# Uncertainty Analysis 

Ananda Mysore<br>SJSU

## Error

- Error is the difference between the measured value and the true value, and every measurement is subject to error.
- The error can not actually be known until after the measurement, and-depending on whether or not the true value is actually known-it may never be known exactly.


## Uncertainty

$\square$ Uncertainty is an estimate of the magnitude of error, typically expressed in terms of a confidence interval within which the error lies.

- "An uncertainty statement assigns credible limits to the accuracy of a reported value, stating to what extent that value may differ from its reference value"
[http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc52.htm\#ISO, September 2008]
$\square$ Uncertainty analysis considers both systematic error and random error.


## Propagation of Uncertainties

$\square$ When a result $y$ is a function of variables $x_{i}$, a first-order variation equation can be used to estimate a change $\Delta y$ in terms of small changes in each of the variables $x_{i}$.

$$
y=f\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \quad \Delta y=\frac{\partial f}{\partial x_{1}} \Delta x_{1}+\frac{\partial f}{\partial x_{2}} \Delta x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} \Delta x_{n}
$$

- Here the change $\Delta y$ in output is expressed as a sum of contributing sources of uncertainty $\Delta x_{i}$, weighted by sensitivity coefficients.
- A "worst-case" uncertainty $u$ from multiple uncertainties $u_{i}$ could be computed by:

$$
u=\sum_{i=1}^{n}\left|\frac{\partial f}{d x_{i}} u_{i}\right|
$$

- Is there a better way to express the combined uncertainty?


## Square Root of Sum-of-Squares

- Taking the square root of the sum-of-squares is an effective way to combine uncertainties into one value, and squaring each contributing term before taking the sum has some important advantages:
- Positive and negative contributors to the uncertainty do not accidentally "cancel out".
- Larger error sources are magnified compared to smaller ones, and this is desirable for identifying severe problems.
- Sum-of-squares does not over-estimate uncertainty as an extreme worst-case scenario.

$$
u=\sqrt{\left(\frac{\partial f}{\partial x_{1}} u_{1}\right)^{2}+\left(\frac{\partial f}{\partial x_{2}} u_{2}\right)^{2}+\cdots+\left(\frac{\partial f}{\partial x_{n}} u_{n}\right)^{2}}
$$

## Why Not Sum of Absolute Differences？

－The sum of absolute differences would be meaningful as a worst－case scenario in which all contributors were positive or all were negative，but in general it severely overestimates the error．

| x | Average | x－Avg | ｜x－Avg｜ | $(\mathrm{x}-\mathrm{Avg})^{2}$ | 1200 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1023 | 1004 | 19.72 | 19.72 | 388.86 |  |  |
| 1002 | 1004 | －1．90 | 1.90 | 3.60 |  |  |
| 988 | 1004 | －15．42 | 15.42 | 237.75 | 1100 |  |
| 980 | 1004 | －23．23 | 23.23 | 539.74 |  |  |
| 1018 | 1004 | 14.80 | 14.80 | 219.00 |  |  |
| 999 | 1004 | －4．52 | 4.52 | 20.40 | 1050 |  |
| 1016 | 1004 | 12.39 | 12.39 | 153.48 |  |  |
| 1023 | 1004 | 19.07 | 19.07 | 363.74 | 000 | －M M M－ |
| 1022 | 1004 | 18.58 | 18.58 | 345.23 | 950 |  |
| 1005 | 1004 | 1.25 | 1.25 | 1.57 |  |  |
| 1009 | 1004 | 5.63 | 5.63 | 31.66 |  |  |
| 993 | 1004 | －10．10 | 10.10 | 102.05 | 900850 |  |
| 997 | 1004 | －7．04 | 7.04 | 49.53 |  | －ーーーーーーー・ |
| 985 | 1004 | －18．50 | 18.50 | 342.22 |  |  |
| 1016 | 1004 | 12.38 | 12.38 | 153.16 |  |  |
| 990 | 1004 | －14．05 | 14.05 | 197.54 | 800 |  |
| 1005 | 1004 | 1.76 | 1.76 | 3.10 |  |  |
| 975 | 1004 | －28．50 | 28.50 | 812.34 |  |  |
| 1018 | 1004 | 14.51 | 14.51 | 210.46 |  |  |
| 1007 | 1004 | 3.18 | 3.18 | 10.11 |  |  |
|  |  |  |  |  |  |  |
|  | Sum： | 0.00 | 247 | 4186 |  |  |
|  |  | Too Low | Too High | Wrong Units |  |  |
|  |  |  |  |  |  |  |
| Square Root of Sum－of－Squares： |  |  |  | 65 |  |  |

## Variant on Textbook Example 7.1

- (In class)


## Questions for Conducting Uncertainty Analysis

$\square$ Is the evaluation applied to random errors or systematic errors?

- Can the uncertainty be based on statistical probability distributions or not?
$\square$ Is the uncertainty being estimated for a single measurement or a sample mean?
- For more comprehensive discussion (as of September 2008), see [http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc5.htm]


## Random and Systematic Uncertainties



- Quantifying uncertainty differs for single measurements versus sample means.
- Systematic (or bias B) uncertainty is the same in both cases, but random (or precision P ) uncertainty is reduced by increased sample size.
- Random uncertainty for a sample mean is estimated from the standard deviation, scaled by the $t$-distribution and the sample size.

$$
P_{\bar{x}}= \pm t \frac{s_{x}}{\sqrt{n}} \quad \text { For large sample size }(n>30), t \approx 2
$$

## Methodology for Uncertainty Analysis

- Define the relevant variables and exact method of measurement.
- List all contributing elemental sources of systematic error and random error, and estimate their respective magnitudes.
- Quantify standard deviations $S_{x}$ for random uncertainties. For complex or single-value measurements, $S_{x}$ is not obvious and may need to come from auxiliary measurements.
- Calculate the systematic uncertainty $B$ and random uncertainty $P$ separately, then combine to calculate the total uncertainty.

$$
\begin{array}{rlrl}
B_{x}=\sqrt{\sum_{i=1}^{k} B_{i}^{2}} & S_{x}=\sqrt{\sum_{i=1}^{m} S_{i}^{2}} & P_{\bar{x}}=t \frac{S_{x}}{\sqrt{n}} & u_{\bar{x}}=\sqrt{B_{x}^{2}+P_{\bar{x}}^{2}} \\
P_{x}=t S_{x} & u_{x}=\sqrt{B_{x}^{2}+P_{x}^{2}}
\end{array}
$$

## Which Errors are Systematic vs. Random?

| TABLE 7.1 <br> error | Guidelines for assigning elemental |
| :--- | :--- |
| ERROR | ERRORTYPE |
| accuracy | systematic |
| common-mode volt | systematic |
| hysteresis | systematic |
| installation | systematic |
| linearity | systematic |
| loading | systematic |
| noise | random* |
| repeatability |  |
| resolution/scale/ | random* |
| quantization |  |
| spatial variation |  |
| thermal stability | random* |
| (gain, zero, etc.) | systematic |

*Assume that the number of samples is greater than 30 unless specified otherwise.

- In general, any random uncertainties assume large sample size ( $\mathrm{n}>30$ ).
- If in doubt, for the purposes of uncertainty analysis assume systematic error.
- To combine random uncertainties, the same confidence level must apply to each elemental uncertainty.


## Variant on Textbook Example 7.7

- (In class)


## Systematic Error and Random Error (Review)

- Systematic error (or "bias" error) is repeatable.
-e.g. imperfect calibration, residual loading, intrusive measurements, spatial bias
- Random error (or "precision" error) is not predictable.
- e.g. environmental variability, noise, vibration



## Example

- What is the uncertainty in the $P=i v$ power of a resistive circuit, if the voltage is measured to be $v=100 \pm 1 \mathrm{~V}$ and the current is measured to be $\mathrm{i}=10 \pm 0.1 \mathrm{~A}$ ?
- How much difference is there between "worstcase scenario" and "best estimate"?


## Example

- What is the uncertainty in the $P=i v$ power of a resistive circuit, if the voltage is measured to be $v=100 \pm 1 \mathrm{~V}$ and the current is measured to be $i=10 \pm 0.1 \mathrm{~A}$ ?
- How much difference is there between "worst-case scenario" and "best estimate"?

$$
\begin{aligned}
& \frac{\partial P}{d v}=i=10 \mathrm{~A} \quad u_{v}=1 \mathrm{~V} \quad \frac{\partial P}{d i}=v=100 \mathrm{~V} \quad u_{v}=0.1 \mathrm{~V} \\
& u=\left|\frac{\partial P}{d v} u_{v}\right|+\left|\frac{\partial P}{d i} u_{i}\right| \\
& u=\sqrt{\left(\frac{\partial P}{d v} u_{v}\right)^{2}+\left(\frac{\partial P}{d i} u_{i}\right)^{2}} \\
& u=10(1)+100(0.1) \mathrm{W}=20 \mathrm{~W} \\
& u=\sqrt{(10 \cdot 1)^{2}+(100 \cdot 0.1)^{2}} \mathrm{~W} \approx 14 \mathrm{~W}
\end{aligned}
$$

## Example

- A pressure transducer has full-scale (FS) range 1000 kPa .
$\square$ Linearity uncertainty is $\pm 0.2 \%$ FS.
- Hysteresis uncertainty is $\pm 0.1 \%$ FS.
- The repeatability uncertainty, expressed in this case as standard deviation over a large number of repeated measurements at a fixed typical setting is 10 kPa .
- The transducer is subject to uncertainties from temperature, that affects measurements with a standard deviation of 3 kPa .
$\square$ What is the total uncertainty of pressure measurement with this transducer?


## Example

- A pressure transducer has full-scale (FS) range 1000 kPa .
- Linearity uncertainty is $\pm 0.2 \%$ FS.
- Hysteresis uncertainty is $\pm 0.1 \%$ FS.
- The repeatability uncertainty, expressed in this case as standard deviation over a large number of repeated measurements at a fixed typical setting is 10 kPa .
- The transducer is subject to uncertainties from temperature, that affects measurements with a standard deviation of 3 kPa .
- What is the total uncertainty of pressure measurement with this transducer?

$$
u_{x}=\sqrt{B_{x}^{2}+P_{x}^{2}}=\sqrt{5+4(109)} \mathrm{kPa}=21 \mathrm{kPa}
$$

