LRFD Bridge Design

AASHTO LRFD Bridge Design Specifications

Loading and General Information

Created July 2007

This material is copyrighted by

The University of Cincinnati, Dr. James A Swanson, and Dr. Richard A Miller

It may not be reproduced, distributed, sold, or stored by any means, electrical or mechanical, without the expressed written consent of The University of Cincinnati, Dr. James A Swanson, and Dr. Richard A Miller.

July 31, 2007

LRFD Bridge Design AASHTO LRFD Bridge Design Specification Loads and General Information

Background and Theoretical Basis of LRFD	1
AASHTO Chapter 1	13
AASHTO Chapter 2	17
AASHTO Chapter 3	23
AASHTO Chapter 4	59
Loads Case Study	71

James A Swanson Associate Professor University of Cincinnati Dept of Civil & Env. Engineering 765 Baldwin Hall Cincinnati, OH 45221-0071

Ph: (513) 556-3774 Fx: (513) 556-2599

James.Swanson@uc.edu

 AASHTO Web Site: <u>http://bridg</u> "Load and Resistance Factor D Katilable from the AASHTO web 	ges.transportation. esign for Highway B	Vertree total Participant Notebook Volumes I and If Volumes I and If Vo
ODOT Short Course	0	AASHTO-LRFD 2007

ariability	of Loads	and Resistand	es:		
Suppose	that we m	neasure the weig	ght of 100 stu	dents	
	Weight	Number of Samples	Weight	Number of Samples	
	70	0	180	11	
	80	0	190	8	
	90	1	200	9	
	100	0	210	8	
	110	2	220	7	
	120	3	230	5	
	130	5	240	3	
	140	6	250	2	
	150	8	260	2	
	160	9	270	0	
	170	10	280	1	
	Averad	ie = 180 ^{lbs}	St Deviat	tion = 38 ^{lbs}	

/ariability o	of Loads	and Resistance	es: estrength of 1	00 ropes	
	Weight	Number of Samples	Weight	Number of Samples	~*
	210	0	320	15	•
	220	0	330	14	
	230	0	340	11	
	240	0	350	8	
	250	1	360	5	
	260	1	370	3	
	270	3	380	2	
	280	5	390	0	
	290	7	400	1	
	300	11	410	0	
	310	13	420	0	
	Averag	e = 320 ^{lbs}	St Deviat	tion = 28 ^{lbs}	

Reliat	bility Index:	- LKFD Fundar	nentais		
A10	.				
 AI5 	β	D+(L or S)	D+L+W	D+L+E	
	Members	3.0	2.5	1.75	
	Connections	4.5	4.5	4.5	
- AA:	SHTO: β= 3.5 S β= 2.5 F	Super/Sub Struc Foundations	tures		
				AASHTO-LRFI	20

Со	ontents		
1.	Introduction	8.	Wood Structures
2.	General Design and Location	n 9.	Decks and Deck Systems
	Features	10.	Foundations
3.	Loads and Load Factors	11.	Abutments, Piers, and Walls
4.	Structural Analysis and Evaluation	12.	Buried Structures and Tunnel Liners
5.	Concrete Structures	13.	Railings
6.	Steel Structures	14.	Joints and Bearings
7.	Aluminum Structures	15.	Index
			AASHTO-LRFD 200
DOT	Short Course	Created July 2007	Loads & Analysis: Slide #2

91.3.2. Liniit 3	itales - Load moumers	
Applicable only	to the Strength Limit State	
• $\eta_D - Ductility$	Factor:	
<u></u> η _D = 1.05	for nonductile members	
α η _D = 1.00	for conventional designs and details com	plying with specifications
u $\eta_D = 0.95$	for components for which additional ducti taken	ility measures have been
• $\eta_R - \text{Redunda}$	ancy Factor:	
$\eta_R = 1.05$	for nonredundant members	
$\eta_R = 1.00$	for conventional levels of redundancy	
$\eta_R = 0.95$	for exceptional levels of redundancy	
 η₁ – Operatio 	nal Importance:	
η _I = 1.05	for important bridges	
α η _{<i>I</i>} = 1.00	for typical bridges	
α η _I = 0.95	for relatively less important bridges	
T I	are applied at the element level	not the entire structure
nese modifiers	are applied at the element level, i	
Pgs. 1.5-7; Chen & D	Juan	AASHTO-LRFD 200

§ 2.5.2 - Serviceability		
§2.5.2.6.2 Criteria for	Deflection	
ODOT requires the us deflections of structur	e of Article 2.5.2.6.2 an es.	nd 2.5.2.6.3 for limiting
ODOT prohibits the us sidewalks and media section."	se of "the stiffness co n barriers in the des	ontribution of railings, ign of the composite
		AASHTO-LRFD 2007

§ 2.5.2 - Serviceability

§2.5.2.6.2 Criteria for Deflection

In the absence of other criteria, these limits may be applied to steel, aluminum and/or concrete bridges:

Load	Limit
General vehicular load	Span/800
Vehicular and/or pedestrian load	Span/1000
Vehicular load on cantilever arms	Span/300
Vehicular and/or pedestrian load on cantilever arms	Span/375

For steel I girders/beams, the provisions of Arts. 6.10.4.2 and 6.11.4 regarding control of deflection through flange stress controls shall apply.

Pg 2.10-14		AASHTO-LRFD 2007
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #34

§ 2.5.2 - Serviceabilit	ty
-------------------------	----

§2.5.2.6.2 Criteria for Deflection

For wood construction:

Load	Limit
Vehicular and pedestrian loads	Span/425
Vehicular loads on wood planks and panels: extreme relative deflection between adjacent edges	0.10 in

Pg 2.10-14		AASHTO-LRFD 2007
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #35

Load		Limit
Vehicular loads on dee	ck plates	Span/300
Vehicular loads on ribs	of orthotropic metal decks	Span/1000
Vehicular loads on ribs extreme relative deflect	s of orthotropic metal decks: tion between adjacent ribs	0.10 in

§ 2.5.2 - Serviceability

§2.5.2.6.3 Optional Criteria for Span-to-Depth ratios

		Minimum Depth	(Including Deck)
	Superstructure	When variable depth members are used, va changes in relative stiffness of positive and	lues may be adjusted to account for negative moment sections
Material	Туре	Simple Spans	Continuous Spans
	Slabs with main reinforcement parallel to traffic	$\frac{1.2(S+10)}{30}$	$\frac{S+10}{30} \ge 0.54 ft.$
Reinforced	T-Beams	0.070L	0.065L
concrete	Box Beams	0.060L	0.055L
	Pedestrian Structure Beams	0.035L	0.033L
	Slabs	0.030L <u>> 6</u> .5 in.	0.027L ≥ 6.5 in.
	CIP Box Beams	0.045L	0.040L
Prestressed Concrete	Precast I-Beams	0.045L	0.040L
Controloto	Pedestrian Structure Beams	0.033L	0.030L
	Adjacent Box Beams	0.030L	0.025L
	Overall Depth of Composite I-Beam	0.040L	0.032L
Steel	Depth of I-Beam Portion of Composite I-Beam	0.033L	0.027
	Trusses	0.100L	0.100L
ODOT	states that "designers shall appl	y the span-to-depth	ratios shown."
Pg 2.10-14	4		AASHTO-LRFD 2007
ODOT Shor	t Course Created July	Loa	ds & Analvsis: Slide #37

Transient Loads		
BR -Veh. Braking ForceCE -Veh. Centrifugal ForceCR -CreepCT -Veh. Collision ForceCV -Vessel Collision ForceEQ -EarthquakeFR -FrictionIC -Ice LoadLL -Veh. Live LoadIM -Dynamic LoadAllowance	 LS - PL - SE - SH - TG - TU - WA - WL - WS - 	Live Load Surcharge Pedestrian Live Load Settlement Shrinkage Temperature Gradient Uniform Temperature Water Load Wind on Live Load Wind Load on Structure

		Table	3.4.1-	1 Load	Comb	ination	s and Load	Facto	rs				
										Use	One	of Thes Time	se at
		IM IN											
	EH	CE											
	EV	BR					TU						
Load Combination	ES EL	LS PL	WA	WS	WL	FR	CR SH	TG	SE	EQ	IC	СТ	CV
STRENGTH I										~			
(unless noted)	γ _p	1.75	1.00			1.00	0.50/1.20	γ_{TG}	γ_{SE}				
STRENGTH II	γ _p	1.35	1.00			1.00	0.50/1.20	γ_{TG}	γ_{SE}				
STRENGTH III	γ _p		1.00	1.40		1.00	0.50/1.20	γ_{TG}	γ_{SE}				
STRENGTH IV	γ _p		1.00			1.00	0.50/1.20						
STRENGTH V	ν	1.35	1.00	0.40	1.0	1.00	0.50/1.20	ν	ν				

	Tab DC DD	le 3.4.1	-1 Loa	d Cor	nbina	tions a	and Lo	oad Fa	ctors	(cont.) Use	e One of Tir	These	at a
Load Combination	DW EH EV ES EL	IM CE BR PL LS	WA	WS	WL	FR	TU CR SH	TG	SE	EQ	IC	CT	CV
EXTREME EVENT I	γ _p	γ _{EO}	1.00			1.00				1.00			
EXTREME EVENT II	γ _p	0.50	1.00			1.00					1.00	1.00	1.00
FATIGUE – <i>LL</i> , <i>IM</i> , & <i>CE</i> ONLY		0.75											

	DC DD DW									Use	One o a T	of The ime	se at
Load	EH EV ES	CE BR PL					TU CR						
Combination	EL	LS	WA	WS	WL	FR	SH	TG	SE	EQ	IC	CT	CV
SERVICE I	1.00	1.00	1.00	0.30	1.0	1.00	1.00/1.20	γ_{TG}	γ_{SE}				
SERVICE II	1.00	1.30	1.00			1.00	1.00/1.20						
SERVICE III	1.00	0.80	1.00			1.00	1.00/1.20	γ_{TG}	γ_{SE}				
SERVICE IV	1.00		1.00	0.70		1.00	1.00/1.20		1.0				

§ 3.4 - Loads and I	Load Factors	
§3.4.1: Load Fac	tors and Load Combinations	
 Strength I: 	Basic load combination relating use of the bridge without wind.	to the normal vehicular
 Strength II: 	Load combination relating to by Owner-specified speci evaluation permit vehicles, or b	the use of the bridge al design vehicles, oth, without wind.
 Strength III: 	Load combination relating to wind in excess of 55 mph.	the bridge exposed to
 Strength IV: 	Load combination relating to to live load force effect ratios. indicates that this will goverr spans over 600', and during co	very high dead load (Note: In commentary it where the DL/LL >7, onstruction checks.)
 Strength V: 	Load combination relating to with a wind of 55 mph.	normal vehicular use
Pg 3.8-3.10		AASHTO-LRFD 2007
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #44

§ 3.4 - Loads and Loa	d Factors	
§3.4.1: Load Factor	s and Load Combinations	
Extreme Event I:	Load combination including ea	arthquakes.
Extreme Event II:	Load combination relating to vessels and vehicles, and cer a reduced live load.	o ice load, collision by tain hydraulic events with
• Fatigue:	Fatigue and fracture load repetitive gravitational vehicul responses under a single desi	combination relating to ar live load and dynamic gn truck.
 Pg 3.8-3.10		AASHTO-LRFD 200
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #4

§ 3.4 - Loads and	Load Factors
§3.4.1: Load Fac	ctors and Load Combinations
 Service I: 	Load combination relating to normal operational use of the bridge with a 55 mph wind and all loads at nominal values. Compression in precast concrete components.
 Service II: 	Load combination intended to control yielding of steel structures and slip of slip-critical connections due to vehicular load.
 Service III: 	Load combination relating only to tension in prestressed concrete <u>superstructures</u> with the objective of crack control.
 Service IV: 	Load combination relating only to tension in prestressed concrete <u>columns</u> with the objective of crack control.
Pg 3.8-3.10	AASHTO-LRFD 2007
ODOT Short Course	Created July 2007 Loads & Analysis: Slide #46

	Table 3.4.1-2 Load Factors for Permanent Load	ds, γ_p	
	Type of Load, Foundation Type, and Method Used to Calculate Downdrag	Load I Movimum	-actor
DC: Component	and Attachments / only	1.25 1.50	0.90 0.90
DD: Downdrag	Piles, αTomlinson Method Plies, λ. Method Drilled Shafts, O'Neill and Reese (1999) Method	1.4 1.05 1.25	0.25 0.30 0.35
DW: Wearing Su	rfaces and Utilities	1.50	0.65
EH: Horizontal E • Active • At-Rest FL: Locked in Er	arth Pressure	1.50 1.35 1.00	0.90 0.90 1.00

§ 3.4 - Loads and Load	Factors	
§3.4.1: Load Factors	and Load Combination	S
 For SE (settlemen information. In lieu 1.0. 	t), γ_{SE} should be base of project specific information	ed on project specific ation, γ_{SE} may be taken as
 Load combination without settlement. 	ns which include settleme	ent shall also be applied
 The load factor for determined on a pro 	or live load in Extreme ject specific basis.	Event Ι, γ _{EQ} , shall be
ODOT Exception: Assu Load is Equal to 0.0. (γ.	ume that the Extreme Eve	ent I Load Factor for Live
	¥ '	
Pg 3.12		AASHTO-LRFD 2007

W gi lo	/hen prestressed components are used in conjunction with steel inders, the following effects shall be considered as construction bads (EL):
	If a deck is prestressed BEFORE being made composite, the friction between the deck and the girders.
	If the deck is prestressed AFTER being made composite, the additiona forces induced in the girders and shear connectors.
	Effects of differential creep and shrinkage.
	Poisson effect.

§ 3.4 - Loads an	nd Load Factors	
Common Loa	d Combinations for Prestressed	Concrete
Strength I:	1.25DC + 1.50DW + 1.75(LL+IM)	
Strength IV:	1.50DC + 1.50DW	
Service I:	1.00DC + 1.00DW + 1.00(LL+IM)	
Service III:	1.00DC + 1.00DW + 0.80(LL+IM)	
Service IV:	1.00DC + 1.00DW + 1.00WA + 0.70WS	+ 1.00 <i>FR</i>
Fatigue:	0.75(<i>LL</i> + <i>IM</i>)	
Note: Fatigue ra	arely controls for prestressed concrete	
		AASHTO-LRFD 2007
DOT Short Course	Created July 2007	Loads & Analysis: Slide #56

§ 3.5 – Permanent Loads	3	
§3.5.1 Dead Loads: D	C, DW, and EV	
 DC is the dead loa construction. These with more certainty. 	d of the structure and have a lower load factor	components present at because they are known
 DW are future dead have a higher load fa 	loads, such as future v ctor because they are kn	vearing surfaces. These own with less certainty.
• <i>EV</i> is the vertical con	nponent of earth fill.	
 Table 3.5.1-1 gives used to calculate DC 	unit weight of typical co , DW and EV.	mponents which may be
		AASHTO-LRFD 200

§ 3.5 – Permanent Loads		
§3.5.1 Dead Loads: DC,	, DW, and EV	
 DC is the dead load construction. These has with more certainty. 	of the structure and ave a lower load factor	components present at because they are known
 DW are future dead lo have a higher load fact 	oads, such as future w or because they are kno	vearing surfaces. These own with less certainty.
• <i>EV</i> is the vertical comp	onent of earth fill.	
• Table 3.5.1-1 gives un used to calculate <i>DC</i> , <i>D</i>	it weight of typical con DW and EV.	mponents which may be
		AASHTO-LRFD 2007
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #59

§ 3.6 - Live Loads		
§3.6.1.3.4: Deck Over	hang Load	
For design of a deck o the centerline of the continuous concrete ra	overhang with a cantileven exterior girder to the illing	$r \leq 6$ ft. measured from face of a structurally
the outside row of w located 1 ft. from the fa	heel loads may be replace ce of the railing. (Article 3	ed by a 1.0 klf line load 3.6.1.3.4)
ODOT ExceptionIII Th	nis method is not permitte	ed!!! Deck overhangs are
designed according t Manual.	o Section 302.2.2 in th	le ODOT Bridge Design
designed according t Manual.	o Section 302.2.2 in th	AASHTO-LRFD 200

§3.6.1.1.2: Multiple Presence of I	Live Load	
 Multiple Presence Factor 		
<u> # of Loaded Lanes</u>	MP Facto	<u>or</u>
1	1.20	
2	1.00	
3	0.85	
>3	0.65	
 These factors are based or 	n an assumed AD	TT of 5,000 trucks
 If the ADTT is less than 100, 	90% of the specified	d force may be used
If the ADTT is less than 1,00	0, 95% of the specifi	ied force may be used
Multiple Presence Factors are NO	T used with the Dis	stribution Factors
Pg 3.17-18		AASHTO-LRFD 200
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #7

Tables	6.6.1.2.5-1&3 Fatig	gue Constant a	nd Threshold S	tress Range
	Detail	A x 10 ⁸	$(\Delta F)_{TH}$	1
	Category	(ksi ³)	(ksi)	
	A	250	24.0	1
	В	120	16.0	1
	В'	61.0	12.0	1
	С	44.0	10.0	1
	C'	44.0	12.0	
	D	22.0	7.0	
	E	11.0	4.5	
	Ε'	3.9	2.6	
	M164 Bolts	17.1	31.0	
	M253 Bolts	31.5	38.0	

§6.6 - Fatigue and Fractu	re Considerations	
§6.6.1.2: Load Induced	Fatigue	
Consider the Follow	ving:	
 A fatigue detail nea highway with an AI 	ar the center of a span o DT of 30,000 vehicles.	of 4-lane, urban interstate
• $ADTT = (TF) (ADT)$	= (0.15) (30,000 Vehicles	s) = 4,500 Trucks
$\Box (ADTT)_{SL} = p \; ADTT :$	= (0.80) (4,500 Trucks) =	3,600 Trucks
N = (365) (75) n (AD)	$TT)_{SL}$	
• = (365) (75) (1) (3	,600 Trucks) = 98.55M C	cycles
Since this is a stru value given is for t	cture on an interstate, raffic traveling in one di	it is assume that the <i>ADT</i> rection only.
		AASHTO-LRFD 2007
ODOT Short Course	Created July 2007	Loads & Analysis: Slide #87

§ 3.6 - Live Loads		
§3.6.3: Centrifugal Fe	orce - CE	
 Highway design spe specified in the curre Geometric Design of 	eed shall not be taken to ent edition of the AASHTO <i>Highways and Streets.</i>	be less than the value publication, <i>A Policy of</i>
The multiple present	e factors shall apply.	
Centrifugal forces s above the roadway s substructure shall be	shall be applied horizont surface. A load path to ca e provided.	ally at a distance 6.0 ft rry the radial force to the
The effect of supe centrifugal force on the super	relvation in reducing th vertical wheel leads may b	e overturning effect of e considered.
Pg 3.31		AASHTO-LRFD 2007

king force shall b of the axle weights 6 of the design true 6 of the design tan	e taken as the great s of the design truck o ck plus lane load	er of: or design tandem
of the axle weights 6 of the design truc 6 of the design tan	s of the design truck o ck plus lane load	or design tandem
% of the design truc % of the design tan	x plus lane load	
% or the design tan	dam plug lang lagd	
Aking force shall be aded in accordance and which are carry hall be assumed to a surface in eithe All design lanes sh one-directional in	e placed in all design e with Article 3.6.1.1. ying traffic headed in o act horizontally at a r longitudinal direction hall be simultaneously the future.	lanes which are considered 1 (defines number of design the same direction. These distance of 6.0 ft above the on to cause extreme force y loaded for bridges likely to
Itiple presence fa	ctors shall apply.	
a a a s u e u	aking force shall be baded in accordance and which are carry shall be assumed to y surface in eithe All design lanes s e one-directional in ultiple presence fa	aking force shall be placed in all design baded in accordance with Article 3.6.1.1. and which are carrying traffic headed in shall be assumed to act horizontally at a by surface in either longitudinal direction All design lanes shall be simultaneousl e one-directional in the future. altiple presence factors shall apply.

30101					
	Table 3.8.1.1-1 V Condition	V_0 and Z_0 Va Open Country	rious Upstream Sui Suburban	face Conditions City	
	V_{θ} (mph)	8.20	10.90	12.00	
	Z_{o} (ft)	0.23	3.28	8.20	

Skew Angle	Trusses/Co	lumns/ Arches	Gi	rders
	Lateral Load	Longitudinal Load	Lateral Load	Longitudinal Load
(degrees)	(ksf)	(ksf)	(ksf)	(ksf)
0	0.075	0.000	0.050	0.000
15	0.070	0.012	0.044	0.006
30	0.065	0.028	0.041	0.012
45	0.047	0.041	0.033	0.016
60	0.024	0.050	0.017	0.019

§3.8.1.2: Wind Pressu	ire on the Structure - W	VS
 Longitudinal and tra base wind pressure 	ansverse forces are calc of 0.040 ^{kip/} ft ² .	culated from an assumed
 If the wind angle components. 	is skewed, the wind p	ressure is resolved into
 The component per from the end elevation 	pendicular to the end a on.	acts on the area as seen
 The component per seen from the front superstructure wind 	pendicular to the front e elevation and is applie load.	elevation acts on the area ad simultaneous with the
Pa 3 40-42		

	Normal Component	Parallel Component	
(degrees)	(klf)	(klf)	
	0 100	0.000	
15	0.088	0.012	
30	0.082	0.024	
45	0.066	0.032	
60	0.034	0.038	

Movements due to uniform temperature are calculated using the					
following ten	perature limits:				
Tab	le 3.12.2.1-1 Procedure A	Temperature Ranges (F	Partial)		
Climate	Steel or Aluminum	Concrete	Wood		
Cold	-30° to 120° F	0° to 80° F	0° to 75° F		

Typical ODOT Bridge Type	Table 4.6.2.2.1-1 Cross Section
Steel Beam/Girder	(a)
Concrete "I" beam	(k)
Composite Box or Non-composite with Transverse PT	(f)
Non-composite Box w/o Transverse PT	(g) Using DF that assume beams are connected only enough to prevent relative displacement at interface.

Type of Superstructure	Applicable Cross-Section from Table 4.6.2.2.1-1	Distribution Factors	Range of Applicability	This is a part of Table 4.6.2.2.2b-1
Wood Deck on Wood or Steel Basso	a, 1	See Table 4.6.2.2.2a-	1	showing distribution factors to
Concrete Deck on Wood Beams	1	One Design Lane Loaded: 5/12.0 Two or More Design Lanes Loaded: 5/10.0	S≤6.0	moment. A similar table exists
Concrete Deck, Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Slab Semmi, Concrete T- Benmi, T- and Double T-	a, e, k and also i, j if sufficiently connected to act as a unit	$\begin{split} & \begin{array}{l} & \text{One Design Lawe Loaded:} \\ & 0.06 + \left(\frac{S}{34}\right)^{46} \left(\frac{S}{L}\right)^{15} \left(\frac{K_{E}}{12.0L_{1}}\right)^{41} \\ & \text{Two or Max} - \text{Design Lawe Loaded:} \\ & 0.075 + \left(\frac{S}{9.5}\right)^{46} \left(\frac{S}{L}\right)^{42} \left(\frac{K_{E}}{12.0L_{1}^{2}}\right)^{41} \end{split}$	$\begin{array}{l} 3.5 \leq 5 \leq 16.0 \\ 4.5 \leq t_{\rm f} \leq 12.0 \\ 20 \leq L \leq 240 \\ N_{\rm f} \geq 4 \\ 10,000 \leq K_{\rm f} \leq \\ 7,000,000 \end{array}$	The table give the DF formula
Sections		use lesser of the values obtained from the equation above with N _b = 3 or the lever rule	$N_{b} = 3$	
Cast-in-Place Concrete Multicell Box	đ	One Design Lane Loaded: $\left(1.75 + \frac{5}{3.6}\right) \left(\frac{1}{L}\right)^{540} \left(\frac{1}{N_c}\right)^{540}$ Two or More Design Lanes Loaded: $\left(\frac{13}{N}\right)^{61} \left(\frac{1}{5.6}\right) \left(\frac{1}{L}\right)^{150}$	7.0 \le S \le 13.0 60 \le L \le 240 $N_t \ge$ 3 If $N_t \ge$ 8 use $N_t =$ 8	terms. If a bridge does NOT mee these requirements or the
Concrete Deck on Concrete Spread Box Beams	b, c	One Design Lane Loaded $\left(\frac{5}{3.0}\right)^{40} \left(\frac{5d}{12.02}\right)^{431}$ Two or More Design Lanes Loaded: $\left(\frac{5}{6.3}\right)^{46} \left(\frac{5d}{12.04^2}\right)^{4121}$	$\begin{array}{c} 6.0 \leq S \leq 18.0 \\ 20 \leq L \leq 140 \\ 18 \leq d \leq 65 \\ N_b \geq 3 \end{array}$	requirements on the previous slide, refined analysis must be used.
Concrete Beams used in Multibeam Decks	ť	Use Lever Rule One Design Lane Loaded: $k \left(\frac{b}{33.3L}\right)^{65} \left(\frac{I}{J}\right)^{62}$	$\begin{array}{c} S > 18.0 \\ 3.5 \le b \le 60 \\ 20 \le L \le 120 \\ 5 \le N_b \le 20 \end{array}$	
	8 if sufficiently connected to act as a unit	where: $k = 2.5 (N_p)^{42} \ge 1.5$ Two or More Design Lanes Loaded: $k \left(\frac{b}{305}\right)^{44} \left(\frac{b}{12.0Z}\right)^{52} \left(\frac{l}{J}\right)^{536}$		

Force Effect	<i>L</i> (ft)
Positive Moment	Length of the span for which the moment is being calculated.
Negative Moment – Near interior supports of continuous spans from point of contraflexure to point of contraflexure under a uniform load in all spans.	Average length of two adjacent spans.
Negative moment other than near interior supports of continuous spans	Length of the span for which the moment is being calculated.
Shear	Length of the span for which the shear is being calculated.
Exterior reaction	Length of exterior span
Interior reaction of a continuous span.	Average length of two adjacent spans.

			ads & Analysis: Slide #11
Pg 4.35			AASHTO-LRFD 200
Sections		equation above with $N_b = 3$ or the lever ru	le $N_b = 3$
on Steel or Concrete Beams; Concrete T- Beams, T- and Double T- Sections		$0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12.0 Lt_s^3}\right)^{0.1}$	7,000,000
Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab	i, j if sufficiently connected to act as a unit	$0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12.0Lt_z^3}\right)^{0.1}$ Two or More Design Lanes Loaded:	$ \begin{array}{l} 4.5 \le t_s \le 12.0 \\ 20 \le L \le 240 \\ N_b \ge 4 \\ 10,000 \le K_{\sigma} \le \end{array} $
Concrete Deck, Filled	a, e, k and also	One Design Lane Loaded:	3.5 ≤ <i>S</i> ≤ 16.0

<u>1. PROBLEM STATEMENT AND ASSUMPTIONS:</u>

A two-span continuous composite I-girder bridge has two equal spans of 165' and a 42' deck width. The steel girders have $F_y = 50^{\text{ksi}}$ and all concrete has a 28-day compressive strength of $f'_c = 4.5^{\text{ksi}}$. The concrete slab is $9^{1/2}$ " thick. A typical $2^{3/4}$ " haunch was used in the section properties. Concrete barriers weighing 640^{plf} and an asphalt wearing surface weighing 60^{psf} have also been applied as a composite dead load.

HL-93 loading was used per AASHTO (2004), including dynamic load allowance.

References:

Barth, K.E., Hartnagel, B.A., White, D.W., and Barker, M.G., 2004, "Recommended Procedures for Simplified Inelastic Design of Steel I-Girder Bridges," ASCE Journal of Bridge Engineering, May/June Vol. 9, No. 3

"Four LRFD Design Examples of Steel Highway Bridges," Vol. II, Chapter 1A Highway Structures Design Handbook, Published by American Iron and Steel Institute in cooperation with HDR Engineering, Inc. Available at <u>http://www.aisc.org/</u>

2. LOAD CALCULATIONS:

DC dead loads (structural components) include:

- Steel girder self weight (DC1)
- Concrete deck self weight (DC1)
- Haunch self weight (DC1)
- Barrier walls (DC2)

DW dead loads (structural attachments) include:

• Wearing surface (DW)

2.1: Dead Load Calculations

Steel Girder Self-Weight (DC1): (Add 15% for Miscellaneous Steel)

(a) Section 1 (Positive Bending)

$$A = (15'')(3/4'') + (69'')(9/16'') + (21'')(1'') = 71.06 \text{ in}^2$$

$$W_{\text{section1}} = 71.06 \text{ in}^2 \left(\frac{490 \text{ pcf}}{\left(12 \frac{\text{in}}{\text{ft}} \right)^2} \right) (1.15) = 278.1 \frac{\text{Lb}}{\text{ft}} \text{ per girder}$$

(b) Section 2 (Negative Bending)

A =
$$(21'')(1'') + (69'')(9/16'') + (21'')(2-1/2'') = 112.3 \text{ in}^2$$

$$W_{\text{section2}} = 112.3 \text{ in}^2 \left(\frac{490 \text{ pcf}}{\left(12\frac{\text{in}}{\text{ft}}\right)^2}\right) (1.15) = 439.5\frac{\text{Lb}}{\text{ft}} \text{ per girder}$$

Deck Self-Weight (DC1):

$$W_{deck} = (9.5")(144") \left(\frac{150 \text{ pcf}}{\left(12\frac{\text{in}}{\text{ft}}\right)^2} \right) = 1,425 \frac{\text{Lb}}{\text{ft}} \text{ per girder}$$

Haunch Self-Weight (DC1):

Average width of flange:
$$\left(\frac{21''(66') + 15''(264')}{66' + 264'}\right) = 16.2''$$

Average width of haunch: $\binom{1}{2} \left[(16.2"+(2)(9")) + 16.2" \right] = 25.2"$

$$W_{haunch} = \left(\frac{(2")(25.2")}{(12\frac{\text{in}}{\text{ft}})^2}\right) (150 \text{ pcf}) = 52.5\frac{\text{Lb}}{\text{ft}} \text{ per girder}$$

Barrier Walls (DC2):

$$W_{barriers} = \left(\frac{(2 \text{ each})(640 \text{ plf})}{4 \text{ girders}}\right) = 320.0 \text{ Lb/}_{ft} \text{ per girder}$$

Wearing Surface (DW):

$$W_{fws} = \frac{(39')(60 \text{ psf})}{4 \text{ girders}} = 585 \frac{\text{Lb}}{\text{ft}} \text{ per girder}$$

The moment effect due to dead loads was found using an FE model composed of four frame elements. This data was input into Excel to be combined with data from moving live load analyses performed in SAP 2000. DC1 dead loads were applied to the non-composite section (bare steel). All live loads were applied to the short-term composite section (1n = 8). DW (barriers) and DC2 (wearing surface) dead loads were applied to the long-term composite section (3n = 24).

Unfactored Dead Load Moment Diagrams from SAP

Unfactored Dead Load Shear Diagrams from SAP

The following Dead Load results were obtained from the FE analysis:

- The maximum positive live-load moments occur at stations 58.7' and 271.3'
- The maximum negative live-load moments occur over the center support at station 165.0'

	Max (+) Moment Stations 58.7' and 271.3'	Max (-) Moment Station 165.0'
DC1 - Steel:	475 ^{k-ft}	-1,189 ^{k-ft}
DC1 - Deck:	2,415 ^{k-ft}	-5,708 ^{k-ft}
DC1 - Haunch:	89 ^{k-ft}	-210 ^{k-ft}
DC1 - Total:	$2,979^{k-ft}$	-7,107 ^{k-ft}
DC2:	553 ^{k-ft}	-1,251 ^{k-ft}
DW	1,011 ^{k-ft}	-2,286 ^{k-ft}

2.2: Live Load Calculations

The following design vehicular live load cases described in AASHTO-LRFD are considered:

1) The effect of a design tandem combined with the effect of the lane loading. The design tandem consists of two 25^{kip} axles spaced 4.0' apart. The lane loading consists of a 0.64^{klf} uniform load on all spans of the bridge. (HL-93M in SAP)

2) The effect of one design truck with variable axle spacing combined with the effect of the 0.64^{klf} lane loading. (HL-93K in SAP)

3) For negative moment *between points of contraflexure* only: 90% of the effect of a truck-train combined with 90% of the effect of the lane loading. The truck train consists of two design trucks (shown below) spaced a minimum of 50' between the lead axle of one truck and the rear axle of the other truck. The distance between the two 32^{kip} axles should be taken as 14' for each truck. The points of contraflexure were taken as the field splices at 132' and 198' from the left end of the bridge. (HL-93S in SAP)

All live load calculations were performed in SAP 2000 using a beam line analysis. The nominal moment data from SAP was then input into Excel. An Impact Factor of 1.33 was applied to the truck and tandem loads and an impact factor of 1.15 was applied to the fatigue loads within SAP.

6,000 Single Truck 4,000 Tandem 2,000 Fatigue Moment (kip-ft) 0 Fatigue **Fandem** -2,000 **Contraflexure Point** Contraflexure Point -4,000 Single Truck Two Trucks -6,000 0 30 60 90 120 150 180 210 240 270 300 330 Station (ft)

Unfactored Moving Load Moment Envelopes from SAP

Unfactored Moving Load Shear Envelopes from SAP

The following Live Load results were obtained from the SAP analysis:

- The maximum positive live-load moments occur at stations 73.3' and 256.7'
- The maximum negative live-load moments occur over the center support at station 165.0'

	Max (+) Moment Stations 73.3' and 256'	Max (-) Moment Station 165'
HL-93M	3,725 ^{k-ft}	-3,737 ^{k-ft}
HL-93K	4,396 ^{k-ft}	-4,261 ^{k-ft}
HL-93S	N/A	-5,317 ^{k-ft}
Fatigue	2,327 ^{k-ft}	-1,095 ^{k-ft}

Before proceeding, these live-load moments will be confirmed with an influence line analysis.

Tandem:
$$(25^{kip})(33.00 \frac{k \cdot t}{kip}) + (25^{kip})(31.11 \frac{k \cdot t}{kip}) = 1,603^{k \cdot t}$$
Single Truck: $(8^{kip})(26.13 \frac{k \cdot t}{kip}) + (32^{kip})(33.00 \frac{k \cdot t}{kip}) + (32^{kip})(26.33 \frac{k \cdot t}{kip}) = 2,108^{k \cdot t}$ Lane Load: $(0.640 \frac{kip}{t})(2,491 \frac{k \cdot t^2}{kip}) = 1,594^{k \cdot t}$

$$(IM)(Tandem) + Lane: (1.33)(1,603^{k-ft}) + 1,594^{k-ft} = 3,726^{k-ft}$$
$$(IM)(Single Truck) + Lane: (1.33)(2,108^{k-ft}) + 1,594^{k-ft} = 4,397^{k-ft}$$
GOVERNS

The case of two trucks is not considered here because it is only used when computing negative moments.

Based on the influence line analysis, we can say that the moments obtained from SAP appear to be reasonable and will be used for design.

Before these Service moments can be factored and combined, we must compute the distribution factors. Since the distribution factors are a function of K_g , the longitudinal stiffness parameter, we must first compute the sections properties of the girders.

2.3: Braking Force

The Breaking Force, BR, is taken as the maximum of:

A) 25% of the Design Truck

$$BR_{Single\ Lane} = (0.25) \left(8^{kip} + 32^{kip} + 32^{kip} \right) = 18.00^{kip}$$

B) 25% of the Design Tandem

$$BR_{Single\ Lane} = (0.25)(25^{kip} + 25^{kip}) = 12.50^{kip}$$

C) 5% of the Design Truck with the Lane Load.

$$BR_{Single Lane} = (0.05) \left[\left(8^{kip} + 32^{kip} + 32^{kip} \right) + (2) (165') \left(0.640 \frac{kip}{ft} \right) \right] = 14.16^{kip}$$

D) 5% of the Design Tandem with the Lane Load.

$$BR_{Single\ Lane} = (0.05) \left[(25^{kip} + 25^{kip}) + (2)(165')(0.640\frac{kip}{ft}) \right] = 13.06^{kip}$$

Case (A) Governs:

$$BR_{Net} = (BR_{Single \ Lane})(\# \ Lanes)(MPF) \\ = (18.00^{kip})(3)(0.85) = 45.90^{kip}$$

This load has <u>not</u> been factored...

2.4: Centrifugal Force

A centrifugal force results when a vehicle turns on a structure. Although a centrifugal force doesn't apply to this bridge since it is straight, the centrifugal load that would result from a hypothetical horizontal curve will be computed to illustrate the procedure.

The centrifugal force is computed as the product of the axle loads and the factor, C.

$$C = f \frac{v^2}{gR} \tag{3.6.3-1}$$

where:

v - Highway design speed $\left(\frac{\text{ft}}{\text{sec}}\right)$

- f $\frac{4}{3}$ for all load combinations except for Fatigue, in which case it is 1.0
- g The acceleration of gravity $\left(\frac{\text{ft}}{\text{sec}^2}\right)$
- R The radius of curvature for the traffic lane (ft).

Suppose that we have a radius of $R = 600^{\circ}$ and a design speed of $v = 65^{\text{mph}} = 95.33^{\text{fl}}/_{\text{sec}}$.

The centrifugal force acts horizontally in the direction pointing away from the center of curvature and at a height of 6' above the deck. Design the cross frames at the supports to carry this horizontal force into the bearings and design the bearings to resist the horizontal force and the resulting overturning moment.

2.5: Wind Loads

For the calculation of wind loads, assume that the bridge is located in the "open country" at an elevation of 40' above the ground.

Take Z = 40' Open Country $V_o = 8.20^{\text{mph}}$ $Z_o = 0.23^{\text{ft}}$

Horizontal Wind Load on Structure: (WS)

Design Pressure:

$$P_D = P_B \left(\frac{V_{DZ}}{V_B}\right)^2 = P_B \frac{V_{DZ}^2}{10,000^{\text{mph}^2}}$$
(3.8.1.2.1-1)

$$P_B$$
- Base Pressure- For beams, $P_B = 50^{\text{psf}}$ when $V_B = 100^{\text{mph}}$.(Table 3.8.1.2.1-1) V_B - Base Wind Velocity, typically taken as 100^{mph} .(Table 3.8.1.2.1-1) V_{30} - Wind Velocity at an elevation of $Z = 30^{\circ}$ (mph) V_{DZ} V_{DZ} - Design Wind Velocity (mph)

Design Wind Velocity:

$$V_{DZ} = 2.5 V_o \left(\frac{V_{30}}{V_B}\right) \ln\left(\frac{Z}{Z_o}\right)$$

= $(2.5) \left(8.20^{\text{mph}}\right) \left(\frac{100}{100}\right) \ln\left(\frac{40^{\text{ft}}}{0.23^{\text{ft}}}\right) = 105.8^{\text{mph}}$ (3.8.1.1-1)

$$P_D = \left(50^{\text{psf}}\right) \frac{\left(105.8^{\text{mph}}\right)^2}{\left(10,000^{\text{mph}^2}\right)} = 55.92^{\text{psf}}$$

The height of exposure, h_{exp} , for the finished bridge is computed as

$$h_{exp} = 71.5" + 11.75" + 42" = 125.3" = 10.44'$$

The wind load per unit length of the bridge, *W*, is then computed as:

$$W = (55.92^{\text{psf}})(10.44') = 583.7 \frac{\text{lbs}}{\text{ft}}$$

Total Wind Load:
$$WS_{H,Total} = (583.7 \frac{\text{lbs}}{\text{ft}})(2)(165') = 192.6^{\text{kip}}$$
For End Abutments: $WS_{H,Abt} = (583.7 \frac{\text{lbs}}{\text{ft}})(\frac{1}{2})(165') = 48.16^{\text{kip}}$ For Center Pier: $WS_{H,Pier} = (583.7 \frac{\text{lbs}}{\text{ft}})(2)(\frac{1}{2})(165') = 96.31^{\text{kip}}$

Vertical Wind Load on Structure: (WS)

When no traffic is on the bridge, a vertical uplift (a line load) with a magnitude equal to 20^{psf} times the overall width of the structure, *w*, acts at the windward quarter point of the deck.

Wind Load on Live Load: (WL)

The wind acting on live load is applied as a line load of 100 lbs/ft acting at a distance of 6' above the deck, as is shown below. This is applied along with the horizontal wind load on the structure but in the absence of the vertical wind load on the structure.

3. SECTION PROPERTIES AND CALCULATIONS:

3.1: Effective Flange Width, b_{eff}:

For an interior beam, b_{eff} is the lesser of:

$$\begin{cases} \bullet \frac{L_{eff}}{4} = \frac{132'}{4} = 33' = 396'' \\ \bullet 12t_s + \frac{b_f}{2} = (12)(8.5'') + \frac{15''}{2} = 109.5'' \\ \bullet S = (12')(12^{in}/_{ft}) = 144'' \end{cases}$$

For an exterior beam, b_{eff} is the lesser of:

$$\begin{cases} \bullet \frac{L_{eff}}{4} = \frac{132'}{4} = 33' = 198.0" \\ \bullet 12t_s + \frac{b_f}{2} = (12)(8.5") + \frac{15"}{2} = 109.5" \\ \bullet \frac{S}{2} + d_e = \left(\frac{12'}{2} + 3'\right) (12\frac{\text{in}}{\text{ft}}) = 108.0" \end{cases}$$

Note that L_{eff} was taken as 132.0' in the above calculations since for the case of effective width in continuous bridges, the span length is taken as the distance from the support to the point of dead load contra flexure.

For computing the section properties shown on the two pages that follow, reinforcing steel in the deck was ignored for short-term and long-term composite calculations but was included for the cracked section. The properties for the cracked Section #1 are not used in this example, thus the amount of rebar included is moot. For the properties of cracked Section #2, $A_s = 13.02$ in² located 4.5" from the top of the slab was taken from an underlying example problem first presented by Barth (2004).

3.2: Section 1 Flexural Properties

Bare Steel

	t	b	Α	У	Ау	I _x	d	Ad ²	Ι _Χ
Top Flange	0.7500	15.00	11.25	70.38	791.72	0.53	-39.70	17,728	17,729
Web	0.5625	69.00	38.81	35.50	1,377.84	15,398.86	-4.82	902	16,301
Bot Flange	1.0000	21.00	21.00	0.50	10.50	1.75	30.18	19,125	19,127
			71.06		2,180.06			I _{Total} =	53,157
				Y =	30.68			S _{BS1,top} = S _{BS1,bot} =	1,327 1,733

Short-Term Composite (n = 8)

	t	b	Α	у	Ау	I _x	d	Ad	Ι _x
Slab	8.5000	109.50	116.34	75.00	8,725.78	700.49	-16.81	32,862	33,562
Haunch	0.0000	15.00	0.00	70.75	0.00	0.00	-12.56	0	0
Top Flange	0.7500	15.0000	11.25	70.38	791.72	0.53	-12.18	1,669	1,670
Web	0.5625	69.0000	38.81	35.50	1,377.84	15,398.86	22.69	19,988	35,387
Bot Flange	1.0000	21.0000	21.00	0.50	10.50	1.75	57.69	69,900	69,901
	n:	8 00	187.41		10,905.84			I _{Total} =	140,521
		0.00		Y =	58.19			S _{ST1,top} = S _{ST1,bot} =	11,191 2,415

Long-Term Composite (n = 24)

	t	b	Α	У	Ау	I _x	d	Ad ²	Ι _x
Slab	8.5000	109.50	38.78	75.00	2,908.59	233.50	-28.67	31,885	32,119
Haunch	0.0000	15.00	0.00	70.75	0.00	0.00	-24.42	0	0
Top Flange	0.7500	15.0000	11.25	70.38	791.72	0.53	-24.05	6,506	6,507
Web	0.5625	69.0000	38.81	35.50	1,377.84	15,398.86	10.83	4,549	19,948
Bot Flange	1.0000	21.0000	21.00	0.50	10.50	1.75	45.83	44,101	44,103
Bot Flange	n:	24.00	109.84		5,088.66			I _{Total} =	102,676
				Y =	46.33			S _{LT1,top} = S _{LT1,bot} =	4,204 2,216

Cracked Section

	t	b	Α	У	Ау	I _x	d	Ad ²	Ι _x
Rebar	4.5000		13.02	75.25	979.76		-75.25	73,727	73,727
Top Flange	0.7500	15.0000	11.25	70.38	791.72	0.53	-70.38	55,717	55,718
Web	0.5625	69.0000	38.81	35.50	1,377.84	15,398.86	-35.50	48,913	64,312
Bot Flange	1.0000	21.0000	21.00	0.50	10.50	1.75	-0.50	5	7
			84.08		3,159.82			I _{Total} =	193,764
				Y =	37.58			S _{CR1,top} =	5,842
								S _{CR1,bot} =	5,156

These section properties do NOT include the haunch or sacrificial wearing surface.

3.3: Section 2 Flexural Properties

Bare Steel

	t	b	Α	у	Ау	I _x	d	Ad ²	Ι _Χ
Top Flange	1.0000	21.00	21.00	72.00	1,512.00	1.75	-45.17	42,841	42,843
Web	0.5625	69.00	38.81	37.00	1,436.06	15,398.86	-10.17	4,012	19,411
Bot Flange	2.5000	21.00	52.50	1.25	65.63	27.34	25.58	34,361	34,388
			112.31		3,013.69			I _{Total} =	96,642
				Y =	26.83			S _{BS2,top} = S _{BS2,bot} =	2,116 3,602

Short Term Composite (n = 8)

	t	b	Α	у	Ау	I _x	d	Ad	I _X
Slab	8.5000	109.50	116.34	76.75	8,929.38	700.49	-24.52	69,941	70,641
Haunch	0.0000	21.00	0.00	72.50	0.00	0.00	-20.27	0	0
Top Flange	1.0000	21.0000	21.00	72.00	1,512.00	1.75	-19.77	8,207	8,208
Web	0.5625	69.0000	38.81	37.00	1,436.06	15,398.86	15.23	9,005	24,403
Bot Flange	2.5000	21.0000	52.50	1.25	65.63	27.34	50.98	136,454	136,481
	n:	8 00	228.66		11,943.07			I _{Total} =	239,734
		0.00		Y =	52.23			S _{ST2,top} = S _{ST2 bot} =	11,828 4,590

Long-Term Composite (n = 24)

	t	b	Α	У	Ау	l _x	d	Ad ²	Ι _x
Slab	8.5000	109.50	38.78	76.75	2,976.46	233.50	-37.10	53,393	53,626
Haunch	0.0000	15.00	0.00	72.50	0.00	0.00	-32.85	0	0
Top Flange	1.0000	21.0000	21.00	72.00	1,512.00	1.75	-32.35	21,983	21,985
Web	0.5625	69.0000	38.81	37.00	1,436.06	15,398.86	2.65	272	15,670
Bot Flange	2.5000	21.0000	52.50	1.25	65.63	27.34	38.40	77,395	77,423
			151.09		5,990.15			I _{Total} =	168,704
	<i>n</i> :	24.00							
				Y =	39.65			S _{LT2,top} =	5,135
								S _{LT2,bot} =	4,255

Cracked Section

	t	b	Α	У	Ау	I _x	d	Ad ²	Ι _x
Rebar	4.5000		13.02	77.00	1,002.54		-44.96	26,313	26,313
Top Flange	1.0000	21.0000	21.00	72.00	1,512.00	1.75	-39.96	33,525	33,527
Web	0.5625	69.0000	38.81	37.00	1,436.06	15,398.86	-4.96	953	16,352
Bot Flange	2.5000	21.0000	52.50	1.25	65.63	27.34	30.79	49,786	49,813
			125.33		4,016.23			I _{Total} =	126,006
				Y =	32.04			S _{CR2,top} =	3,115
								S _{CR2,bot} =	3,932

These section properties do NOT include the haunch or sacrificial wearing surface.

4. DISTRIBUTION FACTOR FOR MOMENT

4.1: Positive Moment Region (Section 1):

Interior Girder -

One Lane Loaded:

$$DF_{M1,Int+} = 0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$$

$$K_g = n(I + Ae_g^2)$$

$$K_g = 8(53,157 \text{ in}^4 + (71.06 \text{ in}^2)(46.82")^2)$$

$$K_g = 1,672,000 \text{ in}^4$$

$$DF_{M1,Int+} = 0.06 + \left(\frac{12'}{14}\right)^{0.4} \left(\frac{12'}{165'}\right)^{0.3} \left(\frac{1,672,000 \text{ in}^4}{(12)(165')(8.5")^3}\right)^{0.1}$$

$$DF_{M1,Int+} = 0.5021$$

In these calculations, the terms e_g and K_g include the haunch and sacrificial wearing surface since doing so increases the resulting factor. Note that t_s in the denominator of the final term excludes the sacrificial wearing surface since excluding it increases the resulting factor.

Two or More Lanes Loaded:

$$DF_{M2,Int+} = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$$
$$DF_{M2,Int+} = 0.075 + \left(\frac{12'}{9.5}\right)^{0.6} \left(\frac{12'}{165'}\right)^{0.2} \left(\frac{1,672,000 \text{ in}^4}{12(165')(8.5'')^3}\right)^{0.1}$$
$$DF_{M2,Int+} = 0.7781$$

Exterior Girder –

One Lane Loaded:

The lever rule is applied by assuming that a hinge forms over the first interior girder as a truck load is applied near the parapet. The resulting reaction in the exterior girder is the distribution factor.

$$DF_{M1,Ext+} = \frac{8.5}{12} = 0.7083$$

Multiple Presence: $DF_{M1,Ext+} = (1.2) (0.7083) = 0.8500$

2- Span Continuous Bridge Example ODOT LRFD Short Course - Loads

Two or More Lanes Loaded:

$$DF_{M2,Ext+} = e DF_{M2,Int+}$$

$$e = 0.77 + \frac{d_e}{9.1}$$

$$= 0.77 + \frac{1.5}{9.1} = 0.9348$$

$$DF_{M2,Ext+} = (0.9348) (0.7781) = 0.7274$$

4.2: Negative Moment Region (Section 2):

The span length used for negative moment near the pier is the average of the lengths of the adjacent spans. In this case, it is the average of 165.0' and 165.0' = 165.0'.

Interior Girder –

One Lane Loaded:

$$DF_{M1,Int-} = 0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$$

$$K_g = n(I + Ae_g^2)$$

$$K_g = 8(96,642 \text{ in}^4 + (112.3 \text{ in}^2)(52.17")^2)$$

$$K_g = 3,218,000 \text{ in}^4$$

$$DF_{M1,Int-} = 0.06 + \left(\frac{12'}{14}\right)^{0.4} \left(\frac{12'}{165'}\right)^{0.3} \left(\frac{3,218,000 \text{ in}^4}{(12)(165')(8.5")^3}\right)^{0.1}$$

$$DF_{M1,Int-} = 0.5321$$

Two or More Lanes Loaded:

$$DF_{M2,Int-} = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$$
$$DF_{M2,Int-} = 0.075 + \left(\frac{12'}{9.5}\right)^{0.6} \left(\frac{12'}{165'}\right)^{0.2} \left(\frac{3,218,000 \text{ in}^4}{(12)(165')(8.5'')^3}\right)^{0.1}$$
$$DF_{M2,Int-} = 0.8257$$

Exterior Girder -

One Lane Loaded:

Same as for the positive moment section: $DF_{M1,Ext} = 0.8500$

Two or More Lanes Loaded:

$$DF_{M2,Ext-} = e DF_{M2,Int-}$$
$$e = 0.77 + \frac{d_e}{9.1}$$
$$= 0.77 + \frac{1.5}{9.1} = 0.9348$$

$$DF_{M2,Ext} = (0.9348) (0.8257) = 0.7719$$

4.3: Minimum Exterior Girder Distribution Factor:

One Lane Loaded:

Two Lanes Loaded:

Three Lanes Loaded:

The case of three lanes loaded is not considered for the minimum exterior distribution factor since the third truck will be placed to the right of the center of gravity of the girders, which will stabilize the rigid body rotation effect resulting in a lower factor.

4.4: Moment Distribution Factor Summary

Strength and Service Moment Distribution:

	Positive	Moment	Negative Moment			
	Interior	r Exterior Interior Exter				
1 Lane Loaded:	0.5021	$0.8500 \ge 0.7350$	0.5321	$0.8500 \ge 0.7350$		
2 Lanes Loaded:	0.7781	$0.7274 \ge 0.9250$	0.8257	$0.7719 \ge 0.9250$		

For Simplicity, take the Moment Distribution Factor as 0.9250 everywhere for the Strength and Service load combinations.

Fatigue Moment Distribution:

For Fatigue, the distribution factor is based on the one-lane-loaded situations with a multiple presence factor of 1.00. Since the multiple presence factor for 1-lane loaded is 1.2, these factors can be obtained by divided the first row of the table above by 1.2.

	Positive	Moment	Negative Moment		
	Interior	Exterior	Interior Exterior		
1 Lane Loaded:	0.4184	$0.7083 \ge 0.6125$	0.4434	$0.7083 \ge 0.6125$	

For Simplicity, take the Moment Distribution Factor as 0.7083 everywhere for the Fatigue load combination

Multiplying the live load moments by this distribution factor of 0.9250 yields the table of "nominal" girder moments shown on the following page.

	Nominal Moments							
Station	(LL+IM)+	(LL+IM)-	Fat+	Fat-	DC1	DC2	DW	
(ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	
0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
14.7	1605.1	-280.7	645.6	-68.9	1309.9	240.0	440.3	
29.3	2791.4	-561.3	1127.9	-137.9	2244.5	412.0	755.6	
44.0	3572.6	-842.0	1449.4	-206.8	2799.9	515.0	944.7	
58.7	3999.4	-1122.7	1626.1	-275.8	2978.6	549.7	1008.3	
73.3	4066.7	-1403.4	1647.9	-344.7	2779.3	515.8	946.1	
88.0	3842.5	-1684.0	1599.4	-413.7	2202.1	413.2	757.9	
102.7	3310.8	-1964.7	1439.3	-482.6	1248.4	242.3	444.4	
117.3	2509.4	-2245.4	1148.6	-551.6	-84.8	2.5	4.6	
132.0	1508.6	-2547.5	763.6	-620.5	-1793.1	-305.4	-560.2	
135.7	1274.6	-2660.0	651.3	-637.8	-2280.8	-393.2	-721.2	
139.3	1048.4	-2793.3	539.1	-655.0	-2794.0	-485.2	-890.0	
143.0	828.6	-2945.6	425.3	-672.2	-3333.2	-581.5	-1066.7	
146.7	615.8	-3115.6	310.8	-689.5	-3898.1	-682.1	-1251.3	
150.3	463.3	-3371.3	221.9	-706.7	-4488.6	-787.0	-1443.7	
154.0	320.5	-3728.6	158.6	-724.0	-5105.1	-896.2	-1643.9	
157.7	185.5	-4105.0	98.8	-741.2	-5747.2	-1009.7	-1852.1	
161.3	76.4	-4496.9	49.4	-758.4	-6415.3	-1127.5	-2068.1	
165.0	0.0	-4918.1	0.1	-775.6	-7108.8	-1249.5	-2291.9	
168.7	76.4	-4496.9	49.4	-758.4	-6415.3	-1127.5	-2068.1	
172.3	185.5	-4105.0	98.8	-741.2	-5747.2	-1009.7	-1852.1	
176.0	320.5	-3728.6	158.6	-724.0	-5105.1	-896.2	-1643.9	
179.7	463.3	-3371.3	221.9	-706.7	-4488.6	-787.0	-1443.7	
183.3	615.8	-3115.6	310.8	-689.5	-3898.1	-682.1	-1251.3	
187.0	828.6	-2945.6	425.3	-672.2	-3333.2	-581.5	-1066.7	
190.7	1048.4	-2793.3	539.1	-655.0	-2794.0	-485.2	-890.0	
194.3	1274.6	-2660.0	651.3	-637.8	-2280.8	-393.2	-721.2	
198.0	1508.6	-2547.5	763.2	-620.6	-1793.1	-305.4	-560.2	
212.7	2509.4	-2245.4	1148.6	-551.6	-84.8	2.5	4.6	
227.3	3310.8	-1964.7	1439.3	-482.6	1248.4	242.3	444.4	
242.0	3842.5	-1684.0	1599.4	-413.7	2202.1	413.2	757.9	
256.7	4066.7	-1403.4	1647.9	-344.7	2779.3	515.8	946.1	
271.3	3999.4	-1122.7	1626.1	-275.8	2978.6	549.7	1008.3	
286.0	3572.6	-842.0	1449.4	-206.8	2799.9	515.0	944.7	
300.7	2791.4	-561.3	1127.9	-137.9	2244.5	412.0	755.6	
315.3	1605.1	-280.7	645.6	-68.9	1309.9	240.0	440.3	
330.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	

Nominal Girder Moments for Design

5. DISTRIBUTION FACTOR FOR SHEAR

The distribution factors for shear are independent of the section properties and span length. Thus, the only one set of calculations are need - they apply to both the section 1 and section 2

5.1: Interior Girder -

One Lane Loaded:

$$DF_{V1,Int} = 0.36 + \frac{S}{25.0}$$
$$= 0.36 + \frac{12'}{25.0} = 0.8400$$

Two or More Lanes Loaded:

$$DF_{V2,Int} = 0.2 + \frac{S}{12} - \left(\frac{S}{35}\right)^2$$
$$= 0.2 + \frac{12'}{12} - \left(\frac{12'}{35}\right)^2 = 1.082$$

5.2: Exterior Girder -

One Lane Loaded:

Lever Rule, which is the same as for moment: $DF_{VI,Ext} = 0.8500$

Two or More Lanes Loaded:

$$DF_{V2,Ext} = e DF_{V2,Int}$$
$$e = 0.60 + \frac{d_e}{10}$$
$$= 0.60 + \frac{1.5'}{10} = 0.7500$$

$$DF_{V2,Ext} = (0.7500) (1.082) = 0.8115$$

5.3: Minimum Exterior Girder Distribution Factor -

The minimum exterior girder distribution factor applies to shear as well as moment.

$$DF_{V1,Ext,Min} = 0.7350$$
$$DF_{V2,Ext,Min} = 0.9250$$

5.4: Shear Distribution Factor Summary

Strength and Service Shear Distribution:

	Shear Distribution				
	Interior Exterior				
1 Lane Loaded:	0.8400	$0.8500 \ge 0.7350$			
2 Lanes Loaded:	1.082	$0.6300 \ge 0.9250$			

For Simplicity, take the Shear Distribution Factor as 1.082 everywhere for Strength and Service load combinations.

Fatigue Shear Distribution:

For Fatigue, the distribution factor is based on the one-lane-loaded situations with a multiple presence factor of 1.00. Since the multiple presence factor for 1-lane loaded is 1.2, these factors can be obtained by divided the first row of the table above by 1.2.

	Shear Distribution				
	Interior	Exterior			
1 Lane Loaded:	0.7000	$0.7083 \ge 0.6125$			

For Simplicity, take the Shear Distribution Factor as 0.7083 everywhere for the Fatigue load combination.

Multiplying the live load shears by these distribution factors yields the table of "nominal" girder shears shown on the following page.

Nominal Shears								
Station	(LL+IM)+	(LL+IM)-	Fat+	Fat-	DC1	DC2	DW	
(ft)	(kip)	(kip)	(kip)	(kip)	(kip)	(kip)	(kip)	
0.0	144.9	-19.7	50.8	-4.7	115.0	20.6	37.6	
14.7	123.5	-20.3	44.6	-4.7	88.8	15.9	29.0	
29.3	103.5	-26.8	38.5	-6.4	62.5	11.2	20.5	
44.0	85.0	-41.4	32.6	-11.1	36.3	6.5	11.9	
58.7	68.1	-56.7	26.9	-17.2	10.1	1.8	3.3	
73.3	52.8	-72.7	21.4	-23.2	-16.1	-2.9	-5.3	
88.0	39.4	-89.1	16.3	-29.0	-42.3	-7.6	-13.9	
102.7	27.8	-105.7	11.5	-34.6	-68.6	-12.3	-22.4	
117.3	18.0	-122.3	7.3	-39.9	-94.8	-17.0	-31.0	
132.0	10.0	-138.6	3.9	-44.9	-121.0	-21.7	-39.6	
135.7	8.3	-142.5	3.4	-46.0	-127.6	-22.8	-41.7	
139.3	6.7	-146.5	2.8	-47.2	-134.1	-24.0	-43.9	
143.0	5.5	-150.5	2.3	-48.3	-140.7	-25.2	-46.0	
146.7	4.3	-154.5	1.8	-49.4	-147.2	-26.4	-48.2	
150.3	3.2	-158.4	1.4	-50.4	-153.8	-27.5	-50.3	
154.0	2.2	-162.3	1.0	-51.5	-160.3	-28.7	-52.5	
157.7	1.3	-166.2	0.6	-52.4	-166.9	-29.9	-54.6	
161.3	0.0	-170.1	0.3	-53.4	-173.4	-31.0	-56.8	
165.0	0.0	-173.9	54.3	-54.3	-180.0	-32.2	-58.9	
168.7	170.1	-0.5	53.4	-0.3	173.4	31.0	56.8	
172.3	166.2	-1.3	52.4	-0.6	166.9	29.9	54.6	
176.0	162.3	-2.2	51.5	-1.0	160.3	28.7	52.5	
179.7	158.4	-3.2	50.4	-1.4	153.8	27.5	50.3	
183.3	154.5	-4.3	49.4	-1.8	147.2	26.4	48.2	
187.0	150.5	-5.5	48.3	-2.3	140.7	25.2	46.0	
190.7	146.5	-6.7	47.2	-2.8	134.1	24.0	43.9	
194.3	142.5	-8.3	46.0	-3.4	127.6	22.8	41.7	
198.0	138.6	-10.0	44.9	-3.9	121.0	21.7	39.6	
212.7	122.3	-18.0	39.9	-7.3	94.8	17.0	31.0	
227.3	105.7	-27.8	34.6	-11.5	68.6	12.3	22.4	
242.0	89.1	-39.4	29.0	-16.3	42.3	7.6	13.9	
256.7	72.7	-52.8	23.2	-21.4	16.1	2.9	5.3	
271.3	56.7	-68.1	17.2	-26.9	-10.1	-1.8	-3.3	
286.0	41.4	-85.0	11.1	-32.6	-36.3	-6.5	-11.9	
300.7	26.8	-103.5	6.4	-38.5	-62.5	-11.2	-20.5	
315.3	20.3	-123.5	4.7	-44.6	-88.8	-15.9	-29.0	
330.0	19.7	-144.9	4.7	-50.8	-115.0	-20.6	-37.6	

Nominal Girder Shears for Design

6. FACTORED SHEAR AND MOMENT ENVELOPES

The following load combinations were considered in this example:

Strength I: Strength IV:	1.75(LL + IM) + 1.25D 1.50DC1 + 1.50DC2 +	5(LL + IM) + 1.25DC1 + 1.25DC2 + 1.50DW 0DC1 + 1.50DC2 + 1.50DW				
Service II:	1.3(LL + IM) + 1.0DCI	+ 1.0DC2 + 1.0DW				
Fatigue:	0.75(LL + IM)	(IM = 15% for Fatigue;	IM = 33% otherwise)			

Strength II is not considered since this deals with special permit loads. Strength III and V are not considered as they include wind effects, which will be handled separately as needed. Strength IV is considered but is not expected to govern since it addresses situations with high dead load that come into play for longer spans. Extreme Event load combinations are not included as they are also beyond the scope of this example. Service I again applies to wind loads and is not considered (except for deflection) and Service III and Service IV correspond to tension in prestressed concrete elements and are therefore not included in this example.

In addition to the factors shown above, a load modifier, η , was applied as is shown below.

$$Q = \sum \eta_i \gamma_i Q_i$$

 η is taken as the product of η_D , η_R , and η_I , and is taken as not less than 0.95. For this example, η_D and η_I are taken as 1.00 while η_R is taken as 1.05 since the bridge has 4 girders with a spacing greater than or equal to 12'.

Using these load combinations, the shear and moment envelopes shown on the following pages were developed.

Note that for the calculation of the Fatigue moments and shears that η is taken as 1.00 and the distribution factor is based on the one-lane-loaded situations with a multiple presence factor of 1.00 (AASHTO Sections 6.6.1.2.2, Page 6-29 and 3.6.1.4.3b, Page 3-25).

Strength Limit Moment Envelopes

Strength Limit Shear Force Envelope

Service II Moment Envelope

Service II Shear Envelope

Factored Fatigue Moment Envelope

Factored Fatigue Shear Envelope

	Strength I		Strength IV		Servi	ce II	Fatigue	
Station	Total +	Total -	Total +	Total + Total -		Total + Total -		Total -
(ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)	(k-ft)
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
14.7	5677.1	-515.7	3134.6	0.0	4280.7	-383.1	484.2	-51.7
29.3	9806.0	-1031.5	5374.1	0.0	7393.0	-766.2	845.9	-103.4
44.0	12403.3	-1547.2	6708.8	0.0	9349.1	-1149.4	1087.1	-155.1
58.7	13567.8	-2062.9	7145.1	0.0	10222.6	-1532.5	1219.6	-206.8
73.3	13287.4	-2578.7	6679.8	0.0	10004.2	-1915.6	1235.9	-258.6
88.0	11687.1	-3094.4	5312.9	0.0	8787.0	-2298.7	1199.5	-310.3
102.7	8740.0	-3610.2	3047.7	0.0	6551.1	-2681.8	1079.5	-362.0
117.3	4621.6	-4237.1	11.2	-133.5	3432.8	-3153.9	861.5	-413.7
132.0	2772.1	-8317.5	0.0	-4187.3	2059.3	-6268.9	572.7	-465.4
135.7	2342.0	-9533.2	0.0	-5347.3	1739.8	-7195.8	488.5	-478.3
139.3	1926.4	-10838.2	0.0	-6566.4	1431.1	-8190.4	404.3	-491.3
143.0	1522.6	-12230.6	0.0	-7845.7	1131.1	-9251.2	318.9	-504.2
146.7	1131.6	-13707.1	0.0	-9184.5	840.6	-10375.8	233.1	-517.1
150.3	851.2	-15392.8	0.0	-10582.9	632.3	-11657.1	166.5	-530.0
154.0	588.9	-17317.3	0.0	-12041.3	437.4	-13117.1	119.0	-543.0
157.7	340.9	-19328.3	0.0	-13559.1	253.3	-14642.7	74.1	-555.9
161.3	140.4	-21420.1	0.0	-15137.1	104.3	-16229.6	37.1	-568.8
165.0	0.0	-23617.1	0.0	-16774.1	0.0	-17895.9	0.1	-581.7
168.7	140.4	-21420.1	0.0	-15137.1	104.3	-16229.6	37.1	-568.8
172.3	340.9	-19328.3	0.0	-13559.1	253.3	-14642.7	74.1	-555.9
176.0	588.9	-17317.3	0.0	-12041.3	437.4	-13117.1	119.0	-543.0
179.7	851.2	-15392.8	0.0	-10582.9	632.3	-11657.1	166.5	-530.0
183.3	1131.6	-13707.1	0.0	-9184.5	840.6	-10375.8	233.1	-517.1
187.0	1522.6	-12230.6	0.0	-7845.7	1131.1	-9251.2	318.9	-504.2
190.7	1926.4	-10838.2	0.0	-6566.4	1431.1	-8190.4	404.3	-491.3
194.3	2342.0	-9533.2	0.0	-5347.3	1739.8	-7195.8	488.5	-478.3
198.0	2772.1	-8317.5	0.0	-4187.3	2059.3	-6268.9	572.4	-465.4
212.7	4621.6	-4237.1	11.2	-133.5	3432.8	-3153.9	861.5	-413.7
227.3	8740.0	-3610.2	3047.7	0.0	6551.1	-2681.8	1079.5	-362.0
242.0	11687.1	-3094.4	5312.9	0.0	8787.0	-2298.7	1199.5	-310.3
256.7	13287.4	-2578.7	6679.8	0.0	10004.2	-1915.6	1235.9	-258.6
271.3	13567.8	-2062.9	7145.1	0.0	10222.6	-1532.5	1219.6	-206.8
286.0	12403.3	-1547.2	6708.8	0.0	9349.1	-1149.4	1087.1	-155.1
300.7	9806.0	-1031.5	5374.1	0.0	7393.0	-766.2	845.9	-103.4
315.3	5677.1	-515.7	3134.6	0.0	4280.7	-383.1	484.2	-51.7
330.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0

Factored Girder Moments for Design

	Strength I		Strength IV		Servio	ce II	Fatigue	
Station	Total +	Total -	Total +	Total -	Total +	Total -	Total +	Total -
(ft)	(kip)	(kip)	(kip)	(kip)	(kip)	(kip)	(kip)	(kip)
0.0	479.5	-34.5	272.8	0.0	379.7	-26.9	38.1	-3.5
14.7	390.5	-35.5	210.6	0.0	309.0	-27.7	33.5	-3.5
29.3	304.0	-46.9	148.4	0.0	240.2	-36.6	28.9	-4.8
44.0	220.1	-72.4	86.2	0.0	173.4	-56.5	24.5	-8.3
58.7	138.9	-99.3	24.0	0.0	108.9	-77.5	20.2	-12.9
73.3	92.5	-158.9	0.0	-38.2	72.1	-124.8	16.1	-17.4
88.0	68.9	-239.1	0.0	-100.4	53.8	-188.6	12.2	-21.8
102.7	48.6	-319.7	0.0	-162.6	37.9	-252.7	8.6	-26.0
117.3	31.5	-400.1	0.0	-224.8	24.6	-316.8	5.5	-29.9
132.0	17.5	-480.2	0.0	-287.0	13.7	-380.5	3.0	-33.7
135.7	14.5	-500.0	0.0	-302.6	11.3	-396.3	2.5	-34.5
139.3	11.7	-519.8	0.0	-318.1	9.2	-412.1	2.1	-35.4
143.0	9.6	-539.7	0.0	-333.7	7.5	-427.9	1.7	-36.2
146.7	7.6	-559.6	0.0	-349.2	5.9	-443.7	1.4	-37.0
150.3	5.7	-579.3	0.0	-364.8	4.4	-459.4	1.0	-37.8
154.0	3.9	-599.0	0.0	-380.3	3.0	-475.1	0.8	-38.6
157.7	2.2	-618.7	0.0	-395.9	1.7	-490.8	0.5	-39.3
161.3	0.0	-638.3	0.0	-411.4	0.0	-506.4	0.2	-40.0
165.0	0.0	-657.9	0.0	-427.0	0.0	-522.0	40.7	-40.7
168.7	638.3	-0.9	411.4	0.0	506.4	-0.7	40.0	-0.2
172.3	618.7	-2.2	395.9	0.0	490.8	-1.7	39.3	-0.5
176.0	599.0	-3.9	380.3	0.0	475.1	-3.0	38.6	-0.8
179.7	579.3	-5.7	364.8	0.0	459.4	-4.4	37.8	-1.0
183.3	559.6	-7.6	349.2	0.0	443.7	-5.9	37.0	-1.4
187.0	539.7	-9.6	333.7	0.0	427.9	-7.5	36.2	-1.7
190.7	519.8	-11.7	318.1	0.0	412.1	-9.2	35.4	-2.1
194.3	500.0	-14.5	302.6	0.0	396.3	-11.3	34.5	-2.5
198.0	480.2	-17.5	287.0	0.0	380.5	-13.7	33.7	-2.9
212.7	400.1	-31.5	224.8	0.0	316.8	-24.6	29.9	-5.5
227.3	319.7	-48.6	162.6	0.0	252.7	-37.9	26.0	-8.6
242.0	239.1	-68.9	100.4	0.0	188.6	-53.8	21.8	-12.2
256.7	158.9	-92.5	38.2	0.0	124.8	-72.1	17.4	-16.1
271.3	99.3	-138.9	0.0	-24.0	77.5	-108.9	12.9	-20.2
286.0	72.4	-220.1	0.0	-86.2	56.5	-173.4	8.3	-24.5
300.7	46.9	-304.0	0.0	-148.4	36.6	-240.2	4.8	-28.9
315.3	35.5	-390.5	0.0	-210.6	27.7	-309.0	3.5	-33.5
330.0	34.5	-479.5	0.0	-272.8	26.9	-379.7	3.5	-38.1

Factored Girder Shears for Design