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1.0 INTRODUCTION

The purpose of this document is to present mathematical equations for analyzing
reaction forces in scissor lifts and to discuss several design issues including actuator place-
ment, and strength and rigidity. In section 2.0 the nomenclature is presented. In section 3.1
equations are derived for the scissor members whose reaction forces are not affected by the
actuators. In section 3.2, equations for calulating the actuator forces directly are given. In
section 4.0 the equations from sections 3.1 and 3.2 are combined into a single method of
determining the reaction forces throughout the lift. Forces obtained from this analysis can
be used in selecting the appropriate material and cross-section of the scissor members, and
to select suitable actuators. In the remaining sections the design issues listed above are
discussed.

2.0 NOMENCLATURE

Figure 1 shows an n-level scissor lift with the six possible applied loads. The letter
H is used instead of F for the linear forces in order to avoid confusion with later termi-
nology. Notice that H. and H, act in the positive x and z directions, respectively, while
Hy acts in the negative y direction. The direction of H . was selected to correspond with
loads normally encountered. At each joint there are also six possible reaction forces and
moments. In order to distinguish between joints, the nomenclature shown in figure 2 will
be used. The subscripts L, R, F, B, and M are used to denote left, right, front, back and
middle, respectively. This system of subscripting was selected because the reaction forces
are usually symmetric allowing some of the subscripts to be dropped. One slight inconsis-
tency in this nomenclature is the M subscript. All other subscripts come in pairs, ane ,o
be totally consistent one more subscript could have been included to denote bottom. The
reasons for omitting this subscript are that symmetry never exists between the bottom and
middle joints, and the bottom joints already have an excessive number of subscripts. There
are cases in the paper where the L, R, F, and B subscripts are all dropped from the reaction
forces at the bottom of the scissor resulting in X i, Yi, or Z i. The reader may mistakenly
assume that the equations for X i, Yi, and Z i also apply to the middle joints. This is not
true. X i, Yi, and Z i apply only to the bottom joints. The M subscript is never dropped.

Notice that the reaction forces at the top of the i and i-I scissors are not shown in
figure 2. These forces are omitted because they are equal and opposite the forces at the
bottom of the previous scissor, and therefore are not unique. Also notice that none of the
possible reaction moments at the joints are shown. The moment about the z axis is omitted
because the joints are assumed to be frictionless. The reason this assumption is possible is
because the radius through which the friction forces act is small and, if the joints are lubri-
cated, the coefficient of friction is small. The reaction moments about the x and y axis' are
zero for loads applied in the x-y plane. These loads include H. H', and M.. It is believed
that they are also negligible for the out-of-plane loads Mr, M, and H. especially if cross-
bracing is used.
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Figure 1. Nomenclature: applied loads and scissor lift dimensions.
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Reaction Force Location Level
X-Force in pos. x dir F-front 1 thru n
Y-Force in pos. y dir B-back
Z-Force in pos. z dir L-Ieft

R-right
M -middle

Figure 2. Nomenclature: reaction forces.
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3.0 GENERAL SCISSOR LIFT EQUATIONS

An n-level scissor lift with a single actuator in the i and i+l levels is shown in figure

3a. One possible way of calculating the reaction forces throughout the lift is to begin at

the top of the lift where the applied loads are known, and, using equations of static equilib-

rium, solve for the reaction forces in the first scissor (level 1). The forces at the top of the

second scissor are now known since they are equal and opposite the forces at the bottom of

level 1, and the forces in the second level can now be calculated. This process continues to

level i. At this level there are more unknowns than equations because the actuator adds an

unknown variable. The analysis now shifts to the bottom of the lift. The reaction forces at

the bottom of the lift can be found by doing a freebody analysis of the entire lift. Once the

forces at the bottom of the lift are known, the reaction forces from level n to the bottom of

level i+l can be calculated. Now that the forces are known at the top of level i and at the

bottom of level i+ 1, the remaining reaction forces can be determined using equations of

static equilibrium.

level

1

2 original model
level lift level level

1 n 1

2 n-

X i+2 X -i+11

a. b. c.

Figure 3. Scissor lift models.
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This method of solution is almost impossible to do by hand because any error will

be carried on to later calculations. Also the number of calculations is overwhelming. It is

therefore desirable to find a simpler method of analysis. Before developing this alternate
method, two critical observations about the lift are necessary. First, notice that the reaction
forces in levels i through i-I and in levels i+2 through n are completely unaffected by the

placement of the actuator as long as it is confined within the i and i+l levels. In fact, the
scissor members in levels 1 through i-I can be modeled as a scissor structure that has no
actuators and is pinned to "ground" at all four bottom joints as shown in figure 3b. This
structure will be referred to as "the basic scissor structure" throughout this paper. This
thought process can be continued by considering levels i+2 through n. Notice that these
members meet the criteria of a basic scissor structure except that the structure is upside
down. This portion of the lift can therefore be modeled as the basic scissor structure shown
in figure 3c. In this model the lift will have negative weight. The loads at the top of this
model are easily determined by doing a freebody analysis on the entire lift. The second crit-

ical observation is that if frictional losses are assumed to be negligible, then the principle of

conservation of energy applies. This allows the actuator forces to be calculated directly.

In section 3.1 general equations that give the reaction forces in the basic scissor
structure are derived. In section 3.2 equations for calculating the actuator forces are
derived. A discussion about the proper application of these formulas is given in section 4.0.

3.1 EQUATIONS FOR THE BASIC SCISSOR STRUCTURE

The possible loads on a scissor lift were illustrated in figure 1. In this section reac-

tion force equations for the basic scissor structure are derived separately for each load.

3.1.1 Load 1: Centered Load in the Negative y Direction

The first load that is considered is H ,. This load can be made more general by
including the distributed weight of the scissor lift. Let B equal the weight of the lift. If the
lift is on an inclined surface then the weight of the lift will have components in the x, y,
and z directions which will be denoted by BV, BY, and B., respectively. Positive B is in
the negative y direction whereas positive B_ and B_ are in the positive x and z directions,

respectively. Let HY0 equal the applied load at the top of the lift, and let H,.i equal H .0 plus
the weight of the lift in the negative y direction up to and including level i. If all the levels
have the same weight and this weight is denoted by b. then,

H 0 H o + ibx (V)

where,

b., B,,In°
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This loading condition is shown in figure 4. A platform is shown at the top of the structure

but the type of connection between the platform and the top joints is not shown. It is
assumed that either the front or back joints are attached via slides/rollers and the other

via pins. The joints that are attached via slides/rollers cannot support any load in the

x direction. This assumption is used for all loads except for load 6.

Because the load is centered and vertical, the reaction forces on the left side of the

lift are identical to the right side. Therefore, only one side of the lift needs to be analyzed,

and the L and R subscripts can be dropped. Also, if the scissor lift is rotated 180 degrees
about the y axis, the problem is exactly the same. This implies that the reaction forces are
symmetric about the y-z plane. In mathematical terms this means that

YBi = YFi = "i,

XF, = - XB,

YMi Z 0.

Figure 5a shows a freebody diagram of the right side of the lift. The equation for Yi is
derived using principles of static equilibrium as follows.

From figure 5a,

IFY = 0,

21 -i 2 H - ib - 0=
4 2

Yi -H) + iby
4

4

The reactio,' forces acting on level i are shown in figures 5b and 5c. Referring to figure 5c,

E~ = 0,

d Hi I d d
-XRi - sin 0 + - -- cos + 4 - cos 0 + XB, I - sin 0 = 0

2 4 2 4 2 2

Hvi + " i I
XXB , I - 4 tan 6

This equation only gives the change of XB with each succeeding level. In order to find the
general equation for XRi let

H + Hi I
4 tan 0

6



HYO

level

1

2

Figure 4. Basic scissor structure with
load applied in the negative y direction.

Hyo Hyo

4 4$
level

HyiI Hyi_1  Hyi-1
4 4 4

2 xBi-1 - I I. I

Bi 'XB i \

\ P

b y "

YI YI

a. b. c.

Figure 5. Freebody diagrams for load applied in the negative y direction.
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If the equation is written for all the levels up to i, the following set of equations is obtained,

Xsi - XBi- I' f(i) ,

XBi I -XBi2 :f(i- 1),

XBI - XB0 =f(l).

Notice that if the above equations are added together, all of the terms on the left of the
equal sign cancel except for XBi and XB0. Performing the addition results in

i
XBi- XBo= I f(k),

k=1

Hyk + Hvk I

k=I 4 tan 0

And from equation I

v H.O + kb. + H1.0 + (k - l) bl.XBl- X 0 -~

k1l 4 tan 0

= (Hv, 0 + (2k - ) by
k=! a a

(- + ,o (2 12 tan0 4tan0 I'

i
-iHy + b k-

2 tan 0 4 tan 0k=I

H, "_k-___

2 tan60 4 tan 0

iHb + b_ / i(i + 1)
2tan0 4tan 0, 2

iH, i2 bi

2tan0 4tan 0

H + bl
2 () 2 tan 0
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Since one pair of joints at the top of the lift is connected to rollers, XB0 equals zero and

x =(Hyo + ib ) i
2 (2 tan 0

Solving now for XMi from figure 5c

IF x = 0,

XM,- XBi - XBi- 1  0

gMi X XB, + XBi- ,

I H2 + ( _ Y1_-1 2 .

(2 tan 0 ' 4 tan + 2 0 4 tan 0 )

(2i - 1) HO+ (2i 2 - 2i + I) b,

2 tan 0 4 tan 0

In summary

(, i
XBi -XFi= (HrO +  2tan6

Yi = H vO + ib ,,
4

_ )H - (2i 2 - 2i+ 1) b,
2 tan 0 4 tan 0

YMi = 0 .

Zi = Z i = 0

It should be noted that the reaction loads are completely independent of the length
of the scissor members and only depend on the applied load (including the distributed
weight of the lift) and the angle of the scissor members from horizontal.

3.1.2 Load 2: Moment About the z Axis

This loading condition is shown in figure 6a. In order to analyze this case, a critical
observation needs to be made. Typically, the front or back joints at the top of the lift are
pinned to the ,platform, and the other pair is attached via slides/ rollers. Because of this,
only the pinned pair can support loads in the x direction. Since the applied load is a
moment and has no net linear force, and because of symmetry, the resulting forces in the
x direction at the pinned joints are zero. A moment can be represented by a force couple
where the two forces are equal and opposite but not colinear. Because the forces on the top

9



joints of the lift can have no x component, the couple used to represent the moment must
be composed of forces acting in the y direction as shown in figure 6b. The equation relating
Fto M, is

Mz = Fdcos 0,

F- Mz (2)
d cos 0

Since the load acts in the x-y plane the reaction forces on the right side of the platform are
identical to the left side, and the L and R subscripts can be dropped. The loads on one side
of level I are shown in figure 7.

MzF F

level

1M

I I

I I
I I

a . b.

Figure 6. Basic scissor structure with a moment about the z axis.

F/2 F/2 F/2

×M1

R t- - XFl XFl

YB F1 YF1

a. b.

Figure 7. Freebody diagrams for applied moment about the z axis.
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Referring to figure 7,

XMR= 0

F
- d cos O + YFI d cos 0 02

F
YFI - - 2

Y = 0

F FYBI + YF1 + - - 02 2

Ysl= YFI

F

2

I M, = 0

Fd d d
- C - COS 0 YFI - os+ XFI - sin 0 0

XFI = 0.

IF, = 0

XB1 + XF = 0

XB = 0 .

The above equations show that the forces at the top of level two are identical to the
loads at the top of level one. This implies that reaction forces at all levels are the same as
level one, and only the forces at level I need to be determined. The remaining equations are
derived as follows.

IFY 0

F
- + YF + YMI = 0

F
YMI - - YFI

=F.

II



XF, = 0

XMI + XFI = 0

XMI =-XFI

=0.

Since the reaction forces are the same for all levels, the general equations are given
by substituting i for I in the subscripts. The equations can also be expressed in terms of the
applied moment M, by substituting Mz/(d cos 0) for F(see equation 2).

The final result is

F M Z
2 2dcos0

F M

- 2 2 d cos 0

YMIMz
Ygi = F-= M

d cos 0

XMi = XBi = XF = 0.

Z i = ZMi = 0

3.1.3 Load 3: Centered Horizontal Load in the Positive x Direction

As with the analysis for a load applied in the negative direction, the analysis for this
load can be made more general by including the weight of the lift in the x direction. Let
HA equal the load applied at the top of the lift and let Hxi equal H0 plus the weight of the
lift in the x direction up to and including level i. If all levels have the same weight and the
weight of one level equals b, then

Hxi = Ho + ib, ,

where

B_bx =-

n

A basic scissor structure with this load is shown in figure 8. Again, because of
symmetry, tl'e L and R subscripts can be dropped. The reaction forces in the x direction in
this case depend on whether the back or the front joints at the top of the scissor lift are
pinned. The reaction forces for both cases will be analyzed.

12



level
H xO

2

Figure 8. Basic scissor structure with load
applied in the positive x direction.

Back Joints Pinned

Assuming the back joints are pinned, the freebody diagram of the lift up to level i is
as shown in figure 9a. YBi and YFi are found as follows.

HxoH xo

2 HxO bx 2

level 2 4d "bx

4d

XB 1 - XF -- XF1I t
2 ' Bl YF1 F

b. c.

Io YFi I

oHxO (i 1)b YF, 1 YF, 1 (i - 1)b x  Hxo (i - 1)b x
2 4 I I 4

4 I 42

Y8, Y- XFi

a. XEI xFi YMi

YFi YFi YR

d. e.

Figure 9. Freebody diagrams for load applied in x direction with the back joints pinned.
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i'mp = 0

0 H, id sin 0 ib. id sin 0=0Y Fi d cos- 2
2 2 2

SH,° i tan 0 - ,- tan 0 = 0
2 4

b, i tan SYF, = HAD + 2(3)

!F. =0

=B r (Hj) + 2/~ 2tn (4)

The forces on level one are shown in figure 9b and 9c. From figure 9c

YMQ :0

d H d. d

XFI d sin0 - 2 d sin 0 + YFI d COS 0 0
2 x 2 1

XF - + YFl
Fl 2 tan 0

XF H.0 Y FI

2 tan 0

2 2 4

b,

4

From figure 9b

IF, = 0

XF + XB + 2 b, d + =0
( d+ 2

XBI =-F b1 H 0
2 2

b, H
4m:XI- 2 2

4 22
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The forces in the x direction at the top of level 2 are identical to the forces at the top of
level I except for the b,14 term common to both XFI and XB,. From this it appears that
the Hr/ 2 term will be passed on to the back bottom joint of each succeeding level and that
the total force of the distributed load will be divided equally between the front and back
joints. This hypothesis will be proved using the principal of mathematical induction that
states that if a relationship is true for i- I, and if we can prove that when the relationship
is true for i, it is also true for i + I, then it is true for all i. In order to begin this proof, the
forces in the x direction at the top of level i are assumed to be as shown in figure 9d. The
forces in the y direction are given by equations (3) and (4).

From figure 9e,

IMR 0

XF - sin 0 + YFi - cos 0 - YFi I d cos + " d sin 0=0
2 2 2 24 -

Substituting equation 3 for YFi and YFi I. and eliminating d 2 sin 0 results in

XF, + + b (HO + b" (i - I)- __+ (i ) b) 0

XFi + (iv (i - ) - 1) + (P
2  (i -1)2 1~( )) 0

2 4

b_
XFi + _ (i

2 - (i 2 
- 2i + I) - (i - I)) 0

4

b,
XFi

+  " ii=04

XF - i.4

From figure 9a

I Fx = 0

H o ib+ + XB i + X[,i 0

2 2
H _ b i brfi+ + XBi - - 0

2 2 4
Hxo b xi

XVBi - -_ br
2 4

15



This is the desired result. Now equations for XMi and Y"M will be derived. Referring to
figure 9e,

YFi I + YFi + YMi= 0

1) ) (i - 1) tan 0 + -+ L i tan 0 + Y~i : 0
2 42 4

Y.Vj 2 tan 0 (i -I + i - - tan 0 ((i - I)2 + i)

(HO (2i - 1) + b,(2i2 - 2i + 1))(2 - + .tan 0

YF r = 0

( + (i-1 x+ XFi + d d+ XMi=0

24 4d

+ " -+ +XMi 0
2 4 4 4

HO b ++ - (i - I -i+ I)+XMi=O
2 4

Hxo
XMi -

2
In summary,

x i=_( Hx + ibx)2 4

ibx
XF, - -b4

4

YFi = - YBi 2 + 4 i tan 0

XMi -

2

S( Hxo (2i - 1) + b (2i 2 
- 2i + 1) tan 0- 2 4"

16



Front Joints Pinned

Now the loading condition will be considered with the front joints at the top of the

lift pinned. As before, the weight of the lift will be included in the analysis. A freebody

diagram of the lift up to level i is shown in figure 1Oa.

The derivation of Y8i and YFi is exactly the same as the previous case and is there-

fore omitted. From the insight gained in the previous derivation, it is assumed that Hxo/2
will be passed on to the front top joint of each succeeding level and that the distributed

load will be divided equally between the front and back joints. This assumption will be

proved using the principle of mathematical induction as before. The assumed loads are

shown in figures 10b. and 10c.

Hxo

2

I (i - 1)bx  YFi-1 Y I-1 1)bx  Y -1 (i - 1)bx

'X~ 4 1 IH xo+ 4 Q 4

~i i

xB,--/__--'Q 4d "-----XF1
I -

x i  
-XRiI YMiI

Y~i YFi YRi YFi YFi

a. b. c.

Figure 10. Freebody diagrams for load applied in the x direction with the front joints pinned.

From figure lOc.

XMQ = 0,

d d d (i - I)b, d
XFi - sin 0 + YFi - cos 0 - YF, I -Cos 0 4 sin 0 0.

2 2 2 4 2

Substituting equation 3 for YFi and YFi I and eliminating d, 2 sin 0 gives

+ o + ibx ) - + (i i I) (il)b, oXFI + 2 4 2 4 4"

Hxo b ,r
XFI - + i- + - (-iI + (i- 1)

2 
+(i - ))

2 4

17



_ Hx0 b i2iH.O+ i2( + i2-2i + I + i- I)
2 4

(Th+ bi )
2 4

From figure 10a

I F , = 0

XBi + XFi + "0

2 2

+ XB i- + i)+ "- 0

bxiX4i /4

This is the desired result. The reaction forces at the middle joints will now be found. Refer-
ring to figure 1Oc,

:Fx= 0

b x + (i - 1) bxXMi + -- d +XFi = 0
4d 4

XMi + t. ( xo+ xi)+ (i 1)bx = 0

xMi 2 x

22F , = 0

(Hx + bx(i - ! ) tanO+ YMI (L + i.4) i tan 00

YMi = 2 (i - + i) tan 0 _ b [(i - 1)2 + i2 ] tan 0
2 4

--(HxO(2i -1) + bx (Wi - 2 i +1))tan 0.

18



In summary,

-ib xX Bi =- b

4

XFi = - (2 '+ 4

Yi= - i(A + ib tan 0

(Hx(2i - 1) + x(i i+1 aY i ( 2 4"

Z i = ZMi = 0

3.1.4 Load 4: Centered Load in the Positive z Direction

This load is once again made more general by including the distributed weight of
the lift in the z direction. The z component of the lift weight was previously defined as B_,
and the z component of one level as b.. Let HO. equal the applied load at the top of the lift,
and Hzi equal H. plus the weight of the lift in the z direction up to and including level i. If
bz is the same for every level then

,H.i = H~o + ib,

where,

B.
bz = B

n

A basic scissor structure with this load is shown in figure II. This case is more diffi-
cult to analyze than the earlier cases because some of the reaction forces depend on the
rigidity of the crossbracing between the two sets of scissors (i.e., between the left and right
sides). Figure 12 is the front view of the lift and shows the deformations and reaction forces
in the y and z directions for lifts with and without crossbracing. The lift with crossbracing
is similar to an I-beam and is, of course, the more rigid of the two lifts. In the following
analysis the lift with crossbracing will be assumed. Because the load is in the y-z plane and
because the scissor is symmetric about the y-z plane the reaction forces are also symmetric
about the y-z plane. Mathematically this means that

XFRi = XBR i ,

XFLi = BLi,

19



HzO

Figure 1 1. Basic scissor structure
with load applied in the positive
z direction.

Without Crossbracing With Crossbracing

Figure 12. Deflections and reaction forces for load applied in the positive z direction.

20



YFRi YBRi'

YFLi YBLi

YMLi YMRi 0,

ZMi: 0.

ZFRi ZBRi,

ZFLi = ZBLi •

Considering only the front of the lift. the reaction forces in the y direction on the
ith level are as shown in figure 13a. The equations for YmR and Y11 are derived as follows.

V Mp = 0

H-° id: sin si +0 ~i

2 2 ) 2

= - + idsin0Y L i 2 + 4

IF. =0

(H_-_ ib_) id sinO0
__+ hz) dYRi = -Ybi 2

The equations for ZR and Z,, are found by summing the forces in the z direction.

I Fz = 0,

ZRi + ZLi + HO + ib. 0

2 2

(H-°+ib:)
ZRi ' Li - (-____2

The individual values of ZR, and ZL depend on the tolerances of the lift; however we will
assume that they are equal. Letting ZR = Zni = Z i results in

2Z, = (Hz0 +ib:)- 2

Z - (H:( + ib:)

Before proceeding with the analysis some comments need to be made. In all of the
loads previously analy7ed, the reaction forces on the left side were always the same as the

21
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right side. As a result, the crossbracing is completely unstressed allowing the sides of the lift
to be analyzed as separate entities. In this case, the loads on the right and left sides are not
equal which means that the right and left scissor members can no longer be analyzed sepa-
rately. The loads on level I are shown in figure 13b and 13c. In this figure ZRI and ZLI
have been added together and are shown acting on the right side to simplify the drawing.
This does not affect the remaining analysis.

Referring to figure 13c

'MAA = 0 ,

XFRI + XFLI 0.

XFRI -XFLI

This means that the net force in the x direction on the front pins must be zero. Although
the sum of XFRi and XLRi is zero the individual values are not necessarily zero. Summing
moments about BB indicates that there must be a net force in the x direction on the left
side of the lift. This net force is the sum of XMLI and XFLI. The actual values of XMLj and
XFL are very difficult to determine because the problem is statically indeterminate. In the
following analysis, it will be assumed that the x forces at the bottom joints are equal to
zero. This means that

XFLi = XFRi = XBL i = XBRi = 0.

This assumption may not be totally valid, but it should be a good approximation as these
forces are believed to be small. Figure 13d shows the forces acting on level i.

Now solving for the remaining forces

XFx -0

XM1Ri +XML i = 0

XMRi -- XMI •

XMDD = 0

H:o + ibz) b dcosO( - dcosO- d 2d 2 XmW-- -

H , + ib , ____ 0
_+ 2 d cos- X~lti =~ 0t22

= (H_+ b- (2i - I)) d cosO
XMLi 2 + "4

23



In summary,

Xi =O

H-o ib- id sin 0YRi = -YLi 2 4 w

- - H:0 + ib,
4

ZMi 0 ,

H.. bz (2i-) d cos 0
__ + - +

XMLi- - XARi 2 4 w

[YMi = 0.

3.1.5 Load 5: Moment About the x Axis

This loading condition is shown in figure 14. Again symmetry exists about the y-z
plane. Mathematically this means that

XBRi = -XFR i ,

YBRi = YFRi

XBLi = -XFLi

YBLi = YFLi

YMLi = YMRi 0.

Also, since the applied load has no Z component, all the reaction loads in the Z direction
are zero, i.e.,

ZMi = Z i = 0.

The front half of the lift is shown in figure I 5a. From this figure,

YMp = 0 ,

MRi - 0 ,
2

M,

YRi -2
2w

F, : 0,

24



level

1

2

nI

Figure 14. Basic scissor structure with
applied moment about the x axis.

level 
IVI2

2w

D

2I E

M x
w2w22w

a. b.

Figure 15. Freebody diagrams for an applied moment about the x axis.
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YRi + YLi -0.

YLi - M2w

2 w

This shows that the y forces are independent of the scissor level. As with the previous load,
we assume that the x forces at the ends of the members are zero. The remaining reaction
loads are shown in figure 15b. Summing the moments about DD and summing the forces
in the x direction gives

XML i = XfRi = 0

In summary,

Xi =0,
x.u0

Ym = - YLI -2

2w

XMi =0,

Y'Wi 0.

ZMi = 0

3.1.6 Load 6: Moment About the y Axis

A moment load about the z axis is shown in figure 16. In order to simplify the
analysis, several assumptions will be made. First, all joints, including the top ones, are
assumed to be pinned. Second, the y forces at the bottom of each level are assumed to be
zero. Because the applied load at the top of the lift has no y component, the summation of
the y forces at the bottom of each level must be zero. This does not require that the indi-
vidual forces be zero; even so, the assumption will be made. Third, the reaction forces in
the x z plane are assumed to act in the direction shown in figure 17a.

The above assumptions are necessary because the problem is statically indetermi-
nate. If information about the deflection of the joints was available, then the problem
might possibly be analyzed more accurately. However, this information is not available.
The reaction forces at the bottom of level i are now determined from figure 17a and 17b.

a =tan I
d cos 6

I-MI, Z" 0

(d 2 cos 2 0 + 2)'/

M'. - 4R i  2 0

Ri M1

2(d 2 COS
2 0 + 1.2V

~26



level

1

2

Figure 16. Basic scissor structure with
applied moment about the y axis.

My

d cos 0

/ a XFL,
SR P a ~~ZFL ,

RR

a. b.

Figure 17. Freebody diagrams for an applied moment about the y axis.
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MyW Myd cos 0

2(d 2 cos 2 0 + w 2 ) 2(d 2 coS20 + w 2 )

2(d 2 cos 2 0 + w2 ) ZMM oMydl cos 0 7; " XMUi
2(d2 COS28* -w 2 ) II ' M Vd cos 0

D XMRi/ 2(d 2 COS 2 0 + w 2 )
ZiRi M / yw

2(d 2 cos 2 0 + w 2 )
Mydl cos 0 Myw

2(d 2 cos 2 0 + w 2 ) 2(d 2 cos 2 0 + w 2 )

C.

Figure 17. Freebody diagrams for an applied moment about the y axis (continued).

XFLi R i sin a

M'. sin a

2(d2 cos 2 0 +

but sin a
(d2 cos2 0 + w2)",

Mh w
ri 2(d 2 cos2 0 + w 2 )

Z FI_= R i cos a

Ml cos a

2(d 2 cos 2 0 + w2)"',

d cos 0but cos a
(d2 cos 2 0 + w2)!

M, d cos 0
ZFI- 2(d 2 cos 2 0+ 2)

The remaining analyses will be completed by referring to figure 17c. The magnitudes of

Z.vfl.i and ZMR, depend on the tolerances of the lift. If one of the middle joints makes
contact before the other middle joint, then that joint could possible carry the entire load,
and after summing the forces in the z direction Z~t/i and Z ,R, are given by

Z or 1 IR, - 2M,.d cos 0
d2 cos 2 0 + w2

with the other one equal to 7ero.
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However, if they share the load equally, then

ZML i ZMRi - Z i

= _ Myd cos 0

(d2 cos 2 0 + K.2)

In this analysis ZIJLi and ZMRi are assumed to be equal. Equations for XML, and X~fRi are
calculated as follows.

IMDD = 0

XMDi = 0.

YF X = 0

XMLi + XMR = 0

XMR i = 0.

In summary,

XFi XBLi - M1.W

XFL, X 2(d2 cos 2 0 + w2 )

- M1y V4V

XFRi = XBRi 2(d 2 cos 2 0 + w 2 )

= Md cos 0

ZFL Z 2(d 2 cos 2 0 + H
2 )

-Mydcos 0
ZBLi = ZBRi = 2(d 2 cos 2 0 + w 2 )

Zi 41 - Myd cos 0
(d2 cos 2 0 + w2 )

Y, = YM,, = 0

X'Wi = 0

It is emphasized that the equations for this load should be used with some reserva-
tion because of the original assumptions. The equations should give a reasonable approxi-
mation, but should not be taken as exact.
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3.2 EQUATIONS FOR THE ACTUATOR

There are at least two methods of calculating the actuator forces required to raise
the scissor lift. The first method is to use equations of static equilibrium. In this method,
the general equations derived in the previous section are used to determine the reaction
forces that are not affected by the actuators. Equations of static equilibrium are then
used to solve for the remaining forces including the actuator force. The problem with this
method is that for most actuator placements a set of at least five simultaneous equations
results. This method is, therefore, not recommended.

The second method is to use the principle of conservation of energy. In this method
friction forces are assumed to be zero, requiring that work in equals work out. This assump-
tion makes it possible to calculate the actuator forces directly, simplifying the analysis of
the scissor levels containing the actuator. The equations in this section are derived using
this principle.

Referring to figure I, it is noted that of the six possible loads, only H, and H,
result in work as the lift elevates, and H, contributes only if it is applied to the joints that
move in the x direction. All other loads have no tendency to raise or lower the lift, there-
fore making no contribution.

Figure 18 shows a 4-level lift with loads applied in the x and y directions. Notice
that the distributed weight of the lift is accounted for by B, and B, acting at the center of
the lift. The validity of this model is proven as follows. Consider the uniform mass shown
in figure 19. The total potential energy stored in the mass is given by

lim
Am,-0

where g = acceleration due to gravity.

limE = y- !¢g(puwtA.1,i) .1"

J pguwvy dv.

If the weight is evenly distributed, then pguw - and
h

W 2 h
E = o -- v dY .

h

h 2 0"

W1I

2

Now if the block height increases but the total weight stays the same. then

Work= E, E,

R4"(h h,
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Figure 1 8. Four level lift loaded in the x and y directions.

Yi W

u 0

Figure 19. Uniform mass.
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Applying the principle of the conservation of energy gives

£

- (HdJ + (h - ho) + (Ho + (u - u) + f Fdr=O (5)
£0

where F- force exerted by the actuator

f = length of the actuator

r = dummy variable.

Taking the derivative with respect to f gives

+ B, h Bx) du
- (H# + + + -- + F = 02 df 2 df

But du/ df can be expressed in terms of dh/ df as follows.

h n(d 2 
- u2)1/ ,

dh I du
- n(d 2 - u2 ) '2 (-2u)df 2 df

-nu du

(d2 - u2 ) / df

-n du

tan 0 di

du tan0 dh

df n df

Making the appropriate substitution gives

[(H 0 + 2 (H + F 0

dh
F=K-.

df

were (H° B_, (H0 B.,) tan 0w here K =- H + 2- - 2 n

In order to use this equation, an expression of h as a function of f must be derived. The
derivative of the expression is then taken to give dh/df. These functions are designated by

f(f) and g(f) as shown below.
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h =f(f),

dh
-h g(f).

di

As an example of this method, the actuator forces on an n-level lift with two actu-
ators attached to the bottom of the lift will be analyzed. The right side of the lift is shown
in figure 20. The lift is assumed to be on a horizontal surface so that the weight of the lift
has only the y component, B,. The only load that is applied at the top of the lift is HO.
The formulas forf(f) and g(f) are derived as follows.

h n Vi d 2 - f2

dh I
- (d2 - f2) '2(-2f)df 2

-n
(d2 -

Hlv

2level

n

F F

Figure 20. n-level lift with actuators
attached between the bottom joints.

The last equation can be expressed in terms of 0 by noting that,

f

(d2 - f2)1/ tan 0
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dh -n

di? tan 0

Substituting this equation into equation 5 gives

F= - (- H_,0 ,+-
2 2 tan 6

= -(2 ) tan 0

As expected. this formula is identical to the formula for Xtji in load I in section 3.1 except
that i is replaced by n.

For many actuator locations, the derivation off( f) and g(f) is quite straightfor-

ward. For other locations, the derivation is more difficult. General formulas can be derived
for calculating g( f). Two sets of formulae will be derived. The first set assumes that both
ends of the actuator are attached to points on the lift. The second set of equations assumes
that only one end of the actuator is attached to the lift with the other end attached to a
fixed point. This second set of equations can also be used to calculate the force of an actua-
tor with both ends attached to the lift: however, the first set of equations is easier to use.

Some common equations are used in both derivations. These equations are pre-
sented below. Consider the n-level lift shown in figure 21. As shown, the back joints at the
bottom of the lift are pinned to a fixed point, and the origin of the x-y axis has been shifted
to correspond with this point. The coordinates of a point Q on a positive sloping member is
given by

XQ = ad cos 0, (6)

J, Q (n - i + a) d sin 0, (7)

where 0 :< a < I

For a point Q on a negatively sloping member, the formula for yQ remains the same:
however, the equation for XQ becomes

XQ=( -a)dcosO. (8)

An interesting observation is now made. If the equations for XQ and yQ are squared, then
for positive sloping members

x 2=a 2d 2 cos 2 0
-Q

V2 = (n- i + ,7)2  d 2 sin 2  0.

x2
COS 2 0 = -  2

a2d 2

sin 2 0 - - 0
(n - i + a) 2d 2
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level Y

2

YQ YQ
ad a

nI

r I
XQ XQ

Figure 21. Coordinates of a point on the lift.

Adding the previous two equations gives

I = -- ..- + jYQ

a2 d 2  (n - i + a)2 d 2

This is the equation of the ellipse shown in figure 22. This ellipse is the path traveled by
point Q. If the point is on a negatively sloping member, the x-axis intercepts are ±( I - a)d.
If a force is being applied to point Q to raise the lift, maximum mechanical advantage will
occur when the force is tangent to this path.

3.2.1 Derivation of dh/df Assuming Both Actuator Ends are Pinned
to a Scissor Member:

Before beginning the derivation, observe that because both ends of the actuator are
pinned to scissor members, the actuator (and all of the scissor members) will lie along the
x axis when 0 = 00 and along the y axis when 0 = 900. Let

f0 = length of the actuator for 0 = 00

£90 = length ot the actuator for 0 = 900.

Assume that the actuator is attached to points P and Q on the lift. Equations (6). (7), and
(8) can be made more general by letting xpf and XQO equal the x coordinate of points P and
Q respectively for 0 = 0, and y, and Yo() equal the v coordinates of the points for 0 = 90' .

From figure 21, it is observed that
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(n- + a)d

ad

Figure 22. Path traveled by a point on
a positively sloping scissor member.

aQd for positively sloping members,

XQO (I - aQ )d for negatively sloping members,

apd for positively sloping members,

xP° (I - ap )d for negatively sloping members,

.YQ90 = (n'- iQ + aQ)d.

Yp9() = (n - i, + ap)d.

The equations for XQ, yQ, xp, and yp become

XQ 
= 

XQO COS 0 ,

Y Q = YQo sin 0,

Xp = Xpo COS 0 ,

yp YP90 sin 0.

If the x and y components of the actuator length are designated by and f. respectively,
then

C :XQ - XPI

:(XQj - xpo) cos 0

Y, IQ -. Vp I ,

= (Y Q - Y o) sin 0 13
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Squaring £x and f, gives

j 2  (xQo - XPO) 2 cos 2 0
x

f g2 cos 2 O
0Co

£2 - (yO - )Po)2 sin 2 0

f £ 2 sin 2 0.

90

Solving for cos 2 0 and sin 2 0 gives

COS
2 0 xf2,

0

sin 2 0 =

90

Adding cos2 0 and sin 2 0 results in

£2 £2

0 90

This is the equation of the ellipse shown in figure 23. The length of the actuator is given by

£2 = f2 + £2
x 1

= f2 cos 2 0 + j2 sin 2 0

0 90

= f2 (I sin 2 0) + 2 sin 2 6
0 sn 90si

= (f2 -f) sin 2 0 + £2 (9)

But
h

sin 6 - (10)nd

Therefore

h2 - (f2 -f) n 2d2 +£

9 _( n2 d 2  (0I)
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y
f9Q

x

Figure 23. Length of an actuator attached
between two points on a lift.

Taking the derivative of h with respect to f results in

dh 2fn 2d 2

dh_
df 90~ - fo)"

dA fn2d 2

df (f, - f0)h

h can be replaced with the square root of equation I I giving

dh £n2d2  f 20- )A_ W f2o - f2

df (2 f2 P (f 2 - 12 )n2d2

dh_ nd 90 o 0 /
d oa 2 ) f2  f2%f(~ - 60 

) 0f

This equation can be expressed in terms of 0 by replacing f with the equality given in equa-
tion (9). This results in

dh _ nd[(f 2 - f2) sin 2 0+ 22 ( 90- f2 '
- [(o- )9sn.- 0 + 9]-0 0

_ nd(2£o Sin 2 0 + f2] ) 2f 22

(f~ 9~ ( f£ o £) sin 0

'/2

nd(f2o sin 2 0 + j2 cos 2 0)F 1

( f2 - f)(sin2 0)
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ndf
2 + 

0

dh \90 tan 0/

df (f2 - f2)

The equation can also be written in terms of h by replacing sin 0 with equation (10). The
result is

A n 2d 2  f (f - 1go ) 0 2

d (20 - 'I) n2d 2  
+

3.2.2 Derivation of dh/df Assuming One Actuator End is Pinned to Ground.

It is possible to derive an equation relating h to f for an actuator with one end
pinned to a fixed point using the techniques of the section 3.2. 1, howevcr, the icsulthng
equations are extremely complicated. In this section. thc cquation for d df will be derived
as a function of the angle of the scissor members from the x axis, the angle of the actuator
from the x axis, and the point of load application. Figure 24 shows an n-level lift with a
force applied at point Q. In figure 24, s is the unit vector tangent to the path traversed by
point Q (see figure 22). The equations for XQ and yQ were previously found to be

XQ XQO cos 0

YQ = YQ9O sin 0. (12)

Taking the derivation with respect to 0 gives

dQ -xQO sin 0

dyO
dO Q YQ90 cos 0

dyQ_ (-i),
dXQ (d.X

YQO cos 0
-xQo sin 0

_ -Y Q90

xQo tan 0
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See detail AA
Ay0

II
n

X 1 detail A

XQ

Figure 24. Actuator position and displacement nomenclature.

This is the slope of .-, is given by

" tan YQ9O (13)
xQo tan 0

A small displacement of the actuator is shown in detail A of figure 24.
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From figure 24 it is apparent that

d Q = lIr A.Q

ds AS-0 As

= sin 4 , (14)

ds lim As

df As-O Af

sin 77

cos (r + 90)
-I

(15)
cos ( + 4)

The height of the lift in terms ofyQ is given combining equations (10) and (12). The result
is

h = nd Q
Y Q9O

nd equals the max height of the platform. If the maximum height i, dc,gnated by hma x

then

h- max YQ

Y Q()

dh hmax
d (16)

The derivative of h with respect to f is found from equations (14). (15). and (16).

dh dh dy Q (Is
df dY Q ds df

h hmaX sin

YQ9O cos(+

If the other end of the actuator is attached to a fixed point P then 0 can be determined
from the following formula.

tan Q

XQ X p
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In summary, for positively sloping members

{ aQd for positively sloping members
XQ~( aQ)d for negatively sloping members

.Voo = (n - io + aQ)d

XQ = XQO COS 0

YQ =j.Qg0o sin 0

S= tan I \r xYP"

X Q:-

tan .'Q90
Xo tan 0

dh hmax I -sin

df (cos (C + 0))

Before proceeding, a word of caution needs to be made about the formula for determining
0. 0 can be any angle from 0' to 3600. Care must be taken to select the proper angle since
calculators always give angles from 900 to +90'. Because is always between 0 and 90' ,

does not have this ambiguity.

These formulas can also be used to determine dh dt' for an actuator with both ends

attached to points on the lift. This is done by modeling the actuator as two actuators, each
having one end pinned to ground.

An actuator attached to two points on a lift and pushing with force Fis shown in
figure 25a. In order to analyze this problem, the single actuator is replaced with two actua-
tors each pushing with force F as shown in figures 25b and 25c. Notice that one end of each
of these actuators is attached to a fixed point. Assuming that friction is negligible requires
that

i',n = w',ui

Modifiying equation 5 of section 3.2 to account for the two actuators results in

~f f
B B (

H,( + 2 (h 1ji) + (H of) + 2 ( u Up) + f Fdr, + Fdr-, 0

Bui h :n(d 2 U2)

u(d : )K'U= +2 
h4
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actuator 2

actuator 1
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a. b. C.

Figure 25. Actuator models.

Substituting the above equation for u gives

(,.+--),h-ho+(,.,+ - 4)'; (d2~ --)2B+ f Fdr + f Fdr, O

o o

Taking the derivative with respect to h gives

/ ~ + +\ H~ + -d2 -/ - K T + F-h+ F -d = 0

8 H B~)~~f d h 2) ~ di

+ - + (+ F -- + F d 2 .

h nn

But =tan .

(d2 
h2)

24
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Therefore.

+ (+F t + F 022 n A dh dh

F=K I

dfi  df,

dh A

-I + , I

where K ( H. 0 + + (H.0 + n

The term in the large parenthesis is equal to dh/df. Now, use the previous equations to find
dh df , and dh/df2.
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4.0 CALCULATION OF REACTION FORCES

A scissor lift with a single actuator in levels i and i + I is shown in figure 26a. As
mentioned in section 3.0, the scissor members above level i and below level i + I can be
modelled as two basic scissor structures. The model for members i thru i - I is not shown
because the analysis and interpretation of the forces in this model are straightforward. A
possible model for members i + 2 thru n is shown in figure 26b. This model was obtained
by rotating the members 180 degrees about the z axis. The joints at the top of level i + 2
are identified by the letters a, b, c, and d. The corresponding joints in the model are sim-
ilarly identified. In order to determine the applied loads at the top of this model, the reac-
tion forces at the bottom of the lift are first determined by performing a freebody analysis
on the entire lift. These loads are then applied to the top of the model by reversing the x
and y forces and moments (including the x and y components of the weight of the lift)
while leaving the z forces and moments the same. Now the reaction forces throughout the
model are determined using the equations of section 3. 1. The weight of the model is nega-
tive in these calculations. The forces at the bottom of level i + I are obtained by transfering
the loads at joints a, b, c, and d at the bottom of the model to the corresponding joint at
the bottom of level i + 1. When transfering the loads, the x and y forces are transfered
directly but the z forces must be reversed. The reaction forces in level I to i - I are calcu-
lated using the equations from section 3.1. The loads at the top of level i are obtained by
reversing all of the reaction forces at the bottom of level i - I. The actuator force is now
found using the equations of section 3.2. Finally, the reactions forces in levels i and i + I
are found using equations of static equilibrium.
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Figure 26. Detailed n-level scissor lift,
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5.0 ACTUATOR PLACEMENT

With the results of the previous section, several design issues can now be discussed.
The first is actuator placement. Several actuator constraints must be considered when
selecting a location. These constraints include the minimum retracted length, maximum
extended length, and maximum available force. Constraints imposed by the lift include
strength of scissor members and space constraints imposed by the lift (and possibly by the
payload). Proper actuator placement can significantly reduce the maximum force required
of the actuator and also reduce the reaction forces at the lift joints. This in turn allows the
designer to use cheaper and lighter parts in the design.

Figure 27 shows several possible locations for a single actuator on a three-level lift.
Equations for dh/ df in terms of 0 were determined and are given in table 1. Figure 28 plots
these equations for 5' _ 0 :5 90'. Of the five positions, position 3 results in the lowest
actuator force for small values of 0. The problem with this position is that the distance
between the two joints goes to zero as the lift height approaches zero allowing no storage
space for the actuator. If there is vacant space beneath the lift and if the actuator is prop-
erly designed, then this position can still be used.

An interesting subtlety is illustrated by positions 2 and 5. Position 5 was purposely
selected to coincide with position 2 at 0 = 10'. Even though the points coincide at this
angle. using the fixed point results in a force that is nearly half that of the moving point-a
significant reduction. The disadvantage of position 5. is that the final extended length is
much larger than that of position 2.

1

1 

4

-d
44 2,5

1 x 4  3

8 ~1,2,35

1 51.

d cos 100

Figure 27. Possible actuator locations.
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Table 1. Comparison of dh/di for several actuator locations.

Actuator
Position Equation for dh; df dh/df for 0 100 dh'di for 0 50

-3
-17.0 -34.3

tan 0

3 (25+9 1 '/2213.3 926.0
4 tan 2  1.

3 3 3 3

31 2 \) '/2
4 +tan 2  9.62 17.7

12 sin 7.59 14.69

5 cos (r +

where

5
- sin 04

tan I

- cos 0 cos 10°

4

S=tan 1
tan 0

The actuator force is unaftected by the level in which the actuator is placed:
however, the maximum stress in the members (assuming a given cross-section and material)
is affected. To illustrate this, consider the weightless lift shown in figure 29a. Only the right
side is shown in this figure. In this lift, the actuator (not shown) is assumed to be attached
to the lift at points P and Q. Level i is therefore constrained by the actuator, and levels I
through i - I and levels i + I through n can be modelled by two basic scissor structures. By
applying the appropriate equations from load I of section 3.1, the reaction forces at the top
and bottom of level i can be calculated and ire shown in figure 29b.

In order to determine the stresses in the members, the forces at the joints need to be
resolved into normal and tangential loads. The resulting normal and tangential loads are
shown in figure 29c. The equations for these forces are derived below.
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Figure 29. Weightless n-level lift with actuator between left joints of level i.
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P nH Cos 0 Hv(n - i) H., Cos0
2 2 tan 0 4

Fpu n -i I

HYcos 0 2 2 4

S- -(17)

2 4

nH v  Hv.(i~ -) H,
FQN, 2 2tcos 0 - sin 0- -- cos0

F\ 2 2 tan 0 4

FQ V  n n i- I 1

HVcos 0 2 2 4

FQ. _ + n + 1) (18)

HY cos 0 2 (2 4

nH Hv(n - i) H
0cos0- -- sin0

FPT 2 2 tan 0 4

FPT n n - i I

Hy sin0 2 2tan2 0  4

-l (n + +

2 tan 2 0 2 4 2 tan 2 0

I I n 22n- 1l\19
2 2tan2 0 (2 tan2 0 4

nH .H,.(i - ) H,F-nHl. sin 0+ H1 i- cos0 - in 0

FQT 2 2 tan0 0 4

FQT n i - I

H, sin 0 2 2 tan 2 0 4

_ I_ _ . ( - + 2n - 1) (20)

2 tan 2 0 2 tan 2 0 (20)

Equations (17) and (18) are plotted in figure 30a for n 7. Equations (19) and (20)

are plotted in figure 30b for n = 7 and 0 = 450. From these figures it is seen that in order to

reduce the maximum load on any member, the actuator should be placed in the center level

of the lift. Adding the weight of the platform will probably shift the ideal level downward.
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Although the above analysis was done for a specific actuator orientation, the principle is
applicable to any orientation, and the maximum forces can be reduced by placing the actu-
ator in the center of the lift.

Additional mechanical advantage can be achieved by taking advantage of the physi-

cal geometries of the scissor members. This is done by mounting the ends of the actuator
at the upper or lower sides of the scissor members to improve the angle of attack. When
deriving the actuator force equations in section 3.2, it was assumed that the actuator is
attached to points on the longitudinal axis of the scissor members. If the end of the actua-
tor is offset from this axis to take advantage of the physical geometries of the scissor
members, then the equations no longer apply. Because this tcchnique can reduce the actua-
tor forces significantly, some effort was made to derive equations for this more general
case; however, the equations became overly complex. In order to analyze the actuator
forces for this case it is recommended that the equations for the basic scissor structure be
used to calculate the forces at the top and bottom of the levels containing the actuator, and
that the remaining forces (including the actuator force) be calculated using the equations of
static equilibrium. Because the actuator force is unknown a set of simultaneous equations
will result which can be solved using matrix operations.

In an earlier example, a lift with two parallel actuators attached to the bottom of
the lift was assumed. A scissor lift was recently built that used two electric actuators in

parallel to raise the lift, although the actuator placement was different from the previous
example. It was found that because the actuator motors operated at different speeds the
actuators "fought" each other even though they were both driving the lift in the same direc-
tion. This resulted in excessive loading of the actuators and nearly caused the motors to
stall. Eventually the actuators were replaced with a single, centered actuator to eliminate
the problem. Parallel actuation is feasible, but some means of synchronization will likely be
necessary. It is unclear whether the problem would have occurred with hydraulic actuators.

One last observation is that the actuator forces are, in general, several times larger
than the applied load. If position 5 is used, the reaction forces in the y direction at the bot-
tom sliding joints are negative. This means that these joints must also be constrained in the
upward direction, otherwise the lift will tip over.
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Figure 30. Normal and tangential forces.
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6.0 STRENGTH AND RIGIDITY

The reaction loads on the positive sloping members of an arbitrary level of a lift
are shown in figure 31. Notice that the reaction forces for loads 1, 2. and 3 are all in the x
and y directions. Furthermore, the' are symmetrical about the x-y plane. Because of this
any crossbracing between the left and right sides of the lift for these loads is completely
unstressed. Crossbracing may be used for buckling purposes, but if used these members will
not be heavily loaded. Loads 4, 5, and 6 introduce reaction forces that do stress the cross-
brace members. In these cases, crossbracing between the sides of the lift is essential for both
strength and rigidity. In most applications, the scissor lift operates on level ground. In this
application load I is the most significant load although loads 2 and 5 may also be present if
the load at the top of the lift is not centered. If the lift operates on sloping surfaces, then
loads 3, 4, and 6 will also be present. The specific application for which the scissor lift is
being designed will, of course, determine the type and amount of crossbracing required.

As previously mentioned, loads I through 3 do not stress the crossbraces. As long
as 0 is not too small (greater than 50) the most significant component of the reaction loads
is the normal component. This component is shown in figure 32a. For these loads it is criti-
cal that dimension t be large in order to carry the load efficiently. Rectangular tubing is
ideal for this application. Channel beams or I-beams would also be effective.

When loads 4 and 5 are present and 0 is small, the loads affecting the crossbracing
are the ones shown in figure 32b. In this case dimension t, of the crossbaces and dimension
t, of the scissor members needs to be large in order to carry the load efficiently. Rectangu-
lar tubing is ideal in this loading condition because it has a high moment of inertia-to-
weight ratio. Channel or I-beam cross sections could also be used. As 0 approaches 90'
crossbracing becomes less significant because the forces begin to align with the axis of the
members.

Load 4 introduces a condition not present in any of the other loads. This ,ondition
is shown in figure 32c. A critical dimension in this case is w. Rectangular tubing is again
ideal. Channel and I-beam cross sections are less desirable. Crossbracing similar to figure
32d would also be effective for this load.

Load 6 generates the normal forces shown in figure 32b except that for this load,
the normal forces are neglible for small values of 0 but become larger as 0 approaches 90'.
Load 6 also generates the condition shown figure 32e. The crossbracing shown in figure
32d is ideal for this condition.

In addition to proper member cross section selection, several other things can be
done to make the lift more rigid. One of the assumptions made in calculating the x forces
at the ends of the members for loads 4 and S was that the ends are not constrained in the x
direction. It was admitted that this assurr on is not entirely valid especially if the sliding/
rollings joints at the top and bottom of the lift are restrained after the lift is deployed. This
can be done by using some type of brake, or by using parallel actuators (if actuators are
employed at the top and/or bottom of the lift). Removing this degree of freedom will help
make the lift more rigid. The other thing that will improve rigidity is keeping the tolerances
in the lift as small as possible.
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Load 1 -Negative y direction Load 4-Positive z direction

Load 2-Moment about z axis Load 5-.Moment about x axis

Load 3 Positive x direction Load 6 Moment about y axis

Figure 31. Summary of reaction forces.
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Figure 32. Crossbracing.
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e.

Figure 32. Crossbracing (continued).

7.0 CONCLUSION

The purpose of this paper was to derive general equations for calculating reaction
forces throughout a scissor lift. In order to derive these equations, two critical observa-
tions were made. The first observation was that the reaction forces in the scissor members
outside of the levels containing the actuator are completely unaffected by the orientation of
the actuator. This allows the scissor members above the actuator and the members below
the actuator to be modelled as two "basic scissor structures," a scissor structure that is
pinned to ground at all four bottom joints and that contains no actuators. The second
critical observation was that if the lift is assumed to be frictionless, then the principal of
conservation of energy applies that states that work in equals work out. This principal
allows the actuator forces to be calculated directly.

In the first part of the paper, reaction force equations were derived for the basic
scissor structure. In this derivation, the friction at the joints was assumed to be negligible.
Next, equations for determining the actuator forces were derived using the principal of
conservation of energy. Following these derivations, the proper application of these equa-
tions in determining the reaction forces throughout the lift was given. Finally, several
design issues were discussed. These issues included actuator placement and "strength and
rigidity."
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