MATHEMATICS (51)

CLASS X

There will be one paper of two and a half hours duration carrying 80 marks and Internal Assessment of 20 marks.

The paper will be divided into two sections, Section I (40 marks), Section II (40 marks).

Section I: Will consist of compulsory short answer questions.
Section II: Candidates will be required to answer four out of seven questions.

1. Commercial Mathematics
(i) Goods and Services Tax (GST)

Computation of tax including problems involving discounts, list-price, profit, loss, basic/cost price including inverse cases. Candidates are also expected to find price paid by the consumer after paying State Goods and Service Tax (SGST) and Central Goods and Service Tax (CGST) - the different rates as in vogue on different types of items will be provided. Problems based on corresponding inverse cases are also included.
(ii) Banking

Recurring Deposit Accounts: computation of interest and maturity value using the formula:

$$
\begin{array}{r}
I=P \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
M V=P \times n+I
\end{array}
$$

2. Algebra
(i) Linear Inequations

Linear Inequations in one unknown for $x \in$ N, W, Z, R. Solving

- Algebraically and writing the solution in set notation form.
- Representation of solution on the number line.
(ii) Quadratic Equations in one variable
(a) Nature of roots
- Two distinct real roots if $b^{2}-4 a c>0$
- Two equal real roots if $b^{2}-4 a c=0$
- No real roots I $b^{2}-4 a c<0$
(b) Solving Quadratic equations by:
- Factorisation
- Using Formula.
(c) Solving simple quadratic equation problems.
(iii) Ratio and Proportion
(a) Proportion, Continued proportion, mean proportion
(b) Componendo, dividendo, alternendo, invertendo properties and their combinations.
(iv) Factorisation of polynomials:
(a) Factor Theorem.
(b) Remainder Theorem.
(c) Factorising a polynomial completely after obtaining one factor by factor theorem.

Note: $\mathrm{f}(\mathrm{x})$ not to exceed degree 3.
(v) Matrices
(a) Order of a matrix. Row and column matrices.
(b) Compatibility for addition and multiplication.
(c) Null and Identity matrices.
(d) Addition and subtraction of 2×2 matrices.
(e) Multiplication of a 2×2 matrix by

- a non-zero rational number
- a matrix.
(vi) Arithmetic Progression
- Finding their General term.
- Finding Sum of their first ' n ' terms.
(vii) Co-ordinate Geometry
(a) Reflection
(i) Reflection of a point in a line:
$x=0, y=0, x=a, y=a$, the origin.
(ii) Reflection of a point in the origin.
(iii) Invariant points.
(b) Co-ordinates expressed as (x, y), Section formula, Midpoint formula, Concept of slope, equation of a line, Various forms of straight lines.
(i) Section and Mid-point formula (Internal section only, co-ordinates of the centroid of a triangle included).
(ii)Equation of a line:
- Slope-intercept form $y=m x+c$
- Two- point form $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$

Geometric understanding of ' m ' as slope/ gradient/ $\tan \theta$ where θ is the angle the line makes with the positive direction of the x - axis.
Geometric understanding of ' c ' as the y-intercept/the ordinate of the point where the line intercepts the y axis/ the point on the line where $x=0$.

Simple applications of all the above.

3. Geometry

(a) Similarity

Similarity, conditions of similar triangles.
(i) Comparison with congruency, keyword being proportionality.
(ii) Three conditions: SSS, SAS, AA. Simple applications (proof not included).
(iii) Applications of Basic Proportionality Theorem.
(iv) Areas of similar triangles are proportional to the squares of corresponding sides.
(b) Circles
(i) Angle Properties

- The angle that an arc of a circle subtends at the centre is double that which it subtends at any point on the remaining part of the circle (without proof).
- Angles in the same segment of a circle are equal (without proof).
- Angle in a semi-circle is a right angle (without proof).
(ii) Cyclic Properties:
- Opposite angles of a cyclic quadrilateral are supplementary (without proof).
- The exterior angle of a cyclic quadrilateral is equal to the opposite interior angle (without proof).
(iii) Tangent and Secant Properties:
- The tangent at any point of a circle and the radius through the point are perpendicular to each other (without proof).
- From any point outside a circle, two tangents can be drawn, and they are equal in length (without proof).
- If a line touches a circle and from the point of contact, a chord is drawn, the angles between the tangent and the chord are respectively equal to the angles in the corresponding alternate segments (without proof).

Note: Only numerical applications of all the above.

4. Mensuration

Area and volume of solids - Cylinder, and Cone.
Three-dimensional solids - right circular cylinder, right circular cone: Area (total surface and curved surface) and Volume. Direct application problems including cost, Inner and Outer volume and melting and recasting method to find the volume or surface area of a new solid. Combination of solids included.

Note: Problems on Frustum are not included.
5. Trigonometry
(a) Using Identities to solve/prove simple algebraic trigonometric expressions
$\sin ^{2} A+\cos ^{2} A=1$
$1+\tan ^{2} A=\sec ^{2} A$
$1+\cot ^{2} A=\operatorname{cosec}^{2} A ; 0 \leq A \leq 90^{\circ}$
(b) Heights and distances: Solving 2-D problems involving angles of elevation and depression using trigonometric tables.

Note: Cases involving more than two right angled triangles excluded.

6. Statistics

Statistics - basic concepts, Mean, Median, Mode. Histograms and Ogive.
(a) Computation of:

- Measures of Central Tendency: Mean, median, mode for raw and arrayed data. Mean*, median class and modal class for grouped data. (both continuous and discontinuous).
* Mean by any one of the following methods:
- Direct: $\frac{\sum f x}{\sum f}$
- Short-cut: $A+\frac{\sum f d}{\sum f}$ where $\mathrm{d}=x-\mathrm{A}$
- Step-Deviation: $A \frac{\Sigma f t}{\Sigma f} \times i$ where $\mathrm{t}=$

$$
\frac{x-\bar{A}}{i}
$$

(b) Graphical Representation. Histograms and Less than Ogive.

- Finding the mode from the histogram, the upper quartile, lower Quartile and median etc. from the ogive.
- Calculation of inter Quartile range.

7. Probability

- Random experiments
- Sample space
- Events
- Definition of probability
- Simple problems on single events

Note: SI units, signs, symbols and abbreviations
(1) Agreed conventions
(a) Units may be written in full or using the agreed symbols, but no other abbreviation may be used.
(b) The letter ' s ' is never added to symbols to indicate the plural form.
(c) A full stop is not written after symbols for units unless it occurs at the end of a sentence.
(d) When unit symbols are combined as a quotient, e.g. metre per second, it is recommended that it should be written as m / s, or as $\mathrm{m} \mathrm{s}^{-1}$.
(e) Three decimal signs are in common international use: the full point, the midpoint and the comma. Since the full point is sometimes used for multiplication and the comma for spacing digits in large numbers, it is recommended that the mid-point be used for decimals.

(2) Names and symbols

In general			
Implies that	\Rightarrow	is logically equivalent to	\Leftrightarrow
Identically equal to	\equiv	is approximately equal to	\gg
In set language			
Belongs to	ϵ	does not belong to	\notin
Is equivalent to	\leftrightarrow	is not equivalent	\leftrightarrow
Union	\cup	to intersection	\cap
Universal set	ξ	is contained in	\subset
Natural (counting)	N	the empty set	\emptyset
Numbers		whole numbers	W
Integers	Z	real numbers	R
In measures			
Kilometre	km	Metre	m
Centimetre	cm	Millimetre	mm
Kilogram	kg	Gram	g
Litre	L	Centilitre	cL
square kilometre	$\mathrm{km}{ }^{2}$	Square meter	m^{2}
square centimetre	cm^{2}	Hectare	ha
cubic metre	m^{3}	Cubic centimetre	$\mathrm{cm}{ }^{3}$
kilometres per hour	km / h	Metres per second	m / s

INTERNAL ASSESSMENT

The minimum number of assignments: Two assignments as prescribed by the teacher.

Suggested Assignments

- Comparative newspaper coverage of different items.
- Survey of various types of Bank accounts, rates of interest offered.
- Planning a home budget.
- Conduct a survey in your locality to study the mode of conveyance / Price of various essential commodities / favourite sports. Represent the data using a bar graph / histogram and estimate the mode.
- To use a newspaper to study and report on shares and dividends.
- Set up a dropper with ink in it vertical at a height say 20 cm above a horizontally placed sheet of plain paper. Release one ink drop; observe the pattern, if any, on the paper. Vary the vertical distance and repeat. Discover any pattern of relationship between the vertical height and the ink drop observed.
- You are provided (or you construct a model as shown) - three vertical sticks (size of a pencil) stuck to a horizontal board. You should also have discs of varying sizes with holes (like a doughnut). Start with one disc; place it on (in) stick A. Transfer it to another stick (B or C); this is one move (m). Now try with two discs placed in A such that the large disc is below, and the smaller disc is above (number of discs $=\mathrm{n}=2$ now). Now transfer them one at a time in B or C to obtain similar situation (larger disc below). How many moves? Try with more discs ($\mathrm{n}=1,2$, 3 , etc.) and generalise.

- The board has some holes to hold marbles, red on one side and blue on the other. Start with one pair. Interchange the positions by making one move at a time. A marble can jump over another to fill the hole behind. The move (m) equal 3 . Try with 2 $(\mathrm{n}=2)$ and more. Find the relationship between n and m.

- Take a square sheet of paper of side 10 cm . Four small squares are to be cut from the corners of the square sheet and then the paper folded at the cuts to form an open box. What should be the size of the squares cut so that the volume of the open box is maximum?
- Take an open box, four sets of marbles (ensuring that marbles in each set are of the same size) and some water. By placing the marbles and water in the box, attempt to answer the question: do larger marbles or smaller marbles occupy more volume in a given space?
- An eccentric artist says that the best paintings have the same area as their perimeter (numerically). Let us not argue whether such sizes increase the viewer's appreciation, but only try and find what sides (in integers only) a rectangle must have if its area and perimeter are to be equal (Note: there are only two such rectangles).
- Find by construction the centre of a circle, using only a 60-30 setsquare and a pencil.
- Various types of "cryptarithm".

EVALUATION

The assignments/project work are to be evaluated by the subject teacher and by an External Examiner. (The External Examiner may be a teacher nominated by the Head of the school, who could be from the faculty, but not teaching the subject in the section/class. For example, a teacher of Mathematics of Class VIII may be deputed to be an External Examiner for Class X, Mathematics projects.)

The Internal Examiner and the External Examiner will assess the assignments independently.

Award of marks

(20 Marks)
Subject Teacher (Internal Examiner) : 10 marks
External Examiner
: 10 marks
The total marks obtained out of 20 are to be sent to the Council by the Head of the school.
The Head of the school will be responsible for the online entry of marks on the Council's CAREERS portal by the due date.

| Criteria | Preparation | Concepts | Computation | Presentation | Understanding |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

