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Setup planning is a set of activities used to arrange manufacturing features into an appropriate sequence for processing. It has
significant impact on the product quality, which is often measured in terms of dimensional variation in key product characteristics.
Current approaches to setup planning are experience-based and tend to be conservative due to the selection of unnecessarily precise
machines and fixtures to ensure final product quality. This is especially true in multi-stage machining processes (MMPs) since it is
difficult to predict variation propagation and its impact on the quality of the final product. In this paper, a methodology is proposed
to realize cost-effective, quality-assured setup planning for MMPs. Setup planning is formulated as an optimization problem based
on quantitative evaluation of variation propagations. The optimal setup plan minimizes the cost related to process precision and
satisfies the quality specifications. The proposed approach can significantly improve the effectiveness as well as the efficiency of the
setup planning for MMPs.
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1. Introduction

Process planning is the systematic determination of the
steps by which a product is manufactured. It is a key el-
ement that bridges activities in design and manufacturing.
In the past decades, process planning and its automation en-
ablers have been extensively studied and significant progress
has been reported (Maropoulos, 1995). Many approaches
to process planning have been suggested including concep-
tual process planning, setup planning and detailed process
planning; see Fig. 1. Conceptual process planning includes
engineering feature recognition, process selection and ma-
chine/tooling selection. Detailed process planning includes
fixture design, quality-assurance-strategy selection and cost
analysis.

Setup planning constitutes a critical component that con-
nects conceptual process planning and detailed process
planning. Conceptual process planning provides qualita-
tive information to setup planning, including designated
features, selected processes and datum scheme constraints.
The purpose of setup planning is to arrange manufacturing
features into an appropriate sequence of setups in order to
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ensure product quality and productivity (Huang and Liu,
2003). A setup plan is comprised of setup formation, da-
tum scheme selection and setup sequencing (Huang, 1998).
It defines a series of datum/fixturing schemes for a Multi-
Stage Machining Process (MMP), as shown in Fig. 1. How-
ever, the setup plan obtained from those traditional meth-
ods provides limited detailed information to subsequent
planning activities in process planning.

Product quality is one of the main concerns of setup plan-
ning. A well-defined setup plan should be able to satisfy
quality specifications under normal manufacturing condi-
tions. Product quality is affected by the outcome of setup
planning since the series of datum and fixtures defined by
a specific setup plan may introduce errors which will prop-
agate along the machining stages and accumulate in the fi-
nal product. Different setup plans specify different datum/
fixturing schemes, lead to different variation propagation
scenarios, and result in different product quality. Thus, one
of the major tasks in setup planning is to identify the op-
timal setup from multiple alternatives to ensure product
quality.

Some research has been conducted in quality-assured
setup planning, addressing issues in setup formation,
datum scheme selection and setup sequencing. Zhang et al.
(1996) proposed principles for achieving tolerance control
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Fig. 1. The existing commonly used setup planning approaches.

proactively via appropriately grouping and sequenc-
ing features according to their tolerance relationships.
Mantripragada and Whitney (1998) presented the “datum
flow chain” concept to relate datum logic explicitly
with Key Product Characterstics (KPCs) tolerances and
assembly sequences. Quantitative approaches were also
developed to evaluate variation stack-up associated with
different process design. Rong and Bai (1996) presented
a method to verify machining accuracy corresponding to
fixture design. Song et al. (2005) developed a Monte Carlo
simulation-based method to analyze the quality impact of
production planning. Xu and Huang (2006) modeled the
simulated quality distributions in multiple attribute utility
functions. In addition to the simulation-based approaches,
analytical methods have also been used to investigate
the interactions between product quality and process
variability. For a given setup plan, Stream of Variation
(SoV) methodologies (Shi, 2006) and state space modeling
techniques have been developed to model the dimensional
variation propagation along different setups (Hu, 1997; Jin
and Shi, 1999; Ding et al., 2002; Zhou et al., 2003; Huang
et al., 2007a; Huang et al., 2007b).

Cost-effectiveness is another critical concern in setup
planning. It can be evaluated in terms of Cost Related
to Process Precision (CRPP), such as the cost to achieve
necessary fixture precision to satisfy product quality re-
quirements. The precision refers to the inherent variability
in an MMP and CRPP is the cost to achieve a required
precision level to ensure product quality requirements.
The CRPP is assumed to be inversely proportional to the
necessary process precision. Corresponding to different
setup plans, different process precisions are required and
thus different costs are incurred. Therefore, setup planning
should be a discrete constrained optimization procedure.

Ong et al. (2002) considered various cost factors in the
optimization index, including the cost of machines and
fixtures. However, these cost factors are not directly linked
with process precision.

It is desirable that the optimal setup plan is the one that
satisfies the product quality specification using relatively
imprecise fixtures and machines to minimize the CRPP.
However, setup plans developed solely based on principles
and experience can be very conservative. Although they are
generally feasible with respect to the quality consideration,
cost-effectiveness may not be optimal. For instance, in or-
der to ensure the final product quality, engineers tend to
conservatively select unnecessarily precise fixtures and thus
cause unnecessary CRPP. This is especially true for the up-
stream stages of an MMP where there are no techniques to
evaluate variation propagation. Furthermore, in order to
automate process planning, it should be easy to integrate
the outcomes of the setup planning procedure with other
detailed process planning activities, e.g., fixture design. Fix-
ture layout design for a particular setup is critical input data
for setup planning, whereas the setup planning results deter-
mine an MMP whose fixture system should be optimized
at the process level. However, although the fixture layout
design has been successfully investigated at both the single-
stage level (Cai et al., 1997) and process level (Kim and
Ding, 2004), effective setup/fixture planning studies are
still required. This is because qualitative-principle-based
setup planning provides limited potential for specifying
quantitative precision requirements of fixture design. In
addition, conservative process precision requirements will
make the designed fixture unnecessarily expensive. This
functional limitation of conventional setup planning sig-
nificantly hinders the implementation of process planning
automation.
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Table 1. Approaches to setup planning

Evaluation-oriented
setup planning

Optimization-oriented
setup planning

Qualitlative
quality
evaluation

Zhang et al. (1996),
Mantripragada
and Whitney
(1998)

Ong et al. (2002)

Simulation-based
quality
evaluation

Song et al. (2005) Xu and Huang
(2006)

Analytical quality
evaluation

Hu (1997), Ding
et al. (2002), Zhou
et al. (2003), etc.

To be studied in
this paper

Existing setup planning approaches are summarized in
Table 1. As can be seen, most reported research has focused
on the evaluation of setup plan alternatives. Some work
exists that uses qualitative or simulation-based evaluation
of product quality to perform optimal setup planning. Al-
though simulation provides an effective strategy to com-
pare alternative setup plans in terms of their output prod-
uct quality, it consumes a substantial amount of time and
computational resources.

This paper adopts an integrated setup/fixture planning
strategy to process planning. It focuses on the system-
atic development of a cost-effective, quality-assured setup
planning, which is a fundamental enabler to integrated
setup/fixture planning. Because of the complexity of the
integrated problem and the overwhelming computational
requirements, an iterative approach is appropriate. As illus-
trated in Fig. 2, the stage/setup level optimal fixture layouts
for all candidate datum schemes are first determined and
fixed. In each stage, different datum scheme options may

be assigned with different fixture layouts. These stage/setup
level fixture layouts are the inputs to the setup planning, to-
gether with information on the feature representation, de-
sign specification, constraints on datum scheme and setup
sequence. As shown in Fig. 2, the development of the pro-
posed setup planning consists of three steps.

1. Candidate setup formations and datum schemes are for-
mulated based on input information. Their potential
variation stack-up can be analytically predicted by the
SoV model.

2. Based on those candidate setups defined in step 1, the
setup planning is formulated as a sequential decision-
making process on an optimal series of setups that cost-
effectively satisfies product quality specifications. A cost
criterion is defined to evaluate the optimality of candi-
date setup plans under the constraints of product quality
specifications.

3. Dynamic Programming (DP) is used to solve the optimal
sequential decision-making problem and generate the
optimal setup plan, which provides setup information
for subsequent activities in process planning. Based on
an analytical quality evaluation strategy, the proposed
optimal setup planning methodology will be effective
and efficient. When the optimal setup plan is determined,
the approach of Kim and Ding (2004) can be applied to
achieve a process level optimal fixture layout, which will
be used to update the stage/setup level fixture layouts
for repeating the iterative optimization procedure.

The remainder of this paper is organized as follows. The
SoV-based optimal setup planning methodology is intro-
duced in Section 2. Section 3 presents a case study in which
the proposed approach is used to generate a setup plan for
MMPs. Conclusions are drawn and areas of future work
are discussed in Section 4.

Fig. 2. Overview of the proposed “SoV-based, quality-assured setup planning.”
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2. Quality-assured cost-effective setup planning

The design specifications of a machined product are often
satisfied by machining operations performed in a series of
stages. In each stage, a set of features are generated with a
specific setup. The dimensional precision of the final prod-
uct is affected by three major variation sources in the ma-
chining operations.

1. Machine and cutting tool, which refers to the random
deviation of the cutting tools from their nominal paths.

2. Fixture, which refers to the random deviation of the fix-
ture locators from their nominal positions.

3. Datum, which refers to the random deviation of the da-
tum features, generated in previous stages, from their
nominal positions and/or dimensions.

Both Sources 1 and 2 are treated as random process de-
viations. The third source exists because some features gen-
erated in the upstream stages are used as the datum fea-
tures in the downstream stages according to the setup plan.
Thus, the dimensional variation, which is introduced by
fixtures and/or machine and cutting tools in the upstream
stages, is propagated through datum features and accumu-
lated in the features generated in the downstream stages.
Different setup plans, i.e., different datum schemes and dif-
ferent setup sequences, lead to different variation propa-
gation scenarios, and thus result in different final product
quality. In order to compare candidate setup plans, an ef-
fective method is needed to evaluate the impact of potential
datum schemes and setup sequences on the quality of the
final product.

2.1. Variation propagation model for setup planning

One effective tool to model the variation propagation in
MMPs is the state space modeling technique (Shi, 2006).
Zhou et al. (2003) presented a detailed derivation and val-
idation of a model with given process/product design, in-
cluding information on the setup formation, datum scheme
selection and setup sequence. However, some additions are
necessary due to the following unique characteristics in
setup planning.

1. Multiple datum scheme options: In setup planning, every
stage has a set of candidate datum schemes. Different
datum schemes support different operations that gener-
ate different features, which further constrain the pool of
candidate datum schemes for downstream stages. Also,
datum scheme selection is directly related to the fixture
design and thus significantly affects the CRPP. Thus,
there is a need for explicit representation of the selected
datum scheme for every stage.

2. Setup precedence requirements: According to the design
specifications, some features must be fabricated in a stage
with comparatively precise datum features, which may be
machined in an upstream stage. This kind of precedence

relationships is not often straightforward to determine,
especially when the tolerance interdependences among
features are complicated. Therefore, a capability to ex-
plicitly represent the sequence of setups and the chain
of datum schemes is needed to evaluate different setup
precedence options.

3. Tracing the setup chain: Since the CRPP is inversely
proportional to the precision of fixtures, process plan-
ners tend to select less precise fixtures to reduce the
cost. However, this will increase the dimensional vari-
ation of the generated features and increase the datum
variation if some of them are used as datum in the
downstream stages. As a result, datum features with a
large variation force the downstream fixtures to be very
precise to satisfy quality specifications. In other words,
due to the complex variation propagation, relaxing the
upstream process precision may result in the need for
tighter tolerances in the downstream processes and thus
increase the total CRPP. Therefore, to achieve an overall
cost-effectiveness, the variation propagation of the setup
chain must be traced and explicitly modeled.

Figure 3 illustrates the variation propagation scenario of
the setup plan of an MMP. The nomenclature is explained
as follows.

1. The datum scheme of stage k (k = 1, 2, . . . , N) is de-
noted as DS dk (dk = 1, 2, . . . , Dk, where Dk is the total
number of feasible datum scheme options for stage k).
A datum scheme refers to the coordinate system spec-
ified by a group of datum surfaces, within which the
machining process can be performed. A datum scheme
is very important to the variation propagation modeling
since all three aforementioned variation sources affect
the quality of newly generated features through datum,
as shown in Fig. 3.

2. Corresponding to a selected datum scheme dk in stage
k, the quality of all features are denoted by a state vec-
tor xdk

k , with each element representing the dimensional
deviation from its nominal value.

3. The random deviation of process variables associated
with a selected datum scheme dk in stage k is de-
noted as udk

k . Corresponding to the major variation
sources, udk

k models the random process deviations of
both machine/cutting tools and fixture locators, as de-
fined in Zhou et al. (2003). Represented as deviations of
the tool path from its nominal path, udk

k models many
types of sources, including geometric and kinematic er-
rors, thermal errors, cutting-force-induced errors and
tool-wear-induced errors (Zhou et al., 2003). The ele-
ments in udk

k are called process variables and are treated
as independent system input data that follow a multi-
variate normal distribution.

4. The unmodeled system noises due to the model lineariza-
tion are represented by wk. Compared to the deviations
modeled in udk

k and xdk
k , the elements in wk are higher
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Fig. 3. Variation propagation in a setup plan.

order small values. The wk are assumed to be indepen-
dent of any component of udk

k (k = 1, 2, . . . , N; dk = 1,
2, . . . , Dk). Also, the elements of wk are assumed to be
independent of each other and to have a mean of zero.

5. Since the features are measured in the coordinate system
defined by the selected datum scheme dk, the measure-
ments of quality are denoted as ydk

k . In this paper, the
measurements are assumed to be multivariate normal.

6. The measurement noise is denoted by a random vec-
tor vk, which is independent of xdk

k , udk
k and wk (k = 1,

2, . . . , N; dk = 1, 2, . . . , Dk). The components of vk are
assumed to be independent of each other and to have a
mean of zero. Also, the magnitudes of the components of
vk are determined by the accuracy/precision of the mea-
surement device, which is usually at the level of 1 µm.

Adopting the assumptions of rigid parts and small errors,
a linear state space model can be constructed to associate
the product quality with a sequence of setups according to
the setup plan, as shown in Equation (1):

xdk
k = A

dk
k−1xdk−1

k−1 + Bdk
k udk

k + wk,

ydk
k = Cdk

k xdk
k + vk, k = 1, 2, . . . , N, (1)

where A
dk
k−1xdk−1

k−1 represents the datum-induced random de-
viation corresponding to the selected datum scheme dk in
stage k, and xdk−1

k−1 is the quality, in terms of dimensional de-
viation, transmitted from upstream stages. Bdk

k udk
k describes

the impact of deviation from the process variables, corre-
sponding to the selected datum scheme dk, in the quality of
features generated in stage k. Cdk

k is the observation matrix

mapping features’ quality to the measurements. A valida-
tion of this SoV modeling in Zhou et al. (2003) demon-
strates that the SoV model can adequately represent the
process errors and their propagations in MMPs. Ren et al.
(2006) further demonstrated that the model linearization is
valid when number of stages is moderate.

As previously mentioned, setup planning is a series of
decisions based on alternative datum schemes for multiple
stages, as illustrated in Fig. 4. For the optimal datum scheme
selected for stage k, Equation (1) can be reformulated as

xd∗
k

k = Ad∗
k

k−1x
d∗

k−1

k−1 + Bd∗
k

k ud∗
k

k + wk,

yd∗
k

k = Cd∗
k

k xd∗
k

k + vk, (2)

where d∗
k ∈ {dk|dk = 1, 2, . . . , Dk}, for k = 1, 2, . . . , N, rep-

resents the index of the selected optimal datum scheme in
stage k. Please note that d∗

k is one link of the optimal datum
scheme chain (d∗

1 d∗
2 . . . d∗

N) that is determined through
considering all the stages in the entire processes. Thus, d∗

k
may not necessarily be optimal for a single-stage k.

The state space model in Equation (1) can be transformed
into a linear input–output model as

ydk
k =

k∑
i=1

Cdk
k Φ(•)

k,iB
di
i udi

i + Cdk
k Φ(•)

k,0x0 +
k∑

i=1

Cdk
k Φ(•)

k,iwi + vk,

(3)

where Φ(•)
k,i is the state transition matrix tracing the da-

tum schemes transformation from stage i to k − 1; and
Φ(•)

k,i = Adk−1

k−1Adk−2

k−2 · · · Adi
i for i < k, and Φ(•)

k,k = I. The ini-
tial state vector x0 represents the original quality of the
part that enters the first stage of the process. Without loss

Fig. 4. Datum scheme alternatives for sequential decision making.
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of generality, x0 is set to zero. Then Equation (3) changes to

ydk
k =

k∑
i=1

Cdk
k Φ(•)

k,iB
di
i udi

i +
k∑

i=1

Cdk
k Φ(•)

k,iwi + vk. (4)

For a selected datum scheme, dk, and the decisions on
datum schemes for upstream stages {d1 d2 . . . dk−1}, the
coefficient matrices, Adk

k , Bdk
k , Cdk

k and Φ(•)
k,i (i = 1, 2, . . . , k),

can be derived following the same procedure as presented
in Zhou et al. (2003). This variation propagation mod-
eling technique provides the setup planer with a tool to
predict the product quality of candidate datum schemes
and alternative setup sequences of an MMP. Compared to
the method, proposed by Xu and Huang (2006), that can
only assess the quality after the whole setup plan is de-
fined, state space modeling provides the capability to assess
product quality for each intermediate setup. This modeling
technique can be effectively incorporated into the decision-
making process for optimal setup plan determination.

2.2. Setup plan evaluation strategy

Different setup plans will result in different product quali-
ties in terms of KPC variation and incur different CRPPs.
From the optimization point of view, setup planning can be
formulated as a discrete constrained optimization problem.

2.2.1. Optimization of the setup planning
In this paper, the objective of setup planning is to minimize
the CRPP while satisfying the KPC quality constraints. The
mathematical representation is defined as

min
Tu

{CTu (Tu)},

subject to

USLi − LSLi

σyi

≥ τi, i = 1, 2, . . . , M, (5)

where Tu = [Tu1 Tu2 . . . TuP ]T is a P × 1 vector with each
element Tuj representing the tolerance of a corresponding
process variable ui defined in u, and u = [uT

1 uT
2 . . . uT

N ]T,
with uk(k = 1, 2, . . . , N) as a pk × 1 vector representing the
process variables (i.e., fixture locator deviations) in stage
k. Please note that P = ∑N

k=1 pk. M is the total number
of KPCs and P is the total number of process variables.
USLi and LSLi are the predefined upper specification limit
and lower specification limit of KPC yi, respectively. σyi

is the standard deviation of KPC yi and τi is a constant,
i = 1, 2, . . . , M. CTu (Tu) is the CRPP function of process
tolerance. Various cost functions have been proposed for
different tolerance syntheses. Considering the structural
simplicity, a reciprocal function is adopted in this paper:

CTu =
P∑

j=1

wj

Tuj

, (6)

where the wj j = 1, 2, . . . , P, are weighting coefficients.
These weighting coefficients should be determined accord-
ing to the practical situation. For instance, coefficients as-
signed to the fixtures used in the same stage can be equal to
each other; fixtures or machine tools manufactured by the
same supplier or used in the same stage may be assigned
with the same value. More discussion on the selection of
these weighting coefficients are provided in the case studies
in Section 3.

For a complicated MMP, there always exist multiple qual-
ity characteristics. It is desirable to define a multivariate
process capability index for process quality control. How-
ever, at the setup planning stage, there is no a priori infor-
mation on the correlations between quality characteristics.
A scalar multivariate process capability index may be mis-
leading if it is defined without appropriate consideration of
correlations between quality characteristics. Thus, in indus-
trial applications, for the sake of convenience, most of the
tolerance regions are specified as a collection of individual
specifications for each variable, as defined in Equation (5).
The intersection of these specifications would form a rect-
angular solid zone (Jackson, 1991). Chen (1994) proposed
a multivariate process capability index over a rectangular
solid tolerance zone V = {y∈ RM : max(|yi − µi|/ri, i = 1,
2, . . . , M) ≤ 1}. Based on this definition, a necessary con-
dition for a process to be capable over a rectangular solid
zone is that each individual univariate process is capable
with respect to the corresponding specification limits. In
addition, according to the discussion of Chen (1994), cor-
relations between quality characteristics make the process
more capable over a rectangular tolerance zone. Therefore,
in this paper, individual process capability constraints are
adopted to conservatively ensure that the setup plan is able
to satisfy the specifications on all quality characteristics.

Ding et al. (2005) studied the relationship between tol-
erance and variation of process variables by examining
the clearance of the pin–hole locating pair. In this paper,
the process capability ratios, ηj = Tuj/σuj , are assumed to
be constants. Therefore, the tolerance of a process vari-
able can be replaced by its standard deviation. Recall that
the elements in udk

k are defined as the deviations of fix-
ture locators with a mean of zero, thus their variances
σ 2

uj
= E(u2

j ), j = 1, 2, . . . , P. Let Ξu = [σu1σu2 . . . σuP ]T, then
the tolerance of the process variables can be defined by Tu =
[Tu1 Tu2 . . . TuP ]T = diag{η1,η2, . . . , ηP} · Ξu. Then, the ob-
jective function CTu (Tu) in Equation (5) can be transformed
to

Cu(u) =
P∑

j=1

wj

ηj × σuj

. (7)

2.2.2. DP formulation
Previous sections present the techniques that enable: (i) the
description of the impacts of datum scheme selection and
setup sequencing on the variation of product quality; (ii) the
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Fig. 5. DP network of a setup planning decision sequence.

modeling of the variation propagation; and (iii) the quan-
titative evaluation of the candidate setup plans. Based on
these enablers, setup planning can be formulated as a se-
quential decision-making process for the selection of da-
tum schemes in all stages to satisfy quality specifications
with overall cost-effectiveness. In this sequential decision-
making problem, the datum scheme selected for stage k is
affected by that selected for the upstream stages and will
then affect the one selected for the downstream stages. This
characteristic is identical to that of a DP problem. There-
fore, DP methodology is adopted to solve the optimization
problem. Figure 5 illustrates a sequential decision process
for a chain of datum scheme selection.

In Fig. 5, there are N + 1 columns in the diagram, rep-
resenting the N stages of the machining processes, and an
initial DP state (•, x0). Each column k (k = 1, 2, . . . , N)
consists of Dk nodes, corresponding to Dk feasible datum
schemes. A node (Qk, xdk

k ), dk = 1, 2, . . . , Dk, in Fig. 5 is a
DP state that represents the datum scheme selection in stage
k, where Qk defines the in-process quality specifications for
the features generated from stage 1 to stage k. Since the
quality specification for the incoming part is not related to
the quality consideration of the machining process, it is set
to “•” in the initial DP state, i.e., not specified. According to
Equation (5), Qk is an M × M matrix with the diagonal el-
ements qk,i,i = [(USLk,i − LSLk,i)/τi]2, i = 1, 2, ..., M; k =
1, 2, . . . , N. USLk,i and LSLk,i are the given in-process
specification limits for KPC i in stage k. The off-diagonal el-
ements of Qk can also be specified in terms of the covariance
matrix structure of ydk

k for a given dk. The connections link-

ing nodes in column k − 1 to those in column k reflect state
transitions. Given the datum scheme and setup sequence se-
lected for upstream stages, different nodes from two neigh-
boring stages are connected or disconnected, according to
the predefined datum scheme constraints. Although there
are Dk potential DP states for each stage, the process plan-
ner observes only the one that is finally selected. Therefore,
the concept of “DP-stage” (Qk, xk) is defined to “contain”
all the possible states, (Qk, xdk

k ), dk = 1, 2, . . . , Dk, in a col-
umn k (Denardo, 2003). As shown in the bottom portion
of Fig. 5, the uk “contains” all the possible udk

k s, dk = 1, 2,
. . . , Dk. Associated with each DP-stage is a set of decisions
�k on datum scheme selection.

Selecting datum scheme dk incurs cost Vk(uk, dk) and
implements transition from DP-stage (Qk−1, xk−1) to DP-
stage (Qk, xk). Let qk(uk, dk) be the constraints on the KPC
variations generated in stage k if datum scheme dk is se-
lected. In other words, qk(uk, dk) is the maximum KPC vari-
ations that can be allowed after the fabrication performed
in stages 1 through k. Also let t((Qk, xk), dk, dk−1) be the
state transition function linking xdk−1

k−1 and xdk
k , then Equa-

tion (1) can be of the form xdk
k = t((Qk, xk), dk, dk−1) =

A
dk
k−1xdk−1

k−1 + Bdk
k udk

k + wk. The decision making on the dks,
(k = 1, 2, . . . , N) repeats itself for all stages, following
t((Qk, xk), dk, dk−1). The cost of decision dk in stage k is
defined as

Vk(uk, dk) = Cu
dk
k

(
udk

k

) =
pk∑

j=1

wj

ηj · σu
dk
k,j

, (8)
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where pk(k = 1, 2, . . . , N) is the dimension of udk
k and P =∑N

k=1 pk. Also, σu
dk
k,j

is the standard deviation of the jth el-

ement of udk
k , j = 1, 2, . . . , pk. This cost can be interpreted

as the cost consumed to provide enough process precision
for stage k, corresponding to the selected datum scheme
dk. Let L(Qk, xk) be the minimum CRPP that is consumed
from stage 1 to stage k by selecting datum schemes d1, d2,
. . . , dk, and generating quality variation at most Qk, the
DP function can be defined as

L(Qk, xk)

=




min
dk∈�k ,dk−1∈�k−1

qk (uk ,dk )≤Qk

{L(Qk − qk(uk, dk), t((Qk, xk), dk, dk−1))

+Vk(uk, dk)} for k = 1, . . . , N,

0 for k = 0,

(9)

where Qk is predefined, qk(uk, dk) and Vk(uk, dk) can be
derived based on the state space model (1). According to
Equation (4), the covariance matrix of ydk

k is

Σy
dk
k

=
k−1∑
i=1

(
Cdk

k Φ(•)
k,iB

di
i

)
Σudi

i

(
Cdk

k Φ(•)
k,iB

di
i

)T

+ (
Cdk

k Φ(•)
k,kBdk

k

)
Σu

dk
k

(
Cdk

k Φ(•)
k,kBdk

k

)T

+
k∑

i=1

(
Cdk

k Φ(•)
k,i

)
Σwi

(
Cdk

k Φ(•)
k,i

)T + Σvk , (10)

where Σ• is the covariance matrix for variable “•”. Equa-
tion (10) shows that the KPC covariance can be treated as
the accumulated covariance of all process variables used
from stage 1 to stage k, plus the covariance of the unmod-
eled process variations and the variance of measurement
noise. In order to ensure that the product quality gener-
ated from stage 1 to stage k satisfies the specifications, Σy

dk
k

should satisfy the specification

σ 2
y

dk
k,i

≤ s × qk,i,i, i = 1, 2, . . . , M, (11)

where σ 2
y

dk
k,i

is the ith diagonal element of matrix Σy
dk
k

, qk,i,i is

the ith diagonal element of matrix Qk and the scalar s is the
safety factor (0 ≤ s ≤ 1). Since wk and vk contain second or
higher order terms whose values are much smaller than that
of xdk

k and udk
k , their contribution to Σy

dk
k

can be ignored.

Thus, by eliminating the third and the fourth terms on the
right-hand-side of Equation (10),Σy

dk
k

can be approximated

by

Σ̃y
dk
k

=
k−1∑
i=1

(
Cdk

k Φ(•)
k,iB

di
i

)
Σudi

i

(
Cdk

k Φ(•)
k,iB

di
i

)T

+ (
Cdk

k Φ(•)
k,kBdk

k

)
Σu

dk
k

(
Cdk

k Φ(•)
k,kBdk

k

)T
. (12)

The first term on the right-hand-side of Equation (12)
stands for the quality covariance (measured based on datum
scheme dk) accumulated from stage 1 to stage k, whereas
the second term stands for the quality covariance generated
in stage k by selecting datum scheme dk. Let

Σ̃y•
k−1

=
k−1∑
i=1

(
Cdk

k Φ(•)
k,iB

di
i

)
Σudi

i

(
Cdk

k Φ(•)
k,iB

di
i

)T
, (13)

be the quality covariance accumulated from stage 1 to stage
k − 1, then the amount of newly generated quality covari-
ance can be derived as

Σdk = Σ̃y
dk
k

− Σ̃y•
k−1

= (
Cdk

k Φ(•)
k,kBdk

k

)
Σu

dk
k

(
Cdk

k Φ(•)
k,kBdk

k

)T
.

(14)
since the process cost modeled in Equation (7) is inversely
proportional to the process variations. In order to minimize
the process cost, the process variations, the diagonal ele-
ments in Σu

dk
k

, k = 1, 2, . . . , N, should be relaxed as much

as possible. This will lead to the increase of the KPC varia-
tions defined by the diagonal elements in Σ̃y

dk
k

. Considering

the quality constraints specified by Qk, Σ̃y
dk
k

should satisfy

Σ̃y
dk
k

= sQk, (15)

where s is the same as that defined in Equation (11). Given
the Qk values, k = 1, 2, . . . , N, the constraints qk(uk, dk)
have the form:

qk(uk, dk) = (
sQk − Σ̃y•

k−1

)

= (
Cdk

k Φ(•)
k,kBdk

k

)
Σu

dk
k

(
Cdk

k Φ(•)
k,kBdk

k

)T
. (16)

From Equation (16), the covariance matrix of udk
k can be

derived as

Σu
dk
k

= (
Γ(•)

k

)−(
sQk − Σ̃y•

k−1

)[(
Γ(•)

k

)T]−
, (17)

where Γ(•)
k = Cdk

k Φ(•)
k,kBdk

k = Cdk
k Bdk

k , and (∆)− denotes the
Moore–Penrose inverse of the rectangular matrix ∆. Σ̃y•

k−1

contains the variation propagation information and is de-
termined by the datum scheme selection and sequencing
decisions made for upstream stages. When Γ(•)

k is column-
wise full rank, Equation (17) can give a real solution ofΣu

dk
k

.

Assuming that the process variables are mutually indepen-
dent, the tolerance specification for udk

k can be obtained by
a pk × 1 vector:

Tu
dk
k

= [
ηkσ

dk
1 ηkσ

dk
2 . . . ηkσ

dk
pk

]T
, (18)

where (σ dk
j )2 is the jth diagonal element ofΣu

dk
k

, j = 1, 2, . . .,

pk, k = 1, 2, . . . , N and dk = 1,2, . . . Dk. According to
the definition of udk

k , Tu
dk
k

contains the tolerance of ma-

chining/cutting tools and fixture locators. In order to in-
crease the exchangeability of fixture locators, improve main-
tainability of the fixture system and reduce the “long-run
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Fig. 6. Part drawing and KPC specifications.

overall production cost,” different locators on the same fix-
ture are assigned with the same tolerance, as discussed by
Chen et al. (2006). Therefore, fixture locators’ tolerances
can also be specified as ηkσ

dk∗ , where σ dk∗ = minj∈Jf {σ dk
j }

and Jf is a set containing all the index of fixture locators
in udk

k . Using Equations (8) to (18) it is possible to formu-
late setup planning by solving a series of DP functional
equations.

2.2.3. Optimization algorithm
The reaching algorithm (Denardo, 2003) is used to solve the
DP problem defined in Equation (9). According to Fig. 5,
the value of each DP-state node (Qk, xdk

k ) is denoted as
sk,dk , which represents the minimum process precision cost
incurred so far from stage 1 to stage k by selecting datum
scheme dk in stage k. Let v

dk−1

k,dk
denote the corresponding

cost incurred in stage k according to datum selections of the
upstream stage k − 1 and that of the stage k, and v

dk−1

k,dk
=

Vk(uk, dk). The pseudo code of the reaching algorithm is as
follows.

Set s0,• = 0 and sk,dk = +∞ for k = 1, 2, . . . , N; dk = 1, 2,
. . . , Dk,

DO for k = 1, 2, . . . , N
DO for dk = 1, 2, . . . , Dk

sk,dk ← min
{

sk,dk , inf
dk−1∈�k−1

{
sk−1,dk−1 + v

dk−1

k,dk

}}
.

In this algorithm, v
dk−1

k,dk
will be set to ∞ for an infeasible

datum scheme selection. This value indicates that, given
the variation accumulated in upstream stages, the selected
datum scheme for the current stage cannot meet the qual-
ity specification. The final results include: (i) the mini-
mized total CRPP, L(QN, xN); (ii) a sequence of decisions
( d∗

1 d∗
2 . . . d∗

N ) on datum schemes for a sequence of stages,
which is the optimal setup plan; and (iii) the tolerance spec-
ifications, Tu, of the fixtures used in all stages.

3. Case study

A case study is conducted to demonstrate the SoV-model-
based quality assured optimal setup planning for an MMP.

Table 2. Setup options for the three-stage machining process

Stage

Index 1 2 3

1 DS: TF-FF-RF DS: BF-BF11-BF12 DS: BF-BF11-BF12
SF: BF, BF11, BF12 SF: FF, FF11, FF12, KF SF: TF, TF11, LF, LF11, LF12, RF, RF11, RF12

2 DS: FF-TF-RF DS: BF-BF11-BF12 DS: FF-FF11-FF12
SF: BF, BF11, BF12 SF: TF, TF11 SF: FF, FF11, FF12, KF, LF, LF11, LF12, RF, RF11, F12

3 DS: BF-FF-LF DS: TF-FF-RF DS: BF-BF11-BF12
SF: TF, TF11 SF: BF, BF11, BF12 SF: TF, TF11, LF, LF11, LF12, RF, RF11, RF12, KF

DS = datum scheme, SF = setup formation.
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Fig. 7. Setup options for a three-stage machining process.

The product KPCs and their associated design specifica-
tions are defined in Fig. 6. Based on the analysis of feature
locations and tooling approach directions, a three-stage ma-
chining process is proposed. The candidate datum schemes
for each stage are proposed and shown in Fig. 7. Corre-
spondingly, stage/setup level fixture layouts are assumed as
given. These include general 3-2-1 fixturing schemes (e.g.,
Setup Option 1 1) and pin-hole fixturing schemes (e.g.,
Setup Option 2 1), as discussed by Zhou et al. (2003).

Table 2 summarizes the alternative datum schemes and
setup formations for each stage. Corresponding to these
datum scheme candidates dk (k = 1, 2, 3), the coefficient
matrices in state space models, Adk

k , Bdk
k and Cdk

k , are gener-

ated. According to the constraints on datum scheme and
datum sequence, the DP network is established, as shown
in Fig. 8.

In this case study, without loss of generality, only the vari-
ation of fixture locators are included in the process variable
vectors udk

k . Thus, each one of the three udk
k s (k = 1, 2, 3)

contains six process variables, corresponding to the six lo-
cators. The total number of process variables, P, is 18. The
safety factor s in Equation (15) is set to 1.5 to account for the
potential quality impacts of process variations contributed
by machine/cutting tools. Coefficients ηj(j = 1, 2, . . . , 18)
in Equation (7) are set six. The weighting coefficients wj
are set to 1/18, which means all fixture locators are treated

Fig. 8. DP network for the three-stage machining process.
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Table 3. Intermediate results of the reaching algorithm

Stage

sk,dk 1 2 3

Setup option dk
1 31.275 60.095 87.791
2 47.244 68.744 ∞
3 17.408 40.742 79.983*

equally with respect to their CRPP. The costs for each state
transition are also shown in Fig. 8. The notation “∞” indi-
cates that the variation accumulated from upstream stages
has made it impossible to satisfy the quality specifications
in the third stage.

The intermediate results are summarized in Table 3. The
optimal setup plan is identified and highlighted, in Fig. 8,
as the bold path. The optimal setup plan is: (i) in the first
stage, the part is fixed with datum features BF, FF and
LF, and features TF, TF11 are generated; (ii) in the second
stage, the part is fixed with datum features TF, FF and TF,
and features BF, BF11 and BF12 are generated; (iii) the
remaining features are generated in the third stage with the
part being fixed on datum features BF, BF11 and BF12.
This optimal setup plan can be denoted as a DFC: {{BF-
FF-LF}, {TF-FF-TF}, {BF-BF11-BF12}}, with the total
CRPP of 79.983.

One of the by-products of the SoV-based setup planning
methodology is the tolerance specifications for the fixture
design. In this case study, based on the σu∗

i
s, Tu∗

i
(i = 1, 2, 3)

are given as Tu∗
1
= [0.086 0.086 0.086 0.086 0.086 0.086]T ,

Tu∗
2
= [0.037 0.037 0.037 0.037 0.037 0.037]T, and Tu∗

3
=

[0.019 0.019 0.019 0.019 0.019 0.019] T. The fixture design
that meets these specifications will be cost-effective and suf-
ficiently precise to ensure the product quality. The results
show that the fixtures for upstream stages, i.e., stage 1 and
stage 2, are not required to be as precise as that for the
downstream operations, i.e., the optimal setup plan is not
conservative.

A sensitivity analysis was also conducted to examine the
impact of the assignments the values to the weighting co-
efficients on the optimization results. It is assumed that: (i)
the weighting coefficients assigned to locators belonging to
the same fixture are the same; (ii) fixtures used at stage 1 are
assigned different weighting coefficients to those assigned
to fixtures used at stage 2 and stage 3; and (iii) the weighting
coefficients assigned to fixtures used in stage 2 and stage 3
are the same. For instance, if a sum of weighting coefficients,
0.1 (0.1/6 for each locator) is assigned to a stage 1 fixture,
fixtures in stage 2 and stage 3 will be 0.45 (0.45/6 for each
locator).

Table 4 shows the optimization results associated with
different combinations of the coefficients assignments. The
optimal setup plans are consistent, except for case 1, where
the fixture in stage 1 is significantly under-weighted with

Table 4. Impact of the sum weighing coefficients on optimization
results

Case
number

Sum weighting
coefficients for

stage 1 Optimal setup plan

1 0.1 {{FF-TF-RF},{BF-BF11-BF12},
{BF-BF11-BF12}}

2 0.2 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

3 0.3 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

4 0.4 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

5 0.5 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

6 0.6 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

7 0.7 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

8 0.8 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

9 0.9 {{BF-FF-LF},{TF-FF-TF},
{BF-BF11-BF12}}

a weighting coefficient of 0.1. This indicates that the op-
timization result for this case study is not sensitive to the
value of the weighting coefficient. This is because the datum
scheme option 3 for stage 1 significantly outperforms the
other two options in terms of CRPP. The differences among
those three options dominate the whole optimization of the
three stages, as shown in Fig. 8.

4. Conclusions

This paper proposed a methodology for optimal setup plan-
ning for MMPs. Based on the SoV concept, a state space
modeling technique is expanded to be applicable to datum
selection and setup sequencing decisions. The SoV model
provides the basis for quantitative, analytical evaluation of
the quality impacts of candidate setup plans. This evalua-
tion capability enables the formulation of the setup plan-
ning as an optimization problem that minimizes the CRPP
with the final product quality satisfying constraints. DP is
employed to solve this sequential optimal decision-making
problem.

In the proposed method, setup planning is formulated as
a DP problem, which provides a clear representation of the
sequential decision-making procedure. However, one dis-
advantage of DP is that it needs intensive computational
resources. When the number of stages and the number of
alternative datum schemes becomes large, the cost to ob-
tain an optimal solution becomes unaffordable. Potential
solutions include: (i) using a different formulation, such as
reinforcement learning, neurodynamic programming or ap-
proximate DP; and (ii) incorporating engineering domain
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knowledge to decouple an MMP into smaller segments of
subprocesses and/or add more constraints to reduce the
number of alternative datum schemes. These topics will be
investigated in our future work.
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