0 = a+b$
 - Posterior mean is a weighted average of prior mean and sample mean (with weights n_0 and n)
 - Similar results for normal, Poisson, exponential data, ...

3. Meta-Analytic Approaches Approximating ESS

- More generally: ESS for MAP prior 0* Y₁,...,Y_H
 - Approximate prior effective sample size n.
 - Idea: sample sizes are (approximately) proportional to precisions
 - Under completeley homogeneous trials, $\tau = 0$

 \Rightarrow **n**_{*} = **N** = Σ_h **n**_h = total # of historical subjects

 \Rightarrow Var_{t=0}($\theta_* \mid Y_1, ..., Y_H$) is proportional to 1/N

- If $\tau > 0$ (reality!) $\Rightarrow \text{Var}_{\tau > 0}(\theta_* \mid Y_1, ..., Y_H)$ is proportional to $1/n_*$

$$n_* = \frac{\operatorname{Var}_{\tau=0}(\theta_* \mid Y_1, \dots, Y_H)}{\operatorname{Var}_{\tau>0}(\theta_* \mid Y_1, \dots, Y_H)} \times N$$

- More general approach to ESS, see Morita et al. (2008, 2012)

3. Meta-Analytic Approaches Prior ESS for Example 1

- 11 historical trials with N=930 patients
- Between-trial sd τ Historical trials on log-odds scale 0.17 (0.01, 0.50)_{95%}
- 0.17: small/moderate

Results for log-odds θ_*

- Pooled: -1.27 (0.080)
- MAP: -1.29 (0.253)

 Prior ESS n* = 930×(0.08/0.253)² = 93

Probability of treatment failure

3. Meta-Analytic Approaches *Prior ESS for Example 2*

- 4 historical trials with N=363 patients
- Between-trial sd τ on log-odds scale
 0.41 (0.03, 1.39)_{95%}
- 0.41: substantial

Results for log-odds θ_{\star}

- Pooled: -2.01 (0.169)
- MAP: -2.08 (0.690)
- Prior ESS n* = 363×(0.169/0.690)²
 = 22

36 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

3. Meta-Analytic Approaches *Robust Meta-Analytic Priors*

Similarity Scenario (\rightarrow MAP prior)

Dissimilarity Scenario

NOVARTIS

- Conflict between historical data and actual data
 - Similarity of parameters is violated
 - Solution: robust priors (O'Hagan 1979); heavy-tailed (t or mixture)
- Robustifed MAP prior

 $w \times (MAP-prior) + (1-w) \times (weakly-informative prior)$

3. Meta-Analytic Approaches *Example 3: Robust MAP Priors*

• Western (on-going) first-in-human study

- Objective: determine the maximum tolerated dose (MTD)
- Endpoint: frequency of dose-limiting toxicity (DLT)
- Phase I study in Japan to find Japanese MTD
 - Often, no ethnic differences
 - For Japanese trial, can we use of Western data?

Dose	100	200	400	800	1500	3000	TOTAL
# Patients	5	6	5	9	8	4	37
# DLT	0	0	0	0	1	3	4
Tentative MTD							

3. Meta-Analytic Approaches **Example 3: MAP Prior for Similarity Scenario**

- Model: logistic regression, with bivariate-normal prior for (α,β)
- Left: posterior from Western data
- Right: posterior from Western data (dotted line), MAP prior for Japan (solid line), under substantial heterogeneity

3. Meta-Analytic Approaches *Example 3: Weakly-Inf Prior for Dissimilarity Scenario*

But what if ...

- There are relevant ethnic differences
- Better: to use weakly-informative prior (Figure)

3. Meta-Analytic Approaches *Example 3: Robustification (Mixture Prior)*

Mixture prior for the two scenarios, with the weights

90% for similarity scenario, 10% for dissimilarity scenario

3. Meta-Analytic Approaches *Example 3: Two Data Scenarios*

Design properties

- Assess operating characteristics
- Assess data scenarios that may arise in the trial

Dose	100	200	400	800	1200	1500	3000		
Western Data									
#DLT/#Pts	0/5	0/6	0/5	0/9		1/8	3/4		
	Japan: scenario 1 (similarity)								
			0/3	0/3	0/3	1/3			
Japan: scenario 2 (dissimilarity)									
			0/3	2/3					

3. Meta-Analytic Approaches *Example 3: Posteriors for Two Data Scenarios*

Similarity scenario

- Less uncertainty compared to prior
- Recommendation: retest at 1500
- Good borrowing from Western data

Dissimilarity scenario

- More uncertainty compared to prior
- Recommendation: de-escalate to 400
- Good robustness

More on MAP Priors

44 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

4. More on MAP Priors Example 2 Revisited

(density plot from MCMC sample)

4. More on MAP Priors *Approximating the MAP Prior*

MAP prior

 Not available analytically (just MCMC sample), but can be well approximated by mixture of conjugate priors

Dallal and Hall (1983), Diaconis and Ylvisaker (1985)

- Mixture of conjugate priors. Advantages
 - Easy communication: discussions with clinical trial team, health authorities, ethics commitees, study protocols, publications
 - Analytical posterior calculation
 → fast operating characteristics

4. More on MAP Priors *Example 2: MAP Prior approximated by single Beta*

4. More on MAP Priors *Example 2: MAP Prior approximated by 3-comp Beta Mixture*

4. More on MAP Priors Robustness

Prior-data conflict

- Conjugate priors: fixed prior-data compromise
- *Heavy-tailed priors* : prior discarded under conflict O'Hagan (1979), O'Hagan and Pericchi (2012)

MAP priors

- Typically heavy-tailed, hence naturally robust
- Further robustness and more rapid adaptation to priordata conflict by adding weakly-informative component:

 $w \times MAP + (1-w) \times Uniform$ e.g. w = 0.9 or 0.5

4. More on MAP Priors *Non-Robustness of Conjugate Prior*

"Bayesian - One who, vaguely expecting a horse and catching a glimpse of a donkey, strongly concludes he has seen a mule". Stephen Senn

4. More on MAP Priors *Robustness of MAP Prior*

- MAP = 0.53 Beta(2.5,19.1)+0.38 Beta(14.6,120.2)+0.08 Beta(0.9,2.8)
- Robust MAP = $0.9 \times MAP + 0.1 \times Beta(1,1)$

4. More on MAP Priors *Estimates for Simple Conjugate and Robust MAP Prior*

4. More on MAP Priors *Operating Characteristics (OC): Summary*

Frequentist properties (OC) for robust MAP priors

- Estimation:
 - Bias well-controlled
 - MSE: better for MAP priors compared to weakly-informative priors if prior is well-specified
- Testing
 - Success criterion = 1- α posterior probability for $\delta = \theta_T \theta_* > 0$
 - Type-I error: some inflation (or deflation), but fairly well controlled

INOVARTIS

- Power: gain in power compared to weakly-informative prior

4. More on MAP Priors *Operating Characteristics (Estimation): Two Designs*

Compare Control vs. Test

- Control vs. treatment effect: $\delta = \theta_T \theta_*$
- Control prior worth n* patients:

$$\theta_* \sim N(\theta_0, \sigma_0^2), \qquad \sigma_0^2 = \sigma^2/n^*$$

- Assume no information for test treatment (flat prior for θ_T)
- Two Designs
 - Standard Balanced Design (B), with sample sizes n
 - Historical Data Design (H): save *n** control patients

		C-prior	I
B: Balanced Design	n	-	n
H: Historical Data Design	<i>n-n*</i>	<i>n</i> *	n

• Mean-squared error (MSE) for mean difference δ

 $MSE_{(H)} > MSE_{(B)} \quad \Leftrightarrow \quad |\theta - \theta_0|/\sigma_0 > 1$

Historical data design better than Balanced design

- if true parameter is less than one standard deviation away from the prior mean
- i.e., if true parameter is in the 68% interval of the prior

INOVARTIS

There is a benefit if prior is well-specified

4. More on MAP Priors *Operating Characteristics (Estimation): MSE - Example*

Example: Binary data

- Control response rate
- Prior:
 - mean = 0.2, weight **n**_{*} = **25**
- Normal approximation
 - $-\log(0.2) = -1.386$
 - $(1/p+1/(1-p)) / n_* = 0.5^2$
- Prior:
 - logit(p) ~ N(-1.386,0.5²)
 - 95%-interval: 0.086 to 0.4

NOVARTIS

• For MSE, H-design better than B-design if $p \in (0.13, 0.29)$

4. More on MAP Priors Operating Characteristics (Testing): Comparison of Priors

- Test treatment vs. Control, binary endpoint
 - Vague prior for test treatment: Beta(1,1)
 - Informative prior for control, e.g. ESS
 - i. Beta: simple conjugate Beta(4,16) prior: 0.19 (0.06,0.40)_{95%}
 - ii. Mix90: $0.9 \times Beta(4,6) + 0.1 \times Uniform$
 - iii. Mix50: $0.5 \times Beta(4,16) + 0.5 \times Uniform$
 - iv. Unif: Uniform prior
 - Robust prior on control discarded in case of prior-data conflict – may lead to inconclusive results
 - An adaptive design can reduce this risk (Hobbs et al. 2013)

4. More on MAP Priors Operating Characteristics (Testing): Adaptive Design

- Two-stage adaptive design
 - Target sample size at end of trial:
 - n = 40 for control, m = 40 for test
 - Stage 1:
 - $n_1 = 15$ for control
 - $m_1 = 20$ for test
 - Interim analysis: for control, get interim ESS_C

INOVARTIS

- Stage 2 of adaptive design:
 - 40 ESS_{C} for control
 - 20 for test

58 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

4. More on MAP Priors Operating Characteristics (Testing): Type-I Error, Power

Control Rate

Expected Sample Size (Control Group)

	Mix50) Mix90) Beta	Unif	N	lix50	Mix	0 Beta	Unif
		T	ype-l Ei	<mark>ror (</mark> δ :	=0)				
0.1	0.6	0.1	0.0	1.8	2	8	20	20	40
0.2	2.5	1.5	1.6	2.3	2	6	20	20	40
0.3	3.9	5.5	6.1	2.4	2	9	21	20	40
0.5	3.4	12.3	26.0	2.8	3	7	27	20	40
			Power	<mark>(δ =0.3</mark>	3)				
0.1	92	81	82	90	2	8	20	20	40
0.2	88	86	88	82	2	6	20	20	40
0.3	83	88	93	80	2	9	21	20	40
0.5	78	85	99	82	3	7	27	20	40

Schmidli et al. (2014, submitted)

59 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

Conclusions

60 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

5. Conclusions

Use of historical (trial-external) data is

- attractive
- ambitious
- ambiguous
- Attractive
 - more information should lead to better inference, and, subsequently, to better decisions
 - various potential benefits: smaller control groups, more ethical trials, cost savings

5. Conclusions

Ambitious

- Requires upfront work: find relevant data
- Statistically more challenging
- MA approaches (various dialects) are useful
- Robust approaches look promising

Ambiguous

- Compromise between acceptable frequentist and Bayesian metrics is needed
- Clinical trials: the topic is important, and its importance will most likely grow in the near future

References

63 | Bayes Pharma | Neuenschwander | 11 June 2014, London | Meta-Analytic Approaches to Historical Data

References

- Baeten D et al. (2013). Anti-interleukin-17A monoclonal antibody secukinumab in ankylosing spondylitis: a randomized, double-blind, placebo-controlled trial. *The Lancet* 382, 1705-1713.
- Bernardo JM, Smith AFM (1994). *Bayesian Theory*. Chichester: Wiley.
- Berry DA (2006) Bayesian clinical trials. *Nature Review Drug Discovery*, 5:27-36.
- Berry, Carlin, Lee, Müller (2010. *Bayesian Adaptive Methods for Clinical Trials*
- Chen and Ibrahim (2006). The Relationship Between the Power Prior and Hierarchical Models. Bayesian Analysis
- Dallal S, Hall W (1983). Approximating priors by mixtures of natural conjugate priors. Journal of the Royal Statistical Society, Series B 45, 278-286.
- Dempster A, Selwyn M, Weeks B. (1983). Combining historical and randomized controls for assessing trends in proportions. *Journal of the American Statistical Association* 78,221-227.
- Diaconis P, Ylvisaker D (1985). Quantifying prior opinion, In Bayesian Statistics 2, Bernardo et al. (eds), 133-156. The Netherlands: Elsevier.
- DiScala L, Kerman J, Neuenschwander B (2013). Collection, synthesis, and interpretation of evidence: a proof-of-concept study in COPD. Statistics in Medicine, 32(10):1621-34.
- Duan YY, Smith EP (2006). Evaluating water quality using power priors to incorporate historical information.. Environmetrics;
- Duan YY, Smith EP, Ye KY (2006). Using power priors to improve the binomial test of water quality. Journal of Agricultural, Biological and Environmental Statistics

- FDA (2010) Guidance for the use of Bayesian statistics in medical device clinical trials.
- FDA (2010) Non-inferiority clinical trials: guidance for industry (draft).
- FDA (2013) Expedited Programs for Serious Conditions Drugs and Biologics (draft).
- Fuquene JA, Cook D, Pericchi LR (2009). A case for robust Bayesian priors with applications to clinical trials. *Bayesian Analysis* 4, 817-846.
- **Gelman A (2006).** Prior distributions for variance parameters in hierarchical models. *Bayesian Analysis* 1, 515-533.
- Gsponer T, Gerber F, Bornkamp B, Ohlssen D, Vandemeulebroecke M, Schmidli H (2014) A practical guide to Bayesian group sequential designs. *Pharmaceutical Statistics* 13:71-80.
- Gsteiger S, Neuenschwander B, Mercier F, Schmidli H (2013) Using historical control information for the design and analysis of clinical trials with over-dispersed count data. *Statistics in Medicine*, 32(21):3609-22.
- Hasselblad V and Kong DF (2001). Statistical methods for comparison to placebo in active-control trials. *Drug Information Journal* 35: 435–449.
- Higgins JP, Whitehead A (1996) Borrowing strength from external trials in a meta-analysis. Statistics in Medicine 15, 2733-2749
- Higgins JPT, Green S (eds) (2011). Cochrane handbook for systematic reviews of interventions, version 5.1.0. March 2011, www.cochrane-handbook.org
- Higgins, Thompson, Spiegelhalter (2009. A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society A

- Hobbs BP, Carlin BP, Mandrekar SJ, Sargent DJ (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. *Biometrics* 67, 1047-1056.
- Hobbs BP, Carlin BP, Sargent DJ (2013). Adaptive adjustment of the randomization ratio using historical control data. *Clinical Trials* 10, 430-440.
- van Houwelingen HC, Arends LR and Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine 21(4):589–624.
- Hueber W et al. (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. *Gut* 61, 1693-1700.
- Ibrahim JG, Chen MH (2000). Power prior distributions for regression models. Statistical Science 15, 46-60.
- Lumley T (2002). Network meta-analysis for indirect treatment comparisons. Statistics in Medicine 21(16): 2313–2324.
- Lu G, Ades AE (2004) Combination of direct and indirect evidence in mixed treatment comparisons. *Statistics in Medicine* 23(20): 3105–3124.
- Lu G, Ades AE (2006) Assessing evidence inconsistency in mixed treatment comparisons. Journal of the American Statistical Association 101(474): 447–459.

- Morita S, Thall PF, Müller P (2008). Determining the effective sample size of a parametric prior. Biometrics 64, 595-602.
- Morita S, Thall PF, Müller P (2012). Prior Effective Sample Size in Conditionally Independent Hierarchical Models. Bayesian Analysis 7(3). doi: 10.1214/12-BA720.
- Neuenschwander B, Branson M, and Spiegelhalter DJ (2009). A note on the power prior. Statistics in Medicine 28, 3562-3566.
- Neuenschwander B, Capkun-Niggli G, Branson M, Spiegelhalter DJ (2010). Summarizing historical information on controls in clinical trials. *Clinical Trials* 7, 5-18.
- Neuenschwander B (2011). From historical data to priors. ASA Proceedings
- Nixon RM, Bansback N, Brennan A (2007) Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. *Statistics in Medicine* 26(6):1237-54
- O'Hagan A (1979). On outlier rejection phenomena in Bayes inference. Journal of the Royal Statistical Society, Series B
- O'Hagan A, Forster J (2004) Bayesian Inference, Kendall's Advanced Theory of Statistics Vol2B. Chichester: Wiley.
- **O'Hagan A, Pericchi L (2012).** Bayesian heavy-tailed models and conflict resolution: a review. *Brazilian Journal of Probability and Statistics* 26, 372-401
- Pocock SJ (1976). The combination of randomized and historical controls in clinical trials. Journal of Chronic Diseases 29, 175-188.

- Ryan L (1993) Using historical controls in the analysis of developmental toxicity data. *Biometrics*, 1126-1135.
- Salanti G, Higgins JP, Ades AE, Ioannidis JP (2008) Evaluation of networks of randomized trials. Statistical Methods in Medical Research 17(3): 279–301.
- Salanti G, Dias S, Welton NJ, Ades AE, Golfinopoulos V, Kyrgiou M, Mauri D, Ioannidis JP (2010) Evaluating novel agent effects in multiple-treatments meta-regression. Statistics in Medicine 2010 29(23):2369-83.
- Schmidli H, Wandel S, Neuenschwander B (2013) The network meta-analytic-predictive approach to non-inferiority trials. Statistical Methods in Medical Research ;22(2):219-40.
- Schmidli H, Gsteiger S, Roychoudhury S, O'Hagan A, Spiegelhalter D, Neuenschwander B (2014). Robust meta-analytic-predictive priors in clinical trials with historical control information. Submitted.
- Spiegelhalter DJ, Abrams KR, Myles JP (2004). Bayesian Approaches to Clinical trials and Health-Care Evaluation. Chichester: John Wiley and Sons.

- Viele K, Berry S, Neuenschwander B et al. (2013). Use of historical control data for assessing treatment effects in clinical trials. Pharmaceutical Statistics
- Witte S, Schmidli H, O'Hagan A, Racine A (2011) Designing a non-inferiority study in kidney transplantation: a case study. *Pharmaceutical Statistics*, 10, 427-432