

LITHIUM-ION BATTERY SYSTEM FOR U212NFS

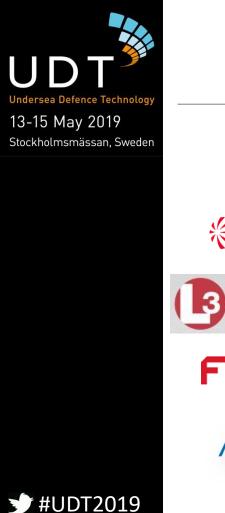
ITALIAN DIRECTORATE OF THE NAVAL ARMAMENTS SUBMARINES SUPPORT DIVISION

Agenda

- U212 NFS PROGRAM
- R&D BACKGROUND
- PROJECT DEVELOPMENT
- LITHIUM-ION BATTERIES COMPLEMENTARY USE

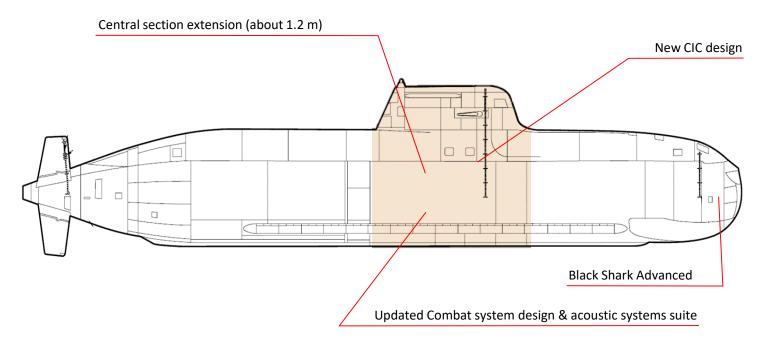
 Unmatched superiority of U212A design in the underwater domain after a decade of operational activities WW

ITN 1st batch

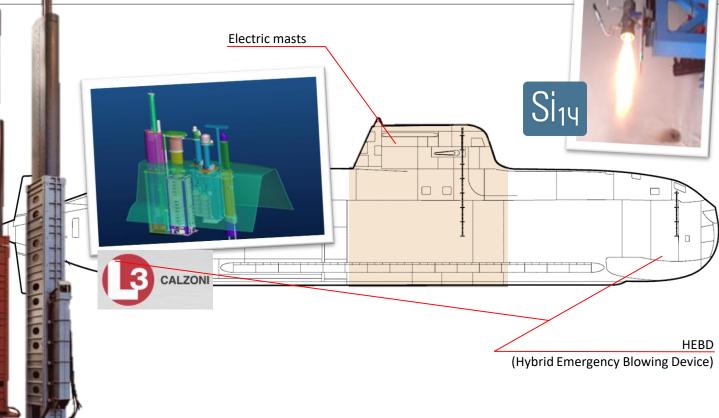

- Salvatore Todaro (06.2005)
- Sciré (02.2007)

ITN 2nd batch:

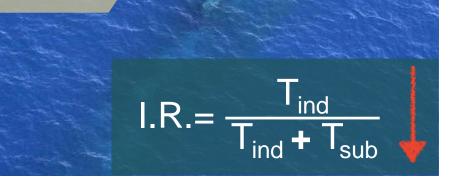
- Pietro Venuti (07.2016)
- Romeo Romei (05.2017)



- 4 U212 NFS Submarines delivery in little more than a decade
- First 2 boats contract forwarded by July 2019
- Surgical improvements of latest technological findings on a U212A based design







Yes, BUT...

- Higher ENDURANCE/platform FLEXIBILITY
- State of the art STEALTHNESS
- Improved OPERATIONAL CAPABILITIES

R&D BACKGROUND

Cofunded R&D programme with the aim to investigate new technologies

PNRM 2009

for increasing the endurance of AIP U212A Submarine

R&D BACKGROUND

Lithium 6.941

З

2

LiFePO4

R&D BACKGROUND

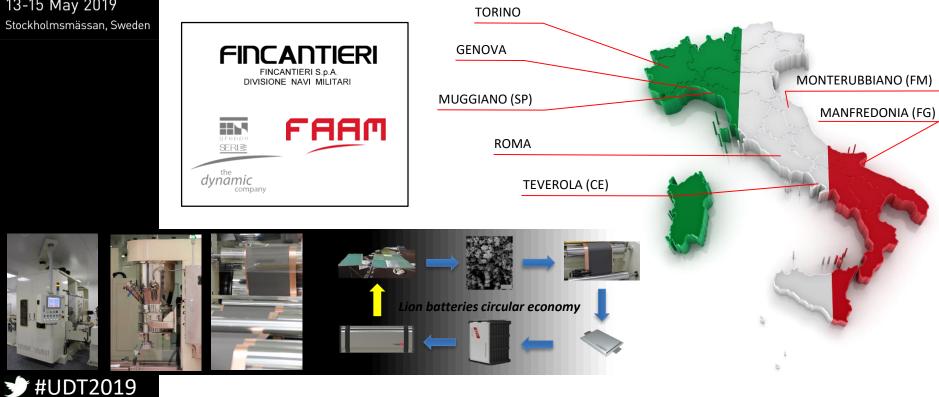
- low internal resistance and capacity basically independent from the load
- high energy density (≈ 220 Wh/l)
- high power density (≈ 6000 W/kg)
- working life reliability and maintainability
- working life reliability and maintainability
- excellent cycle stability
- design an efficient thermal management to maintain an overall temperature in the required temperature range
- develop a safety system allowing cell balancing, low charge time and full capacity all along the missions
- low material price

J.

R&D BACKGROUND

	(V)								
aaid		(Wh/kg)	(Wh/L)	(W/kg)	(%)	(N)			
acid	2.0	30-40	60-75 🔺	180	70%-85%	600-1500	5-12		
<u>nium</u>	1.2	40-60	50-150	150	70%-90%	1500	5		
H	1.2	30-80	140-300	250-1000	66%	1000	5		
<u>LCO</u>	3.6	160	270	1800	99 %	1200	5		
<u>NCA</u>	3,6	240	600	1000	98%	3000	15		
<u>LMO</u>	4,0	140	250	2000	98%	2000	10		
<u>NMC</u>	3.7	140-160	300	3000	98 %	5000	10		
<u>LFP</u>	3.25	100-140	220	6000	98 %	3000	10		
<u>LTO</u>	2.3	90	160	10000	95%	10000	20		
ox	1.41	25-35			65-75%	15000-300	15	1	
	2.6								
<u>2</u>	2,7	Current commercial Li Ion-				750 Wh/		Solid State Gen. 4	500 Wh/kg, 1000 Wh/l 2025-2030
	LCO NCA LMO NMC LEP LTO	LCO 3.6 NCA 3,6 LMO 4,0 NMC 3.7 LFP 3.25 LTO 2.3 DX 1.41 Cl 2,6	LCO 3.6 160 NCA 3,6 240 LMO 4,0 140 NMC 3.7 140-160 LFP 3.25 100-140 LTO 2.3 90 DX 1.41 25-35 Cl 2,6 Current commercial	LCQ 3.6 160 270 NCA 3.6 240 600 LMQ 4,0 140 250 NMC 3.7 140-160 300 LFP 3.25 100-140 220 LTQ 2.3 90 160 DX 1.41 25-35 Cl 2,6 Current commercial Li lon- 90-235 W	LCQ 3.6 160 270 1800 NCA 3,6 240 600 1000 LMQ 4,0 140 250 2000 NMC 3.7 140-160 300 3000 LFP 3.25 100-140 220 6000 LTO 2.3 90 160 10000 DX 1.41 25-35 5 5 Cl 2,6 Current commercial Li lon- • 90-235 Wh/kg • 200-630 Wh/l	LCQ 3.6 160 270 1800 99 % NCA 3.6 240 600 1000 98% LMQ 4.0 140 250 2000 98% NMC 3.7 140-160 300 3000 98 % LEP 3.25 100-140 220 6000 98 % LTO 2.3 90 160 10000 95% DX 1.41 25-35 65-75% 65-75% Cl 2.6 Current commercial Li lon 90-235 Wh/kg Advanced Li lon	LCO 3.6 160 270 1800 99 % 1200 NCA 3,6 240 600 1000 98% 3000 LMO 4,0 140 250 2000 98% 2000 NMC 3.7 140-160 300 3000 98 % 5000 LFP 3.25 100-140 220 6000 98 % 3000 LTO 2.3 90 160 10000 95% 10000 DX 1.41 25-35 65-75% 15000-300 CL 2,6 Current commercial Li lon- • 90-235 Wh/kg • 350 Wh/ 2.77 2.77 • 90-235 Wh/kg • 200-630 Wh/l • 350 Wh/	LCO 3.6 160 270 1800 99 % 1200 5 NCA 3,6 240 600 1000 98% 3000 15 LMO 4,0 140 250 2000 98% 2000 10 NMC 3.7 140-160 300 3000 98 % 5000 10 LFP 3.25 100-140 220 6000 98 % 3000 10 LTO 2.3 90 160 10000 95% 10000 20 DX 1.41 25-35 65-75% 15000-300 15 CL 2,6 Current commercial Li lon- • 90-235 Wh/kg • 350 Wh/kg, 750 Wh/l Advanced - 350 Wh/kg, 750 Wh/l • 350 Wh/kg, 750 Wh/l • 350 Wh/l • 350 Wh/l	LCQ 3.6 160 270 1800 99 % 1200 5 NCA 3,6 240 600 1000 98% 3000 15 LMQ 4,0 140 250 2000 98% 2000 10 NMC 3.7 140-160 300 3000 98 % 5000 10 LFP 3.25 100-140 220 6000 98 % 3000 10 LTQ 2.3 90 160 10000 95% 10000 20 DX 1.41 25-35 65-75% 15000-300 15 15 CL 2.6 Current commercial Lion • 90-235 Wh/kg • 350 Wh/kg, 750 Wh/l Solid State Gen. 4

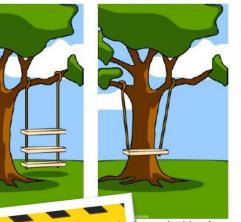
Type cell	Cylindrical – LiFePo4
Nominal Capacity	65 Ah
Nominal Voltage	3.2 V
Material of Shell	Aluminum
Weight	1510÷1520g
Energy Density	139 Wh/Kg
Range Charge and Discharge	2.5 ÷ 3.65V
Voltage End Charge	3.65 V
Nominal Charge Current	33 A
Max Continuos Charge Current	66 A
Nominal Discharge Current	33 A
Max Continuos Discharge Current	132 A
Peak Discharge Current	198 A
Operative Temperature Charge	0 ÷ 45 °C
Operative Temperature Discharge	-20 ÷ 60 °C


Ø 63 x 225 [mm]

R&D BACKGROUND

Electrodes conceived and designed by FAAM

R&D BACKGROUND



How the project was

documented

he project leader nderstood it

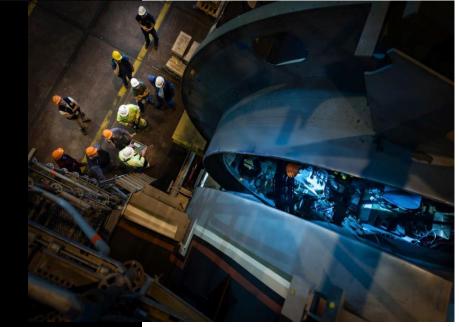
How the analyst designed it

How the programmer wrote it

How the business consultant described it

How it was supported

What the customer really needed



installed

What operations

Main Project Guidelines:

INCREASED ENDURANCE

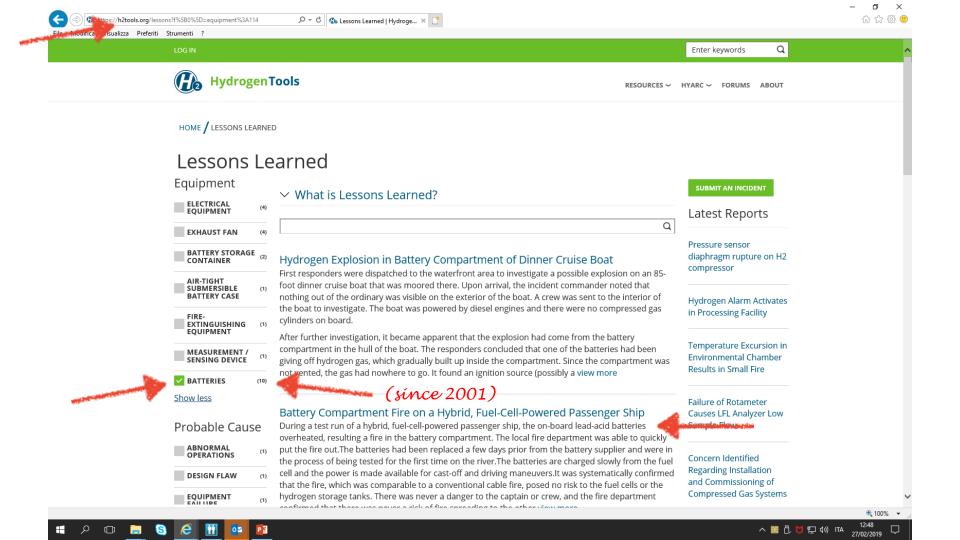
but however...

- SAFETY
- RISK REDUCTION
- MANAGING RISKY EVENTS

and so...

- OPERATION IN CRITICAL
 CONDITIONS
- MAINTAINABILITY

Activity	People involved (at CW 41/2018)	Firm/Classification/Body/Agency
Project management &	4	FINCANTIERI & FIB
planning	6	NAVARM & Navy General Staff
Risk assesment	3	CETENA/FINCANTIERI
 Safety certification Converter Auxiliaries switchboards 	17	Sub-contractors
Electric calculation	7	FINCANTIERI & sub-contractors
Cell, String & HW/SW BMS development	10	FIB
Auxiliaries systems	8	FINCANTIERI & sub-contractors



RISK ANALYSIS

(and system architecture detailed definition)

- BATTERY SYSTEM DYNAMIC SIMULATION (based on measurements on prototype cells)
- SHORT CIRCUIT MEASUREMENTS (direct and indirect)
- CELL & DC/DC CONVERTER TUNING (from above mentioned activities results)
- AUXILIARIES SYSTEMS TUNING (safety & control systems)

PROJECT DEVELOPMENT

Safety Integrity Level (SIL) of Battery and Battery Management System (BMS)

Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems

- MIL Std 882E System Safety
 - SG270-BV-SAF-010 High-energy Storage System Safety Manual

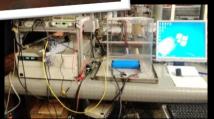
APPLICABLE RULES (MANDATORY)

Secondary cells and batteries containing alkaline or other non acid electrolytes - Safety requirements for secondary lithium cells and batteries for use in industrial applications
Secondary cells and batteries containing alkaline or other non acid electrolytes - Secondary lithium cells and batteries for use in industrial applications
Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
Environmental test specification for electrical, electronic and programmable equipment and systems
Propulsion system for submarines
Electric system - Design and general guidance for submarines
Electric system – Switchgear and switching device for surface ships and submarines
Electric plants cable systems for surface ships and submarines
Electronic equipment for use in electrical power installations and their assembly into electrical power installations

REFERENCE RULES (1/2)

VG 95030	Configuration baseline - Identification and establishment of the configuration baseline
VG 95031	Modification of products
VG 96932-2	Rechargeable Lithium Batteries — Generic specification
BV 0052	Environmental conditions
BV 2000-2	Vessel movements
BV 3000-2	Electric system design and general guidance for submarine
BV 3100	Electric motors, power converter, transformer, for surface ship and submarines
BV 3300	Switchgear and switching device for surface ship and submarine
BV 3400	Electric plants cable systems for surface ship and submarine
BV 0120	Electromagnetic compatibility (EMC) for surface ship and submarine
BV 0240	Vibration Resistance - Experimental Verification; Measurements on Board
BV 0230 & 0430	Shock resistance – Test proof and calculation proof
BV 0440	Experimental and math proof measurements on board for surface ships and submarines

REFERENCE RULES	5 (2/2)
NAVSEA S9310-AQ- SAF-010	Technical manual for Navy Lithium Battery Safety Program responsibilities and procedures
NAVSEA SG270-BV- SAF-010	High-energy storage system safety manual
IEC 60092	Standard for electrical installations in ships and fixed/mobile marine applications
MIL PRF 32565	Performance specification: battery, rechargeable, sealed, 6t lithium-ion
MIL Std 882E	System Safety
MIL 461	Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipments
MIL 462	Test method standard for measurement of Electromagnetic Interference characteristics
SG270-BV-SAF-010	High-Energy Storage System Safety Manual



PROJECT DEVELOPMENT

TRL 5 Battery & BMS Prototype alreday running, after:

- CAPACITY TEST ON THE SINGLE CELL
- «SUBMARINE CYCLE» TEST ON THE SINGLE CELL
- EXTERNAL SHORT CIRCUIT TEST
- SHOCK TEST
- PERFORATION TEST
- COMBINED CAPACITY TEST ON THE SINGLE CELL

true tríals are always the best...

LION BATTERIES COMPLEMENTARY USE

LITHIUM-ION BATTERY SYSTEM FOR U212NFS

ITALIAN DIRECTORATE OF THE NAVAL ARMAMENTS SUBMARINES SUPPORT DIVISION

