Mechanical Metallurgy

INME 6016

Pablo G. Caceres-Valencia
Professor in Materials Science,

B.Sc., Ph.D. (UK)

GENERAL INFORMATION

Course Number
Course Title
Credit Hours
Instructor
Office
Phone
Office Hours
e-mail

INME 6016
Mechanical Metallurgy
3 (Lecture: 3hours)
Dr. Pablo G. Caceres-Valencia
Luchetti Building L-212
Extension 2358
Mo and Wed 1:00pm to 5:00pm
pcaceres@uprm.edu
pcaceres@me.uprm.edu
Web-site
http://academic.uprm.edu/pcaceres

Assessment

The course will be assessed in the following manner:
Partial Exam

- Final Exam
\square Quizzes (3)*
Attendance and Class Participation
${ }^{*}$) A total of three quizzes will be performed.
$\left(^{* *}\right)$ Class Attendance (after the second absence - 1 point will be deducted for each nonauthorized absence). The participation in class will be taken into account.

Attendance

Attendance and participation in the lectures are mandatory and will be considered in the grading. Students should bring calculators, rulers, pen and pencils to be used during the lectures. Students are expected to keep up with the assigned reading and be prepared for the pop-quizzes or to answer questions on these readings during lecture.

Texbooks

G.E. Dieter; Mechanical Metallurgy; Mc Graw Hill M.A. Meyers and K.K. Chawla; Mechanical Metallurgy: Principles and Applications; Prentice-Hall
I will also post my lecture notes in the web: http://academic.uprm.edu/pcaceres

TENTATIVES DATES

Jan/9-11 Basic Principles	Jan/14-18 Stress-Strain	Jan/21-25 Basic Elasticity
Jan/28-Feb/01	Feb/04-08 Basic Elasticity	Feb/11-15 Single Crystals
Feb/18-22 Dislocation Theory		
Feb/25-29 Strengthening Mechanisms	March/3-7 Strengthening Mechanisms	Mar/17-21- No Class - Holy Week

Content

- Stress and Strain Relationships for Elastic Behavior
-Elements of the Theory of Elasticity
-Plastic Deformation of Single Crystals
-Dislocation Theory
- Strengthening Mechanisms
- Fracture
- Mechanical Properties

The Concept of Stress

Uniaxial tensile stress: A force F is applied perpendicular to the area (A). Before the application of the force, the cross section area was A_{0}
Engineering stress or nominal stress: Force divided by the original area.

True stress: Force divided by the instantaneous area

$$
\sigma=\frac{F}{A_{0}}
$$

$$
\sigma_{T}=\frac{F}{A}
$$

Engineering Strain or Nominal Strain: Change of length divided by the original length

$$
\varepsilon=\frac{l-l_{0}}{l_{0}}=\frac{\Delta l}{l_{0}}
$$

True Strain: The rate of instantaneous increase in the instantaneous gauge length.

$$
\varepsilon_{T}=\int \frac{d \ell}{\ell}=\ln \left(\frac{\ell_{i}}{\ell_{o}}\right)
$$

Relationship between engineering and true stress and strain

We will assume that the volume remains

$$
A_{o} \ell_{o}=A_{i} \ell_{i}
$$ constant.

$$
\sigma_{T}=\frac{F}{A_{i}}=\frac{F}{A_{i}} * \frac{A_{o}}{A_{o}}=\frac{F}{A_{o}} * \frac{A_{o}}{A_{i}}
$$

$\frac{A_{o}}{A_{i}}=\frac{\ell_{i}}{\ell_{o}}=\frac{\Delta l+\ell_{o}}{\ell_{o}}=\frac{\Delta l}{\ell_{o}}+1=(1+\varepsilon)$

$$
\sigma_{T}=\frac{F}{A_{o}}(1+\varepsilon)
$$

$\varepsilon_{T}=\int \frac{d \ell}{\ell}=\ln \left(\frac{\ell_{i}}{\ell_{o}}\right)$

$$
\sigma_{T}=\sigma(1+\varepsilon)
$$

$\varepsilon_{T}=\ln \left(\frac{\ell_{0}+\Delta \ell}{\ell_{0}}\right) \Rightarrow \ln \left(\frac{\ell_{0}}{\ell_{0}}+\frac{\Delta \ell}{\ell_{0}}\right)$

Primary Types of Loading

(a) Tension
(b) Compression
(c) Shear
(d) Torsion
(e) Flexion

(c)

(d)

Hooke's Law

When strains are small, most of materials are linear elastic.

$$
\text { Normal: } \quad \sigma=E \varepsilon
$$

$$
\Delta l=\frac{F \cdot l_{o}}{A_{o} \cdot E}
$$

Springs: the spring rate

$$
k=\frac{F}{\Delta l}=\frac{A_{o} \cdot E}{l_{o}}
$$

Torsion Loading resulting from the twist of a shaft.

$$
\gamma_{\theta, Z}=r \cdot \frac{\delta \theta}{\delta z} \cong \frac{r \cdot \theta}{l}
$$

Shear strain
$\tau_{\theta, z}=G \cdot \gamma_{\theta, z}=G \cdot r \cdot \frac{\delta \theta}{\delta Z} \cong \frac{G \cdot r \cdot \theta}{l}$
G = Shear Modulus of Elasticity
Twist Moment or Torque

$$
T=\int_{A} r \cdot \tau_{\theta, z} \cdot \delta A=\frac{G \cdot \theta}{l} \int_{A} r_{\theta, z}^{2} \cdot \delta A
$$

Area Polar Moment $J=\int_{A} r^{2} \cdot \delta A$
of Inertia

$$
T=\frac{G \cdot \theta \cdot J}{l} \quad \text { or } \quad \theta=\frac{T \cdot l}{G \cdot J}
$$

Angular spring rate:
Thus: $\quad \tau_{\theta, z} \cong \frac{T \cdot r}{J} \quad \tau_{\text {Max }} \cong \frac{T \cdot r_{o}}{J}$

$$
k_{a}=\frac{T}{\theta}=\frac{J \cdot G}{l}
$$

Stress Components

Normal Stresses $\sigma_{x}, \sigma_{y}, \sigma_{z}$
Shear Stresses $\tau_{x y}, \tau_{y x}, \tau_{x z}, \tau_{z x}, \tau_{z y}, \tau_{y z}$ From equilibrium principles:

$$
\tau_{\mathrm{xy}}=\tau_{\mathrm{yx}}, \tau_{\mathrm{xz}}=\tau_{\mathrm{zx}}, \tau_{\mathrm{zy}}=\tau_{\mathrm{yz}}
$$

Normal stress (σ) : the subscript identifies the face on which the stress acts. Tension is positive and compression is negative. Shear stress (τ) : it has two subscripts. The first subscript denotes the face on which the stress acts. The second subscript denotes the direction on that face. A shear stress is positive if it acts on a positive face and positive direction or if it acts in a negative face and negative direction.

Sign Conventions for Shear Stress and Strain

The Shear Stress will be considered positive when a pair of shear stress acting on opposite sides of the element produce a counterclockwise (ccw) torque (couple).

A shear strain in an element is positive when the angle between two positive faces (or two negative faces) is reduced, and is negative if the angle is increased.

For static equilibrium $\tau_{x y}=\tau_{y x}, \tau_{x z}=\tau_{z x}, \tau_{z y}=\tau_{y z}$ resulting in Six independent scalar quantities. These six scalars can be arranged in a 3×3 matrix, giving us a stress tensor.

$$
\boldsymbol{\sigma}=\sigma_{i j}=\left[\begin{array}{ccc}
\sigma_{x} & \tau_{y x} & \tau_{z x} \\
\tau_{x y} & \sigma_{y} & \tau_{z y} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right]
$$

The sign convention for the stress elements is that a positive force on a positive face or a negative force on a negative face is positive. All others are negative.
The stress state is a second order tensor since it is a quantity associated with two directions (two subscripts direction of the surface normal and direction of the stress).

Cube with a Face area A_{0}

$$
\boldsymbol{\sigma}=\sigma_{i j}=\left[\begin{array}{ccc}
\frac{F_{1}}{A_{o}} & \frac{F_{3}}{A_{o}} & 0 \\
\frac{F_{3}}{A_{o}} & \frac{F_{2}}{A_{o}} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

A property of a symmetric tensor is that there exists an orthogonal set of axes 1,2 and 3 (called principal axes) with respect to which the tensor elements are all zero except for those in the diagonal.
$\boldsymbol{\sigma}=\sigma_{i j}=\left[\begin{array}{ccc}\sigma_{x} & \tau_{y x} & \tau_{z x} \\ \tau_{x y} & \sigma_{y} & \tau_{z y} \\ \tau_{x z} & \tau_{y z} & \sigma_{z}\end{array}\right] \quad \boldsymbol{\sigma}^{\prime}=\sigma_{i j}^{\prime}=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3}\end{array}\right]$

Plane Stress or Biaxial Stress : When the material is in plane stress in the plane $\boldsymbol{x y}$, only the \boldsymbol{x} and \boldsymbol{y} faces of the element are subject to stresses, and all the stresses act parallel to the x and y axes.

Stresses on Inclined Sections

Knowing the normal and shear stresses acting in the element denoted by the $\boldsymbol{x y}$ axis, we will calculate the normal and shear stresses acting in the element denoted by the axis $x_{1} y_{1}$.

$$
\sigma_{X 1} \cdot \frac{A_{0}}{\cos \theta}=\sigma_{X} \cos \theta \cdot A_{0}+\tau_{X Y} \sin \theta \cdot A_{o}+\sigma_{Y} \operatorname{Sin} \theta \cdot A_{o} \frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}+\tau_{Y X} \cos \theta \cdot A_{o} \frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}
$$

Eliminating $A_{o}, \sec \theta=1 / \cos \theta$ and $\tau_{x y}=\tau_{y x}$

$\tau_{y x} A_{0} \tan \overparen{\theta}$

$$
\sigma_{X 1}=\sigma_{X} \cos ^{2} \theta+\sigma_{Y} \sin ^{2} \theta+2 \tau_{X Y} \sin \theta \cos \theta
$$

$$
\sigma_{Y 1}=\sigma_{X} \sin ^{2} \theta+\sigma_{Y} \cos ^{2} \theta-2 \tau_{X Y} \sin \theta \cos \theta
$$

$$
\text { Acting in } y_{1}
$$

(b) Forces
$\tau_{x 1 y 1} A_{o} \sec \theta=-\sigma_{x} A_{o} \sin \theta+\tau_{x y} A_{o} \cos \theta+\sigma_{y} A_{o} \tan \theta \cos \theta-\tau_{y x} A_{o} \tan \theta \sin \theta$
Eliminating $A_{o}, \sec \theta=1 / \cos \theta$ and $\tau_{x v}=\tau_{v x}$

$$
\tau_{x 1 y 1}=-\sigma_{x} \cdot \sin \theta \cdot \cos \theta+\sigma_{y} \cdot \sin \theta \cdot \cos \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

Transformation Equations for Plane Stress

Using the following trigonometric identities:
$\operatorname{Cos}^{2} \theta=1 / 2(1+\cos 2 \theta) \quad \operatorname{Sin}^{2} \theta=1 / 2(1-\cos 2 \theta) \quad \operatorname{Sin} \theta \cos \theta=1 / 2 \sin 2 \theta$

$$
\begin{aligned}
& \sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& \tau_{x 1 y 1}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
\end{aligned}
$$

These equations are known as the transformation equations for plane stress.

Special Cases
Case 1: Uniaxial stress
$\sigma_{y}=0 \quad \tau_{\mathrm{xy}}=\tau_{y x}=0$
$\sigma_{x 1}=\sigma_{x} \cdot\left(\frac{1+\operatorname{Cos} 2 \theta}{2}\right)$
$\tau_{x 1, y 1}=-\sigma_{x} \cdot\left(\frac{\operatorname{Sin} 2 \theta}{2}\right)$
Case 2 : Pure Shear

$$
\begin{aligned}
& \sigma_{x}=\sigma_{y}=0 \\
& \sigma_{x 1}=\tau_{x y} \cdot \operatorname{Sin} 2 \theta \\
& \tau_{x 1, y 1}=\tau_{x y} \cdot \operatorname{Cos} 2 \theta
\end{aligned}
$$

Case 3: Biaxial stress

$$
\begin{aligned}
& \tau_{x y}=0 \\
& \sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cdot \operatorname{Cos} 2 \theta \\
& \tau_{x 1, y 1}=-\frac{\sigma_{x}-\sigma_{y}}{2} \cdot \operatorname{Sin} 2 \theta
\end{aligned}
$$

Example: An element in plane stress is subjected to stresses $\sigma_{\mathrm{x}}=16000 \mathrm{psi}, \sigma_{\mathrm{y}}=6000 \mathrm{psi}$, and $\tau_{\mathrm{xy}}=\tau_{\mathrm{yx}}=4000 \mathrm{psi}$ (as shown in figure below). Determine the stresses acting on an element inclined at an angle $\theta=45^{\circ}$ (counterclockwise - ccw).

Numerical substitution

$$
\begin{aligned}
& 1 / 2\left(\sigma_{x}+\sigma_{y}\right)=1 / 2(16000+6000)=11000 \mathrm{psi} \\
& 1 / 2\left(\sigma_{x}-\sigma_{y}\right)=1 / 2(16000-6000)=5000 \mathrm{psi} \quad \tau_{x y}=4000 \mathrm{psi} \\
& \sin 2 \theta=\sin 90^{\circ}=1 \quad \cos 2 \theta=\cos 90^{\circ}=0 \quad \text { Then } \\
& \sigma_{x 1}=11000 \mathrm{psi}+5000 \mathrm{psi}(0)+4000 \mathrm{psi}(1)=15000 \mathrm{psi} \\
& \tau_{x 1 y 1}=-(5000 \mathrm{psi})(1)+(4000 \mathrm{psi})(0)=-5000 \mathrm{psi} \\
& \sigma_{x 1}+\sigma_{y 1}=\sigma_{x}+\sigma_{y} \quad \text { then } \sigma_{y 1}=16000+6000-15000=7000 \mathrm{psi}
\end{aligned}
$$

Example: A plane stress condition exists at a point on the surface of a loaded structure such as shown below. Determine the stresses acting on an element that is oriented at a clockwise (cw) angle of $\mathbf{1 5}{ }^{\mathbf{o}}$ with respect to the original element.

Numerical substitution
$1 / 2\left(\sigma_{x}+\sigma_{y}\right)=1 / 2(-46+12)=-17 \mathrm{MPa}$
$1 / 2\left(\sigma_{x}-\sigma_{y}\right)=1 / 2(-46-12)=-29 \mathrm{MPa} \quad \tau_{x y}=-19 \mathrm{MPa}$
$\sin 2 \theta=\sin \left(-30^{\circ}\right)=-0.5 \quad \cos 2 \theta=\cos \left(-30^{\circ}\right)=0.866 \quad$ then
$\sigma_{x 1}=-17 \mathrm{MPa}+(-29 \mathrm{MPa})(0.8660)+(-19 \mathrm{MPa})(-0.5)=-32.6 \mathrm{MPa}$
$\tau_{x 1 y 1}=-(-29 \mathrm{MPa})(-0.5)+(-19 \mathrm{MPa})(0.8660)=-31.0 \mathrm{MPa}$
$\sigma_{x 1}+\sigma_{y 1}=\sigma_{x}+\sigma_{y}$ then $\sigma_{y 1}=-46 \mathrm{MPa}+12 \mathrm{MPa}-(-32.6 \mathrm{MPa})=-1.4 \mathrm{MPa}$

Example : A rectangular plate of dimensions 3.0 in $x 5.0$ in is formed by welding two triangular plates (see figure). The plate is subjected to a tensile stress of 600psi in the long direction and a compressive stress of 250psi in the short direction. Determine the normal stress σ_{w} acting perpendicular to the line or the weld and the shear stress τ_{w} acting parallel to the weld. (Assume σ_{w} is positive when it acts in tension and τ_{w} is positive when it acts counterclockwise against the weld).

Solution

Biaxial stress weld joint $\sigma_{x}=600 \mathrm{psi}$

$$
\sigma_{y}=-250 p s i \quad \tau_{x y}=0
$$

From the figure
$\tan \theta=3 / 5 \quad \theta=\arctan (3 / 5)=\arctan (0.6)=30.96^{\circ}$
We will use the following
transformation equations:

$$
\sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta
$$

Numerical substitution
$1 / 2\left(\sigma_{x}+\sigma_{y}\right)=175 \mathrm{psi}$

$$
1 / 2\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)=425 \mathrm{psi} \quad \tau_{\mathrm{xy}}=0 \mathrm{psi}
$$

$\sin 2 \theta=\sin 61.92^{\circ}$

$$
\cos 2 \theta=\cos 61.92^{\circ}
$$

Then
$\sigma_{x 1}=375 p s i \quad \tau_{x 1 y 1}=-375 p s i$
$\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{y} 1}=\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}$
then $\sigma_{\mathrm{y} 1}=600+(-250)-375=-25 \mathrm{psi}$

$$
\tau_{x 1 y 1}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
$$

Stresses acting on the weld

$$
\sigma_{w}=-25 p s i \text { and } \tau_{w}=375 \mathrm{psi}
$$

Principal Stresses and Maximum Shear Stresses

The sum of the normal stresses acting on perpendicular faces of plane stress elements is constant and independent of the angle θ.

$$
\begin{gathered}
\sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
\sigma_{X 1}+\sigma_{Y 1}=\sigma_{X}+\sigma_{Y}
\end{gathered}
$$

As we change the angle θ there will be maximum and minimum normal and shear stresses that are needed for design purposes. The maximum and minimum normal stresses are known as the principal stresses. These stresses are found by taking the derivative of $\sigma_{x 1}$ with respect to θ and setting equal to zero.

$$
\begin{aligned}
& \frac{\delta \sigma_{x 1}}{\delta \theta}=-\left(\sigma_{x}-\sigma_{y}\right) \sin 2 \theta+2 \tau_{x y} \cos 2 \theta=0 \\
& \tan 2 \theta_{p}=\frac{\tau_{x y}}{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)}
\end{aligned}
$$

The subscript \boldsymbol{p} indicates that the angle θ_{p} defines the orientation of the principal planes. The angle θ_{p} has two values that differ by 90°. They are known as the principal angles.

For one of these angles $\sigma_{\mathbf{x} 1}$ is a maximum principal stress and for the other a minimum. The principal stresses occur in mutually perpendicular planes.

$$
\tan 2 \theta_{P}=\frac{\tau_{x y}}{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)}
$$

$\tau_{x)}$

$$
\sin 2 \theta_{P}=\frac{\tau_{x y}}{R} \quad \cos 2 \theta_{P}=\frac{\left(\sigma_{x}-\sigma_{y}\right)}{2 R}
$$

$$
\frac{\sigma_{x}-\sigma_{y}}{2}
$$

$$
\sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta
$$

for the maximum stress $\theta=\theta_{\mathrm{P}}$
$\sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2}\left(\frac{\sigma_{x}-\sigma_{y}}{2 R}\right)+\tau_{x y}\left(\frac{\tau_{x y}}{R}\right)=\frac{\sigma_{x}+\sigma_{y}}{2}+\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}\left(\frac{1}{R}\right)+\left(\tau_{x y}\right)^{2}\left(\frac{1}{R}\right)$
$\sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\left(\frac{1}{R}\right)\left[\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}\right]$
But $\quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}} \quad \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}}$

Principal stresses:

$$
\begin{aligned}
& \sigma_{1}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right)+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}} \\
& \sigma_{2}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right)-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}}
\end{aligned}
$$

The plus sign gives the algebraically larger principal stress and the minus sign the algebraically smaller principal stress.

Maximum Shear Stress

The location of the angle for the maximum shear stress is obtained by taking the derivative of $\tau_{x 1 y 1}$ with respect to θ and setting it equal to zero.

$$
\tau_{x 1 y 1}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
$$

$$
\frac{\delta \tau_{x 1 y 1}}{\delta \theta}=-\left(\sigma_{x}-\sigma_{y}\right) \cos 2 \theta-2 \tau_{x y} \sin 2 \theta=0 \quad \text { Therefore, } 2 \theta_{\mathrm{s}} \mathbf{- 2} \theta_{\mathrm{p}}=-\mathbf{9 0 ^ { \circ }} \text { or } \theta_{\mathrm{s}}=\theta_{\mathrm{p}}+/-\mathbf{4 5}^{\circ}
$$

$$
\tan 2 \theta_{S}=-\frac{\frac{\sigma_{x}-\sigma_{y}}{2}}{\tau_{x y}}
$$

The planes for maximum shear stress occurs at 45° to the principal planes. The plane of the maximum positive shear stress $\tau_{\text {max }}$ is defined by the angle $\theta_{S 1}$ for which the following equations apply:
$\tan 2 \theta_{S}=-\frac{\left(\sigma_{x}-\sigma_{y}\right)}{2 \tau_{x y}}=-\frac{1}{\tan 2 \theta_{P}}=-\cot 2 \theta_{P}$
$\frac{\sin 2 \theta_{S}}{\cos 2 \theta_{S}}=-\frac{\cos 2 \theta_{P}}{\sin 2 \theta_{P}}=\frac{-\sin \left(90^{\circ}-2 \theta_{P}\right)}{\cos \left(90^{\circ}-2 \theta_{P}\right)}=\frac{\sin \left(2 \theta_{P}-90^{\circ}\right)}{\cos \left(2 \theta_{P}-90^{\circ}\right)}$

$$
\cos 2 \theta_{s 1}=\frac{\tau_{x y}}{R} \quad \sin 2 \theta_{s 1}=-\frac{\left(\sigma_{x}-\sigma_{y}\right)}{2 R} \text { and } \theta_{\mathrm{s} 1}=\theta_{\mathrm{P} 1}-45^{\circ}
$$

The corresponding maximum shear is given by the equation

$$
\begin{gathered}
\tau_{\text {MAX }}=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}} \\
\tau_{\text {MAX }}=\frac{\left(\sigma_{1}-\sigma_{2}\right)}{2} \\
\sigma_{\text {AVER }}=\frac{\left(\sigma_{x}+\sigma_{y}\right)}{2}
\end{gathered}
$$

Another expression for the maximum shear stress

Equations of a Circle

General equation

$$
\sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta
$$

Consider

$$
\sigma_{x 1}-\sigma_{\text {AVER }}=\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta
$$

Equation (1)

$$
\left(\sigma_{x 1}-\sigma_{\text {AVER }}\right)^{2}=\left[\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta\right]^{2}
$$

$$
\begin{aligned}
& \tau_{x 1 y 1}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta \\
& \left(\tau_{x 1 y 1}\right)^{2}=\left[-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta\right]^{2}
\end{aligned}
$$

Equation (2)

Equation (1) + Equation (2)

$$
\left(\sigma_{x 1}-\sigma_{\text {AVER }}\right)^{2}+\left(\tau_{x 1 y 1}\right)^{2}=\left[\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta\right]^{2}+\left[-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta\right]^{2}
$$

$$
\left[\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta\right]^{2}=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2} \cos ^{2} 2 \theta+\left(\tau_{x y}\right)^{2} \sin ^{2} 2 \theta+2\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)\left(\tau_{x y}\right) \sin 2 \theta \cos 2 \theta
$$

$$
\left[-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta\right]^{2}=\left(-\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2} \sin ^{2} 2 \theta+\left(\tau_{x y}\right)^{2} \cos ^{2} 2 \theta-2\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)\left(\tau_{x y}\right) \sin 2 \theta \cos 2 \theta
$$

SUM

$$
=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}=R^{2}
$$

$$
\left(\sigma_{x 1}-\sigma_{A V E R}\right)^{2}+\left(\tau_{x 1 y 1}\right)^{2}=R^{2}
$$

Counterclockwise shear stresses

Alternative sign conversion for shear stresses:
(a) clockwise shear stress,
(b) counterclockwise shear stress, and
(c) axes for Mohr's circle.

Note that clockwise shear stresses are plotted upward and counterclockwise shear stresses are plotted downward.

Forms of Mohr's Circle (c)

a) We can plot the normal stress $\sigma_{x 1}$ positive to the right and the shear stress $\tau_{x 1 y 1}$ positive downwards, i.e. the angle 2θ will be positive when counterclockwise or
b) We can plot the normal stress $\sigma_{x 1}$ positive to the right and the shear stress $\tau_{x 1 y 1}$ positive upwards, i.e. the angle 2θ will be positive when clockwise.
Both forms are mathematically correct. We use (a)

Two forms of Mohr's circle:
(a) $\tau_{x 1 y 1}$ is positive downward and the angle 2θ is positive counterclockwise, and
(b) $\tau_{\mathbf{x 1 y 1}}$ is positive upward and the angle 2θ is positive clockwise. (Note: The first form is used here)

(a)

(b)

(a)

(b)

Construction of Mohr's circle for plane stress.

Example: At a point on the surface of a pressurized cylinder, the material is subjected to biaxial stresses $\sigma_{x}=\mathbf{9 0 M P a}$ and $\sigma_{y}=\mathbf{2 0 M P a}$ as shown in the element below.
Using the Mohr circle, determine the stresses acting on an element inclined at an angle $\boldsymbol{\theta}=30^{\circ}$ (Sketch a properly oriented element).

Solution ($\sigma_{x}=90 \mathrm{MPa}, \sigma_{y}=20 \mathrm{MPa}$ and $\left.\tau_{x y}=0 \mathrm{MPa}\right)$
Because the shear stress is zero, these are tt principal stresses.
Construction of the Mohr's circle
The center of the circle is
$\sigma_{\text {aver }}=1 / 2\left(\sigma_{x}+\sigma_{y}\right)=1 / 2(90+20)=55 M P a$ The radius of the circle is

$$
\begin{aligned}
& R=\operatorname{SQR}\left[\left(\left(\sigma_{x}-\sigma_{y}\right) / 2\right)^{2}+\left(\tau_{x y}\right)^{2}\right] \\
& R=(90-20) / 2=35 M P a .
\end{aligned}
$$

Stresses on an element inclined at $\theta=30^{\circ}$
By inspection of the circle, the coordinates of point \boldsymbol{D} are
$\sigma_{\mathrm{x} 1}=\sigma_{\text {aver }}+\mathrm{R} \cos 60^{\circ}=55 \mathrm{MPa}+35 \mathrm{MPa}\left(\operatorname{Cos} 60^{\circ}\right)=72.5 \mathrm{MPa}$
$\tau_{\mathrm{x} 1 \mathrm{y} 1}=-\mathrm{R} \sin 60^{\circ}=-35 \mathrm{MPa}\left(\operatorname{Sin} 60^{\circ}\right)=-30.3 \mathrm{MPa}$
In a similar manner we can find the stresses represented by point D^{\prime}, which correspond to an angle $\theta=120^{\circ}\left(2 \theta=240^{\circ}\right)$
$\sigma_{\mathrm{y} 1}=\sigma_{\mathrm{aver}}-\mathrm{R} \cos 60^{\circ}=55 \mathrm{MPa}-35 \mathrm{MPa}\left(\operatorname{Cos} 60^{\circ}\right)=37.5 \mathrm{MPa}$
$\tau_{x 1 y 1}=R \sin 60^{\circ}=35 \mathrm{MPa}\left(\operatorname{Sin} 60^{\circ}\right)=30.3 \mathrm{MPa}$

Example: An element in plane stress at the surface of a large machine is subjected to stresses $\sigma_{x}=15000 p s i, \sigma_{y}=5000 \mathrm{psi}$ and $\tau_{x y}=4000 p s i$, as shown in the figure.
Using the Mohr's circle determine the following:
a) The stresses acting on an element inclined at an angle $\boldsymbol{\theta}=40^{\circ}$
b) The principal stresses and
c) The maximum shear stresses.

Solution

Construction of Mohr's circle:
Center of the circle (Point C): $\sigma_{\text {aver }}=1 / 2\left(\sigma_{x}+\sigma_{y}\right)=1 / 2(15000+5000)=10000 \mathrm{psi}$
Radius of the circle: $\mathrm{R}=\operatorname{SQR}\left[\left(\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right)^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right]$
$\mathrm{R}=\operatorname{SQR}\left[((15000-5000) / 2)^{2}+(4000)^{2}\right]=6403 \mathrm{psi}$.
Point A, representing the stresses on the x face of the element $\left(\theta=0^{\circ}\right)$ has the coordinates $\sigma_{x 1}=15000 \mathrm{psi}$ and $\tau_{x 1 y 1}=4000 \mathrm{psi}$
Point B, representing the stresses on the y face of the element $\left(\theta=90^{\circ}\right)$ has the coordinates $\sigma_{y 1}=5000 \mathrm{psi}$ and $\tau_{y 1 \times 1}=-4000 \mathrm{psi}$
The circle is now drawn through points A and B with center C and radius R
$S_{2}\left(\theta_{s_{2}}=64.3^{\circ}\right)$

Stresses on an element inclined at $\theta=40^{\circ}$
These are given by the coordinates of point \boldsymbol{D} which is at an angle $\mathbf{2 \theta}=\mathbf{8 0 ^ { \circ }}$ from point A. By inspection the angle ACP_{1} for the principal stresses (point P_{1}) is $\tan \mathrm{ACP}_{1}=$ $4000 / 5000=0.8$ or 38.66°.
Then, the angle $\mathrm{P}_{1} \mathrm{CD}$ is $80^{\circ}-38.66^{\circ}=41.34^{\circ}$

Knowing this angle, we can calculate the coordinates of point D (by inspection) $\sigma_{x 1}=\sigma_{\text {aver }}+R \cos 41.34^{\circ}=10000 \mathrm{psi}+6403$ psi $\left(\operatorname{Cos} 41.34^{\circ}\right)=14810 \mathrm{psi}$ $\tau_{x 1 y 1}=-R \sin 41.34^{\circ}=-6403$ psi $\left(\operatorname{Sin} 41.34^{\circ}\right)=-4230$ psi
In an analogous manner, we can find the stresses represented by point D^{\prime}, which correspond to a plane inclined at an angle $\theta=40^{\circ}+90^{\circ}=130^{\circ}$ $\sigma_{y 1}=\sigma_{\text {aver }}-R \cos 41.34^{\circ}=10000$ psi -6403 psi $\left(\operatorname{Cos} 41.34^{\circ}\right)=5190$ psi $\tau_{\mathrm{x} 1 \mathrm{y} 1}=\mathrm{R} \sin 41.34^{\circ}=6403 \mathrm{psi}\left(\operatorname{Sin} 41.34^{\circ}\right)=4230 \mathrm{psi}$
And of course, the sum of the normal stresses is 14810psi +5190 psi $=15000$ psi +5000 psi

Principal Stresses

The principal stresses are represented by points P_{1} and P_{2} on Mohr's circle.
$\sigma_{1}=10000 \mathrm{psi}+6400 \mathrm{psi}=16400 \mathrm{psi}$
$\sigma_{2}=10000 \mathrm{psi}-6400 \mathrm{psi}=3600 \mathrm{psi}$
The angle it was found to be $2 \theta=38.66^{\circ}$ or $\theta=19.3^{\circ}$

Maximum Shear Stresses

These are represented by point S_{1} and S_{2} in Mohr's circle.
The angle ACS_{1} from point A to point S_{1} is $2 \theta_{\mathrm{S} 1}=51.34^{\circ}$. This angle is
negative because is measured clockwise on the circle. Then the corresponding $\theta_{\mathrm{s} 1}$ value is -25.7°.

Example:At a point on the surface of a generator shaft the stresses are $\sigma_{\mathrm{x}}=-50 \mathrm{MPa}$, $\sigma_{\mathrm{y}}=10 \mathrm{MPa}$ and $\tau_{\mathrm{xy}}=-40 \mathrm{MPa}$ as shown in the figure. Using Mohr's circle determine the following:
(a) Stresses acting on an element inclined at an angle $\theta=45^{\circ}$,
(b) The principal stresses and
(c) The maximum shear stresses

Solution

Construction of Mohr's circle:
Center of the circle (Point C): $\sigma_{\text {aver }}=1 / 2\left(\sigma_{x}+\sigma_{y}\right)=1 / 2((-50)+10)=-20 \mathrm{MPa}$ Radius of the circle: $\mathrm{R}=\operatorname{SQR}\left[\left(\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right)^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right]$
$\mathrm{R}=\operatorname{SQR}\left[((-50-10) / 2)^{2}+(-40)^{2}\right]=50 \mathrm{MPa}$.
Point A, representing the stresses on the \boldsymbol{x} face of the element $\left(\theta=0^{\circ}\right)$ has the coordinates $\sigma_{x 1}=-50 \mathrm{MPa}$ and $\tau_{x 1 y 1}=-40 \mathrm{MPa}$
Point B, representing the stresses on the y face of the element $\left(\theta=90^{\circ}\right)$ has the coordinates $\sigma_{y 1}=10 \mathrm{MPa}$ and $\tau_{y 1 \times 1}=40 \mathrm{MPa}$
The circle is now drawn through points A and B with center C and radius R .

Stresses on an element inclined

 at $\theta=45^{\circ}$These stresses are given by the coordinates of point $\mathrm{D}\left(2 \theta=90^{\circ}\right.$ of point A). To calculate its magnitude we need to determine the angles ACP2 and P2CD.
$\tan \mathrm{ACP}_{2}=40 / 30=4 / 3 \quad \mathrm{ACP}_{2}=53.13^{\circ} \mathrm{P}_{2} \mathrm{CD}=90^{\circ}-\mathrm{ACP}_{2}=90^{\circ}-53.13^{\circ}=36.87^{\circ}$
Then, the coordinates of point D are
$\sigma_{\mathrm{x} 1}=\sigma_{\text {aver }}+\mathrm{R} \cos 36.87^{\circ}=-20 \mathrm{MPa}-50 \mathrm{MPa}\left(\operatorname{Cos} 36.87^{\circ}\right)=-60 \mathrm{MPa}$
$\tau_{x 1 y 1}=R \sin 36.87^{\circ}=50 \mathrm{MPa}\left(\operatorname{Sin} 36.87^{\circ}\right)=30 \mathrm{MPa}$
In an analogous manner, the stresses represented by point D^{\prime}, which correspond to a plane inclined at an angle $\theta=135^{\circ}$ or $2 \theta=270^{\circ}$ $\sigma_{\mathrm{y} 1}=-20 \mathrm{MPa}+50 \mathrm{MPa}\left(\operatorname{Cos} 36.87^{\circ}\right)=20 \mathrm{MPa}$

$$
\tau_{\mathrm{x} 1 \mathrm{y} 1}=-30 \mathrm{MPa}
$$

And of course, the sum of the normal stresses is $-50 \mathrm{MPa}+10 \mathrm{MPa}=-60 \mathrm{MPa}+20 \mathrm{MPa}$

Principal Stresses

They are represented by points P_{1} and P_{2} on Mohr's circle.
$\sigma_{1}=-20 \mathrm{MPa}+50 \mathrm{MPa}=30 \mathrm{MPa}$
$\sigma_{2}=-20 \mathrm{MPa}-50 \mathrm{MPa}=-70 \mathrm{MPa}$
The angle ACP_{1} is $2 \theta_{\mathrm{P} 1}=180^{\circ}+53.13^{\circ}$
$=233.13^{\circ}$ or $\theta_{\mathrm{P} 1}=116.6^{\circ}$
The angle ACP_{2} is $2 \theta_{\mathrm{P} 2}=53.13^{\circ}$ or $\theta_{\mathrm{P} 2}$ $=26.6^{\circ}$

Maximum Shear Stresses

These are represented by point S_{1} and S_{2} in Mohr's circle.
The angle ACS_{1} is $2 \theta_{\mathrm{S} 1}=90^{\circ}+53.13^{\circ}=$ 143.13° or $\theta=71.6^{\circ}$.
The magnitude of the maximum shear stress is 50 MPa and the normal stresses corresponding to point S 1 is -20 MPa .

