Machine Learning
Frameworks

CS6787 Lecture 12 — Fall 2017

The course so far

* We’ve talked about optimization algorithms

* And ways to make them converge in fewer iterations

* We’ve talked about parallelism and memory bandwidth
* And how to take advantage of these to increase throughput

* We've talked about hardware for machine learning

* But how do we bring it all together?

Imagine designing an ML system from scratch

* It’s easy to start with basic SGD in C++
* Implement objective function, gradient function, then make a loop

* But there’s so much more to be done with our C++ program
* Need to manually code a step size scheme
* Need to modify code to add mini-batching
* Need to add new code to use SVRG and momentum
* Need to completely rewrite code to run in parallel or with low-precision
* Impossible to get it to run on a GPU or on an ASIC
* And at each step we have to debug and validate the program

* There’s got to be a better way!

The solution: machine learning frameworks

e Goal: make ML easier

* From a software engineering perspective
* Make the computations more reliable, debuggable, and robust

* Goal: make ML scalable

* To large datasets running on distributed heterogeneous hardware

e Goal: make ML accessible

* So that even people who aren’t ML systems experts can get good performance

MI. trameworks come 1n a few tlavors

* General machine learning frameworks
* Goal: make a wide range of ML workloads and applications easy for users

* General big data processing frameworks
* Focus: computing large-scale parallel operations quickly
* Typically has machine learning as a major, but not the only, application

* Deep learning frameworks
* Focus: fast scalable backpropagation
* Although typically supports other applications as well

How can we evaluate an ML, framework?

* How popular is it?
e Use drives use — MI. frameworks have a snowball effect

* Popular frameworks attract more development and eventually more features

e Who is behind it?

* Major companies ensure long-term support

e What are its features?

* Often the least important consideration — unfortunately

Common Features of Machine
Learning Frameworks

What do ML frameworks support?

* Basic tensor operations
* Provides the low-level math behind all the algorithms

e Automatic differentiation

* Used to make it easy to run backprop on any model

* Simple-to-use composable implementations of systems techniques
* Like minibatching, SVRG, Adam, etc.

* Includes automatic hyperparameter optimization

Tensors

* CS way to think about it: a tensor is a multidimensional array

* Math way to think about it: a tensor is a multilinear map

T -RM xR x...xR% 5 R

T(x1,x2,...,%y,) is linear in each z;, with other inputs fixed.

e Here the number n is called the order of the tensor
* For example, a matrix is just a 2°¢-order tensor

Examples of Tensors in Machine Learning

* The CIFARI10 dataset consists of 60000 32x32 color images

* We can write the training set as a tensor

TCIFARlO c RSQ X 32X 3%x60000

* Gradients for deep learning can also be tensors

* Example: fully-connected layer with 100 input and 100 output neurons, and mini-
batch size b=32

G c RlOOxlOOxSQ

Common Operations on Tensors

* Elementwise operations — looks like vector sum
* Example: Hadamard product

(Ao B)iyigin = Aitin...in Biyio.. i,

* Broadcast operations — expand along one or more dimensions
* Example: A € R'"'*! B € R"*® | then with broadcasting

(A+B)ij = Ai1 + B

* Extreme version of this is the tensor product

* Matrix-multiply-like operations — sum or reduce along a dimension
* Also called tensor contraction

Broadcasting makes ML easy to write

* Here’s how easy it is to write the loss and gradient for logistic regression

* Doesn’t even need to include a for-loop
* This code is in Julia but it would be similar in other languages

function logreg loss(w, X, Y)
return sum(log(l + exp(-Y .* (X * w))));
end

function logreg grad(w, X, Y)
return -X' * (Y ./ (1 + exp(Y .* (X * Ww))));
end

Tensors: a systems perspective

* Loads of data parallelism

* Tensors are in some sense the structural embodiment of data parallelism

* Multiple dimensions = not always obvious which one best to parallelize over

* Predictable linear memory access patterns
* Great for locality

* Many different ways to organize the computation

* Creates opportunities for frameworks to automatically optimize

Automatic Differentiation: Motivation

* One interesting class of bug

* Imagine you write up an SGD algorithm with some objective and some gradient
* You hand-code the computation of the objective and gradient

* What happens when you differentiate incorrectly?

* This bug is more common than you’d think

* Almost everybody will encounter it eventually if they hand-write objectives
* And it’s really difficult and annoying to debug as models become complex

* The solution: generate the gradient automatically from the objective!

Many ways to do differentiation

* Symbolic differentiation

* Represent the whole computation symbolically, then differentiate symbolically
* Can be costly to compute and requires symbolization of code

* Numerical differentiation (x+8) — flz—0)

(a4

* Approximate the derivative by using something like fi(z) = 55
* Can introduce round-off errors that compound over time

e Automatic differentiation

* Apply chain rule directly to fundamental operations in program

Automatic differentiation

* Couple of ways to do it, but most common is backpropagation
* Does a forward pass, and then a backward pass to compute the gradient

* Key result: automatic differentiation can compute gradients
* For any function that has differentiable components

* To arbitrary precision

* Using a small constant factor additional compute compared with the cost to
compute the objective

(General Machine Learning
Frameworks

[e Custom Search] X

. w't Home Installation Documentation -~ Examples

scikit-learn

Machine Learning in Python

'.'o ...

> e A5 A -

..'o.!“ [2 \
|

‘\

ll ;f] ¥ ulslF

* scikit-learn
* A broad, full-featured toolbox of machine learning and data analysis tools
* In Python

* Features support for classification, regression, clustering, dimensionality
reduction: including SVM, logistic regression, £-Means, PCA

e 3 and

* NumPy
* Adds large multi-dimensional array and matrix types (tensors) to python

* Supports basic numerical operations on tensors, on the CPU

* SciPy
* Builds on NumPy and adds tools for scientific computing

* Supports optimization, data structures, statistics, symbolic computing, etc.
* Also has an interactive interface (1python) and a neat plotting tool (matplotlib)

* Great ecosystem for prototyping systems

A Theano

Theano

theano

* Machine learning library for python
* Created by the University of Montreal

* Supports tight integration with NumPy

* But also supports CPU and GPU integration
* Making it very fast for a lot of applications

* Development has ceased because of competition from other libraries

Julia and MATLAB

* Julia
* Relatively new language (5 years old)
* Natively supports numerical computing and all the tensor ops
* Syntax is nicer than Python, and it’s often faster
* But less support from the community and less library support

* MATLAB

* The decades-old standard for numerical computing
* Supports tensor computation, and many people use it for ML

* But has less attention from the community because it’s proprietary

Even lower-level: BLLAS and LAPACK

* All these frameworks run on to of basic linear algebra operations

* BLAS: Basic Linear Algebra Subroutines
* Also has support on GPUs with NVIDIA cuBLAS

* LAPACK: Linear Algebra PACKage

* It you’re implementing from scratch, you still want to use these!

General Big Data Processing
Frameworks

The original: MapReduce/Hadoop

* Invented by Google to handle distributed processing

* People started to use it for distributed machine learning
* And people still use it today

* But it’s mostly been supplanted by other libraries
* And for good reason

* Hadoop does a lot of disk writes in order to be robust against failure of
individual machines — not necessary for machine learning applications

Apache Spark

Spoark

* Open-source cluster computing framework
* Built in Scala, and can also embed in Python

* Developed by Berkeley AMP lab

* Now spun off into a company: DataBricks

* The original pitch: 100x faster than Hadoop/MapReduce

* Architecture based on resilient distributed datasets (RDDs)
* Essentially a distributed fault-tolerant data-parallel array

Spark MILLib

* Scalable machine learning library built on top of Spark

* Supports most of the same algorithms scikit-learn supports
* Classification, regression, decision trees, clustering, topic modeling

* Not primarily a deep learning library

* Major benefit: interaction with other processing in Spark
* SparkSQL to handle database-like computation
* GraphX to handle graph-like computation

Apache Mahout

* Backend-independent programming environment for machine learning
* Can support Spark as a backend
* But also supports basic MapReduce/Hadoop

* Focuses mostly on collaborative filtering, clustering, and classification
* Similarly to MLLib and scikit-learn

* Also not very deep learning focused

Many more here
* Lots of very good frameworks don’t end up becoming popular

* ’ve actually worked on one myself: Delite
* Also in Scala

* Faster than Spark on a lot of applications (3x)

* But less user friendly — not something you could just download and run

* Takeaway: important to release code people can use easily

* And capture a group of users who can then help develop the framework

Deep Learning Frameworks

Caffe

* Deep learning framework
* Developed by Berkeley Al research

* Declarative expressions for describing network architecture

e Fast — runs on CPUs and GPUs out of the box

* And supports a lot of optimization techniques

* Huge community of users both in academia and industry

Catte code example

149 lines (148 sloc) 1.88 KB

name: "CIFAR10_quick_test"

layer {

}

name: "data"
type: "Input”
top: "data"

input_param { shape: { dim: 1 dim: 3 dim:

layer {

name: “"conv1l"
type: "Convolution"
bottom: "data"
top: "conv1l"
param {
Ir mult: 1
}
param {
Ir_mult: 2
}

convolution_param {

-~

32 dim: 32 } }

TensorFlow

* End-to-end deep learning system
* Developed by Google Brain

* API ptimarily in Python T
* With support for other languages e nSO r

* Architecture: build up a computation graph in Python
* Then the framework schedules it automatically on the available resources
* Although recently TensorFlow has announced an eager version

* Super-popular, perhaps the de facto standard for ML right now

TensorFlow code example

outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy with_logits(labels=y , logits=y))

train_step = tf.train.GradientDescentOptimizer(©.5).minimize(cross_entropy)

sess = tf.InteractiveSession()

tf.global variables_initializer().run()

Train

for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed dict={x: batch_xs, y_: batch_ys})

Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed dict={x: mnist.test.images,

y_: mnist.test.labels}))

PYTHRCH

* Python package that focuses on
* Tensor computation (like numpy) with strong GPU acceleration
* Deep Neural Networks built on a tape-based autograd system

* Eager computation out-of-the-box

* Uses a technique called reverse-mode auto-differentiation
* Allows users to change network behavior arbitrarily with zero lag or overhead
* Fastest implementation of this method

* PyTorch 1s the new hotness — may overtake TensorFlow

Py Torch example

def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log _interval ==
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}"'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[@]))

Conclusion

 Lots of ML frameworks

* The popular ones change quickly over time

* But which one is popular matters

* It’s becoming easier to do ML every year

* QUESTIONS?

