

Mathematics: analysis and approaches Standard level Paper 1

Save My Exams Model Answers

1 hour 30 minutes

Instructions to candidates

- You are not permitted access to any calculator for this paper.
- Section A: answer all questions.
- Section B: answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

1. [Maximum mark: 5]

Let *A* and *B* be events such that P(A) = 0.3, P(B) = 0.75 and $P(A \cup B) = 0.9$. Find $P(B \mid A)$.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) *$$

0.9 = 0.3 + 0.75 - P(A \circ B)
P(A \circ B) = 0.3 + 0.75 - 0.9 = 0.15

Then

$$P(B|A) = \frac{P(A \cap B)}{P(A)} *$$

$$= \frac{0.15}{0.3}$$

$$P(B|A) = 0.5$$

* These two formulae are in the exam Formula Booklet

2. [Maximum mark: 5]

Given that $\frac{dy}{dx} = 3x^2 \cos\left(3x^3 + \frac{\pi}{2}\right)$ and that the graph of *y* passes through the point (0, -1), find an expression for *y* in terms of *x*.

Let
$$u = 3x^3 + \frac{\pi}{2}$$
.

Then
$$\frac{du}{dx} = 9x^2$$
, and $3x^2 = \frac{1}{3}\frac{du}{dx}$

$$y = \int 3x^{2} \cos \left(3x^{3} + \frac{\pi}{2}\right) dx \qquad y = \int \frac{dy}{dx} dx$$
$$= \int \frac{1}{3} \cos u \frac{du}{dx} dx$$
$$= \int \frac{1}{3} \cos u du$$
$$= \frac{1}{3} \sin u + C \qquad C \text{ is the constant of integration}$$

50

o

$$y = \frac{1}{3} \sin \left(3x^{3} + \frac{\pi}{2} \right) + C$$
and $y = -1$ when $x = 0$, so Because the graph goes through $(0, -1)$
 $-1 = \frac{1}{3} \sin \left(\frac{\pi}{2} \right) + C$ $\sin \left(\frac{\pi}{2} \right) = 1$
 $-1 = \frac{1}{3} + C \implies C = -\frac{4}{3}$
 $y = \frac{1}{3} \sin \left(3x^{3} + \frac{\pi}{2} \right) - \frac{4}{3}$

3. [Maximum mark: 5]

The functions f and g are defined such that f(x) = 6x + 7 and $g(x) = \frac{x-5}{3}$.

(a) Show that $(f \circ g)(x) = 2x - 3$. [2]

[3]

(b) Given that $(f \circ g)^{-1}(a) = 6$, find the value of *a*.

a)
$$(f \circ g)(x) = f(g(x))$$

= $6(g(x)) + 7$
= $6(\frac{x-5}{3}) + 7$
= $2(x-5) + 7$
= $2x - 10 + 7$
= $2x - 3$

b)
$$\gamma = 2x - 3$$

 $x = 2\gamma - 3$
 $2\gamma = x + 3$
 $\gamma = \frac{x + 3}{2}$
 $(f \circ g)^{-1} = \frac{x + 3}{2}$
So $\frac{a + 3}{2} = 6$ Because $(f \circ g)^{-1}(a) = 6$
 $a + 3 = 12$
A = 9

Alternative method for part (b):

$$(f \circ g)^{-1}(a) = 6 \implies a = (f \circ g)(6) \implies a = 2(6) - 3 = 12 - 3 = 9$$

- 4. [Maximum mark: 5]
 - (a) (i) Expand $(2k-1)^3$.
 - (ii) Hence, or otherwise, show that $(2k-1)^3 (2k-1) = 8k^3 12k^2 + 4k$. [2]
 - (b) Thus prove, given k > 1, k ∈ N, that the difference between an odd natural number greater than 1 and its cube is always even.
 [3]

a) (i)
$$(2k-1)^{2} = 4k^{2} - 4k + 1$$

 $(2k-1)^{3} = (2k-1)(2k-1)^{2}$
 $= (2k-1)(4k^{2} - 4k + 1)$
 $= 8k^{3} - 8k^{2} - 4k^{2} + 2k + 4k - 1$

$$(2k-1)^3 = 8k^3 - 12k^2 + 6k - 1$$

(ii)
$$(2k-1)^{3} - (2k-1) = (8k^{3} - 12k^{2} + 6k - 1) - (2k-1)$$

= $8k^{3} - 12k^{2} + 6k - 1 - 2k + 1$
= $8k^{3} - 12k^{2} + 4k$

k > 1, $k \in \mathbb{N}$ means $k \in \{2, 3, 4, 5, ..., \}$, so $2k - 1 \in \{3, 5, 7, 9...\}$ Therefore 2k - 1 represents any odd natural number greater than one. The difference between $(2k - 1)^3$ and (2k - 1) is $8k^3 - 12k^2 + 4k = 2(4k^3 - 6k^2 + 2k)$

which is even because it is an integer multiplied by 2.

Therefore the difference between an odd natural number greater than one and its cube is always even.

 $(4k^3-6k^2+2k)$ is an integer because k is an integer

5. [Maximum mark: 5]

The following diagram shows triangle ABC, with AB = 5 and BC = 4.

diagram not to scale

AC = J73 units

 $AC^{2} = 25 + 16 + 32 = 73$

Fead to savemyexams.co.uk for more awesome resources

6. [Maximum mark: 8]

(a) Show that
$$\log_4(\cos 2x + 13) = \log_2 \sqrt{\cos 2x + 13}$$
. [3]

(b) Hence or otherwise solve $\log_2(3\sqrt{2}\cos x) = \log_4(\cos 2x + 13)$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. [5]

b)
$$\log_{2} (3\sqrt{2} \cos x) = \log_{4} (\cos 2x + 13)$$

 $\log_{2} (3\sqrt{2} \cos x) = \log_{2} \sqrt{\cos 2x + 13}$ using result from part (a)
 $3\sqrt{2} \cos x = \sqrt{\cos 2x + 13}$
 $(3\sqrt{2} \cos x)^{2} = \cos 2x + 13$ square both sides
 $18 \cos^{2} x = \cos 2x + 13$
 $18 \cos^{2} x = (2\cos^{2} x - 1) + 13$ Use double angle identity from
the exam Formula Booklet
 $16 \cos^{2} x = 12$
 $\cos x = \pm \sqrt{\frac{12}{16}} = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$
But $\cos x > 0$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, so $\cos x = \frac{\sqrt{3}}{2}$
 $x = \frac{\pi}{6}$ or $-\frac{\pi}{6}$
Remember that, by symmetry of the
 $\cos x = \cos x$

Section B

7. [Maximum mark: 16]

Let
$$f(x) = \frac{1}{3}x^3 - 2x^2 - 21x - 24$$
.

(a) Find
$$f'(x)$$
. [2]

The graph of *f* has horizontal tangents at the points where x = a and x = b, a < b.

- (b) Find the value of a and the value of b.
- (c) (i) Find f''(x).
 - (ii) Hence show that the graph of f has a local maximum point at x = a. [2]

[3]

[4]

[5]

- (d) (i) Sketch the graph of y = f'(x).
 - (ii) Hence, use your answer to part (d)(i) to explain why the graph of f has a local minimum point at x = b.

The tangent to the graph of f at x = a and the normal to the graph of f at x = b intersect At the point (p, q).

(e) Find the value of p and the value of q.

a)
$$f'(x) = \frac{1}{3}(3x^{2}) - 2(2x) - 21(1)$$

 $f(x) = x^{n} \implies f'(x) = nx^{n-1}$
 $f'(x) = x^{2} - 4x - 21$

b) A horizontal tangent has a gradient of zero, so f'(x) = 0 at the points where x = a and x = b.

$$x^{2} - 4x - 21 = 0$$

$$(x - 7)(x + 3) = 0$$

$$x = 7 \text{ or } x = -3$$
You could also solve this using the quadratic formula

And a < b, so

a = -3,	b = 7

[©] Copyright 2015-2021 Save My Exams Ltd. All Rights Reserved.

Save my exams Head to savemyexams.co.uk for more awesome resources

c) (i)
$$f''(x) = 2x - 4(1)$$

 $f''(x) = 2x - 4$
(ii) $f''(a) = f''(-3) = 2(-3) - 4 = -6 - 4 = -10$
 $f''(a) < 0$, therefore f is concave down at x = a.
Since we also have $f'(a) = 0$, this shows that
f has a local maximum at $x = a$.
d) (i) $f'(b) = 0$, and the graph shows that $f'(x)$
changes from negative to positive at $x = b$.
Therefore f has a local minimum at $x = b$.
e) $f(a) = f(-3) = \frac{1}{2}(-3)^3 - 2(-3)^2 - 21(-5) - 24 = -9 - 18 + 63 - 24 = 12$
So the tangent at $x = a$ is a horizontal line through $(-3, 12)$
with equation $x = 7$.
These lines intersect at the point $(-7, 12)$.
 $p = 7$ $q = 12$

Head to savemyexams.co.uk for more awesome resources

8. [Maximum mark: 16]

Let
$$f(x) = \frac{\ln px}{qx}$$
 where $x > 0$, $p, q \in \mathbb{R}^+$.

(a) Show that
$$f'(x) = \frac{1 - \ln px}{qx^2}$$
. [3]

The graph of f has exactly one maximum point A.

(b) Find the *x*-coordinate of A.

The second derivative of *f* is given by $f''(x) = \frac{2 \ln px - 3}{qx^3}$. The graph of *f* has exactly one point of inflexion B.

(c) Show that the *x*-coordinate of B is $\frac{e^{\frac{3}{2}}}{p}$. [3]

The region R is enclosed by the graph of f, the *x*-axis, and the vertical lines through the maximum point A and the point of inflexion B.

(d) Calculate the area of *R* in terms of *q* and show that the value of the area is independent of *p*.

[3]

Head to savemyexams.co.uk for more awesome resources

a) First let
$$y = \ln(px)$$
 and let $u = px$.
Then $y = \ln(u)$, $\frac{dy}{du} = \frac{1}{u}$, and $\frac{du}{dx} = p$.
So the derivative of $\ln(px)$ is
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = (\frac{1}{u})(p) = (\frac{1}{px})(p) = \frac{1}{x}$
Now let $u = \ln(px)$ and let $v = qx$.
Then $f(x) = \frac{U}{v}$, $\frac{du}{dx} = \frac{1}{x}$, and $\frac{dv}{dx} = q$.
So $f'(x) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{qx(\frac{1}{x}) - \ln(px)(q)}{(qx)^2}$
 $= \frac{q - q\ln(px)}{q^2x^2} = \frac{q(1 - \ln(px))}{q^2x^2}$
 $= \frac{1 - \ln(px)}{qx^2}$

b) A maximum point occurs where f'(x) = 0, so $\frac{1 - \ln(px)}{qx^{2}} = 0 \implies 1 - \ln(px) = 0 \implies \ln(px) = 1$ $\ln(a) = b \iff a = e^{b}$ $\implies px = e' = e \implies \boxed{x = \frac{e}{p}}$

c) A point of inflexion occurs where
$$f''(x) = 0$$
, so

$$\frac{2 \ln (px) - 3}{qx^{3}} = 0 \implies 2 \ln (px) - 3 = 0 \implies \ln (px) = \frac{3}{2}$$

$$\implies px = e^{3/2} \implies x = \frac{e^{3/2}}{p}$$

$$\ln (a) = b \iff a = e^{b}$$

d) The area can be found by integrating:

$$Area = \int_{\frac{e}{p}}^{\frac{e^{3/2}}{p}} \frac{\ln(px)}{qx} dx$$
see part (a)
Let $u = \ln(px)$. Then $\frac{du}{dx} = \frac{1}{x}$, and

$$\int \frac{\ln(px)}{qx} dx = \frac{1}{2} \int \ln(px) (\frac{1}{x}) dx$$

$$= \frac{1}{2} \int u \frac{du}{dx} dx = \frac{1}{2} \int u du$$
Also $x = \frac{e}{p} \implies u = \ln(p(\frac{e}{p})) = \ln(e) = 1$
and $x = \frac{e^{3/2}}{p} \implies u = \ln(p(\frac{e^{3/2}}{p})) = \ln(e^{3/2}) = \frac{3}{2}$

$$\ln(e^{\alpha}) = e^{\ln \alpha} = \alpha$$

Therefore

$$Area = \frac{1}{2} \int_{1}^{3/2} \upsilon \, d\upsilon = \frac{1}{2} \left[\frac{1}{2} \upsilon^{2} \right]_{1}^{3/2}$$
$$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{3}{2} \right)^{2} - \frac{1}{2} \left(1 \right)^{2} \right)$$
$$= \frac{1}{2} \left(\frac{9}{8} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{5}{8} \right)$$

Area =
$$\frac{5}{8q}$$

The value of the area depends on q,
but because p doesn't appear in that
expression it is independent of p.

9. [Maximum mark: 15]

A school surveyed 80 of its final year students to find out how much time they spent reading the news on a given day. The results of the survey are shown in the following cumulative frequency diagram.

(This question continues on the following page)

(Question 9 continued)

- (a) Find the median number of minutes spent reading the news. [2]
- (b) Find the number of students whose reading time is within 2.5 minutes of the median. [3]

Only 15% of students spent more than k minutes reading.

(c) Find the value of k.

[3]

The results of the survey can also be displayed on the following box-and-whisker diagram.

- (d) Write down the value of *b*. [1]
- (e) (i) Find the value of a.
 - (ii) Hence, find the interquartile range. [4]
- (f) Determine whether someone who spends 30 minutes reading the news would be an outlier.
 [2]

Save my exams Head to savemyexams.co.uk for more awesome resources

An outlier is any value at least 1.5 × IQR above Q3 or below Q1.