Uncertainty Analysis

Ananda Mysore SJSU

San José State University | A. Mysore| Spring 2009

Error

- Error is the difference between the measured value and the true value, and every measurement is subject to error.
- The error can not actually be known until after the measurement, and—depending on whether or not the true value is actually known—it may never be known exactly.

Uncertainty

- □ Uncertainty is an estimate of the magnitude of error, typically expressed in terms of a confidence interval within which the error lies.
- "An uncertainty statement assigns credible limits to the accuracy of a reported value, stating to what extent that value may differ from its reference value"

[http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc52.htm#ISO, September 2008]

Uncertainty analysis considers both systematic error and random error.

Propagation of Uncertainties

□ When a result y is a function of variables x_i , a first-order variation equation can be used to estimate a change Δy in terms of small changes in each of the variables x_i .

$$y = f\{x_1, x_2, \dots, x_n\}$$
 $\Delta y = \frac{\partial f}{\partial x_1} \Delta x_1 + \frac{\partial f}{\partial x_2} \Delta x_2 + \dots + \frac{\partial f}{\partial x_n} \Delta x_n$

- □ Here the change Δy in output is expressed as a sum of contributing sources of uncertainty Δx_i , weighted by sensitivity coefficients.
- □ A "worst-case" uncertainty u from multiple uncertainties u_i could be computed by:

$$u = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} u_i \right|$$

□ Is there a better way to express the combined uncertainty?

- Taking the square root of the sum-of-squares is an effective way to combine uncertainties into one value, and squaring each contributing term before taking the sum has some important advantages:
 - Positive and negative contributors to the uncertainty do not accidentally "cancel out".
 - Larger error sources are magnified compared to smaller ones, and this is desirable for identifying severe problems.
 - Sum-of-squares does not over-estimate uncertainty as an extreme worst-case scenario.

$$u = \sqrt{\left(\frac{\partial f}{\partial x_1}u_1\right)^2 + \left(\frac{\partial f}{\partial x_2}u_2\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n}u_n\right)^2}$$

Why Not Sum of Absolute Differences?

The sum of absolute differences would be meaningful as a worst-case scenario in which all contributors were positive or all were negative, but in general it severely overestimates the error.

Variant on Textbook Example 7.1

 \Box (In class)

Questions for Conducting Uncertainty Analysis

- □ Is the evaluation applied to <u>random</u> errors or <u>systematic</u> errors?
- □ Can the uncertainty be based on statistical probability distributions or not?
- □ Is the uncertainty being estimated for a <u>single</u> <u>measurement</u> or a <u>sample mean</u>?

□ For more comprehensive discussion (as of September 2008), see [http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc5.htm]

Random and Systematic Uncertainties

- □ Quantifying uncertainty differs for single measurements versus sample means.
- Systematic (or bias B) uncertainty is the same in both cases, but random (or precision P) uncertainty is reduced by increased sample size.
- $\square Random uncertainty for a sample mean is estimated from the standard deviation, scaled by the$ *t*-distribution and the sample size.

$$P_{\overline{x}} = \pm t \frac{S_x}{\sqrt{n}}$$

For large sample size (n > 30), $t \approx 2$.

Methodology for Uncertainty Analysis

- Define the relevant variables and exact method of measurement.
- □ List all contributing elemental sources of systematic error and random error, and estimate their respective magnitudes.
- □ Quantify standard deviations S_x for random uncertainties. For complex or single-value measurements, S_x is not obvious and may need to come from auxiliary measurements.
- \Box Calculate the systematic uncertainty *B* and random uncertainty *P* separately, then combine to calculate the total uncertainty.

$$B_{x} = \sqrt{\sum_{i=1}^{k} B_{i}^{2}} \qquad S_{x} = \sqrt{\sum_{i=1}^{m} S_{i}^{2}} \qquad P_{\overline{x}} = t \frac{S_{x}}{\sqrt{n}} \qquad u_{\overline{x}} = \sqrt{B_{x}^{2} + P_{\overline{x}}^{2}} P_{x} = tS_{x} \qquad u_{x} = \sqrt{B_{x}^{2} + P_{x}^{2}}$$

Which Errors are Systematic vs. Random?

TABLE 7.1	Guidelines for assigning elemental
error	

ERROR	ERROR TYPE
accuracy	systematic
common-mode volt	systematic
hysteresis	systematic
installation	systematic
linearity	systematic
loading	systematic
noise	random*
repeatability	random*
resolution/scale/	
quantization	random*
spatial variation	systematic
thermal stability	-
(gain, zero, etc.)	random*

*Assume that the number of samples is greater than 30 unless specified otherwise.

- □ In general, any random uncertainties assume large sample size (n > 30).
- If in doubt, for the purposes of uncertainty analysis assume systematic error.
- To combine random uncertainties, the same confidence level must apply to each elemental uncertainty.

Variant on Textbook Example 7.7

 \Box (In class)

Systematic Error and Random Error (Review)

□ **Systematic error** (or "bias" error) is repeatable.

- e.g. imperfect calibration, residual loading, intrusive measurements, spatial bias
- □ **Random error** (or "precision" error) is not predictable.
 - •e.g. environmental variability, noise, vibration

- □ What is the uncertainty in the P = iv power of a resistive circuit, if the voltage is measured to be $v = 100 \pm 1$ V and the current is measured to be i = 10 ± 0.1 A?
- □ How much difference is there between "worstcase scenario" and "best estimate"?

- □ What is the uncertainty in the P = iv power of a resistive circuit, if the voltage is measured to be $v = 100 \pm 1$ V and the current is measured to be $i = 10 \pm 0.1$ A?
- □ How much difference is there between "worst-case scenario" and "best estimate"?

$$\frac{\partial P}{\partial v} = i = 10 \text{ A} \qquad u_v = 1 \text{ V} \qquad \frac{\partial P}{\partial i} = v = 100 \text{ V} \qquad u_v = 0.1 \text{ V}$$
$$u = \left| \frac{\partial P}{\partial v} u_v \right| + \left| \frac{\partial P}{\partial i} u_i \right| \qquad u = \sqrt{\left(\frac{\partial P}{\partial v} u_v \right)^2 + \left(\frac{\partial P}{\partial i} u_i \right)^2}$$
$$u = 10(1) + 100(0.1) \text{ W} = 20 \text{ W} \qquad u = \sqrt{(10 \cdot 1)^2 + (100 \cdot 0.1)^2} \text{ W} \approx 14 \text{ W}$$

- □ A pressure transducer has full-scale (FS) range 1000 kPa.
- \Box Linearity uncertainty is ±0.2% FS.
- \Box Hysteresis uncertainty is ±0.1% FS.
- The repeatability uncertainty, expressed in this case as standard deviation over a large number of repeated measurements at a fixed typical setting is 10 kPa.
- The transducer is subject to uncertainties from temperature, that affects measurements with a standard deviation of 3 kPa.
- □ What is the total uncertainty of pressure measurement with this transducer?

- □ A pressure transducer has full-scale (FS) range 1000 kPa.
- \Box Linearity uncertainty is ±0.2% FS.
- \Box Hysteresis uncertainty is ±0.1% FS.
- □ The repeatability uncertainty, expressed in this case as standard deviation over a large number of repeated measurements at a fixed typical setting is 10 kPa.
- □ The transducer is subject to uncertainties from temperature, that affects measurements with a standard deviation of 3 kPa.
- What is the total uncertainty of pressure measurement with this transducer?

 $B_L = 0.002(1000) \text{ kPa} = 2 \text{ kPa}$

$$B_H = 0.001(1000) \text{ kPa} = 1 \text{ kPa}$$

$$B_x = \sqrt{(B_L)^2 + (B_H)^2} = \sqrt{5} \text{ kPa}$$

$$S_x = \sqrt{(S_R)^2 + (S_T)^2} = \sqrt{109}$$
 kPa

$$P_x = tS_x = 2\sqrt{109} \text{ kPa}$$

$$u_x = \sqrt{B_x^2 + P_x^2} = \sqrt{5 + 4(109)}$$
 kPa = 21 kPa