Mathematics: analysis and approaches
Standard level
Paper 1
Save My Exams Model Answers
1 hour 30 minutes

Instructions to candidates

- You are not permitted access to any calculator for this paper.
- Section A: answer all questions.
- Section B: answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

1. [Maximum mark: 5]

Let A and B be events such that $\mathrm{P}(A)=0.3, \mathrm{P}(B)=0.75$ and $\mathrm{P}(A \cup B)=0.9$. Find $\mathrm{P}(B \mid A)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) * \\
0.9 & =0.3+0.75-P(A \cap B) \\
P(A \cap B) & =0.3+0.75-0.9=0.15
\end{aligned}
$$

Then

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A \cap B)}{P(A)} * \\
& =\frac{0.15}{0.3}
\end{aligned}
$$

$$
P(B \mid A)=0.5
$$

* These two formulae are in the exam Formula Booklet

2. [Maximum mark: 5]

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2} \cos \left(3 x^{3}+\frac{\pi}{2}\right)$ and that the graph of y passes through the point $(0,-1)$, find an expression for y in terms of x.

Let $v=3 x^{3}+\frac{\pi}{2}$.

Then $\frac{d u}{d x}=9 x^{2}$, and $3 x^{2}=\frac{1}{3} \frac{d u}{d x}$

Therefore

$$
\begin{array}{rlrl}
y & =\int 3 x^{2} \cos \left(3 x^{3}+\frac{\pi}{2}\right) d x & y=\int \frac{d y}{d x} d x \\
& =\int \frac{1}{3} \cos u \frac{d u}{d x} d x \\
& =\int \frac{1}{3} \cos u d u \\
& =\frac{1}{3} \sin u+C \quad C \text { is the constant of integration }
\end{array}
$$

So

$$
\begin{aligned}
& y=\frac{1}{3} \sin \left(3 x^{3}+\frac{\pi}{2}\right)+C \\
& \text { and } y=-1 \text { when } x=0, \text { so } \quad \text { Because the graph goes through }(0,-1) \\
&-1=\frac{1}{3} \sin \left(\frac{\pi}{2}\right)+C \quad \sin \left(\frac{\pi}{2}\right)=1 \\
&-1=\frac{1}{3}+C \Rightarrow C=-\frac{4}{3} \\
& y=\frac{1}{3} \sin \left(3 x^{3}+\frac{\pi}{2}\right)-\frac{4}{3}
\end{aligned}
$$

3. [Maximum mark: 5]

The functions f and g are defined such that $f(x)=6 x+7$ and $g(x)=\frac{x-5}{3}$.
(a) Show that $(f \circ g)(x)=2 x-3$.
(b) Given that $(f \circ g)^{-1}(a)=6$, find the value of a.
a)

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =6(g(x))+7 \\
& =6\left(\frac{x-5}{3}\right)+7 \\
& =2(x-5)+7 \\
& =2 x-10+7 \\
& =2 x-3
\end{aligned}
$$

b)

$$
\left.\begin{array}{rl}
y & =2 x-3 \\
x & =2 y-3 \\
2 y & =x+3 \\
y & =\frac{x+3}{2} \\
(f \circ g)^{-1}=\frac{x+3}{2}
\end{array}\right\} \quad \text { Find inverse of } f \circ
$$

Alternative method for part (b):

$$
(f \circ g)^{-1}(a)=6 \Longrightarrow a=(f \circ g)(6) \Longrightarrow a=2(6)-3=12-3=9
$$

4. [Maximum mark: 5]
(a) (i) Expand $(2 k-1)^{3}$.
(ii) Hence, or otherwise, show that $(2 k-1)^{3}-(2 k-1)=8 k^{3}-12 k^{2}+4 k$.
(b) Thus prove, given $k>1, k \in \mathbb{N}$, that the difference between an odd natural number greater than 1 and its cube is always even.
a) (i) $(2 k-1)^{2}=4 k^{2}-4 k+1$

$$
\begin{aligned}
(2 k-1)^{3} & =(2 k-1)(2 k-1)^{2} \\
& =(2 k-1)\left(4 k^{2}-4 k+1\right) \\
& =8 k^{3}-8 k^{2}-4 k^{2}+2 k+4 k-1
\end{aligned}
$$

$$
(2 k-1)^{3}=8 k^{3}-12 k^{2}+6 k-1
$$

(ii)

$$
\begin{aligned}
(2 k-1)^{3}-(2 k-1) & =\left(8 k^{3}-12 k^{2}+6 k-1\right)-(2 k-1) \\
& =8 k^{3}-12 k^{2}+6 k-1-2 k+1 \\
& =8 k^{3}-12 k^{2}+4 k
\end{aligned}
$$

b)
$k>1, k \in \mathbb{N}$ means $k \in\{2,3,4,5, \ldots\}$, so $2 k-1 \in\{3,5,7,9 \ldots\}$
Therefore $2 k-1$ represents any odd natural number greater than one.
The difference between $(2 k-1)^{3}$ and $(2 k-1)$ is

$$
8 k^{3}-12 k^{2}+4 k=2\left(4 k^{3}-6 k^{2}+2 k\right)
$$

$$
\text { which is even because it is an integer multiplied by } 2 \text {. }
$$

Therefore the difference between an odd natural number greater than one and its cube is always even.

$$
\left(4 k^{3}-6 k^{2}+2 k\right) \text { is an integer because } k \text { is an integer }
$$

5. [Maximum mark: 5]

The following diagram shows triangle ABC , with $\mathrm{AB}=5$ and $\mathrm{BC}=4$.

(a) (i) Given that $\sin \widehat{\mathrm{B}}=\frac{3}{5}$, find the possible values of $\cos \widehat{\mathrm{B}}$.
(ii) Given that \widehat{B} is obtuse, find the precise value of $\cos \widehat{\mathrm{B}}$.
(b) Find the length of AC .
a) (i)

$$
\cos ^{2} \hat{B}+\sin ^{2} \hat{B}=1
$$

Use Pythagorean identity from

$$
\cos ^{2} \hat{B}+\left(\frac{3}{5}\right)^{2}=1
$$

the exam Formula Booklet

$$
\cos ^{2} \hat{B}+\frac{9}{25}=1
$$

$$
\cos ^{2} \hat{B}=\frac{16}{25} \Rightarrow \cos \hat{B}= \pm \sqrt{\frac{16}{25}}
$$

$$
\cos \hat{B}=\frac{4}{5} \text { or }-\frac{4}{5}
$$

(ii) Cosine is negative for obtuse angles, so

```
cos\hat{B}=-\frac{4}{5}
```

b) $A C^{2}=A B^{2}+B C^{2}-2(A B)(B C) \cos \hat{B}$ Use Cosine rule formula from the exam Formula Booklet

$$
\begin{aligned}
& A C^{2}=5^{2}+4^{2}-2(5)(4)\left(-\frac{4}{5}\right) \\
& A C^{2}=25+16+32=73
\end{aligned}
$$

$$
A C=\sqrt{73} \text { units }
$$

6. [Maximum mark: 8]
(a) Show that $\log _{4}(\cos 2 x+13)=\log _{2} \sqrt{\cos 2 x+13}$.
(b) Hence or otherwise solve $\log _{2}(3 \sqrt{2} \cos x)=\log _{4}(\cos 2 x+13)$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
a)

$$
\begin{aligned}
\log _{4}(\cos 2 x+13) & =\frac{\log _{2}(\cos 2 x+13)}{\log _{2} 4} \\
& =\frac{\log _{2}(\cos 2 x+13)}{2} \\
& =\frac{1}{2} \log _{2}(\cos 2 x+13) \\
& =\log _{2}(\cos 2 x+13)^{\frac{1}{2}} \\
& =\log _{2} \sqrt{\cos 2 x+13}
\end{aligned}
$$

$\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$

These two formulae are in the exam Formula Booklet
b) $\log _{2}(3 \sqrt{2} \cos x)=\log _{4}(\cos 2 x+13)$

$$
\begin{aligned}
\log _{2}(3 \sqrt{2} \cos x) & =\log _{2} \sqrt{\cos 2 x+13} \quad \text { using result from part (a) } \\
3 \sqrt{2} \cos x & =\sqrt{\cos 2 x+13} \\
(3 \sqrt{2} \cos x)^{2} & =\cos 2 x+13 \quad \text { square both sides } \\
18 \cos ^{2} x & =\cos 2 x+13 \\
18 \cos ^{2} x & =\left(2 \cos ^{2} x-1\right)+13 \quad \begin{aligned}
\text { Use double angle identity from } \\
\text { the exam Formula Booklet }
\end{aligned} \\
16 \cos ^{2} x & =12 \\
\cos x & = \pm \sqrt{\frac{12}{16}}= \pm \sqrt{\frac{3}{4}}= \pm \frac{\sqrt{3}}{2} \\
\text { But } \cos x>0 & \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2}, \text { so } \cos x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
x=\frac{\pi}{6} \text { or }-\frac{\pi}{6}
$$

Remember that, by symmetry of the cos function, $\cos (-x)=\cos x$

Section B

7. [Maximum mark: 16]

Let $f(x)=\frac{1}{3} x^{3}-2 x^{2}-21 x-24$.
(a) Find $f^{\prime}(x)$.

The graph of f has horizontal tangents at the points where $x=a$ and $x=b, a<b$.
(b) Find the value of a and the value of b.
(c) (i) Find $f^{\prime \prime}(x)$.
(ii) Hence show that the graph of f has a local maximum point at $x=a$.
(d) (i) Sketch the graph of $y=f^{\prime}(x)$.
(ii) Hence, use your answer to part (d)(i) to explain why the graph of f has a local minimum point at $x=b$.

The tangent to the graph of f at $x=a$ and the normal to the graph of f at $x=b$ intersect At the point (p, q).
(e) Find the value of p and the value of q.
a) $f^{\prime}(x)=\frac{1}{3}\left(3 x^{2}\right)-2(2 x)-21(1)$

$$
f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}
$$

$$
f^{\prime}(x)=x^{2}-4 x-21
$$

b) A horizontal tangent has a gradient of zero, so $f^{\prime}(x)=0$ at the points where $x=a$ and $x=b$.

$$
\begin{aligned}
& x^{2}-4 x-21=0 \\
& (x-7)(x+3)=0 \\
& x=7 \text { or } x=-3
\end{aligned}
$$

$$
\text { And } a<b \text {, so }
$$

$$
a=-3, \quad b=7
$$

c)
(i) $f^{\prime \prime}(x)=2 x-4(1)$

Differentiate $f^{\prime}(x)$ to find $f^{\prime \prime}(x)$

$$
f^{\prime \prime}(x)=2 x-4
$$

(ii)

$$
\begin{aligned}
& f^{\prime \prime}(a)=f^{\prime \prime}(-3)=2(-3)-4=-6-4=-10 \\
& f^{\prime \prime}(a)<0 \text {, therefore } f \text { is concave down at } x=a . \\
& \text { Since we also have } f^{\prime}(a)=0 \text {, this shows that } \\
& f \text { has a local maximum at } x=a \text {. }
\end{aligned}
$$

d) (i)

(ii)
$f^{\prime}(b)=0$, and the graph shows that $f^{\prime}(x)$ changes from negative to positive at $x=b$.

Therefore f has a local minimum $a t x=b$.
e) $f(a)=f(-3)=\frac{1}{3}(-3)^{3}-2(-3)^{2}-21(-3)-24=-9-18+63-24=12$

So the tangent at $x=a$ is a horizontal line through $(-3,12)$ with equation $y=12$.

The normal at $x=b$ is a vertical line through $(7, f(7))$ with equation $x=7$

Those lines intersect at the point $(7,12)$.

$$
p=7 \quad q=12
$$

8. [Maximum mark: 16]

Let $f(x)=\frac{\ln p x}{q x}$ where $x>0, p, q \in \mathbb{R}^{+}$.
(a) Show that $f^{\prime}(x)=\frac{1-\ln p x}{q x^{2}}$.

The graph of f has exactly one maximum point A .
(b) Find the x-coordinate of A.

The second derivative of f is given by $f^{\prime \prime}(x)=\frac{2 \ln p x-3}{q x^{3}}$. The graph of f has exactly one point of inflexion B.
(c) Show that the x-coordinate of B is $\frac{e^{\frac{3}{2}}}{p}$.

The region R is enclosed by the graph of f, the x-axis, and the vertical lines through the maximum point A and the point of inflexion B.

(d) Calculate the area of R in terms of q and show that the value of the area is independent of p.
a)

First let $y=\ln (p x)$ and let $u=p x$.
Then $y=\ln (u), \frac{d y}{d u}=\frac{1}{u}$, and $\frac{d u}{d x}=p$.
So the derivative of $\ln (p x)$ is

$$
\frac{d y}{d x}=\frac{d y}{d v} \times \frac{d v}{d x}=\left(\frac{1}{v}\right)(p)=\left(\frac{1}{p x}\right)(p)=\frac{1}{x}
$$

Now let $u=\ln (p x)$ and let $v=q x$.
Then $f(x)=\frac{u}{v}, \frac{d u}{d x}=\frac{1}{x}$, and $\frac{d v}{d x}=q$.
So $f^{\prime}(x)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}=\frac{q x\left(\frac{1}{x}\right)-\ln (p x)(q)}{(q x)^{2}}$

$$
\begin{aligned}
& =\frac{q-q \ln (p x)}{q^{2} x^{2}}=\frac{q(1-\ln (p x))}{q^{2} x^{2}} \\
& =\frac{1-\ln (p x)}{q x^{2}}
\end{aligned}
$$

Use Chain rule formula from the exam Formula Booklet

Use Quotient rule formula
from the exam Formula Booklet
b) A maximum point occurs where $f^{\prime}(x)=0$, so

$$
\begin{aligned}
\frac{1-\ln (p x)}{q x^{2}}=0 & \Rightarrow 1-\ln (p x)=0 \Rightarrow \ln (p x)=1 \\
& \Rightarrow p x=e^{\prime}=e \Rightarrow x=\frac{e}{p}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { A point of inflexion occurs where } f^{\prime \prime}(x)=0 \text {, so } \\
& \begin{aligned}
\frac{2 \ln (p x)-3}{q x^{3}}=0 & \Rightarrow 2 \ln (p x)-3=0 \Rightarrow \ln (p x)=\frac{3}{2} \\
& \Rightarrow p x=e^{3 / 2} \Rightarrow x=\frac{e^{3 / 2}}{p}
\end{aligned}
\end{aligned}
$$

d) The area can be found by integrating:

$$
\text { Area }=\int_{\frac{e}{p}}^{\frac{e^{3 / 2}}{p}} \frac{\ln (p x)}{q x} d x
$$

Let $u=\ln (p x)$. Then $\frac{d u}{d x}=\frac{1}{x}$, and

$$
\begin{aligned}
\int \frac{\ln (p x)}{q x} d x & =\frac{1}{q} \int \ln (p x)\left(\frac{1}{x}\right) d x \\
& =\frac{1}{q} \int u \frac{d u}{d x} d x=\frac{1}{q} \int u d u \\
\text { Also } x=\frac{e}{p} \Rightarrow u & =\ln \left(p\left(\frac{e}{p}\right)\right)=\ln (e)=1 \quad \ln \left(e^{a}\right)=e^{\ln a}=a
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\text { Area } & =\frac{1}{q} \int_{1}^{3 / 2} u d u=\frac{1}{q}\left[\frac{1}{2} u^{2}\right]_{1}^{3 / 2} \\
& =\frac{1}{q}\left(\frac{1}{2}\left(\frac{3}{2}\right)^{2}-\frac{1}{2}(1)^{2}\right) \\
& =\frac{1}{q}\left(\frac{9}{8}-\frac{1}{2}\right)=\frac{1}{q}\left(\frac{5}{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }=\frac{5}{8 q} \\
& \text { The value of the area depends on } q \text {, } \\
& \text { but because } p \text { doesn't appear in that } \\
& \text { expression it is independent of } p \text {. }
\end{aligned}
$$

save myexams

9. [Maximum mark: 15]

A school surveyed 80 of its final year students to find out how much time they spent reading the news on a given day. The results of the survey are shown in the following cumulative frequency diagram.

(This question continues on the following page)

(Question 9 continued)

(a) Find the median number of minutes spent reading the news.
(b) Find the number of students whose reading time is within 2.5 minutes of the median.

Only 15% of students spent more than k minutes reading.
(c) Find the value of k.

The results of the survey can also be displayed on the following box-and-whisker diagram. time spent reading the news (minutes)

(d) Write down the value of b.
(e) (i) Find the value of a.
(ii) Hence, find the interquartile range.
(f) Determine whether someone who spends 30 minutes reading the news would be an outlier.
a) median $=20$ minutes working is on the graph
b) $56-25=31$

31 students working is on the graph
c) 15% of $80=12 \quad 80-12=68$

$$
k=26 \text { working is on the graph }
$$

d)

$$
b=35
$$

This is the maximum value in the data set
e) (i) $a=23.5$ this is the third quartile $\left(Q_{3}\right)$; working is on the graph

$$
\text { (ii) } I Q R=Q_{3}-Q_{1}=23.5-16.5=7
$$

$$
I Q R=7
$$

This formula is in
the exam Formula Booklet
f) $1.5 \times I Q R=1.5 \times 7=10.5$

$$
Q_{3}+10.5=23.5+10.5=34
$$

Someone who spends 30 minutes reading the news would not be an outlier.

$$
\begin{aligned}
& \text { An outlier is any value at least } 1.5 \times I Q R \\
& \text { above } Q_{3} \text { or below } Q_{1} \text {. }
\end{aligned}
$$

