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Abstract— In this paper we present a real-time approach
to stitch large-scale aerial images incrementally. A monocu-
lar SLAM system is used to estimate camera position and
attitude, and meanwhile 3D point cloud map is generated.
When GPS information is available, the estimated trajectory
is transformed to WGS84 coordinates after time synchronized
automatically. Therefore, the output orthoimage retains global
coordinates without ground control points. The final image is
fused and visualized instantaneously with a proposed adaptive
weighted multiband algorithm. To evaluate the effectiveness
of the proposed method, we create a publicly available aerial
image dataset with sequences of different environments. The
experimental results demonstrate that our system is able to
achieve high efficiency and quality compared to state-of-the-art
methods. In addition, we share the code on the website with
detailed introduction and results.

Index Terms— UAVs, real-time, SLAM, stitching, adaptive
weighted multiband

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
been more and more popular because they are able to ac-
complish aeronautic tasks at a low price. They are now used
for coordinated urban surveillance [1], forest fire localization
during monitoring [2], [3], object-based change detection
[4], [5], and so on. A real-time global orthoimage can help
missions such as fire monitoring and urban surveillance
where both efficiency and accuracy are required.

A mature choice for quick orthoimage generation is Struc-
ture from Motion (SfM), which is able to explore the most
information from the multi-view images. There are lots
of implementations of SfM algorithm such as open-source
projects OpenMVG [6], openDroneMap, and commercial
software Pix4DMapper [7], Photoscan [8]. They share almost
the same pipeline: feature detection and matching, image
alignment and sparse point cloud generation with bundle al-
gorithm [9], dense point-cloud and mesh generation, texture
and orthoimage mosaicing. While SfM methods always take
hours to generate the final orthoimage and all images need
to be prepared before computation, they are not suitable for
real-time and incremental usage.

Since the expensive computation cost of SfM, several
2D methods are proposed in the past years for orthoimage.
Niethammer et al. [5] show a straightforward approach for
landslide surface displacements evaluation where images
are warped onto the plane by matching the ground control
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Fig. 1. We integrate Map2DFusion into the self-developed ground control
station, where the orthoimage is generated and visualized online during the
flight. The figure shows that the orthoimage is well aligned to Bing satellite
map automatically after GPS trajectory fitted.

points (GCPs) and the final result is blended with software
OrthoVista1. Hirokawa et al. [10] use GCPs to calibrate
the position and attitude of the UAV, while pictures are
compensated to a spatial temporal GIS with UAV attitude in-
formation later. Homography transformation based on feature
matching is also used for image registration [11], [12], where
images are warped to the reference frame instead of the
GCPs plane. GCPs methods seem tedious for quick response
circumstances and 2D homography methods are hard to meet
large-scale mosaicing requirements.

Simultaneous localization and mapping (SLAM), one of
the hot researches in robotics and computer vision commu-
nity, is considered to be the key technique for automatic
navigation in unknown environments. The SLAM approach
has the advantage of real-time performance due to the well
designed processing flow. Some researches are conducted
to utilize SLAM for real-time spherical mosaic [13] and
underwater sonar image stitching [14]. Since [13] is limited
to pure rotation situation and [14] lacks a proper blending
algorithm which leads to poor visualization, they both do
not meet the demand of aerial images stitching. In this
work, a visual SLAM and an adaptive weighted multi-
band algorithm are designed to stitch the captured images
online in real-time as demonstrated in Fig. 1. Because the
proposed method has merits of real-time and fully automatic
properties, it has a good prospect on applications such as
real-time surveillance, GPS denied environment navigation

1http://www.orthovista.com/



for UAV or drone cluster, forest fire localization during
monitoring, and so on. In brief, the main contributions are
concluded as follows:

1) Automatic GPS and video synchronization: As most
video streams are not synchronized with GPS, a graph
based optimization is proposed to synchronize video
time with GPS time from coarse to fine. Consequently,
our method is able to obtain WGS84 coordinates and
conquer accumulated drift by fusing GPS information
into SLAM processing without GCPs required.

2) Real-time orthoimage blender: We propose an adap-
tive weighted multi-band method to blend and visualize
images incrementally in real-time. Compared to SfM
methods, the approach obtains higher efficiency and
satisfactory results without holes and twists caused by
limited viewing angles.

3) A public aerial image dataset: We create an aerial im-
age dataset with several different sequences for visual
SLAM, orthoimage, and 3D reconstruction evaluation.

For better understanding of our work, not only the source
code and dataset, but also introduction video, detailed re-
sults, and evaluations are publicly available on the project
website2.

II. RELATED WORK

Many works have been conducted to generate orthoimage
from aerial images in recent years [5], [10], [12]. Most
methods can not output acceptable results at real-time speed,
while the proposed approach is able to generate high-quality
orthoimage incrementally from aerial images. The two re-
lated key techniques of our work are monocular SLAM and
image stitching, which are summarized in below.

SLAM is regarded as the core to realize navigation and
environment sensing for fully autonomous robotics. Parallel
Tracking and Mapping (PTAM) [15] is one of the most
famous monocular SLAM implementations which shows
high efficiency but is limited to small workspaces. As most
methods detect keypoint features for matching, Newcombe
et al. propose a direct approach named DTAM [16] where
camera motion is computed by minimizing a global spa-
tially regularized energy function on GPU. To reduce the
intensively computational demand of DTAM, Forster et al.
propose a semi-direct monocular visual odometry (SVO)
[17] which only processes strong gradient pixels and brings
high frame-rates. While all these methods only locally track
camera motion and do not have loop-closures, Engel et
al. show a well-known large-scale direct monocular SLAM
(LSD-SLAM) [18]. The approach utilizes FabMap [19] for
loop detection and a similarity transform pose graph for
optimization, which allows to build consistent, large-scale
maps of the environment. It is extended for omni-directional
and stereo cameras [20], [21]. The direct methods rely
on small baselines and seem lack robustness when frame-
rate is not high enough. Mur-Artal et al. propose a novel

2http://zhaoyong.adv-ci.com/map2dfusion

ORB feature based monocular SLAM algorithm (ORB-
SLAM) [22], which is able to handle large baselines robustly
with high precision. It is also further explored for semi-
dense reconstruction and gets even better results than direct
methods [23]. In order to improve the tracking accuracy,
Bu et al. [24] propose a semi-direct tracking and mapping
(SDTAM) method for RGB-D device, which inherits the
advantages of both direct and feature based methods. The
place recognition is a crucial technique for SLAM to perform
loop closure and lost recover. To boost performance for
image similarity measure, Li et al. [25] propose an image
similarity measurement method based on deep learning and
similarity matrix analyzing.

Another critical part of our work is image stitching, which
has reached a stage of maturity where there are now an
abundance of tools especially for panoramic image stitching,
including OpenCV functions, the well-known software Pho-
toshop, web-based photo organization tools like Microsoft
Photosynth, smartphone apps like Autostitch [26], as well
as the built-in image stitching functionality on off-the-shelf
digital cameras. Many efforts are conducted to obtain better
alignment and blending. Zaragoza et al. [27] improve the
image alignment stage with Moving Direct Linear Trans-
formation (DLT) which produces better alignment when
the scene is not planar and camera has both rotation and
translation. However, perfect alignment is still difficult to
be obtained for real world situations, so that some seam
cutting methods [28] and blending algorithms [29] are used
to minimize the visible seams.

In this paper, we present a novel approach which generates
high quality orthoimage incrementally with real-time speed.
Different from traditional image stitching methods which just
compute homograph transformation, in the proposed method,
the camera position and attitude are estimated through well
designed SLAM system, therefore, a more reasonable plane
and precise camera poses are obtained. In order to handle
large-scale scenes, GPS information is fused in our SLAM
system to obtain WGS84 coordinates and reduce tracking
drift. The loop closure technique is also used to further min-
imize the drift especially when GPS information is absented.
Most image stitching methods perform blending after all
images are prepared, which reduces the overall efficiency.
To achieve real-time speed, an incremental adaptive weighted
multi-band is proposed to blend SLAM keyframes efficiently.
In the blending, Laplacian pyramids are stored in grids
which brings high performance and reduces the memory
consumption. Thereby, resulting orthoimage can be stitched
incrementally and visualized immediately.

III. REAL-TIME INCREMENTAL UAV IMAGE MOSAICING

The overview of our system is depicted in Fig. 2 which
contains five main parts running in separated threads: video
preparation, tracking, mapping, map optimization, and map
fusion. The outline of each part is briefly introduced as
follows:

1) The images are undistorted to an ideal pinhole model,
and keypoints with features are extracted for tracking
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Fig. 2. The framework overview of our system.

usage.
2) The initial motion of current frame is tracked against

the last frame and then aligned with the local sub-map
precisely.

3) New keyframe will be added to the global map
when the distance between current frame and the last
keyframe exceeds a certain threshold, and then a local
bundle is performed to optimize the local map-points
and keyframe poses.

4) The global optimization is taken to detect and close
loops so that a consistent map can be obtained. An
online calibration of time difference between video
and GPS timestamp is performed from coarse to fine
with a SIM(3) pose graph, and the final similarity
transformation is applied to the estimated trajectory
and map-points. After that, GPS constraints are also
considered in the local bundle optimization of mapping
thread and the mosaic plane is fitted with sampled map-
points.

5) The map fusion unit blends keyframes into the mosaic
plane incrementally.

In this section, a brief notation of transformation and
projection is firstly given, and then we will introduce the
implementation details of our system.

A. Notations

In order to make reader easily understand the represen-
tation of transformation and projection, the notations are
briefly introduced here. The camera pose is represented with
a twist coordinate representation ξ , which is given as a
member of the Lie group se(3) [30]:

µ = (v1,v2,v3,q1,q2,q3)
T ∈ R6, (1)

where v1,v2,v3 represent translation and q1,q2,q3 are the an-
gular positions corresponding to rotation matrix R ∈ SO(3).
The quarternion representation rx,ry,rz,w or matrix repre-
sentation R of rotation are calculated from q1,q2,q3 using the
exponential function according to Lie algebra [30]. A left-
multiplication is defined to transform a point P = (X ,Y,Z)T

in the world coordinate to the camera coordinates:

P′ = R

 X
Y
Z

+ t = exp(µ)P. (2)

A standard pinhole camera model is used to represent the
projection:

p = Pro j(PC) =

(
XC fx

ZC
+ x0,

YC fy

ZC
+ y0

)T

. (3)

Here fx, fy are the focal lengths and x0,y0 are the coordinates
of the camera center in the standard pinhole camera model.

On the contrary, the inverse project function Pro j−1 is
used to compute corresponding position of PC in the ZC = 1
plane:

PC = Pro j−1(p) =
(

x− x0

fx
,

y− y0

fy
,1
)T

. (4)

B. VideoFrame Preparation and Tracking

To ease the heavy burdens of tracking thread, preparation
works like image undistortion and feature extraction are per-
formed in a separated thread. The oriented FAST and rotated
BRIEF (ORB) [31] detector and descriptor are selected due
to the satisfactory performance.

A map constructed with several keyframes K and map-
points P is initialized automatically with the first two
keyframes K1,K2. After the map is initialized, the pose µ of
the current image is obtained from several pairs of 3D map-
points P and 2D keypoints p, which is called the perspective-
n-point (PnP) problem. The corrospondences between map-
points and keypoints are found with a similar strategy of
the ORB-SLAM [22]. A window searching between current
frame and the last keyframe Ki−1 is applied to collect
tens matches followed with a coarse pose determination.
All keyframes observing these map-points are collected to
construct the local sub-map, and more matches are found by
projecting all local map-points with the coarse pose.

Given a set of matches between 3D map-points P and
current keypoints p, the camera pose µ can be estimated by
minimizing the weighted squared residual function:

µ
∗ = argmin

µ
∑

pi∈p
wieT

i Σ
−1
i ei. (5)

The weight wi is determined by the pyramid level of the
keypoint.

The error ei is defined as the difference between measure-
ments pi = (xi,yi)

T and predicted p′i of a map-point Pi:

ei = pi−p′i =
[

xi
yi

]
−Pro j(exp(µ)Pi). (6)

The weight wi is given to reduce influence of large residuals
with a robust weighted function and information matrix Σ

−1
i

is associated with the pyramid level of pi.
The relative distance between two frames is measured by

a weighted combination of translation and rotation described
in LSD-SLAM [18]:

dist(i, j) = µ
T
jiWµ ji, (7)



here W is a diagonal matrix with different weights for each
parameter in µ ji, and the translation weights are scaled
according to the mean inverse depth. Once the distance
between current frame and the last keyframe Ki−1 exceeds
the fixed threshold, a new keyframe Ki will be created to
ensure enough overlaps between keyframes.

C. Keyframe Handle and Local Optimization

When a keyframe Ki is inserted, new map-points need to
be added to the map as soon as possible so that enough
correspondences are able to be matched for tracking. For
all keypoints that are not observed in tracking, we try to
find their correspondences in neighbor keyframes along the
epipolar line. A bag-of-words (BoW) vector is computed
and registered to accelerate the search, and new map-points
are triangulated from matches. After new map-points are
created, a data association step is performed to add more
observations, combine redundancy map-points, and remove
bad map-points.

A local bundle is executed to refine the local sub-map
consisted with local keyframes KL and map-points PL seen
by KL. The keyframes’ poses µ and map-points’ positions
P are optimized by minimizing the weighted residuals from
all local observations:

{µ∗,P∗} = argmin
µ,P

∑
Pi∈PL

∑
K j∈KL

wi jeT
i jΣ
−1
i j ei j +

∑
K j∈KL

γ( j)T
Λ
−1
j γ( j), (8)

where the second item of above equation denotes the GPS
constraint which will be described in section III-E. In
our implementation, the optimization is performed by G2O
framework [32].

D. Loop Detection and Fusion

For generating high-quality map, it is necessary to obtain
high quality trajectory, but tracking drift is inevitable in vi-
sual SLAM which may lead to intolerable misalignment error
over long journey accumulation. Although the accumulated
drift can be jointly optimized by fusing GPS information
which will be described in next sub-section, it is preferable
to perform loop closure and global optimization to achieve
better consistency in large-scale scenes.

The first step is detecting appropriate keyframe which
is closest to the current position. Because the estimated
position has large drift, therefore, it is not easy to estimate
the cross point of the loop directly. Recently, appearance
based SLAM method such as FabMap [19] gives a vision-
based solution. In this work, DBoW2 [33] package is adopted
for loop detection. All keyframes sharing visual words with
current keyframe are collected and the similarity scores
are computed. Then the candidates are sorted according to
their visual similarities. In order to gain robustness, they
are chosen to be loop candidates only if its neighbors
are also candidates. For all loop candidates, we find their
correspondences with current keyframe and compute a coarse
similarity transformation through the RANSAC method. The

candidate which performs the best fitting with enough inliers,
is accepted as the loop keyframe, and then the relative pose
is optimized by minimizing sum of projection error of map-
points.

After the loop is detected, a data association step is firstly
performed to fuse duplicated map-points. Since direct bundle
adjust approach takes too much time to do optimization,
a pose graph optimization described in [34] is utilized to
decrease the drifts of key-frames and refine corresponding
map-points. This approach retains preciseness which benefits
from local optimization with little computation.

E. GPS and Plane Fitting

In our experiments, UAVs are equipped with GPS and the
trajectory with timestamp is available for most sequences.
However, the video is not synchronized with GPS and a
constant time difference needs to be calibrated for each
sequence. In our system, the time difference tvg is used to
build correspondences between global positions and camera
positions, and a similarity transformation Svg is adopted to
transform the whole map to WGS84 coordinates. A robust
and efficient algorithm is proposed to jointly optimize the
time difference tvg and the similarity transformation Svg from
coarse to fine. For keyframe K j whose timestamp in the video
is t j and translation in the map is Pmap

t j , its corresponding
timestamp for GPS should be tg = t j + tvg with WGS84
coordinates SvgPmap

t j after transformation. The goal is to find
the best tvg and Svg by minimizing the following squared
sum of residuals for all keyframes K:

γ( j) = Pgps
tg −SvgPmap

t j = Pgps
t j+tvg −SvgPmap

t j (9)

{t∗vg,S
∗
vg} = argmin

tvg,Svg
∑

K j∈K
γ( j)T

Λ
−1
j γ( j), (10)

where Λ
−1
j controls the weight for each component in global

coordinates. To estimate tvg and Svg more robustly, a coarse
calibration is firstly performed to narrow the time shift
range and obtain an initial Svg. Generally the time shift
won’t be too large and is assumed to be less than 60
seconds. Consequently, the time shift range is divided into
several slices, for each tvg ∈ [−60,60] is used to compute
Svg with a fast SIM(3) solver [35]. The best t∗vg and S∗vg
are chosen to be the initial values and precise results are
optimized with the G2O framework [32]. After the tvg is
calibrated, Svg is applied to the map-points and keyframes.
GPS constraint used in formula (8) is considered during the
local optimization to eliminate tracking drift.

Since a ground plane is necessary for 2D map mosaicing
and visualization, a plane is fitted from sampled map-points
with a RANSAC approach.

F. Map Fusion

In the previous sections, images are correctly aligned
and a mosaic plane is fitted, in this section, our goal
is to stitch the keyframes together incrementally. Unlike
traditional panoramic stitching circumstances, challenges in
the instantaneous aerial image mosaicing exist as follows:

1) It must be able to achieve real-time speed.



2) The stitching needs to be incremental for both blending
and visualization.

3) Most scenes are not totally planar and the camera
contains not only rotation but also translation, which
leads to inevitable misalignments.

4) The mosaicing result should be as ortho as possible
and able to be updated properly.

A seam cutting step is generally performed before blend-
ing to obtain better mosaic, however, most seam cutting
methods [28] are computational expensive for instantaneous
applications and they also discard the weights and need
masks for all images prepared. In our system, the ortho-
mosaic is split up into rectangular patches and a seam is
generated naturally during the blending with a proposed
weighted multi-band algorithm. For each patch, a Laplacian
pyramid and a weight pyramid are stored. With a Laplacian
pyramid, the exposure differences and misalignments are
minimized, and brightness are mixed to be continuous, while
all details are reserved in low levels of the pyramid. The
Laplacian pyramid Ll for level l can be computed with an
expanded operation [29]. To accelerate the operation, a k
level Gaussian pyramid is first computed and each level Gl
is subtracted from the lower level Gl−1 of the pyramid:

Gl(x,y) =
n

∑
dx=−n

n

∑
dy=−n

wdx,dyGl−1(x+dx,y+dy), (11)

Ll = Gl−Gl+1 l < k. (12)

Here 2n− 1 is the Laplacian kernel size and the sum of
weights wdx,dy should be one. The highest level Lk just equals
Gk since there is no higher level Gk+1 computed. The default
band number k is 5 and the patch resolution is multiple of
2k, where a 256 × 256 resolution is used in our system. The
patches not only make the blending incremental, but also
ensure the warped images in a proper size.

The pipeline to stitch a frame is concluded as follows:
1) The rectangular margins are obtained according to the

relative pose and the mosaic area grows when the
margins exceed the existed area.

2) To make the mosaic as ortho and precise as possible,
a weighted image is adaptively computed considering
the height, view angle and pixel localization. The
homography matrix is computed and applied to warp
the color image and weighted image.

3) A Laplacian pyramid is expanded from the warped
image and the corresponding weight pyramid is com-
puted. Instead of the weighted summation, the results
are fused to the global mosaic patches with the best
weighted value.

The original image is recovered with a sum of the Lapla-
cian pyramid G0 = ∑

k
l=0 Ll . It should be noted that the

neighbor patches need to be considered to achieve better
consistency. A brief comparison with the feather and multi-
band blenders implemented by OpenCV is conducted and the
results are illustrated in Fig. 3. Both feather and multi-band
fail to handle the misalignments caused by the high buildings
which are even unrecognizable since the blurs. On the other

(a) NoBlender (b) FeatherBlender

(c) MultibandBlender (d) Map2DFusion

Fig. 3. Compositing comparison using different blender. (a) Pixels are over-
written with the maximum weight. (b) The blending result of feather blender.
(c) The blending result of multi-band blender. (d) The result using our
approach. Both feather and multi-band use the implementation of OpenCV.

hand, the buildings are not smooth when no blender used
and all pixels are determined with the highest weight. Our
algorithm is able to obtain satisfactory results although no
seam cutting methods used.

IV. EXPERIMENTS

To evaluate our system, the NPU DroneMap Dataset with
several sequences is created and all data are available on
the website3. We demonstrate the results of the proposed
approach and compare the orthoimages with two state-of-the-
art commercial softwares Photoscan [8] and Pix4DMapper
[7]. The results show that our system achieves higher ro-
bustness and comparative quality with less computation.

A. NPU DroneMap Dataset

A self-made hexacopter and a DJI Phantom3 (advanced
version) are used to record the sequences. The hexacopter is
equipped with a GoPro Hero3+ camera and a DJI Light-
bridge is used for real-time video transmission. Table I
summarizes some basic statistics over all the sequences. The
dataset contains sequences captured in different terrains and
heights, furthermore, new captured sequences will be added
to the dataset and published on the website.

For each sequence, the following contents are supplied:
1) Original data consist of video, flight log, GCPs loca-

tions, and camera calibration data. The cameras are
calibrated with three different models including ATAN
(used in PTAM [15]), OpenCV (used by ROS), and
OCamCalib [36]. The flight logs have different formats
since two types UAVs are utilized.

2) We convert the original data to an unified and readable
format which is used by our system in the following
evaluations. For each sequence, the video is divided

3http://zhaoyong.adv-ci.com/npu-dronemap-dataset



TABLE I
SUMMARIZES OF NPU DRONEMAP DATASET. ‘H-MAX’ DENOTES THE MAXIMUM FLIGHT HEIGHT (ABOVE GROUND) AND ‘V-MAX’ REPRESENTS

MAXIMUM FLIGHT SPEED. ‘TRAJ-LENGTH’ REPRESENTS THE LENGTH OF RECORDED FLIGHT TRAJECTORY AND ‘TRAJ-GPS’ INDICATES WHETHER

GLOBAL POSITIONS ARE AVAILABLE.
Sequence Name Localization UAV H-Max (m) V-Max (m/s) Area Traj-Length Traj-GPS GCPs

gopro-npu Xi’an, Shaanxi Hexacopter 376.8 10.39 2.739 km2 5.547 km yes 6
gopro-monticules Xi’an, Shaanxi Hexacopter 147.2 10.44 0.571 km2 4.680 km yes 0
gopro-saplings Xi’an, Shaanxi Hexacopter 129.2 12.40 0.455 km2 4.566 km yes 0
phantom3-npu Xi’an, Shaanxi Phantom3 254.5 16.96 1.598 km2 6.962 km yes 6

phantom3-centralPark Shenzhen, Guangdong Phantom3 161.8 16.61 0.606 km2 4.536 km yes 0
phantom3-grass Shenzhen, Guangdong Phantom3 78.6 10.81 3559.2 m2 502.85 m no 0

phantom3-village Hengdong, Hunan Phantom3 196.6 17.47 0.932 km2 8.323 km yes 0
phantom3-hengdong Hengdong, Hunan Phantom3 358.0 16.37 - - no 0
phantom3-huangqi Hengdong, Hunan Phantom3 222.3 16.57 1.313 km2 6.945 km yes 0

(i) phantom3-huangqi(h) phantom3-hengdong(g) phantom3-village(f) phantom3-grass(e) phantom3-centralPark

(d) phantom3-npu(c) gopro-saplings(b) gopro-monticules(a) gopro-npu

Fig. 4. The mosaicing results of NPU DroneMap Dataset using Map2DFusion. Our algorithm is able to handle all the sequences successfully and the
result shows high robustness and quality in different environments.

into undistorted images and flight log is converted into
text file.

3) The keyframe images and trajectories used in SfM
methods and our Map2DFusion are offered.

B. Fusion Results

We evaluate our system on the NPU DroneMap dataset,
where thumbnails of the results are shown in Fig. 4 and
the full resolution images are available on the website. The
result shows that our approach not only achieves satisfac-
tory quality on plain sequences, but also obtains acceptable
performances over trees, buildings, and water. Moreover,
the proposed method remains high robustness on sequence
phantom3-grass, which is very challenging because of the
fast motion and repetitive views.

The mapping accuracy is quantitatively evaluate on gopro-
npu and phantom3-npu, and mean errors are 3.066 m and
5.710 m, respectively. The difference of errors is caused by
using different reference points for the two experiments due
to the global optimization is not performed in current imple-
mentation. The accuracy can be improved by introducing a
well designed global fitting and bundle adjustment.

C. Comparisons to State-of-the-art Methods

We compare orthoimages generated by our method with
two well-known softwares Photoscan [8] and Pix4DMapper
[7]. All comparison data including the original images and
orthomosaics are publicly available on the project website.
For software Photoscan and Pix4DMapper, the parameter for
aligning images is set to ‘precise level’. The comparisons
of some details in sequences phantom3-centralPark and
phantom3-village are illustrated in Fig. 5. We notice that
our approach obtains better results in some circumstances:

1) Firstly, our approach is able to obtain more nature mo-
saicing over vertical structures like trees and buildings.
As we can see in part A of Fig. 5(a) and part B of Fig.
5(b), the borders of houses are twisty in Photoscan and
rough in Pix4DMapper.

2) Secondly, the results generated by Photoscan contain
some misalignments founded not only in part B of
Fig. 5, but also some other sequences like phantom3-
npu. Especially for challenging sequence phantom3-
grass, our method shows high robustness while both
Photoscan and Pix4DMapper are failed to obtain an
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Fig. 5. Comparison on sequences phantom3-centralPark (a) and phantom3-village (b). Left: Map2DFusion (our method), Middle: Photoscan, Right:
Pix4DMapper.

acceptable result. The Pix4DMapper obtains better
alignment than Photoscan in Fig. 5 but its blending
is not smooth enough, while some obvious light spots
exist over water area such as part A of Fig. 5(b).

3) Another important merit is that our algorithm remains
high quality over areas with few overlap. This brings
better result at margins such as part C of Fig. 5(a).

It should be noted that although hours are taken to align
the keyframes, both Pix4DMapper and Photoscan failed
to output correct results for the sequence phantom3-grass
because of fast UAV speed and low altitude. However, the
comparison is not completely neutral because our method
does not reconstruction the dense 3D map. In addition, our
method use GPS coordinates to jointly estimate the camera
pose.

D. Computational Performance

All evaluations are performed on a computer equipped
Intel i7-4710 CPU, 16 GB RAM, and GTX960 GPU. We
run our approach and Photoscan in a 64-bit Linux system,
while Pix4DMapper executes on 64-bit Windows 10. The
time usage statistics with time unit of minute are illustrated
in Table II.

Our method tracks all frames, while both Pix4DMapper
and Photoscan only process the keyframes to generate the
final images. As the keyframe number increases, the process-
ing time of Pix4DMapper and Photoscan increase dramati-

TABLE II
TIME USAGE STATISTICS FOR ORTHOIMAGE GENERATING. THE TIME

UNIT IS MINUTE.

Sequence Frames KFs Ours Pix4D Photoscan
gopro-npu 28,493 337 15.84 107.05 153.62

gopro-monticules 18,869 395 10.49 52.62 334.73
gopro-saplings 19,371 482 16.44 83.75 683.98
phantom3-npu 13,983 457 9.32 140.08 532.38

phantom3-centralPark 12,744 471 8.49 127.73 563.57
phantom3-grass 4,585 648 2.39 154.77 999.67

phantom3-village 16,969 406 11.31 132.07 360.70
phantom3-hengdong 16,292 221 10.86 72.13 145.52
phantom3-huangqi 14,776 393 10.36 102.83 462.32

cally. However, the computational complexity of our system
is approximately linear, consequently, large-scale scenes can
be handled fluently. In the proposed system, the tracking
runs at about 30 Hz and the stitching runs at about 10 Hz
for full 1080p video. In fact, it is not necessary to process
every frame due to the large baseline tracking ability, thus the
speed can be further boosted by processing selected frames.
Based on the above merits, it is sufficient to use this system
on low-cost embedded devices.

V. CONCLUSIONS

This paper presents a novel approach to mosaic aerial
images incrementally in real-time with high robustness and
quality. Most traditional SfM methods need all data prepared



and hours for computation, while the proposed method
outputs comparative or even better results with real-time
speed. Moreover, the results are able to be visualized in the
map widget immediately. We publish the detailed results,
introduction video, and dataset on the project website, in
addition, the code of Map2DFusion is also provided.

Although our system outputs high quality mosaics in most
circumstances, there are still some improvements that can
be made especially for non-planar environments. PhotoScan
and Pix4DMapper output dense point cloud and mosaic with
better orthogonality. However, our method just computes
sparse point cloud and the orthoimages are not totally ortho
although great efforts are conducted to make the result as
ortho as possible. In addtion, some other image warping
functions considering 3D structure should be investigated to
minimize the misalignments.
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