Math Problem Book I

compiled by

Kin Y. Li

Hong Kong Mathematical Society
International Mathematical Olympiad Hong Kong Committee

(Supported by the Quality Education Fund)

Math Problem Book I compiled by

Kin Y. Li

Department of Mathematics
Hong Kong University of Science and Technology

Copyright (c) 2001 Hong Kong Mathematical Society IMO(HK) Committee.
Printed in Hong Kong

Preface

There are over fifty countries in the world nowadays that hold mathematical olympiads at the secondary school level annually. In Hungary, Russia and Romania, mathematical competitions have a long history, dating back to the late 1800's in Hungary's case. Many professional or amateur mathematicians developed their interest in math by working on these olympiad problems in their youths and some in their adulthoods as well.

The problems in this book came from many sources. For those involved in international math competitions, they no doubt will recognize many of these problems. We tried to identify the sources whenever possible, but there are still some that escape us at the moment. Hopefully, in future editions of the book we can fill in these missing sources with the help of the knowledgeable readers.

This book is for students who have creative minds and are interested in mathematics. Through problem solving, they will learn a great deal more than school curricula can offer and will sharpen their analytical skills. We hope the problems collected in this book will stimulate them and seduce them to deeper understanding of what mathematics is all about. We hope the international math communities support our efforts for using these brilliant problems and solutions to attract our young students to mathematics.

Most of the problems have been used in practice sessions for students participated in the Hong Kong IMO training program. We are especially pleased with the efforts of these students. In fact, the original motivation for writing the book was to reward them in some ways, especially those who worked so hard to become reserve or team members. It is only fitting to list their names along with their solutions. Again there are unsung heros
who contributed solutions, but whose names we can only hope to identify in future editions.

As the title of the book suggest, this is a problem book. So very little introduction materials can be found. We do promise to write another book presenting the materials covered in the Hong Kong IMO training program. This, for certain, will involve the dedication of more than one person. Also, this is the first of a series of problem books we hope. From the results of the Hong Kong IMO preliminary contests, we can see waves of new creative minds appear in the training program continuously and they are younger and younger. Maybe the next problem book in the series will be written by our students.

Finally, we would like to express deep gratitude to the Hong Kong Quality Education Fund, which provided the support that made this book possible.

Kin Y. Li
Hong Kong
April, 2001

Advices to the Readers

The only way to learn mathematics is to do mathematics. In this book, you will find many math problems, ranging from simple to challenging problems. You may not succeed in solving all the problems. Very few people can solve them all. The purposes of the book are to expose you to many interesting and useful mathematical ideas, to develop your skills in analyzing problems and most important of all, to unleash your potential of creativity. While thinking about the problems, you may discover things you never know before and putting in your ideas, you can create something you can be proud of.

To start thinking about a problem, very often it is helpful to look at the initial cases, such as when $n=2,3,4,5$. These cases are simple enough to let you get a feeling of the situations. Sometimes, the ideas in these cases allow you to see a pattern, which can solve the whole problem. For geometry problems, always draw a picture as accurate as possible first. Have protractor, ruler and compass ready to measure angles and lengths.

Other things you can try in tackling a problem include changing the given conditions a little or experimenting with some special cases first. Sometimes may be you can even guess the answers from some cases, then you can study the form of the answers and trace backward.

Finally, when you figure out the solutions, don't just stop there. You should try to generalize the problem, see how the given facts are necessary for solving the problem. This may help you to solve related problems later on. Always try to write out your solution in a clear and concise manner. Along the way, you will polish the argument and see the steps of the solutions more clearly. This helps you to develop strategies for dealing with other problems.

The solutions presented in the book are by no means the only ways to do the problems. If you have a nice elegant solution to a problem and would like to share with others (in future editions of this book), please send it to us by email at makyli@ust.hk. Also if you have something you cannot understand, please feel free to contact us by email. We hope this book will increase your interest in math.

Finally, we will offer one last advice. Don't start with problem 1. Read the statements of the problems and start with the ones that interest you the most. We recommend inspecting the list of miscellaneous problems first.

Have a fun time.

Table of Contents

Preface iii
Advices to the Readers v
Contributors ix
Algebra Problems 1
Geometry Problems 10
Number Theory Problems 18
Combinatorics Problems 24
Miscellaneous Problems 28
Solutions to Algebra Problems 35
Solutions to Geometry Problems. 69
Solutions to Number Theory Problems 98
Solutions to Combinatorics Problems 121
Solutions to Miscellaneous Problems... 135

Contributors

Chan Kin Hang, 1998, 1999, 2000, 2001 Hong Kong team member
Chan Ming Chiu, 1997 Hong Kong team reserve member
Chao Khek Lun, 2001 Hong Kong team member
Cheng Kei Tsi, 2001 Hong Kong team member
Cheung Pok Man, 1997, 1998 Hong Kong team member
Fan Wai Tong, 2000 Hong Kong team member
Fung Ho Yin, 1997 Hong Kong team reserve member
Ho Wing Yip, 1994, 1995, 1996 Hong Kong team member
Kee Wing Tao, 1997 Hong Kong team reserve member
Lam Po Leung, 1999 Hong Kong team reserve member
Lam Pei Fung, 1992 Hong Kong team member
Lau Lap Ming, 1997, 1998 Hong Kong team member
Law Ka Ho, 1998, 1999, 2000 Hong Kong team member
Law Siu Lung, 1996 Hong Kong team member
Lee Tak Wing, 1993 Hong Kong team reserve member
Leung Wai Ying, 2001 Hong Kong team member
Leung Wing Chung, 1997, 1998 Hong Kong team member
Mok Tze Tao, 1995, 1996, 1997 Hong Kong team member
Ng Ka Man, 1997 Hong Kong team reserve member
Ng Ka Wing, 1999, 2000 Hong Kong team member
Poon Wai Hoi, 1994, 1995, 1996 Hong Kong team member
Poon Wing Chi, 1997 Hong Kong team reserve member
Tam Siu Lung, 1999 Hong Kong team reserve member
To Kar Keung, 1991, 1992 Hong Kong team member
Wong Chun Wai, 1999, 2000 Hong Kong team member
Wong Him Ting, 1994, 1995 Hong Kong team member
Yu Ka Chun, 1997 Hong Kong team member
Yung Fai, 1993 Hong Kong team member

Problems

Polynomials

1. (Crux Mathematicorum, Problem 7) Find (without calculus) a fifth degree polynomial $p(x)$ such that $p(x)+1$ is divisible by $(x-1)^{3}$ and $p(x)-1$ is divisible by $(x+1)^{3}$.
2. A polynomial $P(x)$ of the n-th degree satisfies $P(k)=2^{k}$ for $k=$ $0,1,2, \ldots, n$. Find the value of $P(n+1)$.
3. (1999 Putnam Exam) Let $P(x)$ be a polynomial with real coefficients such that $P(x) \geq 0$ for every real x. Prove that

$$
P(x)=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots+f_{n}(x)^{2}
$$

for some polynomials $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ with real coefficients.
4. (1995 Russian Math Olympiad) Is it possible to find three quadratic polynomials $f(x), g(x), h(x)$ such that the equation $f(g(h(x)))=0$ has the eight roots $1,2,3,4,5,6,7,8$?
5. (1968 Putnam Exam) Determine all polynomials whose coefficients are all ± 1 that have only real roots.
6. (1990 Putnam Exam) Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for $n=1,2,3, \ldots$, the polynomial $P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has exactly n distinct real roots?
7. (1991 Austrian-Polish Math Competition) Let $P(x)$ be a polynomial with real coefficients such that $P(x) \geq 0$ for $0 \leq x \leq 1$. Show that there are polynomials $A(x), B(x), C(x)$ with real coefficients such that
(a) $A(x) \geq 0, B(x) \geq 0, C(x) \geq 0$ for all real x and
(b) $P(x)=A(x)+x B(x)+(1-x) C(x)$ for all real x.
(For example, if $P(x)=x(1-x)$, then $P(x)=0+x(1-x)^{2}+(1-x) x^{2}$.)
8. (1993 IMO) Let $f(x)=x^{n}+5 x^{n-1}+3$, where $n>1$ is an integer. Prove that $f(x)$ cannot be expressed as a product of two polynomials, each has integer coefficients and degree at least 1.
9. Prove that if the integer a is not divisible by 5 , then $f(x)=x^{5}-x+a$ cannot be factored as the product of two nonconstant polynomials with integer coefficients.
10. (1991 Soviet Math Olympiad) Given $2 n$ distinct numbers $a_{1}, a_{2}, \ldots, a_{n}$, $b_{1}, b_{2}, \ldots, b_{n}$, an $n \times n$ table is filled as follows: into the cell in the i-th row and j-th column is written the number $a_{i}+b_{j}$. Prove that if the product of each column is the same, then also the product of each row is the same.
11. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two distinct collections of n positive integers, where each collection may contain repetitions. If the two collections of integers $a_{i}+a_{j}(1 \leq i<j \leq n)$ and $b_{i}+b_{j}(1 \leq i<j \leq n)$ are the same, then show that n is a power of 2 .

Recurrence Relations

12. The sequence x_{n} is defined by

$$
x_{1}=2, \quad x_{n+1}=\frac{2+x_{n}}{1-2 x_{n}}, \quad n=1,2,3, \ldots
$$

Prove that $x_{n} \neq \frac{1}{2}$ or 0 for all n and the terms of the sequence are all distinct.
13. (1988 Nanchang City Math Competition) Define $a_{1}=1, a_{2}=7$ and $a_{n+2}=\frac{a_{n+1}^{2}-1}{a_{n}}$ for positive integer n. Prove that $9 a_{n} a_{n+1}+1$ is a perfect square for every positive integer n.
14. (Proposed by Bulgaria for 1988 IMO) Define $a_{0}=0, a_{1}=1$ and $a_{n}=$ $2 a_{n-1}+a_{n-2}$ for $n>1$. Show that for positive integer k, a_{n} is divisible by 2^{k} if and only if n is divisible by 2^{k}.
15. (American Mathematical Monthly, Problem E2998) Let x and y be distinct complex numbers such that $\frac{x^{n}-y^{n}}{x-y}$ is an integer for some four consecutive positive integers n. Show that $\frac{x^{n}-y^{n}}{x-y}$ is an integer for all positive integers n.

Inequalities

16. For real numbers $a_{1}, a_{2}, a_{3}, \ldots$, if $a_{n-1}+a_{n+1} \geq 2 a_{n}$ for $n=2,3, \ldots$, then prove that

$$
A_{n-1}+A_{n+1} \geq 2 A_{n} \text { for } n=2,3, \ldots
$$

where A_{n} is the average of $a_{1}, a_{2}, \ldots, a_{n}$.
17. Let $a, b, c>0$ and $a b c \leq 1$. Prove that

$$
\frac{a}{c}+\frac{b}{a}+\frac{c}{b} \geq a+b+c
$$

18. (1982 Moscow Math Olympiad) Use the identity $1^{3}+2^{3}+\cdots+n^{3}=$ $\frac{n^{2}(n+1)^{2}}{2}$ to prove that for distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\left(a_{1}^{7}+a_{2}^{7}+\cdots+a_{n}^{7}\right)+\left(a_{1}^{5}+a_{2}^{5}+\cdots+a_{n}^{5}\right) \geq 2\left(a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}\right)^{2} .
$$

Can equality occur?
19. (1997 IMO shortlisted problem) Let $a_{1} \geq \cdots \geq a_{n} \geq a_{n+1}=0$ be a sequence of real numbers. Prove that

$$
\sqrt{\sum_{k=1}^{n} a_{k}} \leq \sum_{k=1}^{n} \sqrt{k}\left(\sqrt{a_{k}}-\sqrt{a_{k+1}}\right) .
$$

20. (1994 Chinese Team Selection Test) For $0 \leq a \leq b \leq c \leq d \leq e$ and $a+b+c+d+e=1$, show that

$$
a d+d c+c b+b e+e a \leq \frac{1}{5}
$$

21. (1985 Wuhu City Math Competition) Let x, y, z be real numbers such that $x+y+z=0$. Show that

$$
6\left(x^{3}+y^{3}+z^{3}\right)^{2} \leq\left(x^{2}+y^{2}+z^{2}\right)^{3} .
$$

22. (1999 IMO) Let n be a fixed integer, with $n \geq 2$.
(a) Determine the least constant C such that the inequality

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}
$$

holds for all nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{n}$.
(b) For this constant C, determine when equality holds.
23. (1995 Bulgarian Math Competition) Let $n \geq 2$ and $0 \leq x_{i} \leq 1$ for $i=1,2, \ldots, n$. Prove that

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)-\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}\right) \leq\left[\frac{n}{2}\right]
$$

where $[x]$ is the greatest integer less than or equal to x.
24. For every triplet of functions $f, g, h:[0,1] \rightarrow R$, prove that there are numbers x, y, z in $[0,1]$ such that

$$
|f(x)+g(y)+h(z)-x y z| \geq \frac{1}{3}
$$

25. (Proposed by Great Britain for 1987 IMO) If x, y, z are real numbers such that $x^{2}+y^{2}+z^{2}=2$, then show that $x+y+z \leq x y z+2$.
26. (Proposed by USA for 1993 IMO) Prove that for positive real numbers a, b, c, d,

$$
\frac{a}{b+2 c+3 d}+\frac{b}{c+2 d+3 a}+\frac{c}{d+2 a+3 b}+\frac{d}{a+2 b+3 c} \geq \frac{2}{3} .
$$

27. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be $2 n$ positive real numbers such that
(a) $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and
(b) $b_{1} b_{2} \cdots b_{k} \geq a_{1} a_{2} \cdots a_{k}$ for all $k, 1 \leq k \leq n$.

Show that $b_{1}+b_{2}+\cdots+b_{n} \geq a_{1}+a_{2}+\cdots+a_{n}$.
28. (Proposed by Greece for 1987 IMO) Let $a, b, c>0$ and m be a positive integer, prove that

$$
\frac{a^{m}}{b+c}+\frac{b^{m}}{c+a}+\frac{c^{m}}{a+b} \geq \frac{3}{2}\left(\frac{a+b+c}{3}\right)^{m-1} .
$$

29. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, show that

$$
\frac{a_{1}}{2}+\frac{a_{2}}{8}+\cdots+\frac{a_{n}}{n 2^{n}} \geq 1-\frac{1}{2^{n}} .
$$

30. (1982 West German Math Olympiad) If $a_{1}, a_{2}, \ldots, a_{n}>0$ and $a=$ $a_{1}+a_{2}+\cdots+a_{n}$, then show that

$$
\sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} \geq \frac{n}{2 n-1}
$$

31. Prove that if $a, b, c>0$, then $\frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} \geq \frac{a^{2}+b^{2}+c^{2}}{2}$.
32. Let $a, b, c, d>0$ and

$$
\frac{1}{1+a^{4}}+\frac{1}{1+b^{4}}+\frac{1}{1+c^{4}}+\frac{1}{1+d^{4}}=1 .
$$

Prove that $a b c d \geq 3$.
33. (Due to Paul Erdös) Each of the positive integers a_{1}, \ldots, a_{n} is less than 1951. The least common multiple of any two of these is greater than 1951. Show that

$$
\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}<1+\frac{n}{1951} .
$$

34. A sequence $\left(P_{n}\right)$ of polynomials is defined recursively as follows:

$$
P_{0}(x)=0 \quad \text { and for } n \geq 0, \quad P_{n+1}(x)=P_{n}(x)+\frac{x-P_{n}(x)^{2}}{2} .
$$

Prove that

$$
0 \leq \sqrt{x}-P_{n}(x) \leq \frac{2}{n+1}
$$

for every nonnegative integer n and all x in $[0,1]$.
35. (1996 IMO shortlisted problem) Let $P(x)$ be the real polynomial function, $P(x)=a x^{3}+b x^{2}+c x+d$. Prove that if $|P(x)| \leq 1$ for all x such that $|x| \leq 1$, then

$$
|a|+|b|+|c|+|d| \leq 7
$$

36. (American Mathematical Monthly, Problem 4426) Let $P(z)=a z^{3}+$ $b z^{2}+c z+d$, where a, b, c, d are complex numbers with $|a|=|b|=|c|=$ $|d|=1$. Show that $|P(z)| \geq \sqrt{6}$ for at least one complex number z satisfying $|z|=1$.
37. (1997 Hungarian-Israeli Math Competition) Find all real numbers α with the following property: for any positive integer n, there exists an integer m such that $\left|\alpha-\frac{m}{n}\right|<\frac{1}{3 n}$?
38. (1979 British Math Olympiad) If n is a positive integer, denote by $p(n)$ the number of ways of expressing n as the sum of one or more positive integers. Thus $p(4)=5$, as there are five different ways of expressing 4 in terms of positive integers; namely

$$
1+1+1+1, \quad 1+1+2, \quad 1+3, \quad 2+2, \quad \text { and } 4
$$

Prove that $p(n+1)-2 p(n)+p(n-1) \geq 0$ for each $n>1$.

Functional Equations

39. Find all polynomials f satisfying $f\left(x^{2}\right)+f(x) f(x+1)=0$.
40. (1997 Greek Math Olympiad) Let $f:(0, \infty) \rightarrow R$ be a function such that
(a) f is strictly increasing,
(b) $f(x)>-\frac{1}{x}$ for all $x>0$ and
(c) $f(x) f\left(f(x)+\frac{1}{x}\right)=1$ for all $x>0$.

Find $f(1)$.
41. (1979 Eötvös-Kürschák Math Competition) The function f is defined for all real numbers and satisfies $f(x) \leq x$ and $f(x+y) \leq f(x)+f(y)$ for all real x, y. Prove that $f(x)=x$ for every real number x.
42. (Proposed by Ireland for 1989 IMO) Suppose $f: R \rightarrow R$ satisfies $f(1)=1, f(a+b)=f(a)+f(b)$ for all $a, b \in R$ and $f(x) f\left(\frac{1}{x}\right)=1$ for $x \neq 0$. Show that $f(x)=x$ for all x.
43. (1992 Polish Math Olympiad) Let Q^{+}be the positive rational numbers. Determine all functions $f: Q^{+} \rightarrow Q^{+}$such that $f(x+1)=f(x)+1$ and $f\left(x^{3}\right)=f(x)^{3}$ for every $x \in Q^{+}$.
44. (1996 IMO shortlisted problem) Let R denote the real numbers and $f: R \rightarrow[-1,1]$ satisfy

$$
f\left(x+\frac{13}{42}\right)+f(x)=f\left(x+\frac{1}{6}\right)+f\left(x+\frac{1}{7}\right)
$$

for every $x \in R$. Show that f is a periodic function, i.e. there is a nonzero real number T such that $f(x+T)=f(x)$ for every $x \in R$.
45. Let N denote the positive integers. Suppose $s: N \rightarrow N$ is an increasing function such that $s(s(n))=3 n$ for all $n \in N$. Find all possible values of s (1997).
46. Let N be the positive integers. Is there a function $f: N \rightarrow N$ such that $f^{(1996)}(n)=2 n$ for all $n \in N$, where $f^{(1)}(x)=f(x)$ and $f^{(k+1)}(x)=$ $f\left(f^{(k)}(x)\right)$?
47. (American Mathematical Monthly, Problem E984) Let R denote the real numbers. Find all functions $f: R \rightarrow R$ such that $f(f(x))=x^{2}-2$ or show no such function can exist.
48. Let R be the real numbers. Find all functions $f: R \rightarrow R$ such that for all real numbers x and y,

$$
f(x f(y)+x)=x y+f(x)
$$

49. (1999 IMO) Determine all functions $f: R \rightarrow R$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all x, y in R.
50. (1995 Byelorussian Math Olympiad) Let R be the real numbers. Find all functions $f: R \rightarrow R$ such that

$$
f(f(x+y))=f(x+y)+f(x) f(y)-x y
$$

for all $x, y \in R$.
51. (1993 Czechoslovak Math Olympiad) Let Z be the integers. Find all functions $f: Z \rightarrow Z$ such that

$$
f(-1)=f(1) \text { and } f(x)+f(y)=f(x+2 x y)+f(y-2 x y)
$$

for all integers x, y.
52. (1995 South Korean Math Olympiad) Let A be the set of non-negative integers. Find all functions $f: A \rightarrow A$ satisfying the following two conditions:
(a) For any $m, n \in A, 2 f\left(m^{2}+n^{2}\right)=(f(m))^{2}+(f(n))^{2}$.
(b) For any $m, n \in A$ with $m \geq n, f\left(m^{2}\right) \geq f\left(n^{2}\right)$.
53. (American Mathematical Monthly, Problem E2176) Let Q denote the rational numbers. Find all functions $f: Q \rightarrow Q$ such that

$$
f(2)=2 \quad \text { and } \quad f\left(\frac{x+y}{x-y}\right)=\frac{f(x)+f(y)}{f(x)-f(y)} \text { for } x \neq y .
$$

54. (Mathematics Magazine, Problem 1552) Find all functions $f: R \rightarrow R$ such that

$$
f(x+y f(x))=f(x)+x f(y) \quad \text { for all } x, y \text { in } R .
$$

Maximum/Minimum

55. (1985 Austrian Math Olympiad) For positive integers n, define

$$
f(n)=1^{n}+2^{n-1}+3^{n-2}+\cdots+(n-2)^{3}+(n-1)^{2}+n .
$$

What is the minimum of $f(n+1) / f(n)$?
56. (1996 Putnam Exam) Given that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\{1,2, \ldots, n\}$, find the largest possible value of $x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}$ in terms of n (with $n \geq 2$).

Geometry Problems

57. (1995 British Math Olympiad) Triangle $A B C$ has a right angle at C. The internal bisectors of angles $B A C$ and $A B C$ meet $B C$ and $C A$ at P and Q respectively. The points M and N are the feet of the perpendiculars from P and Q to $A B$. Find angle $M C N$.
58. (1988 Leningrad Math Olympiad) Squares $A B D E$ and $B C F G$ are drawn outside of triangle $A B C$. Prove that triangle $A B C$ is isosceles if $D G$ is parallel to $A C$.
59. $A B$ is a chord of a circle, which is not a diameter. Chords $A_{1} B_{1}$ and $A_{2} B_{2}$ intersect at the midpoint P of $A B$. Let the tangents to the circle at A_{1} and B_{1} intersect at C_{1}. Similarly, let the tangents to the circle at A_{2} and B_{2} intersect at C_{2}. Prove that $C_{1} C_{2}$ is parallel to $A B$.
60. (1991 Hunan Province Math Competition) Two circles with centers O_{1} and O_{2} intersect at points A and B. A line through A intersects the circles with centers O_{1} and O_{2} at points Y, Z, respectively. Let the tangents at Y and Z intersect at X and lines $Y O_{1}$ and $Z O_{2}$ intersect at P. Let the circumcircle of $\triangle O_{1} O_{2} B$ have center at O and intersect line $X B$ at B and Q. Prove that $P Q$ is a diameter of the circumcircle of $\triangle O_{1} O_{2} B$.
61. (1981 Beijing City Math Competition) In a disk with center O, there are four points such that the distance between every pair of them is greater than the radius of the disk. Prove that there is a pair of perpendicular diameters such that exactly one of the four points lies inside each of the four quarter disks formed by the diameters.
62. The lengths of the sides of a quadrilateral are positive integers. The length of each side divides the sum of the other three lengths. Prove that two of the sides have the same length.
63. (1988 Sichuan Province Math Competition) Suppose the lengths of the three sides of $\triangle A B C$ are integers and the inradius of the triangle is 1. Prove that the triangle is a right triangle.
64. (1985 IMO) A circle has center on the side $A B$ of the cyclic quadrilateral $A B C D$. The other three sides are tangent to the circle. Prove that $A D+B C=A B$.
65. (1995 Russian Math Olympiad) Circles S_{1} and S_{2} with centers O_{1}, O_{2} respectively intersect each other at points A and B. Ray $O_{1} B$ intersects S_{2} at point F and ray $O_{2} B$ intersects S_{1} at point E. The line parallel to $E F$ and passing through B intersects S_{1} and S_{2} at points M and N, respectively. Prove that (B is the incenter of $\triangle E A F$ and) $M N=$ $A E+A F$.
66. Point C lies on the minor arc $A B$ of the circle centered at O. Suppose the tangent line at C cuts the perpendiculars to chord $A B$ through A at E and through B at F. Let D be the intersection of chord $A B$ and radius $O C$. Prove that $C E \cdot C F=A D \cdot B D$ and $C D^{2}=A E \cdot B F$.
67. Quadrilaterals $A B C P$ and $A^{\prime} B^{\prime} C^{\prime} P^{\prime}$ are inscribed in two concentric circles. If triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are equilateral, prove that

$$
P^{\prime} A^{2}+P^{\prime} B^{2}+P^{\prime} C^{2}=P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2}
$$

68. Let the inscribed circle of triangle $A B C$ touchs side $B C$ at D, side $C A$ at E and side $A B$ at F. Let G be the foot of perpendicular from D to $E F$. Show that $\frac{F G}{E G}=\frac{B F}{C E}$.
69. (1998 IMO shortlisted problem) Let $A B C D E F$ be a convex hexagon such that

$$
\angle B+\angle D+\angle F=360^{\circ} \text { and } \quad \frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1 .
$$

Prove that

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=1 .
$$

Similar Triangles
70. (1984 British Math Olympiad) P, Q, and R are arbitrary points on the sides $B C, C A$, and $A B$ respectively of triangle $A B C$. Prove that the three circumcentres of triangles $A Q R, B R P$, and $C P Q$ form a triangle similar to triangle $A B C$.
71. Hexagon $A B C D E F$ is inscribed in a circle so that $A B=C D=E F$. Let P, Q, R be the points of intersection of $A C$ and $B D, C E$ and $D F$, $E A$ and $F B$ respectively. Prove that triangles $P Q R$ and $B D F$ are similar.
72. (1998 IMO shortlisted problem) Let $A B C D$ be a cyclic quadrilateral. Let E and F be variable points on the sides $A B$ and $C D$, respectively, such that $A E: E B=C F: F D$. Let P be the point on the segment $E F$ such that $P E: P F=A B: C D$. Prove that the ratio between the areas of triangles $A P D$ and $B P C$ does not depend on the choice of E and F.

Tangent Lines

73. Two circles intersect at points A and B. An arbitrary line through B intersects the first circle again at C and the second circle again at D. The tangents to the first circle at C and to the second circle at D intersect at M. The parallel to $C M$ which passes through the point of intersection of $A M$ and $C D$ intersects $A C$ at K. Prove that $B K$ is tangent to the second circle.
74. (1999 IMO) Two circles, 1 and , 2 are contained inside the circle, , and are tangent to , at the distinct points M and N, respectively. , 1 passes through the center of , ${ }_{2}$. The line passing through the two points of intersection of , 1_{1} and , ${ }_{2}$ meets, at A and B, respectively. The lines $M A$ and $M B$ meets, ${ }_{1}$ at C and D, respectively. Prove that $C D$ is tangent to,${ }_{2}$.
75. (Proposed by India for 1992 IMO) Circles G_{1} and G_{2} touch each other externally at a point W and are inscribed in a circle $G . A, B, C$ are
points on G such that A, G_{1} and G_{2} are on the same side of chord $B C$, which is also tangent to G_{1} and G_{2}. Suppose $A W$ is also tangent to G_{1} and G_{2}. Prove that W is the incenter of triangle $A B C$.

Locus

76. Perpendiculars from a point P on the circumcircle of $\triangle A B C$ are drawn to lines $A B, B C$ with feet at D, E, respectively. Find the locus of the circumcenter of $\triangle P D E$ as P moves around the circle.
77. Suppose A is a point inside a given circle and is different from the center. Consider all chords (excluding the diameter) passing through A. What is the locus of the intersection of the tangent lines at the endpoints of these chords?
78. Given $\triangle A B C$. Let line $E F$ bisects $\angle B A C$ and $A E \cdot A F=A B \cdot A C$. Find the locus of the intersection P of lines $B E$ and $C F$.
79. (1996 Putnam Exam) Let C_{1} and C_{2} be circles whose centers are 10 units apart, and whose radii are 1 and 3 . Find the locus of all points M for which there exists points X on C_{1} and Y on C_{2} such that M is the midpoint of the line segment $X Y$.

Collinear or Concyclic Points

80. (1982 IMO) Diagonals $A C$ and $C E$ of the regular hexagon $A B C D E F$ are divided by the inner points M and N, respectively, so that

$$
\frac{A M}{A C}=\frac{C N}{C E}=r
$$

Determine r if B, M and N are collinear.
81. (1965 Putnam Exam) If A, B, C, D are four distinct points such that every circle through A and B intersects or coincides with every circle through C and D, prove that the four points are either collinear or concyclic.
82. (1957 Putnam Exam) Given an infinite number of points in a plane, prove that if all the distances between every pair are integers, then the points are collinear.
83. (1995 IMO shortlisted problem) The incircle of triangle $A B C$ touches $B C, C A$ and $A B$ at D, E and F respectively. X is a point inside triangle $A B C$ such that the incircle of triangle $X B C$ touches $B C$ at D also, and touches $C X$ and $X B$ at Y and Z respectively. Prove that $E F Z Y$ is a cyclic quadrilateral.
84. (1998 IMO) In the convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ are perpendicular and the opposite sides $A B$ and $D C$ are not parallel. Suppose the point P, where the perpendicular bisectors of $A B$ and $D C$ meet, is inside $A B C D$. Prove that $A B C D$ is a cyclic quadrilateral if and only if the triangles $A B P$ and $C D P$ have equal areas.
85. (1970 Putnam Exam) Show that if a convex quadrilateral with sidelengths a, b, c, d and area $\sqrt{a b c d}$ has an inscribed circle, then it is a cyclic quadrilateral.

Concurrent Lines

86. In $\triangle A B C$, suppose $A B>A C$. Let P and Q be the feet of the perpendiculars from B and C to the angle bisector of $\angle B A C$, respectively. Let D be on line $B C$ such that $D A \perp A P$. Prove that lines $B Q, P C$ and $A D$ are concurrent.
87. (1990 Chinese National Math Competition) Diagonals $A C$ and $B D$ of a cyclic quadrilateral $A B C D$ meets at P. Let the circumcenters of $A B C D, A B P, B C P, C D P$ and $D A P$ be O, O_{1}, O_{2}, O_{3} and O_{4}, respectively. Prove that $O P, O_{1} O_{3}, O_{2} O_{4}$ are concurrent.
88. (1995 IMO) Let A, B, C and D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at the points X and Y. The line $X Y$ meets $B C$ at the point Z. Let P be a point on the line $X Y$ different from Z. The line $C P$ intersects the circle with
diameter $A C$ at the points C and M, and the line $B P$ intersects the circle with diameter $B D$ at the points B and N. Prove that the lines $A M, D N$ and $X Y$ are concurrent.
89. $A D, B E, C F$ are the altitudes of $\triangle A B C$. If P, Q, R are the midpoints of $D E, E F, F D$, respectively, then show that the perpendicular from P, Q, R to $A B, B C, C A$, respectively, are concurrent.
90. (1988 Chinese Math Olympiad Training Test) $A B C D E F$ is a hexagon inscribed in a circle. Show that the diagonals $A D, B E, C F$ are concurrent if and only if $A B \cdot C D \cdot E F=B C \cdot D E \cdot F A$.
91. A circle intersects a triangle $A B C$ at six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$, where the order of appearance along the triangle is $A, C_{1}, C_{2}, B, A_{1}, A_{2}$, C, B_{1}, B_{2}, A. Suppose $B_{1} C_{1}, B_{2} C_{2}$ meets at $X, C_{1} A_{1}, C_{2} A_{2}$ meets at Y and $A_{1} B_{1}, A_{2} B_{2}$ meets at Z. Show that $A X, B Y, C Z$ are concurrent.
92. (1995 IMO shortlisted problem) A circle passing through vertices B and C of triangle $A B C$ intersects sides $A B$ and $A C$ at C^{\prime} and B^{\prime}, respectively. Prove that $B B^{\prime}, C C^{\prime}$ and $H H^{\prime}$ are concurrent, where H and H^{\prime} are the orthocenters of triangles $A B C$ and $A B^{\prime} C^{\prime}$, respectively.

Perpendicular Lines

93. (1998 APMO) Let $A B C$ be a triangle and D the foot of the altitude from A. Let E and F be on a line passing through D such that $A E$ is perpendicular to $B E, A F$ is perpendicular to $C F$, and E and F are different from D. Let M and N be the midpoints of the line segments $B C$ and $E F$, respectively. Prove that $A N$ is perpendicular to $N M$.
94. (2000 APMO) Let $A B C$ be a triangle. Let M and N be the points in which the median and the angle bisector, respectively, at A meet the side $B C$. Let Q and P be the points in which the perpendicular at N to $N A$ meets $M A$ and $B A$, respectively, and O the point in which the perpendicular at P to $B A$ meets $A N$ produced. Prove that $Q O$ is perpendicular to $B C$.
95. Let $B B^{\prime}$ and $C C^{\prime}$ be altitudes of triangle $A B C$. Assume that $A B \neq$ $A C$. Let M be the midpoint of $B C, H$ the orthocenter of $A B C$ and D the intersection of $B^{\prime} C^{\prime}$ and $B C$. Prove that $D H \perp A M$.
96. (1996 Chinese Team Selection Test) The semicircle with side $B C$ of $\triangle A B C$ as diameter intersects sides $A B, A C$ at points D, E, respectively. Let F, G be the feet of the perpendiculars from D, E to side $B C$ respectively. Let M be the intersection of $D G$ and $E F$. Prove that $A M \perp B C$.
97. (1985 IMO) A circle with center O passes through the vertices A and C of triangle $A B C$ and intersects the segments $A B$ and $A C$ again at distinct points K and N, respectively. The circumcircles of triangles $A B C$ and $K B N$ intersect at exactly two distinct points B and M. Prove that $O M \perp M B$.
98. (1997 Chinese Senoir High Math Competition) A circle with center O is internally tangent to two circles inside it at points S and T. Suppose the two circles inside intersect at M and N with N closer to $S T$. Show that $O M \perp M N$ if and only if S, N, T are collinear.
99. $A D, B E, C F$ are the altitudes of $\triangle A B C$. Lines $E F, F D, D E$ meet lines $B C, C A, A B$ in points L, M, N, respectively. Show that L, M, N are collinear and the line through them is perpendicular to the line joining the orthocenter H and circumcenter O of $\triangle A B C$.

Geometric Inequalities, Maximum/Minimum

100. (1973 IMO) Let $P_{1}, P_{2}, \ldots, P_{2 n+1}$ be distinct points on some half of the unit circle centered at the origin O. Show that

$$
\left|\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}+\cdots+\overrightarrow{O P_{2 n+1}}\right| \geq 1
$$

101. Let the angle bisectors of $\angle A, \angle B, \angle C$ of triangle $A B C$ intersect its circumcircle at P, Q, R, respectively. Prove that

$$
A P+B Q+C R>B C+C A+A B
$$

102. (1997 APMO) Let $A B C$ be a triangle inscribed in a circle and let $l_{a}=$ $m_{a} / M_{a}, l_{b}=m_{b} / M_{b}, l_{c}=m_{c} / M_{c}$, where m_{a}, m_{b}, m_{c} are the lengths of the angle bisectors (internal to the triangle) and M_{a}, M_{b}, M_{c} are the lengths of the angle bisectors extended until they meet the circle. Prove that

$$
\frac{l_{a}}{\sin ^{2} A}+\frac{l_{b}}{\sin ^{2} B}+\frac{l_{c}}{\sin ^{2} C} \geq 3
$$

and that equality holds iff $A B C$ is equilateral.
103. (Mathematics Magazine, Problem 1506) Let I and O be the incenter and circumcenter of $\triangle A B C$, respectively. Assume $\triangle A B C$ is not equilateral (so $I \neq O$). Prove that

$$
\angle A I O \leq 90^{\circ} \text { if and only if } 2 B C \leq A B+C A
$$

104. Squares $A B D E$ and $A C F G$ are drawn outside $\triangle A B C$. Let P, Q be points on $E G$ such that $B P$ and $C Q$ are perpendicular to $B C$. Prove that $B P+C Q \geq B C+E G$. When does equality hold?
105. Point P is inside $\triangle A B C$. Determine points D on side $A B$ and E on side $A C$ such that $B D=C E$ and $P D+P E$ is minimum.

Solid or Space Geometry

106. (Proposed by Italy for 1967 IMO) Which regular polygons can be obtained (and how) by cutting a cube with a plane?
107. (1995 Israeli Math Olympiad) Four points are given in space, in general position (i.e., they are not coplanar and any three are not collinear). A plane π is called an equalizing plane if all four points have the same distance from π. Find the number of equalizing planes.

$\underline{\text { Digits }}$

108. (1956 Putnam Exam) Prove that every positive integer has a multiple whose decimal representation involves all ten digits.
109. Does there exist a positive integer a such that the sum of the digits (in base 10) of a is 1999 and the sum of the digits (in base 10) of a^{2} is 1999^{2} ?
110. (Proposed by USSR for 1991 IMO) Let a_{n} be the last nonzero digit in the decimal representation of the number $n!$. Does the sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ become periodic after a finite number of terms?

Modulo Arithmetic

111. (1956 Putnam Exam) Prove that the number of odd binomial coefficients in any row of the Pascal triangle is a power of 2 .
112. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{11}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{11}$ be two permutations of the natural numbers $1,2,3, \ldots, 11$. Show that if each of the numbers $a_{1} b_{1}$, $a_{2} b_{2}, a_{3} b_{3}, \ldots, a_{11} b_{11}$ is divided by 11 , then at least two of them will have the same remainder.
113. (1995 Czech-Slovak Match) Let a_{1}, a_{2}, \ldots be a sequence satisfying $a_{1}=$ $2, a_{2}=5$ and

$$
a_{n+2}=\left(2-n^{2}\right) a_{n+1}+\left(2+n^{2}\right) a_{n}
$$

for all $n \geq 1$. Do there exist indices p, q and r such that $a_{p} a_{q}=a_{r}$?

Prime Factorization

114. (American Mathematical Monthly, Problem E2684) Let A_{n} be the set of positive integers which are less than n and are relatively prime to n. For which $n>1$, do the integers in A_{n} form an arithmetic progression?
115. (1971 IMO) Prove that the set of integers of the form $2^{k}-3(k=$ $2,3, \ldots$) contains an infinite subset in which every two members are relatively prime.
116. (1988 Chinese Math Olympiad Training Test) Determine the smallest value of the natural number $n>3$ with the property that whenever the set $S_{n}=\{3,4, \ldots, n\}$ is partitioned into the union of two subsets, at least one of the subsets contains three numbers a, b and c (not necessarily distinct) such that $a b=c$.

Base n Representations

117. (1983 IMO) Can you choose 1983 pairwise distinct nonnegative integers less than 10^{5} such that no three are in arithmetic progression?
118. (American Mathematical Monthly, Problem 2486) Let p be an odd prime number and r be a positive integer not divisible by p. For any positive integer k, show that there exists a positive integer m such that the rightmost k digits of m^{r}, when expressed in the base p, are all 1 's.
119. (Proposed by Romania for 1985 IMO) Show that the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=[n \sqrt{2}]$ for $n=1,2,3, \ldots$ (where the brackets denote the greatest integer function) contains an infinite number of integral powers of 2 .

Representations

120. Find all (even) natural numbers n which can be written as a sum of two odd composite numbers.
121. Find all positive integers which cannot be written as the sum of two or more consecutive positive integers.
122. (Proposed by Australia for 1990 IMO) Observe that $9=4+5=2+3+4$. Is there an integer N which can be written as a sum of 1990 consecutive positive integers and which can be written as a sum of (more than one) consecutive integers in exactly 1990 ways?
123. Show that if $p>3$ is prime, then p^{n} cannot be the sum of two positive cubes for any $n \geq 1$. What about $p=2$ or 3 ?
124. (Due to Paul Erdös and M. Surányi) Prove that every integer k can be represented in infinitely many ways in the form $k= \pm 1^{2} \pm 2^{2} \pm \cdots \pm m^{2}$ for some positive integer m and some choice of signs + or - .
125. (1996 IMO shortlisted problem) A finite sequence of integers a_{0}, a_{1}, \ldots, a_{n} is called quadratic if for each $i \in\{1,2, \ldots, n\},\left|a_{i}-a_{i-1}\right|=i^{2}$.
(a) Prove that for any two integers b and c, there exists a natural number n and a quadratic sequence with $a_{0}=b$ and $a_{n}=c$.
(b) Find the least natural number n for which there exists a quadratic sequence with $a_{0}=0$ and $a_{n}=1996$.
126. Prove that every integer greater than 17 can be represented as a sum of three integers >1 which are pairwise relatively prime, and show that 17 does not have this property.

Chinese Remainder Theorem

127. (1988 Chinese Team Selection Test) Define $x_{n}=3 x_{n-1}+2$ for all positive integers n. Prove that an integer value can be chosen for x_{0} so that x_{100} is divisible by 1998.
128. (Proposed by North Korea for 1992 IMO) Does there exist a set M with the following properties:
(a) The set M consists of 1992 natural numbers.
(b) Every element in M and the sum of any number of elements in M have the form m^{k}, where m, k are positive integers and $k \geq 2$?

Divisibility

129. Find all positive integers a, b such that $b>2$ and $2^{a}+1$ is divisible by $2^{b}-1$.
130. Show that there are infinitely many composite n such that $3^{n-1}-2^{n-1}$ is divisible by n.
131. Prove that there are infinitely many positive integers n such that $2^{n}+1$ is divisible by n. Find all such n 's that are prime numbers.
132. (1998 Romanian Math Olympiad) Find all positive integers (x, n) such that $x^{n}+2^{n}+1$ is a divisor of $x^{n+1}+2^{n+1}+1$.
133. (1995 Bulgarian Math Competition) Find all pairs of positive integers (x, y) for which $\frac{x^{2}+y^{2}}{x-y}$ is an integer and divides 1995.
134. (1995 Russian Math Olympiad) Is there a sequence of natural numbers in which every natural number occurs just once and moreover, for any $k=1,2,3, \ldots$ the sum of the first k terms is divisible by k ?
135. (1998 Putnam Exam) Let $A_{1}=0$ and $A_{2}=1$. For $n>2$, the number A_{n} is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example, $A_{3}=A_{2} A_{1}=10, A_{4}=A_{3} A_{2}=$ 101, $A_{5}=A_{4} A_{3}=10110$, and so forth. Determine all n such that A_{n} is divisible by 11 .
136. (1995 Bulgarian Math Competition) If $k>1$, show that k does not divide $2^{k-1}+1$. Use this to find all prime numbers p and q such that $2^{p}+2^{q}$ is divisible by $p q$.
137. Show that for any positive integer n, there is a number whose decimal representation contains n digits, each of which is 1 or 2 , and which is divisible by 2^{n}.
138. For a positive integer n, let $f(n)$ be the largest integer k such that 2^{k} divides n and $g(n)$ be the sum of the digits in the binary representation of n. Prove that for any positive integer n,
(a) $f(n!)=n-g(n)$;
(b) 4 divides $\binom{2 n}{n}=\frac{(2 n)!}{n!n!}$ if and only if n is not a power of 2 .
139. (Proposed by Australia for 1992 IMO) Prove that for any positive integer m, there exist an infinite number of pairs of integers (x, y) such that
(a) x and y are relatively prime;
(b) y divides $x^{2}+m$;
(c) x divides $y^{2}+m$.
140. Find all integers $n>1$ such that $1^{n}+2^{n}+\cdots+(n-1)^{n}$ is divisible by n.
141. (1972 Putnam Exam) Show that if n is an integer greater than 1 , then n does not divide $2^{n}-1$.
142. (Proposed by Romania for 1985 IMO) For $k \geq 2$, let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers such that

$$
n_{2}\left|\left(2^{n_{1}}-1\right), n_{3}\right|\left(2^{n_{2}}-1\right), \ldots, n_{k}\left|\left(2^{n_{k-1}}-1\right), n_{1}\right|\left(2^{n_{k}}-1\right)
$$

Prove that $n_{1}=n_{2}=\cdots=n_{k}=1$.
143. (1998 APMO) Determine the largest of all integer n with the property that n is divisible by all positive integers that are less than $\sqrt[3]{n}$.
144. (1997 Ukrainian Math Olympiad) Find the smallest integer n such that among any n integers (with possible repetitions), there exist 18 integers whose sum is divisible by 18 .

Perfect Squares, Perfect Cubes

145. Let a, b, c be positive integers such that $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$. If the greatest common divisor of a, b, c is 1 , then prove that $a+b$ must be a perfect square.
146. (1969 Eötvös-Kürschák Math Competition) Let n be a positive integer. Show that if $2+2 \sqrt{28 n^{2}+1}$ is an integer, then it is a square.
147. (1998 Putnam Exam) Prove that, for any integers a, b, c, there exists a positive integer n such that $\sqrt{n^{3}+a n^{2}+b n+c}$ is not an integer.
148. (1995 IMO shortlisted problem) Let k be a positive integer. Prove that there are infinitely many perfect squares of the form $n 2^{k}-7$, where n is a positive integer.
149. Let a, b, c be integers such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3$. Prove that $a b c$ is the cube of an integer.

Diophantine Equations

150. Find all sets of positive integers x, y and z such that $x \leq y \leq z$ and $x^{y}+y^{z}=z^{x}$.
151. (Due to W. Sierpinski in 1955) Find all positive integral solutions of $3^{x}+4^{y}=5^{z}$.
152. (Due to Euler, also 1985 Moscow Math Olympiad) If $n \geq 3$, then prove that 2^{n} can be represented in the form $2^{n}=7 x^{2}+y^{2}$ with x, y odd positive integers.
153. (1995 IMO shortlisted problem) Find all positive integers x and y such that $x+y^{2}+z^{3}=x y z$, where z is the greatest common divisor of x and y.
154. Find all positive integral solutions to the equation $x y+y z+z x=$ $x y z+2$.
155. Show that if the equation $x^{2}+y^{2}+1=x y z$ has positive integral solutions x, y, z, then $z=3$.
156. (1995 Czech-Slovak Match) Find all pairs of nonnegative integers x and y which solve the equation $p^{x}-y^{p}=1$, where p is a given odd prime.
157. Find all integer solutions of the system of equations

$$
x+y+z=3 \quad \text { and } \quad x^{3}+y^{3}+z^{3}=3 .
$$

Combinatorics Problems

Counting Methods

158. (1996 Italian Mathematical Olympiad) Given an alphabet with three letters a, b, c, find the number of words of n letters which contain an even number of a 's.
159. Find the number of n-words from the alphabet $A=\{0,1,2\}$, if any two neighbors can differ by at most 1 .
160. (1995 Romanian Math Olympiad) Let $A_{1}, A_{2}, \ldots, A_{n}$ be points on a circle. Find the number of possible colorings of these points with p colors, $p \geq 2$, such that any two neighboring points have distinct colors.

Pigeonhole Principle

161. (1987 Austrian-Polish Math Competition) Does the set $\{1,2, \ldots, 3000\}$ contain a subset A consisting of 2000 numbers such that $x \in A$ implies $2 x \notin A$?
162. (1989 Polish Math Olympiad) Suppose a triangle can be placed inside a square of unit area in such a way that the center of the square is not inside the triangle. Show that one side of the triangle has length less than 1.
163. The cells of a 7×7 square are colored with two colors. Prove that there exist at least 21 rectangles with vertices of the same color and with sides parallel to the sides of the square.
164. For $n>1$, let $2 n$ chess pieces be placed at the centers of $2 n$ squares of an $n \times n$ chessboard. Show that there are four pieces among them that formed the vertices of a parallelogram. If $2 n$ is replaced by $2 n-1$, is the statement still true in general?
165. The set $\{1,2, \ldots, 49\}$ is partitioned into three subsets. Show that at least one of the subsets contains three different numbers a, b, c such that $a+b=c$.

Inclusion-Exclusion Principle

166. Let $m \geq n>0$. Find the number of surjective functions from $B_{m}=$ $\{1,2, \ldots, m\}$ to $B_{n}=\{1,2, \ldots, n\}$.
167. Let A be a set with 8 elements. Find the maximal number of 3 -element subsets of A, such that the intersection of any two of them is not a 2 element set.
168. (a) (1999 Hong Kong China Math Olympiad) Students have taken a test paper in each of $n(n \geq 3)$ subjects. It is known that for any subject exactly three students get the best score in the subject, and for any two subjects excatly one student gets the best score in every one of these two subjects. Determine the smallest n so that the above conditions imply that exactly one student gets the best score in every one of the n subjects.
(b) (1978 Austrian-Polish Math Competition) There are 1978 clubs. Each has 40 members. If every two clubs have exactly one common member, then prove that all 1978 clubs have a common member.

Combinatorial Designs

169. (1995 Byelorussian Math Olympiad) In the begining, 65 beetles are placed at different squares of a 9×9 square board. In each move, every beetle creeps to a horizontal or vertical adjacent square. If no beetle makes either two horizontal moves or two vertical moves in succession, show that after some moves, there will be at least two beetles in the same square.
170. (1995 Greek Math Olympiad) Lines $l_{1}, l_{2}, \ldots, l_{k}$ are on a plane such that no two are parallel and no three are concurrent. Show that we can label the C_{2}^{k} intersection points of these lines by the numbers $1,2, \ldots, k-1$ so that in each of the lines $l_{1}, l_{2}, \ldots, l_{k}$ the numbers $1,2, \ldots, k-1$ appear exactly once if and only if k is even.
171. (1996 Tournaments of the Towns) In a lottery game, a person must select six distinct numbers from $1,2,3, \ldots, 36$ to put on a ticket. The
lottery commitee will then draw six distinct numbers randomly from $1,2,3, \ldots, 36$. Any ticket with numbers not containing any of these six numbers is a winning ticket. Show that there is a scheme of buying 9 tickets guaranteeing at least a winning ticket, but 8 tickets is not enough to guarantee a winning ticket in general.
172. (1995 Byelorussian Math Olympiad) By dividing each side of an equilateral triangle into 6 equal parts, the triangle can be divided into 36 smaller equilateral triangles. A beetle is placed on each vertex of these triangles at the same time. Then the beetles move along different edges with the same speed. When they get to a vertex, they must make a 60° or 120° turn. Prove that at some moment two beetles must meet at some vertex. Is the statement true if 6 is replaced by 5 ?

Coverinq. Convex Hull

173. (1991 Australian Math Olympiad) There are n points given on a plane such that the area of the triangle formed by every 3 of them is at most 1. Show that the n points lie on or inside some triangle of area at most 4.
174. (1969 Putnam Exam) Show that any continuous curve of unit length can be covered by a closed rectangles of area $1 / 4$.
175. (1998 Putnam Exam) Let \mathcal{F} be a finite collection of open discs in the plane whose union covers a set E. Show that there is a pairwise disjoint subcollection D_{1}, \ldots, D_{n} in \mathcal{F} such that the union of $3 D_{1}, \ldots, 3 D_{n}$ covers E, where $3 D$ is the disc with the same center as D but having three times the radius.
176. (1995 IMO) Determine all integers $n>3$ for which there exist n points $A_{1}, A_{2}, \ldots, A_{n}$ in the plane, and real numbers $r_{1}, r_{2}, \ldots, r_{n}$ satisfying the following two conditions:
(a) no three of the points $A_{1}, A_{2}, \ldots, A_{n}$ lie on a line;
(b) for each triple $i, j, k(1 \leq i<j<k \leq n)$ the triangle $A_{i} A_{j} A_{k}$ has area equal to $r_{i}+r_{j}+r_{k}$.
177. (1999 IMO) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector of the line segment $A B$ is an axis of symmetry of S.

Miscellaneous Problems

178. (1995 Russian Math Olympiad) There are n seats at a merry-go-around. A boy takes n rides. Between each ride, he moves clockwise a certain number (less than n) of places to a new horse. Each time he moves a different number of places. Find all n for which the boy ends up riding each horse.
179. (1995 Israeli Math Olympiad) Two players play a game on an infinite board that consists of 1×1 squares. Player I chooses a square and marks it with an O. Then, player II chooses another square and marks it with X. They play until one of the players marks a row or a column of 5 consecutive squares, and this player wins the game. If no player can achieve this, the game is a tie. Show that player II can prevent player I from winning.
180. (1995 USAMO) A calculator is broken so that the only keys that still work are the sin, $\cos , \tan , \sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$ buttons. The display initially shows 0 . Given any positive rational number q, show that pressing some finite sequence of buttons will yield q. Assume that the calculator does real number calculations with infinite precision. All functions are in terms of radians.
181. (1977 Eötvös-Kürschák Math Competition) Each of three schools is attended by exactly n students. Each student has exactly $n+1$ acquaintances in the other two schools. Prove that one can pick three students, one from each school, who know one another. It is assumed that acquaintance is mutual.
182. Is there a way to pack $2501 \times 1 \times 4$ bricks into a $10 \times 10 \times 10$ box?
183. Is it possible to write a positive integer into each square of the first quadrant such that each column and each row contains every positive integer exactly once?
184. There are n identical cars on a circular track. Among all of them, they have just enough gas for one car to complete a lap. Show that there is
a car which can complete a lap by collecting gas from the other cars on its way around the track in the clockwise direction.
185. (1996 Russian Math Olympiad) At the vertices of a cube are written eight pairwise distinct natural numbers, and on each of its edges is written the greatest common divisor of the numbers at the endpoints of the edge. Can the sum of the numbers written at the vertices be the same as the sum of the numbers written at the edges?
186. Can the positive integers be partitioned into infinitely many subsets such that each subset is obtained from any other subset by adding the same integer to each element of the other subset?
187. (1995 Russian Math Olympiad) Is it possible to fill in the cells of a 9×9 table with positive integers ranging from 1 to 81 in such a way that the sum of the elements of every 3×3 square is the same?
188. (1991 German Mathematical Olympiad) Show that for every positive integer $n \geq 2$, there exists a permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $1,2, \ldots, n$ such that p_{k+1} divides $p_{1}+p_{2}+\cdots+p_{k}$ for $k=1,2, \ldots, n-1$.
189. Each lattice point of the plane is labeled by a positive integer. Each of these numbers is the arithmetic mean of its four neighbors (above, below, left, right). Show that all the numbers are equal.
190. (1984 Tournament of the Towns) In a party, n boys and n girls are paired. It is observed that in each pair, the difference in height is less than 10 cm . Show that the difference in height of the k-th tallest boy and the k-th tallest girl is also less than 10 cm for $k=1,2, \ldots, n$.
191. (1991 Leningrad Math Olympiad) One may perform the following two operations on a positive integer:
(a) multiply it by any positive integer and
(b) delete zeros in its decimal representation.

Prove that for every positive integer X, one can perform a sequence of these operations that will transform X to a one-digit number.
192. (1996 IMO shortlisted problem) Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle in a given direction (that is, the numbers a, b, c, d are replaced by $a-b, b-c, c-d, d-a$). Is it possible after 1996 such steps to have numbers a, b, c, d such that the numbers $|b c-a d|,|a c-b d|,|a b-c d|$ are primes?
193. (1989 Nanchang City Math Competition) There are 1989 coins on a table. Some are placed with the head sides up and some the tail sides up. A group of 1989 persons will perform the following operations: the first person is allowed turn over any one coin, the second person is allowed turn over any two coins, ..., the k-th person is allowed turn over any k coins, ..., the 1989th person is allowed to turn over every coin. Prove that
(1) no matter which sides of the coins are up initially, the 1989 persons can come up with a procedure turning all coins the same sides up at the end of the operations,
(2) in the above procedure, whether the head or the tail sides turned up at the end will depend on the initial placement of the coins.
194. (Proposed by India for 1992 IMO) Show that there exists a convex polygon of 1992 sides satisfying the following conditions:
(a) its sides are $1,2,3, \ldots, 1992$ in some order;
(b) the polygon is circumscribable about a circle.
195. There are 13 white, 15 black, 17 red chips on a table. In one step, you may choose 2 chips of different colors and replace each one by a chip of the third color. Can all chips become the same color after some steps?
196. The following operations are permitted with the quadratic polynomial $a x^{2}+b x+c:$
(a) switch a and c,
(b) replace x by $x+t$, where t is a real number.

By repeating these operations, can you transform $x^{2}-x-2$ into $x^{2}-$ $x-1$?
197. Five numbers $1,2,3,4,5$ are written on a blackboard. A student may erase any two of the numbers a and b on the board and write the numbers $a+b$ and $a b$ replacing them. If this operation is performed repeatedly, can the numbers $21,27,64,180,540$ ever appear on the board?
198. Nine 1×1 cells of a 10×10 square are infected. In one unit time, the cells with at least 2 infected neighbors (having a common side) become infected. Can the infection spread to the whole square? What if nine is replaced by ten?
199. (1997 Colombian Math Olympiad) We play the following game with an equilateral triangle of $n(n+1) / 2$ dollar coins (with n coins on each side). Initially, all of the coins are turned heads up. On each turn, we may turn over three coins which are mutually adjacent; the goal is to make all of the coins turned tails up. For which values of n can this be done?
200. (1990 Chinese Team Selection Test) Every integer is colored with one of 100 colors and all 100 colors are used. For intervals $[a, b],[c, d]$ having integers endpoints and same lengths, if a, c have the same color and b, d have the same color, then the intervals are colored the same way, which means $a+x$ and $c+x$ have the same color for $x=0,1, \ldots, b-a$. Prove that -1990 and 1990 have different colors.

Solutions

Solutions to Algebra Problems

Polynomials

1. (Crux Mathematicorum, Problem 7) Find (without calculus) a fifth degree polynomial $p(x)$ such that $p(x)+1$ is divisible by $(x-1)^{3}$ and $p(x)-1$ is divisible by $(x+1)^{3}$.

Solution. (Due to Law Ka Ho, Ng Ka Wing, Tam Siu Lung) Note $(x-1)^{3}$ divides $p(x)+1$ and $p(-x)-1$, so $(x-1)^{3}$ divides their sum $p(x)+p(-x)$. Also $(x+1)^{3}$ divides $p(x)-1$ and $p(-x)+1$, so $(x+1)^{3}$ divides $p(x)+p(-x)$. Then $(x-1)^{3}(x+1)^{3}$ divides $p(x)+p(-x)$, which is of degree at most 5 . So $p(x)+p(-x)=0$ for all x. Then the even degree term coefficients of $p(x)$ are zero. Now $p(x)+1=(x-1)^{3}\left(A x^{2}+B x-1\right)$. Comparing the degree 2 and 4 coefficients, we get $B-3 A=0$ and $3+3 B-A=0$, which implies $A=-3 / 8$ and $B=-9 / 8$. This yields $p(x)=-3 x^{5} / 8+5 x^{3} / 4-15 x / 8$.
2. A polynomial $P(x)$ of the n-th degree satisfies $P(k)=2^{k}$ for $k=$ $0,1,2, \ldots, n$. Find the value of $P(n+1)$.

Solution. For $0 \leq r \leq n$, the polynomial $\binom{x}{r}=\frac{x(x-1) \cdots(x-r+1)}{r!}$ is of degree r. Consider the degree n polynomial

$$
Q(x)=\binom{x}{0}+\binom{x}{1}+\cdots+\binom{x}{n} .
$$

By the binomial theorem, $Q(k)=(1+1)^{k}=2^{k}$ for $k=0,1,2, \ldots, n$. So $P(x)=Q(x)$ for all x. Then
$P(n+1)=Q(n+1)=\binom{n+1}{0}+\binom{n+1}{1}+\cdots+\binom{n+1}{n}=2^{n+1}-1$.
3. (1999 Putnam Exam) Let $P(x)$ be a polynomial with real coefficients such that $P(x) \geq 0$ for every real x. Prove that

$$
P(x)=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots+f_{n}(x)^{2}
$$

for some polynomials $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ with real coefficients.
Solution. (Due to Cheung Pok Man) Write $P(x)=a R(x) C(x)$, where a is the coefficient of the highest degree term, $R(x)$ is the product of all real root factors $(x-r)$ repeated according to multiplicities and $C(x)$ is the product of all conjugate pairs of nonreal root factors $\left(x-z_{k}\right)\left(x-\overline{z_{k}}\right)$. Then $a \geq 0$. Since $P(x) \geq 0$ for every real x and a factor $(x-r)^{2 n+1}$ would change sign near a real root r of odd multiplicity, each real root of P must have even multiplicity. So $R(x)=f(x)^{2}$ for some polynomial $f(x)$ with real coefficients.

Next pick one factor from each conjugate pair of nonreal factors and let the product of these factors $\left(x-z_{k}\right)$ be equal to $U(x)+i V(x)$, where $U(x), V(x)$ are polynomials with real coefficients. We have

$$
\begin{aligned}
P(x) & =a f(x)^{2}(U(x)+i V(x))(U(x)-i V(x)) \\
& =(\sqrt{a} f(x) U(x))^{2}+(\sqrt{a} f(x) V(x))^{2} .
\end{aligned}
$$

4. (1995 Russian Math Olympiad) Is it possible to find three quadratic polynomials $f(x), g(x), h(x)$ such that the equation $f(g(h(x)))=0$ has the eight roots $1,2,3,4,5,6,7,8$?

Solution. Suppose there are such f, g, h. Then $h(1), h(2), \ldots, h(8)$ will be the roots of the 4 -th degree polynomial $f(g(x))$. Since $h(a)=$ $h(b), a \neq b$ if and only if a, b are symmetric with respect to the axis of the parabola, it follows that $h(1)=h(8), h(2)=h(7), h(3)=$ $h(6), h(4)=h(5)$ and the parabola $y=h(x)$ is symmetric with respect to $x=9 / 2$. Also, we have either $h(1)<h(2)<h(3)<h(4)$ or $h(1)>h(2)>h(3)>h(4)$.

Now $g(h(1)), g(h(2)), g(h(3)), g(h(4))$ are the roots of the quadratic polynomial $f(x)$, so $g(h(1))=g(h(4))$ and $g(h(2))=g(h(3))$, which implies $h(1)+h(4)=h(2)+h(3)$. For $h(x)=A x^{2}+B x+C$, this would force $A=0$, a contradiction.
5. (1968 Putnam Exam) Determine all polynomials whose coefficients are all ± 1 that have only real roots.

Solution. If a polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ is such a polynomial, then so is its negative. Hence we may assume $a_{0}=1$. Let r_{1}, \ldots, r_{n} be the roots. Then $r_{1}^{2}+\cdots+r_{n}^{2}=a_{1}^{2}-2 a_{2}$ and $r_{1}^{2} \cdots r_{n}^{2}=a_{n}^{2}$. If the roots are all real, then by the AM-GM inequality, we get $\left(a_{1}^{2}-2 a_{2}\right) / n \geq a_{n}^{2 / n}$. Since $a_{1}, a_{2}= \pm 1$, we must have $a_{2}=-1$ and $n \leq 3$. By simple checking, we get the list

$$
\begin{gathered}
\pm(x-1), \quad \pm(x+1), \quad \pm\left(x^{2}+x-1\right), \quad \pm\left(x^{2}-x-1\right) \\
\pm\left(x^{3}+x^{2}-x-1\right), \quad \pm\left(x^{3}-x^{2}-x+1\right)
\end{gathered}
$$

6. (1990 Putnam Exam) Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for $n=1,2,3, \ldots$, the polynomial $P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has exactly n distinct real roots?

Solution. Yes. Take $a_{0}=1, a_{1}=-1$ and proceed by induction. Suppose a_{0}, \ldots, a_{n} have been chosen so that $P_{n}(x)$ has n distinct real roots and $P_{n}(x) \rightarrow \infty$ or $-\infty$ as $x \rightarrow \infty$ depending upon whether n is even or odd. Suppose the roots of $P_{n}(x)$ is in the interval $(-T, T)$. Let $a_{n+1}=(-1)^{n+1} / M$, where M is chosen to be very large so that T^{n+1} / M is very small. Then $P_{n+1}(x)=P_{n}(x)+(-x)^{n+1} / M$ is very close to $P_{n}(x)$ on $[-T, T]$ because $\left|P_{n+1}(x)-P_{n}(x)\right| \leq T^{n+1} / M$ for every x on $[-T, T]$. So, $P_{n+1}(x)$ has a sign change very close to every root of $P_{n}(x)$ and has the same sign as $P_{n}(x)$ at T. Since $P_{n}(x)$ and $P_{n+1}(x)$ take on different sign when $x \rightarrow \infty$, there must be another sign change beyond T. So $P_{n+1}(x)$ must have $n+1$ real roots.
7. (1991 Austrian-Polish Math Competition) Let $P(x)$ be a polynomial with real coefficients such that $P(x) \geq 0$ for $0 \leq x \leq 1$. Show that there are polynomials $A(x), B(x), C(x)$ with real coefficients such that
(a) $A(x) \geq 0, B(x) \geq 0, C(x) \geq 0$ for all real x and
(b) $P(x)=A(x)+x B(x)+(1-x) C(x)$ for all real x.
(For example, if $P(x)=x(1-x)$, then $P(x)=0+x(1-x)^{2}+(1-x) x^{2}$.)
Solution. (Below all polynomials have real coefficients.) We induct on the degree of $P(x)$. If $P(x)$ is a constant polynomial c, then $c \geq 0$
and we can take $A(x)=c, B(x)=C(x)=0$. Next suppose the degree n case is true. For the case $P(x)$ is of degree $n+1$. If $P(x) \geq 0$ for all real x, then simply let $A(x)=P(x), B(x)=C(x)=0$. Otherwise, $P(x)$ has a root x_{0} in $(-\infty, 0]$ or $[1,+\infty)$.

Case x_{0} in $(-\infty, 0]$. Then $P(x)=\left(x-x_{0}\right) Q(x)$ and $Q(x)$ is of degree n with $Q(x) \geq 0$ for all $x \mathrm{n}[0,1]$. So $Q(x)=A_{0}(x)+x B_{0}(x)+(1-x) C_{0}(x)$, where $A_{0}(x), B_{0}(x), C_{0}(x) \geq 0$ for all x in $[0,1]$. Using $x(1-x)=$ $x(1-x)^{2}+(1-x) x^{2}$, we have

$$
\begin{aligned}
P(x)= & \left(x-x_{0}\right)\left(A_{0}(x)+x B_{0}(x)+(1-x) C_{0}(x)\right) \\
= & \underbrace{\left(-x_{0} A_{0}(x)+x^{2} B_{0}(x)\right)}_{A(x)}+x \underbrace{\left(A_{0}(x)-x_{0} B_{0}(x)+(1-x)^{2} C_{0}(x)\right)}_{B(x)} \\
& +(1-x) \underbrace{\left(-x_{0} C_{0}(x)+x^{2} B_{0}(x)\right)}_{C(x)},
\end{aligned}
$$

where the polynomials $A(x), B(x), C(x) \geq 0$ for all x in $[0,1]$.
Case x_{0} in $[1,+\infty)$. Consider $Q(x)=P(1-x)$. This reduces to the previous case. We have $Q(x)=A_{1}(x)+x B_{1}(x)+(1-x) C_{1}(x)$, where the polynomials $A_{1}(x), B_{1}(x), C_{1}(x) \geq 0$ for all x in $[0,1]$. Then

$$
P(x)=Q(1-x)=\underbrace{A_{1}(1-x)}_{A(x)}+x \underbrace{C_{1}(1-x)}_{B(x)}+(1-x) \underbrace{B_{1}(1-x)}_{C(x)},
$$

where the polynomials $A(x), B(x), C(x) \geq 0$ for all x in $[0,1]$.
8. (1993 IMO) Let $f(x)=x^{n}+5 x^{n-1}+3$, where $n>1$ is an integer. Prove that $f(x)$ cannot be expressed as a product of two polynomials, each has integer coefficients and degree at least 1 .

Solution. Suppose $f(x)=b(x) c(x)$ for nonconstant polynomials $b(x)$ and $c(x)$ with integer coefficients. Since $f(0)=3$, we may assume $b(0)= \pm 1$ and $b(x)=x^{r}+\cdots \pm 1$. Since $f(\pm 1) \neq 0, r>1$. Let z_{1}, \ldots, z_{r} be the roots of $b(x)$. Then $\left|z_{1} \cdots z_{r}\right|=|b(0)|=1$ and

$$
|b(-5)|=\left|\left(-5-z_{1}\right) \cdots\left(-5-z_{r}\right)\right|=\prod_{i=1}^{r}\left|z_{i}^{n-1}\left(z_{i}+5\right)\right|=3^{r} \geq 9
$$

However, $b(-5)$ also divides $f(-5)=3$, a contradiction.
9. Prove that if the integer a is not divisible by 5 , then $f(x)=x^{5}-x+a$ cannot be factored as the product of two nonconstant polynomials with integer coefficients.

Solution. Suppose f can be factored, then $f(x)=(x-b) g(x)$ or $f(x)=\left(x^{2}-b x+c\right) g(x)$. In the fomer case, $b^{5}-b+a=f(b)=0$. Now $b^{5} \equiv b(\bmod 5)$ by Fermat's little theorem or simply checking the cases $b \equiv 0,1,2,3,4(\bmod 5)$. Then 5 divides $b-b^{5}=a$, a contradiction. In the latter case, divding $f(x)=x^{5}-x+a$ by $x^{2}-b x+c$, we get the remainder $\left(b^{4}+3 b^{2} c+c^{2}-1\right) x+\left(b^{3} c+2 b c^{2}+a\right)$. Since $x^{2}-b x+c$ is a factor of $f(x)$, both coefficients equal 0 . Finally,

$$
0=b\left(b^{4}+3 b^{2} c+c^{2}-1\right)-3\left(b^{3} c+2 b c^{2}+a\right)=b^{5}-b-5 b c^{2}-3 a
$$

implies $3 a=b^{5}-b-5 b c^{2}$ is divisible by 5 . Then a would be divisible by 5 , a contradiction.
10. (1991 Soviet Math Olympiad) Given $2 n$ distinct numbers $a_{1}, a_{2}, \ldots, a_{n}$, $b_{1}, b_{2}, \ldots, b_{n}$, an $n \times n$ table is filled as follows: into the cell in the i-th row and j-th column is written the number $a_{i}+b_{j}$. Prove that if the product of each column is the same, then also the product of each row is the same.

Solution. Let

$$
P(x)=\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)-\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{n}\right),
$$

then $\operatorname{deg} P<n$. Now $P\left(b_{j}\right)=\left(b_{j}+a_{1}\right)\left(b_{j}+a_{2}\right) \cdots\left(b_{j}+a_{n}\right)=c$, some constant, for $j=1,2, \ldots, n$. So $P(x)-c$ has distinct roots $b_{1}, b_{2}, \cdots, b_{n}$. Therefore, $P(x)=c$ for all x and so

$$
c=P\left(-a_{i}\right)=(-1)^{n+1}\left(a_{i}+b_{1}\right)\left(a_{i}+b_{2}\right) \cdots\left(a_{i}+b_{n}\right)
$$

for $i=1,2, \ldots, n$. Then the product of each row is $(-1)^{n+1} c$.
11. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two distinct collections of n positive integers, where each collection may contain repetitions. If the two
collections of integers $a_{i}+a_{j}(1 \leq i<j \leq n)$ and $b_{i}+b_{j}(1 \leq i<j \leq n)$ are the same, then show that n is a power of 2 .

Solution. (Due to Law Siu Lung) Consider the functions $f(x)=$ $\sum_{i+1}^{n} x^{a_{i}}$ and $g(x)=\sum_{i=1}^{n} x^{b_{i}}$. Since the a_{i} 's and b_{i} 's are distinct, f and g are distinct polynomials. Now

$$
f(x)^{2}=\sum_{i=1}^{n} x^{2 a_{i}}+2 \sum_{1 \leq i<j \leq n} x^{a_{i}+a_{j}}=f\left(x^{2}\right)+2 \sum_{1 \leq i<j \leq n} x^{a_{i}+a_{j}} .
$$

Since the $a_{i}+a_{j}$'s and the $b_{i}+b_{j}$'s are the same, so $f(x)^{2}-f\left(x^{2}\right)=$ $g(x)^{2}-g\left(x^{2}\right)$. Since $f(1)-g(1)=n-n=0$, so $f(x)-g(x)=(x-$ 1) ${ }^{k} Q(x)$ for some $k \geq 1$ and polynomial Q such that $Q(1) \neq 0$. Then

$$
f(x)+g(x)=\frac{f\left(x^{2}\right)-g\left(x^{2}\right)}{f(x)-g(x)}=\frac{\left(x^{2}-1\right)^{k} Q\left(x^{2}\right)}{(x-1)^{k} Q(x)}=(x+1)^{k} \frac{Q\left(x^{2}\right)}{Q(x)} .
$$

Setting $x=1$, we have $n=2^{k-1}$.

Recurrence Relations

12. The sequence x_{n} is defined by

$$
x_{1}=2, \quad x_{n+1}=\frac{2+x_{n}}{1-2 x_{n}}, \quad n=1,2,3, \ldots
$$

Prove that $x_{n} \neq \frac{1}{2}$ or 0 for all n and the terms of the sequence are all distinct.

Solution. (Due to Wong Chun Wai) The terms x_{n} 's are clearly rational by induction. Write $x_{n}=p_{n} / q_{n}$, where p_{n}, q_{n} are relatively prime integers and $q_{n}>0$. Then $q_{1}=1$ and $p_{n+1} / q_{n+1}=\left(2 q_{n}+p_{n}\right) /\left(q_{n}-2 p_{n}\right)$. So q_{n+1} divides $q_{n}-2 p_{n}$, which implies every q_{n} is odd by induction. Hence, every $x_{n} \neq \frac{1}{2}$.

Next, to show every $x_{n} \neq 0$, let $\alpha=\arctan 2$, then $x_{n}=\tan n \alpha$ by induction. Suppose $x_{n}=0$ and n is the least such index. If $n=$
$2 m$ is even, then $0=x_{2 m}=\tan 2 m \alpha=2 x_{m} /\left(1-x_{m}^{2}\right)$ would imply $x_{m}=0$, a contradiction to n being least. If $n=2 m+1$ is odd, then $0=x_{2 m+1}=\tan (\alpha+2 m \alpha)=\left(2+x_{2 m}\right) /\left(1-2 x_{2 m}\right)$ would imply $x_{2 m}=-2$. Then $-2=2 x_{m} /\left(1-x_{m}^{2}\right)$ would imply $x_{m}=(1 \pm \sqrt{5}) / 2$ is irrational, a contradiction. Finally, if $x_{m}=x_{n}$ for some $m>n$, then $x_{m-n}=\tan (m \alpha-n \alpha)=\left(x_{m}-x_{n}\right) /\left(1+x_{m} x_{n}\right)=0$, a contradiction. Therefore the terms are nonzero and distinct.
13. (1988 Nanchang City Math Competition) Define $a_{1}=1, a_{2}=7$ and $a_{n+2}=\frac{a_{n+1}^{2}-1}{a_{n}}$ for positive integer n. Prove that $9 a_{n} a_{n+1}+1$ is a perfect square for every positive integer n.

Solution. (Due to Chan Kin Hang) (Since a_{n+2} depends on a_{n+1} and a_{n}, it is plausible that the sequence satisfies a linear recurrence relation $a_{n+2}=c a_{n+1}+c^{\prime} a_{n}$. If this is so, then using the first 4 terms, we find $c=7, c^{\prime}=-1$.) Define $b_{1}=a_{1}, b_{2}=a_{2}, b_{n+2}=7 b_{n+1}-b_{n}$ for $n \geq 1$. Then $b_{3}=48=a_{3}$. Suppose $a_{k}=b_{k}$ for $k \leq n+1$, then

$$
\begin{aligned}
a_{n+2} & =\frac{b_{n+1}^{2}-1}{b_{n}}=\frac{\left(7 b_{n}-b_{n-1}\right)^{2}-1}{b_{n}} \\
& =49 b_{n}-14 b_{n-1}+b_{n-2} \\
& =7 b_{n+1}-b_{n}=b_{n+2} .
\end{aligned}
$$

So $a_{k}=b_{k}$ for all k.
Next, writing out the first few terms of $9 a_{n} a_{n+1}+1$ will suggest that $9 a_{n} a_{n+1}+1=\left(a_{n}+a_{n+1}\right)^{2}$. The case $n=1$ is true as $9 \cdot 7+1=$ $(1+7)^{2}$. Suppose this is true for $n=k$. Using the recurrence relations and $\left(^{*}\right) 2 a_{k+1}^{2}-2=2 a_{k} a_{k+2}=14 a_{k} a_{k+1}-2 a_{k}^{2}$, we get the case $n=k+1$ as follow:

$$
\begin{aligned}
9 a_{k+1} a_{k+2}+1 & =9 a_{k+1}\left(7 a_{k+1}-a_{k}\right)+1 \\
& =63 a_{k+1}^{2}-\left(a_{k}+a_{k+1}\right)^{2}+2 \\
& =62 a_{k+1}^{2}-2 a_{k} a_{k+1}-a_{k}^{2}+2 \\
& =64 a_{k+1}^{2}-16 a_{k+1} a_{k}+a_{k}^{2} \quad \text { by }(*) \\
& =\left(8 a_{k+1}-a_{k}\right)^{2}=\left(a_{k+1}+a_{k+2}\right)^{2} .
\end{aligned}
$$

14. (Proposed by Bulgaria for 1988 IMO) Define $a_{0}=0, a_{1}=1$ and $a_{n}=$ $2 a_{n-1}+a_{n-2}$ for $n>1$. Show that for positive integer k, a_{n} is divisible by 2^{k} if and only if n is divisible by 2^{k}.

Solution. By the binomial theorem, if $(1+\sqrt{2})^{n}=A_{n}+B_{n} \sqrt{2}$, then $(1-\sqrt{2})^{n}=A_{n}-B_{n} \sqrt{2}$. Multiplying these 2 equations, we get $A_{n}^{2}-$ $2 B_{n}^{2}=(-1)^{n}$. This implies A_{n} is always odd. Using characteristic equation method to solve the given recurrence relations on a_{n}, we find that $a_{n}=B_{n}$. Now write $n=2^{k} m$, where m is odd. We have $k=0$ (i.e. n is odd) if and only if $2 B_{n}^{2}=A_{n}^{2}+1 \equiv 2(\bmod 4)$, (i.e. B_{n} is odd). Next suppose case k is true. Since $(1+\sqrt{2})^{2 n}=\left(A_{n}+B_{n} \sqrt{2}\right)^{2}=$ $A_{2 n}+B_{2 n} \sqrt{2}$, so $B_{2 n}=2 A_{n} B_{n}$. Then it follows case k implies case $k+1$.
15. (American Mathematical Monthly, Problem E2998) Let x and y be distinct complex numbers such that $\frac{x^{n}-y^{n}}{x-y}$ is an integer for some four consecutive positive integers n. Show that $\frac{x^{n}-y^{n}}{x-y}$ is an integer for all positive integers n.

Solution. For nonnegative integer n, let $t_{n}=\left(x^{n}-y^{n}\right) /(x-y)$. So $t_{0}=0, t_{1}=1$ and we have a recurrence relation

$$
t_{n+2}+b t_{n+1}+c t_{n}=0, \quad \text { where } b=-(x+y), c=x y
$$

Suppose t_{n} is an integer for $m, m+1, m+2, m+3$. Since $c^{n}=(x y)^{n}=$ $t_{n+2}^{2}-t_{n} t_{n+2}$ is an integer for $n=m, m+1$, so c is rational. Since c^{m+1} is integer, c must, in fact, be an integer. Next

$$
b=\frac{t_{m} t_{m+3}-t_{m+1} t_{m+2}}{c^{m}} .
$$

So b is rational. From the recurrence relation, it follows by induction that $t_{n}=f_{n-1}(b)$ for some polynomial f_{n-1} of degree $n-1$ with integer coefficients. Note the coefficient of x^{n-1} in f_{n-1} is 1 , i.e. f_{n-1} is monic. Since b is a root of the integer coefficient polynomial $f_{m}(z)-t_{m+1}=0$, b must be an integer. So the recurrence relation implies all t_{n} 's are integers.

Inequalities

16. For real numbers $a_{1}, a_{2}, a_{3}, \ldots$, if $a_{n-1}+a_{n+1} \geq 2 a_{n}$ for $n=2,3, \ldots$, then prove that

$$
A_{n-1}+A_{n+1} \geq 2 A_{n} \text { for } n=2,3, \ldots
$$

where A_{n} is the average of $a_{1}, a_{2}, \ldots, a_{n}$.

Solution. Expressing in a_{k}, the required inequality is equivalent to

$$
a_{1}+\cdots+a_{n-1}-\frac{n^{2}+n-2}{2} a_{n}+\frac{n(n-1)}{2} a_{n+1} \geq 0 .
$$

(From the cases $n=2,3$, we easily see the pattern.) We have

$$
\begin{aligned}
& a_{1}+\cdots+a_{n-1}-\frac{n^{2}+n-2}{2} a_{n}+\frac{n(n-1)}{2} a_{n+1} \\
= & \sum_{k=2}^{n} \frac{k(k-1)}{2}\left(a_{k-1}-2 a_{k}+a_{k+2}\right) \geq 0 .
\end{aligned}
$$

17. Let $a, b, c>0$ and $a b c \leq 1$. Prove that

$$
\frac{a}{c}+\frac{b}{a}+\frac{c}{b} \geq a+b+c
$$

Solution. (Due to Leung Wai Ying) Since $a b c \leq 1$, we get $1 /(b c) \geq a$, $1 /(a c) \geq b$ and $1 /(a b) \geq c$. By the AM-GM inequality,

$$
\frac{2 a}{c}+\frac{c}{b}=\frac{a}{c}+\frac{a}{c}+\frac{c}{b} \geq 3 \sqrt[3]{\frac{a^{2}}{b c}} \geq 3 a
$$

Similarly, $2 b / a+a / c \geq 3 b$ and $2 c / b+b / a \geq 3 c$. Adding these and dividing by 3 , we get the desired inequality.

Alternatively, let $x=\sqrt[9]{a^{4} b / c^{2}}, y=\sqrt[9]{c^{4} a / b^{2}}$ and $z=\sqrt[9]{b^{4} c / a^{2}}$. We have $a=x^{2} y, b=z^{2} x, c=y^{2} z$ and $x y z=\sqrt[3]{a b c} \leq 1$. Using this and the rearrangement inequality, we get

$$
\begin{aligned}
& \frac{a}{c}+\frac{b}{a}+\frac{c}{b}=\frac{x^{2}}{y z}+\frac{z^{2}}{x y}+\frac{y^{2}}{z x} \\
\geq & x y z\left(\frac{x^{2}}{y z}+\frac{z^{2}}{x y}+\frac{y^{2}}{z x}\right)=x^{3}+y^{3}+z^{3} \\
\geq & x^{2} y+y^{2} z+z^{2} x=a+b+c .
\end{aligned}
$$

18. (1982 Moscow Math Olympiad) Use the identity $1^{3}+2^{3}+\cdots+n^{3}=$ $\frac{n^{2}(n+1)^{2}}{2}$ to prove that for distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\left(a_{1}^{7}+a_{2}^{7}+\cdots+a_{n}^{7}\right)+\left(a_{1}^{5}+a_{2}^{5}+\cdots+a_{n}^{5}\right) \geq 2\left(a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}\right)^{2} .
$$

Can equality occur?
Solution. For $n=1, a_{1}^{7}+a_{1}^{5}-2\left(a_{1}^{3}\right)^{2}=a_{1}^{5}\left(a_{1}-1\right)^{2} \geq 0$ and so case $n=1$ is true. Suppose the case $n=k$ is true. For the case $n=k+1$, without loss of generality, we may assume $a_{1}<a_{2}<\ldots<a_{k+1}$. Now

$$
\begin{aligned}
& 2\left(a_{1}^{3}+\cdots+a_{k+1}^{3}\right)^{2}-2\left(a_{1}^{3}+\cdots+a_{k}^{3}\right)^{2} \\
= & 2 a_{k+1}^{6}+4 a_{k+1}^{3}\left(a_{1}^{3}+\cdots+a_{k}^{3}\right) \\
\leq & 2 a_{k+1}^{6}+4 a_{k+1}^{3}\left(1^{3}+2^{3}+\cdots+\left(a_{k+1}-1\right)^{3}\right) \\
= & 2 a_{k+1}^{6}+4 a_{k+1}^{3} \frac{\left(a_{k+1}-1\right)^{2} a_{k}^{2}}{2}=a_{k+1}^{7}+a_{k+1}^{5} .
\end{aligned}
$$

So $\left(a_{1}^{7}+\cdots+a_{k+1}^{7}\right)+\left(a_{1}^{5}+\cdots+a_{k+1}^{5}\right) \geq 2\left(a_{1}^{3}+\cdots+a_{k+1}^{3}\right)^{2}$ follows. Equality occurs if and only if $a_{1}, a_{2}, \ldots, a_{n}$ are $1,2, \ldots, n$.
19. (1997 IMO shortlisted problem) Let $a_{1} \geq \cdots \geq a_{n} \geq a_{n+1}=0$ be a sequence of real numbers. Prove that

$$
\sqrt{\sum_{k=1}^{n} a_{k}} \leq \sum_{k=1}^{n} \sqrt{k}\left(\sqrt{a_{k}}-\sqrt{a_{k+1}}\right)
$$

Solution. (Due to Lee Tak Wing) Let $x_{k}=\sqrt{a_{k}}-\sqrt{a_{k+1}}$. Then $a_{k}=$ $\left(x_{k}+x_{k+1}+\cdots+x_{n}\right)^{2}$. So,

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k} & =\sum_{k=1}^{n}\left(x_{k}+x_{k+1}+\cdots+x_{n}\right)^{2}=\sum_{k=1}^{n} k x_{k}^{2}+2 \sum_{1 \leq i<j \leq n} i x_{i} x_{j} \\
& \leq \sum_{k=1}^{n} k x_{k}^{2}+2 \sum_{1 \leq i<j \leq n} \sqrt{i j} x_{i} x_{j}=\left(\sum_{k=1}^{n} \sqrt{k} x_{k}\right)^{2} .
\end{aligned}
$$

Taking square root of both sides, we get the desired inequality.
20. (1994 Chinese Team Selection Test) For $0 \leq a \leq b \leq c \leq d \leq e$ and $a+b+c+d+e=1$, show that

$$
a d+d c+c b+b e+e a \leq \frac{1}{5}
$$

Solution. (Due to Lau Lap Ming) Since $a \leq b \leq c \leq d \leq e$, so $d+e \geq c+e \geq b+d \geq a+c \geq a+b$. By Chebysev's inequality,

$$
a d+d c+c b+b e+e a
$$

$$
=\frac{a(d+e)+b(c+e)+c(b+d)+d(a+c)+e(a+b)}{2}
$$

$$
\leq \frac{(a+b+c+d+e)((d+e)+(c+e)+(b+d)+(a+c)+(a+b))}{10}
$$

$$
=\frac{2}{5} .
$$

21. (1985 Wuhu City Math Competition) Let x, y, z be real numbers such that $x+y+z=0$. Show that

$$
6\left(x^{3}+y^{3}+z^{3}\right)^{2} \leq\left(x^{2}+y^{2}+z^{2}\right)^{3} .
$$

Solution. (Due to Ng Ka Wing) We have $z=-(x+y)$ and so

$$
\begin{aligned}
\left(x^{2}+y^{2}+z^{2}\right)^{3} & =\left(x^{2}+y^{2}+(x+y)^{2}\right)^{3} \\
& \geq\left(\frac{3}{2}(x+y)^{2}\right)^{3}=\frac{27}{8}(x+y)^{4}(x+y)^{2} \\
& \geq \frac{27}{8}(2 \sqrt{x y})^{4}(x+y)^{2}=6(3 x y(x+y))^{2} \\
& =6\left(x^{3}+y^{3}-(x+y)^{3}\right)^{2}=6\left(x^{3}+y^{3}+z^{3}\right)^{2} .
\end{aligned}
$$

Comments. Let $f(w)=(w-x)(w-y)(w-z)=w^{3}+b w+c$. Then $x^{2}+y^{2}+z^{2}=(x+y+z)^{2}-2(x y+y z+z x)=-2 b$ and $0=f(x)+f(y)+$ $f(z)=\left(x^{3}+y^{3}+z^{3}\right)+b(x+y+z)+3 c$ implies $x^{3}+y^{3}+z^{3}=-3 c$. So the inequality is the same as $2\left(-4 b^{3}-27 c^{2}\right) \geq 0$. For the cubic polynomial $f(w)=w^{3}+b w+c$, it is well-known that the discriminant $\triangle=(x-y)^{2}(y-z)^{2}(z-x)^{2}$ equals $-4 b^{3}-27 c^{2}$. The inequality follows easily from this.
22. (1999 IMO) Let n be a fixed integer, with $n \geq 2$.
(a) Determine the least constant C such that the inequality

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}
$$

holds for all nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{n}$.
(b) For this constant C, determine when equality holds.

Solution. (Due to Law Ka Ho and Ng Ka Wing) We will show the least C is $1 / 8$. By the AM-GM inequality,

$$
\begin{aligned}
\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4} & =\left(\sum_{1 \leq i \leq n} x_{i}^{2}+2 \sum_{1 \leq i<j \leq n} x_{i} x_{j}\right)^{2} \\
& \geq\left(2 \sqrt{2 \sum_{1 \leq i<j \leq n} x_{i} x_{j} \sum_{1 \leq i \leq n} x_{i}^{2}}\right)^{2} \\
& =8 \sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) \\
& \geq 8 \sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) .
\end{aligned}
$$

(Equality holds in the second inequality if and only if at least $n-2$ of the x_{i} 's are zeros. Then equality holds in the first inequality if and only if the remaining pair of x_{i} 's are equal.) Overall, equality holds if and only if two of the x_{i} 's are equal and the others are zeros.
23. (1995 Bulgarian Math Competition) Let $n \geq 2$ and $0 \leq x_{i} \leq 1$ for $i=1,2, \ldots, n$. Prove that

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)-\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}\right) \leq\left[\frac{n}{2}\right]
$$

where $[x]$ is the greatest integer less than or equal to x.
Solution. When x_{2}, \ldots, x_{n} are fixed, the left side is a degree one polynomial in x_{1}, so the maximum value is attained when $x_{1}=0$ or 1 . The situation is similar for the other x_{i} 's. So when the left side is maximum, every x_{i} 's is 0 or 1 and the value is an integer. Now

$$
\begin{aligned}
& 2\left(\left(x_{1}+\cdots+x_{n}\right)-\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}\right)\right) \\
= & n-\left(1-x_{1}\right)\left(1-x_{2}\right)-\left(1-x_{2}\right)\left(1-x_{3}\right)-\ldots-\left(1-x_{n}\right)\left(1-x_{1}\right) \\
\quad & -x_{1} x_{2}-x_{2} x_{3}-\ldots-x_{n} x_{1} .
\end{aligned}
$$

Since $0 \leq x_{i} \leq 1$, the expression above is at most n. So
$\max \left(\left(x_{1}+\cdots+x_{n}\right)-\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}\right)\right) \leq\left[\frac{n}{2}\right]$.
24. For every triplet of functions $f, g, h:[0,1] \rightarrow R$, prove that there are numbers x, y, z in $[0,1]$ such that

$$
|f(x)+g(y)+h(z)-x y z| \geq \frac{1}{3}
$$

Solution. Suppose for all x, y, z in $[0,1],|f(x)+g(y)+h(z)-x y z|<$ $1 / 3$. Then

$$
\begin{aligned}
& |f(0)+g(0)+h(0)|<\frac{1}{3}, \quad|f(0)+g(y)+h(z)|<\frac{1}{3} \\
& |f(x)+g(0)+h(z)|<\frac{1}{3}, \quad|f(x)+g(y)+h(0)|<\frac{1}{3}
\end{aligned}
$$

Since

$$
\begin{aligned}
f(x)+g(y)+h(z)= & \frac{f(0)+g(y)+h(z)}{2}+\frac{f(x)+g(0)+h(z)}{2} \\
& +\frac{f(x)+g(y)+h(0)}{2}+\frac{-f(0)-g(0)-h(0)}{2},
\end{aligned}
$$

by the triangle inequality, $|f(x)+g(y)+h(z)|<2 / 3$. In particular, $|f(1)+g(1)+h(1)|<2 / 3$. However, $|1-f(1)-g(1)-h(1)|<1 / 3$. Adding these two inequality and applying the triangle inequality to the left side, we get $1<1$, a contradiction.

There is a simpler proof. By the triangle inequality, the sum of $|-(f(0)+g(0)+h(0))|,|f(0)+g(1)+h(1)|,|f(1)+g(0)+h(1)|$, $|f(1)+g(1)+h(0)|,|-(f(1)+g(1)+h(1)-1)|,|-(f(1)+g(1)+h(1)-1)|$ is at least 2 . So, one of them is at least $2 / 6$.
25. (Proposed by Great Britain for 1987 IMO) If x, y, z are real numbers such that $x^{2}+y^{2}+z^{2}=2$, then show that $x+y+z \leq x y z+2$.

Solution. (Due to Chan Ming Chiu) If one of x, y, z is nonpositive, say z, then

$$
2+x y z-x-y-z=(2-x-y)-z(1-x y) \geq 0
$$

because $x+y \leq \sqrt{2\left(x^{2}+y^{2}\right)} \leq 2$ and $x y \leq\left(x^{2}+y^{2}\right) / 2 \leq 1$. So we may assume x, y, z are positive, say $0<x \leq y \leq z$. If $z \leq 1$, then

$$
2+x y z-x-y-z=(1-x)(1-y)+(1-z)(1-x y) \geq 0 .
$$

If $z>1$, then

$$
(x+y)+z \leq \sqrt{2\left((x+y)^{2}+z^{2}\right)}=2 \sqrt{x y+1} \leq x y+2 \leq x y z+2 .
$$

26. (Proposed by USA for 1993 IMO) Prove that for positive real numbers a, b, c, d,

$$
\frac{a}{b+2 c+3 d}+\frac{b}{c+2 d+3 a}+\frac{c}{d+2 a+3 b}+\frac{d}{a+2 b+3 c} \geq \frac{2}{3} .
$$

Solution. Let

$$
\begin{array}{ll}
x_{1}=\sqrt{\frac{a}{b+2 c+3 d}}, & y_{1}=\sqrt{a(b+2 c+3 d)}, \\
x_{2}=\sqrt{\frac{b}{c+2 d+3 a}}, & y_{2}=\sqrt{b(c+2 d+3 a)}, \\
x_{3}=\sqrt{\frac{c}{d+2 a+3 b}}, & y_{3}=\sqrt{c(d+2 a+3 b)}, \\
x_{4}=\sqrt{\frac{d}{a+2 b+3 c}}, & y_{4}=\sqrt{d(a+2 b+3 c)} .
\end{array}
$$

The inequality to be proved is $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \geq 2 / 3$. By the CauchySchwarz inequality, $\left(x_{1}^{2}+\cdots+x_{4}^{2}\right)\left(y_{1}^{2}+\cdots+y_{4}^{2}\right) \geq(a+b+c+d)^{2}$. To finish, it suffices to show $(a+b+c+d)^{2} /\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right) \geq 2 / 3$. This follows from

$$
\begin{aligned}
& 3(a+b+c+d)^{2}-2\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right) \\
= & 3(a+b+c+d)^{2}-8(a b+a c+a d+b c+b d+c d) \\
= & (a-b)^{2}+(a-c)^{2}+(a-d)^{2}+(b-c)^{2}+(b-d)^{2}+(c-d)^{2} \geq 0 .
\end{aligned}
$$

27. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be $2 n$ positive real numbers such that
(a) $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and
(b) $b_{1} b_{2} \cdots b_{k} \geq a_{1} a_{2} \cdots a_{k}$ for all $k, 1 \leq k \leq n$.

Show that $b_{1}+b_{2}+\cdots+b_{n} \geq a_{1}+a_{2}+\cdots+a_{n}$.
Solution. Let $c_{k}=b_{k} / a_{k}$ and $d_{k}=\left(c_{1}-1\right)+\left(c_{2}-1\right)+\cdots+\left(c_{k}-1\right)$ for $1 \leq k \leq n$. By the AM-GM inequality and (b), $\left(c_{1}+c_{2}+\cdots+c_{k}\right) / k \geq$ $\sqrt[k]{c_{1} c_{2} \cdots c_{k}} \geq 1$, which implies $d_{k} \geq 0$. Finally,

$$
\begin{aligned}
& \left(b_{1}+b_{2}+\cdots+b_{n}\right)-\left(a_{1}+a_{2}+\cdots+a_{n}\right) \\
= & \left(c_{1}-1\right) a_{1}+\left(c_{2}-1\right) a_{2}+\cdots+\left(c_{n}-1\right) a_{n} \\
= & d_{1} a_{1}+\left(d_{2}-d_{1}\right) a_{2}+\cdots+\left(d_{n}-d_{n-1}\right) a_{n} \\
= & d_{1}\left(a_{1}-a_{2}\right)+d_{2}\left(a_{2}-a_{3}\right)+\cdots+d_{n} a_{n} \geq 0 .
\end{aligned}
$$

28. (Proposed by Greece for 1987 IMO) Let $a, b, c>0$ and m be a positive integer, prove that

$$
\frac{a^{m}}{b+c}+\frac{b^{m}}{c+a}+\frac{c^{m}}{a+b} \geq \frac{3}{2}\left(\frac{a+b+c}{3}\right)^{m-1}
$$

Solution. Without loss of generality, assume $a \geq b \geq c$. So $a+b \geq$ $c+a \geq b+c$, which implies $\frac{1}{b+c} \geq \frac{1}{c+a} \geq \frac{1}{a+b}$. By the AM-HM inequality,

$$
\frac{(b+c)+(c+a)+(a+b)}{3} \geq \frac{3}{\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}}
$$

This yields $\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b} \geq \frac{9}{2(a+b+c)}$. By the Chebysev inequality and the power mean inequality respectively, we have

$$
\begin{aligned}
\frac{a^{m}}{b+c}+\frac{b^{m}}{c+a}+\frac{c^{m}}{a+b} & \geq \frac{1}{3}\left(a^{m}+b^{m}+c^{m}\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) \\
& \geq\left(\frac{a+b+c}{3}\right)^{m} \frac{9}{2(a+b+c)} \\
& =\frac{3}{2}\left(\frac{a+b+c}{3}\right)^{m-1}
\end{aligned}
$$

29. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, show that

$$
\frac{a_{1}}{2}+\frac{a_{2}}{8}+\cdots+\frac{a_{n}}{n 2^{n}} \geq 1-\frac{1}{2^{n}}
$$

Solution. (Due to Chan Kin Hang) Arrange $a_{1}, a_{2}, \ldots, a_{n}$ into increasing order as $b_{1}, b_{2}, \ldots, b_{n}$. Then $b_{n} \geq n$ because they are distinct positive integers. Since $\frac{1}{2}, \frac{1}{8}, \ldots, \frac{1}{n 2^{n}}$, by the rearrangement inequality,

$$
\begin{aligned}
\frac{a_{1}}{2}+\frac{a_{2}}{8}+\cdots+\frac{a_{n}}{n 2^{n}} & \geq \frac{b_{1}}{2}+\frac{b_{2}}{8}+\cdots+\frac{b_{n}}{n 2^{n}} \\
& \geq \frac{1}{2}+\frac{2}{8}+\cdots+\frac{n}{n 2^{n}}=1-\frac{1}{2^{n}} .
\end{aligned}
$$

30. (1982 West German Math Olympiad) If $a_{1}, a_{2}, \ldots, a_{n}>0$ and $a=$ $a_{1}+a_{2}+\cdots+a_{n}$, then show that

$$
\sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} \geq \frac{n}{2 n-1}
$$

Solution. By symmetry, we may assume $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$. Then $\frac{1}{2 a-a_{n}} \leq \ldots \leq \frac{1}{2 a-a_{1} .}$ For convenience, let $a_{i}=a_{j}$ if $i \equiv j(\bmod n)$. For $m=0,1, \ldots, n-1$, by the rearrangement inequality, we get

$$
\sum_{i=1}^{n} \frac{a_{m+i}}{2 a-a_{i}} \leq \sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} .
$$

Adding these n inequalities, we get $\sum_{i=1}^{n} \frac{a}{2 a-a_{i}} \leq \sum_{i=1}^{n} \frac{n a_{i}}{2 a-a_{i}}$. Since $\frac{a}{2 a-a_{i}}=\frac{1}{2}+\frac{1}{2} \frac{a_{i}}{2 a-a_{i}}$, we get

$$
\frac{n}{2}+\frac{1}{2} \sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} \leq n \sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}}
$$

Solving for the sum, we get the desired inequality.
31. Prove that if $a, b, c>0$, then $\frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} \geq \frac{a^{2}+b^{2}+c^{2}}{2}$.

Solution. (Due to Ho Wing Yip) By symmetry, we may assume $a \leq$ $b \leq c$. Then $a+b \leq c+a \leq b+c$. So $\frac{1}{b+c} \leq \frac{1}{c+a} \leq \frac{1}{a+b}$. By the rearrangement inequality, we have

$$
\begin{aligned}
& \frac{a^{3}}{a+b}+\frac{b^{3}}{b+c}+\frac{c^{3}}{c+a} \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}, \\
& \frac{a^{3}}{c+a}+\frac{b^{3}}{a+b}+\frac{c^{3}}{b+c} \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} .
\end{aligned}
$$

Adding these, then dividing by 2 , we get

$$
\frac{1}{2}\left(\frac{a^{3}+b^{3}}{a+b}+\frac{b^{3}+c^{3}}{b+c}+\frac{c^{3}+a^{3}}{c+a}\right) \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} .
$$

Finally, since $\left(x^{3}+y^{3}\right) /(x+y)=x^{2}-x y+y^{2} \geq\left(x^{2}+y^{2}\right) / 2$, we have

$$
\begin{aligned}
\frac{a^{2}+b^{2}+c^{2}}{2} & =\frac{1}{2}\left(\frac{a^{2}+b^{2}}{2}+\frac{b^{2}+c^{2}}{2}+\frac{c^{2}+a^{2}}{2}\right) \\
& \leq \frac{1}{2}\left(\frac{a^{3}+b^{3}}{a+b}+\frac{b^{3}+c^{3}}{b+c}+\frac{c^{3}+a^{3}}{c+a}\right) \\
& \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} .
\end{aligned}
$$

32. Let $a, b, c, d>0$ and

$$
\frac{1}{1+a^{4}}+\frac{1}{1+b^{4}}+\frac{1}{1+c^{4}}+\frac{1}{1+d^{4}}=1 .
$$

Prove that $a b c d \geq 3$.
Solution. Let $a^{2}=\tan \alpha, b^{2}=\tan \beta, c^{2}=\tan \gamma, d^{2}=\tan \delta$. Then $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=1$. By the AM-GM inequality,

$$
\sin ^{2} \alpha=\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta \geq 3(\cos \beta \cos \gamma \cos \delta)^{2 / 3}
$$

Multiplying this and three other similar inequalities, we have

$$
\sin ^{2} \alpha \sin ^{2} \beta \sin ^{2} \gamma \sin ^{2} \delta \geq 81 \cos ^{2} \alpha \cos ^{2} \beta \cos ^{2} \gamma \cos ^{2} \delta
$$

Then $a b c d=\sqrt{\tan \alpha \tan \beta \tan \gamma \tan \delta} \geq 3$.
33. (Due to Paul Erdös) Each of the positive integers a_{1}, \ldots, a_{n} is less than 1951. The least common multiple of any two of these is greater than 1951. Show that

$$
\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}<1+\frac{n}{1951} .
$$

Solution. Observe that none of the numbers $1,2, \ldots, 1951$ is a common multiple of more than one a_{i} 's. The number of multiples of a_{i} among $1,2, \ldots, 1951$ is $\left[1951 / a_{i}\right]$. So we have $\left[1951 / a_{1}\right]+\cdots+\left[1951 / a_{n}\right] \leq 1951$. Since $x-1<[x]$, so

$$
\left(\frac{1951}{a_{1}}-1\right)+\cdots+\left(\frac{1951}{a_{n}}-1\right)<1951
$$

Dividing by 1951 and moving the negative terms to the right, we get the desired inequality.
34. A sequence $\left(P_{n}\right)$ of polynomials is defined recursively as follows:

$$
P_{0}(x)=0 \quad \text { and } \text { for } n \geq 0, \quad P_{n+1}(x)=P_{n}(x)+\frac{x-P_{n}(x)^{2}}{2}
$$

Prove that

$$
0 \leq \sqrt{x}-P_{n}(x) \leq \frac{2}{n+1}
$$

for every nonnegative integer n and all x in $[0,1]$.
Solution. (Due to Wong Chun Wai) For x in $[0,1]$,

$$
\sqrt{x}-P_{n+1}(x)=\left(\sqrt{x}-P_{n}(x)\right)\left(1-\frac{\sqrt{x}+P_{n}(x)}{2}\right) .
$$

By induction, we can show that $0 \leq P_{n}(x) \leq \sqrt{x} \leq 1$ for all x in $[0,1]$. Then
$\frac{\sqrt{x}-P_{n}(x)}{\sqrt{x}}=\prod_{k=0}^{n-1} \frac{\sqrt{x}-P_{k+1}(x)}{\sqrt{x}-P_{k}(x)}=\prod_{k=0}^{n-1}\left(1-\frac{\sqrt{x}+P_{k}(x)}{2}\right) \leq\left(1-\frac{\sqrt{x}}{2}\right)^{n}$.
Multiplying both sides by \sqrt{x} and applying the AM-GM inequality, we have

$$
\begin{aligned}
0 & \leq \sqrt{x}-P_{n}(x) \leq \sqrt{x}\left(1-\frac{\sqrt{x}}{2}\right)^{n} \\
& \leq \frac{2}{n}\left(\frac{\frac{n}{2} \sqrt{x}+\left(1-\frac{\sqrt{x}}{2}\right)+\cdots+\left(1-\frac{\sqrt{x}}{2}\right)}{n+1}\right)^{n+1} \\
& =\frac{2}{n}\left(\frac{n}{n+1}\right)^{n+1} \leq \frac{2}{n+1}
\end{aligned}
$$

35. (1996 IMO shortlisted problem) Let $P(x)$ be the real polynomial function, $P(x)=a x^{3}+b x^{2}+c x+d$. Prove that if $|P(x)| \leq 1$ for all x such that $|x| \leq 1$, then

$$
|a|+|b|+|c|+|d| \leq 7
$$

Solution. Note the four polynomials $\pm P(\pm x)$ satisfy the same conditions as $P(x)$. One of these have $a, b \geq 0$. The problem stays the same if $P(x)$ is replaced by this polynomial. So we may assume $a, b \geq 0$.
Case c in $[0,+\infty)$. If $d \geq 0$, then $|a|+|b|+|c|+|d|=a+b+c+d=$ $P(1) \leq 1$. If $d<0$, then

$$
|a|+|b|+|c|+|d|=a+b+c+d+2(-d)=P(1)-2 P(0) \leq 3 .
$$

Case c in $(-\infty .0)$. If $d \geq 0$, then

$$
\begin{aligned}
|a|+|b|+|c|+|d| & =a+b-c+d \\
& =\frac{4}{3} P(1)-\frac{1}{3} P(-1)-\frac{8}{3} P\left(\frac{1}{2}\right)+\frac{8}{3} P\left(-\frac{1}{2}\right) \\
& \leq \frac{4}{3}+\frac{1}{3}+\frac{8}{3}+\frac{8}{3}=7 .
\end{aligned}
$$

If $d<0$, then

$$
\begin{aligned}
|a|+|b|+|c|+|d| & =a+b-c-d \\
& =\frac{5}{3} P(1)-4 P\left(\frac{1}{2}\right)+\frac{4}{3} P\left(-\frac{1}{2}\right) \\
& \leq \frac{5}{3}+4+\frac{4}{3}=7 .
\end{aligned}
$$

Comments. Tracing the equality cases, we see that the maximum 7 is obtained by $P(x)= \pm\left(4 x^{3}-3 x\right)$ only.
36. (American Mathematical Monthly, Problem 4426) Let $P(z)=a z^{3}+$ $b z^{2}+c z+d$, where a, b, c, d are complex numbers with $|a|=|b|=|c|=$ $|d|=1$. Show that $|P(z)| \geq \sqrt{6}$ for at least one complex number z satisfying $|z|=1$.

Solution. (Due to Yung Fai) We have $a \bar{a}=|a|^{2}=1$ and similarly for b, c, d. Using $w+\bar{w}=2 \operatorname{Re} w$, we get

$$
\begin{aligned}
|P(z)|^{2} & =\left(a z^{3}+b z^{2}+c z+d\right)\left(\overline{a z^{3}}+\bar{b} \bar{z}^{2}+\overline{c z}+\bar{d}\right) \\
& =4+2 \operatorname{Re}\left(a \bar{d} z^{3}+(a \bar{c}+b \bar{d}) z^{2}+(a \bar{b}+b \bar{c}+c \bar{d}) z\right) .
\end{aligned}
$$

Let $Q(z)=a \bar{d} z^{3}+(a \bar{c}+b \bar{d}) z^{2}+(a \bar{b}+b \bar{c}+c \bar{d}) z$, then $|P(z)|^{2}=4+$ $2 \operatorname{Re} Q(z)$. Now we use the roots of unity trick! Let ω be a cube root of unity not equal to 1 . Since $1+\omega+\omega^{2}=0$ and $1+\omega^{2}+\omega^{4}=0$, so

$$
\begin{aligned}
& Q(z)+Q(\omega z)+Q\left(\omega^{2} z\right) \\
= & 3 a \bar{d} z^{3}+(a \bar{c}+b \bar{d})\left(1+\omega+\omega^{2}\right)+(a \bar{d}+b \bar{c}+c \bar{d})\left(1+\omega^{2}+\omega^{4}\right) z \\
= & 3 a \bar{d} z^{3} .
\end{aligned}
$$

If we now choose z to be a cube root of $\bar{a} d$, then $|z|=1$ and $\operatorname{Re} Q(z)+$ $\operatorname{Re} Q(\omega z)+\operatorname{Re} Q\left(\omega^{2} z\right)=3$. So $|P(z)|^{2}+|P(\omega z)|^{2}+\left|P\left(\omega^{2} z\right)\right|^{2}=18$. Then one of $|P(z)|,|P(\omega z)|,\left|P\left(\omega^{2} z\right)\right|$ is at least $\sqrt{6}$.
37. (1997 Hungarian-Israeli Math Competition) Find all real numbers α with the following property: for any positive integer n, there exists an integer m such that $\left|\alpha-\frac{m}{n}\right|<\frac{1}{3 n}$?

Solution. The condition holds if and only if x is an integer. If x is an integer, then for any n, take $m=n x$. Conversely, suppose the condition holds for x. Let m_{k} be the integer corresponding to $n=$ $2^{k}, k=0,1,2, \ldots$ By the triangle inequality,

$$
\left|\frac{m_{k}}{2^{k}}-\frac{m_{k+1}}{2^{k+1}}\right| \leq\left|\frac{m_{k}}{2^{k}}-x\right|+\left|x-\frac{m_{k+1}}{2^{k+1}}\right|<\frac{1}{3 \cdot 2^{k}}+\frac{1}{3 \cdot 2^{k+1}}=\frac{1}{2^{k+1}} .
$$

Since the leftmost expression is $\left|2 m_{k}-m_{k+1}\right| / 2^{k+1}$, the inequalities imply it is 0 , that is $m_{k} / 2^{k}=m_{k+1} / 2^{k+1}$ for every k. Then $\left|x-m_{0}\right|=$ $\left|x-\left(m_{k} / 2^{k}\right)\right| \leq 1 /\left(3 \cdot 2^{k}\right)$ for every k. Therefore, $x=m_{0}$ is an integer.
38. (1979 British Math Olympiad) If n is a positive integer, denote by $p(n)$ the number of ways of expressing n as the sum of one or more positive
integers. Thus $p(4)=5$, as there are five different ways of expressing 4 in terms of positive integers; namely

$$
1+1+1+1, \quad 1+1+2, \quad 1+3, \quad 2+2, \quad \text { and } 4
$$

Prove that $p(n+1)-2 p(n)+p(n-1) \geq 0$ for each $n>1$.
Solution. The required inequality can be written as $p(n+1)-p(n) \geq$ $p(n)-p(n-1)$. Note that adding a 1 to each $p(n-1)$ sums of $n-1$ will yield $p(n-1)$ sums of n. Conversely, for each sum of n whose least summand is 1 , removing that 1 will results in a sum of $n-1$. So $p(n)-p(n-1)$ is the number of sums of n whose least summands are at least 2 . For every one of these $p(n)-p(n-1)$ sums of n, increasing the largest summand by 1 will give a sum of $n+1$ with least summand at least 2 . So $p(n+1)-p(n) \geq p(n)-p(n-1)$.

Functional Equations

39. Find all polynomials f satisfying $f\left(x^{2}\right)+f(x) f(x+1)=0$.

Solution. If f is constant, then f is 0 or -1 . If f is not constant, then let z be a root of f. Setting $x=z$ and $x=z-1$, respectively, we see that z^{2} and $(z-1)^{2}$ are also roots, respectively. Since f has finitely many roots and $z^{2^{n}}$ are all roots, so we must have $|z|=0$ or 1. Since z is a root implies $(z-1)^{2}$ is a root, $|z-1|$ also equals 0 or 1. It follows that $z=0$ or 1 . Then $f(x)=c x^{m}(x-1)^{n}$ for some real c and nonnegative integers m, n. If $c \neq 0$, then after simplifying the functional equation, we will see that $n=m$ and $c=1$. Therefore, $f(x)=0$ or $-x^{n}(1-x)^{n}$ for nonnegative integer n.
40. (1997 Greek Math Olympiad) Let $f:(0, \infty) \rightarrow R$ be a function such that
(a) f is strictly increasing,
(b) $f(x)>-\frac{1}{x}$ for all $x>0$ and
(c) $f(x) f\left(f(x)+\frac{1}{x}\right)=1$ for all $x>0$.

Find $f(1)$.

Solution. Let $t=f(1)$. Setting $x=1$ in (c), we get $t f(t+1)=1$. So $t \neq 0$ and $f(t+1)=1 / t$. Setting $x=t+1$ in (c), we get $f(t+1) f(f(t+$ 1) $\left.+\frac{1}{t+1}\right)=1$. Then $f\left(\frac{1}{t}+\frac{1}{t+1}\right)=t=f(1)$. Since f is strictly increasing, $\frac{1}{t}+\frac{1}{t+1}=1$. Solving, we get $t=(1 \pm \sqrt{5}) / 2$. If $t=(1+\sqrt{5}) / 2>0$, then $1<t=f(1)<f(1+t)=\frac{1}{t}<1$, a contradiction. Therefore, $f(1)=t=(1-\sqrt{5}) / 2$. (Note $f(x)=(1-\sqrt{5}) /(2 x)$ is such a function.)
41. (1979 Eötvös-Kürschák Math Competition) The function f is defined for all real numbers and satisfies $f(x) \leq x$ and $f(x+y) \leq f(x)+f(y)$ for all real x, y. Prove that $f(x)=x$ for every real number x.

Solution. (Due to Ng Ka Wing) Since $f(0+0) \leq f(0)+f(0)$, so $0 \leq f(0)$. Since $f(0) \leq 0$ also, we get $f(0)=0$. For all real x,

$$
0=f(x+(-x)) \leq f(x)+f(-x) \leq x+(-x)=0
$$

So $f(x)+f(-x)=0$, hence $-f(-x)=f(x)$ for all real x. Since $f(-x) \leq-x$, so $x \leq-f(-x)=f(x) \leq x$. Therefore, $f(x)=x$ for all real x.
42. (Proposed by Ireland for 1989 IMO) Suppose $f: R \rightarrow R$ satisfies $f(1)=1, f(a+b)=f(a)+f(b)$ for all $a, b \in R$ and $f(x) f\left(\frac{1}{x}\right)=1$ for $x \neq 0$. Show that $f(x)=x$ for all x.

Solution. (Due to Yung Fai) From $f(0+0)=f(0)+f(0)$, we get $f(0)=0$. From $0=f(x+(-x))=f(x)+f(-x)$, we get $f(-x)=$ $-f(x)$. By induction, $f(n x)=n f(x)$ for positive integer n. For $x=\frac{1}{n}$, $1=f(1)=f\left(n \frac{1}{n}\right)=n f\left(\frac{1}{n}\right)$. Then $f\left(\frac{1}{n}\right)=\frac{1}{n}$ and $f\left(\frac{m}{n}\right)=f\left(m \frac{1}{n}\right)=$ $m f\left(\frac{1}{n}\right)=\frac{m}{n}$. So $f(x)=x$ for rational x. (The argument up to this point is well-known. The so-called Cauchy's equation $f(a+b)=f(a)+f(b)$ implies $f(x)=f(1) x$ for rational x.)

Next we will show f is continuous at 0 . For $0<|x|<\frac{1}{2 n}$, we have $\left|\frac{1}{n x}\right|>2$. So there is w such that $w+\frac{1}{w}=\frac{1}{n x}$. We have $\left|f\left(\frac{1}{n x}\right)\right|=$ $\left|f(w)+f\left(\frac{1}{w}\right)\right| \leq 2 \sqrt{f(w) f\left(\frac{1}{w}\right)}=2$. So $|f(x)|=\frac{1}{n\left|f\left(\frac{1}{n x}\right)\right|} \leq \frac{1}{2 n}$. Then $\lim _{x \rightarrow 0} f(x)=0=f(0)$.

Now for every real x, let r_{n} be a rational number agreeing with x to n places after the decimal point. Then $\lim _{n \rightarrow \infty}\left(x-r_{n}\right)=0$. By continuity at $0, f(x)=\lim _{n \rightarrow \infty}\left(f\left(x-r_{n}\right)+f\left(r_{n}\right)\right)=\lim _{n \rightarrow \infty} r_{n}=x$. Therefore, $f(x)=x$ for all x. (This first and third paragraphs show the Cauchy equation with continuity at a point has the unique solution $f(x)=f(1) x$.)
43. (1992 Polish Math Olympiad) Let Q^{+}be the positive rational numbers. Determine all functions $f: Q^{+} \rightarrow Q^{+}$such that $f(x+1)=f(x)+1$ and $f\left(x^{3}\right)=f(x)^{3}$ for every $x \in Q^{+}$.

Solution. From $f(x+1)=f(x)+1$, we get $f(x+n)=f(x)+n$ for all positive integer n. For $\frac{p}{q} \in Q^{+}$, let $t=f\left(\frac{p}{q}\right)$. On one hand,

$$
f\left(\left(\frac{p}{q}+q^{2}\right)^{3}\right)=f\left(\frac{p^{3}}{q^{3}}+3 p^{2}+3 p q^{3}+q^{6}\right)=t^{3}+3 p^{2}+3 p q^{3}+q^{6}
$$

and on the other hand,

$$
f\left(\left(\frac{p}{q}+q^{2}\right)^{3}\right)=\left(f\left(\frac{p}{q}\right)+q^{2}\right)^{3}=t^{3}+3 t^{2} q^{2}+3 t q^{4}+q^{6} .
$$

Equating the right sides and simplifying the equation to a quadratic in t, we get the only positive root $t=\frac{p}{q}$. So $f(x)=x$ for all $x \in Q^{+}$.
44. (1996 IMO shortlisted problem) Let R denote the real numbers and $f: R \rightarrow[-1,1]$ satisfy

$$
f\left(x+\frac{13}{42}\right)+f(x)=f\left(x+\frac{1}{6}\right)+f\left(x+\frac{1}{7}\right)
$$

for every $x \in R$. Show that f is a periodic function, i.e. there is a nonzero real number T such that $f(x+T)=f(x)$ for every $x \in R$.

Solution. Setting $x=w+\frac{k}{6}$ for $k=0,1, \ldots, 5$, we get 6 equations. Adding these and cancelling terms, we will get $f\left(w+\frac{8}{7}\right)+f(w)=$ $f(w+1)+f\left(w+\frac{1}{7}\right)$ for all w. Setting $w=z+\frac{k}{7}$ for $k=0,1, \ldots, 6$
in this new equation, we get 7 equations. Adding these and cancelling terms, we will get $f(z+2)+f(z)=2 f(z+1)$ for all z. Rewriting this as $f(z+2)-f(z+1)=f(z+1)-f(z)$, we see that $f(z+n)-f(z+(n-1))$ is a constant, say c. If $c \neq 0$, then

$$
\begin{aligned}
f(z+k) & =\sum_{n=1}^{k}(f(z+n)-f(z+(n-1)))+f(z) \\
& =k c+f(z) \notin[-1,1]
\end{aligned}
$$

for large k, a contradiction. So $c=0$ and $f(z+1)=f(z)$ for all z.
45. Let N denote the positive integers. Suppose $s: N \rightarrow N$ is an increasing function such that $s(s(n))=3 n$ for all $n \in N$. Find all possible values of $s(1997)$.

Solution. (Due to Chan Kin Hang) Note that if $s(m)=s(n)$, then $3 m=s(s(m))=s(s(n))=3 n$ implies $m=n$. From this, we see that s is strictly increasing. Next we have $n<s(n)$ for all n (otherwise $s(n) \leq n$ for some n, which yields the contradiction that $3 n=s(s(n)) \leq$ $s(n) \leq n$.) Then $s(n)<s(s(n))=3 n$. In particular, $1<s(1)<3$ implies $s(1)=2$ and $s(2)=s(s(1))=3$. With the help of $s(3 n)=$ $s(s(s(n)))=3 s(n)$, we get $s\left(3^{k}\right)=2 \cdot 3^{k}$ and $s\left(2 \cdot 3^{k}\right)=s\left(s\left(3^{k}\right)\right)=3^{k+1}$.

Now there are $3^{k}-1$ integers in each of the open intervals $\left(3^{k}, 2 \cdot 3^{k}\right)$ and $\left(2 \cdot 3^{k}, 3^{k+1}\right)$. Since f is strictly increasing, we must have $s\left(3^{k}+j\right)=$ $2 \cdot 3^{k}+j$ for $j=1,2, \ldots, 3^{k}-1$. Then $s\left(2 \cdot 3^{k}+j\right)=s\left(s\left(3^{k}+j\right)\right)=$ $3\left(3^{k}+j\right)$. Since $1997=2 \cdot 3^{6}+539<3^{7}$, so $s(1997)=3\left(3^{6}+539\right)=3804$.
46. Let N be the positive integers. Is there a function $f: N \rightarrow N$ such that $f^{(1996)}(n)=2 n$ for all $n \in N$, where $f^{(1)}(x)=f(x)$ and $f^{(k+1)}(x)=$ $f\left(f^{(k)}(x)\right)$?

Solution. For such a function $f(2 n)=f^{(1997)}(n)=f^{(1996)}(f(n))=$ $2 f(n)$. So if $n=2^{e} q$, where e, q are nonnegative integers and q odd, then $f(n)=2^{e} f(q)$. To define such a function, we need to define it at odd integer q. Now define

$$
f(q)= \begin{cases}q+2 & \text { if } q \equiv 1,3, \ldots, 3989(\bmod 3992) \\ 2(q-3990) & \text { if } q \equiv 3991(\bmod 3992)\end{cases}
$$

and $f(2 n)=2 f(n)$ for positive integer n. If $q=3992 m+(2 j-1), j=$ $1,2, \ldots, 1995$, then $f^{(1996-j)}(q)=q+2(1996-j)=3992 m+3991$, $f^{(1997-j)}(q)=2(3992 m+1)$ and

$$
f^{(1996)}(q)=2 f^{(j-1)}(3992 m+1)=2(3992 m+1+(2 j-1))=2 q .
$$

If $q=3992 m+3991$, then $f(q)=2(3992 m+1)$ and

$$
f^{(1996)}(q)=2 f^{(1995)}(3992 m+1)=2(3992 m+1+2 \times 1995)=2 q
$$

So $f^{(1996)}(q)=2 q$ for odd q. If $n=2^{e} q$, then

$$
f^{(1996)}(n)=2^{e} f^{(1996)}(q)=2^{e}(2 q)=2 n
$$

47. (American Mathematical Monthly, Problem E984) Let R denote the real numbers. Find all functions $f: R \rightarrow R$ such that $f(f(x))=x^{2}-2$ or show no such function can exist.

Solution. Let $g(x)=x^{2}-2$ and suppose $f(f(x))=g(x)$. Put $h(x)=$ $g(g(x))=x^{4}-4 x^{2}+2$. The fixed points of g (i.e. the solutions of the equation $g(x)=x)$ are -1 and 2 . The set of fixed points of h contains the fixed points of g and is $S=\{-1,2,(-1 \pm \sqrt{5}) / 2\}$. Now observe that $x \in S$ implies $h(f(x))=f(h(x))=f(x)$, i.e. $f(x) \in S$. Also, $x, y \in S$ and $f(x)=f(y)$ imply $x=h(x)=h(y)=y$. So f is a bijection $S \rightarrow S$.

If $c=-1$ or 2 , then $g(f(c))=f(f(f(c)))=f(g(c))=f(c)$ and consequently $\{f(-1), f(2)\}=\{-1,2\}$. For $a=(-1+\sqrt{5}) / 2$, since f induces a bijection $S \rightarrow S$ and $g(a)=a^{2}-2 \neq a$ implies $f(a) \neq a$, we must have $f(a)=b=(-1-\sqrt{5}) / 2$. It follows that $f(b)=a$ and we have a contradiction $a=f(b)=f(f(a))=g(a)$.
48. Let R be the real numbers. Find all functions $f: R \rightarrow R$ such that for all real numbers x and y,

$$
f(x f(y)+x)=x y+f(x) .
$$

Solution 1. (Due to Leung Wai Ying) Putting $x=1, y=-1-f(1)$ and letting $a=f(y)+1$, we get

$$
f(a)=f(f(y)+1)=y+f(1)=-1
$$

Putting $y=a$ and letting $b=f(0)$, we get

$$
b=f(x f(a)+x)=a x+f(x),
$$

so $f(x)=-a x+b$. Putting this into the equation, we have

$$
a^{2} x y-a b x-a x+b=x y-a x+b .
$$

Equating coefficients, we get $a= \pm 1$ and $b=0$, so $f(x)=x$ or $f(x)=$ $-x$. We can easily check both are solutions.

Solution 2. Setting $x=1$, we get

$$
f(f(y)+1)=y+f(1) .
$$

For every real number a, let $y=a-f(1)$, then $f(f(y)+1)=a$ and f is surjective. In particular, there is b such that $f(b)=-1$. Also, if $f(c)=f(d)$, then

$$
\begin{aligned}
c+f(1) & =f(f(c)+1) \\
& =f(f(d)+1) \\
& =d+f(1) .
\end{aligned}
$$

So $c=d$ and f is injective. Taking $x=1, y=0$, we get $f(f(0)+1)=$ $f(1)$. Since f is injective, we get $f(0)=0$.

For $x \neq 0$, let $y=-f(x) / x$, then

$$
f(x f(y)+x)=0=f(0) .
$$

By injectivity, we get $x f(y)+x=0$. Then

$$
f(-f(x) / x)=f(y)=-1=f(b)
$$

and so $-f(x) / x=b$ for every $x \neq 0$. That is, $f(x)=-b x$. Putting this into the given equation, we find $f(x)=x$ or $f(x)=-x$, which are easily checked to be solutions.
49. (1999 IMO) Determine all functions $f: R \rightarrow R$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all x, y in R.
Solution. Let A be the range of f and $c=f(0)$. Setting $x=y=0$, we get $f(-c)=f(c)+c-1$. So $c \neq 0$. For $x=f(y) \in A, f(x)=\frac{c+1}{2}-\frac{x^{2}}{2}$.

Next, if we set $y=0$, we get

$$
\{f(x-c)-f(x): x \in R\}=\{c x+f(c)-1: x \in R\}=R
$$

because $c \neq 0$. This means $A-A=\left\{y_{1}-y_{2}: y_{1}, y_{2} \in A\right\}=R$.
Now for an arbitrary $x \in R$, let $y_{1}, y_{2} \in A$ be such that $x=y_{1}-y_{2}$. Then

$$
\begin{aligned}
f(x) & =f\left(y_{1}-y_{2}\right)=f\left(y_{2}\right)+y_{1} y_{2}+f\left(y_{1}\right)-1 \\
& =\frac{c+1}{2}-\frac{y_{2}^{2}}{2}+y_{1} y_{2}+\frac{c+1}{2}-\frac{y_{1}^{2}}{2}-1 \\
& =c-\frac{\left(y_{1}-y_{2}\right)^{2}}{2}=c-\frac{x^{2}}{2} .
\end{aligned}
$$

However, for $x \in A, f(x)=\frac{c+1}{2}-\frac{x^{2}}{2}$. So $c=1$. Therefore, $f(x)=1-\frac{x^{2}}{2}$ for all $x \in R$.
50. (1995 Byelorussian Math Olympiad) Let R be the real numbers. Find all functions $f: R \rightarrow R$ such that

$$
f(f(x+y))=f(x+y)+f(x) f(y)-x y
$$

for all $x, y \in R$.
Solution. (Due to Yung Fai) Clearly, from the equation, $f(x)$ is not constant. Putting $y=0$, we get $f(f(x))=(1+f(0)) f(x)$. Replacing x by $x+y$, we get

$$
(1+f(0)) f(x+y)=f(f(x+y))=f(x+y)+f(x) f(y)-x y,
$$

which simplifies to $\left(^{*}\right) f(0) f(x+y)=f(x) f(y)-x y$. Putting $y=1$ in $\left(^{*}\right)$, we get $f(0) f(x+1)=f(x) f(1)-x$. Putting $y=-1$ and replacing
x by $x+1$ in $\left(^{*}\right)$, we get $f(0) f(x)=f(x+1) f(-1)+x+1$. Eliminating $f(x+1)$ in the last two equations, we get

$$
\left(f^{2}(0)-f(1) f(-1)\right) f(x)=(f(0)-f(-1)) x+f(0) .
$$

If $f^{2}(0)-f(1) f(-1)=0$, then putting $x=0$ in the last equation, we get $f(0)=0$. By $(*), f(x) f(y)=x y$. Then $f(x) f(1)=x$ for all $x \in R$. So $f^{2}(0)-f(1) f(-1)=-1$, resulting in a contradiction. Therefore, $f^{2}(0)-f(1) f(-1) \neq 0$ and $f(x)$ is a degree 1 polynomial.

Finally, substituting $f(x)=a x+b$ into the original equation, we find $a=1$ and $b=0$, i.e. $f(x)=x$ for all $x \in R$.
51. (1993 Czechoslovak Math Olympiad) Let Z be the integers. Find all functions $f: Z \rightarrow Z$ such that

$$
f(-1)=f(1) \text { and } f(x)+f(y)=f(x+2 x y)+f(y-2 x y)
$$

for all integers x, y.
Solution. We have $\left({ }^{*}\right) f(1)+f(n)=f(1+2 n)+f(-n)$ and $f(n)+$ $f(-1)=f(-n)+f(-1+2 n)$. Since $f(-1)=f(1)$, this gives $f(1+2 n)=$ $f(-1+2 n)$ for every integer n. So $f(k)$ has the same value for every odd k. Then equation $\left({ }^{*}\right)$ implies $f(n)=f(-n)$ for every integer n. So we need to find $f(n)$ for nonnegative integers n only.

If we let $x=-(2 k+1), y=n$, then x and $x+2 x y$ are odd. The functional equation gives $f(n)=f(y)=f(y-2 x y)=f(n(4 k+3))$. If we let $x=n, y=-(2 k+1)$, then similarly, we get $f(n)=f(x)=$ $f(x+2 x y)=f(n(-4 k-1))=f(n(4 k+1))$. So $f(n)=f(n m)$ for every odd m.

For a positive integer n, we can factor $n=2^{e} m$, where e, m are nonnegative integers and m odd. Then $f(n)=f\left(2^{e}\right)$. So any such function f is dtermined by the values $f(0), f(1), f(2), f(4), f(8), f(16), \ldots$ (which may be arbitrary). All other values are given by $f(n)=f\left(2^{e}\right)$ as above. Finally, we check such functions satisfy the equations. Clearly, $f(-1)=f(1)$. If x or $y=0$, then the functional equation is clearly satisfied. If $x=2^{e} m, y=2^{d} n$, where m, n are odd, then

$$
f(x)+f(y)=f\left(2^{e}\right)+f\left(2^{d}\right)=f(x(1+2 y))+f(y(1-2 x)) .
$$

52. (1995 South Korean Math Olympiad) Let A be the set of non-negative integers. Find all functions $f: A \rightarrow A$ satisfying the following two conditions:
(a) For any $m, n \in A, 2 f\left(m^{2}+n^{2}\right)=(f(m))^{2}+(f(n))^{2}$.
(b) For any $m, n \in A$ with $m \geq n, f\left(m^{2}\right) \geq f\left(n^{2}\right)$.

Solution. For $m=0$, we get $2 f\left(n^{2}\right)=f(0)^{2}+f(n)^{2}$. Let $m>n$, then $f(m)^{2}-f(n)^{2}=2\left(f\left(m^{2}\right)-f\left(n^{2}\right)\right) \geq 0$. So $f(m) \geq f(n)$. This means f is nondecreasing. Setting $m=0=n$, we get $2 f(0)=f(0)^{2}+f(0)^{2}$, which implies $f(0)=0$ or 1 .
Case $f(0)=1$. Then $2 f\left(n^{2}\right)=1+f(n)^{2}$. For $n=1$, we get $f(1)=1$. For $m=1=n$, we get $f(2)=1$. Assume $f\left(2^{2^{k}}\right)=1$. Then for $n=2^{2^{k}}$, we get $2 f\left(2^{2^{k+1}}\right)=1+f\left(2^{2^{k}}\right)^{2}=2$. So $f\left(2^{2^{k+1}}\right)=1$. Since $\lim _{k \rightarrow \infty} 2^{2^{k}}=\infty$ and f is nondecreasing, so $f(n)=1$ for all n.
Case $f(0)=0$. Then $2 f\left(n^{2}\right)=f(n)^{2}$. So $f(n)$ is even for all n. For $m=$ $1=n$, we get $2 f(2)=f(1)^{2}+f(1)^{2}$, which implies $f(2)=f(1)^{2}$. Using $2 f\left(n^{2}\right)=f(n)^{2}$ repeatedly (or by induction), we get $2^{2^{k}-1} f\left(2^{2^{k}}\right)=$ $f(1)^{2^{k+1}}$. Now $2 f(1)=f(1)^{2}$ implies $f(1)=0$ or 2 . If $f(1)=0$, then $\lim _{k \rightarrow \infty} 2^{2^{k}}=\infty$ and f nondecreasing imply $f(n)=0$ for all n. If $f(1)=2$, then $f\left(2^{2^{k}}\right)=2^{2^{k+1}}$. Now

$$
\begin{aligned}
& f(m+1)^{2}=2 f\left((m+1)^{2}\right)=2 f\left(m^{2}+2 m+1\right) \\
\geq & 2 f\left(m^{2}+1\right)=f(m)^{2}+f(1)^{2}>f(m)^{2}
\end{aligned}
$$

As $f(n)$ is always even, we get $f(m+1) \geq f(m)+2$. By induction, we get $f(n) \geq 2 n$. Since $f\left(2^{2^{k}}\right)=2^{2^{k}+1}=2 \cdot 2^{2^{k}}$ for all $k, \lim _{k \rightarrow \infty} 2^{2^{k}}=\infty$ and f is nondecreasing, so $f(n)=2 n$ for all n.

It is easy to check that $f(n)=1, f(n)=0$ and $f(n)=2 n$ are solutions. Therefore, they are the only solutions.
53. (American Mathematical Monthly, Problem E2176) Let Q denote the rational numbers. Find all functions $f: Q \rightarrow Q$ such that

$$
f(2)=2 \quad \text { and } \quad f\left(\frac{x+y}{x-y}\right)=\frac{f(x)+f(y)}{f(x)-f(y)} \text { for } x \neq y
$$

Solution. We will show $f(x)=x$ is the only solution by a series of observations.
(1) Setting $y=0$, we get $f(1)=(f(x)+f(0)) /(f(x)-f(0))$, which yields $(f(1)-1) f(x)=f(0)(1+f(1))$. (Now f is not constant because the denominator in the equation cannot equal 0 .) So, $f(1)=1$ and then $f(0)=0$.
(2) Setting $y=-x$, we get $0=f(x)+f(-x)$, so $f(-x)=-f(x)$.
(3) Setting $y=c x, c \neq 1, x \neq 0$, we get

$$
\frac{f(x)+f(c x)}{f(x)-f(c x)}=f\left(\frac{1+c}{1-c}\right)=\frac{1+f(c)}{1-f(c)}
$$

which implies $f(c x)=f(c) f(x)$. Taking $c=q, x=p / q$, we get $f(p / q)=f(p) / f(q)$.
(4) Setting $y=x-2$, we get $f(x-1)=(f(x)+f(x-2)) /(f(x)-$ $f(x-2))$. If $f(n-2)=n-2 \neq 0$ and $f(n-1)=n-1$, then this equation implies $f(n)=n$. Since $f(1)=1$ and $f(2)=2$, then $f(n)=n$ for all positive integers by induction and (2), (3) will imply $f(x)=x$ for all $x \in Q$.
Comments. The condition $f(2)=2$ can also be deduced from the functional equation as shown below in (5). If rational numbers are replaced by real numbers, then again the only solution is still $f(x)=x$ as shown below in (6) and (7).
(5) We have

$$
f(3)=\frac{f(2)+1}{f(2)-1}, \quad f(5)=\frac{f(3)+f(2)}{f(3)-f(2)}=\frac{f(2)^{2}+1}{1+2 f(2)-f(2)^{2}} .
$$

Also, $f(2)^{2}=f(4)=(f(5)+f(3)) /(f(5)-f(3))$. Substituting the equations for $f(3)$ and $f(5)$ in terms of $f(2)$ and simplifying, we get $f(2)^{2}=2 f(2)$. (Now $f(2) \neq 0$, otherwise $f((x+2) /(x-2))=$ $(f(x)+0) /(f(x)-0)=1$ will force f to be constant.) Therefore, $f(2)=2$.
(6) Note $f(x) \neq 0$ for $x>0$, otherwise $f(c x)=0$ for $c \neq 1$ will force f to be constant. So, if $x>0$, then $f(x)=f(\sqrt{x})^{2}>0$. If $x>y \geq 0$, then $f(x)-f(y)=(f(x)+f(y)) / f((x+y) /(x-y))>0$. This implies f is strictly increasing for positive real numbers.
(7) For $x>0$, if $x<f(x)$, then picking $r \in Q$ such that $x<r<f(x)$ will give the contradiction that $f(x)<f(r)=r<f(x)$. Similarly, $f(x)<x$ will also lead to a contradiction. So, $f(x)=x$ for all x.
54. (Mathematics Magazine, Problem 1552) Find all functions $f: R \rightarrow R$ such that

$$
f(x+y f(x))=f(x)+x f(y) \quad \text { for all } x, y \text { in } R .
$$

Solution. It is easy to check that $f(x)=0$ and $f(x)=x$ are solutions. Suppose f is a solution that is not the zero function. (We will show $f(x)=x$ for all x.)
Step 1. Setting $y=0, x=1$, we get $f(0)=0$. If $f(x)=0$, then $0=x f(y)$ for all y, which implies $x=0$ as f is not the zero function. So $f(x)=0$ if and only if $x=0$.
Step 2. Setting $x=1$, we get the equation $\left(^{*}\right) f(1+y f(1))=f(1)+f(y)$ for all y. If $f(1) \neq 1$, then setting $y=1 /(1-f(1))$ in $\left(^{*}\right)$, we get $f(y)=f(1)+f(y)$, resulting in $f(1)=0$, contradicting step 1 . So $f(1)=1$ and $(*)$ becomes $f(1+y)=f(1)+f(y)$, which implies $f(n)=n$ for every integer n.

Step 3. For integer n, real z, setting $x=n, y=z-1$ in the functional equation, we get

$$
f(n z)=f(n+(z-1) f(n))=n+n f(z-1)=n f(z) .
$$

Step 4. If $a=-b$, then $f(a)=f(-b)=-f(b)$ implies $f(a)+f(b)=$ $0=f(a+b)$. If $a \neq-b$, then $a+b \neq 0$ and $f(a+b) \neq 0$ by step 1 . Setting $x=(a+b) / 2, y= \pm(a-b) /\left(2 f\left(\frac{a+b}{2}\right)\right.$, we get

$$
\begin{aligned}
& f(a)=f\left(\frac{a+b}{2}+\frac{a-b}{2 f\left(\frac{a+b}{2}\right)} f\left(\frac{a+b}{2}\right)\right)=f\left(\frac{a+b}{2}\right)+\frac{a+b}{2} f\left(\frac{a-b}{2 f\left(\frac{a+b}{2}\right)}\right), \\
& f(b)=f\left(\frac{a+b}{2}+\frac{b-a}{2 f\left(\frac{a+b}{2}\right)} f\left(\frac{a+b}{2}\right)\right)=f\left(\frac{a+b}{2}\right)+\frac{a+b}{2} f\left(\frac{b-a}{2 f\left(\frac{a+b}{2}\right)}\right) .
\end{aligned}
$$

Adding these, we get $f(a)+f(b)=2 f\left(\frac{a+b}{2}\right)=f(a+b)$ by step 3 .
Step 5. Applying step 4 to the functional equation, we get the equation $\left.{ }^{(* *}\right) f(y f(x))=x f(y)$. Setting $y=1$, we get $f(f(x)=x$. Then f is bijective. Setting $z=f(x)$ in $\left({ }^{* *}\right)$, we get $f(y z)=f(y) f(z)$ for all y, z.

Step 6. Setting $z=y$ in the last equation, we get $f\left(y^{2}\right)=f(y)^{2} \geq 0$. Setting $z=-y$, we get $f\left(-y^{2}\right)=-f\left(y^{2}\right)=-f(y)^{2} \leq 0$. So $f(a)>0$ if and only if $a>0$.

Step 7. Setting $y=-1$ in the functional equation, we get $f(x-f(x))=$ $f(x)-x$. Since $x-f(x)$ and $f(x)-x$ are of opposite signs, by step 6 , we must have $x-f(x)=0$ for all x, i.e. $f(x)=x$ for all x.

Maximum/Minimum

55. (1985 Austrian Math Olympiad) For positive integers n, define

$$
f(n)=1^{n}+2^{n-1}+3^{n-2}+\cdots+(n-2)^{3}+(n-1)^{2}+n .
$$

What is the minimum of $f(n+1) / f(n)$?
Solution. For $n=1,2,3,4,5,6, f(n+1) / f(n)=3,8 / 3,22 / 8,65 / 22$, $209 / 65,732 / 209$, respectively. The minimum of these is $8 / 3$. For $n>6$, we will show $f(n+1) / f(n)>3>8 / 3$. This follows from

$$
\begin{aligned}
& f(n+1) \\
> & 1^{n+1}+2^{n}+3^{n-1}+4^{n-2}+5^{n-3}+6^{n-4}+\cdots+(n-1)^{3}+n^{2} \\
> & 1^{n+1}+2^{n}+3^{n-1}+4^{n-2}+5^{n-3}+3\left(6^{n-5}+\cdots+(n-1)^{2}+n\right) \\
= & 1^{n+1}+\cdots+5^{n-3}+3\left(f(n)-1^{n}-2^{n-1}+3^{n-2}+4^{n-3}+5^{n-4}\right) \\
= & 3 f(n)+2\left(5^{n-4}-1\right)+2^{n-1}\left(2^{n-5}-1\right)>3 f(n) .
\end{aligned}
$$

Therefore, $8 / 3$ is the answer.
56. (1996 Putnam Exam) Given that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\{1,2, \ldots, n\}$, find the largest possible value of $x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}$ in terms of n (with $n \geq 2$).

Solution. Let M_{n} be the largest such cyclic sum for $x_{1}, x_{2}, \ldots, x_{n}$. In case $n=2$, we have $M_{2}=4$. Next suppose M_{n} is attained by some permutation of $1,2, \ldots, n$. Let x, y be the neighbors of n. Then removing n from the permutation, we get a permutation of $1,2, \ldots, n-$ 1. The difference of the cyclic sums before and after n is removed is $n x+n y-x y=n^{2}-(n-x)(n-y) \leq n^{2}-2$. (Equality holds if and only if x, y are $n-1, n-2$.) So $M_{n}-\left(n^{2}-2\right) \leq M_{n-1}$. Then

$$
M_{n} \leq M_{2}+\left(3^{2}-2\right)+\left(4^{2}-2\right)+\cdots+\left(n^{2}-2\right)=\frac{2 n^{3}+3 n^{2}-11 n+18}{6}
$$

Following the equality case above, we should consider the permutation constructed as follows: starting with 1,2 , we put 3 between 1 and 2 to get $1,3,2$, then put 4 between 3 and 2 to get $1,3,4,2$, then put 5 between 3 and 4 to get $1,3,5,4,2$ and so on. If n is odd, the permutation is $1,3, \ldots, n-2, n, n-1, \ldots, 4,2$. If n is even, the permutation is $1,3, \ldots, n-1, n, n-2, \ldots, 4,2$. The cyclic sum for each of these two permutations is $\left(2 n^{3}+3 n^{2}-11 n+18\right) / 6$ because of the equality case at each stage. Therefore, $M_{n}=\left(2 n^{3}+3 n^{2}-11 n+18\right) / 6$.

Solutions to Geometry Problems

57. (1995 British Math Olympiad) Triangle $A B C$ has a right angle at C. The internal bisectors of angles $B A C$ and $A B C$ meet $B C$ and $C A$ at P and Q respectively. The points M and N are the feet of the perpendiculars from P and Q to $A B$. Find angle $M C N$.

Solution. (Due to Poon Wai Hoi) Using protractor, the angle should be 45°. To prove this, observe that since P is on the bisector of $\angle B A C$, we have $P C=P M$. Let L be the foot of the perpendicular from C to $A B$. Then $P M \| C L$. So $\angle P C M=\angle P M C=\angle M C L$. Similarly, $\angle Q C N=\angle N C L$. So $\angle M C N=\frac{1}{2} \angle P C Q=45^{\circ}$.
58. (1988 Leningrad Math Olympiad) Squares $A B D E$ and $B C F G$ are drawn outside of triangle $A B C$. Prove that triangle $A B C$ is isosceles if $D G$ is parallel to $A C$.

Solution. (Due to Ng Ka Man, Ng Ka Wing, Yung Fai) From B, draw a perpendicular to $A C$ (and hence also perpendicular to $D G$.) Let it intersect $A C$ at X and $D G$ at Y. Since $\angle A B X=90^{\circ}-\angle D B Y=\angle B D Y$ and $A B=B D$, the right triangles $A B X$ and $B D Y$ are congruent and $A X=B Y$. Similarly, the right triangles $C B X$ and $B G Y$ are congruent and $B Y=C X$. So $A X=C X$, which implies $A B=C B$.
59. $A B$ is a chord of a circle, which is not a diameter. Chords $A_{1} B_{1}$ and $A_{2} B_{2}$ intersect at the midpoint P of $A B$. Let the tangents to the circle at A_{1} and B_{1} intersect at C_{1}. Similarly, let the tangents to the circle at A_{2} and B_{2} intersect at C_{2}. Prove that $C_{1} C_{2}$ is parallel to $A B$.

Solution. (Due to Poon Wai Hoi) Let $O C_{1}$ intersects $A_{1} B_{1}$ at M, $O C_{2}$ intersects $A_{2} B_{2}$ at N. and $O C_{1}$ intersect $A B$ at K. Since $O C_{1}$ is a perpendicular bisector of $A_{1} B_{1}$, so $O M \perp A_{1} B_{1}$. Similarly, $O N \perp$ $A_{2} B_{2}$. Then O, N, P, M are concyclic. So $\angle O N M=\angle O P M$. Since $\angle O K P=90^{\circ}-\angle K P M=\angle O P M$, we have $\angle O K P=\angle O N M$. From the right triangles $O A_{1} C_{1}$ and $O B_{2} C_{2}$, we get $O M \cdot O C_{1}=O A_{1}^{2}=$ $O B_{2}^{2}=O N \cdot O C_{2}$. By the converse of the intersecting chord theorem,
we get M, N, C_{1}, C_{2} are concyclic. So $\angle O C_{1} C_{2}=\angle O N M=\angle O K P$. Then $C_{1} C_{2} \| K P$, that is $C_{1} C_{2}$ is parallel to $A B$.
60. (1991 Hunan Province Math Competition) Two circles with centers O_{1} and O_{2} intersect at points A and B. A line through A intersects the circles with centers O_{1} and O_{2} at points Y, Z, respectively. Let the tangents at Y and Z intersect at X and lines $Y O_{1}$ and $Z O_{2}$ intersect at P. Let the circumcircle of $\triangle O_{1} O_{2} B$ have center at O and intersect line $X B$ at B and Q. Prove that $P Q$ is a diameter of the circumcircle of $\triangle O_{1} O_{2} B$.

Solution. (First we need to show P, O_{1}, O_{2}, B are concyclic. Then we will show $90^{\circ}=\angle Q B P=\angle X B P$. Since $\angle X Y P, \angle P Z X$ are both 90°, it suffices to show X, Y, B, P, Z are concyclic.) Connect $O_{1} A$ and $O_{2} A$. In $\triangle Y P Z$,

$$
\begin{aligned}
\angle O_{1} P Z & =180^{\circ}-\left(\angle O_{1} Y Z+\angle O_{2} Z A\right) \\
& =180^{\circ}-\left(\angle O_{1} A Y+\angle O_{2} A Z\right) \\
& =\angle O_{1} A O_{2}=\angle O_{1} B O_{2} .
\end{aligned}
$$

So B, P, O_{1}, O_{2} are concyclic. Connect $B Y$ and $B Z$. Then

$$
\begin{aligned}
\angle Y B Z & =180^{\circ}-(\angle A Y B+\angle A Z B) \\
& =180^{\circ}-\left(\frac{1}{2} \angle A O_{1} B+\frac{1}{2} \angle A O_{2} B\right) \\
& =180^{\circ}-\left(\angle B O_{1} O_{2}+\angle B O_{2} O_{1}\right) \\
& =\angle O_{1} B O_{2}=\angle O_{1} P Z=\angle Y P Z .
\end{aligned}
$$

So Y, Z, P, B are concyclic. Since $\angle X Y P=\angle X Z P=90^{\circ}$, so the points Y, X, Z, P, B are concyclic. Then $\angle Q B P=\angle X B P=180^{\circ}-\angle X Z P=$ 90°. Therefore, $P Q$ is a diameter of the circumcircle of $\triangle O_{1} O_{2} B$.
61. (1981 Beijing City Math Competition) In a disk with center O, there are four points such that the distance between every pair of them is greater than the radius of the disk. Prove that there is a pair of perpendicular diameters such that exactly one of the four points lies inside each of the four quarter disks formed by the diameters.

Solution. (Due to Lee Tak Wing) By the distance condition on the four points, none of them equals O and no pair of them are on the same radius. Let us name the points A, B, C, D in the order a rotating radius encountered them. Since $A B>O A, O B$, so $\angle A O B>\angle O B A, \angle B A O$. Hence $\angle A O B>60^{\circ}$. Similarly, $\angle B O C, \angle C O D, \angle D O A>60^{\circ}$. Let $\angle A O B$ be the largest among them, then $60^{\circ}<\angle A O B<360^{\circ}-3 \times$ $60^{\circ}=180^{\circ}$. Let $E F$ be the diameter bisecting $\angle A O B$ and with A, B, E on the same half disk. Now $E F$ and its perpendicular through O divide the disk into four quarter disks. We have $90^{\circ}=30^{\circ}+60^{\circ}<$ $\angle E O B+\angle B O C$.

In the case $60^{\circ}<\angle A O B<120^{\circ}$, we get $\angle E O B+\angle B O C<$ $60^{\circ}+120^{\circ}=180^{\circ}$. In the case $120^{\circ} \leq \angle A O B<180^{\circ}$, we get $\angle A O B+$ $\angle B O C<360^{\circ}-2 \times 60^{\circ}=240^{\circ}$ and $\angle E O B+\angle B O C<240^{\circ}-\angle A O E \leq$ $240^{\circ}-120^{\circ} / 2=180^{\circ}$. So A, B, C each is on a different quarter disk. Similarly, $90^{\circ}<\angle E O D=\angle E O A+\angle A O D<180^{\circ}$. Therefore, D will lie on the remaining quarter disk.
62. The lengths of the sides of a quadrilateral are positive integers. The length of each side divides the sum of the other three lengths. Prove that two of the sides have the same length.

Solution. (Due to Chao Khek Lun and Leung Wai Ying) Suppose the sides are a, b, c, d with $a<b<c<d$. Since $d<a+b+c<3 d$ and d divides $a+b+c$, we have $a+b+c=2 d$. Now each of a, b, c dvides $a+b+c+d=3 d$. Let $x=3 d / a, y=3 d / b$ and $z=3 d / c$. Then $a<b<c<d$ implies $x>y>z>3$. So $z \geq 4, y \geq 5, x \geq 6$. Then

$$
2 d=a+b+c \leq \frac{3 d}{6}+\frac{3 d}{5}+\frac{3 d}{4}<2 d
$$

a contradiction. Therefore, two of the sides are equal.
63. (1988 Sichuan Province Math Competition) Suppose the lengths of the three sides of $\triangle A B C$ are integers and the inradius of the triangle is 1. Prove that the triangle is a right triangle.

Solution. (Due to Chan Kin Hang) Let $a=B C, b=C A, c=A B$ be the side lengths, r be the inradius and $s=(a+b+c) / 2$. Since the area
of the triangle is $r s$, we get $\sqrt{s(s-a)(s-b)(s-c)}=1 \cdot s=s$. Then

$$
(s-a)(s-b)(s-c)=s=(s-a)+(s-b)+(s-c)
$$

Now $4(a+b+c)=8 s=(2 s-2 a)(2 s-2 b)(2 s-2 c)=(b+c-a)(c+$ $a-b)(a+b-c)$. In $(\bmod 2)$, each of $b+c-a, c+a-b, a+b-c$ are the same. So either they are all odd or all even. Since their product is even, they are all even. Then $a+b+c$ is even and s is an integer.

The positive integers $x=s-a, y=s-b, z=s-c$ satisfy $x y z=$ $x+y+z$. Suppose $x \geq y \geq z$. Then $y z \leq 3$ for otherwise $x y z>3 x \geq$ $x+y+z$. This implies $x=3, y=2, z=1, s=6, a=3, b=4, c=5$. Therefore, the triangle is a right triangle.

Geometric Equations

64. (1985 IMO) A circle has center on the side $A B$ of the cyclic quadrilateral $A B C D$. The other three sides are tangent to the circle. Prove that $A D+B C=A B$.

Solution. Let M be on $A B$ such that $M B=B C$. Then

$$
\angle C M B=\frac{180^{\circ}-\angle A B C}{2}=\frac{\angle C D A}{2}=\angle C D O .
$$

This implies C, D, M, O are concyclic. Then

$$
\angle A M D=\angle O C D=\frac{\angle D C B}{2}=\frac{180^{\circ}-\angle D A M}{2}=\frac{\angle A M D+\angle A D M}{2} .
$$

So $\angle A M D=\angle A D M$. Therefore, $A M=A D$ and $A B=A M+M B=$ $A D+B C$.
65. (1995 Russian Math Olympiad) Circles S_{1} and S_{2} with centers O_{1}, O_{2} respectively intersect each other at points A and B. Ray $O_{1} B$ intersects S_{2} at point F and ray $O_{2} B$ intersects S_{1} at point E. The line parallel to $E F$ and passing through B intersects S_{1} and S_{2} at points M and N, respectively. Prove that (B is the incenter of $\triangle E A F$ and) $M N=$ $A E+A F$.

Solution. Since

$$
\angle E A B=\frac{1}{2} \angle E O_{1} B=90^{\circ}-\angle O_{1} B E=90^{\circ}-\angle F B O_{2}=\angle B A F,
$$

$A B$ bisects $\angle E A F$ and $\angle O_{1} B E=90^{\circ}-\angle E A B=90^{\circ}-\frac{1}{2} \angle E A F$. Now $\angle E B A+\angle F B A=\angle E B A+\left(180^{\circ}-\angle O_{1} B A\right)=180^{\circ}+\angle O_{1} B E=270^{\circ}-$ $\frac{1}{2} \angle E A F$. Then $\angle E B F=90^{\circ}+\angle E A F$, which implies B is the incenter of $\triangle E A F$ (because the incenter is the unique point P on the bisector of $\angle E A F$ such that $\left.E P F=90^{\circ}-\frac{1}{2} \angle E A F\right)$. Then $\angle A E B=\angle B E F=$ $\angle E B M$ since $E F \| M N$. So $E B A M$ is an isosceles trapezoid. Hence $E A=M B$. Similarly $F A=N B$. Therefore, $M N=M B+N B=$ $A E+A F$.
66. Point C lies on the minor arc $A B$ of the circle centered at O. Suppose the tangent line at C cuts the perpendiculars to chord $A B$ through A at E and through B at F. Let D be the intersection of chord $A B$ and radius $O C$. Prove that $C E \cdot C F=A D \cdot B D$ and $C D^{2}=A E \cdot B F$.

Solution. (Due to Wong Chun Wai) Note that $\angle E A D, \angle E C D, \angle F C D$, $\angle F B D$ are right angles. So A, D, C, E are concyclic and B, D, C, F are concyclic. Then $\angle A D E=\angle A C E=\angle A B C=\angle D F C$, say the measure of these angles is α. Also, $\angle B D F=\angle B C F=\angle B A C=\angle D E C$, say the measure of these angle is β. Then
$C E \cdot C F=(D E \cos \beta)(D F \cos \alpha)=(D E \cos \alpha)(D F \cos \beta)=A D \cdot B D$,

$$
C D^{2}=(D E \sin \beta)(D F \sin \alpha)=(D E \sin \alpha)(D F \sin \beta)=A E \cdot B F
$$

67. Quadrilaterals $A B C P$ and $A^{\prime} B^{\prime} C^{\prime} P^{\prime}$ are inscribed in two concentric circles. If triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are equilateral, prove that

$$
P^{\prime} A^{2}+P^{\prime} B^{2}+P^{\prime} C^{2}=P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2}
$$

Solution. Let O be the center of both circles and E be the midpoint of $A^{\prime} B^{\prime}$. From $\triangle P A^{\prime} B^{\prime}$ with median $P E$, by cosine law, we get $P A^{\prime 2}+$ $P B^{\prime 2}=2\left(P E^{2}+E B^{\prime 2}\right.$). From $\triangle P C^{\prime} E$ with cevian $P O$ (note $C^{\prime} O=$
$2 O E)$, by cosine law again, we get $P C^{\prime 2}+2 P E^{2}=3\left(P O^{2}+2 O E\right)^{2}$. Putting these together, we get

$$
\begin{aligned}
P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2} & =2\left(E B^{\prime 2}+O E^{2}\right)+3 P O^{2}+4 O E^{2} \\
& =2 B^{\prime} O^{2}+3 P O^{2}+C^{\prime} O^{2} \\
& =3\left(P O^{2}+P^{\prime} O^{2}\right) .
\end{aligned}
$$

Similarly, $P^{\prime} A^{2}+P^{\prime} B^{2}+P C^{\prime 2}=3\left(P O^{2}+P^{\prime} O^{2}\right)$.
Alternatively, the problem can be solved using complex numbers. Without loss of generality, let the center be at the origin, A^{\prime} be at $r e^{i \theta}=r(\cos \theta+i \sin \theta)$ and P be at $R e^{i \alpha}$. Let $\omega=e^{2 \pi i / 3}$. We have

$$
\begin{aligned}
& P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2} \\
= & \left|R e^{i \alpha}-r e^{i \theta}\right|^{2}+\left|R e^{i \alpha}-r e^{i \theta} \omega\right|^{2}+\left|R e^{i \alpha}-r e^{i \theta} \omega^{2}\right|^{2} \\
= & 3 R^{2}-2 \operatorname{Re}\left(R r e^{i(\alpha-\theta)}\left(1+\omega+\omega^{2}\right)\right)+3 r^{2} \\
= & 3 R^{2}+3 r^{2} .
\end{aligned}
$$

Similarly, $P^{\prime} A^{2}+P^{\prime} B^{2}+P^{\prime} C^{2}=3 R^{2}+3 r^{2}$.
68. Let the inscribed circle of triangle $A B C$ touchs side $B C$ at D, side $C A$ at E and side $A B$ at F. Let G be the foot of perpendicular from D to $E F$. Show that $\frac{F G}{E G}=\frac{B F}{C E}$.

Solution. (Due to Wong Chun Wai) Let I be the incenter of $\triangle A B C$. Then $\angle B D I=90^{\circ}=\angle E G D$. Also, $\angle D E G=\frac{1}{2} \angle D I F=\angle D I B$. So $\triangle B D I, \triangle E G D$ are similar. Then $B D / I D=\bar{D} G / E G$. Likewise, $\triangle C D I, \triangle F G D$ are similar and $C D / I D=D G / F G$. Therefore,

$$
\frac{F G}{E G}=\frac{D G / E G}{D G / F G}=\frac{B D / I D}{C D / I D}=\frac{B D}{C D}=\frac{B F}{C E} .
$$

69. (1998 IMO shortlisted problem) Let $A B C D E F$ be a convex hexagon such that

$$
\angle B+\angle D+\angle F=360^{\circ} \text { and } \quad \frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1
$$

Prove that

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=1
$$

Solution. Let P be such that $\angle F E A=\angle D E P$ and $\angle E F A=\angle E D P$, where P is on the opposite side of lines $D E$ and $C D$ as A. Then $\triangle F E A, \triangle D E P$ are similar. So

$$
\frac{F A}{E F}=\frac{D P}{P E} \quad \text { and } \quad(*) \quad \frac{E F}{E D}=\frac{E A}{E P}
$$

Since $\angle B+\angle D+\angle F=360^{\circ}$, we get $\angle A B C=\angle P D C$. Also,

$$
\frac{A B}{B C}=\frac{D E \cdot F A}{C D \cdot E F}=\frac{D P}{C D} .
$$

Then $\triangle A B C, \triangle P D C$ are similar. Consequently, we get $\angle B C A=$ $\angle D C P$ and $\left(^{* *}\right) C B / C D=C A / C P$. Since $\angle F E D=\angle A E P$, by $\left(^{*}\right)$, $\triangle F E D, \triangle A E P$ are similar. Also, since $\angle B C D=\angle A C P$, by (${ }^{* *}$), $\triangle B C D, \triangle A C P$ are similar. So $A E / E F=P A / F D$ and $B C / C A=$ $D B / P A$. Multiplying these and moving all factors to the left side, we get the desired equation.

Using complex numbers, we can get an algebraic solution. Let a, b, c, d, e, f denote the complex numbers corresponding to A, B, C, D, E, F, respectively. (The origin may be taken anywhere on the plane.) Since $A B C D E F$ is convex, $\angle B, \angle D$ and $\angle F$ are the arguments of the complex numbers $(a-b) /(c-b),(c-d) /(e-d)$ and $(e-f) /(a-f)$, respectively. Then the condition $\angle B+\angle D+\angle F=360^{\circ}$ implies that the product of these three complex numbers is a positive real number. It is equal to the product of their absolute values $A B / B C, C D / D E$ and $E F / F A$. Since $(A B / B C)(C D / D E)(E F / F A)=1$, we have

$$
\frac{a-b}{c-b} \cdot \frac{c-d}{e-d} \cdot \frac{e-f}{a-f}=1
$$

So

$$
\begin{aligned}
0 & =(a-b)(c-d)(e-f)-(c-b)(e-d)(a-f) \\
& =(b-c)(a-e)(f-d)-(a-c)(f-e)(b-d) .
\end{aligned}
$$

Then

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=\left|\frac{b-c}{a-c} \cdot \frac{a-e}{f-e} \cdot \frac{f-d}{b-d}\right|=1 .
$$

Similar Triangles

70. (1984 British Math Olympiad) P, Q, and R are arbitrary points on the sides $B C, C A$, and $A B$ respectively of triangle $A B C$. Prove that the three circumcentres of triangles $A Q R, B R P$, and $C P Q$ form a triangle similar to triangle $A B C$.

Solution. Let the circumcenters of triangles $A Q R, B R P$ and $C P Q$ be A^{\prime}, B^{\prime} and C^{\prime}, respectively. A good drawing suggests the circles pass through a common point! To prove this, let circumcircles of triangles $A Q R$ and $B R P$ intersect at R and X. Then $\angle Q X R=180^{\circ}-\angle C A B=$ $\angle A B C+\angle B C A$ and $\angle R X P=180^{\circ}-\angle A B C=\angle C A B+\angle B C A$. So $\angle P X Q=360^{\circ}-\angle Q X R-\angle R X P=180^{\circ}-\angle B C A$, which implies X is on the circumcircle of triangle $C P Q$. Now

$$
\begin{aligned}
\angle C^{\prime} A^{\prime} B^{\prime} & =\angle C^{\prime} A^{\prime} X+\angle X A^{\prime} B^{\prime} \\
& =\frac{1}{2} \angle Q A^{\prime} X+\frac{1}{2} \angle R A^{\prime} X \\
& =\frac{1}{2} \angle Q A^{\prime} R=\angle C A B .
\end{aligned}
$$

Similarly, $\angle A^{\prime} B^{\prime} C^{\prime}=\angle A B C$ and $\angle B^{\prime} C^{\prime} A^{\prime}=\angle B C A$. So, triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A B C$ are similar.
71. Hexagon $A B C D E F$ is inscribed in a circle so that $A B=C D=E F$. Let P, Q, R be the points of intersection of $A C$ and $B D, C E$ and $D F$, $E A$ and $F B$ respectively. Prove that triangles $P Q R$ and $B D F$ are similar.

Solution. (Due to Ng Ka Wing) Let O be the center of the circle and let L, M, N be the projections of O on $B D, D F, F B$, respectively. Then L, M, N are midpoints of $B D, D F, F B$, respectively. Let S be the projection of O on $A E$. Since $A B=E F$, we get $F B=A E$ and hence
$O N=O S$. Let $\angle A O B=\angle C O D=\angle E O F=2 \alpha$. Then $\angle R O N=$ $\frac{1}{2} \angle S O N=\frac{1}{2} \angle A R B=\frac{1}{4}(\angle A O B+\angle E O F)=\alpha$. Hence, $O N / O R=$ $\cos \alpha$. Similarly, $\angle P O L=\angle Q O M=\alpha$ and $O L / O P=O M / O Q=$ $\cos \alpha$.

Next rotate $\triangle P Q R$ around O at angle α so that the image Q^{\prime} of Q lies on the line $O M$, the image R^{\prime} of R lies on the line $O N$ and the image P^{\prime} of P lies on line $O L$. Then $O N / O R^{\prime}=O L / O P^{\prime}=$ $O M / O Q^{\prime}=\cos \alpha$. So $\triangle P^{\prime} Q^{\prime} R^{\prime}, \triangle L M N$ are similar. Since L, M, N are midpoints of $B D, D F, F B$, respectively, we have $\triangle L M N, \triangle B D F$ are similar. Therefore, $\triangle P Q R, \triangle B D F$ are similar.
72. (1998 IMO shortlisted problem) Let $A B C D$ be a cyclic quadrilateral. Let E and F be variable points on the sides $A B$ and $C D$, respectively, such that $A E: E B=C F: F D$. Let P be the point on the segment $E F$ such that $P E: P F=A B: C D$. Prove that the ratio between the areas of triangles $A P D$ and $B P C$ does not depend on the choice of E and F.

Solution. Let $[U V W]$ denote the area of $\triangle U V W$ and let $d(X, Y Z)$ denote the distance from X to line $Y Z$. We have $A E: E B=C F$: $F D=a: b$, where $a+b=1$. Since $P E: P F=A B: C D$, we have

$$
\begin{aligned}
d(P, A D) & =\frac{C D}{A B+C D} d(E, A D)+\frac{A B}{A B+C D} d(F, A D), \\
{[A P D] } & =\frac{C D}{A B+C D}[A E D]+\frac{A B}{A B+C D}[A F D] \\
& =\frac{a \cdot C D}{A B+C D}[A B D]+\frac{b \cdot A B}{A B+C D}[A C D], \\
d(P, B C) & =\frac{C D}{A B+C D} d(E, B C)+\frac{A B}{A B+C D} d(F, B C), \\
{[B P C] } & =\frac{C D}{A B+C D}[B E C]+\frac{A B}{A B+C D}[B F C] \\
& =\frac{b \cdot C D}{A B+C D}[B A C]+\frac{a \cdot A B}{A B+C D}[B D C] .
\end{aligned}
$$

Since A, B, C, D are concyclic, $\sin \angle B A D=\sin \angle B C D$ and $\sin \angle A B C=$ $\sin \angle A D C$, So,

$$
\begin{aligned}
& \frac{[A P D]}{[B P C]}=\frac{a \cdot C D \cdot[A B D]+b \cdot A B \cdot[A C D]}{b \cdot C D \cdot[B A C]+a \cdot A B \cdot[B D C]} \\
= & \frac{a \cdot C D \cdot A B \cdot A D \cdot \sin \angle B A D+b \cdot A B \cdot C D \cdot A D \cdot \sin \angle A D C}{b \cdot C D \cdot A B \cdot B C \cdot \sin \angle A B C+a \cdot A B \cdot C D \cdot B C \cdot \sin \angle B C D} \\
= & \frac{A D}{B C} \cdot \frac{a \cdot \sin \angle B A D+b \cdot \sin \angle A D C}{b \cdot \sin \angle A B C+a \cdot \sin \angle B C D}=\frac{A D}{B C} .
\end{aligned}
$$

Tangent Lines

73. Two circles intersect at points A and B. An arbitrary line through B intersects the first circle again at C and the second circle again at D. The tangents to the first circle at C and to the second circle at D intersect at M. The parallel to $C M$ which passes through the point of intersection of $A M$ and $C D$ intersects $A C$ at K. Prove that $B K$ is tangent to the second circle.

Solution. Let L be the intersection of $A M$ and $C D$. Since

$$
\begin{aligned}
\angle C M D+\angle C A D & =\angle C M D+\angle C A B+\angle D A B \\
& =\angle C M D+\angle B C M+\angle B D M=180^{\circ},
\end{aligned}
$$

so A, C, M, D are concyclic. Since $L K \| M C$,

$$
\begin{aligned}
\angle L K C & =180^{\circ}-\angle K C M=180^{\circ}-\angle K C L-\angle L C M \\
& =180^{\circ}-\angle A C B-\angle C A B=\angle C B A=\angle L B A .
\end{aligned}
$$

So A, B, L, K are concyclic. Then

$$
\angle K B A=\angle K L A=\angle C M A=\angle C D A=\angle B D A .
$$

Therefore, $B K$ is tangent to the circle passing through A, B, D.
74. (1999 IMO) Two circles, 1_{1} and , ${ }_{2}$ are contained inside the circle, , and are tangent to , at the distinct points M and N, respectively.
,$_{1}$ passes through the center of,$_{2}$. The line passing through the two points of intersection of , 1 and, 2 meets, at A and B, respectively. The lines $M A$ and $M B$ meets, ${ }_{1}$ at C and D, respectively. Prove that $C D$ is tangent to, 2 .

Solution. (Due to Wong Chun Wai) Let X, Y be the centers of , ${ }_{1},,_{2}$, respectively. Extend $\overrightarrow{Y X}$ to meet, ${ }_{2}$ at Q. Join $A N$ to meet , ${ }_{2}$ at E. Since $A B$ is the radical axis of, ${ }_{1},{ }_{2}$, so $A C \times A M=A E \times A N$. This implies C, M, N, E are concyclic. Let U be the intersection of line $C E$ with the tangent to, ${ }_{1}$ at M. Then $\angle U C M=\angle A N M=\angle U M C$. So $C E$ is tangent to,${ }_{1}$. Similarly, $C E$ is tangent to , ${ }_{2}$. Now $Y E=Y Q$ and

$$
\begin{aligned}
\angle C Y E & =90^{\circ}-\angle E C Y=90^{\circ}-\frac{1}{2} \angle C X Y \\
& =90^{\circ}-\left(90^{\circ}-\angle C Y Q\right)=\angle C Y Q
\end{aligned}
$$

These imply $\triangle C Y E, \triangle C Y Q$ are congruent. Hence $\angle C Q Y=\angle C E Y=$ 90°. Similarly $\angle D Q Y=90^{\circ}$. Therefore, $C D$ is tangent to,${ }_{2}$.
75. (Proposed by India for 1992 IMO) Circles G_{1} and G_{2} touch each other externally at a point W and are inscribed in a circle $G . A, B, C$ are points on G such that A, G_{1} and G_{2} are on the same side of chord $B C$, which is also tangent to G_{1} and G_{2}. Suppose $A W$ is also tangent to G_{1} and G_{2}. Prove that W is the incenter of triangle $A B C$.

Solution. Let P and Q be the points of tangency of G_{1} with $B C$ and arc $B A C$, respectively. Let D be the midpoint of the complementary arc $B C$ of $G($ not containing $A)$ and L be a point on G_{1} so that $D L$ is tangent to G_{1} and intersects segment $P C$. Considering the homothety with center Q that maps G_{1} onto G, we see that Q, P, D are collinear because the tangent at P (namely $B C$) and the tangent at D are parallel. Since $\angle B Q D, \angle C B D$ subtend equal arcs, $\triangle B Q D, \triangle P B D$ are similar. Hence $D B / D P=D Q / D B$. By the intersecting chord theorem, $D B^{2}=D P \cdot D Q=D L^{2}$. So $D L=D B=D C$. Then D has the same power $D B^{2}=D C^{2}$ with respect to G_{1} and G_{2}. Hence D is on the radical axis $A W$ of G_{1} and G_{2}. So $L=W$ and $D W$ is tangent to G_{1} and G_{2}.

Since D is the midpoint of arc $B C$, so $A W$ bisects $\angle B A C$. Also,

$$
\angle A B W=\angle B W D-\angle B A D=\angle W B D-\angle C B D=\angle C B W
$$

and $B W$ bisects $\angle A B C$. Therefore W is the incenter of $\triangle A B C$.
Comments. The first part of the proof can also be done by inversion with respect to the circle centered at D and of radius $D B=D C$. It maps arc $B C$ onto the chord $B C$. Both G_{1} and G_{2} are invariant because the power of D with respect to them is $D B^{2}=D C^{2}$. Hence W is fixed and so $D W$ is tangent to both G_{1} and G_{2}.

Locus

76. Perpendiculars from a point P on the circumcircle of $\triangle A B C$ are drawn to lines $A B, B C$ with feet at D, E, respectively. Find the locus of the circumcenter of $\triangle P D E$ as P moves around the circle.

Solution. Since $\angle P D B+\angle P E B=180^{\circ}, P, D, B, E$ are concyclic. Hence, the circumcircle of $\triangle P D E$ passes through B always. Then $P B$ is a diameter and the circumcenter of $\triangle P D E$ is at the midpoint M of $P B$. Let O be the circumcenter of $\triangle A B C$, then $O M \perp P B$. It follows that the locus of M is the circle with $O B$ as a diameter.
77. Suppose A is a point inside a given circle and is different from the center. Consider all chords (excluding the diameter) passing through A. What is the locus of the intersection of the tangent lines at the endpoints of these chords?

Solution. (Due to Wong Him Ting) Let O be the center and and r be the radius. Let A^{\prime} be the point on $O A$ extended beyond A such that $O A \times O A^{\prime}=r^{2}$. Suppose $B C$ is one such chord passing through A and the tangents at B and C intersect at D^{\prime}. By symmetry, D^{\prime} is on the line $O D$, where D is the midpoint of $B C$. Since $\angle O B D^{\prime}=90^{\circ}$, $O D \times O D^{\prime}=O B^{2}\left(=O A \times O A^{\prime}\right.$.) So $\triangle O A D$ is similar to $\triangle O D^{\prime} A^{\prime}$. Since $\angle O D A=90^{\circ}, D^{\prime}$ is on the line L perpendicular to $O A$ at A^{\prime}.

Conversely, for D^{\prime} on L, let the chord through A perpendicular to $O D^{\prime}$ intersect the circle at B and C. Let D be the intersection of
the chord with $O D^{\prime}$. Now $\triangle O A D, \triangle O D^{\prime} A^{\prime}$ are similar right triangles. So $O D \times O D^{\prime}=O A \times O A^{\prime}=O B^{2}=O C^{2}$, which implies $\angle O B D^{\prime}=$ $\angle O C D^{\prime}=90^{\circ}$. Therefore, D^{\prime} is on the locus. This shows the locus is the line L.
78. Given $\triangle A B C$. Let line $E F$ bisects $\angle B A C$ and $A E \cdot A F=A B \cdot A C$. Find the locus of the intersection P of lines $B E$ and $C F$.

Solution. For such a point P, since $A B / A E=A F / A C$ and $\angle B A E=$ $\angle F A C$, so $\triangle B A E, \triangle F A C$ are similar. Then $\angle A E P=\angle P C A$. So A, E, C, P are concyclic. Hence $\angle B P C=\angle C A E=\angle B A C / 2$. Therefore, P is on the circle \mathcal{C} whose points X satisfy $\angle B X C=\angle B A C / 2$ and whose center is on the same side of line $B C$ as A.

Conversely, for P on \mathcal{C}, Let $B P, C P$ intersect the angle bisector of $\angle B A C$ at E, F, respectively. Since $\angle B P C=\angle B C A / 2$, so $\angle E P F=$ $\angle E A C$. Hence A, E, C, P are concyclic. So $\angle B E A=\angle F C A$. Also $\angle B A E=\angle F A C$. So $\triangle B A E, \triangle F A C$ are similar. Then $A B \cdot A C=$ $A E \cdot A F$. Therefore, the locus of P is the circle \mathcal{C}.
79. (1996 Putnam Exam) Let C_{1} and C_{2} be circles whose centers are 10 units apart, and whose radii are 1 and 3 . Find the locus of all points M for which there exists points X on C_{1} and Y on C_{2} such that M is the midpoint of the line segment $X Y$.

Solution. (Due to Poon Wai Hoi) Let O_{1}, O_{2} be the centers of C_{1}, C_{2}, respectively. If we fix Y on C_{2}, then as X moves around C_{1}, M will trace a circle, Y with radius $\frac{1}{2}$ centered at the midpoint m_{Y} of $O_{1} Y$. As Y moves around C_{2}, m_{Y} will trace a circle of radius $\frac{3}{2}$ centered at the midpont P of $O_{1} O_{2}$. So the locus is the solid annulus centered at P with inner radius $\frac{3}{2}-\frac{1}{2}=1$ and outer radius $\frac{3}{2}+\frac{1}{2}=2$.

Collinear or Concyclic Points

80. (1982 IMO) Diagonals $A C$ and $C E$ of the regular hexagon $A B C D E F$ are divided by the inner points M and N, respectively, so that

$$
\frac{A M}{A C}=\frac{C N}{C E}=r
$$

Determine r if B, M and N are collinear.
Solution. (Due to Lee Tak Wing) Let $A C=x$, then $B C=x / \sqrt{3}$, $C N=x r, C M=x(1-r)$. Let $[X Y Z]$ denote the area of $\triangle X Y Z$. Since $\angle N C M=60^{\circ}, \angle B C M=30^{\circ}$ and $[B C M]+[C M N]=[B C N]$, so

$$
\frac{x^{2}(1-r) \sin 30^{\circ}}{2 \sqrt{3}}+\frac{x^{2} r(1-r) \sin 60^{\circ}}{2}=\frac{x^{2} r}{2 \sqrt{3}}
$$

Cancelling x^{2} and solving for r, we get $r=\frac{1}{\sqrt{3}}$.
81. (1965 Putnam Exam) If A, B, C, D are four distinct points such that every circle through A and B intersects or coincides with every circle through C and D, prove that the four points are either collinear or concyclic.

Solution. Suppose A, B, C, D are neither concyclic nor collinear. Then the perpendicular bisector p of $A B$ cannot coincide with the perpendicular bisector q of $C D$. If lines p and q intersect, their common point is the center of two concentric circles, one through A and B, the other through C and D, a contradiction. If lines p and q are parallel, then lines $A B$ and $C D$ are also parallel. Consider points P and Q on p and q, respectively, midway between the parallel lines $A B$ and $C D$. Clearly, the circles through A, B, P and C, D, Q have no common point, again a contradiction.
82. (1957 Putnam Exam) Given an infinite number of points in a plane, prove that if all the distances between every pair are integers, then the points are collinear.

Solution. Suppose there are three noncollinear points A, B, C such that $A B=r$ and $A C=s$. Observe that if P is one of the other points, then bt the triangle inequality, $|P A-P B|=0,1,2, \ldots, r$. Hence P would be on the line H_{0} joining A, B or on one of the hyperbolas $H_{i}=\{X:|X A-X B|=i\}$ for $i=1,2, \ldots, r-1$ or on the perpendicular bisector H_{r} of $A B$. Similarly, $|P A-P C|=0,1,2, \ldots, s$. So P is on one of the sets $K_{j}=\{X:|X A-X C|=j\}$ for $j=0,1, \ldots, s$. Since
lines $A B$ and $A C$ are distinct, every intersection $H_{i} \cap K_{j}$ is only a finite set. So there can only be finitely many points that are integral distances from A, B, C, a contradiction. Therefore, the given points must be collinear.
83. (1995 IMO shortlisted problem) The incircle of triangle $A B C$ touches $B C, C A$ and $A B$ at D, E and F respectively. X is a point inside triangle $A B C$ such that the incircle of triangle $X B C$ touches $B C$ at D also, and touches $C X$ and $X B$ at Y and Z respectively. Prove that $E F Z Y$ is a cyclic quadrilateral.

Solution. If $E F \| B C$, then $A B=A C$ and $A D$ is an axis of symmetry of $E F Z Y$. Hence $E F Z Y$ is a cyclic quadrilateral. If lines $E F$ and $B C$ intersect at P, then by Menelaus' theorem, $(A F \cdot B P \cdot C E) /(F B \cdot P C$. $E A)=1$. Since $B Z=B D=B F, C Y=C D=C E$ and $A F / E A=1=$ $X Z / Y X$, we get $(X Z \cdot B P \cdot C Y) /(Z B \cdot P C \cdot Y X)=1$. By the converse of the Menelaus' theorem, Z, Y, P are collinear. By the intersecting chord theorem, $P E \cdot P F=P D^{2}=P Y \cdot P Z$. Hence $E F Z Y$ is a cyclic quadrilateral by the converse of the intersecting chord theorem.
84. (1998 IMO) In the convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ are perpendicular and the opposite sides $A B$ and $D C$ are not parallel. Suppose the point P, where the perpendicular bisectors of $A B$ and $D C$ meet, is inside $A B C D$. Prove that $A B C D$ is a cyclic quadrilateral if and only if the triangles $A B P$ and $C D P$ have equal areas.

Solution. (Due to Leung Wing Chung) Set the origin at P. Suppose A and C are on the line $y=p$ and B and D are on the line $x=q$. Let $A P=B P=r, C P=D P=s$. Then the coordinates of A, B, C, D are

$$
\left(-\sqrt{r^{2}-p^{2}}, p\right),\left(q, \sqrt{r^{2}-q^{2}}\right),\left(\sqrt{s^{2}-p^{2}}, p\right),\left(q,-\sqrt{s^{2}-q^{2}}\right),
$$

respectively. Now $\triangle A B P, \triangle C D P$ have equal areas if and only if

$$
\frac{1}{2}\left|\begin{array}{cc}
-\sqrt{r^{2}-p^{2}} & p \\
q & \sqrt{r^{2}-q^{2}}
\end{array}\right|=\frac{1}{2}\left|\begin{array}{cc}
\sqrt{s^{2}-p^{2}} & p \\
q & -\sqrt{s^{2}-q^{2}}
\end{array}\right|,
$$

i.e. $\left(-\sqrt{r^{2}-p^{2}} \sqrt{r^{2}-q^{2}}-p q\right) / 2=\left(-\sqrt{s^{2}-p^{2}} \sqrt{s^{2}-q^{2}}-p q\right) / 2$. Since $f(x)=\left(-\sqrt{x^{2}-p^{2}} \sqrt{x^{2}-q^{2}}-p q\right) / 2$ is strictly decreasing when $x \geq$ $|p|$ and q, the determinants are equal if and only if $r=s$, which is equivalent to $A B C D$ cyclic.
85. (1970 Putnam Exam) Show that if a convex quadrilateral with sidelengths a, b, c, d and area $\sqrt{a b c d}$ has an inscribed circle, then it is a cyclic quadrilateral.

Solution. Since the quadrilateral has an inscribed circle, we have $a+$ $c=b+d$. Let k be the length of a diagonal and angles α and β selected so that

$$
k^{2}=a^{2}+b^{2}-2 a b \cos \alpha=c^{2}+d^{2}-2 c d \cos \beta .
$$

If we subtract $(a-b)^{2}=(c-d)^{2}$ and divide by 2 , we get the equation $\left.{ }^{*}\right) a b(1-\cos \alpha)=c d(1-\cos \beta)$. From the area $(a b \sin \alpha+c d \sin \beta) / 2=$ $\sqrt{a b c d}$, we get

$$
4 a b c d=a^{2} b^{2}\left(1-\cos ^{2} \alpha\right)+c^{2} d^{2}\left(1-\cos ^{2} \beta\right)+2 a b c d \sin \alpha \sin \beta .
$$

Using $\left(^{*}\right)$, we can cancel $a b c d$ to obtain the equation

$$
\begin{aligned}
4 & =(1+\cos \alpha)(1-\cos \beta)+(1+\cos \beta)(1-\cos \alpha)+2 \sin \alpha \sin \beta \\
& =2-2 \cos (\alpha+\beta),
\end{aligned}
$$

which implies $\alpha+\beta=180^{\circ}$. Therefore, the quadrilateral is cyclic.

Concurrent Lines

86. In $\triangle A B C$, suppose $A B>A C$. Let P and Q be the feet of the perpendiculars from B and C to the angle bisector of $\angle B A C$, respectively. Let D be on line $B C$ such that $D A \perp A P$. Prove that lines $B Q, P C$ and $A D$ are concurrent.

Solution. Let M be the intersection of $P C$ and $A D$. Let B^{\prime} be the mirror image of B with respect to line $A P$. Since $B B^{\prime} \perp A P$ and
$A D \perp A P$, so $B B^{\prime} \| A D$. Then $\triangle B C B^{\prime}, \triangle D A C$ are similar. Since P is the midpoint of $B B^{\prime}$, so $P C$ intersects $A D$ at its midpoint M. Now

$$
\frac{A Q}{P Q}=\frac{M C}{P C}=\frac{A M}{B^{\prime} P}=\frac{A M}{B P}
$$

$\triangle B P Q, \triangle M A Q$ are similar. This implies $\angle B Q P=\angle M Q A$. So line $B Q$ passes through M, too.
87. (1990 Chinese National Math Competition) Diagonals $A C$ and $B D$ of a cyclic quadrilateral $A B C D$ meets at P. Let the circumcenters of $A B C D, A B P, B C P, C D P$ and $D A P$ be O, O_{1}, O_{2}, O_{3} and O_{4}, respectively. Prove that $O P, O_{1} O_{3}, O_{2} O_{4}$ are concurrent.

Solution. Let line $P O_{2}$ intersect the circumcircle of $\triangle B C P$ and segment $A D$ at points Q and R, respectively. Now $\angle P D R=\angle B C A=$ $\angle P Q B$ and $\angle D P R=\angle Q P B$. So $\angle D R P=\angle Q B P=90^{\circ}$ and $P O_{2} \perp$ $A D$. Next circumcircles of $A B C D$ and $D A P$ share the common chord $A D$, so $O O_{4} \perp A D$. Hence $P O_{2}$ and $O O_{4}$ are parallel. Similarly, PO_{4} and OO_{2} are parallel. So $\mathrm{PO}_{2} \mathrm{OO}_{4}$ is a parallelogram and diagonal $O_{2} O_{4}$ passes through the midpoint G of $O P$. Similarly, $\mathrm{PO}_{1} O O_{3}$ is a parallelogram and diagonal $O_{1} O_{3}$ passes through G. Therefore, $O P, O_{1} O_{3}, O_{2} O_{4}$ concur at G.
88. (1995 IMO) Let A, B, C and D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at the points X and Y. The line $X Y$ meets $B C$ at the point Z. Let P be a point on the line $X Y$ different from Z. The line $C P$ intersects the circle with diameter $A C$ at the points C and M, and the line $B P$ intersects the circle with diameter $B D$ at the points B and N. Prove that the lines $A M, D N$ and $X Y$ are concurrent.

Solution 1. (Due to Yu Chun Ling) Let $A R$ be parallel to $B P$ and $D R^{\prime}$ be parallel to $C P$, where R and R^{\prime} are points on line $X Y$. Since $B Z \cdot Z D=X Z \cdot Z Y=C Z \cdot Z A$, we get $B Z / / / A Z=C Z / / D Z$. Since $\triangle C Z P$ is similar to $\triangle D Z R^{\prime}$ and $\triangle B Z P$ is similar to $\triangle A Z R$, so

$$
\frac{Z P}{Z R}=\frac{B Z}{A Z}=\frac{C Z}{D Z}=\frac{Z P}{Z R^{\prime}} .
$$

Hence R and R^{\prime} must coincide. Therefore, $\triangle B P C$ is similar to $\triangle A R D$.
Since $X Y \perp A D, A M \perp C M, C M \| D R, D N \perp B N$ and $B N \| A R$, the lines $A M, D N, X Y$ are the extensions of the altitudes of $\triangle A R D$, hence they must be concurrent.

Solution 2. (Due to Mok Tze Tao) Set the origin at Z and the x axis on line $A D$. Let the coordinates of the circumcenters of triangles $A M C$ and $B N D$ be ($x_{1}, 0$) and ($x_{2}, 0$), and the circumradii be r_{1} and r_{2}, respectively. Then the coordinates of A and C are $\left(x_{1}-r_{1}, 0\right)$ and $\left(x_{1}+r_{1}, 0\right)$, respectively. Let the coordinates of P be $\left(0, y_{0}\right)$. Since $A M \perp C P$ and the slope of $C P$ is $-\frac{y_{0}}{x_{1}+r_{1}}$, the equation of $A M$ works out to be $\left(x_{1}+r_{1}\right) x-y_{0} y=x_{1}^{2}-r_{1}^{2}$. Let Q be the intersection of $A M$ with $X Y$, then Q has coordinates $\left(0, \frac{r_{1}^{2}-x_{1}^{2}}{y_{0}}\right)$. Similarly, let Q^{\prime} be the intersection of $D N$ with $X Y$, then Q^{\prime} has coordinates $\left(0, \frac{r_{2}^{2}-x_{2}^{2}}{y_{0}}\right)$. Since $r_{1}^{2}-x_{1}^{2}=Z X^{2}=r_{2}^{2}-x_{2}^{2}$, so $Q=Q^{\prime}$.

Solution 3. Let $A M$ intersect $X Y$ at Q and $D N$ intersect $X Y$ at Q^{\prime}. Observe that the right triangles $A Z Q, A M C, P Z C$ are similar, so $A Z / Q Z=P Z / C Z$. Then $Q Z=A Z \cdot C Z / P Z=X Z \cdot Y Z / P Z$. Similarly, $Q^{\prime} Z=X Z \cdot Y Z / P Z$. Therefore $Q=Q^{\prime}$.
89. $A D, B E, C F$ are the altitudes of $\triangle A B C$. If P, Q, R are the midpoints of $D E, E F, F D$, respectively, then show that the perpendicular from P, Q, R to $A B, B C, C A$, respectively, are concurrent.

Solution. Let Y be the foot of the perpendicular from Q to $B C$ and H be the orthocenter of $\triangle A B C$. Note that $\angle A C F=90^{\circ}-\angle C A B=$ $\angle A B E$. Since $\angle C E H=90^{\circ}=\angle C D H, C, D, H, E$ are concyclic. So $\angle A C F=\angle E D H$. Now $A H\|Q Y, E D\| Q R$, so $\angle E D H=\angle R Q Y$. Hence, $\angle R Q Y=\angle E D H=\angle A C F$. Similarly, $\angle A B E=\angle F D H=$ $\angle P Q Y$. Next, since $\angle A C F=\angle A B E, Q Y$ bisects $\angle P Q R$. From these, it follows the perpendiculars from P, Q, R to $A B, B C, C A$ concur at the incenter of $\triangle P Q R$.
90. (1988 Chinese Math Olympiad Training Test) $A B C D E F$ is a hexagon
inscribed in a circle. Show that the diagonals $A D, B E, C F$ are concurrent if and only if $A B \cdot C D \cdot E F=B C \cdot D E \cdot F A$.

Solution. (Due to Yu Ka Chun) Suppose $A D, B E, C F$ concurs at X. From similar triangles $A B X$ and $E D X$, we get $A B / D E=B X / D X$. Similarly, $C D / F A=D X / F X$ and $E F / B C=F X / B X$. Multiplying thse, we get $(A B \cdot C D \cdot E F) /(D E \cdot F A \cdot B C)=1$, so $A B \cdot C D \cdot E F=$ $B C \cdot D E \cdot F A$.

For the converse, we use the so-called method of false position. Suppose $\left(^{*}\right) A B \cdot C D \cdot E F=B C \cdot D E \cdot F A$ and $A D$ intersect $B E$ at X. Now let $C X$ meet the circle again at F^{\prime}. By the first part, we get $A B \cdot C D \cdot E F^{\prime}=B C \cdot D E \cdot F^{\prime} A$. Dividing this by (*), we have $E F^{\prime} / E F=F^{\prime} A / F A$. If F^{\prime} is on open arc $A F$, then $F^{\prime} A<F A$ and $E F<E F^{\prime}$ yielding $F^{\prime} A / F A<1<E F^{\prime} / E F$, a contradiction. If F^{\prime} is on the open arc $E F$, then $F A<F^{\prime} A$ and $E F^{\prime}<E F$ yielding $E F^{\prime} / E F<1<F^{\prime} A / F A$, a contradiction. So $F^{\prime}=F$.

Alternatively, we can use Ceva's theorem and its converse. Let $A C$ and $B E$ meet at $G, C E$ and $A D$ meet at $H, E A$ and $C F$ meet at I. Let h, k be the distances from A, C to $B E$, respectively. Then

$$
\frac{A G}{C G}=\frac{h}{k}=\frac{A B \sin \angle A B G}{B C \sin \angle C B G} .
$$

Similarly,

$$
\frac{C H}{E H}=\frac{C D \sin \angle C D H}{D E \sin \angle E D H} \quad \text { and } \quad \frac{E I}{A I}=\frac{E F \sin \angle E F I}{F A \sin \angle A F I} .
$$

Now $\angle A B G=\angle E D H, \angle C B G=\angle E F I, \angle C D H=\angle A F I$. By Ceva's theorem and its converse, $A D, B E, C F$ are concurrent if and only if

$$
1=\frac{A G \cdot C H \cdot E I}{C G \cdot E H \cdot A I}=\frac{A B \cdot C D \cdot E F}{B C \cdot D E \cdot F A} .
$$

91. A circle intersects a triangle $A B C$ at six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$, where the order of appearance along the triangle is $A, C_{1}, C_{2}, B, A_{1}, A_{2}$,
C, B_{1}, B_{2}, A. Suppose $B_{1} C_{1}, B_{2} C_{2}$ meets at $X, C_{1} A_{1}, C_{2} A_{2}$ meets at Y and $A_{1} B_{1}, A_{2} B_{2}$ meets at Z. Show that $A X, B Y, C Z$ are concurrent.

Solution. Let D be the intersection of $A X$ and $B_{1} C_{2}$. Since $A X, B_{1} C_{1}$, $B_{2} C_{2}$ are concurrent, by (the trigonometric form of) Ceva's theorem,

$$
1=\frac{D C_{2} \cdot B_{1} B_{2} \cdot A C_{1}}{D B_{1} \cdot A B_{2} \cdot C_{1} C_{2}}=\frac{\sin C_{2} A D \cdot \sin B_{2} B_{1} C_{1} \cdot \sin B_{1} C_{2} B_{2}}{\sin D A B_{1} \cdot \sin C_{1} B_{1} C_{2} \cdot \sin B_{2} C_{2} C_{1}} .
$$

Then $\frac{\sin B A X}{\sin X A C}=\frac{\sin C_{2} A D}{\sin D A B_{1}}=\frac{\sin C_{1} B_{1} C_{2} \cdot \sin B_{2} C_{2} C_{1}}{\sin B_{2} B_{1} C_{1} \cdot \sin B_{1} C_{2} B_{2}}$. Similarly,

$$
\begin{aligned}
& \frac{\sin C B Y}{\sin Y B A}=\frac{\sin A_{1} C_{1} A_{2} \cdot \sin C_{2} A_{2} A_{1}}{\sin C_{2} C_{1} A_{1} \cdot \sin C_{1} A_{2} C_{2}}, \\
& \frac{\sin A C Z}{\sin Z C B}=\frac{\sin B_{1} A_{1} B_{2} \cdot \sin A_{2} B_{2} A_{1}}{\sin A_{2} A_{1} B_{1} \cdot \sin A_{1} B_{2} A_{2}} .
\end{aligned}
$$

Using $\angle C_{1} B_{1} C_{2}=\angle C_{1} A_{2} C_{2}$ and similar angle equality, we see that the product of the three equations involving X, Y, Z above is equal to 1. By the converse of the trigonometric form of Ceva's theorem, we see that $A X, B Y, C Z$ are concurrent.
92. (1995 IMO shortlisted problem) A circle passing through vertices B and C of triangle $A B C$ intersects sides $A B$ and $A C$ at C^{\prime} and B^{\prime}, respectively. Prove that $B B^{\prime}, C C^{\prime}$ and $H H^{\prime}$ are concurrent, where H and H^{\prime} are the orthocenters of triangles $A B C$ and $A B^{\prime} C^{\prime}$, respectively.

Solution. (Due to Lam Po Leung) Let $d(X, L)$ denote the distance from a point X to a line L. For the problem, we will use the following lemma.

Lemma. Let lines L_{1}, L_{2} intersect at P (forming four angles with vertex P). Suppose H, H^{\prime} lie on an opposite pair of these angles. If $d\left(H, L_{1}\right) / d\left(H^{\prime}, L_{1}\right)=d\left(H, L_{2}\right) / d\left(H^{\prime}, L_{2}\right)$, then H, P, H^{\prime} are collinear.
Proof. Let $H H^{\prime}$ intersect L_{1}, L_{2} at X, Y, respectively. Then

$$
\begin{aligned}
\frac{H H^{\prime}}{H^{\prime} X} & =\frac{H X}{H^{\prime} X}+1=\frac{d\left(H, L_{1}\right)}{d\left(H^{\prime}, L_{1}\right)}+1 \\
& =\frac{d\left(H, L_{2}\right)}{d\left(H^{\prime}, L_{2}\right)}+1=\frac{H Y}{H^{\prime} Y}+1=\frac{H H^{\prime}}{H^{\prime} Y}
\end{aligned}
$$

So $X=Y$ is on both L_{1} and L_{2}, hence it is P. Therefore, H, P, H^{\prime} are collinear.

For the problem, let $B B^{\prime}, C C^{\prime}$ intersect at P. Since $\angle A B H=$ $90^{\circ}-\angle A=\angle A C^{\prime} H^{\prime}$, so $B H \| C^{\prime} H^{\prime}$. Similarly, $C H \| B^{\prime} H^{\prime}$. Let $B H, C C^{\prime}$ intersect at L and $C H, B B^{\prime}$ intersect at K. Now

$$
\begin{aligned}
\angle P B H & =\angle A B H-\angle C^{\prime} B P=\left(90^{\circ}-\angle A\right)-\angle B^{\prime} C P \\
& =\angle A C H-\angle B^{\prime} C P=\angle P C H .
\end{aligned}
$$

So, K, B, C, L are concyclic. Then $\triangle L H K, \triangle B H C$ are similar. Also, $\triangle B H C, \triangle B^{\prime} H^{\prime} C^{\prime}$ are similar because

$$
\angle C B H=90^{\circ}-\angle A C B=90^{\circ}-\angle A C^{\prime} B^{\prime}=\angle C^{\prime} B^{\prime} H^{\prime}
$$

and similarly $\angle B C H=\angle B^{\prime} C^{\prime} H^{\prime}$. Therefore $\triangle L H K, \triangle B^{\prime} H^{\prime} C^{\prime}$ are similar. So $K H / B^{\prime} H^{\prime}=L H / C^{\prime} H^{\prime}$. Since $B H \| C^{\prime} H^{\prime}$ and $C H \| B^{\prime} H^{\prime}$, so $d\left(H, B B^{\prime}\right) / d\left(H^{\prime}, B B^{\prime}\right)=d\left(H, C C^{\prime}\right) / d\left(H^{\prime}, C C^{\prime}\right)$. By the lemma, $H H^{\prime}$ also passes through P.

Perpendicular Lines

93. (1998 APMO) Let $A B C$ be a triangle and D the foot of the altitude from A. Let E and F be on a line passing through D such that $A E$ is perpendicular to $B E, A F$ is perpendicular to $C F$, and E and F are different from D. Let M and N be the midpoints of the line segments $B C$ and $E F$, respectively. Prove that $A N$ is perpendicular to $N M$.

Solution. (Due to Cheung Pok Man) There are many different pictures, so it is better to use coordinate geometry to cover all cases. Set A at the origin and let $y=b \neq 0$ be the equation of the line through D, E, F. (Note the case $b=0$ implies $D=E=F$, which is not allowed.) Let the coordinates of D, E, F be $(d, b),(e, b),(f, b)$, respectively. Since $B E \perp A E$ and slope of $A E$ is b / e, so the equation of line $A E$ is $e x+b y-\left(b^{2}+e^{2}\right)=0$. Similarly, the equation of line $C F$ is $f x+b y-\left(b^{2}+f^{2}\right)=0$ and the equation of line $B C$ is $d x+b y-\left(b^{2}+d^{2}\right)=0$.

From these, we found the coordinates of B, C are $\left(d+e, b-\frac{d e}{b}\right),(d+$ $\left.f, b-\frac{d f}{b}\right)$, respectively. Then the coordinates of M, N are $\left(d+\frac{e+f}{2}, b-\right.$ $\left.\frac{d e+d f}{2 b}\right),\left(\frac{e+f}{2}, b\right)$, respectively. So the slope of $A N$ is $2 b /(e+f)$ and the slope of $M N$ is $-\left(\frac{d e+d f}{2 b}\right) / d=-\frac{e+f}{2 b}$. The product of these slopes is -1 . Therefore, $A N \perp M N$.
94. (2000 APMO) Let $A B C$ be a triangle. Let M and N be the points in which the median and the angle bisector, respectively, at A meet the side $B C$. Let Q and P be the points in which the perpendicular at N to $N A$ meets $M A$ and $B A$, respectively, and O the point in which the perpendicular at P to $B A$ meets $A N$ produced. Prove that $Q O$ is perpendicular to $B C$.

Solution 1. (Due to Wong Chun Wai) Set the origin at N and the x-axis on line $N O$. Let the equation of line $A B$ be $y=a x+b$, then the equation of lines $A C$ and $P O$ are $y=-a x-b$ and $y=-\frac{1}{a} x+b$, respectively. Let the equation of $B C$ be $y=c x$. Then B has coordinates $\left(\frac{b}{c-a}, \frac{b c}{c-a}\right), C$ has coordinates $\left(-\frac{b}{c+a},-\frac{b c}{c+a}\right), M$ has coordinates $\left(\frac{a b}{c^{2}-a^{2}}, \frac{a b c}{c^{2}-a^{2}}\right), A$ has coordinates $\left(-\frac{b}{a}, 0\right), O$ has coordinates $(a b, 0)$ and Q has coordinates $\left(0, \frac{a b}{c}\right)$. Then $B C$ has slope c and $Q O$ has slope $-\frac{1}{c}$. Therefore, $Q O \perp B C$.
Solution 2. (Due to Poon Wai Hoi) The case $A B=A C$ is clear. Without loss of generality, we may assume $A B>A C$. Let $A N$ intersect the circumcircle of $\triangle A B C$ at D. Then

$$
\angle D B C=\angle D A C=\frac{1}{2} \angle B A C=\angle D A B=\angle D C B .
$$

So $D B=D C$ and $M D \perp B C$.
With A as the center of homothety, shrink D to O, B to B^{\prime} and C to C^{\prime}. Then $\angle O B^{\prime} C^{\prime}=\frac{1}{2} \angle B A C=\angle O C^{\prime} B^{\prime}$ and $B C \| B^{\prime} C^{\prime}$. Let $B^{\prime} C^{\prime}$ cut $P N$ at K. Then $\angle O B^{\prime} K=\angle D A B=\angle O P K$. So P, B^{\prime}, O, K are concyclic. Hence $\angle B^{\prime} K O=\angle B^{\prime} P O=90^{\circ}$ and so $B^{\prime} K=C^{\prime} K$. Since
$B C \| B^{\prime} C^{\prime}$, this implies A, K, M are collinear. Therefore, $K=Q$. Since $\angle B^{\prime} K O=90^{\circ}$ and $B C \| B^{\prime} C^{\prime}$, we get $Q O \perp B C$.
95. Let $B B^{\prime}$ and $C C^{\prime}$ be altitudes of triangle $A B C$. Assume that $A B \neq$ $A C$. Let M be the midpoint of $B C, H$ the orthocenter of $A B C$ and D the intersection of $B^{\prime} C^{\prime}$ and $B C$. Prove that $D H \perp A M$.

Solution. Let A^{\prime} be the foot of the altitude from A to $B C$. Since $A^{\prime}, B^{\prime}, C^{\prime} M$ lie on the nine-point circle of $\triangle A B C$, so by the intersecting chord theorem, $D B^{\prime} \cdot D C^{\prime}=D A^{\prime} \cdot D M$. Since $\angle A C^{\prime} H=90^{\circ}=\angle A B^{\prime} H$, points $A, C^{\prime}, H, B^{\prime}$ lie on a circle, ${ }_{1}$ with the midpoint X of $A H$ as center. Since $\angle H A^{\prime} M=90^{\circ}$, so the circle , ${ }_{2}$ through H, A^{\prime}, M has the midpoint Y of $H M$ as center. Since $D B^{\prime} \cdot D C^{\prime}=D A^{\prime} \cdot D M$, the powers of D with respect to,${ }_{1}$ and , ${ }_{2}$ are the same. So $D($ and $H)$ are on the radical axis of , ${ }_{1},{ }_{2}$. Then $D H \perp X Y$. By the midpoint theorem, $X Y \| A M$. Therefore, $D H \perp A M$.
96. (1996 Chinese Team Selection Test) The semicircle with side $B C$ of $\triangle A B C$ as diameter intersects sides $A B, A C$ at points D, E, respectively. Let F, G be the feet of the perpendiculars from D, E to side $B C$ respectively. Let M be the intersection of $D G$ and $E F$. Prove that $A M \perp B C$.

Solution. Let H be the foot of the perpendicular from A to $B C$. Now $\angle B D C=90^{\circ}=\angle B E C$. So $D F=B D \sin B=B C \cos B \sin B$ and similarly $E G=B C \cos C \sin C$. Now

$$
\frac{G M}{M D}=\frac{E G}{F D}=\frac{\cos C \sin C}{\cos B \sin B}=\frac{\cos C}{\cos B} \frac{A B}{A C}
$$

Since $B H=A B \cos B, H G=A E \cos C$, we get

$$
\frac{B H}{H G}=\frac{A B \cos B}{A E \cos C}=\frac{A C \cos B}{A D \cos C} \text { and } \frac{B H}{H G} \frac{G M}{M D} \frac{D A}{A B}=1 .
$$

By the converse of Menelaus' theorem on $\triangle B D G$, points A, M, H are collinear. Therefore, $A M \perp B C$.
97. (1985 IMO) A circle with center O passes through the vertices A and C of triangle $A B C$ and intersects the segments $A B$ and $A C$ again at
distinct points K and N, respectively. The circumcircles of triangles $A B C$ and $K B N$ intersect at exactly two distinct points B and M. Prove that $O M \perp M B$.

Solution. Let $C M$ intersect the circle with center O at a point L. Since $\angle B M C=180^{\circ}-\angle B A C=180^{\circ}-\angle K A C=\angle K L C$, so $B M$ is parallel to $K L$. Now

$$
\begin{aligned}
\angle L K M & =\angle L K N+\angle N K M=\angle L C N+\angle N B M \\
& =180^{\circ}-\angle B M C=\angle B A C=\angle K L M .
\end{aligned}
$$

Then $K M=L M$. Since $K O=L O$, so $O M \perp K L$. Hence $O M \perp B M$.
98. (1997 Chinese Senoir High Math Competition) A circle with center O is internally tangent to two circles inside it at points S and T. Suppose the two circles inside intersect at M and N with N closer to $S T$. Show that $O M \perp M N$ if and only if S, N, T are collinear.

Solution. (Due to Leung Wai Ying) Consider the tangent lines at S and at T. (Suppose they are parallel, then S, O, T will be collinear so that M and N will be equidistant from $S T$, contradicting N is closer to $S T$.) Let the tangent lines meet at K, then $\angle O S K=90^{\circ}=\angle O T K$ implies O, S, K, T lie on a circle with diameter $O K$. Also, $K S^{2}=K T^{2}$ implies K is on the radical axis $M N$ of the two inside circles. So M, N, K are collinear.

If S, N, T are collinear, then

$$
\angle S M T=\angle S M N+\angle T M N=\angle N S K+\angle K T N=180^{\circ}-\angle S K T .
$$

So M, S, K, T, O are concyclic. Then $\angle O M N=\angle O M K=\angle O S K=$ 90°.

Conversely, if $O M \perp M N$, then $\angle O M K=90^{\circ}=\angle O S K$ implies M, S, K, T, O are concyclic. Then

$$
\begin{aligned}
\angle S K T & =180^{\circ}-\angle S M T \\
& =180^{\circ}-\angle S M N-\angle T M N \\
& =180^{\circ}-\angle N S K-\angle K T N .
\end{aligned}
$$

Thus, $\angle T N S=360^{\circ}-\angle N S K-\angle S K T-\angle K T N=180^{\circ}$. Therefore, S, N, T are collinear.
99. $A D, B E, C F$ are the altitudes of $\triangle A B C$. Lines $E F, F D, D E$ meet lines $B C, C A, A B$ in points L, M, N, respectively. Show that L, M, N are collinear and the line through them is perpendicular to the line joining the orthocenter H and circumcenter O of $\triangle A B C$.

Solution. Since $\angle A D B=90^{\circ}=\angle A E B, A, B, D, E$ are concyclic. By the intersecting chord theorem, $N A \cdot N B=N D \cdot N E$. So the power of N with respect to the circumcircles of $\triangle A B C, \triangle D E F$ are the same. Hence N is on the radical axis of these circles. Similarly, L, M are also on this radical axis. So L, M, N are collinear.

Since the circumcircle of $\triangle D E F$ is the nine-point circle of $\triangle A B C$, the center N of the nine-point circle is the midpoint of H and O. Since the radical axis is perpendicular to the line of centers O and N, so the line through L, M, N is perpendicular to the line $H O$.

Geometric Inequalities, Maximum/Minimum

100. (1973 IMO) Let $P_{1}, P_{2}, \ldots, P_{2 n+1}$ be distinct points on some half of the unit circle centered at the origin O. Show that

$$
\left|\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}+\cdots+\overrightarrow{O P_{2 n+1}}\right| \geq 1
$$

Solution. When $n=0$, then $\left|\overrightarrow{O P_{1}}\right|=1$. Suppose the case $n=k$ is true. For the case $n=k+1$, we may assume $P_{1}, P_{2}, \ldots, P_{2 k+3}$ are arranged clockwise. Let $\overrightarrow{O R}=\overrightarrow{O P_{2}}+\cdots+\overrightarrow{O P_{2 k+2}}$ and $\overrightarrow{O S}=\overrightarrow{O P_{1}}+\overrightarrow{O P_{2 k+3}}$. By the case $n=k,|\overrightarrow{O R}| \geq 1$. Also, $\overrightarrow{O R}$ lies inside $\angle P_{1} O P_{2 k+3}$. Since $\left|\overrightarrow{O P_{1}}\right|=1=\left|\overrightarrow{O P_{2 k+3}}\right|, O S$ bisects $\angle P_{1} O P_{2 k+3}$. Hence $\angle R O S \leq 90^{\circ}$. Then $\left|\overrightarrow{O P_{1}}+\cdots+\overrightarrow{O P_{2 k+3}}\right|=|\overrightarrow{O R}+\overrightarrow{O S}| \geq|\overrightarrow{O R}| \geq 1$.
101. Let the angle bisectors of $\angle A, \angle B, \angle C$ of triangle $A B C$ intersect its circumcircle at P, Q, R, respectively. Prove that

$$
A P+B Q+C R>B C+C A+A B
$$

Solution. (Due to Lau Lap Ming) Since $\angle A B Q=\angle C B Q$, we have $A Q=C Q$. By cosine law,

$$
\begin{aligned}
& A Q^{2}=A B^{2}+B Q^{2}-2 A B \cdot B Q \cos \angle A B Q \\
& C Q^{2}=C B^{2}+B Q^{2}-2 C B \cdot B Q \cos \angle C B Q
\end{aligned}
$$

If $A B \neq C B$, then subtracting these and simplifying, we get $A B+$ $C B=2 B Q \cos \angle A B Q<2 B Q$. If $A B=C B$, then $B Q$ is a diameter and we again get $A B+C B=2 A B<2 B Q$. Similarly, $B C+A C<2 C R$ and $C A+B A<2 A P$. Adding these inequalities and dividing by 2 , we get the desired inequality.
102. (1997 APMO) Let $A B C$ be a triangle inscribed in a circle and let $l_{a}=$ $m_{a} / M_{a}, l_{b}=m_{b} / M_{b}, l_{c}=m_{c} / M_{c}$, where m_{a}, m_{b}, m_{c} are the lengths of the angle bisectors (internal to the triangle) and M_{a}, M_{b}, M_{c} are the lengths of the angle bisectors extended until they meet the circle. Prove that

$$
\frac{l_{a}}{\sin ^{2} A}+\frac{l_{b}}{\sin ^{2} B}+\frac{l_{c}}{\sin ^{2} C} \geq 3
$$

and that equality holds iff $A B C$ is equilateral.
Solution. (Due to Fung Ho Yin) Let A^{\prime} be the point the angle bisector of $\angle A$ extended to meet the circle. Applying sine law to $\triangle A B A^{\prime}$, we get $A B / \sin C=M_{a} / \sin \left(B+\frac{A}{2}\right)$. Applying sine law to $\triangle A B D$, we get $A B / \sin \left(C+\frac{A}{2}\right)=m_{a} / \sin B$. So

$$
l_{a}=\frac{m_{a}}{M_{a}}=\frac{\sin B \sin C}{\sin \left(B+\frac{A}{2}\right) \sin \left(C+\frac{A}{2}\right)} \geq \sin B \sin C .
$$

By the AM-GM inequality,

$$
\frac{l_{a}}{\sin ^{2} A}+\frac{l_{b}}{\sin ^{2} B}+\frac{l_{c}}{\sin ^{2} C} \geq \frac{\sin B \sin C}{\sin ^{2} A}+\frac{\sin C \sin A}{\sin ^{2} B}+\frac{\sin A \sin B}{\sin ^{2} C} \geq 3
$$

with equality if and only if $\sin A=\sin B=\sin C$ and $C+\frac{A}{2}=B+\frac{A}{2}=$ $\cdots=90^{\circ}$, which is equivalent to $\angle A=\angle B=\angle C$.
103. (Mathematics Magazine, Problem 1506) Let I and O be the incenter and circumcenter of $\triangle A B C$, respectively. Assume $\triangle A B C$ is not equilateral (so $I \neq O$). Prove that

$$
\angle A I O \leq 90^{\circ} \text { if and only if } 2 B C \leq A B+C A
$$

Solution. (Due to Wong Chun Wai) Let D be the intersection of ray $A I$ and the circumcircle of $\triangle A B C$. It is well-known that $D C=D B=D I$. $(D C=D B$ because $\angle C A D=\angle B A D$ and $D B=D I$ because $\angle B I D=$ $\angle B A D+\angle A B I=\angle C A D+\angle C B I=\angle D B C+\angle C B I=\angle D B I$.) Since $A B D C$ is a cyclic quadrilateral, by Ptolemy's theorem, $A D \cdot B C=$ $A B \cdot D C+A C \cdot D B=(A B+A C) \cdot D I$. Then $D I=A D \cdot B C /(A B+A C)$. Since $\triangle A O D$ is isosceles, $\angle A I O=90^{\circ}$ if and only if $D I \leq A D / 2$, which is equivalent to $2 B C \leq A B+A C$.
Comments. In the solution above, we see $\angle A I O=90^{\circ}$ if and only if $2 B C=A B+A C$. Also, the converse of the well-known fact is true, i.e. the point I on $A D$ such that $D C=D B=D I$ is the incenter of $\triangle A B C$. This is because $\angle B I D=\angle D B I$ if and only if $\angle C B I=\angle A B I$, since $\angle D B C=\angle B A D$ always.)
104. Squares $A B D E$ and $A C F G$ are drawn outside $\triangle A B C$. Let P, Q be points on $E G$ such that $B P$ and $C Q$ are perpendicular to $B C$. Prove that $B P+C Q \geq B C+E G$. When does equality hold?

Solution. Let M, N, O be midpoints of $B C, P Q, E G$, respectively. Let H be the point so that $H E A G$ is a parallelogram. Translating by $\overrightarrow{G A}$, then rotating by 90° about $A, \triangle G H A$ will coincide with $\triangle A B C$ and O will move to M. So $H A=B C, H A \perp B C, O E=O G=M A, E G \perp$ $M A$. Let L be on $M N$ such that $A L \| E G$. Since $N L \| P B, P B \perp$ $B C, B C \perp H A$, so $L N O A$ is a parallelogram. Then $A O=L N$. Since $M A \perp E G$, so $M A \perp A L$, which implies $M L \geq M A$. Therefore

$$
\begin{aligned}
& B P+C Q=2 M N=2(L N+M L) \\
\geq & 2(A O+M A)=2(B M+O E)=B C+E G .
\end{aligned}
$$

Equality holds if and only if L coincides with A, i.e. $A B=A C$.
105. Point P is inside $\triangle A B C$. Determine points D on side $A B$ and E on side $A C$ such that $B D=C E$ and $P D+P E$ is minimum.

Solution. The minimum is attained when $A D P E$ is a cyclic quadrilateral. To see this, consider the point G such that G lies on the opposite side of line $A C$ as $B, \angle A B P=\angle A C G$ and $C G=B P$. Let E be the intersection of lines $A C$ and $P G$. Let D be the intersection of $A B$ with the circumcircle of $A P E$. Since $A D P E$ is a cyclic quadrilateral, $\angle B D P=\angle A E P=\angle C E G$. Using the definition of G, we have $\triangle B D P, \triangle C E G$ are congruent. So $B D=C E$ and $P D+P E=G E+P E=G P$.

For other D^{\prime}, E^{\prime} on sides $A B, A C$, respectively such that $B D^{\prime}=$ $C E^{\prime}$, by the definition of G, we have $\triangle B P D^{\prime}, \triangle C G E^{\prime}$ are congruent. Then $P D^{\prime}=G E^{\prime}$ and $P D^{\prime}+P E^{\prime}=G E^{\prime}+P E^{\prime}>G P$.

Solid or Space Geometry

106. (Proposed by Italy for 1967 IMO) Which regular polygons can be obtained (and how) by cutting a cube with a plane?

Solution. (Due to Fan Wai Tong, Kee Wing Tao and Tam Siu Lung) Observe that if two sides of a polygon is on a face of the cube, then the whole polygon lies on the face. Since a cube has 6 faces, only regular polygon with $3,4,5$ or 6 sides are possible. Let the vertices of the bottom face of the cube be A, B, C, D and the vertices on the top face be $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ with A^{\prime} on top of A, B^{\prime} on top of B and so on. Then the plane through $A, B^{\prime}, D^{\prime}$ cuts an equilateral triangle. The perpendicular bisecting plane to edge $A A^{\prime}$ cuts a square. The plane through the midpoints of edges $A B, B C, C C^{\prime}, C^{\prime} D^{\prime}, D^{\prime} A^{\prime}, A^{\prime} A$ cuts a regular hexagon. Finally, a regular pentagon is impossible, otherwise the five sides will be on five faces of the cube implying two of the sides are on parallel planes, but no two sides of a regular pentagon are parallel.
107. (1995 Israeli Math Olympiad) Four points are given in space, in general position (i.e., they are not coplanar and any three are not collinear).

A plane π is called an equalizing plane if all four points have the same distance from π. Find the number of equalizing planes.

Solution. The four points cannot all lie on one side of an equalizing plane, otherwise they would lie in a plane parallel to the equalizing plane. Hence either three lie on one side and one on the other or two lie on each side. In the former case, there is exactly one equalizing plane, which is parallel to the plane P containing the three points and passing through the midpoint of the segment joining the fourth point x and the foot of the perpendicular from x to P. In the latter case, again there is exactly one equalizing plane. The two pair of points determine two skew lines in space. Consider the two planes, each containing one of the line and is parallel to the other line. The equalizing plane is the plane midway between these two plane. Since there are $4+3=7$ ways of dividing the four points into these two cases, there are exactly 7 equalizing planes.

Solutions to Number Theory Problems

$\underline{\text { Digits }}$

108. (1956 Putnam Exam) Prove that every positive integer has a multiple whose decimal representation involves all ten digits.

Solution. Let n be a positive integer and $p=1234567890 \times 10^{k}$, where k is so large that $10^{k}>n$. Then the n consecutive integers $p+1, p+$ $2, \cdots, p+n$ have decimal representations beginning with $1234567890 \cdots$ and one of them is a multiple of n.
109. Does there exist a positive integer a such that the sum of the digits (in base 10) of a is 1999 and the sum of the digits (in base 10) of a^{2} is 1999^{2} ?

Solution. Yes. In fact, there is such a number whose digits consist of 0 's and 1 's. Let $k=1999$. Consider $a=10^{2^{1}}+10^{2^{2}}+\cdots+10^{2^{k}}$. Then the sum of the digits of a is k. Now

$$
a^{2}=10^{2^{2}}+10^{2^{3}}+\cdots+10^{2^{k+1}}+2 \sum_{1 \leq i<j \leq k} 10^{2^{i}+2^{j}}
$$

Observe that the exponent are all different by the uniqueness of base 2 representation. Therefore, the sum of the digits of a^{2} in base 10 is $k+2 C_{2}^{k}=k^{2}$.
110. (Proposed by USSR for 1991 IMO) Let a_{n} be the last nonzero digit in the decimal representation of the number $n!$. Does the sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ become periodic after a finite number of terms?

Solution. Suppose after N terms, the sequence becomes periodic with period T. Then $a_{i+j T}=a_{i}$ for $i \geq N, j=1,2,3 \ldots$ By the pigeonhole principle, there are two numbers among $10^{N+1}, 10^{N+2}, 10^{N+3}, \ldots$ that have the same remainder when divided by T, say $10^{m} \equiv 10^{k}(\bmod T)$ with $N<m<k$. Then $10^{k}-10^{m}=j T$ for some integer j.

Observe that $10^{k}!=10^{k}\left(10^{k}-1\right)$! implies $a_{10^{k}}=a_{10^{k}-1}$. Let $n=10^{k}-1+j T$. Since $10^{k}-1 \geq N, a_{n+1}=a_{10^{k}+j T}=a_{10^{k}-1+j T}=a_{n}$. Since $(n+1)!=\left(2 \times 10^{k}-10^{m}\right)(n!)=199 \cdots 90 \cdots 0(n!)$, so $9 a_{n}=$ $9 a_{n-1} \equiv a_{n}(\bmod 10)$. This implies $a_{n}=5$. However, in the prime factorization of n !, the exponent of 2 is greater than the exponent of 5 , which implies a_{n} is even, a contradiction.

Modulo Arithmetic

111. (1956 Putnam Exam) Prove that the number of odd binomial coefficients in any row of the Pascal triangle is a power of 2.

Solution. By induction, $(1+x)^{2^{m}} \equiv 1+x^{2^{m}}(\bmod 2)$. If we write n in base 2 , say $n=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}$, where the a_{i} 's are distinct nonnegative integers, then

$$
(1+x)^{n}=(1+x)^{2^{a_{1}}} \cdots(1+x)^{2^{a_{k}}} \equiv\left(1+x^{2^{a_{1}}}\right) \cdots\left(1+x^{2^{a_{k}}}\right)(\bmod 2) .
$$

In expanding the expression in front of $(\bmod 2)$, we get the sum of $x^{n_{s}}$, where for each subset S of $\{1,2, \ldots, k\}, n_{S}=\sum_{i \in S} 2^{a_{i}}$. Since there are 2^{k} subsets of $\{1,2, \ldots, k\}$, there are exactly 2^{k} terms, each with coefficient 1. This implies there are exactly 2^{k} odd binomial coefficients in the n-th row of the Pascal triangle.
112. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{11}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{11}$ be two permutations of the natural numbers $1,2,3, \ldots, 11$. Show that if each of the numbers $a_{1} b_{1}$, $a_{2} b_{2}, a_{3} b_{3}, \ldots, a_{11} b_{11}$ is divided by 11 , then at least two of them will have the same remainder.

Solution. Suppose $a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{11} b_{11}$ have distinct remainders when divided by 11. By symmetry, we may assume $a_{1} b_{1} \equiv 0(\bmod 11)$. Let $x=\left(a_{2} b_{2}\right) \cdots\left(a_{11} b_{11}\right)$. On one hand, $x \equiv 10!\equiv 10(\bmod 11)$. On the other hand, since $a_{i} b_{i} \not \equiv 0(\bmod 11)$, for $i=2, \ldots, 11$, we get $a_{1}=$ $11=b_{1}$. So $x=\left(a_{2} \cdots a_{11}\right)\left(b_{2} \cdots b_{11}\right)=(10!)^{2} \equiv 10^{2} \equiv 1(\bmod 11)$, a contradiction.
113. (1995 Czech-Slovak Match) Let a_{1}, a_{2}, \ldots be a sequence satisfying $a_{1}=$ $2, a_{2}=5$ and

$$
a_{n+2}=\left(2-n^{2}\right) a_{n+1}+\left(2+n^{2}\right) a_{n}
$$

for all $n \geq 1$. Do there exist indices p, q and r such that $a_{p} a_{q}=a_{r}$?
Solution. (Due to Lau Lap Ming) The first few terms are 2, 5, 11, 8, 65, $-766, \ldots$. Since the differences of consecutive terms are multiples of 3 , we suspect $a_{n} \equiv 2(\bmod 3)$ for all n. Clearly, $a_{1}, a_{2} \equiv 2(\bmod 3)$. If $a_{n}, a_{n+1} \equiv 2(\bmod 3)$, then

$$
a_{n+2} \equiv\left(2-n^{2}\right) 2+\left(2+n^{2}\right) 2=8 \equiv 2(\bmod 3) .
$$

So by induction, all $a_{n} \equiv 2(\bmod 3)$. Then $a_{p} a_{q} \neq a_{r}$ for all p, q, r as $4 \not \equiv 2(\bmod 3)$.

Prime Factorization

114. (American Mathematical Monthly, Problem E2684) Let A_{n} be the set of positive integers which are less than n and are relatively prime to n. For which $n>1$, do the integers in A_{n} form an arithmetic progression?

Solution. Suppose A_{n} is an arithmetic progression. If n is odd and $n \geq 3$, then $1,2 \in A_{n}$ implies $A_{n}=\{1,2, \ldots, n-1\}$, which implies n is prime. If n is even and not divisible by 3 , then $1,3 \in A_{n}, 2 \notin A_{n}$ imply $A_{n}=\{1,3,5, \ldots, n-1\}$, which implies n is a power of 2 . Finally, if n is even and divisible by 3 , then let p be the smallest prime not dividing n. Either $p \equiv 1(\bmod 6)$ or $p \equiv 5(\bmod 6)$. In the former case, since $1, p$ are the first two elements of A_{n} and $n-1 \in A_{n}$, so $1+k(p-1)=n-1$ for some k. This implies $n \equiv 2(\bmod 6)$, a contradiction. So $p \equiv 5(\bmod 6)$. Then $2 p-1$ is divisible by 3 and so $2 p-1 \notin A_{n}$. Consequently, $A_{n}=\{1, p\}$, which implies $n=6$ by considering the prime factorization of n. Therefore, A_{n} is an arithmetic progression if and only if n is a prime, a power of 2 or $n=6$.
115. (1971 IMO) Prove that the set of integers of the form $2^{k}-3(k=$ $2,3, \ldots$) contains an infinite subset in which every two members are relatively prime.

Solution. We shall give a recipe for actually constructing an infinite set of integers of the form $a_{i}=2^{k_{i}}-3, i=1,2, \ldots$, each relatively prime to all the others. Let $a_{1}=2^{2}-3=1$. Suppose we have n pairwise relatively prime numbers $a_{1}=2^{k_{1}}-3, \quad a_{2}=2^{k_{2}}-3, \ldots, a_{n}=2^{k_{n}}-3$. We form the product $s=a_{1} a_{2} \cdots a_{n}$, which is odd. Now consider the $s+1$ numbers $2^{0}, 2^{1}, 2^{2}, \ldots, 2^{s}$. At least two of these will be congruent $(\bmod s)$, say $2^{\alpha} \equiv 2^{\beta}(\bmod s)$, or equivalently $2^{\beta}\left(2^{\alpha-\beta}-1\right)=m s$ for some integer m. The odd number s does not divide 2^{β}, so it must divide $2^{\alpha-\beta}-1$; hence $2^{\alpha-\beta}-1=l s$ for some integer l. Since $2^{\alpha-\beta}-1$ is divisible by s and s is odd, $2^{\alpha-\beta}-3$ is relatively prime to s. This implies $2^{\alpha-\beta}-3 \neq 2^{k_{i}}-3$ for $i=1,2, \ldots, n$. So we may define $a_{n+1}=$ $2^{\alpha-\beta}-3$. This inductive construction can be repeated to form an infinite sequence.

Comments. By Euler's theorem, we may take the exponent $\alpha-\beta$ to be $\phi(s)$, the Euler ϕ-function of s, which equals the number of positive integers less than s that are relatively prime to s, then $2^{\phi(s)} \equiv 1(\bmod s)$.
116. (1988 Chinese Math Olympiad Training Test) Determine the smallest value of the natural number $n>3$ with the property that whenever the set $S_{n}=\{3,4, \ldots, n\}$ is partitioned into the union of two subsets, at least one of the subsets contains three numbers a, b and c (not necessarily distinct) such that $a b=c$.

Solution. (Due to Lam Pei Fung) We first show that $3^{5}=243$ has the property, then we will show it is the least solution.

Suppose S_{243} is partitioned into two subsets X_{1}, X_{2}. Without loss of generality, let 3 be in X_{1}. If $3^{2}=9$ is in X_{1}, then we are done. Otherwise, 9 is in X_{2}. If $9^{2}=81$ is in X_{2}, then we are done. Otherwise, 81 is in X_{1}. If $81 / 3=27$ is in X_{1}, then we are done. Otherwise, 27 is in X_{2}. Finally, either $3 \times 81=243$ is in X_{1} or $9 \times 27=243$ is in X_{2}. In either case we are done.

To show 243 is the smallest, we will show that S_{242} can be partitioned into two subsets, each of which does not contain products of its elements. Define C to be "prime" in S_{242} if C is not the product of elements of S_{242}. The "primes" in S_{242} consist of $4,8, p, 2 p$ where $p<242$ is a usual prime number. Since the smallest prime in S_{242} is

3, no number in S_{242} is the product of more than four "primes". Put all the "primes" and numbers that can be written as products of four "primes" in one subset X_{1}, and let $X_{2}=S_{242} \backslash X_{1}$.

No products in X_{2} are in X_{2} because numbers in X_{2} have at least two "prime" factors, so their products can be written with at least four "prime" factors. Next looking at the product of $4,8, p, 2 p$ (p odd prime <242), we see that a product of two "primes" cannot be factored into a product of four "primes". So no products in X_{1} are in X_{1}.

Base n Representations

117. (1983 IMO) Can you choose 1983 pairwise distinct nonnegative integers less than 10^{5} such that no three are in arithmetic progression?

Solution. We consider the greedy algorithm for constructing such a sequence: start with 0,1 and at each step add the smallest integer which is not in arithmetic progression with any two preceding terms. We get $0,1,3,4,9,10,12,13,27,28, \ldots$ In base 3 , this sequence is

$$
0,1,10,11,100,101,110,111,1000,1001, \ldots
$$

(Note this sequence is the nonnegative integers in base 2.) Since 1982 in base 2 is 11110111110 , so switching this from base 3 to base 10 , we get the 1983 th term of the sequence is $87843<10^{5}$. To see this sequence work, suppose x, y, z with $x<y<z$ are 3 terms of the sequence in arithmetic progression. Consider the rightmost digit in base 3 where x differs from y, then that digit for z is a 2 , a contradiction.
118. (American Mathematical Monthly, Problem 2486) Let p be an odd prime number and r be a positive integer not divisible by p. For any positive integer k, show that there exists a positive integer m such that the rightmost k digits of m^{r}, when expressed in the base p, are all 1 's.

Solution. We prove by induction on k. For $k=1$, take $m=1$. Next, suppose m^{r}, in base p, ends in k 1's, i.e.

$$
m^{r}=1+p+\cdots+p^{k-1}+\left(a p^{k}+\text { higher terms }\right)
$$

Clearly, $\operatorname{gcd}(m, p)=1$. Then

$$
\begin{aligned}
\left(m+c p^{k}\right)^{r} & =m^{r}+r m^{r-1} c p^{k}+\cdots+c^{r} p^{k r} i \\
& =1+p+\cdots+p^{k-1}+\left(a+r m^{r-1} c\right) p^{k}+\text { higher terms }
\end{aligned}
$$

Since $\operatorname{gcd}(m r, p)=1$, the congruence $a+r m^{r-1} c \equiv 1(\bmod p)$ is solvable for c. If c_{0} is a solution, then $\left(m+c_{0} p^{k}\right)^{r}$ will end in $(k+1) 1$'s as required.
119. (Proposed by Romania for 1985 IMO) Show that the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=[n \sqrt{2}]$ for $n=1,2,3, \ldots$ (where the brackets denote the greatest integer function) contains an infinite number of integral powers of 2 .

Solution. Write $\sqrt{2}$ in base 2 as $b_{0} \cdot b_{1} b_{2} b_{3} \ldots$, where each $b_{i}=0$ or 1 . Since $\sqrt{2}$ is irrational, there are infinitely many $b_{k}=1$. If $b_{k}=1$, then in base $2,2^{k-1} \sqrt{2}=b_{0} \cdots b_{k-1} \cdot b_{k} \cdots$ Let $m=\left[2^{k-1} \sqrt{2}\right]$, then

$$
2^{k-1} \sqrt{2}-1<\left[2^{k-1} \sqrt{2}\right]=m<2^{k-1} \sqrt{2}-\frac{1}{2} .
$$

Multiplying by $\sqrt{2}$ and adding $\sqrt{2}$, we get $2^{k}<(m+1) \sqrt{2}<2^{k}+\frac{\sqrt{2}}{2}$. Then $[(m+1) \sqrt{2}]=2^{k}$.

Representations

120. Find all (even) natural numbers n which can be written as a sum of two odd composite numbers.

Solution. Let $n \geq 40$ and d be its units digit. If $d=0$, then $n=$ $15+(n-15)$ will do. If $d=2$, then $n=27+(n-27)$ will do. If $d=4$, then $n=9+(n-9)$ will do. If $d=6$, then $n=21+(n-21)$ will do. If $d=8$, then $n=33+(n-33)$ will do. For $n<40$, direct checking shows only $18=9+9,24=9+15,30=9+21,34=9+25,36=9+27$ can be so expressed.
121. Find all positive integers which cannot be written as the sum of two or more consecutive positive integers.

Solution. (Due to Cheung Pok Man) For odd integer $n=2 k+1 \geq 3$, $n=k+(k+1)$. For even integer $n \geq 2$, suppose $n=m+(m+1)+$ $\cdots+(m+r)=(2 m+r)(r+1) / 2$ with $m, r \geq 1$. Then $2 m+r, r+1 \geq 2$ and one of $2 m+r, r+1$ is odd. So n must have an odd divisor greater than 1. In particular, $n=2^{j}, j=0,1,2, \ldots$, cannot be written as the sum of consecutive positive integers. For the other even integers, $n=2^{j}(2 k+1)$ with $j, k \geq 1$. If $2^{j}>k$, then $n=\left(2^{j}-k\right)+\left(2^{j}-k+1\right)+$ $\cdots+\left(2^{j}+k\right)$. If $2^{j} \leq k$, then $n=\left(k-2^{j}+1\right)+\left(k-2^{j}+2\right)+\cdots+\left(k+2^{j}\right)$.
122. (Proposed by Australia for 1990 IMO) Observe that $9=4+5=2+3+4$. Is there an integer N which can be written as a sum of 1990 consecutive positive integers and which can be written as a sum of (more than one) consecutive integers in exactly 1990 ways?

Solution. For such N, we have $N=\sum_{i=0}^{1989}(m+i)=995(2 m+1989)$. So N is odd and is divisible by $995=5 \times 199$. Also, there are exactly 1990 positive integer pairs (n, k) such that $N=\sum_{i=0}^{k}(n+i)=\frac{(k+1)(n+2 k)}{2}$. Hence $2 N$ can be factored as $(k+1)(2 n+k)$ in exactly 1990 ways. (Note if $2 N=a b$ with $2 \leq a<b$, then $n=(1+b-a) / 2, k=a-1$.) This means $2 N$ has exactly $2 \times 1991=2 \times 11 \times 181$ positive divisors. Now write $2 N$ in prime factorization as $2 \times 5^{\epsilon_{1}} \times 199^{e_{2}} \times \cdots$. Then we get $2 \times 11 \times 181=2\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots$. So $\left\{e_{1}, e_{2}\right\}=\{10,180\}$. Therefore, $N=5^{10} \times 199^{180}$ or $5^{180} \times 199^{10}$. As all the steps can be reversed, these are the only answers.
123. Show that if $p>3$ is prime, then p^{n} cannot be the sum of two positive cubes for any $n \geq 1$. What about $p=2$ or 3 ?

Solution. Suppose n is the smallest positive integer such that p^{n} is the sum of two positive cubes, say $p^{n}=a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$. Then $a+b=p^{k}$ and $a^{2}-a b+b^{2}=p^{n-k}$. Since $a+b \geq 2$, so $k>0$. Since $a^{2}-a b+b^{2} \geq a b>1$, so $n>k$. Now $3 a b=(a+b)^{2}-\left(a^{2}-a b+b^{2}\right)=$ $p^{2 k}-p^{n-k}$ and $0<k<n$, so $p \mid 3 a b$. Since $p>3$, so $p \mid a$ or $p \mid b$. Since $a+b=p^{k}$, so $p \mid a$ and $p \mid b$, say $a=p A$ and $b=p B$. Then $A^{3}+B^{3}=p^{n-3}$, contradicting the smallest property of n.

For $p=2$, suppose $a^{3}+b^{3}=2^{n}$. If $a+b>2$, then $2|a, 2| b$ and $\left(\frac{a}{2}\right)^{3}+\left(\frac{b}{2}\right)^{3}=2^{n-3}$. So $a=b=2^{k}$ and $n=3 k+1$.

For $p=3$, suppose $a^{3}+b^{3}=3^{n}$. If $a+b=3^{k}$ and $a^{2}-a b+b^{2}=$ $3^{n-k} \geq 3^{2}$, then $9 \mid 3 a b$ implies $3|a, 3| b$ and $\left(\frac{a}{3}\right)^{3}+\left(\frac{b}{3}\right)^{3}=3^{n-3}$. Otherwise we have $3=a^{2}-a b+b^{2} \geq a b$ and then $a+b=3$. So in this case, a, b are $2 \cdot 3^{k}, 3^{k}$ and $n=3 k+2$.
124. (Due to Paul Erdös and M. Surányi) Prove that every integer k can be represented in infinitely many ways in the form $k= \pm 1^{2} \pm 2^{2} \pm \cdots \pm m^{2}$ for some positive integer m and some choice of signs + or - .

Solution. We first show every integer can be so represented in at least one way. If k can be represented, then changing all the signs, we see $-k$ also can be represented. So it suffices to do the nonnegative cases. The key observation is the identity

$$
(m+1)^{2}-(m+2)^{2}-(m+3)^{2}+(m+4)^{2}=4
$$

Now $0=4-4=\left(-1^{2}-2^{2}+3^{2}\right)-4^{2}+5^{2}+6^{2}-7^{2}, 1=1^{2}, 2=$ $-1^{2}-2^{2}-3^{2}+4^{2}, 3=-1^{2}+2^{2}$. By the identity, if k can be represented, then $k+4$ can be represented. So by induction, every nonnegative integer (and hence every integer) can be represented. To see there are infinitely many such representations, we use the identity again. Observe $0=4-4=(m+1)^{2}-(m+2)^{2}-(m+3)^{2}+(m+4)^{2}-(m+$ $5)^{2}+(m+6)^{2}+(m+7)^{2}-(m+8)^{2}$. So for every representation, we can add 8 more terms to get another representation.
125. (1996 IMO shortlisted problem) A finite sequence of integers a_{0}, a_{1}, \ldots, a_{n} is called quadratic if for each $i \in\{1,2, \ldots, n\},\left|a_{i}-a_{i-1}\right|=i^{2}$.
(a) Prove that for any two integers b and c, there exists a natural number n and a quadratic sequence with $a_{0}=b$ and $a_{n}=c$.
(b) Find the least natural number n for which there exists a quadratic sequence with $a_{0}=0$ and $a_{n}=1996$.

Solution. Part (a) follows from the last problem by letting $k=c-$ b. For part (b), consider a_{k} in such a quadratic sequence. We have
$a_{k} \leq 1^{2}+2^{2}+\cdots+k^{2}=k(k+1)(2 k+1) / 6$. So $a_{17} \leq 1785$. Also $a_{k} \equiv 1^{2}+2^{2}+\cdots+k^{2}(\bmod 2)$. Since $1^{2}+2^{2}+\cdots+18^{2}$ is odd, $n \geq 19$. To construct such a quadratic sequence with $n=19$, first note $1^{2}+2^{2}+\cdots+19^{2}=2470$. Now we write $(2470-1996) / 2=237=$ $14^{2}+5^{2}+4^{2}$. Then

$$
1996=1^{2}+2^{2}+3^{2}-4^{2}-5^{2}+6^{2}+\cdots+13^{2}-14^{2}+15^{2}+\cdots+19^{2} .
$$

126. Prove that every integer greater than 17 can be represented as a sum of three integers >1 which are pairwise relatively prime, and show that 17 does not have this property.

Solution. (Due to Chan Kin Hang and Ng Ka Wing) Let $k \geq 3$. From $18=2+3+13$, we see $2+3+(6 k-5)$ works for $6 k$. From $20=3+4+13$, we see $3+4+(6 k-4)$ works for $6 k+2$. From $22=2+3+17$, we see $2+3+(6 k-1)$ works for $6 k+4$.

For $6 k+1$, we split into cases $12 k^{\prime}+1$ and $12 k^{\prime}+7$. We have $12 k^{\prime}+1=9+\left(6 k^{\prime}-1\right)+\left(6 k^{\prime}-7\right)$ and $12 k^{\prime}+7=3+\left(6 k^{\prime}-1\right)+\left(6 k^{\prime}+5\right)$.

For $6 k+3$, we split into cases $12 k^{\prime}+3$ and $12 k^{\prime}+9$. We have $12 k^{\prime}+3=3+\left(6 k^{\prime}-1\right)+\left(6 k^{\prime}+1\right)$ and $12 k^{\prime}+9=9+\left(6 k^{\prime}-1\right)+\left(6 k^{\prime}+1\right)$.

For $6 k+5$, we split into cases $12 k^{\prime}+5$ and $12 k^{\prime}+11$. We have $12 k^{\prime}+5=9+\left(6 k^{\prime}-5\right)+\left(6 k^{\prime}+1\right)$ and $12 k^{\prime}+11=3+\left(6 k^{\prime}+1\right)+\left(6 k^{\prime}+7\right)$.

Finally, 17 does not have the property. Otherwise, $17=a+b+c$, where a, b, c are relatively prime and $a<b<c$. Then a, b, c are odd. If $a=3$, then $3+5+7<a+b+c<3+5+11$ shows this is impossible. If $a \geq 5$, then $b \geq 7, c \geq 9$ and $a+b+c \geq 21>17$, again impossible.

Chinese Remainder Theorem

127. (1988 Chinese Team Selection Test) Define $x_{n}=3 x_{n-1}+2$ for all positive integers n. Prove that an integer value can be chosen for x_{0} so that x_{100} is divisible by 1998 .

Solution. Let $y_{n}=\frac{x_{n}}{3^{n}}$, then $y_{n}=y_{n-1}+\frac{2}{3^{n}}$, which implies

$$
y_{n}=y_{0}+\frac{2}{3}+\frac{2}{3^{2}}+\cdots+\frac{2}{3^{n}} .
$$

This gives $x_{n}=\left(x_{0}+1\right) 3^{n}-1$. We want $x_{100}=\left(x_{0}+1\right) 3^{100}-1$ to be divisible by $1998=4 \times 7 \times 71$, which means

$$
x_{0} \equiv 0(\bmod 4), \quad x_{0} \equiv 1(\bmod 7), \quad x_{0} \equiv 45(\bmod 71)
$$

Since $4,7,71$ are pairwise relatively prime, by the Chinese remainder theorem, such x_{0} exists.
128. (Proposed by North Korea for 1992 IMO) Does there exist a set M with the following properties:
(a) The set M consists of 1992 natural numbers.
(b) Every element in M and the sum of any number of elements in M have the form m^{k}, where m, k are positive integers and $k \geq 2$?

Solution. (Due to Cheung Pok Man) Let $n=1+2+\cdots+1992$. Choose n distinct prime numbers $p_{1}, p_{2}, \ldots, p_{n}$. Let $d=2^{e_{2}} 3^{e_{3}} 4^{e_{4}} \cdots n^{e_{n}}$, where e_{i} is a solution of the n equations $x \equiv-1\left(\bmod p_{i}\right)$ and $x \equiv 0\left(\bmod p_{j}\right)$ for every $1 \leq j \leq n, j \neq i$. (Since the p_{i} 's are pairwise relatively prime, such a solution exists by the Chinese remainder theorem.) Since $e_{2}, e_{3}, \ldots, e_{n} \equiv 0\left(\bmod p_{1}\right), d$ is a p_{i}-th power. Since $e_{2}+1, e_{3}, \ldots, e_{n} \equiv$ $0\left(\bmod p_{2}\right), 2 d$ is a p_{2}-th power and so on. It follows $d, 2 d, \ldots, 1992 d$ are all perfect powers and any sum of them is a multiple of d, less than or equal to $n d$, hence is also a perfect power.

Divisibility

129. Find all positive integers a, b such that $b>2$ and $2^{a}+1$ is divisible by $2^{b}-1$.

Solution. Since $b>2$, so $2^{b}-1<2^{a}+1$, hence $b<a$. Let $a=$ $q b+r, 0 \leq r<b$, then by division, we get

$$
\frac{2^{a}+1}{2^{b}-1}=2^{a-b}+2^{a-2 b}+\cdots+2^{a-q b}+\frac{2^{r}+1}{2^{b}-1}
$$

Since $0<\frac{2^{r}+1}{2^{b}-1}<1$, there are no solutions.
130. Show that there are infinitely many composite n such that $3^{n-1}-2^{n-1}$ is divisible by n.

Solution. We use the fact $x-y \mid x^{k}-y^{k}$ for positive integer k. Consider $n=3^{2^{t}}-2^{2^{t}}$ for $t=2,3, \ldots$. By induction, we can show $2^{t} \mid 3^{2^{t}}-1=$ $n-1$. (Alternatively, by Euler's theorem, $3^{2^{t}}=\left(3^{\phi\left(2^{t}\right)}\right)^{2} \equiv 1\left(\bmod 2^{t}\right)$.) Then $n-1=2^{t} k$. So $n=3^{2^{t}}-2^{2^{t}} \mid\left(3^{2^{t}}\right)^{k}-\left(2^{2^{t}}\right)^{k}=3^{n-1}-2^{n-1}$.
131. Prove that there are infinitely many positive integers n such that $2^{n}+1$ is divisible by n. Find all such n 's that are prime numbers.

Solution. Looking at the cases $n=1$ to 10 suggest for $n=3^{k}, k=$ $0,1,2, \ldots$, we should have $n \mid 2^{n}+1$. The case $k=0$ is clear. Suppose case k is true. Now $2^{3^{k+1}}+1=\left(2^{3^{k}}+1\right)\left(2^{3^{k} 2}-2^{3^{k}}+1\right)$. By case k, $2^{3^{k}} \equiv 1(\bmod 3)$, so $2^{3^{k} 2}-2^{3 k}+1 \equiv(-1)^{2}-(-1)+1 \equiv 0(\bmod 3)$. So $2^{3^{k+1}}+1$ is divisible by 3^{k+1}, completing the induction.

If a prime n divides $2^{n}+1$, then by Fermat's little theorem, $n \mid 2^{n}-$ 2, too. Then $n \mid\left(2^{n}+1\right)-\left(2^{n}-2\right)=3$, so $n=3$.
132. (1998 Romanian Math Olympiad) Find all positive integers (x, n) such that $x^{n}+2^{n}+1$ is a divisor of $x^{n+1}+2^{n+1}+1$.

Solution. (Due to Cheng Kei Tsi and Leung Wai Ying) For $x=1$, $2\left(1^{n}+2^{n}+1\right)>1^{n+1}+2^{n+1}+1>1^{n}+2^{n}+1$. For $x=2,2\left(2^{n}+2^{n}+1\right)>$ $2^{n+1}+2^{n+1}+1>2^{n}+2^{n}+1$. For $x=3,3\left(3^{n}+2^{n}+1\right)>3^{n+1}+$ $2^{n+1}+1>2\left(3^{n}+2^{n}+1\right)$. So there are no solutions with $x=1,2,3$.

For $x \geq 4$, if $n \geq 2$, then we get $x\left(x^{n}+2^{n}+1\right)>x^{n+1}+2^{n+1}+1$. Now

$$
\begin{aligned}
& \quad x^{n+1}+2^{n+1}+1 \\
& =(x-1)\left(x^{n}+2^{n}+1\right) \\
& \quad \quad+x^{n}-\left(2^{n}+1\right) x+3 \cdot 2^{n}+2 \\
& > \\
& (x-1)\left(x^{n}+2^{n}+1\right)
\end{aligned}
$$

because for $n=2, x^{n}-\left(2^{n}+1\right) x+2^{n+1}=x^{2}-5 x+8>0$ and for $n \geq 3, x^{n}-\left(2^{n}+1\right) x \geq x\left(4^{n-1}-2^{n}-1\right)>0$. Hence only $n=1$ and $x \geq 4$ are possible. Now $x^{n}+2^{n}+1=x+3$ is a divisor of $x^{n+1}+2^{n+1}+1=x^{2}+5=(x-3)(x+3)+14$ if and only if $x+3$ is a divisor of 14 . Since $x+3 \geq 7, x=4$ or 11 . So the solutions are $(x, y)=(4,1)$ and $(11,1)$.
133. (1995 Bulgarian Math Competition) Find all pairs of positive integers (x, y) for which $\frac{x^{2}+y^{2}}{x-y}$ is an integer and divides 1995.

Solution. Suppose (x, y) is such a pair. We may assume $x>y$, otherwise consider (y, x). Then $x^{2}+y^{2}=k(x-y)$, where $k \mid 1995=$ $3 \times 5 \times 7 \times 19$. If $p=3$ or 7 or 19 divides k, then by the fact that prime $p \equiv 3(\bmod 4)$ dividing $x^{2}+y^{2}$ implies p divides x or y, we may cancel p^{2} to get an equation $x_{0}^{2}+y_{0}^{2}=k_{0}\left(x_{0}-y_{0}\right)$ with k_{0} not divisible by 3, 7, 19. Since $x_{0}^{2}+y_{0}^{2}>x_{0}^{2}>x_{0}>x_{0}-y_{0}$, we must have $x_{0}^{2}+y_{0}^{2}=5\left(x_{0}-y_{0}\right)$. Completing squares, we get $\left(2 x_{0}-5\right)^{2}+\left(2 y_{0}+5\right)^{2}=50$, which gives $\left(x_{0}, y_{0}\right)=(3,1)$ or $(2,1)$. It follows $(x, y)=(3 c, c),(2 c, c),(c, 3 c),(c, 2 c)$, where c is a positive divisor of $3 \times 7 \times 19$.
134. (1995 Russian Math Olympiad) Is there a sequence of natural numbers in which every natural number occurs just once and moreover, for any $k=1,2,3, \ldots$ the sum of the first k terms is divisible by k ?

Solution. Let $a_{1}=1$. Suppose a_{1}, \ldots, a_{k} has been chosen to have the property. Let n be the smallest natural number not yet appeared. By the Chinese remainder theorem, there is an integer m such that $m \equiv-a_{1}-\cdots-a_{k}(\bmod k+1)$ and $m \equiv-a_{1}-\cdots-a_{k}-n(\bmod k+2)$. We can increase m by a large multiple of $(k+1)(k+2)$ to ensure it is positive and not equal to anyone of a_{1}, \ldots, a_{k}. Let $a_{k+1}=m$ and $a_{k+2}=n$. The sequence constructed this way have the property.
135. (1998 Putnam Exam) Let $A_{1}=0$ and $A_{2}=1$. For $n>2$, the number A_{n} is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example, $A_{3}=A_{2} A_{1}=10, A_{4}=A_{3} A_{2}=$

101, $A_{5}=A_{4} A_{3}=10110$, and so forth. Determine all n such that A_{n} is divisible by 11 .

Solution. The Fibonacci numbers F_{n} is defined by $F_{1}=1, F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n>2$. Note A_{n} has F_{n} digits. So we have the recursion $A_{n}=10^{F_{n-2}} A_{n-1}+A_{n-2} \equiv(-1)^{F_{n-2}} A_{n-1}+A_{n-2}(\bmod 11)$. By induction, the sequence $F_{n}(\bmod 2)$ is $1,1,0,1,1,0, \ldots$ The first eight terms of $A_{n}(\bmod 11)$ are $0,1,-1,2,1,1,0,1$. (Note the numbers start to repeat after the sixth term.) In fact, the recursion implies $A_{n+6} \equiv A_{n}(\bmod 11)$ by induction. So A_{n} is divisible by 11 if and only if $n=6 k+1$ for some positive integer k.
136. (1995 Bulgarian Math Competition) If $k>1$, show that k does not divide $2^{k-1}+1$. Use this to find all prime numbers p and q such that $2^{p}+2^{q}$ is divisible by $p q$.

Solution. Suppose $k \mid 2^{k-1}+1$ for some $k>1$. Then k is odd. Write $k=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where p_{i} 's are distinct primes. Let $p_{i}-1=2^{m_{i}} q_{i}$ withe q_{i} odd. Let $m_{j}=\min \left\{m_{1}, \ldots, m_{r}\right\}$. Since $m_{i} \equiv 1\left(\bmod m_{j}\right)$, we get $p_{i}^{e_{i}} \equiv 1\left(\bmod m_{j}\right)$ and so $k=2^{m_{j}} q+1$ for some positive integer q. Since $p_{j} \mid k$ and $k \mid 2^{k-1}+1$, so $2^{2^{m_{j}} q}=2^{k-1} \equiv-1\left(\bmod p_{j}\right)$. Then $2^{\left(p_{j}-1\right) q}=\left(2^{2^{m_{j}} q}\right)^{q_{j}} \equiv-1\left(\bmod p_{j}\right)$ because q_{j} is odd. However, $2^{p_{j}-1} \equiv 1\left(\bmod p_{j}\right)$ by Fermat's little theorem since $\operatorname{gcd}\left(2, p_{j}\right)=1$. So $2^{\left(p_{j}-1\right) q} \equiv 1\left(\bmod p_{j}\right)$, a contradiction.

Suppose p, q are prime and $2^{p}+2^{q}$ is divisible by $p q$. Then $2^{p} \equiv$ $-2^{q}(\bmod p)$. If p, q are odd, then $2^{p} \equiv 2(\bmod p)$ by Fermat's little theorem and $2^{q} \equiv-2^{p} \equiv-2(\bmod p)$. So $2^{p q} \equiv(-2)^{p} \equiv-2(\bmod p)$. Similarly, $2^{p q} \equiv-2(\bmod q)$. Then $2^{p q-1} \equiv-1(\bmod p q)$, contradicting the first part of the problem. If $p=2$, then $q=2$ or $q>2$. If $q>2$, then $2^{2} \equiv-2^{q} \equiv-2(\bmod q)$ by Fermat's little theorem, which implies $q=3$. Therefore, the solutions are $(p, q)=(2,2),(2,3),(3,2)$.
137. Show that for any positive integer n, there is a number whose decimal representation contains n digits, each of which is 1 or 2 , and which is divisible by 2^{n}.

Solution. We will prove that the 2^{n} numbers with n digits of 1 's or 2 's have different remainders when divided by 2^{n}. Hence one of them is
divisible by 2^{n}. For $n=1$, this is clear. Suppose this is true for $n=k$. Now if a, b are $(k+1)$-digit numbers, where each digit equals 1 or 2 , and $a \equiv b\left(\bmod 2^{k+1}\right)$, then the units digits of a, b are the same. If $a=10 a^{\prime}+i, b=10 b^{\prime}+i$, where i is the units digit, then 2^{k+1} divides $a-b=10\left(a^{\prime}-b^{\prime}\right)$ is equivalent to 2^{k} divides $a^{\prime}-b^{\prime}$. Since a^{\prime}, b^{\prime} are k-digit numbers (with digits equal 1 or 2), we have $a^{\prime}=b^{\prime}$. So $a=b$, completing the induction.
138. For a positive integer n, let $f(n)$ be the largest integer k such that 2^{k} divides n and $g(n)$ be the sum of the digits in the binary representation of n. Prove that for any positive integer n,
(a) $f(n!)=n-g(n)$;
(b) 4 divides $\binom{2 n}{n}=\frac{(2 n)!}{n!n!}$ if and only if n is not a power of 2 .

Solution. (Due to Ng Ka Man and Poon Wing Chi) (a) Write n in base 2 as $\left(a_{r} a_{r-1} \cdots a_{0}\right)_{2}$. Then

$$
a_{i}=\left(a_{r} \cdots a_{i+1} a_{i}\right)_{2}-\left(a_{r} \cdots a_{i+1} 0\right)_{2}=\left[\frac{n}{2^{i}}\right]-2\left[\frac{n}{2^{i+1}}\right] .
$$

So

$$
g(n)=\sum_{i=0}^{r} a_{i}=\sum_{i=0}^{r}\left(\left[\frac{n}{2^{i}}\right]-2\left[\frac{n}{2^{i+1}}\right]\right)=n-\sum_{i=0}^{r}\left[\frac{n}{2^{i}}\right]=n-f(n!) .
$$

(b) Let $M_{n}=(2 n)!/(n!)^{2}$. Since $g(2 n)=g(n)$, using (a), we get

$$
f\left(M_{n}\right)=f((2 n)!)-2 f(n!)=2 g(n)-g(2 n)=g(n) .
$$

So the largest k such that 2^{k} divides M_{n} is $k=g(n)$. Now 4 divides M_{n} if and only if $g(n) \geq 2$, which is equivalent to n not being a power of 2 .
139. (Proposed by Australia for 1992 IMO) Prove that for any positive integer m, there exist an infinite number of pairs of integers (x, y) such that
(a) x and y are relatively prime;
(b) y divides $x^{2}+m$;
(c) x divides $y^{2}+m$.

Solution. Note $(x, y)=(1,1)$ is such a pair. Now, if (x, y) is such a pair with $x \leq y$, then consider (y, z), where $y^{2}+m=x z$. Then every common divisor of z and y is a divisor of m, and hence of x. So $\operatorname{gcd}(z, y)=1$. Now

$$
x^{2}\left(z^{2}+m\right)=\left(y^{2}+m\right)+x^{2} m=y^{4}+2 m y^{2}+m\left(x^{2}+m\right)
$$

is divisible by y. Since $\operatorname{gcd}(x, y)=1, y \mid z^{2}+m$, so (y, z) is another such pair with $y \leq y^{2} / x<z$. This can be repeated infinitely many times.
140. Find all integers $n>1$ such that $1^{n}+2^{n}+\cdots+(n-1)^{n}$ is divisible by n.

Solution. For odd $n=2 j+1>1$, since $(n-k)^{n} \equiv k^{n}(\bmod n)$ for $1 \leq k \leq j$, so $1^{n}+2^{n}+\cdots+(n-1)^{n}$ is divisible by n. For even n, write $n=2^{s} t$, where t is odd. Then $2^{s} \mid 1^{n}+2^{n}+\cdots+(n-1)^{n}$. Now if k is even and less than n, then $2^{s} \mid k^{n}$. If k is odd and less than n, then by Euler's theorem, $k^{2^{s}-1} \equiv 1\left(\bmod 2^{s}\right)$, so $k^{n} \equiv 1\left(\bmod 2^{s}\right)$. Then $0 \equiv 1^{n}+2^{n}+\cdots+(n-1)^{n} \equiv \frac{n}{2}\left(\bmod 2^{s}\right)$, which implies $2^{s+1} \mid n$, a contradiction. So only odd $n>1$ has the property.
141. (1972 Putnam Exam) Show that if n is an integer greater than 1 , then n does not divide $2^{n}-1$.

Solution. Suppose $n \mid 2^{n}-1$ for some $n>1$. Since $2^{n}-1$ is odd, so n is odd. Let p be the smallest prime divisor of n. Then $p \mid 2^{n}-1$, so $2^{n} \equiv 1(\bmod p)$. By Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$. Let k be the smallest positive integer such that $2^{k} \equiv 1(\bmod p)$. Then $k \mid n$ (because otherwise $n=k q+r$ with $0<r<k$ and $1 \equiv 2^{n}=\left(2^{k}\right)^{q} 2^{r} \equiv$ $2^{r}(\bmod p)$, contradicting k being smallest). Similarly $k \mid p-1$. So $k \mid \operatorname{gcd}(n, p-1)$. Now $d=\operatorname{gcd}(n, p-1)$ must be 1 since $d \mid n, d \leq p-1$ and p is the smallest prime divisor of n. So $k=1$ and $2=2^{k} \equiv$ $1(\bmod p)$, a contradiction.
142. (Proposed by Romania for 1985 IMO) For $k \geq 2$, let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers such that

$$
n_{2}\left|\left(2^{n_{1}}-1\right), n_{3}\right|\left(2^{n_{2}}-1\right), \ldots, n_{k}\left|\left(2^{n_{k-1}}-1\right), n_{1}\right|\left(2^{n_{k}}-1\right)
$$

Prove that $n_{1}=n_{2}=\cdots=n_{k}=1$.
Solution. Observe that if $n_{i}=1$ for some i, then n_{i+1} will equal 1 and the chain effect causes all of them to be 1 . So assume no n_{i} is 1 . Let p_{k} be the smallest prime number dividing n_{k}. Then $p_{k} \mid 2^{n_{k-1}}-1$. So $2^{n_{k+1}} \equiv 1\left(\bmod p_{k}\right)$. Let m_{k} be the smallest positive integer m such that $2^{m} \equiv 1\left(\bmod p_{k}\right)$. Then $m_{k} \mid n_{k-1}$ and $m_{k} \mid p_{k}-1$ by Fermat's little theorem. In particular $1<m_{k} \leq p_{k}-1>p_{k}$ and so the smallest prime divisor p_{k-1} of n_{k-1} is less than p_{k}. Then we get the contradiction that $p_{k}>p_{k-1}>\cdots>p_{1}>p_{k}$.
143. (1998 APMO) Determine the largest of all integer n with the property that n is divisible by all positive integers that are less than $\sqrt[3]{n}$.

Solution. (Due to Lau Lap Ming) The largest n is 420 . Since $420=$ $3 \cdot 4 \cdot 5 \cdot 7$ and $7<\sqrt[3]{n}<8$, 420 has the property. Next, if n has the property and $n>420$, then $3,4,5,7$ divide n. Hence $n \geq 840>$ $729=9^{3}$. Then $5,7,8,9$ divide n, so $n \geq 5 \cdot 7 \cdot 8 \cdot 9=2420>$ $2197=13^{3}$. Then $5,7,8,9,11,13$ divide n, so $n \geq 5 \cdot 7 \cdot 8 \cdot 9 \cdot 11 \cdot 13>$ $8000>19^{3}$. Let k be the integer such that $19^{k}<\sqrt[3]{n}<19^{k+1}$. Then $5^{k}, 7^{k}, 9^{k}, 11^{k}, 13^{k}, 16^{k}, 17^{k}, 19^{k}$ divide n, and we get the following contradiction

$$
\begin{aligned}
n & \geq 5^{k} 7^{k} 9^{k} 11^{k} 13^{k} 16^{k} 17^{k} 19^{k} \\
& =19^{k}(4 \cdot 5)^{k}(3 \cdot 7)^{k}(2 \cdot 11)^{k}(2 \cdot 13)^{k}(3 \cdot 17)^{k}>19^{3 k+3} \geq n .
\end{aligned}
$$

144. (1997 Ukrainian Math Olympiad) Find the smallest integer n such that among any n integers (with possible repetitions), there exist 18 integers whose sum is divisible by 18 .

Solution. Taking seventeen 0's and seventeen 1's, we see that the smallest such integer n cannot be 34 or less. We will show 35 is the
answer. Consider the statement "among any $2 k-1$ integers, there exist k of them whose sum is divisible by k." We will first show that if the statement is true for $k=k_{1}$ and k_{2}, then it is true for $k=k_{1} k_{2}$.

Suppose it is true for $k=k_{1}$ and k_{2}. Since the case $k=k_{1}$ is true, for $2 k_{1} k_{2}-1$ integers, we can take out $2 k_{1}-1$ of them and pick k_{1} of them with sum divisible by k_{1} to form a group. Then return the other $k_{1}-1$ integers to the remaining integers and repeat the taking and picking. Totally we we will get $2 k_{2}-1$ groups. Since the case $k=k_{2}$ is true, from the $2 k_{2}-1$ sums $s_{1}, \ldots, s_{2 k_{2}-1}$ of the groups, considering the numbers $d_{i}=s_{i} / \operatorname{gcd}\left(k_{1}, k_{2}\right)$, we can get k_{2} of them whose sum is divisible by k_{2}. The union of the k_{2} groups with sum s_{i} 's consists of $k_{1} k_{2}$ numbers whose sum is then divisible by $k_{1} k_{2}$.

To finish the problem, since $18=2 \cdot 3^{2}$, we have to show the statement is true for $k=2$ and 3. Among $2 \cdot 2-1=3$ numbers, there are two odd or two even numbers, their sum is even. Among $2 \cdot 3-1=5$ integers, consider $(\bmod 3)$ of the integers. If $0,1,2$ each appears, then the sum of those three will be $0(\bmod 3)$, otherwise there are two choices for 5 integers and three of them will be congruent (mod $3)$, their sum is $0(\bmod 3)$.
Comments. The statement is true for every positive integer k. All we have to consider is the case $k=p$ is prime. Suppose $2 p-1$ integers are given. There are

$$
m=\binom{2 p-1}{p}=\frac{(2 p-1)(2 p-2) \cdots(p+1)}{(p-1)!}
$$

ways in picking p of them. If no p of them have a sum divisible by p, then consider

$$
S=\sum\left(a_{1}+\cdots+a_{p}\right)^{p-1},
$$

where the sum is over all m pickings a_{1}, \ldots, a_{p}. By Fermat's little theorem,

$$
S \equiv 1+\cdots+1=m \not \equiv 0(\bmod p) .
$$

On the other hand, in expansion, the terms $a_{1}^{e_{1}} \cdots a_{p}^{\epsilon_{p}}$ have exponent sum $e_{1}+\cdots+e_{p} \leq p-1$. Hence the numbers of nonzero exponents e_{i} in the terms will be positive integers $j \leq p-1$. Since $p-j$ of the e_{i} is

0 , the coefficient of the term (equals to the number of ways of choosing the $p-j a_{i}$'s whose exponents $e_{i}=0$) is

$$
\binom{2 p-1-j}{p-j}=\frac{(2 p-1-j) \cdots p \cdots(p-j+1)}{(p-j)!}
$$

which is divisible by p. So all coefficients are divisible by p, hence $S \equiv 0(\bmod p)$, a contradiction.

Perfect Squares, Perfect Cubes

145. Let a, b, c be positive integers such that $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$. If the greatest common divisor of a, b, c is 1 , then prove that $a+b$ must be a perfect square.

Solution. By algebra, $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$ is equivalent to $\frac{a-c}{c}=\frac{c}{b-c}$. Suppose $\frac{a-c}{c}=\frac{c}{b-c}=\frac{p}{q}$, where p, q are positive integers and $\operatorname{gcd}(p, q)=$ 1. Then $\frac{a}{p+q}=\frac{c}{q}$ and $\frac{b}{p+q}=\frac{c}{p}$ by simple algebra. So

$$
\frac{a}{p(p+q)}=\frac{b}{q(p+q)}=\frac{c}{p q} .
$$

Now $\operatorname{gcd}(p, q)=1$ implies $\operatorname{gcd}(p(p+q), q(p+q), p q)=1$. Since $\operatorname{gcd}(a, b, c)$ $=1$, we have $a=p(p+q), b=q(p+q)$ and $c=p q$. Therefore $a+b=(p+q)^{2}$.
146. (1969 Eötvös-Kürschák Math Competition) Let n be a positive integer. Show that if $2+2 \sqrt{28 n^{2}+1}$ is an integer, then it is a square.

Solution. If $2+2 \sqrt{28 n^{2}+1}=m$, an integer, then $4\left(28 n^{2}+1\right)=(m-$ $2)^{2}$. This implies m is even, say $m=2 k$. So $28 n^{2}=k^{2}-2 k$. This implies k is even, say $k=2 j$. Then $7 n^{2}=j(j-1)$. Since $\operatorname{gcd}(j, j-1)=1$, either $j=7 x^{2}, j-1=y^{2}$ or $j=x^{2}, j-1=7 y^{2}$. In the former case, we get $-1 \equiv y^{2}(\bmod 7)$, which is impossible. In the latter case, $m=2 k=4 j=4 x^{2}$ is a square.
147. (1998 Putnam Exam) Prove that, for any integers a, b, c, there exists a positive integer n such that $\sqrt{n^{3}+a n^{2}+b n+c}$ is not an integer.

Solution. Let $P(x)=x^{3}+a x^{2}+b x+c$ and $n=|b|+1$. Observe that $P(n) \equiv P(n+2)(\bmod 2)$. Suppose both $P(n)$ and $P(n+2)$ are perfect squares. Since perfect squares are congruent to 0 or $1(\bmod 4)$, so $P(n) \equiv P(n+2)(\bmod 4)$. However, $P(n+2)-P(n)=2 n^{2}+2 b$ is not divisible by 4 , a contradiction. So either $P(n)$ or $P(n+2)$ is not a perfect square. Therefore, either $\sqrt{P(n)}$ or $\sqrt{P(n+2)}$ is not an integer.
148. (1995 IMO shortlisted problem) Let k be a positive integer. Prove that there are infinitely many perfect squares of the form $n 2^{k}-7$, where n is a positive integer.

Solution. It suffices to show there is a sequence of positive integers a_{k} such that $a_{k}^{2} \equiv-7\left(\bmod 2^{k}\right)$ and the a_{k} 's have no maximum. Let $a_{1}=a_{2}=a+3=1$. For $k \geq 3$, suppose $a_{k}^{2} \equiv-7\left(\bmod 2^{k}\right)$. Then either $a_{k}^{2} \equiv-7\left(\bmod 2^{k+1}\right)$ or $a_{k}^{2} \equiv 2^{k}-7\left(\bmod 2^{k+1}\right)$. In the former case, let $a_{k+1}=a_{k}$. In the latter case, let $a_{k+1}=a_{k}+2^{k-1}$. Then since $k \geq 3$ and a_{k} is odd,

$$
a_{k+1}^{2}=a_{k}^{2}+2^{k} a_{k}+2^{2 k-2} \equiv a_{k}^{2}+2^{k} a_{k} \equiv a_{k}^{2}+2^{k} \equiv-7\left(\bmod 2^{k+1}\right)
$$

Since $a_{k}^{2} \geq 2^{k}-7$ for all k, the sequence has no maximum.
149. Let a, b, c be integers such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3$. Prove that $a b c$ is the cube of an integer.

Solution. Without loss of generality, we may assume $\operatorname{gcd}(a, b, c)=1$. (Otherwise, if $d=\operatorname{gcd}(a, b, c)$, then for $a^{\prime}=a / d, b^{\prime}=b / d, c^{\prime}=c / d$, the equation still holds for $a^{\prime}, b^{\prime}, c^{\prime}$ and $a^{\prime} b^{\prime} c^{\prime}$ is a cube if and only if $a b c$ is a cube.) Multiplying by $a b c$, we get a new equation $a^{2} c+b^{2} a+c^{2} b=3 a b c$.

If $a b c= \pm 1$, then we are done. Otherwise, let p be a prime divisor of $a b c$. Since $\operatorname{gcd}(a, b, c)=1$, the new equation implies that p divides exactly two of a, b, c. By symmetry, we may assume p divides
a, b, but not c. Suppose the largest powers of p dividing a, b are m, n, respectively.

If $n<2 m$, then $n+1 \leq 2 m$ and $p^{n+1} \mid a^{2} c, b^{2} c, 3 a b c$. Hence $p^{n+1} \mid c^{2} b$, forcing $p \mid c$, a contradiction. If $n>2 m$, then $n \geq 2 m+1$ and $p^{2 m+1} \mid c^{2} b, b^{2} a, 3 a b c$. Hence $p^{2 m+1} \mid a^{2} c$, forcing $p \mid c$, a contradiction. Therefore, $n=2 m$ and $a b c=\prod_{p \mid a b c} p^{3 m}$ is a cube.

Diophantine Equations

150. Find all sets of positive integers x, y and z such that $x \leq y \leq z$ and $x^{y}+y^{z}=z^{x}$.

Solution. (Due to Cheung Pok Man) Since $3^{1 / 3}>4^{1 / 4}>5^{1 / 5}>\cdots$, we have $y^{z} \geq z^{y}$ if $y \geq 3$. Hence the equation has no solution if $y \geq 3$. Since $1 \leq x \leq y$, the only possible values for (x, y) are $(1,1),(1,2)$ and $(2,2)$. These lead to the equations $1+1=z, 1+2^{z}=z$ and $4+2^{z}=z^{2}$. The third equation has no solution since $2^{z} \geq z^{2}$ for $z \geq 4$ and $(2,2,3)$ is not a solution to $x^{y}+y^{z}=z^{x}$. The second equation has no solution either since $2^{z}>z$. The first equation leads to the unique solution $(1,1,2)$.
151. (Due to W. Sierpinski in 1955) Find all positive integral solutions of $3^{x}+4^{y}=5^{z}$.

Solution. We will show there is exactly one set of solution, namely $x=y=z=2$. To simplify the equation, we consider modulo 3 . We have $1=0+1^{y} \equiv 3^{x}+4^{y}=5^{z} \equiv(-1)^{z}(\bmod 3)$. It follows that z must be even, say $z=2 w$. Then $3^{x}=5^{z}-4^{y}=\left(5^{w}+2^{y}\right)\left(5^{w}-2^{y}\right)$. Now $5^{w}+2^{y}$ and $5^{w}-2^{y}$ are not both divisible by 3 , since their sum is not divisible by 3 . So, $5^{w}+2^{y}=3^{x}$ and $5^{w}-2^{y}=1$. Then, $(-1)^{w}+(-1)^{y} \equiv 0(\bmod 3)$ and $(-1)^{w}-(-1)^{y} \equiv 1(\bmod 3)$. From these, we get w is odd and y is even. If $y>2$, then $5 \equiv 5^{w}+2^{y}=3^{x} \equiv 1$ or $3(\bmod 8)$, a contradiction. So $y=2$. Then $5^{w}-2^{y}=1$ implies $w=1$ and $z=2$. Finally, we get $x=2$.
152. (Due to Euler, also 1985 Moscow Math Olympiad) If $n \geq 3$, then prove that 2^{n} can be represented in the form $2^{n}=7 x^{2}+y^{2}$ with x, y odd positive integers.

Solution. After working out solutions for the first few cases, a pattern begins to emerge. If (x, y) is a solution to case n, then the pattern suggests the following: If $(x+y) / 2$ is odd, then $((x+y) / 2,|7 x-y| / 2)$ should be a solution for the case $n+1$. If $(x+y) / 2$ is even, then $(|x-y| / 2,(7 x-y) / 2)$ should be a solution for the case $n+1$. Before we confirm this, we observe that since $(x+y) / 2+|x-y| / 2=\max (x, y)$ is odd, exactly one of $(x+y) / 2,|x-y| / 2$ is odd. Similarly, exactly one of $(7 x-y) / 2,|7 x-y| / 2$ is odd. Also, if (x, y) is a solution and one of x, y is odd, then the other is also odd.

Now we confirm the pattern by induction. For the case $n=3$, $(x, y)=(1,1)$ with $(1+1) / 2=1$ leads to a solution $(1,3)$ for case $n=4$. Suppose in case n, we have a solution (x, y). If $(x+y) / 2$ is odd, then $7\left(\frac{x+y}{2}\right)^{2}+\left(\frac{|7 x-y|}{2}\right)^{2}=14 x^{2}+2 y^{2}=2^{n+1}$. If $(x+y) / 2$ is even, then $7\left(\frac{|x-y|}{2}\right)^{2}+\left(\frac{7 x-y}{2}\right)^{2}=14 x^{2}+2 y^{2}=2^{n+1}$. Therefore, the pattern is true for all cases by induction.
153. (1995 IMO shortlisted problem) Find all positive integers x and y such that $x+y^{2}+z^{3}=x y z$, where z is the greatest common divisor of x and y.

Solution. Suppose (x, y) is a pair of solution. Let $x=a z, y=b z$, where a, b are positive integers (and $\operatorname{gcd}(a, b)=1$). The equation implies $a+b^{2} z+z^{2}=a b z^{2}$. Hence $a=c z$ for some integer c and we have $c+b^{2}+z=c b z^{2}$, which gives $c=\frac{b^{2}+z}{b z^{2}-1}$. If $z=1$, then $c=\frac{b^{2}+1}{b-1}=b+1+\frac{2}{b-1}$. It follows that $b=2$ or 3 , so $(x, y)=(5,2)$ or $(5,3)$. If $z=2$, then $16 c=\frac{16 b^{2}+32}{4 b-1}=4 b+1+\frac{33}{4 b-1}$. It follows that $b=1$ or 3 , so $(x, y)=(4,2)$ or $(4,6)$.

In general, $c^{2} z=\frac{b^{2} z^{2}+z^{3}}{b z^{2}-1}=b+\frac{b+z^{3}}{b z^{2}-1}$. Now integer $c^{2} z-b=$ $\frac{b+z^{3}}{b z^{2}-1} \geq 1$ implies $b \leq \frac{z^{2}-z+1}{z-1}$. If $z \geq 3$, then $\frac{z^{2}-z+1}{z-1}<z+1$, so $b \leq z$. It follows that $c=\frac{b^{2}+z}{b z^{2}-1} \leq \frac{z^{2}+z}{z^{2}-1}<2$, so $c=1$. Now b is an integer solution of $w^{2}-z^{2} w+z+1=0$. So the discriminant $z^{4}-4 z-4$ is a square. However, it is between $\left(z^{2}-1\right)^{2}$ and $\left(z^{2}\right)^{2}$, a contradiction. Therefore, the only solutions are $(x, y)=(4,2),(4,6),(5,2)$ and $(5,3)$.
154. Find all positive integral solutions to the equation $x y+y z+z x=$ $x y z+2$.

Solution. By symmetry, we may assume $x \leq y \leq z$. Dividing both sides by $x y z$, we get $\frac{1}{z}+\frac{1}{y}+\frac{1}{x}=1+\frac{2}{x y z}$. So

$$
1<1+\frac{2}{x y z}=\frac{1}{z}+\frac{1}{y}+\frac{1}{x} \leq \frac{3}{x}
$$

Then $x=1$ or 2 . If $x=1$, then the equation implies $y=z=1$. If $x=2$, then $\frac{1}{z}+\frac{1}{y}=\frac{1}{2}+\frac{1}{y z}$. So $\frac{1}{2}<\frac{1}{2}+\frac{1}{y z}=\frac{1}{z}+\frac{1}{y} \leq \frac{2}{y}$. Then $y<4$. Simple checkings yield $y=3, z=4$. Therefore, the required solutions are $(x, y, z)=(1,1,1),(2,3,4),(2,4,3),(3,2,4),(3,4,2),(4,2,3),(4,3,2)$.
155. Show that if the equation $x^{2}+y^{2}+1=x y z$ has positive integral solutions x, y, z, then $z=3$.

Solution. (Due to Chan Kin Hang) Suppose the equation has positive integral solutions x, y, z with $z \neq 3$. Then $x \neq y$ (for otherwise $2 x^{2}+1=$ $x^{2} z$ would give $x^{2}(z-2)=1$ and so $\left.x=1, z=3\right)$. As the equation is symmetric in x, y, we may assume $x>y$. Among the positive integral solutions (x, y, z) with $x \geq y$ and $z \neq 3$, let $\left(x_{0}, y_{0}, z_{0}\right)$ be a solution with x_{0} least possible. Now $x^{2}-y_{0} z_{0} x+\left(y_{0}^{2}+1\right)=0$ has x_{0} as a root. The other root is $x_{1}=y_{0} z_{0}-x_{0}=\left(y_{0}^{2}+1\right) / x_{0}$. We have $0<x_{1}=\left(y_{0}^{2}+1\right) / x_{0} \leq\left(y_{0}^{2}+1\right) /\left(y_{0}+1\right) \leq y_{0}$. Now $\left(y_{0}, x_{1}, z_{0}\right)$ is also a positive integral solution with $y_{0} \geq x_{1}$ and $z_{0} \neq 3$. However $y_{0}<x_{0}$ contradicts x_{0} being least possible.
156. (1995 Czech-Slovak Match) Find all pairs of nonnegative integers x and y which solve the equation $p^{x}-y^{p}=1$, where p is a given odd prime.

Solution. If (x, y) is a solution, then

$$
p^{x}=y^{p}+1=(y+1)\left(y^{p-1}-\cdots+y^{2}-y+1\right)
$$

and so $y+1=p^{n}$ for some n. If $n=0$, then $(x, y)=(0,0)$ and p may be arbitrary. Otherwise,

$$
\begin{aligned}
p^{x} & =\left(p^{n}-1\right)^{p}+1 \\
& =p^{n p}-p \cdot p^{n(p-1)}+\binom{p}{2} p^{n(p-2)}+\cdots-\binom{p}{p-2} p^{2 n}+p \cdot p^{n} .
\end{aligned}
$$

Since p is prime, all of the binomial coefficients are divisible by p. Hence all terms are divisible by p^{n+1}, and all but the last by p^{n+2}. Therefore the highest power of p dividing the right side is p^{n+1} and so $x=n+1$. We also have

$$
0=p^{n p}-p \cdot p^{n(p-1)}+\binom{p}{2} p^{n(p-2)}+\cdots-\binom{p}{p-2} p^{2 n}
$$

For $p=3$, this gives $0=3^{3 n}-3 \cdot 3^{2 n}$, which implies $n=1$ and $(x, y)=(2,2)$. For $p \geq 5,\binom{p}{p-2}$ is not divisible by p^{2}, so every term but the lat on the right is divisible by $p^{2 n+2}$, while the last term is not. Since 0 is divisible by $p^{2 n+2}$, this is a contradiction.

Therefore, the only solutions are $(x, y)=(0,0)$ for all odd prime p and $(x, y)=(2,2)$ for $p=3$.
157. Find all integer solutions of the system of equations

$$
x+y+z=3 \quad \text { and } \quad x^{3}+y^{3}+z^{3}=3 .
$$

Solution. Suppose (x, y, z) is a solution. From the identity

$$
(x+y+z)^{3}-\left(x^{3}+y^{3}+z^{3}\right)=3(x+y)(y+z)(z+x)
$$

we get $8=(3-z)(3-x)(3-y)$. Since $6=(3-z)+(3-x)+$ $(3-y)$. Checking the factorization of 8 , we see that the solutions are $(1,1,1),(-5,4,4),(4,-5,4),(4,4,-5)$.

Solutions to Combinatorics Problems

Counting Methods

158. (1996 Italian Mathematical Olympiad) Given an alphabet with three letters a, b, c, find the number of words of n letters which contain an even number of a 's.

Solution 1. (Due to Chao Khek Lun and Ng Ka Wing) For a nonnegative even integer $2 k \leq n$, the number of n letter words with $2 k a$'s is $C_{2 k}^{n} 2^{n-2 k}$. The answer is the sum of these numbers, which can be simplified to $\left((2+1)^{n}+(2-1)^{n}\right) / 2$ using binomial expansion.
Solution 2. (Due to Tam Siu Lung) Let S_{n} be the number of n letter words with even number of a 's and T_{n} be the number of n letter words with odd number of a 's. Then $S_{n}+T_{n}=3^{n}$. Among the S_{n} words, there are T_{n-1} words ended in a and $2 S_{n-1}$ words ended in b or c. So we get $S_{n}=T_{n-1}+2 S_{n-1}$. Similarly $T_{n}=S_{n-1}+2 T_{n-1}$. Subtracting these, we get $S_{n}-T_{n}=S_{n-1}-T_{n-1}$. So $S_{n}-T_{n}=S_{1}-T_{1}=2-1=1$. Therefore, $S_{n}=\left(3^{n}+1\right) / 2$.
159. Find the number of n-words from the alphabet $A=\{0,1,2\}$, if any two neighbors can differ by at most 1 .

Solution. Let x_{n} be the number of n-words satisfying the condition. So $x_{1}=3, x_{2}=7$. Let y_{n} be the number of n-words satisfying the condition and beginning with 0 . (By interchanging 0 and $2, y_{n}$ is also the number of n-words satisfying the condition and beginning with 2.) Considering a 0,1 or 2 in front of an n-word, we get $x_{n+1}=$ $3 x_{n}-2 y_{n}$ and $y_{n+1}=x_{n}-y_{n}$. Solving for y_{n} in the first equation, then substituting into the second equation, we get $x_{n+2}-2 x_{n+1}-x_{n}=0$. For convenience, set $x_{0}=x_{2}-2 x_{1}=1$. Since $r^{2}-2 r-1=0$ has roots $1 \pm \sqrt{2}$ and $x_{0}=1, x_{1}=3$, we get $x_{n}=\alpha(1+\sqrt{2})^{n}+\beta(1-\sqrt{2})^{n}$, where $\alpha=(1+\sqrt{2}) / 2, \beta=(1-\sqrt{2}) / 2$. Therefore, $x_{n}=\left((1+\sqrt{2})^{n+1}+\right.$ $\left.(1-\sqrt{2})^{n+1}\right) / 2$.
160. (1995 Romanian Math Olympiad) Let $A_{1}, A_{2}, \ldots, A_{n}$ be points on a circle. Find the number of possible colorings of these points with p colors, $p \geq 2$, such that any two neighboring points have distinct colors.

Solution. Let C_{n} be the answer for n points. We have $C_{1}=p, C_{2}=$ $p(p-1)$ and $C_{3}=p(p-1)(p-2)$. For $n+1$ points, if A_{1} and A_{n} have different colors, then A_{1}, \ldots, A_{n} can be colored in C_{n} ways, while A_{n+1} can be colored in $p-2$ ways. If A_{1} and A_{n} have the same color, then A_{1}, \ldots, A_{n} can be colored in C_{n-1} ways and A_{n+1} can be colored in $p-1$ ways. So $C_{n+1}=(p-2) C_{n}+(p-1) C_{n-1}$ for $n \geq 3$, which can be written as $C_{n+1}+C_{n}=(p-1)\left(C_{n}+C_{n-1}\right)$. This implies $C_{n+1}+C_{n}=(p-1)^{n-2}\left(C_{3}+C_{2}\right)=p(p-1)^{n}$. Then $C_{n}=(p-1)^{n}+(-1)^{n}(p-1)$ for $n>3$ by induction.

Piqeonhole Principle

161. (1987 Austrian-Polish Math Competition) Does the set $\{1,2, \ldots, 3000\}$ contain a subset A consisting of 2000 numbers such that $x \in A$ implies $2 x \notin A$?

Solution. Let A_{0} be the subset of $S=\{1,2, \ldots, 3000\}$ containing all numbers of the form $4^{n} k$, where n is a nonnegative integer and k is an odd positive integer. Then no two elements of A_{0} have ratio 2. A simple count shows A_{0} has 1999 elements. Now for each $x \in A_{0}$, form a set $S_{x}=\{x, 2 x\} \cap S$. Note the union of all S_{x} 's contains S. So, by the pigeonhole principle, any subset of S having more than 1999 elements must contain a pair in some S_{x}, hence of ratio 2 . So no subset of 2000 numbers in S has the property.
162. (1989 Polish Math Olympiad) Suppose a triangle can be placed inside a square of unit area in such a way that the center of the square is not inside the triangle. Show that one side of the triangle has length less than 1.

Solution. (Due to To Kar Keung) Through the center c of the square, draw a line L_{1} parallel to the closest side of the triangle and a second line L_{2} perpendicular to L_{1} at c. The lines L_{1} and L_{2} divide the square into four congruent quadrilaterals. Since c is not inside the triangle, the triangle can lie in at most two (adjacent) quadrilaterals. By the pigeonhole principle, two of the vertices of the triangle must belong to the same quadrilateral. Now the furthest distance between two points
in the quadrilateral is the distance between two opposite vertices, which is at most 1. So the side of the triangle with two vertices lying in the same quadrilateral must have length less than 1.
163. The cells of a 7×7 square are colored with two colors. Prove that there exist at least 21 rectangles with vertices of the same color and with sides parallel to the sides of the square.

Solution. (Due to Wong Chun Wai) Let the colors be black and white. For a row, suppose there are k black cells and $7-k$ white cells. Then there are $C_{2}^{k}+C_{2}^{7-k}=k^{2}-7 k+21 \geq 9$ pairs of cells with the same color. So there are at least $7 \times 9=63$ pairs of cells on the same row with the same color. Next there are $C_{2}^{7}=21$ pairs of columns. So there are $21 \times 2=42$ combinations of color and pair of columns. For combination $i=1$ to 42 , if there are j_{i} pairs in the same combination, then there are at least $j_{i}-1$ rectangles for that combination. Since the sum of the j_{i} 's is at least 63 , so there are at least $\sum_{i=1}^{42}\left(j_{i}-1\right) \geq 63-42=21$ such rectangles.
164. For $n>1$, let $2 n$ chess pieces be placed at the centers of $2 n$ squares of an $n \times n$ chessboard. Show that there are four pieces among them that formed the vertices of a parallelogram. If $2 n$ is replaced by $2 n-1$, is the statement still true in general?

Solution. (Due to Ho Wing Yip) Let m be the number of rows that have at least 2 pieces. (Then each of the remaining $n-m$ rows contains at most 1 piece.) For each of these m rows, locate the leftmost square that contains a piece. Record the distances (i.e. number of squares) between this piece and the other pieces on the same row. The distances can only be $1,2, \ldots, n-1$ because there are n columns.

Since the number of pieces in these m rows altogether is at least $2 n-(n-m)=n+m$, there are at least $(n+m)-m=n$ distances recorded altogether for these m rows. By the pigeonhole principle, at least two of these distances are the same. This implies there are at least two rows each containing 2 pieces that are of the same distance apart. These 4 pieces yield a parallelogram.

For the second question, placing $2 n-1$ pieces on the squares of the first row and first column shows there are no parallelograms.
165. The set $\{1,2, \ldots, 49\}$ is partitioned into three subsets. Show that at least one of the subsets contains three different numbers a, b, c such that $a+b=c$.

Solution. By the pigeonhole principle, one of the subsets, say X, must contain at least $49 / 3$ elements, say $x_{1}<x_{2}<\ldots<x_{17}$. Form the differences $x_{2}-x_{1}, x_{3}-x_{1}, \ldots, x_{17}-x_{1}$ and remove x_{1} (because a, b, c are to be different) if it appears on the list. If one of the remaining differences belongs to X, then we are done.

Otherwise, by the pigeonhole principle again, one of the subsets, say $Y(\neq X)$, must contain at least $15 / 2$ elements from these differences $y_{j}=x_{i_{j}}-x_{1}$, say $y_{1}<y_{2}<\ldots<y_{8}$. Consider the differences $y_{2}-$ $y_{1}, y_{3}-y_{1}, \ldots, y_{8}-y_{1}$ and remove y_{1} and $x_{i_{1}}$ if they appear on the list. If one of these differences belong to Y, then we are done. If one of them, say $y_{j}-y_{1}=x_{i_{j}}-x_{i_{1}}\left(\neq x_{i_{1}}, x_{i_{j}}\right)$, belong to X, then let $x_{i_{1}}, x_{i_{j}}, x_{i_{j}}-x_{i_{1}}$ are different elements of X and $\left(x_{i_{j}}-x_{i_{1}}\right)+x_{i_{1}}=x_{i_{j}}$ and we are done.

Thus, we may assume 5 of these differences $z_{k}=y_{j_{k}}-y_{1}$, belong to the remainging subset Z and say $z_{1}<z_{2}<\ldots<z_{5}$. Form the difference $z_{2}-z_{1}, z_{3}-z_{1}, z_{4}-z_{1}, z_{5}-z_{1}$ and remove $z_{1}, y_{j_{1}}, x_{i_{j_{1}}}$ if they appear on the list. The remaining difference $z_{k}-z_{1}=y_{j_{k}}-y_{j_{1}}=$ $x_{i_{j_{k}}}-y_{i_{j_{1}}}$ must belong to one of X, Y or Z. As above, we get three distinct elements a, b, c in one of X, Y or Z such that $a+b=c$.

Inclusion-Exclusion Principle

166. Let $m \geq n>0$. Find the number of surjective functions from $B_{m}=$ $\{1,2, \ldots, m\}$ to $B_{n}=\{1,2, \ldots, n\}$.

Solution. For $i=1,2, \ldots, n$, let A_{i} be the set of functions $f: B_{m} \rightarrow$
B_{n} such that $i \neq f(1), \ldots, f(m)$. By the inclusion-exclusion principle,

$$
\begin{aligned}
& \left|A_{1} \cup \cdots \cup A_{n}\right| \\
= & \sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{2} \cap A_{3}\right|-\cdots \\
= & \binom{n}{1}(n-1)^{m}-\binom{n}{2}(n-2)^{m}+\binom{n}{3}(n-3)^{m}-\cdots .
\end{aligned}
$$

The number of surjections from B_{m} to B_{n} is

$$
n^{m}-\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{m}
$$

167. Let A be a set with 8 elements. Find the maximal number of 3 -element subsets of A, such that the intersection of any two of them is not a 2 element set.

Solution. Let $|S|$ denote the number of elements in a set S. Let $B_{1}, \cdots, B_{n} \subseteq A$ be such that $\left|B_{i}\right|=3,\left|B_{i} \cap B_{j}\right| \neq 2$ for $i, j=1, \ldots, n$. If $a \in A$ belongs to B_{1}, \ldots, B_{k}, then $\left|B_{i} \cap B_{j}\right|=1$ for $i, j=1, \ldots, k$. Since $8=|A| \geq\left|B_{1} \cup \cdots \cup B_{k}\right|=1+2 k$, we get $k \leq 3$. From this, we see that every element of A is in at most $3 B_{i}$'s. Then $3 n \leq 8 \times 3$, so $n \leq 8$. To show 8 is possible, just consider

$$
\begin{aligned}
& B_{1}=\{1,2,3\}, B_{2}=\{1,4,5\}, B_{3}=\{1,6,7\}, B_{4}=\{8,3,4\}, \\
& B_{5}=\{8,2,6\}, B_{6}=\{8,5,7\}, B_{7}=\{3,5,6\}, B_{8}=\{2,4,7\} .
\end{aligned}
$$

168. (a) (1999 Hong Kong China Math Olympiad) Students have taken a test paper in each of $n(n \geq 3)$ subjects. It is known that for any subject exactly three students get the best score in the subject, and for any two subjects excatly one student gets the best score in every one of these two subjects. Determine the smallest n so that the above conditions imply that exactly one student gets the best score in every one of the n subjects.
(b) (1978 Austrian-Polish Math Competition) There are 1978 clubs. Each has 40 members. If every two clubs have exactly one common member, then prove that all 1978 clubs have a common member.

Solution. (a) (Due to Fan Wai Tong) For $i=1,2, \ldots, n$, let S_{i} be the set of students who get the best score in the i-th subject. Suppose nobody gets the best score in every one of the n subjects. Let x be one student who is best in most number of subjects, say $m(m<n)$ subjects. Without loss of generality, suppose x is in $S_{1}, S_{2}, \ldots, S_{m}$. For $i=1,2, \ldots, m$, let $S_{i}^{\prime}=S_{i} \backslash\{x\}$. Then the m sets S_{i}^{\prime} are pairwise disjoint and so each shares a (distinct) common member with S_{m+1}. Since S_{m+1} has three members, so $m \leq 3$. This means each student is best in at most three subjects. By the inclusion-exclusion principle,

$$
\begin{aligned}
& \left|S_{1} \cup S_{2} \cup \cdots \cup S_{n}\right| \\
= & \sum_{1 \leq i \leq n}\left|S_{i}\right|-\sum_{1 \leq i<j \leq n}\left|S_{i} \cap S_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|S_{i} \cap S_{j} \cap S_{k}\right| \\
\leq & 3 n-\binom{n}{2}+\left|S_{1} \cup S_{2} \cup \cdots \cup S_{n}\right|,
\end{aligned}
$$

which implies $n \leq 7$. Therefore, if $n \geq 8$, then there is at least one student who get the best score in every one of the n subjects. There is exactly one such students because only one student gets the best score in a pair of subjects.

Finally, we give an example of the case $n=7$ with nobody best in all subjects:

$$
\begin{array}{lll}
S_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, & S_{2}=\left\{x_{1}, x_{4}, x_{5}\right\}, & S_{3}=\left\{x_{2}, x_{4}, x_{6}\right\}, \\
S_{4}=\left\{x_{3}, x_{5}, x_{6}\right\}, & S_{5}=\left\{x_{1}, x_{6}, x_{7}\right\}, & S_{6}=\left\{x_{2}, x_{5}, x_{7}\right\}, \\
& S_{7}=\left\{x_{3}, x_{4}, x_{7}\right\} . &
\end{array}
$$

(b) Let $n=1978$ and $k=40$. Let $C_{1}, C_{2}, \ldots, C_{n}$ be the n clubs. For each member of C_{1}, form a list of the indices of the other clubs that this member also belongs to. Since C_{1} and any other club C_{i} have exactly one common member, the k lists of the k members of C_{1} are
disjoint and together contain all integers from 2 to n. By the pigeonhole principle, one of the lists, say x 's list, will contain at least $m=\left\lceil\frac{n-1}{k}\right\rceil$ numbers. (The notation means m is the least integer greater than or equal to $\frac{n-1}{k}$.)

Next we will show this x is a member of all n clubs. Suppose x is not a member of some club C_{i}. Then each of the $m+1$ clubs that x belong to will share a different member with C_{i} (otherwise two of the $m+1$ clubs will share a member y in C_{i} and also x, a contradiction). Since C_{i} has k members, so $k \geq m+1 \geq \frac{n-1}{k}+1$, which implies $k^{2}-k+1 \geq n$. Since $k^{2}-k+1=1561<n=1978$, this is a contradiction. So x must be a member of all n clubs.

Comments. It is clear that the two problems are essentially the same. As the number of members in the sets gets large, the inclusion-exclusion principle in (a) will be less effective. The argument in part (b) is more convenient and shows that for n sets, each having k members and each pair having exactly one common member, if $n>k^{2}-k+1$, then all n sets have a common member.

Combinatorial Designs

169. (1995 Byelorussian Math Olympiad) In the begining, 65 beetles are placed at different squares of a 9×9 square board. In each move, every beetle creeps to a horizontal or vertical adjacent square. If no beetle makes either two horizontal moves or two vertical moves in succession, show that after some moves, there will be at least two beetles in the same square.

Solution. (Due to Cheung Pok Man and Yung Fai) Assign an ordered pair (a, b) to each square with $a, b=1,2, \ldots, 9$. Divide the 81 squares into 3 types. Type A consists of squares with both a and b odd, type B consists of squares with both a and b even and type C consists of the remaining squares. The numbers of squares of the types A, B and C are 25,16 and 40 , respectively.

Assume no collision occurs. After two successive moves, beetles in type A squares will be in type B squares. So the number of beetles in
type A squares are at most 16 at any time. Then there are at most 32 beetles in type A or type B squares at any time. Also, after one move, beetles in type C squares will go to type A or type B squares. So there are at most 32 beetles in type C squares at any time. Hence there are at most 64 beetles on the board, a contradiction.
170. (1995 Greek Math Olympiad) Lines $l_{1}, l_{2}, \ldots, l_{k}$ are on a plane such that no two are parallel and no three are concurrent. Show that we can label the C_{2}^{k} intersection points of these lines by the numbers $1,2, \ldots, k-1$ so that in each of the lines $l_{1}, l_{2}, \ldots, l_{k}$ the numbers $1,2, \ldots, k-1$ appear exactly once if and only if k is even.

Solution. (Due to Ng Ka Wing) If such labeling exists for an integer k, then the label 1 must occur once on each line and each point labeled 1 lies on exactly 2 lines. Hence there are $k / 21$'s, i.e. k is even.

Conversely, if k is even, then the following labeling works: for $1 \leq i<j \leq k-1$, give the intersection of lines l_{i} and l_{j} the label $i+j-1$ when $i+j \leq k$, the label $i+j-k$ when $i+j>k$. For the intersection of lines l_{k} and $l_{i}(i=1,2, \ldots, k-1)$, give the label $2 i-1$ when $2 i \leq k$, the label $2 i-k$ when $2 i>k$.

Alternatively, we can make use of the symmetry of an odd number sided regular polygon to construct the labeling as follows: for k even, consider the $k-1$ sided regular polygon with the vertices labeled $1,2, \ldots, k-1$. For $1 \leq i<j \leq k-1$, the perpendicular bisector of the segment joining vertices i and j passes through a unique vertex, give the intersection of lines l_{i} and l_{j} the label of that vertex. For the intersection of lines l_{k} and $l_{i}(i=1,2, \ldots, k-1)$, give the label i.
171. (1996 Tournaments of the Towns) In a lottery game, a person must select six distinct numbers from $1,2,3, \ldots, 36$ to put on a ticket. The lottery commitee will then draw six distinct numbers randomly from $1,2,3, \ldots, 36$. Any ticket with numbers not containing any of these six numbers is a winning ticket. Show that there is a scheme of buying 9 tickets guaranteeing at least a winning ticket, but 8 tickets is not enough to guarantee a winning ticket in general.

Solution. Consider the nine tickets with numbers

$$
(1,2,3,4,5,6), \quad(1,2,3,7,8,9), \quad(4,5,6,7,8,9)
$$

$(10,11,12,13,14,15), \quad(10,11,12,16,17,18), \quad(13,14,15,16,17,18)$, $(19,20,21,22,23,24), \quad(25,26,27,28,29,30), \quad(31,32,33,34,35,36)$.
For the first three tickets, if they are not winning, then two of the six numbers drawn must be among $1,2, \ldots, 9$. For the next three tickets, if they are not winning, then two of the six sumbers must be $10,11, \ldots, 18$. For the last three tickets, if they are not winning, then three of the six numbers must be among $19,20, \ldots, 36$. Since only six numbers are drawn, at least one of the nine tickets is a winning ticket.

For any eight tickets, if one number appears in three tickets, then this number and one number from each of the five remaining tickets may be the six numbers drawn, resulting in no winning tickets.

So of the 48 numbers on the eight tickets, we may assume (at least) 12 appeared exactly 2 times, say they are $1,2, \ldots, 12$. Consider the two tickets with 1 on them. The remaining 10 numbers on them will miss (at least) one of the numbers $2,3, \ldots, 12$, say 12 . Now 12 appears in two other tickets. Then 1, 12 and one number from each of the four remaining tickets may be the six numbers drawn by the committee, resulting in no winning tickets.
172. (1995 Byelorussian Math Olympiad) By dividing each side of an equilateral triangle into 6 equal parts, the triangle can be divided into 36 smaller equilateral triangles. A beetle is placed on each vertex of these triangles at the same time. Then the beetles move along different edges with the same speed. When they get to a vertex, they must make a 60° or 120° turn. Prove that at some moment two beetles must meet at some vertex. Is the statement true if 6 is replaced by 5 ?

Solution. We put coordinates at the vertices so that (a, b), for $0 \leq b \leq$ $a \leq 6$, corresponds to the position of $\binom{a}{b}$ in the Pascal triangle. First mark the vertices

$$
(0,0),(2,0),(2,2),(4,0),(4,2),(4,4),(6,0),(6,2),(6,4),(6,6)
$$

After one move, if no beetles meet, then the 10 beetles at the marked vertices will move to 10 unmarked vertices and 10 other beetles will move to the marked vertices. After another move, these 20 beetles will be at unmarked vertices. Since there are only 18 unmarked vertices, two of them will meet.

If 6 is replaced by 5 , then divide the vertices into groups as follows:

$$
\begin{gathered}
\{(0,0),(1,0),(1,1)\}, \quad\{(2,0),(3,0),(3,1)\}, \\
\{(2,1),(3,2),(3,3),(2,2)\}, \quad\{(4,0),(5,0),(5,1)\}, \\
\{(4,1),(5,2),(5,3),(4,2)\}, \quad\{(4,3),(5,4),(5,5),(4,4)\} .
\end{gathered}
$$

Let the beetles in each group move in the counterclockwise direction along the vertices in the group. Then the beetles will not meet at any moment.

Coverinq. Convex Hull

173. (1991 Australian Math Olympiad) There are n points given on a plane such that the area of the triangle formed by every 3 of them is at most 1. Show that the n points lie on or inside some triangle of area at most 4.

Solution. (Due to Lee Tak Wing) Let the n points be $P_{1}, P_{2}, \ldots, P_{n}$. Suppose $\triangle P_{i} P_{j} P_{k}$ have the maximum area among all triangles with vertices from these n points. No P_{l} can lie on the opposite side of the line through P_{i} parallel to $P_{j} P_{k}$ as $P_{j} P_{k}$, otherwise $\triangle P_{j} P_{k} P_{l}$ has larger area than $\triangle P_{i} P_{j} P_{k}$. Similarly, no P_{l} can lie on the opposite side of the line through P_{j} parallel to $P_{i} P_{k}$ as $P_{i} P_{k}$ or on the opposite side of the line through P_{k} parallel to $P_{i} P_{j}$ as $P_{i} P_{j}$. Therefore, each of the n points lie in the interior or on the boundary of the triangle having P_{i}, P_{j}, P_{k} as midpoints of its sides. Since the area of $\triangle P_{i} P_{j} P_{k}$ is at most 1, so the area of this triangle is at most 4.
174. (1969 Putnam Exam) Show that any continuous curve of unit length can be covered by a closed rectangles of area $1 / 4$.

Solution. Place the curve so that its endpoints lies on the x-axis. Then take the smallest rectangle with sides parallel to the axes which covers the curve. Let its horizontal and vertical dimensions be a and b, respectively. Let P_{0} and P_{5} be its endpoints. Let $P_{1}, P_{2}, P_{3}, P_{4}$ be the points on the curve, in the order named, which lie one on each of the four sides of the rectangle. The polygonal line $P_{0} P_{1} P_{2} P_{3} P_{4} P_{5}$ has length at most one.

The horizontal projections of the segments of this polygonal line add up to at least a, since the line has points on the left and right sides of the rectangle. The vertical projections of the segments of this polygonal line add up to at least $2 b$, since the endpoints are on the x-axis and the line also has points on the top and bottom side of the rectangle.

So the polygonal line has length at least $\sqrt{a^{2}+4 b^{2}} \geq 1$. By the AM-GM inequality, $4 a b \leq a^{2}+4 b^{2} \leq 1$ and so the area is at most $1 / 4$.
175. (1998 Putnam Exam) Let \mathcal{F} be a finite collection of open discs in the plane whose union covers a set E. Show that there is a pairwise disjoint subcollection D_{1}, \ldots, D_{n} in \mathcal{F} such that the union of $3 D_{1}, \ldots, 3 D_{n}$ covers E, where $3 D$ is the disc with the same center as D but having three times the radius.

Solution. We construct such D_{i} 's by the greedy algorithm. Let D_{1} be a disc of largest radius in \mathcal{F}. Suppose D_{1}, \ldots, D_{j} has been picked. Then we pick a disc D_{j+1} disjoint from each of D_{1}, \ldots, D_{j} and has the largest possible radius. Since \mathcal{F} is a finite collection, the algorithm will stop at a final disc D_{n}. For x in E, suppose x is not in the union of D_{1}, \ldots, D_{n}. Then x is in some disc D of radius r in \mathcal{F}. Now D is not one of the D_{j} 's implies it intersects some disc D_{j} of radius $r_{j} \geq r$. By the triangle inequality, the centers is at most $r+r_{j}$ units apart. Then D is contained in $3 D_{j}$. In particular, x is in $3 D_{j}$. Therefore, E is contained in the union of $3 D_{1}, \ldots, 3 D_{n}$.
176. (1995 IMO) Determine all integers $n>3$ for which there exist n points $A_{1}, A_{2}, \ldots, A_{n}$ in the plane, and real numbers $r_{1}, r_{2}, \ldots, r_{n}$ satisfying the following two conditions:
(a) no three of the points $A_{1}, A_{2}, \ldots, A_{n}$ lie on a line;
(b) for each triple $i, j, k(1 \leq i<j<k \leq n)$ the triangle $A_{i} A_{j} A_{k}$ has area equal to $r_{i}+r_{j}+r_{k}$.

Solution. (Due to Ho Wing Yip) For $n=4$, note $A_{1}=(0,0), A_{2}=$ $(1,0), A_{3}=(1,1), A_{4}=(0,1), r_{1}=r_{2}=r_{3}=r_{4}=1 / 6$ satisfy the conditions. Next we will show there are no solutions for $n \geq 5$. Suppose the contrary, consider the convex hull of $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$. (This is the smallest convex set containing the five points.) There are three cases. Triangular Case. We may assume the points are named so A_{1}, A_{2}, A_{3} are the vertices of the convex hull, with A_{4}, A_{5} inside such that A_{5} is outside $\triangle A_{1} A_{2} A_{4}$ and A_{4} is outside $\triangle A_{1} A_{3} A_{5}$. Denote the area of $\triangle X Y Z$ by [$X Y Z]$. We get a contradiction as follows:

$$
\begin{aligned}
{\left[A_{1} A_{4} A_{5}\right]+\left[A_{1} A_{2} A_{3}\right] } & =\left(r_{1}+r_{4}+r_{5}\right)+\left(r_{1}+r_{2}+r_{3}\right) \\
& =\left(r_{1}+r_{2}+r_{4}\right)+\left(r_{1}+r_{3}+r_{5}\right) \\
& =\left[A_{1} A_{2} A_{4}\right]+\left[A_{1} A_{3} A_{5}\right]<\left[A_{1} A_{2} A_{3}\right] .
\end{aligned}
$$

Pentagonal Case. We may assume $r_{1}=\min \left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}$. Draw line L through A_{1} parallel to $A_{3} A_{4}$. Since $\left[A_{1} A_{3} A_{4}\right]=r_{1}+r_{3}+r_{4} \leq$ $r_{2}+r_{3}+r_{4}=\left[A_{2} A_{3} A_{4}\right], A_{2}$ is on line L or on the half plane of L opposite A_{3}, A_{4} and similarly for A_{5}. Since A_{1}, A_{2}, A_{5} cannot all be on L, we get $\angle A_{2} A_{1} A_{5}>180^{\circ}$ contradicting convexity.
Quadrilateral Case. We may assume A_{5} is inside the convex hull. First obseve that $r_{1}+r_{3}=R_{2}+r_{4}$. This is because

$$
\left(r_{1}+r_{2}+r_{3}\right)+\left(r_{3}+r_{4}+r_{1}\right)=\left(r_{1}+r_{2}+r_{4}\right)+\left(r_{2}+r_{4}+r_{3}\right)
$$

is the area S of the convex hull. So $2 S=3\left(r_{1}+r_{2}+r_{3}+r_{4}\right)$. Also

$$
\begin{aligned}
S & =\left[A_{1} A_{2} A_{5}\right]+\left[A_{2} A_{3} A_{5}\right]+\left[A_{3} A_{4} A_{5}\right]+\left[A_{4} A_{1} A_{5}\right] \\
& =2\left(r_{1}+r_{2} r_{3}+r_{4}\right)+r_{5} .
\end{aligned}
$$

From the last equation, we get $r_{5}=-\left(r_{1}+r_{2}+r_{3}+r_{4}\right) / 8=-S / 12<0$.
Next observe that A_{1}, A_{5}, A_{3} not collinear implies one side of $\angle A_{1} A_{5} A_{3}$ is less than 180°. Then one of the quadrilaterals $A_{1} A_{5} A_{3} A_{4}$
or $A_{1} A_{5} A_{3} A_{2}$ is convex. By the first observation of this case, $r_{1}+r_{3}=$ $r_{5}+r_{i}$, where $r_{i}=r_{4}$ or r_{2}. Since $r_{1}+r_{3}=r_{2}+r_{4}$, we get $r_{5}=r_{2}$ or r_{4}. Similarly, considering A_{2}, A_{5}, A_{4} not collinear, we also get $r_{5}=r_{1}$ or r_{3}. Therefore, three of the numbers $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ are negative, but the area of the corresponding triangle is positive, a contradiction.
177. (1999 IMO) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector of the line segment $A B$ is an axis of symmetry of S.

Solution. Clearly, no three points of such a set is collinear (otherwise considering the perpendicular bisector of the two furthest points of S on that line, we will get a contradiction). Let H be the convex hull of such a set, which is the smallest convex set containing S. Since S is finite, the boundary of H is a polygon with the vertices $P_{1}, P_{2}, \ldots, P_{n}$ belonging to S. Let $P_{i}=P_{j}$ if $i \equiv j(\bmod n)$. For $i=1,2, \ldots, n$, the condition on the set implies P_{i} is on the perpendicular bisector of $P_{i-1} P_{i+1}$. So $P_{i-1} P_{i}=P_{i} P_{i+1}$. Considering the perpendicular bisector of $P_{i-1} P_{i+2}$, we see that $\angle P_{i-1} P_{i} P_{i+1}=\angle P_{i} P_{i+1} P_{i+2}$. So the boundary of H is a regular polygon.

Next, there cannot be any point P of S inside the regular polygon. (To see this, assume such a P exists. Place it at the origin and the furthest point Q of S from P on the positive real axis. Since the origin P is in the interior of the convex polygon, not all the vertices can lie on or to the right of the y-axis. So there exists a vertex P_{j} to the left of the y-axis. Since the perpendicular bisector of $P Q$ is an axis of symmetry, the mirror image of P_{j} will be a point in S further than Q from P, a contradiction.) So S is the set of vertices of some regular polygon. Conversely, such a set clearly has the required property.

Comments. The official solution is shorter and goes as follows: Suppose $S=\left\{X_{1}, \ldots, X_{n}\right\}$ is such a set. Consider the barycenter of S, which is the point G such that

$$
\overrightarrow{O G}=\frac{\overrightarrow{O X_{1}}+\cdots+\overrightarrow{O X_{n}}}{n}
$$

(The case $n=2$ yields the midpoint of segment $X_{1} X_{2}$ and the case $n=3$ yields the centroid of triangle $X_{1} X_{2} X_{3}$.) Note the barycenter does not depend on the origin. To see this, suppose we get a point G^{\prime} using another origin O^{\prime}, i.e. $\overrightarrow{O^{\prime} G^{\prime}}$ is the average of $\overrightarrow{O^{\prime} X_{i}}$ for $i=1, \ldots, n$. Subtracting the two averages, we get $\overrightarrow{O G}-\overrightarrow{O^{\prime} G^{\prime}}=\overrightarrow{O O^{\prime}}$. Adding $\overrightarrow{O^{\prime} G^{\prime}}$ to both sides, we get $\overrightarrow{O G}=\overrightarrow{O G^{\prime}}$, so $G=G^{\prime}$.

By the condition on S, after reflection with respect to the perpendicular bisector of every segment $X_{i} X_{j}$, the points of S are permuted only. So G is unchanged, which implies G is on every such perpendicular bisector. Hence G is equidistant from all X_{i} 's. Therefore, the X_{i} 's are concyclic. For three consecutive points of S, say X_{i}, X_{j}, X_{k}, on the circle, considering the perpendicular bisector of segment $X_{i} X_{k}$, we have $X_{i} X_{j}=X_{j} X_{k}$. It follows that the points of S are the vertices of a regular polygon and the converse is clear.

Solutions to Miscellaneous Problems

178. (1995 Russian Math Olympiad) There are n seats at a merry-go-around. A boy takes n rides. Between each ride, he moves clockwise a certain number (less than n) of places to a new horse. Each time he moves a different number of places. Find all n for which the boy ends up riding each horse.

Solution. If n is odd, the boy's travel $1+2+\cdots+(n-1)=n(n-1) / 2$ places between the first and the last rides. Since $n(n-1) / 2$ is divisible by n, his last ride will repeat the first horse. If n is even, this is possible by moving forward $1, n-2,3, n-4, \ldots, n-1$ places corresponding to horses $1,2, n, 3, n-1, \ldots, \frac{n}{2}+1$.
179. (1995 Israeli Math Olympiad) Two players play a game on an infinite board that consists of 1×1 squares. Player I chooses a square and marks it with an O. Then, player II chooses another square and marks it with X. They play until one of the players marks a row or a column of 5 consecutive squares, and this player wins the game. If no player can achieve this, the game is a tie. Show that player II can prevent player I from winning.

Solution. (Due to Chao Khek Lun) Divide the board into 2×2 blocks. Then bisect each 2×2 block into two 1×2 tiles so that for every pair of blocks sharing a common edge, the bisecting segment in one will be horizontal and the other vertical. Since every five consecutive squares on the board contains a tile, after player I chose a square, player II could prevent player I from winning by choosing the other square in the tile.
180. (1995 USAMO) A calculator is broken so that the only keys that still work are the sin, $\cos , \tan , \sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$ buttons. The display initially shows 0 . Given any positive rational number q, show that pressing some finite sequence of buttons will yield q. Assume that the calculator does real number calculations with infinite precision. All functions are in terms of radians.

Solution. We will show that all numbers of the form $\sqrt{m / n}$, where m, n are positive integers, can be displayed by induction on $k=m+n$. (Since $r / s=\sqrt{r^{2} / s^{2}}$, these include all positive rationals.)

For $k=2$, pressing cos will display 1. Suppose the statement is true for integer less than k. Observe that if x is displayed, then using the facts $\theta=\tan ^{-1} x$ implies $\cos ^{-1}(\sin \theta)=(\pi / 2)-\theta$ and $\tan ((\pi / 2)-\theta)=1 / x$. So, we can display $1 / x$. Therefore, to display $\sqrt{m / n}$ with $k=m+n$, we may assume $m<n$. By the induction step, $n<k$ implies $\sqrt{(n-m) / m}$ can be displayed. Then using $\phi=\tan ^{-1} \sqrt{(n-m) / m}$ and $\cos \phi=\sqrt{m / n}$, we can display $\sqrt{m / n}$. This completes the induction.
181. (1977 Eötvös-Kürschák Math Competition) Each of three schools is attended by exactly n students. Each student has exactly $n+1$ acquaintances in the other two schools. Prove that one can pick three students, one from each school, who know one another. It is assumed that acquaintance is mutual.

Solution. (Due to Chan Kin Hang) Consider a student who has the highest number, say k, of acquaintances in another school. Call this student x, his school X and the k acquaintances in school Y. Since $n+1>n \geq k, x$ must have at least one acquaintance, say z, in the third school Z. Now z has at most k acquaintances in school X and hence z has at least $(n+1)-k$ acquaintances in school Y. Adding the number of acquaintances of x and z in school Y, we get $k+(n+1)-k=n+1>n$ and so x and z must have a common acquaintance y in school Y.
182. Is there a way to pack $2501 \times 1 \times 4$ bricks into a $10 \times 10 \times 10$ box?

Solution. Assign coordinate (x, y, z) to each of the cells, where $x, y, z=$ $0,1, \ldots, 9$. Let the cell (x, y, z) be given color $x+y+z(\bmod 4)$. Note each $1 \times 1 \times 4$ brick contains all 4 colors exactly once. If the packing is possible, then there are exactly 250 cells of each color. However, a direct counting shows there are 251 cells of color 0 , a contradiction. So such a packing is impossible.
183. Is it possible to write a positive integer into each square of the first quadrant such that each column and each row contains every positive integer exactly once?

Solution. Yes, it is possible. Define $A_{1}=(1)$ and $A_{n+1}=\left(\begin{array}{cc}B_{n} & A_{n} \\ A_{n} & B_{n}\end{array}\right)$, where the entries of B_{n} are those of A_{n} plus 2^{n-1}. So

$$
A_{1}(1), \quad A_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), \quad A_{3}=\left(\begin{array}{llll}
4 & 3 & 2 & 1 \\
3 & 4 & 1 & 2 \\
2 & 1 & 4 & 3 \\
1 & 2 & 3 & 4
\end{array}\right), \quad \ldots
$$

Note that if every column and every row of A_{n} contain $1,2, \ldots, 2^{n-1}$ exactly once, then every column and every row of B_{n} will contain $2^{n-1}+1, \ldots, 2^{n}$ exactly once. So, every column and every row of A_{n+1} will contain $1,2, \ldots, 2^{n}$ exactly once. Now fill the first quadrant using the A_{n} 's.
184. There are n identical cars on a circular track. Among all of them, they have just enough gas for one car to complete a lap. Show that there is a car which can complete a lap by collecting gas from the other cars on its way around the track in the clockwise direction.

Solution. (Due to Chan Kin Hang) The case $n=1$ is clear. Suppose the case $n=k$ is true. For the case $n=k+1$, first observe that there is a car A which can reach the next car B. (If no car can reach the next car, then the gas for all cars would not be enough for completing a lap.) Let us empty the gas of B into A and remove B. Then the k cars left satisfy the condition. So there is a car that can complete a lap. This same car will also be able to complete the lap collecting gas from other cars when B is included because when this car gets to car A, the gas collected from car A will be enough to get it to car B.
185. (1996 Russian Math Olympiad) At the vertices of a cube are written eight pairwise distinct natural numbers, and on each of its edges is written the greatest common divisor of the numbers at the endpoints
of the edge. Can the sum of the numbers written at the vertices be the same as the sum of the numbers written at the edges?

Solution. Observe that if $a>b$, then $\operatorname{gcd}(a, b) \leq b$ and $\operatorname{gcd}(a, b) \leq a / 2$. So $3 \operatorname{gcd}(a, b) \leq a+b$. If the sum of the vertex numbers equals the sum of the edge numbers, then we will have $\operatorname{gcd}(a, b)=(a+b) / 3$ for every pair of adjacent vertex numbers, which implies $a=2 b$ or $b=2 a$ at the two ends of every edge. At every vertex, there are 3 adjacent vertices. The $a=2 b$ or $b=2 a$ condition implies two of these adjacent vertex numbers must be the same, a contradiction.
186. Can the positive integers be partitioned into infinitely many subsets such that each subset is obtained from any other subset by adding the same integer to each element of the other subset?

Solution. Yes. Let A be the set of positive integers whose odd digit positions (from the right) are zeros. Let B be the set of positive integers whose even digit positions (from the right) are zeros. Then A and B are infinite set and the set of positive integers is the union of $a+B=$ $\{a+b: b \in B\}$ as a ranges over the elements of A. (For example, $12345=2040+10305 \in 2040+B$.)
187. (1995 Russian Math Olympiad) Is it possible to fill in the cells of a 9×9 table with positive integers ranging from 1 to 81 in such a way that the sum of the elements of every 3×3 square is the same?

Solution. Place $0,1,2,3,4,5,6,7,8$ on the first, fourth and seventh rows. Place $3,4,5,6,7,8,0,1,2$ on the second, fifth and eigth rows. Place $6,7,8,0,1,2,3,4,5$ on the third, sixth and ninth rows. Then every 3×3 square has sum 36 . Consider this table and its 90° rotation. For each cell, fill it with the number $9 a+b+1$, where a is the number in the cell originally and b is the number in the cell after the table is rotated by 90°. By inspection, 1 to 81 appears exactly once each and every 3×3 square has sum $9 \times 36+36+9=369$.
188. (1991 German Mathematical Olympiad) Show that for every positive integer $n \geq 2$, there exists a permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $1,2, \ldots, n$ such that p_{k+1} divides $p_{1}+p_{2}+\cdots+p_{k}$ for $k=1,2, \ldots, n-1$.

Solution. (The cases $n=2,3,4,5$ suggest the following permutations.) For even $n=2 m$, consider the permutation

$$
m+1,1, m+2,2, \ldots, m+m, m
$$

For odd $n=2 m+1$, consider the permutation

$$
m+1,1, m+2,2, \ldots, m+m, m, 2 m+1
$$

If $k=2 j-1,(1 \leq j \leq m)$ then $(m+1)+1+\cdots+(m+j)=j(m+j)$. If $k=2 j,(1 \leq j \leq m)$ then $(m+1)+1+\cdots+(m+j)+j=j(m+j+1)$.
189. Each lattice point of the plane is labeled by a positive integer. Each of these numbers is the arithmetic mean of its four neighbors (above, below, left, right). Show that all the numbers are equal.

Solution. Consider the smallest number m labelled at a lattice point. If the four neighboring numbers are a, b, c, d, then $(a+b+c+d) / 4=m$ and $a, b, c, d \geq m$ imply $a=b=c=d=m$. Since any two lattice points can be connected by horizontal and vertical segments, if one end is labelled m, then along this path all numbers will equal to m. Therefore, every number equals m.
190. (1984 Tournament of the Towns) In a party, n boys and n girls are paired. It is observed that in each pair, the difference in height is less than 10 cm . Show that the difference in height of the k-th tallest boy and the k-th tallest girl is also less than 10 cm for $k=1,2, \ldots, n$.

Solution. (Due to Andy Liu, University of Alberta, Canada) Let $b_{1} \geq$ $b_{2} \geq \cdots \geq b_{n}$ be the heights of the boys and $g_{1} \geq g_{2} \geq \cdots \geq g_{n}$ be those of the girls. Suppose for some $k,\left|b_{k}-g_{k}\right| \geq 10$. In the case $g_{k}-b_{k} \geq 10$, we have $g_{i}-b_{j} \geq g_{k}-b_{k} \geq 10$ for $1 \leq i \leq k$ and $k \leq j \leq n$. Consider the girls of height g_{i}, where $1 \leq i \leq k$, and the boys of height b_{j}, where $k \leq j \leq n$. By the pigeonhole principle, two of these $n+1$ people must be paired originally. However, for that pair, $g_{i}-b_{j} \geq 10$ contradicts the hypothesis. (The case $b_{k}-g_{k} \geq 10$ is handled similarly.) So $\left|b_{k}-g_{k}\right|<10$ for all k.
191. (1991 Leningrad Math Olympiad) One may perform the following two operations on a positive integer:
(a) multiply it by any positive integer and
(b) delete zeros in its decimal representation.

Prove that for every positive integer X, one can perform a sequence of these operations that will transform X to a one-digit number.

Solution. By the pigeonhole principle, at least two of the $X+1$ numbers

$$
1,11,111, \ldots, \underbrace{111 \cdots 1}_{X+1 \text { digits }}
$$

have the same remainder when divided by X. So taking the difference of two of these numbers, we get a number of the form $11 \cdots 100 \cdots 0$, which is a multiple of X. Perform operation (a) on X to get such a multiple. Then perform operation (b) to delete the zeros (if any). If the new number has more than one digits, we do the following steps: (1) multiply by 82 to get a number $911 \cdots 102$, (2)delete the zero and multiply by 9 to get a number $8200 \cdots 08$, (3) delete the zeros to get 828 , (4) now $828 \cdot 25=20700,27 \cdots 4=108,18 \cdot 5=90$ and delete zero, we get the single digit 9 .
192. (1996 IMO shortlisted problem) Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle in a given direction (that is, the numbers a, b, c, d are replaced by $a-b, b-c, c-d, d-a$). Is it possible after 1996 such steps to have numbers a, b, c, d such that the numbers $|b c-a d|,|a c-b d|,|a b-c d|$ are primes?

Solution. (Due to Ng Ka Man and Ng Ka Wing) If the initial numbers are $a=w, b=x, c=y, d=z$, then after 4 steps, the numbers will be

$$
\begin{array}{ll}
a=2(w-2 x+3 y-2 z), & b=2(x-2 y+3 z-2 w), \\
c=2(y-2 z+3 w-2 x), & d=2(z-2 w+3 y-2 z) .
\end{array}
$$

From that point on, a, b, c, d will always be even, so $|b c-a d|, \mid a c-$ $b d|,|a b-c d|$ will always be divisible by 4.
193. (1989 Nanchang City Math Competition) There are 1989 coins on a table. Some are placed with the head sides up and some the tail sides up. A group of 1989 persons will perform the following operations: the first person is allowed turn over any one coin, the second person is allowed turn over any two coins, ..., the k-th person is allowed turn over any k coins, ..., the 1989th person is allowed to turn over every coin. Prove that
(1) no matter which sides of the coins are up initially, the 1989 persons can come up with a procedure turning all coins the same sides up at the end of the operations,
(2) in the above procedure, whether the head or the tail sides turned up at the end will depend on the initial placement of the coins.

Solution. (Due to Chan Kin Hang) (1) The number 1989 may not be special. So let us replace it by a variable n. The cases $n=1$ and 3 are true, but the case $n=2$ is false (when both coins are heads up initially). So we suspect the statement is true for odd n and do induction on k, where $n=2 k-1$. The cases $k=1,2$ are true. Suppose the case k is true. For the case $k+1$, we have $n=2 k+1$ coins.

First, suppose all coins are the same side up initially. For $i=$ $1,2, \ldots, k$, let the i-th person flip any i coins and let the $(2 k+1-i)$-th person flips the remaining $2 k+1-i$ coins. Then each coin is flipped $k+1$ times and at the end all coins will be the same side up.

Next, suppose not all coins are the same sides up initially. Then there is one coin head up and another tail up. Mark these two coins. Let the first $2 k-1$ persons flip the other $2 k-1$ coins the same side up by the case k. Then there are exactly $2 k$ coins the same side up and one coin opposite side up. The $2 k$-th person flips the $2 k$ coins the same side up and the $2 k+1$-st person flips all coins and this subcase is solved.

So the $k+1$ case is true in either way and the induction step is complete, in particular, case $n=1989$ is true.
(2) If the procedure does not depend on the initial placement, then in some initial placements of the coins, the coins may be flipped with
all heads up and may also be flipped with all tails up. Reversing the flippings on the heads up case, we can then go from all coins heads up to all tails up in $2(1+2+\cdots+1989)$ flippings. However, for each coin to go from head up to tail up, each must be flipped an odd number of times and the 1989 coins must total to an odd number of flippings, a contradiction.
194. (Proposed by India for 1992 IMO) Show that there exists a convex polygon of 1992 sides satisfying the following conditions:
(a) its sides are $1,2,3, \ldots, 1992$ in some order;
(b) the polygon is circumscribable about a circle.

Solution. For $n=1,2, \ldots, 1992$, define

$$
x_{n}= \begin{cases}n-1 & \text { if } n \equiv 1,3(\bmod 4) \\ 3 / 2 & \text { if } n \equiv 2(\bmod 4) \\ 1 / 2 & \text { if } n \equiv 0(\bmod 4)\end{cases}
$$

and $a_{n}=x_{n}+x_{n+1}$ with $x_{1993}=x_{1}$. The sequence a_{n} is

$$
1,2,4,3,5,6,8,7, \ldots, 1989,1990,1992,1991 .
$$

Consider a circle centered at O with large radius r and wind a polygonal line $A_{1} A_{2} \cdots A_{1992} A_{1993}$ with length $A_{i} A_{i+1}=a_{i}$ around the circle so that the segments $A_{i} A_{i+1}$ are tangent to the circle at some point P_{i} with $A_{i} P_{i}=x_{i}$ and $P_{i} A_{i+1}=x_{i+1}$. Then $O A_{1}=\sqrt{x_{1}^{2}+r^{2}}=O A_{1993}$. Define

$$
\begin{aligned}
f(r)= & 2 \tan ^{-1} \frac{x_{1}}{r}+2 \tan ^{-1} \frac{x_{2}}{r}+\cdots+2 \tan ^{-1} \frac{x_{1992}}{r} \\
= & \left(\angle A_{1} O P_{1}+\angle P_{1992} O A_{1993}\right)+\angle P_{1} O P_{2}+\angle P_{2} O P_{3} \\
& +\cdots+\angle P_{1991} O P_{1992} .
\end{aligned}
$$

Now f is continuous, $\lim _{r \rightarrow 0+} f(r)=1992 \pi$ and $\lim _{r \rightarrow+\infty} f(r)=0$. By the intermediate value theorem, there exists r such that $f(r)=2 \pi$. For such r, A_{1993} will coincide with A_{1}, resulting in the desired polygon.

Comments. The key fact that makes the polygon exists is that there is a permutation $a_{1}, a_{2}, \ldots, a_{1992}$ of $1,2, \ldots, 1992$ such that the system of equations

$$
x_{1}+x_{2}=a_{1}, x_{2}+x_{3}=a_{2}, \ldots, x_{1992}+x_{1}=a_{1992}
$$

have positive real solutions.
195. There are 13 white, 15 black, 17 red chips on a table. In one step, you may choose 2 chips of different colors and replace each one by a chip of the third color. Can all chips become the same color after some steps?

Solution. Write (a, b, c) for a white, b black, c red chips. So from (a, b, c), in one step, we can get $(a+2, b-1, c-1)$ or $(a-1, b+2, c-1)$ or ($a-1, b-1, c+2$). Observe that in all 3 cases, the difference
$(a+2)-(b-1),(a-1)-(b+2),(a-1)-(b-1) \equiv a-b(\bmod 3)$.
So $a-b(\bmod 3)$ is an invariant. If all chips become the same color, then at the end, we have $(45,0,0)$ or $(0,45,0)$ or $(0,0,45)$. So $a-b \equiv$ $0(\bmod 3)$ at the end. However, $a-b=13-15 \not \equiv 0(\bmod 3)$ in the beginning. So the answer is no.
196. The following operations are permitted with the quadratic polynomial $a x^{2}+b x+c:$
(a) switch a and c,
(b) replace x by $x+t$, where t is a real number.

By repeating these operations, can you transform $x^{2}-x-2$ into $x^{2}-$ $x-1$?

Solution. Consider the discriminant $\Delta=b^{2}-4 a c$. After operation (a), $\Delta=b^{2}-4 c a=b^{2}-4 a c$. After operation (b), $a(x+t)^{2}+b(x+t)+c=$ $a x^{2}+(2 a t+b) x+\left(a t^{2}+b t+c\right)$ and $\Delta=(2 a t+b)^{2}-4 a\left(a t^{2}+b t+c\right)=$ $b^{2}-4 a c$. So Δ is an invariant. For $x^{2}-x-2, \Delta=9$. For $x^{2}-x-1$, $\Delta=5$. So the answer is no.
197. Five numbers $1,2,3,4,5$ are written on a blackboard. A student may erase any two of the numbers a and b on the board and write the
numbers $a+b$ and $a b$ replacing them. If this operation is performed repeatedly, can the numbers $21,27,64,180,540$ ever appear on the board?

Solution. Observe that the number of multiples of 3 among the five numbers on the blackboard cannot decrease after each operation. (If a, b are multiples of 3 , then $a+b, a b$ will also be multiples of 3 . If one of them is a multiple of 3 , then $a b$ will also be a multiple of 3.) The number of multiples of 3 can increase in only one way, namely when one of a or b is $1(\bmod 3)$ and the other is $2(\bmod 3)$, then $a+b \equiv 0(\bmod 3)$ and $a b \equiv 2(\bmod 3)$. Now note there is one multiple of 3 in $\{1,2,3,4,5\}$ and four multiples of 3 in $\{21,27,64,180,540\}$. So when the number of multiples of 3 increases to four, the fifth number must be $2(\bmod 3)$. Since $64 \equiv 1(\bmod 3)$, so $21,27,64,180,540$ can never appear on the board.
198. Nine 1×1 cells of a 10×10 square are infected. In one unit time, the cells with at least 2 infected neighbors (having a common side) become infected. Can the infection spread to the whole square? What if nine is replaced by ten?

Solution. (Due to Cheung Pok Man) Color the infected cells black and record the perimeter of the black region at every unit time. If a cell has four, three, two infected neighbors, then it will become infected and the perimeter will decrease by $4,2,0$, respectively, when that cell is colored black. If a cell has one or no infected neighbors, then it will not be infected. Observe that the perimeter of the black region cannot increase. Since in the beginning, the perimeter of the black region is at most $9 \times 4=36$, and a 10×10 black region has perimeter 40 , the infection cannot spread to the whole square.

If nine is replaced by ten, then it is possible as the ten diagonal cells when infected can spread to the whole square.
199. (1997 Colombian Math Olympiad) We play the following game with an equilateral triangle of $n(n+1) / 2$ dollar coins (with n coins on each side). Initially, all of the coins are turned heads up. On each turn, we may turn over three coins which are mutually adjacent; the goal is to
make all of the coins turned tails up. For which values of n can this be done?

Solution. This can be done only for all $n \equiv 0,2(\bmod 3)$. Below by a triangle, we will mean three coins which are mutually adjacent. For $n=2$, clearly it can be done and for $n=3$, flip each of the four triangles. For $n \equiv 0,2(\bmod 3)$ and $n>3$, flip every triangle. Then the coins at the corners are flipped once. The coins on the sides (not corners) are flipped three times each. So all these coins will have tails up. The interior coins are flipped six times each and have heads up. Since the interior coins have side length $n-3$, by the induction step, all of them can be flipped so to have tails up.

Next suppose $n \equiv 1(\bmod 3)$. Color the heads of each coin red, white and blue so that adjacent coins have different colors and any three coins in a row have different colors. Then the coins in the corner have the same color, say red. A simple count shows that there are one more red coins than white or blue coins. So the (odd or even) parities of the red and white coins are different in the beginning. As we flip the triangles, at each turn, either (a) both red and white coins increase by 1 or (b) both decrease by 1 or (c) one increases by 1 and the other decreases by 1 . So the parities of the red and white coins stay different. In the case all coins are tails up, the number of red and white coins would be zero and the parities would be the same. So this cannot happen.
200. (1990 Chinese Team Selection Test) Every integer is colored with one of 100 colors and all 100 colors are used. For intervals $[a, b],[c, d]$ having integers endpoints and same lengths, if a, c have the same color and b, d have the same color, then the intervals are colored the same way, which means $a+x$ and $c+x$ have the same color for $x=0,1, \ldots, b-a$. Prove that -1990 and 1990 have different colors.

Solution. We will show that x, y have the same color if and only if $x \equiv y(\bmod 100)$, which implies -1990 and 1990 have different colors.

Let the colors be $1,2, \ldots, 100$ and let $f(x)$ be the color (number) of x. Since all 100 colors were used, there is an integer m_{i} such that $f\left(m_{i}\right)=i$ for $i=1,2, \ldots, 100$. Let $M=\min \left(m_{1}, m_{2}, \ldots, m_{100}\right)-100^{2}$.

Consider a fixed integer $a \leq M$ and an arbitrary positive integer n. Since there are 100^{2} ways of coloring a pair of integers, at least two of the pairs $a+i, a+i+n\left(i=0,1,2, \ldots, 100^{2}\right)$ are colored the same way, which means $f\left(a+i_{1}\right)=f\left(a+i_{2}\right)$ and $f\left(a+i_{1}+n\right)=f\left(a+i_{2}+n\right)$ for some integers i_{1}, i_{2} such that $0 \leq i_{1}<i_{2} \leq 100^{2}$. Let $d=i_{2}-i_{1}$. Since there are finitely many combinations of ordered pairs $\left(i_{1}, d\right)$ and n is arbitrary, there are infinitely many n 's, say n_{1}, n_{2}, \ldots, having the same i_{1} 's and d 's.

Since these n_{k} 's may be arbitrarily large, the union of the intervals $\left[a+i_{1}, a+i_{1}+n_{k}\right]$ will contain every integer $x \geq a+100^{2}$. So for every such x, there is an interval $\left[a+i_{1}, a+i_{1}+n_{k}\right]$ containing x. Since $f\left(a+i_{1}\right)=f\left(a+i_{1}+d\right)$ and $f\left(a+i_{1}+n_{k}\right)=f\left(a+i_{1}+d+n_{k}\right)$, so intervals $\left[a+i_{1}, a+i_{1}+n_{k}\right],\left[a+i_{1}+d, a+i_{1}+d+n_{k}\right]$ are colored the same way. In particular, $f(x)=f(x+d)$. So $f(x)$ has period d when $x \geq a+100^{2}$. Since $a \leq M, 100$ colors are used for the integers $x \geq a+100^{2}$ and so $d \geq 100$. Consider the least possible such period d.

Next, by the pigeonhole principle, two of $f\left(a+100^{2}\right), f\left(a+100^{2}+\right.$ 1), $\ldots, f\left(a+100^{2}+100\right)$ are the same, say $f(b)=f(c)$ with $a+100^{2} \leq$ $b<c \leq a+100^{2}+100$. For every $x \geq a+100^{2}+100$, choose a large integer m so that x is in $[b, b+m d]$. Since $f(b+m d)=f(b)=f(c)=$ $f(c+m d)$, intervals $[b, b+m d],[c, c+m d]$ are colored the same way. In particular, $f(x)=f(x+c-b)$. So $f(x)$ has period $c-b \leq 100$ when $x \geq a+100^{2}+100$. So the least period of $f(x)$ for $x \geq a+100^{2}+100$ must be 100. Finally, since a can be as close to $-\infty$ as we like, f must have period 100 on the set of integers. Since all 100 colors are used, no two of 100 consecutive intgers can have the same color.

